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MEASUREMENT AND PREDICTION OF DYNAMIC DENSITY 
Parimal Kopardekar, Ph.D., Federal Aviation Administration, NASA Ames Research Center, Moffett Field, CA, USA 

Sherri Magyarits, Federal Aviation Administration, Atlantic City, NJ, USA 

This paper describes results of a multi-year, multi-organizational research initiative related to the measurement and 
prediction of sector level complexity called Dynamic Density (DD).  The researchers first identified a number of candidate 
DD measures.  They then identified eighteen 30-minute traffic samples from each of four selected en route Air Route 
Traffic Control Centers (ARTCCs).  At each ARTCC, they collected complexity ratings at two-minute intervals for each 
traffic sample from approximately 70 air traffic controllers and supervisors.  Using the traffic and sector data, various DD 
variables were computed.  Using a linear regression method, the relationships between different DD variables and 
complexity ratings were determined.  A unified DD metric composed of variables from several organizations performed the 
best.  The results indicated that DD represents instantaneous sector complexity better than aircraft count, which is the 
currently used method.  The results also indicated that the prediction of complexity using DD is somewhat better than the 
prediction using aircraft count most likely due to the inherent inaccuracy of predicting aircraft count.  

  

Background  
Dynamic Density (DD) is analogous to complexity 

or difficulty of an air traffic situation.  RTCA Task Force 
3 report [1] defines DD as “the essential factors affecting 
conflict rate in both en route and terminal airspace.”  The 
broader definition of DD considers as ATC taskload, 
which is the basis of controller subjective workload.  It is 
a "measure of control-related workload that is a function 
of the number of aircraft and the complexity of traffic 
patterns in a volume of airspace” [2].  For this research, 
the term DD is defined as the collective effect of all 
factors, or variables, that contribute to the sector level air 
traffic control complexity or difficulty at any given time 
[3]. 

Operational Need for Dynamic Density 

In order to accommodate user preferences, aviation 
researchers and developers are exploring initiatives such 
as collaborative decision-making, dynamic 
resectorization, user-preferred routes, shared separation, 
and free flight.  The core element of all of these concepts 
is the ability to measure and predict sector-level 
complexity.  Changes in traffic flows will be better 
managed if an accurate measurement and prediction of 
sector-level complexity is available. 

The current ATC system uses the monitor alert 
parameter of the Enhanced Traffic Management System 
(ETMS) to measure sector level activity and the 
corresponding air traffic controller taskload.  It is widely 
recognized, however, that aircraft count, and hence the 
monitor alert parameter, has significant shortcomings in 
its ability to accurately measure and predict sector level 
complexity [4].  Although the term Dynamic Density is 
relatively new, the factors that contribute to sector level 
traffic complexity have been of interest to researchers for 
a long time.  In a literature review of sector complexity, 

Mogford, Guttman, Morrow, and Kopardekar (1995) 
found that aircraft count, sector geometry, traffic flows, 
separation standards, aircraft performance 
characteristics, and weather are the most common factors 
that contribute to air traffic complexity or difficulty.  The 
following provides a comprehensive list of factors that 
contribute to air traffic complexity [5]: 

1. Number of aircraft, 
2. Aircraft density or traffic volume, 
3. Aircraft handled in prior time interval (e.g., last 

hour), 
4. Number of arrivals, 
5. Number of departures, 
6. Number of emergencies, 
7. Number of special flights, 
8. Coordination, 
9. Traffic mix (arrivals, departures, and 

overflights), 
10. Number of airport terminals, 
11. Traffic distribution, 
12. Staffing, 
13. Weather conditions, 
14. Equipment status, 
15. Number of communications with aircraft,  
16. Number of communications with other sectors, 
17. Presence of conflicts, 
18. Number of path changes, 
19. Preventing conflicts (crossing or overtake), 
20. Number of handoffs and printouts, 
21. Handling pilot requests, 
22. Traffic flow structure, 
23. Clustering of aircraft, 
24. Control adjustments involved in merging and 

spacing, 
25. Mixture of aircraft types, 
26. Climbing and descending aircraft, 
27. Number of intersecting flight paths, 
28. Number of required procedures, 
29. Number of military flights, 
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30. Airline hub location, 
31. Weather and its severity, 
32. Aircraft routing, 
33. Special use airspace, 
34. Sector geometry, 
35. Sector size, 
36. Requirements for longitudinal and lateral 

spacing, 
37. Radar coverage, 
38. Frequency congestion, 
39. Number of altitudes used, and 
40. Others. 
 
