115 Vac Single-Phase Arc-Fault Circuit Breaker Flight Test

Robert Pappas

July 2005

Final Report

This document is available to the U.S. public through the National Technical Information Service (NTIS), Springfield, Virginia 22161.
NOTICE

This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use.

This report is available at the Federal Aviation Administration William J. Hughes Technical Center's Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).
115 Vac SINGLE-PHASE ARC-FAULT CIRCUIT BREAKER FLIGHT TEST

Robert Pappas

Federal Aviation Administration
William J. Hughes Technical Center
Airport and Aircraft Safety
Research and Development Division
Airworthiness Assurance Branch
Atlantic City International Airport, NJ 08405

U.S. Department of Transportation
Federal Aviation Administration
Office of Aviation Research
Washington, DC 20591

In December 1999, the Federal Aviation Administration (FAA), the Naval Air Systems Command, and the Office of Naval Research initiated a joint research and development program aimed at the development of arc-fault circuit breakers (AFCB) suitable for the protection of aircraft electrical wiring. Two independent contracts for the development of 115 Vac single-phase AFCBs were awarded; one to the Eaton Aerospace Company and one to the Hendry Telephone Company. Each contractor was to develop arc-fault algorithms and deliver developmental circuit breakers to the FAA and the U.S. Navy for flight test. AFCB detection algorithms were required to be sensitive enough to rapidly identify an arc condition and, conversely, not so sensitive that the device trips on normal electrical transients associated with various load equipment current signatures and electrical power systems operations such as bus transfers. The deliverable circuit breakers were also to be a form-fit replacement for existing thermal magnetic breakers’ easy retrofit into aging aircraft. The FAA conducted subsequent flight-testing in an FAA-owned Boeing 727-25C aircraft. Eight aircraft circuits were selected for fitting with AFCBs. The circuits provided a cross section of load types powered from various aircraft power busses. An instrumentation system was installed to record the voltage and current waveforms associated with each circuit to assist in the analysis of any AFCB failure and nuisance-tripping events. This report describes the flight test effort for evaluating the performance of the developmental AFCBs. In total, the flight test effort was comprised of 118.9 hours flight time during which 929.7 operational hours of AFCB data were collected. All flight hours were accumulated using normal aircraft operational profiles.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td>ix</td>
</tr>
<tr>
<td>1. INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.3 Test Objective</td>
<td>2</td>
</tr>
<tr>
<td>2. EQUIPMENT INSTALLATION</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Aircraft Description</td>
<td>3</td>
</tr>
<tr>
<td>2.2 Arc-Fault Circuit Breaker Flight Test Installation</td>
<td>3</td>
</tr>
<tr>
<td>2.2.1 Circuit Breaker Installation and Connection</td>
<td>3</td>
</tr>
<tr>
<td>2.2.2 Instrumentation Equipment and Interfaces</td>
<td>4</td>
</tr>
<tr>
<td>2.3 Electrical Connections</td>
<td>5</td>
</tr>
<tr>
<td>2.4 Aircraft Test Circuits</td>
<td>6</td>
</tr>
<tr>
<td>2.5 Nicolet Odyssey Data Recorder</td>
<td>7</td>
</tr>
<tr>
<td>2.6 N40 Wiring Baseline</td>
<td>7</td>
</tr>
<tr>
<td>3. FLIGHT TEST STATISTICS</td>
<td>8</td>
</tr>
<tr>
<td>3.1 Eaton Flight Test Statistics</td>
<td>8</td>
</tr>
<tr>
<td>3.2 Hendry Flight Test Statistics</td>
<td>9</td>
</tr>
<tr>
<td>4. SAMPLE DATA RECORDINGS</td>
<td>11</td>
</tr>
<tr>
<td>5. FLIGHT TEST</td>
<td>13</td>
</tr>
<tr>
<td>5.1 Eaton Flight Test Plan</td>
<td>13</td>
</tr>
<tr>
<td>5.1.1 Introduction</td>
<td>13</td>
</tr>
<tr>
<td>5.1.2 Flight Test Goals</td>
<td>14</td>
</tr>
<tr>
<td>5.1.3 System Description</td>
<td>14</td>
</tr>
<tr>
<td>5.1.4 Certification Requirements</td>
<td>15</td>
</tr>
<tr>
<td>5.1.5 Flight Test Profile Requirements</td>
<td>15</td>
</tr>
<tr>
<td>5.1.6 Limitations</td>
<td>15</td>
</tr>
<tr>
<td>5.1.7 Emergency Procedures</td>
<td>16</td>
</tr>
<tr>
<td>5.1.8 Normal Procedures</td>
<td>16</td>
</tr>
</tbody>
</table>
5.2 Eaton Discrepancies

5.2.1 Discrepancy 1 18
5.2.2 Discrepancy 2 19

5.3 Eaton Troubleshooting Procedures 19

5.3.1 Arc-Fault Troubleshooting Background 19
5.3.2 Detailed Troubleshooting Procedures 20
5.3.3 Detailed Process Flow Chart 21

5.4 Hendry Test Plan 23

5.4.1 Introduction 23
5.4.2 Objective 23
5.4.3 Scope 24
5.4.4 Flight Test Goals 24
5.4.5 System Description 24
5.4.6 Aircraft Installation 25
5.4.7 Certification Requirements 25
5.4.8 Flight Test Profile Requirements 25
5.4.9 Limitations 26
5.4.10 Emergency Procedures 26
5.4.11 Normal Procedures 27

5.5 Hendry Discrepancies 28

5.5.1 Discrepancy 1 29
5.5.2 Discrepancy 2 29
5.5.3 Discrepancy 3 29
5.5.4 Discrepancy 4 29
5.5.5 Discrepancy 5 30

5.6 Hendry Troubleshooting Procedures 30

5.6.1 Arc-Fault Troubleshooting Background 30
5.6.2 Detailed Troubleshooting Procedures 31
5.6.3 Detailed Process Flow Chart 31

5.7 Summary of Test Results 34

5.7.1 Eaton Summary 34
5.7.2 Hendry Summary 35
APPENDICES

Appendix A—Flight Test Certification Plan
Appendix B—Eaton Flight Test Plan
Appendix C—Eaton Ground Checkout Procedures
Appendix D—Eaton Flight Test Records
Appendix E—Eaton Troubleshooting Procedures
Appendix F—Hendry Flight Test Plan
Appendix G—Hendry Ground Checkout Procedures
Appendix H—Hendry Flight Test Records
Appendix I—Hendry Troubleshooting Procedures
Appendix J—Time Domain Reflectometer Test Results
Appendix K—Arc-Fault Circuit Breaker Wiring
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eaton Aerospace Corporation Prototype AFCBs</td>
</tr>
<tr>
<td>2</td>
<td>Hendry Telephone Products AFCB</td>
</tr>
<tr>
<td>3</td>
<td>Arc-Fault Circuit Interrupter-Junction Box</td>
</tr>
<tr>
<td>4</td>
<td>Nicolet Data Recorder and Junction Box</td>
</tr>
<tr>
<td>5</td>
<td>BNC Breakout Box to Nicolet Data Recorder</td>
</tr>
<tr>
<td>6</td>
<td>Nicolet Odyssey Data Recorder</td>
</tr>
<tr>
<td>7</td>
<td>Eaton Flight Test Hours</td>
</tr>
<tr>
<td>8</td>
<td>Eaton AFCB Operating Hours</td>
</tr>
<tr>
<td>9</td>
<td>Hendry Flight Test Hours</td>
</tr>
<tr>
<td>10</td>
<td>Hendry AFCB Operating Hours</td>
</tr>
<tr>
<td>11</td>
<td>Auxiliary Power Unit-to-Engine Power Transfer Transient Waveform</td>
</tr>
<tr>
<td>12</td>
<td>Cabin Ceiling Light Turn-On Transient Waveform</td>
</tr>
<tr>
<td>13</td>
<td>Landing Light In-Rush Current Waveform</td>
</tr>
<tr>
<td>14</td>
<td>Guillotine (Dry-Arc) Arc-Fault Test Waveform</td>
</tr>
<tr>
<td>15</td>
<td>Eaton Detailed Process Flow Chart</td>
</tr>
<tr>
<td>16</td>
<td>Hendry Detailed Process Flow Chart</td>
</tr>
</tbody>
</table>

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Eaton AFCB Test Circuit Breaker Locations</td>
</tr>
<tr>
<td>2</td>
<td>Hendry AFCB Test Circuit Breaker Locations</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------------------------</td>
</tr>
<tr>
<td>AFCB</td>
<td>Arc-fault circuit breaker</td>
</tr>
<tr>
<td>AFCI-JB</td>
<td>Arc-fault interrupter-junction box</td>
</tr>
<tr>
<td>APU</td>
<td>Auxiliary power unit</td>
</tr>
<tr>
<td>FAA</td>
<td>Federal Aviation Administration</td>
</tr>
<tr>
<td>MIDO</td>
<td>Manufacturing Inspection District Office</td>
</tr>
<tr>
<td>NAVAIR</td>
<td>Naval Air Systems Command</td>
</tr>
<tr>
<td>SCR</td>
<td>Silicone control rectifier</td>
</tr>
<tr>
<td>STC</td>
<td>Supplemental type certificate</td>
</tr>
<tr>
<td>TDR</td>
<td>Time domain reflectometer</td>
</tr>
</tbody>
</table>
EXECUTIVE SUMMARY

In December 1999, the Federal Aviation Administration (FAA), the Naval Air Systems Command, and the Office of Naval Research initiated a joint research and development program aimed at the development of arc-fault circuit breakers (AFCB) suitable for the protection of aircraft electrical wiring.

Two independent contracts for the development of 115 Vac single-phase AFCBs were awarded; one to the Eaton Aerospace Company and one to the Hendry Telephone Company. Each contractor was to develop arc-fault algorithms and deliver developmental circuit breakers to the FAA and the U.S. Navy for flight test. AFCB detection algorithms were required to be sensitive enough to rapidly identify an arc condition and, conversely, not so sensitive that the device trips on normal electrical transients associated with various load equipment current signatures and electrical power systems operations such as bus transfers. The deliverable circuit breakers were also to be a form-fit replacement for existing thermal magnetic breakers’ easy retrofit into aging aircraft.

Eaton delivered the developmental circuit breakers to the FAA and U.S. Navy in August 2001 and Hendry delivered in June 2002. The FAA William J. Hughes Technical Center, Atlantic City International Airport, New Jersey, conducted subsequent flight-testing. For the flight test effort, the circuit breakers were installed in an FAA-owned Boeing 727-25C aircraft. Eight aircraft circuits were selected for fitting with AFCBs. The circuits provided a cross section of load types powered from various aircraft power busses. An instrumentation system was installed to record the voltage and current waveforms associated with each circuit to assist in the analysis of any AFCB failure and nuisance-tripping events.

This report describes the flight test effort for evaluating the performance of the developmental AFCBs. In total, the flight test effort was comprised of 118.9 hours flight time during which 929.7 operational hours of AFCB data were collected. All flight hours were accumulated using normal aircraft operational profiles.
1. INTRODUCTION.

1.1 PURPOSE.

This report describes the flight test effort conducted to evaluate the performance of arc-fault circuit breakers (AFCB) in a Federal Aviation Administration (FAA)-owned Boeing 727-25C aircraft. This report provides a factual summary of the Eaton and Hendry flight test results. Flight-testing of the Eaton breakers was completed in September 2001 and flight-testing of the Hendry breakers was completed in October 2002. The effort was performed by the FAA William J. Hughes Technical Center, Atlantic City International Airport, New Jersey.

1.2 BACKGROUND.

In December 1999, the FAA, the Naval Air Systems Command (NAVAIR), and the Office of Naval Research initiated a joint research and development program aimed at the development of AFCBs suitable for the protection of aircraft electrical wiring. The Eaton Aerospace Corporation and the Hendry Telephone Company were awarded the contract to independently develop 115 Vac, 400-Hz AFCBs. The goal was to add arc-fault protection to existing thermal protection in a package not to exceed an MS24571 size circuit breaker.

Each AFCB contract was tailored around the vendor’s proposals. The Eaton contract duration was 24 months and was completed in December 2001. Hendry, who teamed with Texas Instruments, performed under a 33-month contract completed in October 2002. Each vendor proposed various designs for detecting an arcing fault. Existing detection methods developed for 60-Hz residential applications and 48 Vdc telephone systems had to be modified to work on aircraft 115 Vac, 400-Hz electrical systems. Program completion was predicated upon delivery of 20 prototype AFCBs for flight-testing aboard FAA and NAVAIR aircraft.

AFCB detection algorithms must be sensitive enough to rapidly identify an arc condition and, conversely, not so sensitive that the device trips on normal electrical transients associated with various load equipment current signatures and electrical power systems operations such as bus transfers. Unintended trips are referred to as nuisance trips.

Development of effective arc-fault detection algorithms is only one of two major developmental challenges. The other challenge is packaging the arc-fault components along with the components for thermal overcurrent protection into a standard aircraft circuit breaker package. The difficulty posed by this requirement is best illustrated by example. Repackaging an average residential AFCB into an MS24571 package or smaller requires at least a 50% reduction in packaging volume. Exacerbating this challenge is the requirement to operate in an aircraft environment at temperature ranges between -20°C and +71°C, altitudes of 0-45,000 feet, with vibration, electromagnetic interference, and operating on electrical systems with many unusual electrical transients. Both companies exceeded the program goal and developed AFCBs in packages substantially smaller than the MS24571 goal. Figures 1 and 2 show the Eaton and Hendry prototype AFCBs, respectively.
1.3 TEST OBJECTIVE.

The objective of the AFCB flight test program was to evaluate the nuisance trip characteristics of each vendor’s AFCB prototypes. A nuisance trip is a nonthermal opening of the AFCB when an arc-fault condition is not present. Nuisance trips are most likely when loads are initially turned
on, or during bus transfers and other transient conditions. However, nuisance trips can occur at any time, due to a random transient or other electrical system upset.

To achieve the flight test objective, the goal for the flight test program was simple. Operate the breakers on the aircraft, following standard aircraft operating procedures, for at least 25 hours and up to 50 hours if possible. Additional flight hours increase the likelihood that the AFCB prototypes are exposed to as many potential nuisance trip conditions as possible.

It is important to stress that evaluation of the arc-fault detection implementation methods and trip time performance was not a flight test program objective. The vendors conducted hundreds of dry- and wet-arc tests during the development process to evaluate the arc-fault detection performance of their product. More importantly, conducting arc-fault tests in flight is a hazard to the aircraft and crew. All breakers were subjected to manufacturer conformance testing and were subjected to FAA dry-arc (guillotine) tests prior to installation on the aircraft.

It must also be noted that the flight tests were not part of a product qualification program. The AFCBs tested in this program were engineering prototypes, not production representative units. In addition, there is no standard performance specification for AFCBs currently published. However, development of an AFCB performance specification continues in the SAE AE-8B Protective Devices Subcommittee and is expected to be completed in the near future.

2. EQUIPMENT INSTALLATION.

2.1 AIRCRAFT DESCRIPTION.

Testing was performed at the William J. Hughes Technical Center aboard the FAA’s only large transport category aircraft. The aircraft is a B-727-25C (tail number N40) aircraft manufactured in 1967. Three main engine generators, an auxiliary power unit (APU), and an emergency battery bus electrically power the aircraft. On the ground, the aircraft is powered by the APU or from a ground power unit. The AFCBs were tested using all sources of power except for the emergency battery. The aircraft is equipped with a 400- to 60-Hz converter that supplies 115 V/60 Hz power to the project instrumentation and data recorder.

The aircraft was flown under an experimental certificate issued by the local FAA Field Service District Office.

2.2 ARC-FAULT CIRCUIT BREAKER FLIGHT TEST INSTALLATION DESCRIPTION.

2.2.1 Circuit Breaker Installation and Connection.

The AFCBs were not installed in the aircraft circuit breaker panel because they were nonqualified prototypes. Therefore, the breakers were installed in a separate arc-fault circuit interrupter-junction box (AFCI-JB) that contained all the AFCBs and instrumentation interfaces. It is important to note that the AFCBs were connected in series with the load side of the existing aircraft thermal circuit breakers. Existing circuit protection aboard the aircraft was not compromised in any way by this installation. Additionally, a trigger test point was brought out from each breaker and used to activate an audible alarm and put the instrumentation recorder in a high sampling rate mode.
The AFCB installation consisted of the following components:

a. Eight Eaton or Hendry prototype AFCBs of the following ratings: one 2.5 amps (A), three 5 A, two 7.5 A, one 10 A, and one 15 A. The AFCBs were mounted inside the AFCI-JB.

b. One AFCI-JB. The AFCI-JB (figure 3) housed the eight AFCB units. It also contained eight current transformers for monitoring the current flowing through each of the eight AFCBs and a voltage divider network for monitoring the voltages on the line and load side of each breaker. The AFCI-JB is mounted in the rear, left side of the cockpit behind the observer jump seat. The AFCI-JB has bypass switches that disable the AFCBs, if desired, by the pilot in command. The banana plug jacks along the bottom of the front side provide convenient electrical access to the line and load side of each AFCB to assist in testing and troubleshooting activities. The AFCI-JB was fabricated using standard best practices and in accordance with Advisory Circular 43.13-1B and was designed to contain any possible AFCB failures.

c. Two AFCI-JB test unit wire harnesses, P18 and P6 (for connection to the P18 and P6 circuit breaker panels, respectively).

2.2.2 Instrumentation Equipment and Interfaces.

The flight test instrumentation was mounted in the cabin of the aircraft. The following equipment was installed to support the data collection effort.

a. One 24-channel Nicolet Odyssey data recorder. (The data recorder was upgraded to 32 channels for the Hendry AFCB flight tests.)

b. One BNC breakout box. The breakout box routed the signals from the shielded, twisted pair wires in the interface harness (see paragraph c) to a standard BNC connector, one for
each input channel on the data recorder. The BNC breakout box and the Odyssey data recorder were mounted in the cabin of the aircraft, as shown in figure 4.

c. One AFCI-JB, BNC breakout box interface harness. This harness contained shielded, twisted pair wires for carrying the signals obtained in the AFCI-JB to the BNC breakout box.

d. Twenty-four 36-inch BNC connector cables. These cables connected the outputs on the BNC breakout box to each input channel on the data recorder.

e. One Trigger Alarm. The trigger alarm was an audio/visual alarm that illuminated a warning light and sounded a siren in the event the data recorder experienced a trigger signal, indicating a potential AFCB trip or other anomaly. Pressing a pushbutton mounted on the alarm resets the alarm.

