FAA System-Wide Modeling

Uses, Models, and Shortfalls

Presented to: FAA/Eurocontrol TIM, Madrid
By: Joseph Post, ATO Operations Planning
Date: 16 November 2006
Overview

- Uses of System-Wide Models
- FAA’s Existing Models
- Modeling Shortcomings
 - ATM Domain
 - Airport/Terminal
 - En Route
 - Flow Control
 - Airline Operations Center (AOC)
 - Model Use

We can’t model the current system; how can we model this thing?
Uses of System-Wide Models

- Requirements Analysis
- Cost-Benefit Analysis
- Performance Assessment
- Research & Development

Legend:
1. Mission Need Decision
2. Investment Analysis Readiness Decision
3. Initial Investment Decision
4. Final Investment Decision
5. In-Service Decision

FAA LIFECYCLE MANAGEMENT PROCESS
Uses of System-Wide Models (cont.)

• Portfolio optimization

The Challenge: To select an optimum portfolio of aviation investments so as to maximize the overall economic return, subject to a budget constraint.

\[W = PV\left\{ \Delta S_{\text{Consumer}} + \Delta S_{\text{Producer}} - C_{\text{Gov}} - C_{\text{Env}}(\text{noise, CO}_2, \text{NO}_X, \ldots) \right\} \]
Uses of System-Wide Models (cont.)

- System-wide performance assessment

The Performance Loop
FAA’s Existing System-Wide Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASPAC</td>
<td>FAA Technical Center</td>
</tr>
<tr>
<td>SystemwideModeler</td>
<td>Mitre/CAASD</td>
</tr>
<tr>
<td>ACES</td>
<td>NASA</td>
</tr>
<tr>
<td>FACET</td>
<td>NASA</td>
</tr>
<tr>
<td>LMINET</td>
<td>LMI</td>
</tr>
<tr>
<td>AwSim/AERALIB</td>
<td>Aerospace Engineering and Research Associates</td>
</tr>
</tbody>
</table>
NASPAC

- **National Airspace System Performance Capability**
- Fast-time discrete event simulation of entire NAS
 - Also used for regional studies
- Originally developed by Mitre in late 1980s
- SIMSCRIPT II.5
 - Pre-processors and post-processors in Fortran, C, and Pascal
- **Inputs:**
 - Airport capacities
 - Routes
 - Arrival/departure fixes
 - Sector geometries and capacities
 - Schedule
- **Pre-processor develops aircraft itineraries from OAG schedule**
 - Network effect is included
 - G/A, military flights added
systemwideModeler

- **Schedules Routes**
- **CRCT Trajectory Modeler**
- **GRAIL Airspace Toolkit**
- **Airports/Airspace Aircraft Performance Winds**

Initial flight plans

Environment data

Resource parameters

Flights execute plans and re-plan in response to constraints.

Constraints issued

Event reports

Post-processors

Analysis Database

Resources
- Airframe
- Airports
- Sectors
- TRACONs
- Airframes
- GDP/MIT
- Corridors

systemwideModeler – discrete event fast-time simulation of single day
ACES

- **Airspace Concepts Evaluation System**
- Airport network, terminal airspace, en route sectors included
 - 243 airports, “open” network
- **Four degree-of-freedom trajectory modeling**
 - 4D wind field used (Rapid Update Cycle [RUC] model)
- **Simplified terminal area modeling (Build 3)**
 - Node-to-node trajectories
 - Flight dynamics not exercised
- **Agent-based Traffic Flow Management (TFM)**
 - ATCSCC
 - En Route ARTCCs
 - TRACONs
 - Towers
 - Airline Operations Centers (AOCs)

FACET

• Future ATM Concepts Evaluation Tool
• Trajectory synthesis
 – Flight plans
 – Direct routing
 – Wind-optimal routing
• Conflict detection and resolution
• Metrics
 – Airspace complexity
LMINET