Researchers have been interested in examining how 

the effect of the above complexity factors can be 
measured using quantifiable variables.  Since 1995, 
multiple exploratory studies have aimed at identifying 
the variables that contribute to DD.  

DD Research Partners 
In the year 2000, the FAA developed a Research 

Management Plan (RMP) to promote coordination with 
all parties interested in conducting DD research [6].  The 
RMP brought several organizations together to 
effectively use resources and eliminate duplication of 
effort.  The FAA WJHTC’s ACB-330 led the effort and 
Titan Systems, NASA Ames Research Center, Metron 
Aviation (formerly Wyndemere), and Mitre CAASD 
participated as research partners.  The WJHTC 
developed one DD metric (with 10 variables), Metron 
Aviation developed one DD metric (with 10 variables), 
and NASA Ames Research center developed two DD 
metrics (NASA1 with 16 variables and NASA2 with 9 
variables).  Mitre CAASD brought the Collaborative 
Routing and Coordination Toolset (CRCT) to the DD 
research effort to provide a means of ingesting ETMS 
raw data and producing DD output.  

Description of DD Metrics 
Each DD metric consisted of multiple variables.  

Only a high level description of the variables is provided 
in this paper due to space limitations.  For detailed 
formulas, computations, and descriptions of all metrics, 
please refer to a review article by Kopardekar [7]. 

WJTHC/Titan Systems Metric 
The WJHTC/Titan metric description, rationale, 

and formulas are provided in Kopardekar [7]. 

AD1 Aircraft density 1 - number of aircraft/occupied 
volume of airspace 

AD2 Aircraft density 2 - number of aircraft/sector 
volume 

CRI Convergence recognition index – measure of the 
difficulty of detecting converging aircraft with 
shallow angles 

SCI Separation criticality index - proximity of 
conflicting aircraft with respect to their 
separation minima 

DOFI Degrees of freedom index – based on maneuver 
options in a conflict situation 

CTI1 Coordination taskload index 1 - based on 
aircraft distance from the sector boundary prior 
to hand-off 

CTI2 Coordination taskload index 2 - different 
formula based on the same principle as CTI1 

SV  Sector volume 
ACSQ  Square of aircraft count 

In addition to the above quantitative variables, the 
WJTHC/Titan metric also contained categorical variables 
such as facility and sector types (i.e., high/low).  

NASA Metric 1 
The NASA-1 metric consisted of 16 variables.  For 

details of the calculations, readers are encouraged to 
refer to Chatterji [4]. 

C1  Number of aircraft 
C2  Number of climbing aircraft 
C3  Number of cruising aircraft 
C4  Number of descending aircraft 
C5  Horizontal proximity metric 1 
C6  Vertical proximity metric 1 
C7  Horizontal proximity measure 2 
C8  Vertical proximity measure 2 
C9  Horizontal proximity measure 3 
C10  Vertical proximity measure 3 
C11  Time-to-go to conflict measure 1 
C12  Time-to-go to conflict measure 2 
C13  Time-to-go to conflict measure 3 
C14  Variance of speed 
C15 Ratio of standard deviation of speed to average 

speed 
C16 Conflict resolution difficulty based on crossing 

angle 

NASA Metric 2 
The NASA-2 metric consisted of 8 variables.  

Laudeman, Shelden, Branstrom, and Brasil [8] and 
Sridhar, Sheth, and Grabbe describe these variables in 
detail [9].  The metric consisted of: 

N Traffic Density 
NH Number of aircraft with Heading Change 

greater than 15º 
NS Number of aircraft with Speed Change greater 

than 10 knots or 0.02 Mach 
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NA Number of aircraft with Altitude Change greater 
than 750 feet 

S5 Number of aircraft with 3-D Euclidean distance 
between 0-5 nautical miles excluding violations 

S10 Number of aircraft with 3-D Euclidean distance 
between 5-10 nautical miles excluding 
violations 

S25 Number of aircraft with lateral distance between 
0-25 nautical miles and vertical separation less 
than 2000/1000 feet above/below 29000 ft 

S40 Number of aircraft with lateral distance between 
25-40 nautical miles and vertical separation less 
than 2000/1000 feet above/below 29000 ft 

S70 Number of aircraft with lateral distance between 
40-70 nautical miles and vertical separation less 
than 2000/1000 feet above/below 29000 ft 

Metron Aviation Metric 
The Metron metric consisted of 10 variables.  For 

further details, refer to Wyndemere [10]. 