FIGURE 4. NICOLET DATA RECORDER AND JUNCTION BOX

2.3 ELECTRICAL CONNECTIONS.

The electrical connections for the system are shown schematically in FAA drawing 9854415, as shown in appendix K. The AFCBs mounted within the AFCI-JB will be electrically in series with the load side of the existing circuit breakers. The AFCI-JB wire harnesses, P-18 and P-6, connect the load side of the each aircraft circuit breaker to the line side of the respective AFCB and the load side of the each AFCB to the feed wire for the respective load. The AFCI-JB-BNC breakout box interface harness connected the AFCI-JB to the BNC breakout box.

Connections between the BNC breakout box and the Odyssey data recorder are shown in figure 5.
2.4 AIRCRAFT TEST CIRCUITS.

The prototype AFCBs were tested on the aircraft circuits indicated below. The circuits were selected through an iterative process. First, all ac loads on the aircraft were identified. All flight critical and essential loads were eliminated. Three-phase motor loads were also eliminated. From the remaining circuits, a cross section of loads was selected to optimize the mix of load types (resistive, inductive, electronic, etc.) These loads are specified below.

- Left inboard landing lights, 7.5 A, 115 Vac, ac bus number 1, circuit breaker panel P18-4.
- Left outboard navigation light, 5 A, 115 Vac, ac bus number 2, circuit breaker panel P18-4.
- Left window lights, 10 A, 115 Vac, transfer bus, circuit breaker panel P18-3.
- Left ceiling lights, 15 A, 115 Vac, transfer bus, circuit breaker panel P18-4.
- DME-2, 2.5 A, 115 Vac, ac radio bus number 2, circuit breaker panel P18-2.
- Auxiliary pitot heat, 5 A, 115 Vac, ac bus number 2, circuit breaker panel P6-1.
- Window heat, first officers window 4 and 5, 5 A, 115 Vac, ac bus number 3, circuit breaker panel P6-1.
• 400-60-Hz inverter (phase A only), 15 A, 115 Vac, ac bus number 2, project power junction box (located in E&E bay).

2.5 NICOLET ODYSSEY DATA RECORDER.

A Nicolet Odyssey data recorder (figure 6) was used to record all data from the AFCB-JB. The Nicolet is a sophisticated data recorder that samples at a rate of 100 kHz per channel. Data recording rates are programmable for speeds between 1 and 100 kHz. To conserve hard disk space, data was normally recorded at the 1 kHz rate. When the data recorder detected a trigger, indicating that an AFCB was tripping, the recording rate would immediately change to the 100 kHz rate, capturing a high-resolution recording of the voltage and current on each AFCB for 100 ms before and after the trigger condition.

The capture of this data was important for several reasons. First, the current waveform data is crucial in determining if the fault condition was a real arc fault or a nuisance trip condition. If a real arc was suspected, a rigorous troubleshooting effort is required to find the location of the fault on the aircraft prior to release for flight, as spelled out in the Eaton Troubleshooting Procedures in appendix E. If the condition is determined to be a nuisance trip, the data is sent to the AFCB developer for analysis, and possible modification of the arc-fault detection algorithms in the AFCB.

![Image of the Nicolet Odyssey Data Recorder](image)

FIGURE 6. NICOLET ODYSSEY DATA RECORDER

2.6 N40 WIRING BASELINE.

As required in the Eaton Ground Test Checkout Procedures shown in appendix C, the eight circuits involved in the AFCB testing were required to have an electrical characteristic baseline
established prior to commencing the flight test. CM Technologies was brought in to use its electrical characterization and diagnostics time domain reflectometer (TDR) to measure and record the baseline.

Baselines were established to assist the troubleshooting process in the event that an AFCB trip occurred. If the recorded data clearly indicated that the event was nuisance related, then troubleshooting of the aircraft circuits would not be necessary. However, if the data recorded was inconclusive, then it might be necessary to troubleshoot the aircraft circuit. Because an arc fault can alter the impedance characteristics of a wire, it was determined that the TDR may help locate the approximate location of the arc.

During a TDR test, an electric pulse is transmitted down the wire under test. Wherever an impedance change is encountered, part of the energy of the pulse is reflected back to the source. The reflections are captured as a trace. The initial trace is stored as a characteristic baseline against which future traces are compared. In the event of a suspected arc fault, the wire would be recharacterized and the new trace compared to the original baseline. When the traces are overlaid, separations indicate potential areas where the wire has been damaged. Appendix J contains the baseline characterization data from the N40 tests.

During both the Eaton and Hendry flight test programs, no arc faults were encountered, and it was not necessary to recharacterize any circuits with the TDR measurement equipment.

3. FLIGHT TEST STATISTICS.

The combined flight evaluation included 118.9 hours of testing. During this time, a total of 929.7 AFCB operational hours and data were accumulated. The Flight Test Certification Plan is shown in appendix A.

3.1 EATON FLIGHT TEST STATISTICS.

Figures 7 and 8 contain the summarized Eaton flight test data. Figure 7 shows the flight hour data, and figure 8 shows the cumulative AFCB operational hours. The Eaton AFCBs accumulated 30.9 flight hours and 228.2 operational hours. Appendix D contains the detailed data on the flights.

The Eaton flight test program commenced on 10 September 2001. On the morning of 11 September, the aircraft was powered-up and ready for taxi and takeoff when the World Trade Center and Pentagon attacks began to unfold. This flight and all other flights for the week were cancelled. The program was able to resume testing on 17 September. During the period of 20-25 September, a number of instrumentation and crew availability problems were experienced that further impacted accumulation of flight time. Flying resumed on 26 September and continued through 03 October. At this point, the aircraft was removed from experimental status to support other scheduled FAA research and development (R&D) flight test programs and the Eaton flight test program was completed.
3.2. HENDRY FLIGHT TEST STATISTICS.

Figures 9 and 10 contain the summarized Hendry flight test data. Figure 9 shows the flight hour data, and figure 10 shows the cumulative AFCB operational hours. The Hendry AFCBs
accumulated 88.0 flight hours and 701.5 operational hours. Appendix D contains the detailed data on the flights.

Initial bench testing (guillotine tests), aircraft installation, and debug flight-testing were conducted between 19 June 2002 and 2 July 2002 with test AFCBs not in a common algorithm configuration. At the conclusion of these tests, it was decided that flight-testing would not be
started until all eight installed AFCBs were of the same configuration (amp rating excepted). The circuit breakers were sent to Hendry for rework and returned to the FAA on 31 July 2002 for reinstallation and flight-testing. During this time frame, the Odyssey recorder was returned to the manufacturer for an 8-channel upgrade (to 32 channels total) and warranty replacement (a digital signal processor chip on the other signal processing boards). The flight test commenced on 5 August 2002. A second gap in consecutive flight test time occurred between 24 August and 22 September 2002 when the aircraft experienced a fuel tank leak. Flying resumed on 23 September and continued until 11 October 2002. During this period, the flight profile included approximately 120 approaches. At this point, the aircraft was removed from experimental status to support other scheduled FAA R&D flight test programs, and the Hendry flight test program was completed.

4. SAMPLE DATA RECORDINGS.

Figures 11 through 14 are waveform examples that can be expected during normal operation of aircraft equipment and must be accounted for in the algorithms incorporated in an AFCB. The waveforms were obtained during the course of this flight test program and were recorded with the Nicolet data recorder.

Figure 11 shows an example of the voltage waveforms encountered during a power transfer from APU to engine.

![Figure 11. AUXILARY POWER UNIT-TO-ENGINE POWER TRANSFER TRANSIENT WAVEFORM](image)

Start-up current transients can often be many times the rated current of the circuit breaker. The transient current is one factor that most arc-fault detection algorithms monitor. Examples of typical cabin ceiling light transient current are shown in figure 12. Peak current on the cabin ceiling lights was 42 A, nearly three times the rated current of the circuit.
Inboard landing light start-up transients are shown in figure 13. The peak in-rush current on the inboard landing light was 46 A, more than six times the rated current of the AFCB.

Figure 14 shows an example of a guillotine (dry-arc) arc-fault test. Note again, the high-current transients over 100 A. This test was conducted on each AFCB prior to installation to verify the functionality of the arc detection and trip circuitry. In this particular test, the first trigger occurred within two cycles of the guillotine. Current shutdown occurred within one-half cycle of the trigger. Current is only limited by the source impedance and the wire characteristics between the source and the fault.
5. **FLIGHT TEST.**

5.1 **EATON FLIGHT TEST PLAN.**

5.1.1 **Introduction.**

The FAA William J. Hughes Technical Center R&D flight test program performed a minor modification to their B-727-25C aircraft. This temporary modification involved the installation of eight AFCB prototypes manufactured by Eaton Aerospace Controls. The AFCBs were installed for a 2-week experimental flight test period in support of AFCB R&D.

The AFCBs were installed in an AFCI-JB that enclosed all the AFCBs and required instrumentation. The AFCBs were not mounted in the aircraft circuit breaker panels. It is important to note that the AFCBs were connected in series with the load side of the existing thermal circuit breakers. In other words, current circuit protection aboard the aircraft was not compromised in any way by this installation.

The electrical, system, and mechanical integration of this installation was accomplished at Atlantic City International Airport using FAA technical and engineering personnel. The New York Aircraft Certification Office granted the engineering personnel authority to approve electrical systems and structures data via FAA Form 8110-3.

It is important to note that no arc faults will be created in the aircraft. The purpose of the flight-testing is to evaluate nuisance tripping only. Arcing will not intentionally be created aboard the aircraft in flight or on the ground. The Eaton Flight Test Plan is shown in appendix B.
5.1.2 Flight Test Goals.

The following list describes the goals of the experimental flight test program, listed in order of importance.

- Complete at least 50 (or more) flight hours but not less than 25 hours. Data generated during these flights is critical to the AFCB R&D program and for obtaining approval of the N40 one-only supplemental type certificate (STC).
- Evaluate the operation of the AFCBs under standard B-727 operational procedures.
- Evaluate the operation of the AFCB instrumentation and Odyssey data recording system for future unmanned data collection.

5.1.3 System Description.

The AFCB installation consists of the following:

- Eight Eaton prototype AFCBs of the following ratings: two 5 A, three 7.5 A, one 10 A, and two 15 A (mounted in the AFCI-JB).
- One AFCI-JB
- Two AFCI-JB test unit wire harnesses, P18 and P6
- One 24-channel Nicolet odyssey data recorder
- One BNC breakout box
- One AFCI-JB—BNC breakout box interface harness
- Twenty-four 36-inch BNC connector cables
- One trigger alarm

The AFCI-JB contained the eight AFCB units. The test unit was mounted in the rear, left side of the cockpit. The test unit has bypass switches that disable the AFCBs if desired. The test unit was fabricated using standard best practices and in accordance with AC 43.13-1B and contain any possible AFCB failure.

The electrical connections for the system are shown schematically in appendix K. The AFCBs mounted within the AFCI-JB were electrically in series with the load side of the existing circuit breakers. The AFCI-JB wire harnesses, P-18 and P-6, connect the load side of the each aircraft circuit breaker to the line side of the respective AFCB and from the load side of the each AFCB to the feed wire for the respective load.
The BNC breakout box and the Odyssey data recorder were mounted in the cabin of the aircraft. The AFCI-JB/BNC breakout box interface harness connects the AFCI-JB to the BNC breakout box.

The 24 BNC connectors on the BNC breakout box are connected to the Odyssey data recorder with 36-inch BNC coaxial cables.

Detailed installation instructions are provided in the AFCB Ground Test Checkout Procedures in appendix C.

5.1.4 Certification Requirements.

There are no FAA technical standard orders for the equipment installed during this modification. Experimental flight test was performed to collect data necessary to obtain a one-only STC to install the AFCBs aboard N40 for an extended evaluation period.

5.1.5 Flight Test Profile Requirements.

N40 was operated in conformance with standard B-727 operations. The purpose of the flight test is to maximize the number of flight hours. Duration and distance of flights was at the discretion of the pilot in command and within the operating restrictions established by the Manufacturing Inspection District Office (MIDO).

No excessive cycling of the aircraft is necessary.

As established by the MIDO, flight restrictions were removed to the maximum extent possible upon completion of flight hour thresholds established by the MIDO.

5.1.6 Limitations.

It was proposed that the first 10 flight hours (phase 1) be conducted within a 50-mile radius from Atlantic City International Airport. Upon satisfactory completion of this 10-hour period, it was requested that the remainder of the flights be conducted without restrictions (phase 2).

An ACT-370 Safety Officer was on all phase 1 flights.

An FAA engineer (or designee) had to be aboard the aircraft during all AFCB flight tests to operate the Odyssey data recorder.

No AFCB-equipped circuit was to be operated in flight after an AFCB trip on the circuit, unless the pilot in command orders the operation of the circuit during an emergency. In this case, the flight engineer has to switch the associated bypass switch on the AFCI-JB to the bypass position. In addition, after an AFCB trip, the flight engineer shall pull the associated circuit breaker on the aircraft circuit breaker panel. Troubleshooting shall be performed in accordance with the AFCB Troubleshooting Procedures in appendix E.
If there are two or more AFCB trips on a single electrical bus, the flight test shall be terminated and the aircraft will return to the base immediately.

5.1.7 Emergency Procedures.

In the event of an emergency (related or unrelated to the AFCB testing), the following procedures had to be followed if ordered by the pilot in command.

The flight engineer shall bypass all the AFCBs by closing the AFCB bypass switches on the AFCB-JB located behind the captain’s chair.

- The flight engineer will set each AFCB to the open position.
- The engineer operating the system will power off the Odyssey data recorder.

If power must be removed from the AFCB-JB, the following steps will be completed:

- The flight engineer will open the eight circuit breakers on the aircraft circuit breaker panels. A colored button or other tag will uniquely identify these breakers. The eight circuit breakers and their respective locations are summarized in table 1.

<table>
<thead>
<tr>
<th>AFCB No.</th>
<th>Circuit Breaker Identity</th>
<th>Panel/Location</th>
<th>Rating (A)</th>
<th>Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left Inboard Landing Lights</td>
<td>P18-4 Lighting</td>
<td>7</td>
<td>115 Vac Bus No. 1</td>
</tr>
<tr>
<td>2</td>
<td>Navigation Lights</td>
<td>P18-4 Lighting</td>
<td>5</td>
<td>115 Vac Bus No. 2</td>
</tr>
<tr>
<td>3</td>
<td>Window Lights</td>
<td>P18-3 Lighting and Passenger Accommodations</td>
<td>10</td>
<td>115 Vac Transfer Bus</td>
</tr>
<tr>
<td>4</td>
<td>Left Ceiling Lights</td>
<td>P18-3 Lighting and Passenger Accommodations</td>
<td>15</td>
<td>115 Vac Transfer Bus</td>
</tr>
<tr>
<td>5</td>
<td>DME-2</td>
<td>P18-3 Electronic Load Circuit Breaker</td>
<td>3</td>
<td>115 Vac Radio Bus No. 2</td>
</tr>
<tr>
<td>6</td>
<td>Heater-Pitot-Aux</td>
<td>P6-1 Miscellaneous ac, Anti-Ice and Rain</td>
<td>5</td>
<td>115 Vac Bus No. 2</td>
</tr>
<tr>
<td>7</td>
<td>First Officers Window 4 & 5</td>
<td>P6-1 Miscellaneous ac, Anti-Ice and Rain</td>
<td>5</td>
<td>115 Vac Bus No. 3</td>
</tr>
<tr>
<td>8</td>
<td>Project Power</td>
<td>Project Power Junction Box</td>
<td>10</td>
<td>115 Vac Bus No. 2</td>
</tr>
</tbody>
</table>

5.1.8 Normal Procedures.

5.1.8.1 Preflight.

- Review flight plan with flight crew and all passengers.
- Review emergency procedures with flight crew and all passengers.
• Review all normal procedures with flight crew and all passengers.
• Flight engineer set all bypass switches on the AFCI-JB to normal.
• Apply power to the aircraft (ground power or APU).
• Turn Odyssey data recorder to ON and wait for system to boot up and initialize. Start recording. Note the date, time, and recording number.
• Flight engineer close AFCB-1, AFCB-2, AFCB-3, AFCB-4, AFCB-6, and AFCB-7 on the AFCI-JB.
• If on ground power, start APU. Start Odyssey data recording and instruct flight engineer to transfer power from ground power to APU power. Stop data recording as soon as power transfer is complete. Record the date, time, and file name of the recording in the test logbook. Note that the recording was a ground power to APU transfer.
• If on APU power, start aircraft engines. Start Odyssey data recording and instruct flight engineer to transfer power from APU to engine generators. Stop data recording as soon as power transfer is complete. Record the date, time, and file name of the recording in the test logbook. Note that the recording was an APU to engine generator power transfer.
• Start the Odyssey data recording. Data will be recorded at the slow rate, 1 kHz. Note the date, time, and file name in the test logbook. Also note the general conditions (weather, etc.) at this time.
• Proceed to flight phase in accordance with standard B-727 start-up procedures.

5.1.8.2 Flight

• Monitor Odyssey data recording system. The visual and aural trigger alarm mounted adjacent to the Odyssey data recorder will initiate when an AFCB has tripped and the Odyssey data recorder will automatically begin recording at the high sampling rate (100 kHz).
• If the trigger alarm sounds, depress the red reset button mounted on the trigger alarm enclosure to silence the trigger and extinguish the trigger alarm lights.
• Stop the data recording and start a new data recording file.
• Note the date, time, and the number of the AFCB(s) that caused the trigger. Also note the flight conditions and other information pertinent to the trigger event in the test logbook. Also note the new file name in the logbook with the start time of the recording.
5.1.8.3 Postflight.

- Continue to follow the flight procedures.
- Prior to engine shutdown, start APU or apply ground power. Switch aircraft power to APU or ground power. Shut engines in accordance with standard B-727 operational procedures.
- Shutdown the Odyssey data recorder.
- Shutdown aircraft in accordance with standard B-727 operational procedures.

5.2 EATON DISCREPANCIES.

The Eaton circuit breakers did not experience any nuisance trips during the flight test program. There were two AFCB discrepancies. In both cases, the units failed to latch in the closed position. These units were sent to Eaton for evaluation.