- Queuing model linking airport queues through sector queues
- 102 airports included in network for delay calculation
 - All airports considered for sector capacity
- Flight times based on historical distributions
- Constrained schedule builder
AwSim/AERALIB

- **AwSim**
 - Demand (i.e., schedule) generator
 - Trajectory and target simulator
 - Route structure or free flight
 - Stochastic
 - Conflict prediction
 - Metrics
 - Sector loads
 - Traffic density and efficiency
 - Conflict counts and characteristics

- **AERALIB**
 - Software libraries used for simulation/ATC system development
 - Core library
 - Trajectory library
 - Weather map library
Airport/Terminal Modeling Shortfalls

- Deterministic Airport Acceptance Rate /Airport Departure Rate (AAR/ADR)
- Terminal (TRACON) airspace capacity
- Convection weather
 - Re-routing
- Departure release delay
- Surface congestion
 - Taxiways
 - Gates
 - De-icing
- Tail number tracking
 - Delay propagation
- Passenger tracking
 - Connections

Coupled
Airport Acceptance/Departure Rate

Chicago O'Hare, 15 Aug. 2006
En Route Modeling Shortfalls

- **Static and deterministic sector capacity**
 - Monitor Alert Parameter (MAP)

- **Response to sector overload**
 - Rerouting

- **Metering**
 - Time-based metering
 - Miles In Trail (MIT)

- **Convective weather**
 - Dynamic sector capacity
 - Tactical re-routes
Daily Maximum Sector Capacity
Flow Control Modeling Shortfalls

- **Ground stops/ground delays**
 - Airport constraints (GDPs)
 - Airspace constraints (AFPs)
- **Strategic re-routes**
 - Severe Weather Avoidance Program (SWAP)
 - Canadian Off-load
Ground Stops/Ground Delays

ATCSCC Advisory

ATCSCC ADVZY 028 BOS/ZBW 11/09/2006 CDM GROUND DELAY PROGRAM

Message:
- **CTL ELEMENT:** BOS
- **ELEMENT TYPE:** APT
- **ADL TIME:** 1625Z
- **DELAY ASSIGNMENT MODE:** DAS
- **ARRIVALS ESTIMATED FOR:** 09/1900Z - 10/0059Z
- **CUMULATIVE PROGRAM PERIOD:** 09/1900Z - 10/0059Z
- **PROGRAM RATE:** 36
- **FLT INCL:** ALL CONTIGUOUS US DEP
- **DEP SCOPE:** (2NDTIER+CYZ_APT) ZBW ZAU ZDC ZID ZJX ZMP ZNY ZOB ZTL
- **ADDITIONAL DEP FACILITIES INCLUDED:**
- **CANADIAN DEP ARPTS INCLUDED:** CYNZ CYOW CYUL CYYZ
- **DELAY ASSIGNMENT TABLE APPLIES TO:** ZBW
- **MAXIMUM DELAY:** 72
- **AVERAGE DELAY:** 21.6
- **REASON:** WEATHER / WINDS
- **REMARKS:**

Effective Time: 091628 - 100159

Signature: 06/11/09 16:28

<table>
<thead>
<tr>
<th>Flights</th>
<th>Numbers</th>
<th>Effective Time</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>LGA/ZNY</td>
<td>11/09/06</td>
<td>CDM GROUND DELAY PROGRAM</td>
<td>CNX 11/09/06 03:13</td>
</tr>
<tr>
<td>PHL/ZNY</td>
<td>11/09/06</td>
<td>CDM GROUND DELAY PROGRAM</td>
<td>11/09/06 01:16</td>
</tr>
</tbody>
</table>

Federal Aviation Administration

16 November 2006
A761 Route
AOC Modeling Shortfalls

- Cancellations
- Ground Delay Program (GDP) response
- Re-routes
Model Use Shortfalls

• Ease of Set-up
• Mapping aircraft type to performance
• Monte Carlo replication
 – Flight schedules
 – Wind field
 – Aircraft performance
 – Routings
 – etc.
• Visualization
• Validation
Validation Cost/Benefit Calculus