WACT  Aircraft count within a sector 
WDEN  Aircraft count divided by the usable 

volume of sector airspace. 
WCLAP Number of aircraft with predicted 

separation less than a threshold value (e.g., 
8 miles) at a particular time. 

WCONVANG The angle of converge between aircraft in 
a conflict situation 

WCONFLICTNBRS Count of number of other aircraft 
in close proximity to a potential conflict 
situation (e.g., within 10 miles laterally and 
2000 feet vertically). 

WCONFBOUND Count of predicted conflicts within a 
threshold distance of a sector boundary 
(e.g., 10 miles). 

WALC  Count of number of altitude changes above 
a threshold value with the sector. 

WHEADVAR Count of number of bearing changes 
above a threshold value with the sector. 

WBPROX Count of number of aircraft within a 
threshold distance of a sector boundary 
(e.g., 10 miles). 

WASP  The squared difference between the 
heading of each aircraft in a sector and the 
direction of the major axis of the sector, 
weighted by the sector aspect ratio. 

Method 
The metrics developed by the FAA WJHTC / Titan 

Systems, NASA Ames Research Center, and Metron 
Aviation were evaluated in a series of studies due each 
organization’s inclusion in the RMP.  These were the 
first validation exercises that examined all DD metrics 
using the same common data set to identify their 
applicability, strengths, and weaknesses. The DD 

research activities were performed in three phases.  The 
first two phases involved developing and refining the DD 
metrics, selecting traffic samples, and collecting 
subjective complexity ratings from controllers and 
supervisors at multiple Air Route Traffic Control Centers 
(ARTCCs) across the country on the complexity of those 
traffic samples.  Phase III focused on data analysis, 
including the programming of the proposed metric 
variables into CRCT, generation of DD variable and 
metric values, and comparing DD output to the 
complexity ratings. 

Phase I – Pilot Study 
Phase I was a pilot study designed to refine 

experimental procedures for collecting complexity 
ratings from controllers and supervisors.  Phase I was 
performed at Denver Center (ZDV) in October 1999.  
The pertinent findings of the study were as follows: 

 Controller and supervisor complexity ratings were 
significantly and positively correlated, with 
supervisors providing consistently higher 
complexity ratings than controllers, and 

 Controller complexity ratings were significantly and 
positively correlated with one another, as were 
supervisor complexity ratings. 
 
The study involved both controllers and supervisors 

because supervisors typically analyze traffic situations 
from an over-the-shoulder perspective to make staffing 
decisions (e.g., appropriate number of controllers on 
position).   Controllers were included because they have 
a hands-on perspective of sector complexity, being 
closest to the operations at hand.  

Phase II – Data Collection Study 
During Phase II, operational traffic data from four 

ARTCCs were collected.  The four ARTCCs were 
chosen based on subject matter input to include a variety 
of traffic characteristics.  These ARTCCs were Atlanta 
Center (ZTL), Cleveland Center (ZOB), Denver Center 
(ZDV), and Fort Worth Center (ZFW).  The DD 
researchers collected a total of 72 thirty-minute samples 
of traffic data from a total of 36 high and low sectors. 

Three supervisors and three controllers individually 
provided complexity ratings every two minutes for each 
of the 72 traffic samples.  The traffic samples were 
replayed Using Systematic Air Traffic Operations 
Initiative (SATORI).  This resulted in about 6480 
complexity ratings. 
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Phase III- DD Metric Validation  
The goals of Phase III were to determine the 

following: 

♦ Can the DD metric(s) accurately measure 
complexity? 

♦ Are the DD metric(s) reliable/persistent for 
predicting complexity starting 2 hours out? 