5.2.1 Discrepancy 1.

- Problem Reported: The 10-A AFCB will not latch when the button is in the set position and no power is applied to the breaker.
- Initial Investigation: Discrepancy confirmed.
- Actions Taken for Investigation: The potting was removed from the calibration screw. After backing off the calibration screw, the problem continued. Next, the unit’s potting was removed, and the unit was opened, but the problem continued. The electronics were then removed from the device. During the inspection of the mechanical side of the breaker, a problem was noted. The brazed area that attaches the bimetal to the terminal had broken. This caused the bimetal to pull away from its calibrated position preventing the unit from latching.
- Corrective Action: In the brazing process, the bimetal was established by a bend in the bimetal foot prior to brazing to the buss bar or the terminal. It was discovered that the angle of the bimetal foot to the terminal made it difficult to transfer the heat properly and form a complete braze joint. The bimetal angle was modified, allowing the brazing fixture to make full contact across the bimetal foot for better heat transfer. The prototype flight test units delivered to the FAA were all constructed using the old brazing process. All flight test units delivered to the U.S. Navy were constructed using the new brazing process. The U.S. Navy units did not experience this problem, indicating a successful resolution of the problem. It is also important to note that all the units were prototypes, built substantially by hand and not representative of the manufacturing processes that will ultimately be used when the units are in full production.
5.2.2 Discrepancy 2.

- Problem Reported: 7.5-A AFCB failed to latch after an initial trip during the power-up. The flight crew removed the trigger wire from its connector to investigate why the unit would not stay closed. During their investigation, the flight crew noticed a spark when the trigger signal wire touched the grounded portion of the AFCI-JB. After the spark, the flight crew measured 115 VRMS on the signal wire and disabled the circuit breaker.

- Initial Investigation: Discrepancy confirmed.

- Actions Taken for Investigation: The potting was removed from the calibration screw. After backing off the calibration screw, the problem continued. Next, the unit’s potting was removed, and the unit was opened, but the problem continued. The electronics were then removed from the device. In the inspection of the electronics power board, the silicone control rectifier (SCR) had been destroyed, indicating a high in rush of current. The coil of the device was still intact, indicating an alternative current path. During the inspection of the mechanical side of the breaker, a problem was noted. The brazed area that attaches the bimetal to the terminal had broken. This caused the bimetal to pull away from its calibrated position, preventing the unit from latching.

- Corrective Action: The initial cause of the problem was the same as the 10-A AFCB (a broken braze on the bimetal). This condition caused the breaker to receive a trip signal from the electronics. The trip signal wire touching the airframe provided an unrestricted source of current, which damaged the SCR. In production of AFCBs, the trigger signal wire will not be present. The FAA AFCI-JB will be redesigned to monitor trip current without requiring a trigger signal wire for the AFCB. The proposed method will be to monitor current on the ground connection for a large current spike, which would indicate the trip coil had been fired.

The Eaton testing was completed prior to the instrumentation modifications. However, the instrumentation changes were completed prior to the Hendry testing.

5.3 Eaton Troubleshooting Procedures.

5.3.1 Arc-Fault Troubleshooting Background.

Although AFCBs can detect arcing on the circuit in which it is installed, it cannot determine the location of the arc along the circuit. Furthermore, means for easily troubleshooting an arc fault after an AFCB trip are under development but not currently available. This plan has been developed to establish a procedure for troubleshooting AFCB trips, should they occur.

An understanding of current methods of troubleshooting thermal trips will clarify the additional measures needed to troubleshoot an AFCB trip and specifically the procedures that will be followed during the FAA AFCB flight test program.

Troubleshooting circuit breakers is an iterative process. Generally, after a thermal circuit breaker trip, troubleshooting begins by evaluating the load(s) powered by the circuit. The load is
either tested for correct operation or is removed and replaced if its correct operation cannot be
directly determined. The circuit is powered, and if no additional trips are noted, the corrective
action is considered complete. If additional trips of the same circuit occur, there are several
options for corrective action. The load may still be suspected, and the problem may not be
reproducible on the ground. The circuit breaker itself may be suspect and replaced (tripping of
thermal circuit breakers under normal conditions or failure of a circuit breaker to stay closed
when depressed, are two common circuit breaker failure modes). Usually, the last item to be
checked is the circuit wiring, mainly because of the inherent difficulties in testing and inspecting
the wiring.

AFCBs add another dimension of complexity to the troubleshooting problem. AFCBs have two
trip modes, thermal (current overload) and arc fault. There are unique procedures for
troubleshooting each mode, and unfortunately, if one procedure fails to identify the problem, it
may be necessary to complete the other procedure to be certain that the problem has been
resolved. Future AFCBs will have the ability to indicate if the trip mode was thermal- or arc
fault-related. The prototypes flown in this test program will not have this feature. However, the
data recording instrumentation will be triggered by the AFCBs arc-fault detection circuit and,
therefore, it will be known with certainty if the trip mode was thermal versus arc fault.

If the trip mode was arc-fault related, the question remains, Was the arc trip a real arc or was it a
nuisance trip? The instrumentation being used in these flights will record the current waveforms
immediately before and after the AFCB indicates that an arc is present and a trip is initiated.
This data will be analyzed by Eaton to determine if it appears to be a real arc or a nuisance trip.
If it is certain that the trip was nuisance-related, then the breaker will be reset and flight-testing
may resume. If a nuisance trip is not certain, then further diagnostics will be required.

Provisions have been made to baseline the condition of the wiring on the eight circuits that will
be used in the tests with TDR. During ground testing of the AFCB test system, each AFCB-
equipped circuit will be characterized with TDR. This data will form a baseline measurement
against which future measurements will be compared. Changes in the measurement indicate
possible locations at which the arcing may have occurred.

At this point, it is unclear if TDR is sensitive enough to detect the damage incurred by a wire
during an arcing condition. If the TDR fails to identify the location of the fault, visual inspection
of the circuit must be performed to determine the source of the fault.

5.3.2 Detailed Troubleshooting Procedures.

Qualified FAA personnel under the direction of the Electrical Systems Designated Engineering
Representative, ACT-370, performed all troubleshooting. Upon an AFCB arc-fault trip, the
Odyssey data recording system will record the current and voltage waveforms from the eight
circuits equipped with AFCBs. A thermal trip of the AFCB or the aircraft circuit breaker will
not cause the Odyssey to trigger on and record this data. Therefore, it will be known
immediately if the trip was caused by an arc fault.
5.3.3 Detailed Process Flow Chart.

Figure 15 shows a detailed process flow chart for the Eaton AFCB.

FIGURE 15. EATON DETAILED PROCESS FLOW CHART
Troubleshoot and repair IAW Standard Operating Procedures for thermal circuit breaker trips

Conduct ground tests on circuit

Ground tests check ok?

Y

Re-baseline circuit TDR characterization

Aircraft and circuit returned to service

End

N

Obtain TDR Data From Tripped Circuit

Email TDR Data to CM Tech. For Analysis

TDR Changed from baseline?

N

Conduct visual inspection of circuit wiring

Damage location discernable?

N

Locate fault and repair

Conduct ground tests on circuit

Y

Locate fault and repair

Conduct ground tests on circuit

FIGURE 15. EATON DETAILED PROCESS FLOW CHART (Continued)
5.4 HENDRY TEST PLAN.

5.4.1 Introduction.

This test plan defines the flight test procedures for evaluating the performance of AFCBs in an FAA-owned B-727-25C aircraft. The effort was conducted at the FAA William J. Hughes Technical Center.

5.4.2 Objective.

The objective of this task was to conduct an in-flight evaluation of AFCB performance.

The FAA William J. Hughes Technical Center R&D Flight Program performed a minor modification to their B-727-25C aircraft. This temporary modification involved the installation of eight AFCB prototypes manufactured by the Hendry Corporation. The AFCBs were installed for a 6-month evaluation period in support of AFCB R&D.
5.4.3 Scope.

The scope of this effort was to install AFCBs manufactured by the Hendry Corporation in an FAA-owned B-727-25C aircraft and conduct a flight evaluation of the developmental AFCBs. Data recorded included line voltage, load voltage, and current for each of the installed breakers. Data reduction efforts of any occurring arc faults will include identification of relationships between the trip conditions.

5.4.4 Flight Test Goals.

The following list describes the goals of the experimental flight test program, listed in order of importance.

- Complete 50 or more hours of developmental flight test evaluation but not less than 25 hours. Data generated during these flights is critical to the AFCB R&D program and for obtaining approval of the N40 one-only STC.
- Evaluate the operation of the AFCBs under standard B-727 operational procedures.
- Evaluate the operation of the AFCB instrumentation and Odyssey data recording system for future unmanned data collection.

The complete flight records for Hendry flight test are shown in appendix H.

5.4.5 System Description.

The equipment installed for the arc-fault flight evaluation included developmental prototype AFCBs installed in a junction box, an instrumentation recorder and interconnecting cables, and wire harnesses. These items are described in the following sections.

5.4.5.1 Arc-Fault Circuit Breakers.

Eight Hendry prototype AFCBs of the following ratings: one 2.5 A, three 5 A, one 7.5 A, one 10 A, and two 15 A (mounted in the AFCI-JB).

5.4.5.2 Arc-Fault Circuit Interrupter-Junction Box and Aircraft Harnesses.

- One AFCI-JB
- Two AFCI-JB Test Unit wire harnesses, P18 and P6

5.4.5.3 Instrumentation Equipment.

- One 24-channel Nicolet Odyssey data recorder
- One BNC Breakout Box
- One AFCI-JB BNC breakout box interface harness
- Twenty-four 24-inch BNC connector cables
- One Trigger Alarm
5.4.5.4 Aircraft Interfaces.

The electrical connections for the system are shown schematically in appendix K. The AFCBs mounted within the AFCI-JB were electrically in series with the load side of the existing circuit breakers. The AFCI-JB wire harnesses, P-18 and P-6, connected the load side of the each aircraft circuit breaker to the line side of the respective AFCB and from the load side of the each AFCB to the feed wire for the respective load.

It is important to note that the AFCBs were connected in series with the load side of the existing thermal circuit breakers. In other words, current circuit protection aboard the aircraft was not compromised in any way by this installation.

The onboard Project Power Inverter provided 120-Vac, 60-Hz power for the data acquisition system.

5.4.6 Aircraft Installation.

The AFCBs were installed in an AFCI-JB that enclosed all the AFCBs and required instrumentation interfaces. The AFCI-JB was mounted in the rear, left side of the cockpit. The test unit had bypass switches that would disable the AFCBs if desired.

The BNC breakout box and the Odyssey data recorder were mounted in the cabin of the aircraft.

The electrical installation was completed in accordance with drawing number 9854415 under the guidance of the William J. Hughes Technical Center Electrical Systems Designated Engineering Representative.

Detailed instructions for completing the installation can be found in the AFCB Hendry Ground Checkout Procedures Report in appendix G.

5.4.7 Certification Requirements.

There were no FAA Technical Standard Orders for the equipment being installed during this modification. Experimental flight tests were performed to collect data necessary to obtain a one-only STC to install the AFCBs aboard N40 for an extended evaluation period.

5.4.8 Flight Test Profile Requirements.

N40 was operated in conformance with standard B-727 operations. The purpose of the flight test was to maximize the number of flight hours. The duration and distance of the flights were at the discretion of the pilot in command and within the operating restrictions established by the MIDO. The Hendry Flight Test Plan is shown in appendix F.

No excessive cycling of the aircraft was necessary.

As established by the MIDO, flight restrictions shall be removed to the maximum extent possible upon completion of flight hour thresholds established by the MIDO.
5.4.9 Limitations.

It was proposed that the first five flight hours (phase 1) be conducted within a 100-mile radius from Atlantic City International Airport. Upon satisfactory completion of this 5-hour period, it was requested that the remainder of the flights be conducted without restrictions (phase 2).

An ACT-370 safety officer was on all phase 1 flights.

An FAA engineer (or designee) had to be aboard the aircraft during all AFCB flight tests to operate the Odyssey data recorder.

No AFCB-equipped circuit was operated in flight after an AFCB trip on the circuit, unless the pilot in command ordered the operation of the circuit during an emergency. In this case, the flight engineer had to switch the associated bypass switch on the AFCI-JB to the bypass position. In addition, after an AFCB trip, the flight engineer had to pull the associated circuit breaker on the aircraft circuit breaker panel. Troubleshooting had to be performed in accordance with the AFCB Troubleshooting Procedures.

If there are two or more AFCB trips on a single electrical bus, the flight test was terminated, and the aircraft returned to the base immediately.

5.4.10 Emergency Procedures.

In the event of an emergency (related or unrelated to the AFCB testing), the following procedures had to be followed if ordered by the pilot in command.

- The flight engineer shall bypass all AFCBs by closing the AFCB bypass switches on the AFCI-JB located behind the captain’s chair.
- The flight engineer will set each AFCB to the open position.
- The engineer operating the system will power off the Odyssey data recorder.

If power must be removed from the AFCI-JB, the following steps will be completed:

- The flight engineer will open the eight circuit breakers on the aircraft circuit breaker panels. A colored button or other tag will uniquely identify these breakers. The eight circuit breakers and their respective locations are summarized in table 2.
TABLE 2. HENDRY AFCB TEST CIRCUIT BREAKER LOCATIONS

<table>
<thead>
<tr>
<th>AFCB Circuit No.</th>
<th>Circuit Breaker Identity</th>
<th>Panel/Location</th>
<th>Rating (A)</th>
<th>Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left Inboard Landing Lights</td>
<td>P18-4 Lighting</td>
<td>7</td>
<td>115 Vac Bus No. 1</td>
</tr>
<tr>
<td>2</td>
<td>Navigation Lights</td>
<td>P18-4 Lighting</td>
<td>5</td>
<td>115 Vac Bus No. 2</td>
</tr>
<tr>
<td>3</td>
<td>Window Lights</td>
<td>P18-3 Lighting and Passenger Accommodations</td>
<td>10</td>
<td>115 Vac Transfer Bus</td>
</tr>
<tr>
<td>4</td>
<td>Left Ceiling Lights</td>
<td>P18-3 Lighting and Passenger Accommodations</td>
<td>15</td>
<td>115 Vac Transfer Bus</td>
</tr>
<tr>
<td>5</td>
<td>DME-2</td>
<td>P18-3 Electronic Load Circuit Breaker</td>
<td>3</td>
<td>115 Vac Radio Bus No. 2</td>
</tr>
<tr>
<td>6</td>
<td>Heater-Pitot-Aux</td>
<td>P6-1 Miscellaneous ac, Anti-Ice and Rain</td>
<td>5</td>
<td>115 Vac Bus No. 2</td>
</tr>
<tr>
<td>7</td>
<td>First Officers Window 4 & 5</td>
<td>P6-1 Miscellaneous ac, Anti-Ice and Rain</td>
<td>5</td>
<td>115 Vac Bus No. 3</td>
</tr>
<tr>
<td>8</td>
<td>Project Power</td>
<td>Project Power Junction Box</td>
<td>10</td>
<td>115 Vac Bus No. 2</td>
</tr>
</tbody>
</table>

5.4.11 Normal Procedures

5.4.11.1 Preflight.

- Review flight plan with flight crew and all passengers.
- Review emergency procedures with flight crew and all passengers.
- Review all normal procedures with flight crew and all passengers.
- Flight engineer will set all bypass switches on the AFCI-JB to normal except S8 (leave in BYPASS) and S1. Leave S1 in BYPASS until landing light is on, and then switch S1 to NORMAL.
- Apply power to the aircraft (ground power or APU).
- Flight engineer closes all AFCBs.
- Turn Odyssey data recorder to ON and wait for system to boot up and initialize. Start recording. Note the date, time, and recording number.
- If on ground power, start APU. Start Odyssey data recording and instruct flight engineer to transfer power from ground power to APU power. Record the date, time, and file name of the recording in the test logbook. Note that the recording was a ground power to APU transfer.
- If on APU power, start aircraft engines. Continue Odyssey data recording and instruct flight engineer to transfer power from APU to engine generators. Record the date, time,
and file name of the recording in the test logbook. Note that the recording was an APU to engine generator power transfer.

- Continue the Odyssey data recording. Data will be recorded at the slow rate, 1 kHz. Note the date, time, and file name in the test logbook. Also, note the general conditions (weather, etc.) at this time.

- Proceed to flight phase in accordance with standard B-727 start-up procedures.

5.4.11.2 Flight.

- Monitor Odyssey data recording system. The visual and aural trigger alarm mounted adjacent to the Odyssey data recorder will initiate when an AFCB has tripped and the Odyssey data recorder will automatically begin recording at the high sampling rate, 100 kHz.

- If the trigger alarm sounds, press the red reset button mounted on the trigger alarm enclosure to silence the trigger and extinguish the trigger alarm lights.

- Note the date, time, and the number of the AFCB(s) that caused the trigger. Also note the flight conditions and other information pertinent to the trigger event in the test logbook, as well as the new file name with the start time of the recording.

5.4.11.3 Postflight.

- Continue to follow the flight procedures.

- Prior to engine shutdown, start APU or apply ground power. Switch aircraft power to APU or ground power. Shut engines in accordance with standard B-727 operational procedures.

- Download data files from the Odyssey data recorder.

- Shutdown the Odyssey data recorder.

- Shutdown aircraft in accordance with standard B-727 operational procedures.

5.5 HENDRY DISCREPANCIES.

After correction of discrepancies discovered during initial ground integration and debug flight test and establishment of a common baseline configuration (amp rating excepted) for all test breakers, the Hendry circuit breakers still experienced multiple instrumentation trigger and circuit breaker trip occurrences during the flight test program. There were two distinct categories of recurring AFCB discrepancies. In both cases, a work around was developed to allow the flight test program to continue. Additionally, there were three other trip occurrences during the flight test program that could be considered nuisance trips. The corrective actions, though labeled undetermined, will be addressed on the follow-on phase of this research project.
5.5.1 Discrepancy 1.

- Problem Reported: The circuit breakers would provide a false instrumentation trigger output during power transfers, indicating a circuit breaker trip when the breaker did not trip.

- Initial Investigation: Confirmed this occurred in the absence of an unusual current waveform. Consultation with factory confirmed that the signal was indeed a false instrumentation trigger signal and not a missed trip.

- Corrective Action: Undetermined. Hendry will investigate this at a later date.