 
The researchers extracted the proposed DD 

variables from ETMS data since it is the data source 
currently used for monitor alert predictions.  The 
researchers recruited the support of MITRE CAASD, 
developed CRCT, to compute the DD variables from the 
ETMS data.  CRCT was selected due to its capability to 
use ETMS data, its trajectory modeler (an essential 
element to the computation of many variables), and its 
deployment at several operational facilities, which could 
facilitate the deployment of DD.   

The specific objectives of the data analysis were as 
follows:  

Objective 1. Determine how accurately the DD 
metrics represent the subjective complexity ratings.  
In particular,  

♦ Develop a DD model or weights for different 
variables that constitute different DD metrics 

♦ Compare different DD metrics 
♦ Select a ‘best-fit’ DD metric 
♦ Test DD metric(s) for accuracy 

Objective 2. Determine how stable the predictions 
are over time for the selected metric.  Specifically, 
examine DD metric prediction performance starting 
from 2 hours prior to traffic sample intervals.  
 
Figure 1 shows the difference between the 

instantaneous and predicted DD. 

 

 
 

 

 

 

 
 
 
 
 
Figure 1. Instantaneous and Predicted DD 

 
Data Analysis Approach 

The researchers used regression analysis to 
establish weights for the different DD variables and to 
identify the significant DD variables in each DD metric.  
The 72 30-minute traffic samples were divided into two 
groups.  The first group of 60 traffic samples was used 
for building the DD equation (i.e., establish variable 
weights) for each metric.  The remaining 12 traffic 
samples were used to test the DD metrics.  The traffic 
samples were randomly divided into the groups.  

 
The researchers performed two different DD 

calculations for each of the traffic samples. The first 
focused on the instantaneous DD calculations to meet the 
first objective.  For instantaneous DD calculations, the 
values of the DD variables were computed at 2-minute 
intervals, which corresponded to the same intervals that 
complexity ratings were provided for all traffic samples.  
The second calculation involved the predicted DD 
calculation to address the second objective.  For the 
predicted DD calculations, the values of DD variables 
were computed at 2-minute intervals up to 120 minutes 
prior to actual traffic sample times.   

 
DD metrics were developed for the WJTHC/Titan 

variables, two NASA metric variables, and Metron 
variables.  In addition, a unified metric consisting of all 
variables from all metrics was also developed. This 
model development activity was conducted using the 
first group of 60 traffic samples. A regression method 
was used to develop the weights of individual DD 
variables that constituted the DD metric(s).  
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Results 

DD Metrics Development 
The regression analysis results were as follows: 

(See Tables 1 through 5): 

♦ All four DD metrics represented complexity better 
than currently used aircraft count (as indicated by 
coefficient of variation R2). 

♦ All DD metrics performed the best for ZDV and the 
worst for ZOB.  This implies that facility differences 
were not completely captured.  In general, different 
DD metrics performed better for different facilities.  

♦ WJTHC/Titan metric performed best for all facilities 
combined. 

♦ A unified DD metric (i.e., variables from all four 
proposed metrics) provided the best results in all 
conditions.   
 
The fact that the unified DD metric performed 

better that all individual DD metrics implies that the 
RMP process of collaboration among research 
organizations was highly successful and resulted in a 
better utilization of resources. 

 
Tables 1 through 5 indicate the R2-values of the 

regression for ZDV, ZTL, ZFW, ZOB, and all facilities 
combined.  The yellow highlighted cells indicate the 
highest R2 and the blue highlighted cells indicate the 
second highest R2 value.  
 

Note: S refers to supervisor complexity ratings, C 
refers to controller complexity ratings, L refers to low 
altitude sectors and H refers to high altitude sectors.  

 

Table 1. Regression Results (R2 values) for ZDV 
C, 

H&L
Aircraft Count 0.53 0.55 0.55 0.51 0.57 0.63 0.57 0.49 0.63

Tech Center 0.55 0.65 0.56 0.56 0.55 0.55 0.62 0.62 0.74

NASA-1 0.53 0.64 0.60 0.52 0.56 0.59 0.61 0.61 0.73
Metron 0.63 0.67 0.75 0.63 0.64 0.77 0.75 0.67 0.74

NASA-2 0.13 0.27 0.26 0.11 0.16 0.28 0.26 0.22 0.36
Unified 0.67 0.74 0.72 0.69 0.70 0.78 0.72 0.75 0.84

S, LS, H&L C, H S, H C, LMetrics
S&C, 
H&L S&C, L S&C, H

 
 

Table 2. Regression Results (R2 values) for ZTL 
C, 

H&L
Aircraft Count 0.21 0.04 0.15 0.21 0.20 0.18 0.14 0.03 0.05

Tech Center 0.46 0.11 0.26 0.48 0.45 0.31 0.24 0.11 0.15

NASA-1 0.46 0.13 0.29 0.47 0.46 0.34 0.29 0.15 0.15
Metron 0.39 0.27 0.22 0.41 0.39 0.25 0.38 0.33 0.27

NASA-2 0.11 0.03 0.12 0.10 0.12 0.15 0.13 0.03 0.04
Unified 0.57 0.50 0.44 0.60 0.59 0.51 0.47 0.56 0.55

S&C, H C, L S, LMetrics
S&C, 
H&L S&C, L S, H&L C, H S, H

 
 

Table 3. Regression Results (R2 values) for ZFW 
C, 

H&L

Aircraft Count 0.29 0.16 0.26 0.23 0.38 0.17 0.39 0.19 0.14
Tech Center 0.32 0.27 0.30 0.29 0.41 0.42 0.39 0.42 0.24
NASA-1 0.36 0.21 0.40 0.31 0.45 0.36 0.49 0.26 0.25
Metron 0.31 0.36 0.33 0.32 0.35 0.33 0.38 0.51 0.38
NASA-2 0.15 0.19 0.18 0.13 0.19 0.15 0.23 0.20 0.23
Unified 0.46 0.46 0.53 0.47 0.54 0.53 0.62 0.64 0.52

Metrics
S&C, 
H&L S&C, L S&C, H S, H&L C, H S, H C, L S, L

 
 

Table 4. Regression Results (R2 values) for ZOB 
C, 

H&L

Aircraft Count 0.13 0.10 0.05 0.12 0.16 0.05 0.07 0.08 0.13
Tech Center 0.20 0.15 0.16 0.19 0.25 0.14 0.24 0.17 0.22
NASA-1 0.21 0.22 0.22 0.21 0.27 0.23 0.29 0.22 0.35
Metron 0.18 0.19 0.20 0.19 0.21 0.18 0.28 0.26 0.20
NASA-2 0.06 0.11 0.09 0.05 0.10 0.09 0.23 0.09 0.17
Unified 0.32 0.40 0.37 0.34 0.43 0.40 0.49 0.45 0.59

S, LMetrics
S&C, 
H&L S&C, L S&C, H S, H&L C, H S, H C, L

 
 

Table 5. Regression Results (R2 values) for  
All Facilities 

C, 
H&L

Aircraft Count 0.23 0.20 0.20 0.20 0.27 0.18 0.26 0.14 0.18
Tech Center 0.33 0.33 0.26 0.31 0.38 0.26 0.29 0.26 0.43
NASA-1 0.29 0.24 0.31 0.27 0.34 0.29 0.35 0.22 0.30
Metron 0.23 0.19 0.26 0.22 0.26 0.25 0.29 0.19 0.22
NASA-2 0.10 0.11 0.15 0.08 0.12 0.13 0.17 0.09 0.15
Unified 0.39 0.41 0.35 0.40 0.43 0.39 0.37 0.39 0.51

C, L S, LMetrics
S&C, 
H&L S&C, L S&C, H S, H&L C, H S, H

 
 

The regression equation output for the unified 
DD metric is presented in Table 6 since the unified 
metric performed better than other DD metrics.  The 
table shows the significant variables and their 
corresponding weights (beta values), t-value, and p-
value.  A 0.05 was chosen as a level of significance.  For 
further analysis, only the unified DD metric was 
considered.
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Table 6. Regression Equation Output 