- Work Around Effected: Instrumentation operator would actively monitor the alarm during power transfer, reset if activated, confirm that no circuit breaker had tripped, and note conditions at time of trigger signal. Continue flight test.

5.5.2 Discrepancy 2.

- Problem Reported: Ceiling light 10-A AFCB would occasionally trip during light turn on and rapid switch cycling.

- Action Taken: Discrepancy confirmed. Nonuniform, nonrepetitive high-current waveform observed. Note that rapid switch cycling is not a standard procedure.

- Corrective Action: Undetermined. Hendry to analyze waveforms and determine corrective algorithm changes at a later date.

- Work Around Effected: Continue with flight test noting conditions when trip occurs.

5.5.3 Discrepancy 3.

- Problem Reported: Pitot heat 5-A AFCB tripped approximately 30 minutes into flight.

- Action Taken: In accordance with the test plan, the circuit was put into BYPASS for the remainder of the current flight. After the flight, the AFCB trip event was discussed with the flight engineer. It was agreed that the trip was an anomaly and that the flight test could safely be continued with the AFCB in the circuit. No further trips of this circuit breaker occurred.

- Corrective Action: Undetermined.

5.5.4 Discrepancy 4.

- Problem Reported: Window heat 5-A circuit breaker tripped when the mechanic was conducting aircraft preflight and bringing the APU on-line. The mechanic was unable to reset the breaker until power was removed from the breaker by placing the S1 switch in STANDBY. No instrumentation recording was available because of being in the initial stages of preflight.
• Action Taken: In accordance with the test plan, the AFCB trip event was discussed with the flight engineer. It was agreed that the trip was an anomaly and that the flight test could safely be continued with the AFCB in the circuit. No further trips of this circuit breaker occurred.

• Corrective Action: Undetermined.

5.5.5 Discrepancy 5.

• Problem Reported: Landing light 7.5-A AFCB tripped during landing light turn-on. The problem occurred as the throttles were being advanced at the start of taxi onto runway.

• Action Taken: After the aircraft was safely in flight, the trip was discussed with the flight engineer. There was agreement that this trip occurred under conditions similar to those experienced during debug flights at the beginning of the program, and the AFCB could be reset without impacting flight safety.

• Corrective Action: Undetermined.

5.6 HENDRY TROUBLESHOOTING PROCEDURES.

5.6.1 Arc-Fault Troubleshooting Background.

Although AFCBs can detect arcing on the circuit in which it is installed, it cannot determine the location of the arc along the circuit. Furthermore, means for easily troubleshooting an arc fault after an AFCB trip are under development but not currently available. This plan was developed to establish a procedure for troubleshooting AFCB trips, should they occur.

An understanding of current methods of troubleshooting thermal trips will clarify the additional measures needed to troubleshoot an AFCB trip, and specifically, the procedures that will be followed during the FAA AFCB flight test program.

Troubleshooting circuit breakers is an iterative process. Generally, after a thermal circuit breaker trip, troubleshooting begins by evaluating the load(s) powered by the circuit. The load is either tested for correct operation or is removed and replaced if its correct operation cannot be directly determined. The circuit is powered, and if no additional trips are noted, the corrective action is considered complete.

If additional trips of the same circuit occur, there are several options for corrective action. The load may still be suspected, but the problem may not be reproducible on the ground. The circuit breaker itself may be suspect and replaced (tripping of thermal circuit breakers under normal conditions or failure of a circuit breaker to stay closed when depressed, are two common circuit breaker failure modes). Usually, the last item to be checked is the circuit wiring, mainly because of the inherent difficulties in testing and inspecting the wiring.

AFCBs add another dimension of complexity to the troubleshooting problem. AFCBs have two trip modes, thermal (current overload) and arc fault. There are unique procedures for troubleshooting each mode, and unfortunately, if one procedure fails to identify the problem, it
may be necessary to complete the other procedure to be certain that the problem has been resolved. Future AFCBs will have the ability to indicate if the trip mode was thermal- or arc fault-related. The prototypes flown in this test program will not have this feature. However, the data recording instrumentation will be triggered by the AFCBs’ arc-fault detection circuit, and therefore, it will be known with certainty if the trip mode was thermal versus arc fault.

If the trip mode was arc fault-related, the question remains was the arc trip a real arc or was it a nuisance trip? The instrumentation being used in these flights will record the current waveforms immediately before and after the AFCB indicates that an arc is present and a trip is initiated. This data will be analyzed by Hendry Aerospace to determine if it appears to be a real arc or a nuisance trip. If it is certain that the trip was nuisance related, then the breaker will be reset and flights testing may resume. If a nuisance trip is not certain, then further diagnostics will be required.

Provisions have been made to baseline the condition of the wiring on the eight circuits that will be used in the tests with TDR. During ground testing of the AFCB test system, each AFCB equipped circuit will be characterized with TDR. This data will form a baseline measurement against which future measurements will be compared. Changes in the measurement indicate possible locations at which the arcing may have occurred.

At this point, it is unclear if TDR is sensitive enough to detect the damage incurred by a wire during an arcing condition. If the TDR fails to identify the location of the fault, visual inspection of the circuit must be performed to determine the source of the fault.

5.6.2 Detailed Troubleshooting Procedures

All troubleshooting shall be performed by qualified FAA personnel under the direction of the Electrical Systems Designated Engineering Representative, ACT-370.

Upon an AFCB arc-fault trip, the Odyssey data recording system will record the current and voltage waveforms from the eight circuits equipped with AFCBs. A thermal trip of the AFCB or the aircraft circuit breaker will not cause the Odyssey to trigger on and record this data. Therefore, it will be known immediately if the trip was caused by an arc fault. The Hendry Trouble Shooting Procedures are in appendix I.

5.6.3 Detailed Process Flow Chart

Figure 16 shows the detailed process flow chart of the Hendry AFCB.
FIGURE 16. HENDRY DETAILED PROCESS FLOW CHART
Troubleshoot and repair IAW Standard Operating Procedures for thermal circuit breaker trips

Conduct ground tests on circuit

Ground tests check ok?

− Y
 − Re-baseline circuit TDR characterization
 − Aircraft and circuit returned to service
 − End

− N
 − Obtain TDR Data From Tripped Circuit
 − Email TDR Data to CM Tech. For Analysis
 − TDR Changed from baseline?
 − Y
 − Conduct visual inspection of circuit wiring
 − Locate fault and repair
 − Conduct ground tests on circuit
 − N
 − Damage location discernable?
 − Y
 − Locate fault and repair
 − Conduct ground tests on circuit
 − N
 − End

FIGURE 16. HENDRY DETAILED PROCESS FLOW CHART (Continued)
5.7 SUMMARY OF TEST RESULTS.

5.7.1 Eaton Summary.

Although the desired target of 50 flight test hours was not reached, the goal of at least 25 hours was exceeded. The Eaton arc-fault circuit breaker (AFCB) performance was excellent. No nuisance trips were encountered. The anomalies encountered were related to one of the prototype assembly processes. The process associated with brazing the bimetallic element to the AFCB terminal was modified, eliminating the problem. U.S. Navy flight-testing, which lagged the Federal Aviation Administration (FAA) testing by several weeks, provided verification that corrective action was successful.

The tests provided convincing evidence that the Eaton AFCBs were highly resistant to nuisance tripping when exposed to a diverse set of load conditions and electrical transients. The large number and variety of arc-fault tests conducted by Eaton, the U.S. Navy, and the FAA previously validated the sensitivity of the Eaton AFCBs to arc detection. The Eaton design appears to have successfully balanced arc-fault sensitivity and resistance to nuisance trips. This balance is essential for the successful implementation of arc-fault technology into aircraft electrical systems.
distribution systems. In addition, the breakers tested were built to an MS14105 package size that was much smaller than the MS24571 size specified in the contract. This ensures that the breaker will be widely compatible for simple retrofit into the majority of transport aircraft circuit breaker installations.

5.7.2 Hendry Summary.

There were 88 hours of flight-testing, well in excess of the desired 50-hour target. The Hendry AFCB performance was acceptable. Nuisance trips were encountered only during repeatable power transfer and equipment turn-on transient conditions. These anomalies could easily be worked around during the flight test program. Because of the pace of the program and limited aircraft availability, it was not possible to retest with AFCBs containing revised algorithm implementation.

The tests showed that the Hendry AFCBs were highly resistant to nuisance tripping when exposed to a diverse set of load conditions and electrical transients. However, the fact that tripping did occur during normal operational transients indicated that the algorithms used to effect an arc-fault trip and their implementation are not yet mature. The breakers tested were built to a package size that was smaller than the MS24571 size specified in the contract. From this perspective, the breakers will be compatible for simple retrofit into the majority of transport aircraft circuit breaker installations.
Certification Plan

For

Eaton Aerospace Controls
400Hz/120V Arc Fault Circuit Breakers (AFCB)

On

FAA Technical Center
Boeing 727-25C Aircraft
N40

June 2001

FAA William J. Hughes Technical Center
Engineering and Modification Section, ACT-370
Maintenance, Inspection, and Repair Section, AAR-433

Prepared by: R.A. Pappas
J. Beres

Approved by: Armando Gaetano
Manager, Engineering & Modifications Section
1. **Introduction**

The Federal Aviation Administration (FAA), William J. Hughes Technical Center R&D Flight Program is performing a modification to their Boeing 727-25C aircraft. This temporary modification involves the installation of eight arc fault circuit breaker (AFCB) prototypes manufactured by Eaton Aerospace Controls. The AFCB’s are to be installed for a six-month evaluation period in support of AFCB research and development.

The AFCB’s will be installed in a pre-furnished Arc Fault Test Unit that will enclose all the AFCB’s and required instrumentation. The AFCB’s will not be mounted in the aircraft circuit breaker panels. It is important to note that the AFCB’s will be connected in series with the load side of the existing thermal circuit breakers. In other words, current circuit protection aboard the aircraft will not be compromised in any way by this installation.

The electrical, system, and mechanical integration of this installation will be accomplished at Atlantic City International Airport (ACIAP) using FAA technical and engineering personnel. The engineering personnel have been granted authority to approve “electrical systems” and “structures” data via FAA Form 8110-3, by the New York Aircraft Certification Office (NYACO). The engineering of this installation has been completed and the engineers are currently compiling reports to show compliance with applicable Federal Aviation Regulations (FAR). All data will be submitted to the NYACO with sufficient time for review, prior to flight-testing.

When the installation of the system is completed, avionics inspectors from the FAA Technical Center Repair Station (#MK1R336K) will perform a “conformity inspection” to determine that the aircraft complies with the approved electrical drawings. Concurrently, ground testing will be completed in accordance with the procedures specified in the Ground Checkout Procedures report.

All data for this installation will be approved via FAA Form 8110-3. Upon completion of this modification and appropriate ground checkout procedures, the FAA Technical Center’s Certified Repair Station will return the aircraft to service via FAA Form 337. After being returned to service, the aircraft must undergo a Flight Check of the system. The Flight Check shall be performed in accordance with Flight Checkout Procedures report. This evaluation should result in approval of the Airplane Flight Manual Supplement by the New York Aircraft Certification Office (NYACO).

2. **Background**

The integration of arc fault detection into circuit breakers represents a revolutionary change in circuit protection; which has changed little in the last thirty to forty years. There is abundant evidence of arc faults in all types of aircraft. Laboratory data clearly demonstrates that the current generated during an arcing fault can be very high, yet quite intermittent. The bimetallic elements in thermal breakers do not react quickly enough, if at all, to this ticking arc fault condition. If left unchecked, the arcing condition can develop into an arc tracking condition, potentially destroying a major portion of, or an entire wire bundle. Arcing can also result in many other serious safety hazards.
In 1999, the FAA and the Navy established a joint R&D project to develop aircraft AFCB’s. The goal of this effort is to develop a circuit breaker that integrates arc fault protection together with existing thermal protection into a form, fit, and functional replacement of existing thermal circuit breakers. In laboratory testing, the AFCB prototypes have been very effective in the detection of arcing faults.

In contrast to thermal breakers, which are passive in nature, AFCB’s actively monitor the circuits on which they are installed. Due to the nature of electrical systems, there are times when a normal condition may ‘look’ similar to an arc fault. When such a condition trips an arc fault circuit breaker, it is defined as a nuisance trip. AFCB designs minimize the occurrence of nuisance tripping and maximize sensitivity to arc fault detection.

To address nuisance tripping, the FAA, Navy, and the AFCB developers, have conducted extensive tests to characterize the normal operation of electrical loads, and perturbations to electrical systems during normal events such as bus transfers, power on/off, transfer of power sources, etc. Laboratory tests today have provided a high level of confidence that nuisance tripping is being successfully controlled.

The certification request will permit the FAA to temporarily install AFCB’s aboard the B727-25C (N40) with the purpose of evaluating the circuit breakers, in-flight, over a six-month period. This will assure that the AFCB’s are evaluated against a wide range of actual electrical conditions.

3. System Description

The AFCB installation will consist of the following:

a. Eight (8) - Eaton Aerospace Corporation prototype arc fault circuit breakers of the following ratings: two 5A, three 7.5A, one 10A, and two 15A.

b. One (1) - Arc Fault Test Unit enclosure.

c. Two (2) – Arc Fault Test Unit Interface wire harnesses.

d. One (1) - 16 channel Nicolet Odyssey data recorder (or similar)

e. Eight (8) - AC Voltage probes (100X), Line-to-ground, 115 volt, 1 MHz.

f. Eight (8) - AC Current Transformers (CT), either 100:5 amps or 50:5 amps.

The Arc Fault Test Unit will contain the eight AFCB units, the voltage probes, and the current transformers. The test unit will be mounted in the rear, left side of the flight deck. The test unit will have by-pass switches that will disable the AFCB’s if desired. The test unit will be fabricated using standard best practices and in accordance with AC 43.13-1B and contain any possible AFCB failure. Attachment (1) contains a general description of the Arc Fault Test Unit developed by Boeing for AFCB flight-testing. The FAA AFTU will be equivalent to this unit except that it will contain eight AFCB’s rather than six.

The AFCB’s will be located inside the Arc Fault Test Unit and will be connected in series with the load side of the existing circuit breakers. A wire harness will be provided to connect the instrumentation to the project rack mounted data recorder located in the cabin. Current levels of safety provided by the existing circuit breakers will not be diminished in any way.
4. **Certification Requirements**

All aspects of this modification will be in accordance with FAR Part 25, *Airworthiness Standards: Transport Category Airplanes*. The Issue Paper dated 4/6/01, for AFCB Installation provides alternative means of compliance where this equipment installation cannot meet the regulations. There are no FAA Technical Standard Orders for the equipment being installed during this modification. This modification is being performed to support AFCB research and development, and will be temporary, not to exceed six months.

5. **Method of Compliance**

Several methods will be used to determine compliance with FAR Part 25 during this modification. While each item in the Preliminary Compliance Checklist, Table 1, will be discussed at length in the appropriate report, the following paragraphs provide samples of the methods that will be used.

 a. **Analyses**

 Items such as a determination of the electrical load and factor of safety for equipment mounting trays will be proven by analysis. (Refer to Electrical System Substantiation and Mechanical Structures Substantiation reports.)

 b. **Test**

 Equipment checkout procedures will be available to conduct these tests. (Refer to proposed Ground and Flight Evaluation Procedures.)

 c. **Software Compliance**

 Not applicable.

 d. **Design**

 The installation was designed so the position of each piece of equipment is located in a suitable location. Electrical equipment is installed in compliance with conventional B727 electrical distribution and load shedding practices. (Refer to Electrical System Substantiation and Mechanical Structures Substantiation reports.)

6. **Functional Hazard Assessment Summary**

The AFCB is designed to the highest levels of safety and is not a risk to the aircraft. A Systems Safety Analysis will be produced in accordance with AC 25.1309-1A.

7. **Operational Considerations**

The AFCB provides a greater level of electrical circuit protection than the thermal breakers currently installed. However, AFCBs may occasionally be unnecessarily tripped by a normal load start-up or electrical transient. If such a nuisance trip occurs, the circuit will not be reset, and appropriate troubleshooting will take place when the aircraft returns to the FAA Technical Center. At anytime during a flight, each AFCB can be removed from the circuit by simply throwing a toggle switch mounted on the Arc Fault Test Unit.
During this period of installation, the AFCB’s will only be installed on non-critical circuits. No arc testing will be performed on the aircraft. This testing is to evaluate nuisance tripping only.

The airplane flight manual and operating procedures shall be appropriately supplemented.

8. Certification Documentation
Compliance with applicable regulations will be documented on FAA Form 8110-3. The aircraft will be returned to service via Form 337. The Flight Manual Supplement will be approved by the NYACO upon successful completion of flight-testing.

9. Schedule
The B727 will be modified in accordance with the following schedule.

13 July 2001 Modification Complete
16 July 2001 Begin ground checkout (Conformity inspection)
20 July 2001 All reports to NYACO
09 July 2001 Begin experimental flight test program
27 July 2001 Complete experimental flight test program
25 July 2001 NYACO Safety Review Board
27 July 2001 Flight test with NYACO
01 August 2001 Ground checks and inspections complete. Aircraft returned to service.

Changes to the schedule will be promptly reported to the NYACO.

10. Use of Designees
The following FAA Technical Center Employees have authorization to approve data via FAA Form 8110-3. This authorization has been granted by the NYACO.