 
 Unstandardized 

Coefficients 
 Standardized 

Coefficients 
t p-value 

 B Std. Error Beta   
(Constant) 1.699 .207   8.188 .000 
1=low sector, 2= high sector .695 .084 .254 8.306 .000 
ac_count_sqrd -4.406E-03 .001 -.263 -6.371 .000 
TECH CENTER_AD2 683.138 75.150 .242 9.090 .000 
sector volume/aircraft -2.269E-04 .000 -.648 -16.182 .000 
TECH CENTER_DOFI -1.057E-02 .003 -.056 -3.038 .002 
sector volume 1.865E-05 .000 .643 14.170 .000 
NASA-1_C1 1.161 .229 .215 5.073 .000 
NASA-1_C4 .302 .132 .044 2.279 .023 
NASA-1_C6 .123 .055 .028 2.247 .025 
NASA-1_C8 4.819E-02 .017 .040 2.799 .005 
NASA-1_C9 6.075E-03 .002 .039 2.537 .011 
NASA-1_C14 5.104E-03 .002 .118 2.713 .007 
NASA-1_C15 -1.907 .634 -.161 -3.008 .003 
NASA-2_NH .128 .035 .047 3.672 .000 
NASA-2_NA -5.408E-02 .020 -.072 -2.739 .006 
NASA-2_S25 8.303E-02 .028 .045 2.962 .003 
MET_ac_count .101 .023 .161 4.392 .000 
MET_density -6.411E-03 .001 -.168 -7.943 .000 
MET_conflict neighbors -.118 .020 -.260 -6.007 .000 
MET_conflict near boundary 8.733E-02 .015 .430 5.792 .000 
MET_heading variation -1.867E-02 .006 -.039 -2.888 .004 
MET_boundary proximity -.321 .078 -.112 -4.118 .000 
MET_airspace structure 3.257E-02 .003 .215 10.506 .000 

 

DD Metrics Testing 
Results for Instantaneous DD Model 
 
The second group of data was used to conduct a 

performance assessment of the unified DD model.  All 
analyses reported in this section are based on the second 
group data that was not used to build the model.  Figure 
2 shows that the unified DD model followed the 
complexity ratings better than the model based only on 
the aircraft count.  Additionally, the R2 value for the first 
group of data was higher for the unified DD model than 
the aircraft count based model.  

 
Note: CSRATING refers to controller and supervisor 
complexity ratings. 
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Figure 2.  Performance of Unified DD Metric 
 
Note: Model 1: CS rating = 1.970 + 

0.165*Ac_count, R2 = 0.23, Model 2: CS rating = unified 
DD equation, R2 = 0.39. 

 
Table 7 shows the difference between the output of 

the unified DD model and the actual complexity ratings.  
About 63% of the second group data points were within 
a 1 unit difference from the actual complexity ratings and 
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about 23% of the data points matched the ratings exactly.  
Less than 10% of the differences were greater than 2 
units. 

 
Table 7. Difference Between DD and Complexity 

Ratings 

V a lu e P e rc en t
C u m u la tiv e  

P e rc en t
-4 0 .8 0 .8
-3 1 .9 2 .7
-2 1 2 .5 1 5 .2
-1 2 7 .8 4 3
0 2 8 .6 7 1 .5
1 2 1 .1 9 2 .7
2 7 .1 9 9 .8
3 0 .2 1 00

T o ta l 1 00  

Table 8 shows the performance comparison of the 
unified DD based model and the aircraft count based 
model.  The yellow highlighted cells indicate the lowest 
errors.  The results indicated that the mean absolute 
difference (MAD), Root Mean Square (RMS) difference, 
and standard deviation of difference between the actual 
complexity ratings and model-based predictions were all 
smaller for the unified DD based model.  This indicates 
that the unified DD based model seems to be better than 
the aircraft count based model in representing the 
complexity.   

 

Table 8. Performance Measures for Unified DD 
Based and Aircraft Count Based Model 

Minimum Maxmimum Mean Std Deviation
Complexity ratings 1.00 7.00 3.69 1.41
DD based model 1.00 5.00 3.25 0.91

MAD 0.00 4.05 0.99 0.71
RMS N/A N/A 1.22 N/A

Aircraft count based model 2.13 4.94 3.09 0.62
MAD 0.00 4.70 1.23 0.88
RMS N/A N/A 1.51 N/A  

 
Figure 3 indicates that the MAD between 

complexity derived by the unified DD based model and 
actual complexity ratings was the lowest when the 
complexity ratings were closer to 3.  The MAD increased 
at the higher and lower ends of complexity ratings (1, 6, 
or 7).  One possible explanation for this is that the data 
used to build the DD model contained a higher 
percentage of 2, 3, 4, and 5 complexity ratings and a 
much smaller percentage of 1, 6, and 7 ratings.  
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Figure 3.  Mean Absolute Difference for Different 
Complexity Ratings 

Factor Analysis for Instantaneous DD Model 

The unified model consisted of several variables.  
Therefore, it was examined for possible 
interdependencies.  The researchers therefore analyzed 
the relationships among the different variables using 
Principle Components Analysis (PCA).  The correlations 
and significance values indicated that a number of 
variables were significantly correlated with each other.  
Using an eigen value of 1.0 as the threshold, 12 
components were identified thatdescribed DD.  Using a a 
factor-loading threshold of 0.50, the variables with high 
loadings on each component were identified.  After 
examining these variables, the researchers identified the 
following potential factors. 
1. Component 1: Overall monitoring  
2. Component 2: Conflict detection  
3. Component 3: Transitioning aircraft  
4. Component 4: Communication and coordination 
5. Component 5:  Aircraft mix  
6. Component 6: Time to resolve conflict 
7. Component 7: Vertical separation monitoring 
8. Component 8: Horizontal separation monitoring (for 

mid-to-large separations) 
9. Component 9: Horizontal separation monitoring 

(closer to separation minima) 
10. Component 10: Arrivals 
11. Component 11: Hand-offs 
12. Component 12: Facility and sector geometry 

 
It must be noted that extracting the factors and 

assigning them descriptive names based on their 
potential attributes is a highly subjective process.  The 
curious readers are encouraged to read the details of the 
complete factor analysis.   
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Results of DD Prediction Model 
 
After the researchers established that the DD model 

could better gauge the instantaneous complexity than 
solely aircraft count, the next obvious interest was to 
determine how accurately DD could be predicted ahead 
of time.  If the DD predictions were also accurate at 
larger look-ahead times, they could assist in planning 
traffic flow changes, sector level staffing needs, dynamic 
resectorization, and other operational decisions. 
Therefore, another DD equation on the first group of data 
was developed.  The purpose of this equation was to 
predict DD up to 120 minutes ahead of an actual 
instance.  Therefore, in addition to the variables included 
in the unified DD model, another variable called “look-
ahead” time was included in the regression equation.  As 
before, the analysis was conducted only on the second 
group of data because the first group of data was used to 
develop the weights. 

The accuracy of the DD equation with look-ahead 
time, the original DD equation, the aircraft count based 
model, and the complexity ratings were compared.  
Figure 4 indicates that the model based on DD with look-
ahead time appeared to better follow the complexity 
ratings (i.e., CSRating) trends.  The original unified DD 
model used for instantaneous DD did not perform as well 
as the DD with look-ahead time and thus further 
validates the inclusion of the look-ahead time as a 
variable.  It clearly implies that the DD predictions are 
dependent on look-ahead time.  In general, this is a 
logical finding because more and perhaps better 
information is available about flights and weather as the 
prediction horizon narrows down.  
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Figure 4. Predicted DD 

Note: CS rating = 2.481 + 0.110*Predicted Aircraft 
Count, R2= 0.17, CS rating = DD equation + look-ahead 
time, R2 = 0.40 

 

Figure 5 depicts the stability of the predicted DD 
values across look-ahead time.  The DD model with 
look-ahead time appeared to provide fairly stable 
predictions.  Interestingly, the model based on only 
predicted aircraft count also seemed to perform well.  
However, the raw predicted aircraft count varied 
considerably with look-ahead time. 
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Figure 5. Stability of Predicted DD 

 
Tables 9 and 10 show the performance comparisons 

of the DD model with look-ahead time, the instantaneous 
DD based model, and DD based on predicted aircraft 
count only.  The MAD, standard deviation of absolute 
difference, and the RMS error were all smaller for the 
DD model with look-ahead time (as shown by yellow 
highlighted cells).  Hence, the DD model with look-
ahead time appears to better predict the complexity up to 
120 minutes ahead of an instance.  However, it must be 
noted that performance was very similar between the DD 
model with look-ahead time and the DD based on 
predicted aircraft count.   