Armando Gaetano Structures
Tim Hogan Structures
John Beres Electrical Systems
Table 1 - Preliminary
FAR Part 25 Compliance Checklist
FAA Technical Center B-727 (N40)
Arc Fault Circuit Breaker Installation

<table>
<thead>
<tr>
<th>FAR</th>
<th>Title</th>
<th>Method</th>
<th>Documentation Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>25.301</td>
<td>Loads</td>
<td>Limit and ultimate loads</td>
<td>Mechanical Substantiation Report</td>
</tr>
<tr>
<td>25.303</td>
<td>Factor of Safety</td>
<td>FOS applied to limit loads.</td>
<td>"</td>
</tr>
<tr>
<td>25.305</td>
<td>Strength and Deformation</td>
<td>Components have adequate strength</td>
<td>"</td>
</tr>
<tr>
<td>25.307</td>
<td>Proof of Structure</td>
<td>Strength and deformation required by 25.305 met</td>
<td>"</td>
</tr>
<tr>
<td>25.561</td>
<td>Emergency Landing Conditions</td>
<td>Applied to equipment on the flight deck</td>
<td>"</td>
</tr>
<tr>
<td>25.601</td>
<td>Design and Construction/General</td>
<td>Installation IAW manufacturer and AC 43.13-1B</td>
<td>Mechanical Substantiation Report</td>
</tr>
<tr>
<td>25.603</td>
<td>Materials</td>
<td>2024-T3 Aluminum/MIL-HDBK-5F chart</td>
<td>"</td>
</tr>
<tr>
<td>25.605</td>
<td>Fabrication Methods</td>
<td>Installation IAW manufacturer and AC 43.13-1B</td>
<td>"</td>
</tr>
<tr>
<td>25.607</td>
<td>Fasteners</td>
<td>None subject to rotation</td>
<td>"</td>
</tr>
<tr>
<td>25.609</td>
<td>Protection of Structure</td>
<td>Protected from deterioration, corrosion, etc.</td>
<td>"</td>
</tr>
<tr>
<td>25.611</td>
<td>Accessibility Provisions</td>
<td>Means provided to allow inspections</td>
<td>"</td>
</tr>
<tr>
<td>25.613</td>
<td>Material Strength Properties and Design Values</td>
<td>IAW MIL-HDBK-5F</td>
<td>"</td>
</tr>
<tr>
<td>25.1307</td>
<td>Miscellaneous Equipment</td>
<td>Circuit breakers are installed in series with the load side of existing aircraft breakers.</td>
<td>"</td>
</tr>
<tr>
<td>25.1316</td>
<td>System Lighting Protection</td>
<td>Meet lightning testing per DO-160C, Section 22.0</td>
<td>"</td>
</tr>
<tr>
<td>25.1351</td>
<td>Electrical Systems and Equipment/General</td>
<td>Accessible means to disconnect electrical power by crew</td>
<td>"</td>
</tr>
<tr>
<td>FAR</td>
<td>Title</td>
<td>Method</td>
<td>Documentation Reference</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>25.1353</td>
<td>Electrical Equipment and Installations</td>
<td>Using best practices for electrical equipment and installations.</td>
<td>"</td>
</tr>
<tr>
<td>25.1357</td>
<td>Circuit Protective Devices</td>
<td>Existing thermal type, re-settable, trip-free circuit breakers in series with AFCB breakers under test. AFCB Installation Issue Paper.</td>
<td>"</td>
</tr>
<tr>
<td>25.1363</td>
<td>Electrical System Tests</td>
<td>Components built and tested to meet applicable aircraft environmental conditions.</td>
<td>"</td>
</tr>
<tr>
<td>25.1431</td>
<td>Electronic Equipment</td>
<td>Electronic equipment operation is not affected by this installation.</td>
<td>"</td>
</tr>
<tr>
<td></td>
<td>Part 25 Subpart G – Operating Limitations and Information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.1541</td>
<td>Markings and Placards/General</td>
<td>New equipment/breakers identifiable in manner visible to crew.</td>
<td>Draft Flight Manual Supplement</td>
</tr>
<tr>
<td>25.1585</td>
<td>Operating Procedures</td>
<td>Draft flight manual supplement.</td>
<td>"</td>
</tr>
</tbody>
</table>
N-40 Arc Fault Circuit Breaker Installation

Report Listing

<table>
<thead>
<tr>
<th>Document</th>
<th>Report Number</th>
<th>Contents</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certification Plan</td>
<td>E01-02</td>
<td>Reference: AC 21-40, § 2-2.b</td>
<td></td>
</tr>
<tr>
<td>System Description</td>
<td>E01-03</td>
<td>Basic description of AFCB system as installed in N-40.</td>
<td></td>
</tr>
<tr>
<td>Mechanical Substantiation Report</td>
<td>E01-04</td>
<td>Structural load analysis of installed AFCB components, applicable drawings, and FAR compliance discussion.</td>
<td></td>
</tr>
<tr>
<td>Signal Compatibility and Electrical Substantiation</td>
<td>E01-05</td>
<td>Signal compatibility, wiring diagrams, and FAR compliance discussion</td>
<td></td>
</tr>
<tr>
<td>System Safety Assessment</td>
<td>E01-06</td>
<td>System Safety Analysis as per AC 25.1309-1A</td>
<td></td>
</tr>
<tr>
<td>Environmental Test Plan</td>
<td>E01-07</td>
<td>Testing IAW DO-160 or equivalent</td>
<td></td>
</tr>
<tr>
<td>Updated Compliance Checklist</td>
<td>E01-08</td>
<td>Applicable FAR's and Method of Compliance</td>
<td></td>
</tr>
<tr>
<td>Ground Checkout Procedures</td>
<td>E01-09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight Checkout Procedures</td>
<td>E01-10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flight Test Procedures</td>
<td>E01-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AFCB Troubleshooting Procedures</td>
<td>E01-12</td>
<td>Provides instructions for investigating the source of any AFCB trip prior to reenergizing the circuit.</td>
<td></td>
</tr>
<tr>
<td>Flight Manual Supplement</td>
<td>E01-13</td>
<td>Provides relevant information to flight crew on AFCB operation.</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B—EATON FLIGHT TEST PLAN
Flight Test Plan

For

Eaton Aerospace Controls
400Hz/120V Arc Fault Circuit Breakers (AFCB)

On

FAA Technical Center
Boeing 727-25C Aircraft N40

July 2001

FAA William J. Hughes Technical Center
Engineering and Modification Section, ACT-370
Maintenance, Inspection, and Repair Section, AAR-433

Prepared by: R.A. Pappas

Reviewed by: J. Beres

Approved by: Armando Gaetano
Manager, Engineering & Modifications Section
1. **Introduction**

The Federal Aviation Administration (FAA), William J. Hughes Technical Center R&D Flight Program is performing a minor modification to their Boeing 727-25C aircraft. This temporary modification involves the installation of eight arc fault circuit breaker (AFCB) prototypes manufactured by Eaton Aerospace Controls. The AFCB’s are to be installed for a two-week experimental flight test period in support of AFCB research and development.

The AFCB’s will be installed in an Arc Fault Circuit Interrupter-Junction Box (AFCI-JB) that will enclose all the AFCB’s and required instrumentation. The AFCB’s will not be mounted in the aircraft circuit breaker panels. It is important to note that the AFCB’s will be connected in series with the load side of the existing thermal circuit breakers. In other words, current circuit protection aboard the aircraft will not be compromised in any way by this installation.

The electrical, system, and mechanical integration of this installation will be accomplished at Atlantic City International Airport (ACIAP) using FAA technical and engineering personnel. The engineering personnel have been granted authority to approve “electrical systems” and “structures” data via FAA Form 8110-3, by the New York Aircraft Certification Office (NYACO). The engineering of this installation has been completed and the engineers are currently compiling reports to show compliance with applicable Federal Aviation Regulations (FAR).

This flight test plan describes the purpose of the test, the objectives of the flight tests, and the flight test profiles to be flown during the test period.

2. **Background**

The integration of arc fault detection into circuit breakers represents a revolutionary change in circuit protection; which has changed little in the last thirty to forty years. There is abundant evidence of arc faults in all types of aircraft. Laboratory data clearly demonstrates that the current generated during an arcing fault can be very high, yet quite intermittent. The bimetallic elements in thermal breakers do not react quickly enough, if at all, to this ticking arc fault condition. If left unchecked, the arcing condition can develop into an arc tracking condition, potentially destroying a major portion of, or an entire wire bundle. Arcing can also result in many other serious safety hazards.

In 1999, the FAA and the Navy established a joint R&D project to develop aircraft AFCB’s. The goal of this effort is to develop a circuit breaker that integrates arc fault protection together with existing thermal protection into a form, fit, and functional replacement of existing thermal circuit breakers. In laboratory testing, the AFCB prototypes have been very effective in the detection of arcing faults.

In contrast to thermal breakers, which are passive in nature, AFCB’s actively monitor the circuits on which they are installed. Due to the nature of electrical systems, there are times when a normal condition may ‘look’ similar to an arc fault. When such a condition trips an arc fault circuit breaker, it is defined as a nuisance trip. AFCB designs minimize the occurrence of nuisance tripping and maximize sensitivity to arc fault detection.
To address nuisance tripping, the FAA, Navy, and the AFCB developers, have conducted extensive tests to characterize the normal operation of electrical loads, and perturbations to electrical systems during normal events such as bus transfers, power on/off, transfer of power sources, etc. Laboratory tests today have provided a high level of confidence that nuisance tripping is being successfully controlled.

AFCB flight-testing is necessary to be certain that nuisance tripping has been controlled in the AFCB design. The purpose of the experimental flight test period is to monitor the performance of the AFCBs and provide this data to the NYACO in support of a one only STC. The STC will permit the FAA to install AFCB’s aboard the B727-25C (N40) for the purpose of evaluating the circuit breakers, in-flight, over a six-month period. This will assure that the AFCB’s are evaluated against a wide range of actual electrical conditions.

It is important to note that no arc faults will be created in the aircraft. The purpose of the flight testing is to evaluate nuisance tripping only. Arcing will not intentionally be created aboard the aircraft in flight or on the ground.

3. Flight Test Goals

The following list describes the goals of the experimental flight test program, listed in order of importance.

- Complete at least 50 (or more) flight hours but not less than 25 hours. Data generated during these flights is critical to the AFCB research and development program and for obtaining approval of the N-40 one-only STC.
- Evaluate the operation of the arc fault circuit breakers under standard B727 operational procedures.
- Evaluate the operation of the AFCB instrumentation and Odyssey data recording system for future unmanned data collection.

4. System Description

The AFCB installation will consist of the following:

a. Eight (8) - Eaton Aerospace Corporation prototype arc fault circuit breakers of the following ratings: two 5A, three 7.5A, one 10A, and two 15A (Mounted in AFCI Junction Box).

b. One (1) – AFCI-JB.

c. Two (2) – AFCI-JB Test Unit wire harnesses, P18 and P6.

d. One (1) - 24 channel Nicolet Odyssey data recorder.

e. One (1) – BNC Breakout Box.

f. One (1) – AFCI Junction Box – BNC Breakout Box Interface Harness.

g. Twenty-four (24) – 36-inch BNC connector cables.

h. One (1) – Trigger Alarm
The AFCI-JB will contain the eight AFCB units. The test unit will be mounted in the rear, left side of the cockpit. The test unit will have by-pass switches that will disable the AFCB’s if desired. The test unit will be fabricated using standard best practices and in accordance with AC 43.13-1B and contain any possible AFCB failure.

The electrical connections for the system are shown schematically in FAA Drawing Number 9854415, Arc Fault Circuit Breaker Wiring. The AFCB’s mounted within the AFCI-JB will be electrically in series with the load side of the existing circuit breakers. The AFCI-JB wire harnesses, P-18 and P-6, connect the load side of the each aircraft circuit breaker to the line side of the respective AFCB and from the load side of the each AFCB to the feed wire for the respective load.

The BNC Breakout Box and the Odyssey data recorder will be mounted in the cabin of the aircraft. The AFCI-JB/BNC Breakout Box Interface Harness connects the AFCI-JB to the BNC Breakout Box.

The 24 BNC connectors on the BNC Breakout Box are connected to the Odyssey data recorder with 36” BNC coaxial cables.

Detailed installation instructions are provided the AFCB Ground Test Checkout report.

4. Certification Requirements
There are no FAA Technical Standard Orders for the equipment being installed during this modification. Experimental flight test is being performed to collect data necessary to obtain a one only STC to install the AFCB’s aboard N40 for an extended evaluation period.

5. Flight Test Profile Requirements
N40 will be operated in conformance with Standard B727 Operations. The purpose of the flight test is to maximize the number of flight hours. Duration and distance of flights will be at the discretion of the pilot in command and within the operating restrictions established by the MIDO.

No excessive cycling of the aircraft is necessary.

As established by the MIDO, flight restrictions shall be removed to the maximum extent possible upon completion of flight hour thresholds established by the MIDO.

If possible, the aircraft will fly to Sarasota, Florida to permit Eaton Aerospace Corporation engineers an opportunity to assess the AFCB installation aboard the aircraft. A flight to Atlanta, Georgia will also be conducted, if possible, to permit Atlanta ACO engineers to observe the installation.

6. Limitations
It is proposed that the first 10 flight hours (Phase 1) be conducted within a 50-mile radius from Atlantic City International Airport. Upon satisfactory completion of this 10-hour period, it is requested that the remainder of the flights be conducted without restrictions (Phase 2).

An ACT-370 Safety Officer will be on all Phase 1 flights.

An AAR-430 engineer (or designee) must be aboard the aircraft during all AFCB flight tests to operate the Odyssey data recorder.
No AFCB equipped circuit shall be operated in-flight after an AFCB trip on the circuit, unless the pilot in command orders the operation of the circuit during an emergency. In this case, the flight engineer shall switch the associated by-pass switch on the AFCI-JB to the bypass position. In addition, after an AFCB trip, the Flight Engineer shall pull the associated circuit breaker on the aircraft circuit breaker panel. Troubleshooting shall be performed in accordance with the AFCB Troubleshooting Procedures.

If there are two or more AFCB trips on a single electrical bus, the flight test shall be terminated and the aircraft will return to base immediately.

Limitations established by the MIDO shall be adhered to.

7. Emergency Procedures

In the event of an emergency (related or unrelated to the AFCB testing), the following procedures will be followed if order by the pilot in command.

The flight engineer shall by-pass all the AFCB’s by closing the AFCB by-pass switches on the AFCB-JB located behind the Captains chair.

- The flight engineer will set each AFCB to the open position.
- The Odyssey data recorder will be powered off by the engineer operating the system.

If power must be removed from the AFCB-JB the following steps will be completed:

- The flight engineer will open the eight circuit breakers on the aircraft circuit breaker panels. These breakers will be uniquely identified by a colored button or other tag. The eight circuit breakers and their respective locations are summarized in Table 1 below.
<table>
<thead>
<tr>
<th>AFCB #</th>
<th>CB Identity</th>
<th>Panel/Location</th>
<th>Rating (Amps)</th>
<th>Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left Inboard Landing Lights</td>
<td>P18-4 Lighting</td>
<td>7</td>
<td>115VAC Bus No. 1</td>
</tr>
<tr>
<td>2</td>
<td>Navigation Lights</td>
<td>P18-4 Lighting</td>
<td>5</td>
<td>115VAC Bus No. 2</td>
</tr>
<tr>
<td>3</td>
<td>Window Lights</td>
<td>P18-3 Lighting and Passenger Accommodations</td>
<td>10</td>
<td>115VAC Transfer Bus</td>
</tr>
<tr>
<td>4</td>
<td>Left Ceiling Lights</td>
<td>P18-3 Lighting and Passenger Accommodations</td>
<td>15</td>
<td>115VAC Transfer Bus</td>
</tr>
<tr>
<td>5</td>
<td>DME-2</td>
<td>P18-3 Electronic Load Circuit Breaker</td>
<td>3</td>
<td>115VAC Radio Bus No. 2</td>
</tr>
<tr>
<td>6</td>
<td>Heater-Pitot-Aux</td>
<td>P6-1 Miscellaneous AC, Anti-Ice & Rain</td>
<td>5</td>
<td>115VAC Bus No. 2</td>
</tr>
<tr>
<td>7</td>
<td>First Officers Window 4 & 5</td>
<td>P6-1 Miscellaneous AC, Anti-Ice & Rain</td>
<td>5</td>
<td>115 VAC Bus No. 3</td>
</tr>
<tr>
<td>8</td>
<td>Project Power</td>
<td>Project Power Junction Box</td>
<td>10</td>
<td>115VAC Bus No. 2</td>
</tr>
</tbody>
</table>

Table 1

8. Normal Procedures
 a. Preflight
 - Review flight plan with flight crew and all passengers.
 - Review emergency procedures with flight crew and all passengers.
 - Review all normal procedures with flight crew and all passengers.
 - Flight engineer set all bypass switches on the AFCI-JB to normal.
 - Apply power to the aircraft (Ground power or APU).
 - Turn Odyssey data recorder to ON and wait for system to boot up and initialize. Start recording. Note the date, time, and recording number.
 - Flight engineer close AFCB-1, AFCB-2, AFCB-3, AFCB-4, AFCB-6, and AFCB-7, on the AFCI-JB.
 - If on ground power, start APU. Start Odyssey data recording and instruct flight engineer to transfer power from ground power to APU power. Stop data recording as soon as power transfer is complete. Record the date, time, and filename of the recording in the test logbook. Note that the recording was a ground power to APU transfer.
 - If on APU power, start aircraft engines. Start Odyssey data recording and instruct flight engineer to transfer power from APU to engine generators. Stop data recording as soon as power transfer is complete. Record the date, time, and
filename of the recording in the test logbook. Note that the recording was an APU to engine generator power transfer.

- Start the Odyssey data recording. Data will be recorded at the slow rate, 1kHz. Note the date, time, and filename in the test logbook. Also note the general conditions (weather, etc.) at this time.
- Proceed to flight phase in accordance with standard B727 start-up procedures.

b. Flight

- Monitor Odyssey data recording system. The visual and aural trigger alarm mounted adjacent to the Odyssey data recorder will initiate when an AFCB has tripped and the Odyssey data recorder will automatically begin recording at the high sampling rate, 100kHz.
- If the trigger-alarm sounds, depress the red reset button mounted on the trigger alarm enclosure to silence the trigger and extinguish the trigger alarm lights.
- Stop the data recording and start a new data recording file.
- Note the date, time, and the number of the AFCB(s) that caused the trigger. Also note the flight conditions and other information pertinent to the trigger event in the test logbook. Also note the new file name in the logbook with the start time of the recording.

c. Postflight

- Continue to follow the flight procedures.
- Prior to engine shutdown, start APU or apply ground power. Switch aircraft power to APU or ground power. Shut engines in accordance with standard B727 operational procedures.
- Shutdown the Odyssey data recorder.
- Shutdown aircraft in accordance with standard B727 operational procedures.