 

Table 9. Performance of Predicted DD 
Minimum Maxmimum Mean Std Deviation

Predicted count 0 29 7.42 5.17
Complexity ratings 1.00 6.17 3.79 1.23
DD with look-ahead time model 1.25 5.16 3.35 0.73
Instantaneous DD model 0.16 16.94 4.36 2.03
DD based on predicted aircraft count only 2.48 5.67 3.30 0.57
Absolute difference for DD with look-head time 0.00 2.94 0.93 0.57
Absolute difference for instantaneous DD model 0.00 14.61 1.44 1.38
Absolute difference for model based on predicted 
aircraft count 0.01 2.92 1.05 0.69
RMS for DD with look-ahead time model N/a N/a 1.09 N/a
RMS for instantaneous DD model N/a N/a 1.99 N/a
RMS for model based on predicted aircraft count N/a N/a 1.25 N/a  
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Table 10. Performance of Predicted DD across 
Different Look-ahead times 

 
Look-ahead 
Time (min)

MAD for 
instantanous DD 

model

MAD for model based 
on predicted aircraft 

count

MAD for DD model 
with look-ahead 

time

RMS for 
instantanous DD 

model

RMS for model 
based on predicted 

aircraft count

RMS for DD model 
with look-ahead 

time

0 0.91 1.06 0.96 1.31 1.11 1.11
20 1.08 1.01 0.92 1.24 1.35 1.07
40 1.33 1 0.89 1.22 1.85 1.04
60 1.63 1.03 0.95 1.25 2.17 1.11
80 1.86 1.05 0.96 1.24 2.61 1.11
100 1.64 1.08 0.93 1.26 2.23 1.11
120 1.62 1.12 0.9 1.28 2.36 1.07  

 
The DD with look-ahead time model (i.e., 

prediction intervals built into equation) performed better 
than the model based on instantaneous DD only.  DD 
appeared to be more stable over time than predicted 
number of aircraft and DD appeared to be more accurate 
over time than predicted number of aircraft. 
 

It must be noted that the DD model with look-
ahead time seemed to perform only slightly better (in 
terms of MAD and RMS) than the model based on 
predicted aircraft count only for predicting complexity 
up to 120 minutes.  This is an interesting finding 
considering that the DD model for instantaneous 
complexity seems to a lot better than the aircraft count 
only.  One quick possible explanation is that the DD 
model does not perform better as expected.  However, 
careful scrutiny of the results shows that the complexity 
that is predicted up to 20 minutes ahead using the DD 
model with look-ahead time is still using the number of 
predicted aircraft count as one of the measures.  Hence, it 
was highly dependent on the predicted number of 
aircraft.  It has been shown that these predictions of 
number of aircraft are not very good [11].  Because the 
predicted DD values used these less accurate estimates of 
the predicted aircraft count, it is completely plausible 
that the predicted DD values were also inaccurate.  
Therefore, it is not the DD model that was inaccurate, 
rather, the researchers believe that it was the inherent 
inaccuracy in the predicted aircraft count that made the 
predicted DD inaccurate.  Further, the researchers 
believe that the instantaneous DD seemed to be more 
accurate than the predicted DD.  In the case of 
instantaneous DD, there was no such aircraft prediction 
inaccuracy, whereas in the predicted DD there was 
inherent prediction inaccuracy.  
 
Overall Conclusions 
♦ The DD metrics have promise, most notably as a 

unified metric with contributing variables from the 
FAA WJHTC/Titan Systems, NASA, and 
Wyndemere/Metron metrics. 

♦ The DD metrics perform better than aircraft count, 
which is the basis of the presently used complexity 
gauge. 

♦ The models can be further developed and tested with 
techniques such as neural networks, genetic 
algorithms, and non-linear regression.   

♦ The current study used ETMS as the raw source of 
traffic data.  However, using more frequently 
updated data, such as System Analysis and 
Recording, Center TRACON Automation System, 
or a combination of the above could further increase 
the accuracy of aircraft positions.  

♦ The researchers recommend using the DD metric in 
the simulation environment and plan to continue fine 
tuning the variables and their weights.  
Subsequently, an operational prototype could be 
deployed at a test site for hands-on evaluations.  

♦ The performance of the predicted DD with look-
ahead time is marginally better than the predicted 
aircraft count, quite possibly due to the inherent 
inaccuracy in the aircraft count prediction rather 
than the DD model itself.  
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