End of flight test procedures.
Ground Test Checkout

For

Eaton Aerospace Controls
400Hz/120V Arc Fault Circuit Breakers (AFCB)

On

FAA Technical Center
Boeing 727-25C Aircraft N40

July 2001

FAA William J. Hughes Technical Center
Engineering and Modification Section, ACT-370
Maintenance, Inspection, and Repair Section, AAR-433

Prepared by: R.A. Pappas, AAR-433

Reviewed by: J. Beres, ACT-370

Approved by: Armando Gaetano
Manager, Engineering & Modifications Section, ACT-370
1. Introduction
The Federal Aviation Administration (FAA), William J. Hughes Technical Center (WJHTC) R&D Flight Program is performing a minor modification to their Boeing 727-25C aircraft. This temporary modification involves the installation of eight arc fault circuit breaker (AFCB) prototypes manufactured by Eaton Aerospace Controls. The AFCB’s are to be installed for a six-month evaluation period in support of AFCB research and development. The AFCB’s will be installed in a pre-furnished Arc Fault Circuit Interrupter-Junction Box (AFCI-JB) that will enclose all the AFCB’s and required instrumentation. The AFCB’s will not be mounted in the aircraft circuit breaker panels. It is important to note that the AFCB’s will be connected in series with the load side of the existing thermal circuit breakers. In other words, current circuit protection aboard the aircraft will not be compromised in any way by this installation.

The electrical, system, and mechanical integration of this installation will be accomplished at Atlantic City International Airport (ACIAP) using FAA technical and engineering personnel. The engineering personnel have been granted authority to approve “electrical systems” and “structures” data via FAA Form 8110-3, by the New York Aircraft Certification Office (NYACO). The engineering of this installation has been completed and the engineers are currently compiling reports to show compliance with applicable Federal Aviation Regulations (FAR).

This report describes the ground checkout procedures to be conducted prior to commencing flight test. All steps in this procedure shall be successfully completed.

2. Background
The integration of arc fault detection into circuit breakers represents a revolutionary change in circuit protection; which has changed little in the last thirty to forty years. There is abundant evidence of arc faults in all types of aircraft. Laboratory data clearly demonstrates that the current generated during an arcing fault can be very high, yet quite intermittent. The bimetallic elements in thermal breakers do not react quickly enough, if at all, to this ticking arc fault condition. If left unchecked, the arcing condition can develop into an arc tracking condition, potentially destroying a major portion of, or an entire wire bundle. Arcing can also result in many other serious safety hazards.

In 1999, the FAA and the Navy established a joint R&D project to develop aircraft AFCB’s. The goal of this effort is to develop a circuit breaker that integrates arc fault protection together with existing thermal protection into a form, fit, and functional replacement of existing thermal circuit breakers. In laboratory testing, the AFCB prototypes have been very effective in the detection of arcing faults.

In contrast to thermal breakers, which are passive in nature, AFCB’s actively monitor the circuits on which they are installed. Due to the nature of electrical systems, there are times when a normal condition may ‘look’ similar to an arc fault. When such a condition trips an arc fault circuit breaker, it is defined as a nuisance trip. AFCB designs minimize the occurrence of nuisance tripping and maximize sensitivity to arc fault detection.
To address nuisance tripping, the FAA, Navy, and the AFCB developers, have conducted extensive tests to characterize the normal operation of electrical loads, and perturbations to electrical systems during normal events such as bus transfers, power on/off, transfer of power sources, etc. Laboratory tests today have provided a high level of confidence that nuisance tripping is being successfully controlled.

The certification request will permit the FAA to temporarily install AFCB’s aboard the B727-25C (N40) with the purpose of evaluating the circuit breakers, in-flight, over a six-month period. This will assure that the AFCB’s are evaluated against a wide range of actual electrical conditions.

3. **System Description**

The AFCB installation will consist of the following:

a. Eight (8) - Eaton Aerospace Corporation prototype arc fault circuit breakers of the following ratings: one 2.5 A, three 5A, one 7.5A, one 10A, and two 15A (Mounted in AFCI Junction Box).

b. One (1) – AFCI-JB.

c. Two (2) – AFCI-JB Test Unit wire harnesses, P18 and P6.

d. One (1) - 24 channel, Nicolet Odyssey data recorder.

e. One (1) – BNC Breakout Box.

f. One (1) – AFCI Junction Box – BNC Breakout Box Interface Harness.

☐ Twenty-four (24) – 36-inch BNC connector cables.

g. One (1) – Trigger Alarm

The AFCI Junction Box (AFCI-JB) will contain the eight AFCB units. The test unit will be mounted in the rear, left side of the cockpit. The test unit will have by-pass switches that will disable the AFCB’s if desired. The test unit will be fabricated using standard best practices and in accordance with AC 43.13-1B and contain any possible AFCB failure.

The electrical connections for the system are shown schematically in FAA Drawing Number 9854415, *Arc Fault Circuit Breaker Wiring*. The AFCB’s mounted within the AFCI-JB will be electrically in series with the load side of the existing circuit breakers. The AFCI-JB wire harnesses, P-18 and P-6, connect the load side of the each aircraft circuit breaker to the line side of the respective AFCB and from the load side of the each AFCB to the feed wire for the respective load.

The BNC Breakout Box and the Odyssey data recorder will be mounted in the cabin of the aircraft. The AFCI-JB/BNC Breakout Box Interface Harness connects the AFCI-JB to the BNC Breakout Box.

The 24 BNC connectors on the BNC Breakout Box are connected to the Odyssey data recorder with 36” BNC coaxial cables.

Detailed installation instructions are provided in Section 4.
4. Certification Requirements

There are no FAA Technical Standard Orders for the equipment being installed during this modification. Experimental flight test is being performed to collect data necessary to obtain a one only STC to install the AFCB’s aboard N40 for an extended evaluation period.

5. Installation of AFCB Test System On N40

The electrical installation shall be completed in accordance with drawing number 9854415 under the guidance of the WJHTC Electrical Systems Designated Engineering Representative (DER), Code ACT-370. The mechanical installation shall be completed under the guidance of the WJHTC Mechanical Systems DER, Code ACT-370.

The following list contains general instructions for completing the installation. The installation shall be completed in accordance with all existing safety requirements and the necessary approvals shall be obtained in advance of starting the installation.

- The two AFCI-JB Interface wire harnesses, P-18 and P-6, shall be connected to the thermal circuit breakers in accordance with FAA Drawing number 9854415.

 Harness P-18 shall be connected to the:
 - Left Inboard Landing Lights (7.5A)
 - Navigation Lights (5A)
 - Window Lights (10A)
 - Left Ceiling Lights (15A)

 Harness P-6 shall be connected to the:
 - DME-2 (3A)
 - Auxiliary Pitot Heat (5A)
 - First Officers Window (5A)
 - AC Project Power (15A)

- Mount the AFCI-JB in the flight deck as per the Mechanical Systems DER instructions.
- Mount the Odyssey and the BNC Breakout Box in the cabin rack per the Mechanical Systems DER instructions.
- Insure that all mounting is secure.
- Route the AFCI-JB harnesses and the AFCI-JB/Breakout Box harness. Do not mate the harnesses to the AFCI-JB or the breakout box until electrical tests have been completed. Do not secure the harness until electrical tests have been completed.
6. Ground Checkout Procedures

Part A: Conduct AFCB Electrical Tests

- Confirm that the P-18 and P-6 harnesses from the aircraft circuit breaker panels to P1 and P2 on the AFCI-JB are disconnected from the AFCI-JB.

- Prior to connecting the harnesses to the AFCI-JB, perform the following continuity and isolation checks performed in accordance with Table 1.

<table>
<thead>
<tr>
<th>AFCI-JB Connector Test Points</th>
<th>AFCB-x Position (Open/Closed) (x = 1,2,3,4,5,6,7,8)</th>
<th>AFCB By-Pass Switch S-x (Open/Closed) (x = 1,2,3,4,5,6,7,8)</th>
<th>Observed Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1, 1 and 2</td>
<td>AFCB-1, Closed</td>
<td>S-1, Open</td>
<td>Short</td>
</tr>
<tr>
<td>P1, 4 and 5</td>
<td>AFCB-2, Closed</td>
<td>S-2, Open</td>
<td>Short</td>
</tr>
<tr>
<td>P1, 7 and 8</td>
<td>AFCB-3, Closed</td>
<td>S-3, Open</td>
<td>Short</td>
</tr>
<tr>
<td>P1, 10 and 11</td>
<td>AFCB-4, Closed</td>
<td>S-4, Open</td>
<td>Short</td>
</tr>
<tr>
<td>P2, 1 and 2</td>
<td>AFCB-5, Closed</td>
<td>S-5, Open</td>
<td>Short</td>
</tr>
<tr>
<td>P2, 4 and 5</td>
<td>AFCB-6, Closed</td>
<td>S-6, Open</td>
<td>Short</td>
</tr>
<tr>
<td>P2, 7 and 8</td>
<td>AFCB-7, Closed</td>
<td>S-7, Open</td>
<td>Short</td>
</tr>
<tr>
<td>P2, 10 and 11</td>
<td>AFCB-8, Closed</td>
<td>S-8, Open</td>
<td>Short</td>
</tr>
<tr>
<td>P1, 1 and 2</td>
<td>AFCB-1, Open</td>
<td>S-1, Open</td>
<td>Open</td>
</tr>
<tr>
<td>P1, 4 and 5</td>
<td>AFCB-2, Open</td>
<td>S-2, Open</td>
<td>Open</td>
</tr>
<tr>
<td>P1, 7 and 8</td>
<td>AFCB-3, Open</td>
<td>S-3, Open</td>
<td>Open</td>
</tr>
<tr>
<td>P1, 10 and 11</td>
<td>AFCB-4, Open</td>
<td>S-4, Open</td>
<td>Open</td>
</tr>
<tr>
<td>P2, 1 and 2</td>
<td>AFCB-5, Open</td>
<td>S-5, Open</td>
<td>Open</td>
</tr>
<tr>
<td>P2, 4 and 5</td>
<td>AFCB-6, Open</td>
<td>S-6, Open</td>
<td>Open</td>
</tr>
<tr>
<td>P2, 7 and 8</td>
<td>AFCB-7, Open</td>
<td>S-7, Open</td>
<td>Open</td>
</tr>
<tr>
<td>P2, 10 and 11</td>
<td>AFCB-8, Open</td>
<td>S-8, Open</td>
<td>Open</td>
</tr>
<tr>
<td>P1, 1 and 2</td>
<td>AFCB-1, Closed</td>
<td>S-1, Closed</td>
<td>Short</td>
</tr>
<tr>
<td>P1, 4 and 5</td>
<td>AFCB-2, Closed</td>
<td>S-2, Closed</td>
<td>Short</td>
</tr>
<tr>
<td>P1, 7 and 8</td>
<td>AFCB-3, Closed</td>
<td>S-3, Closed</td>
<td>Short</td>
</tr>
<tr>
<td>P1, 10 and 11</td>
<td>AFCB-4, Closed</td>
<td>S-4, Closed</td>
<td>Short</td>
</tr>
<tr>
<td>P2, 1 and 2</td>
<td>AFCB-5, Closed</td>
<td>S-5, Closed</td>
<td>Short</td>
</tr>
<tr>
<td>P2, 4 and 5</td>
<td>AFCB-6, Closed</td>
<td>S-6, Closed</td>
<td>Short</td>
</tr>
<tr>
<td>P2, 7 and 8</td>
<td>AFCB-7, Closed</td>
<td>S-7, Closed</td>
<td>Short</td>
</tr>
<tr>
<td>P2, 10 and 11</td>
<td>AFCB-8, Closed</td>
<td>S-8, Closed</td>
<td>Short</td>
</tr>
<tr>
<td>AFCB-1, Red & Black Banana Plug Sockets</td>
<td>AFCB-1, Closed</td>
<td>S-1, Open</td>
<td>Short</td>
</tr>
<tr>
<td>AFCB-2, Red & Black Banana Plug Sockets</td>
<td>AFCB-2, Closed</td>
<td>S-2, Open</td>
<td>Short</td>
</tr>
<tr>
<td>AFCB-3, Red & Black Banana Plug Sockets</td>
<td>AFCB-3, Closed</td>
<td>S-3, Open</td>
<td>Short</td>
</tr>
<tr>
<td>AFCB-4, Red & Black Banana Plug Sockets</td>
<td>AFCB-4, Closed</td>
<td>S-4, Open</td>
<td>Short</td>
</tr>
<tr>
<td>AFCB-1, Red & Black Banana Plug Sockets</td>
<td>AFCB-5, Closed</td>
<td>S-5, Open</td>
<td>Short</td>
</tr>
<tr>
<td>AFCB-6, Red & Black Banana Plug Sockets</td>
<td>AFCB-6, Closed</td>
<td>S-6, Open</td>
<td>Short</td>
</tr>
<tr>
<td>AFCB-7, Red & Black Banana Plug Sockets</td>
<td>AFCB-7, Closed</td>
<td>S-7, Open</td>
<td>Short</td>
</tr>
<tr>
<td>AFCB-8, Red & Black Banana Plug Sockets</td>
<td>AFCB-8, Closed</td>
<td>S-8, Open</td>
<td>Short</td>
</tr>
<tr>
<td>AFCB-1, Red & Black Banana Plug Sockets</td>
<td>AFCB-1, Open</td>
<td>S-1, Open</td>
<td>Open</td>
</tr>
<tr>
<td>AFCB-2, Red & Black Banana Plug Sockets</td>
<td>AFCB-2, Open</td>
<td>S-2, Open</td>
<td>Open</td>
</tr>
<tr>
<td>AFCB-3, Red & Black Banana Plug Sockets</td>
<td>AFCB-3, Open</td>
<td>S-3, Open</td>
<td>Open</td>
</tr>
<tr>
<td>AFCB-4, Red & Black Banana Plug Sockets</td>
<td>AFCB-4, Open</td>
<td>S-4, Open</td>
<td>Open</td>
</tr>
<tr>
<td>AFCB-5, Red & Black Banana Plug Sockets</td>
<td>AFCB-5, Open</td>
<td>S-5, Open</td>
<td>Open</td>
</tr>
<tr>
<td>AFCB-6, Red & Black Banana Plug Sockets</td>
<td>AFCB-6, Open</td>
<td>S-6, Open</td>
<td>Open</td>
</tr>
<tr>
<td>AFCB-7, Red & Black Banana Plug Sockets</td>
<td>AFCB-7, Open</td>
<td>S-7, Open</td>
<td>Open</td>
</tr>
<tr>
<td>AFCB-8, Red & Black Banana Plug Sockets</td>
<td>AFCB-8, Open</td>
<td>S-8, Open</td>
<td>Open</td>
</tr>
</tbody>
</table>

TABLE 1 – AFCI-JB CHECKOUT

- Open the eight AFCB’s in the AFCI-JB.
- Open S-1 through S-8 on the AFCI-JB.
- Open the eight aircraft circuit breakers.
- With aircraft power off, connect harness P-18 to AFCI-JB connector P-1 and harness P-6 to AFCI-JB connector P2.
- Apply power (ground power or APU) to the aircraft. Close the eight aircraft circuit breakers and verify that the associated load is not energized.
- Close AFCI-JB S-1 and verify via visual means that the LEFT INBOARD LANDING LIGHTS are operating. Open S-1.
- Close AFCI-JB S-2 and verify via visual means that the OSCILLATING NAVIGATION LIGHTS are operating. Open S-2.
- Close AFCI-JB S-3 and verify via visual means that the WINDOW LIGHTS – LEFT SIDE are operating. Open S-3.
☐ Close AFCI-JB S-4 and verify via visual means that the PASSENGER CEILING LIGHTS – LEFT SIDE are operating. Open S-4.

☐ Close AFCI-JB S-5 and verify via visual means that the DME is operating. Open S-5.

☐ Close AFCI-JB S-6 and verify via the Pitot Ammeter that the HEATER-PITOT-AUX is operating. Open S-6.

☐ Close AFCI-JB S-8 and verify that the PROJECT POWER is operating. Open S-8.

☐ Close AFCB-1 and verify via visual means that the LEFT INBOARD LANDING LIGHTS are operating. Open AFCB-1.

☐ Close AFCB-2 and verify via visual means that the OSCILLATING NAVIGATION LIGHTS are operating. Open AFCB-2.

☐ Close AFCB-3 and verify via visual means that the WINDOW LIGHTS – LEFT SIDE are operating. Open AFCB-3.

☐ Close AFCB-4 and verify via visual means that the PASSENGER CEILING LIGHTS – LEFT SIDE are operating. Open AFCB-4.

☐ Close AFCB-5 and verify via visual means that the DME is operating. Open AFCB-5.

☐ Close AFCB-6 and verify via the Pitot Ammeter that the HEATER-PITOT-AUX is operating. Open AFCB-6.

☐ Close AFCB-8 and verify that PROJECT POWER is operating. Open AFCB-8.

☐ Open the eight aircraft circuit breakers.

☐ Connect the P-3 connector on the AFCI-JB to P-4 on the BNC Breakout Box with the AFCI-JB/BNC Breakout Box Interface Harness.

☐ Using the 36” BNC connector cables, connect the BNC Breakout Box to the Odyssey data recorder in accordance with Table 2. For the eight channels noted in Table 2, install a 50 Ohm in-line terminator between the BNC cable and the Odyssey data recorder.

<table>
<thead>
<tr>
<th>From BNC Breakout Box Connector BNC-x (x = 1,2,3,……22,23,24)</th>
<th>To Odyssey Data Recorder Channel Number x (x = 1,2,3,……22,23,24)</th>
<th>50-Ohm In-line Terminator Required? (Y/N)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNC-1</td>
<td>1</td>
<td>N</td>
<td>AFCB-1 Line Volts</td>
</tr>
<tr>
<td>BNC-2</td>
<td>2</td>
<td>N</td>
<td>AFCB-1 Load Volts</td>
</tr>
<tr>
<td>BNC-3</td>
<td>3</td>
<td>Y</td>
<td>AFCB-1 Current</td>
</tr>
<tr>
<td>BNC-4</td>
<td>4</td>
<td>N</td>
<td>AFCB-2 Line Volts</td>
</tr>
<tr>
<td>BNC-5</td>
<td>5</td>
<td>N</td>
<td>AFCB-2 Load Volts</td>
</tr>
<tr>
<td>BNC-6</td>
<td>6</td>
<td>Y</td>
<td>AFCB-2 Current</td>
</tr>
<tr>
<td>BNC-7</td>
<td>7</td>
<td>N</td>
<td>AFCB-3 Line Volts</td>
</tr>
<tr>
<td>BNC-8</td>
<td>8</td>
<td>N</td>
<td>AFCB-3 Load Volts</td>
</tr>
<tr>
<td>BNC-9</td>
<td>9</td>
<td>Y</td>
<td>AFCB-3 Current</td>
</tr>
<tr>
<td>BNC-10</td>
<td>10</td>
<td>N</td>
<td>AFCB–4 Line Volts</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>BNC-11</td>
<td>11</td>
<td>N</td>
<td>AFCB–4 Load Volts</td>
</tr>
<tr>
<td>BNC-12</td>
<td>12</td>
<td>Y</td>
<td>AFCB–4 Current</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>BNC-13</td>
<td>13</td>
<td>N</td>
<td>AFCB–5 Line Volts</td>
</tr>
<tr>
<td>BNC-14</td>
<td>14</td>
<td>N</td>
<td>AFCB–5 Load Volts</td>
</tr>
<tr>
<td>BNC-15</td>
<td>15</td>
<td>Y</td>
<td>AFCB–5 Current</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>BNC-16</td>
<td>16</td>
<td>N</td>
<td>AFCB–6 Line Volts</td>
</tr>
<tr>
<td>BNC-17</td>
<td>17</td>
<td>N</td>
<td>AFCB–6 Load Volts</td>
</tr>
<tr>
<td>BNC-18</td>
<td>18</td>
<td>Y</td>
<td>AFCB–6 Current</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>BNC-19</td>
<td>19</td>
<td>N</td>
<td>AFCB–7 Line Volts</td>
</tr>
<tr>
<td>BNC-20</td>
<td>20</td>
<td>N</td>
<td>AFCB–7 Load Volts</td>
</tr>
<tr>
<td>BNC-21</td>
<td>21</td>
<td>Y</td>
<td>AFCB–7 Current</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>BNC-22</td>
<td>22</td>
<td>N</td>
<td>AFCB–8 Line Volts</td>
</tr>
<tr>
<td>BNC-23</td>
<td>23</td>
<td>N</td>
<td>AFCB–8 Load Volts</td>
</tr>
<tr>
<td>BNC-24</td>
<td>24</td>
<td>Y</td>
<td>AFCB–8 Current</td>
</tr>
</tbody>
</table>

Table 2

- Turn on the Odyssey data recorder. Odyssey data recorder takes several minutes to complete the boot process.
- Close the eight aircraft circuit breakers. Verify that the voltage and current inputs to the data recorder are reading zero.
- Close AFCB-1 and verify via visual means that the LEFT INBOARD LANDING LIGHTS are operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 1, 2, and 3.
- Close AFCB-2 and verify via visual means that the OSCILLATING NAVIGATION LIGHTS are operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 4, 5, and 6.
- Close AFCB-3 and verify via visual means that the WINDOW LIGHTS – LEFT SIDE are operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 7, 8, and 9.
- Close AFCB-4 and verify via visual means that the PASSENGER CEILING LIGHTS – LEFT SIDE are operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 10, 11, and 12.
- Close AFCB-5 and verify via visual means that the DME is operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 13, 14, and 15.
- Close AFCB-6 and verify via the Pitot Ammeter that the HEATER-PITOT-AUX is operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 16, 17, and 18.
- Close AFCB-7. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 19, 20, and 21.
- Close AFCB-8 and verify that PROJECT POWER is operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 22, 23 and 24.
Open and close the Left Inboard Landing Lights aircraft circuit breaker five times. Verify that AFCB-1 did not nuisance trip during the five open-close cycles.

Open and close the Navigation Lights aircraft circuit breaker five times. Verify that AFCB-2 did not nuisance trip during the five open-close cycles.

Open and close the Window Lights aircraft circuit breaker five times. Verify that AFCB-3 did not nuisance trip during the five open-close cycles.

Open and close the Left Ceiling Lights aircraft circuit breaker five times. Verify that AFCB-4 did not nuisance trip during the five open-close cycles.

Open and close the DME-2 aircraft circuit breaker five times. Verify that AFCB-5 did not nuisance trip during the five open-close cycles.

Open and close the Auxiliary Pitot Heat aircraft circuit breaker five times. Verify that AFCB-6 did not nuisance trip during the five open-close cycles.

Open and close the First Officers Window aircraft circuit breaker five times. Verify that AFCB-7 did not nuisance trip during the five open-close cycles.

Open and close the AC Project Power aircraft circuit breaker five times. Verify that AFCB-8 did not nuisance trip during the five open-close cycles.

With the eight aircraft circuit breakers and the eight AFCB’s closed switch from ground power to APU power. Verify that no nuisance trips occurred. Switch from APU power to engine power. Verify that no nuisance trips occurred. Reverse this process and verify that no nuisance trips occurred after each step. Repeat this cycle four additional times.

With aircraft electrical power on (ground, APU, or engine) and the aircraft circuit breakers closed, begin recording on the Odyssey by pressing the record button. Open AFCB-1. The trigger alarm shall activate. Close AFCB-1 and reset the trigger alarm. Repeat this process for AFCB-2 through AFCB-8.

With aircraft electrical power on (ground, APU, or engine) and the aircraft circuit breakers and AFCB’s closed, test aircraft systems in accordance with the B727 Standard Start-up checklist. An Odyssey data recording shall be made as each load is tested. For voice communication, conduct transmission checks on each radio. No AFCB’s shall nuisance trip during these tests. Confirm that the AFCB’s and instrumentation do not interfere with the operation of system.
Part B: Conduct Time Domain Reflectometry Baseline Tests

The eight AFCB test circuits will be characterized using a Time Domain Reflectometry (TDR) technique. The purpose of this test is to baseline the existing condition of each circuit to be used as a reference benchmark. If an AFCB should trip during flight test, a new TDR measurement of the effected circuit will be conducted and compared to the original benchmark. This will assist in determining the presence and location of the fault.

The TDR testing will be conducted by CM Technologies under the supervision of John Beres.

TDR Tools and Equipment:

The tools and equipment listed below shall be supplied by CM Technologies.

- Electrical Characterization and Diagnostics (ECADTM) System 1100. The ECADTM system injects a pulse of 1V amplitude, and 400\,µsec pulse width. In the worst case, the maximum energy of the pulse is 8\,µJ. The pulse applied in the Excited Dielectric Test (EDT), described below, is even lower. The pulse amplitude is only 200 mV and the pulse width is narrower than the 400\,µsec pulse used in the standard TDR test.
- Agilent 86100A Oscilloscope Mainframe with 54754A Time Domain Reflectometer Plug-in Module.
- Tabor 8020 Function Generator.
- Coupling network, test lead cables, and clips.

TDR PRECAUTIONS

The ECADTM System 1100 is designed to test de-energized wires. Computer logic first checks the circuit for AC and DC voltage and will not permit an automatic test if a significant voltage level is found (greater than 5 VDC or VAC). Attempting to test energized wiring may damage the ECAD instrumentation and/or represent a safety hazard to test personnel.

TDR TEST SUPERVISION

- The WJHTC Electrical Systems DER, Code ACT-370 is responsible for managing the arc fault circuit breaker installation and testing aboard N40. The CM Technologies field engineer shall discuss the test plan with the Electrical Systems DER to ensure compliance with all applicable FAA quality and/or testing procedures.
- The WJHTC Electrical Systems DER, Code ACT-370 (or designee) shall be responsible for opening any panels to gain access to breakers, opening breakers to de-energize circuits, and restoring the circuits to an operational (pre-test) condition.
TDR PROCEDURE

ECADTM System 1100 Equipment Setup:

- Locate the ECADTM System 1100 near the circuits to be tested. Ideally, the equipment will be located within 10 to 25 feet from the test location.
- Provide the equipment with a source of 120 VAC, 60 Hz power.
- Connect power, signal, and test leads to the equipment as required.
- Turn on the ECADTM System 1100 and start the data acquisition software.
- Load the AFCB database files.
- Execute the system self-test. The self-test checks the proper operation of each instrument card and measures the electrical properties associated with the test lead.

ECADTM Testing:

- Select the device/circuit to be tested from the ECAD AFCB database.
- Verify the circuit to be tested matches the circuit descriptive data (CDD) displayed in the ECADTM software. Also, verify the circuit to be tested is de-energized.
- Connect the ECADTM test clips to the circuit as indicated in the HIGH TEST PT and LOW TEST PT fields of the CDD screen.
- Using a digital multi-meter, measure resistance from the conductor to aircraft ground. If resistance is less than 500k\(\Omega\) stop the test and find troubleshoot the circuit wiring. If greater than 500k\(\Omega\), proceed to next step.
- The Insulation Resistance (IR) TEST VOLTS field of the CDD screen indicates the MAXIMUM IR test voltage that is allowed. The maximum applied voltage will be 50VDC. Testing at voltages greater than this value could damage circuit components. A value of zero (0) volts in this field indicates that an IR test is not to be performed for this configuration.
- Initiate a TEST of the selected configuration.
- Review the measurement data as required.
- Repeat ECAD Testing steps until all of the eight circuits have been characterized.

Excited Dielectric Test (EDT) Equipment Setup:

- Locate the EDT test equipment near the circuits to be tested. Ideally, the equipment will be located within 10 to 25 feet from the test location.
- Provide the equipment with a source of 120 VAC, 60 Hz power.
- Connect power, signal, and test leads to the equipment as required.
- Turn on the Agilent 86100A.
EDT Testing:

- Connect the alligator test clips to the same test locations that were used during the ECAD testing.
- Acquire three (3) TDR signatures using three (3) forcing function frequencies. The three frequencies will be determined from the insulation materials used in the circuit under test.
- Waveforms will be named and saved for storage in the Agilent 86100A.
- Review the TDR waveform as required.
- Repeat EDT Testing steps until all of the test configurations have been completed.

Circuit Restoration:

- Disconnect all test clips.
- Restore the circuit to normal as directed by the Electrical Systems DER.
- Perform functional test on the restored circuit, if needed.

Successful completion of these steps will confirm that the installation is functioning properly.

End of Ground Checkout Procedure.
Eaton Flight Test Hours

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>In Service Time</th>
<th>Block Time</th>
<th>Cumulative In Service</th>
<th>Cumulative Block</th>
<th>Circuit Breaker Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/10/01</td>
<td>KACY</td>
<td>KACY</td>
<td>0.8</td>
<td>1.2</td>
<td>0.8</td>
<td>1.2</td>
<td>9.6</td>
</tr>
<tr>
<td>2</td>
<td>9/17/01</td>
<td>KACY</td>
<td>KACY</td>
<td>1.9</td>
<td>2.2</td>
<td>2.7</td>
<td>3.4</td>
<td>17.6</td>
</tr>
<tr>
<td>3</td>
<td>9/17/01</td>
<td>KACY</td>
<td>KACY</td>
<td>1.6</td>
<td>1.8</td>
<td>4.3</td>
<td>5.2</td>
<td>14.4</td>
</tr>
<tr>
<td>4</td>
<td>9/18/01</td>
<td>KACY</td>
<td>KACY</td>
<td>1.7</td>
<td>2.0</td>
<td>6.0</td>
<td>7.2</td>
<td>16.0</td>
</tr>
<tr>
<td>5</td>
<td>9/18/01</td>
<td>KACY</td>
<td>KACY</td>
<td>1.7</td>
<td>2.0</td>
<td>7.7</td>
<td>9.2</td>
<td>16.0</td>
</tr>
<tr>
<td>6</td>
<td>9/19/01</td>
<td>KACY</td>
<td>KACY</td>
<td>2.4</td>
<td>2.7</td>
<td>10.1</td>
<td>11.9</td>
<td>21.6</td>
</tr>
<tr>
<td>7</td>
<td>9/26/01</td>
<td>KACY</td>
<td>KACY</td>
<td>1.7</td>
<td>1.9</td>
<td>11.8</td>
<td>13.8</td>
<td>13.3</td>
</tr>
<tr>
<td>8</td>
<td>9/27/01</td>
<td>KACY</td>
<td>KACY</td>
<td>1.7</td>
<td>2.0</td>
<td>13.5</td>
<td>15.8</td>
<td>14.0</td>
</tr>
<tr>
<td>9</td>
<td>9/27/01</td>
<td>KACY</td>
<td>KACY</td>
<td>1.2</td>
<td>1.5</td>
<td>14.7</td>
<td>17.3</td>
<td>10.5</td>
</tr>
<tr>
<td>10</td>
<td>10/1/01</td>
<td>KACY</td>
<td>KPBI</td>
<td>2.3</td>
<td>2.6</td>
<td>17.0</td>
<td>19.9</td>
<td>18.2</td>
</tr>
<tr>
<td>11</td>
<td>10/1/01</td>
<td>KPBI</td>
<td>KACY</td>
<td>2.4</td>
<td>2.4</td>
<td>19.4</td>
<td>22.3</td>
<td>16.8</td>
</tr>
<tr>
<td>12</td>
<td>10/2/01</td>
<td>KACY</td>
<td>KATL</td>
<td>1.3</td>
<td>1.9</td>
<td>20.7</td>
<td>24.2</td>
<td>13.3</td>
</tr>
<tr>
<td>13</td>
<td>10/2/01</td>
<td>KATL</td>
<td>KACY</td>
<td>1.6</td>
<td>2.0</td>
<td>22.3</td>
<td>26.2</td>
<td>14.0</td>
</tr>
<tr>
<td>14</td>
<td>10/3/01</td>
<td>KACY</td>
<td>KSRQ</td>
<td>2.1</td>
<td>2.3</td>
<td>24.4</td>
<td>28.5</td>
<td>16.1</td>
</tr>
<tr>
<td>15</td>
<td>10/3/01</td>
<td>KSRQ</td>
<td>KACY</td>
<td>2.0</td>
<td>2.4</td>
<td>26.4</td>
<td>30.9</td>
<td>16.8</td>
</tr>
</tbody>
</table>
FAA Aircraft Request and Use Record

1. Source of Aircraft
- FAA
- Rental
- Out of Agency

2. Type Aircraft Desired
- Crew Data Only
- FAR 91
- FAR 121
- Public

3. Date Required
- 9/10/01

4. Justification
- Explain any Agency/Rental Aircraft is being used. Show proposed itinerary, name/number of passengers and crew, estimated flight hours, and rental cost.

DATA COLLECTION AND SYSTEM

EVALUATION IN ACCORDANCE WITH

APPROVED FLIGHT TEST PLAN AND

APPROVED WEEKLY FLIGHT SCHEDULE

<table>
<thead>
<tr>
<th>Approval Required Before Flight</th>
<th>Signature</th>
<th>Printed Name</th>
<th>Rig Symbol</th>
<th>Date</th>
</tr>
</thead>
</table>

Aircraft Request

<table>
<thead>
<tr>
<th>7. Type Aircraft Used</th>
<th>8. ADR or Cost of Rental Category</th>
<th>9. Registration (if number)</th>
<th>10. Activity</th>
<th>11. User Organization</th>
<th>12. Reimbursement Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td></td>
<td>14-01</td>
<td>T</td>
<td></td>
<td>T-17084.8</td>
</tr>
</tbody>
</table>

Purpose of Flight (AIRS code)
- 01. Evaluation
- 02. Currency
- 03. Transportation
- 04. Check Flight
- 08. Reimbursable
- 09. P&D
- 07. Formal Training
- 06. Proficiency

Itinerary

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Block Out</th>
<th>Time in Service</th>
<th>Block in</th>
<th>Time in Dec.</th>
<th>Block to Block</th>
<th>Full Name of Passenger(s)</th>
<th>RTG Symbol or Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/18</td>
<td>9/21</td>
<td>14:45</td>
<td>11:15</td>
<td>16:30</td>
<td>10:30</td>
<td>2:12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crew Data

<table>
<thead>
<tr>
<th>Flight Time (Enter Flight Time in Hours and VTX)</th>
<th>2.12</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. Crew Identification</th>
<th>17a. Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td>Total Crew, R.</td>
</tr>
<tr>
<td></td>
<td>T. Flight, E.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17a. Method of Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract or SPA rental</td>
</tr>
<tr>
<td>Cost/hr</td>
</tr>
<tr>
<td>Cost</td>
</tr>
<tr>
<td>Cost</td>
</tr>
<tr>
<td>Total Cost</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>How Purchased</td>
</tr>
</tbody>
</table>

Aircraft Rental From
- Name, Address, and Phone

<table>
<thead>
<tr>
<th>19. OFFICIAL USE ONLY</th>
<th>Report By</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-4</td>
<td></td>
</tr>
</tbody>
</table>
FAA Aircraft Request and Use Record

Data Collection and System Evaluation in Accordance with Approved Flight Test Plan and Approved Weekly Flight Schedule

Aircraft Request

<table>
<thead>
<tr>
<th>Approval Required Before Flight</th>
<th>Signature</th>
<th>Printed Name</th>
<th>Rig Symbol</th>
<th>Date</th>
</tr>
</thead>
</table>

5. Requested By: [Signature]

6. Approved By: [Signature]

7. Type Aircraft Used

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C2</td>
<td>N7402C</td>
<td>T</td>
<td>RDFP</td>
<td>E</td>
</tr>
</tbody>
</table>

13. Purpose of Flight

<table>
<thead>
<tr>
<th>Flight Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C2</td>
<td>Evaluation</td>
</tr>
<tr>
<td>C2</td>
<td>Currency</td>
</tr>
<tr>
<td>C2</td>
<td>Logistics</td>
</tr>
<tr>
<td>C2</td>
<td>Test & Ferry</td>
</tr>
<tr>
<td>C2</td>
<td>Military</td>
</tr>
<tr>
<td>C2</td>
<td>Observation Flight</td>
</tr>
<tr>
<td>C2</td>
<td>Other</td>
</tr>
</tbody>
</table>

14. Itinerary

<table>
<thead>
<tr>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>Block Out</th>
<th>Time in Service (Landing)</th>
<th>Block In</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/11/01</td>
<td>KATX</td>
<td>KMDL</td>
<td>1805</td>
<td>1135</td>
<td>22</td>
</tr>
<tr>
<td>5/11/01</td>
<td>LAX</td>
<td>MCO</td>
<td>1305</td>
<td>1515</td>
<td>15</td>
</tr>
</tbody>
</table>

15. Passengers

<table>
<thead>
<tr>
<th>Full Name of Passenger</th>
<th>Age</th>
<th>Sex</th>
<th>Ticket (Luggage)</th>
<th>Full Name of Passenger</th>
<th>Age</th>
<th>Sex</th>
<th>Ticket (Luggage)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Crew Data

<table>
<thead>
<tr>
<th>Flight Time (Block In - Block Out)</th>
<th>[]</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:00</td>
<td>5:35</td>
</tr>
</tbody>
</table>

17. Aircraft Data

<table>
<thead>
<tr>
<th>17c. Aircraft Rejected From</th>
<th>Blank, Address, and Phone</th>
</tr>
</thead>
</table>

18. Fuel

<table>
<thead>
<tr>
<th>18. Fuel</th>
<th>Type</th>
<th>How Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAA Form Number

FAA Form Number: [Blank]

Approval Data

FAA Form Number: (C603) RN 0322-00-032 (2001-0322); Separation precision edition

D-5
FAA Aircraft Request and Use Record

Type of FAA Aircraft
- **Source of Aircraft:** FAA
- **Type of Aircraft Desired:** B727
- **Type of Flight:** FAR 91
- **FAR 121**
- **Public:** B727
- **Date Requested:** 9/14/01

Justification:
- Explain why the Agency Aircraft is being used. Show proposed itinerary, name and number of passengers and crew, estimated flight hours, and rental cost.

Data Collection and System
Evaluation in Accordance With
- **Approved Flight Test Plan**
- **Approved Weekly Flight Schedule**

Assurance Required Before Flight
- **Signature**
- **Printed Name**
- **Rig Symbol**
- **Date**

Approved By:
- Signature
- Printed Name

Chief or Regional Counsel Approval:
- Signature

Type Aircraft Used
- **N94**

Act Code or Rental Category
- **93**

Registration (N) Number
- N94

Activity
- T

User Organization
- RDPP

Reimbursement Account
- 110848

Flight Time
- Enter Flight Time in Hours and Minutes

Flight Identification
- **Name**
 - Cargo
 - Hydraulic
 - Cargo
 - Hydraulic

Identification
- **Type**
 - Cargo
 - Hydraulic

Cost
- **Type**
 - M - Military
 - V - Vessel

Date
- 9/14/01

Total Time in Service
- 3.4

Total Flight Time
- 4.0

Crew Data
- **Name**
 - Cargo
 - Hydraulic

Date
- 9/14/01

Rental Aircraft Data
- **Contract or SPA Rental Time**
 - **Contract #**
 - **Aircraft**
 - **Date**
 - **Number of Hours**

Charges
- **Aircraft Rental Time**
 - **Contract**
 - **Number of Hours**

PO #
- 24100

Accomplished
- Signed and Approved Office Without Delay

FAA Form 444-8
- Supersedes previous edition

Date
- 9/14/01
FAA Aircraft Request and Use Record

Type of Aircraft Used:
- FAA
- Rental
- Out of Agency
- Crew Only

Type of Flight:
- FAR 61
- FAR 121
- FAR 125
- Public

Date Requested:
- 11/11/91

Justification:
(Explain why Agency/Rental Aircraft is being used. Show proposed itinerary, name/number of passengers and crew, estimated flight hours, and rental cost.)

Data Collection and System Evaluation in Accordance with Approved Flight Test Plan and Approved Weekly Flight Schedule

<table>
<thead>
<tr>
<th>Aircraft Request</th>
<th>Signature</th>
<th>Printed Name</th>
<th>Reg No</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requested By:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Approved By:
- [Signature]

8. Aircraft or Rental Category
- [Category]

9. Aircraft or Rental Number
- [Number]

10. Activity
- [Activity]

11. User Organization
- [Organization]

12. Reimbursable Account
- [Account]

13. Purpose of Flight (FAA code)
- Evaluation
- Logistics
- Certification Testing
- Test & Ferry
- Observation Flight
- Observation
- Other

14. Itinerary

<table>
<thead>
<tr>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>Block In</th>
<th>Last</th>
<th>Block Out</th>
<th>Time in Service</th>
<th>Takeoff</th>
<th>Landing</th>
<th>Block In</th>
<th>Time in</th>
<th>Block Out</th>
<th>Activity</th>
<th>Full Name of Passenger(s)</th>
<th>RTO Symbol or Agency</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/14</td>
<td>[Location]</td>
<td>[Location]</td>
<td>[Time]</td>
<td>[Time]</td>
<td>[Time]</td>
<td>[Time]</td>
<td>[Time]</td>
<td>[Time]</td>
<td>[Time]</td>
<td>[Time]</td>
<td>[Time]</td>
<td>[Activity]</td>
<td>[Name]</td>
<td>[Symbol]</td>
<td>[Location]</td>
<td>[Location]</td>
</tr>
</tbody>
</table>

15. Passengers
- [Passenger List]

16. Crew Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Flight No.</th>
<th>Date</th>
<th>Crew #:</th>
<th>Type</th>
<th>Time In Service</th>
<th>Takeoff</th>
<th>Landing</th>
<th>Block In</th>
<th>Time In</th>
<th>Block Out</th>
<th>Activity</th>
<th>Full Name of Person(s)</th>
<th>RTO Symbol or Agency</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

17. Aircraft Data

<table>
<thead>
<tr>
<th>Aircraft Brand</th>
<th>Model</th>
<th>Serial No.</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Brand]</td>
<td>[Model]</td>
<td>[Serial]</td>
<td>[Year]</td>
</tr>
</tbody>
</table>

17c. Aircraft Return From
- [Location] (Name, Address, and Phone)

18. Fuel

<table>
<thead>
<tr>
<th>Type</th>
<th>How Purchased</th>
<th>Gallons</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Type]</td>
<td>[Cost]</td>
<td>[Gallons]</td>
<td>[Cost]</td>
</tr>
</tbody>
</table>

14. Other Use Only

<table>
<thead>
<tr>
<th>Remarks</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Remarks]</td>
<td>[Date]</td>
</tr>
</tbody>
</table>

FAA Form 421C (11/97) 4450-002-00B-0003: Supplements previous edition

FAA Form 421C (1/97) 4450-002-00B-0003: Supersedes previous edition

AFTER FLYING, SUBMIT TO APPROVING OFFICE WITHOUT DELAY.
FAA Aircraft Request and Use Record

1. **Source of Aircraft**
 - [] FAA
 - [] Rental
 - [] Out of Agency
 - [] Crew Data Only

2. **Type of Aircraft Desired**
 - [] FAR 61
 - [] FAR 135
 - [] FAR 121
 - [] Public

3. **Date Required**
 - [] 9/2/01

4. **Justification** (Explain why Agency/Rental Aircraft is being used. Show proposed itinerary, number of passengers and crew, estimated flight hours, and rental cost)

Data Collection and System Evaluation in Accordance with Approved Flight Test Plan and Approved Weekly Flight Schedule

<table>
<thead>
<tr>
<th>Approval Required Before Flight</th>
<th>Signature</th>
<th>Printed Name</th>
<th>Rig Symbol</th>
<th>Date</th>
</tr>
</thead>
</table>

Aircraft Request

<table>
<thead>
<tr>
<th>Type Aircraft Used</th>
<th>Aircraft Code or Rental Category</th>
<th>Aircraft Number</th>
<th>Activity</th>
<th>User Organization</th>
<th>Reimbursement Account</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-3</td>
<td>A-41,0</td>
<td>T</td>
<td>RDPF</td>
<td>T-170 E Y B B</td>
<td></td>
</tr>
</tbody>
</table>

Purpose of Flight

- [] 01. Evaluation
- [] 02. Currency
- [] 03. Transportation
- [] 04. Check Flight
- [] 05. Logistics
- [] 06. Formal Training
- [] 07. Proficiency & Safety
- [] 08. Reimbursable
- [] 09. Certification Testing
- [10]. Temporary/Personal
- [11]. Other

Itinerary

<table>
<thead>
<tr>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>Block Out</th>
<th>Time In Service</th>
<th>Block In</th>
<th>Time In Service</th>
<th>Block to Block</th>
<th>Full Name of Passenger(s) (Concur on reverse or attach Id)</th>
<th>RTA Symbol</th>
<th>How</th>
<th>Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/25/01</td>
<td>KAG-1</td>
<td>KAG-1</td>
<td>13:45</td>
<td>1488.1</td>
<td>1487.8</td>
<td>12:40</td>
<td>1.7</td>
<td>1.7</td>
<td>W D R S C H</td>
<td>F</td>
<td>RTA 413</td>
</tr>
</tbody>
</table>

Total Time in Service (Block to Block)

Flight Time

- [] 1.0
- [] 1.9
- [] 1.9

Crew Data

<table>
<thead>
<tr>
<th>Flight Time (Enter Flight Time in Hours and Minutes)</th>
<th>Crews</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Rental Aircraft Data

<table>
<thead>
<tr>
<th>17a. Method of Payment</th>
<th>17b. Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contract or SPA rental</td>
<td>A. Total Rental Time,</td>
</tr>
<tr>
<td></td>
<td>Hours/Tweet</td>
</tr>
<tr>
<td></td>
<td>B. Rental Cost</td>
</tr>
<tr>
<td></td>
<td>C. Other Cost</td>
</tr>
<tr>
<td></td>
<td>D. Total Cost</td>
</tr>
<tr>
<td></td>
<td>PC-9</td>
</tr>
</tbody>
</table>

Fuel

<table>
<thead>
<tr>
<th>Date</th>
<th>Type</th>
<th>How Purchased</th>
<th>Cost</th>
<th>Hours</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/25/01</td>
<td>7300</td>
<td>AVGAS</td>
<td>1</td>
<td>2</td>
<td>W</td>
</tr>
</tbody>
</table>
FAA Aircraft Request and Use Record

2. Type Aircraft Desired
- **Airplane**
- **Helicopter**
- **Sailplane**
- **Motor Glider**
- **Non-Rotary Wing**
- **Airship**
- **Other**

4. Justification
- **Request for Aircraft**
- **Nature of Proposed Use**
- **Estimated Number of Passengers and Crew**
- **Estimated Flight Hours and Rental Cost**

5. Aircraft Requested Before Flight
- **Signature**
- **Printed Name**
- **Rig Symbol**
- **Date**

7. Aircraft Used
- **Type Code**
- **Make, Model, and Serial Number**
- **Registration Number**

12. Reimbursement Account
- **Account Number**

15. Passengers
- **Full Name of Passenger(s)**
- **Call Number or Agency**
- **From**
- **To**

16. Crew Data
- **Name**
- **Position**
- **Flight Time**
- **Takeoff/Landing**
- **Segs**

17. Aircraft Requested From
- **Name, Address, and Phone**

18. Fuel
- **Type**
- **Purchased**
- **Cost**

FAA Aircraft Request and Use Record Form

Type of Request:
- **Justification**
- **Airworthiness**
- **Flight Test Plan/Analysis**
- **Survivability and System and Flight Collection and System**

Applicant:
- **Signature**
- **Printed Name**
- **Rig Symbol**
- **Date**

Type of Aircraft Used:
- **Type Code**
- **Make, Model, and Serial Number**
- **Registration Number**

Purpose of Flight:
- **Type Code**
- **Duration**
- **Location**
- **Number of Passengers and Crew**
- **Estimated Flight Hours and Rental Cost**

Crew Data:
- **Name**
- **Position**
- **Flight Time**
- **Takeoff/Landing**
- **Segs**

Aircraft Requested From:
- **Name, Address, and Phone**

Fuel:
- **Type**
- **Purchased**
- **Cost**
FAA Aircraft Request and Use Record

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>33</td>
<td>33</td>
<td>33</td>
<td>T</td>
<td>ROPP</td>
<td>T-17-0848</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01. Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>02. Currency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>03. Transportation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>04. Check Flight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05. Logistics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>06. R&D</td>
<td></td>
<td></td>
</tr>
<tr>
<td>07. Formal Training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08. Proficiency Check</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09. Reimbursable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Test & Ferry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. FS Extranary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Accident Investigation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Certification Testing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Military</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Observation Flight</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Crew Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Status</th>
<th>Start Time</th>
<th>End Time</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIEML</td>
<td>Lead</td>
<td>7:00</td>
<td>7:00</td>
<td>0:00</td>
</tr>
<tr>
<td>YAMIN</td>
<td>OC</td>
<td>7:00</td>
<td>7:30</td>
<td>0:30</td>
</tr>
<tr>
<td>GATTU</td>
<td>OC</td>
<td>7:00</td>
<td>7:30</td>
<td>0:30</td>
</tr>
</tbody>
</table>

17. Rental Aircraft Data

- **Date: 12/01/97**
- **Flight No.: SS-23**

16. Fuel

- **Type:** Jet
- **How Purchased:** Direct

16. Aircraft Reimbursement

- **Amount:** $1,234.56
- **Date:** 12/01/97

D-10
FAA Aircraft Request and Use Record

Use of FAA aircraft must be in compliance with Order 4045.9 series.

1. Source of Aircraft:
 - [] FAA
 - [] Rental
 - [] Out of Agency
 - [] Crew Data Only

2. Type of Aircraft Desired:
 - [] Fixed Wing
 - [] Helicopter

3. Date Required:
 - [] FAR 81
 - [] FAR 125
 - [] Public
 - [] 10/20/01

4. Justification: (Explain why Agency-Rental Aircraft is being used. Show proposed itinerary, number of passengers and crew, estimated flight hours and rental cost.)

Data Collection and System Evaluation in Accordance with Approved Flight Test Plan and Approved Weekly Flight Schedule

<table>
<thead>
<tr>
<th>Approved Required Before Flight</th>
<th>Signature</th>
<th>Printed Name</th>
<th>Reg Symbol</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Requested By:

6. Approved By:

7. Purpose of Flight (FAA Code)
 - [] 01. Evaluation
 - [] 02. Currency
 - [] 03. Transportation
 - [] 04. Check Flight
 - [] 06. Logistic
 - [] 07. Formal Training
 - [] 08. Preference QMB
 - [] 10. Test & Ferry
 - [] 11. FIS Training
 - [] 12. Accident Investigation
 - [] 14. Military
 - [] 15. Observation Flight
 - [] 16. Other

8. Itinerary

<table>
<thead>
<tr>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>Block Out</th>
<th>Time in Service</th>
<th>Block In</th>
<th>Time in</th>
<th>Stock Out</th>
<th>Stock In</th>
<th>Full Name of Passenger(s)</th>
<th>RTD Symbol or Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/5</td>
<td>KATL</td>
<td>KATL</td>
<td>0035</td>
<td>1430</td>
<td>1530</td>
<td>1.3</td>
<td>1.9</td>
<td>PAFFAS, R</td>
<td>AMR-432</td>
<td></td>
</tr>
<tr>
<td>10/6</td>
<td>KATL</td>
<td>KATL</td>
<td>1330</td>
<td>1906</td>
<td>1530</td>
<td>1.6</td>
<td>2.0</td>
<td>BERES, Y</td>
<td>MYZ-220</td>
<td></td>
</tr>
</tbody>
</table>

9. Total Time in Service (Block to Block): 3.9

10. Crew Data

<table>
<thead>
<tr>
<th>Name</th>
<th>Crew</th>
<th>FTE</th>
<th>P</th>
<th>Other</th>
<th>H</th>
<th>W</th>
<th>S</th>
<th>C</th>
<th>L</th>
<th>N</th>
<th>D</th>
<th>I</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. E. H.</td>
<td>1</td>
<td>9</td>
<td>20</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K. A. L.</td>
<td>2</td>
<td>0</td>
<td>19</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. A. T.</td>
<td>3</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

11. Rental Aircraft Data

<table>
<thead>
<tr>
<th>Method of Payment</th>
<th>Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rent Period</td>
<td>$</td>
</tr>
</tbody>
</table>

12. Fuel

<table>
<thead>
<tr>
<th>Type</th>
<th>How Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVGAS</td>
<td>X JET</td>
</tr>
<tr>
<td>JET</td>
<td>X JET</td>
</tr>
</tbody>
</table>

13. Aircraft Rented From

FAA Form 484 (10/2001) REVISED 08/1998 (Supersedes previous edition)

Page 11
FAA AIRCRAFT REQUEST AND USE RECORD

1. Source of Aircraft
 X FAA □ Rental □ Out of Agency
 Crew Data Only

2. Type Aircraft Desired
 □ B-727
 □ B-728
 □ B-737
 □ B-767

3. Type of Flight
 X FAR 81 □ FAR 135 □ FAR 125 □ Public

4. Date Requested
 □ 10/3/01

5. Justification
 (Explain why Agency/Rental Aircraft is being used. Show proposed itinerary, name, number of passengers and crew, estimated flight hours, and rental cost.)

DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Approval Required Before Flight

Signature

Printed Name

Reg Symbol

Date

6. Requested By:

7. Approved By:

8. Type Aircraft Used
 □ B-727
 □ B-728
 □ B-737
 □ B-767

9. Aircraft Code or Rental Category
 □ 33

10. Registration (N) Number
 □ 40

11. Activity
 □ T

12. User Organization
 □ RDPP

13. Purpose of Flight
 □ 01. Evaluation
 □ 02. Currency
 □ 03. Transportation
 □ 04. Check Flight
 □ 05. Logistics
 □ 06. R&D
 □ 07. Formal Training
 □ 08. Proficiency G&S

14. Itinerary
 Data
 From
 To
 Block
 Out
 Time in Service
 Takeoff
 Landing
 Block
 in
 Time in
 Sec.
 10/4/01
 ACX
 SRC
 0830
 49.63
 49.54
 10/45
 2.1
 2.3
 SRC
 ACX
 1340
 49.54
 49.42
 1555
 2.0
 2.4

15. Passengers

16. Crew Data

17. Rental Aircraft Data

18. Other

FOIA# 402-09 (2001) (FDA-0085-00029); Supersedes previous edition

AFTER FLIGHT: Field in following Office Blank Only

D-12
Troubleshooting Procedures

For

Eaton Aerospace Controls
400Hz/120V Arc Fault Circuit Breakers (AFCB)

On

FAA Technical Center
Boeing 727-25C Aircraft N40

July 2001

FAA William J. Hughes Technical Center
Engineering and Modification Section, ACT-370
Maintenance, Inspection, and Repair Section, AAR-433

Prepared by: R.A. Pappas, AAR-433

Reviewed by: J. Beres, ACT-370

Approved by: Armando Gaetano
Manager, Engineering & Modifications Section, ACT-370
1. Introduction

The Federal Aviation Administration (FAA), William J. Hughes Technical Center (WJHTC) R&D Flight Program is performing a modification to their Boeing 727-25C aircraft. This temporary modification involves the installation of eight arc fault circuit breaker (AFCB) prototypes manufactured by Eaton Aerospace Controls. The AFCB’s are to be installed for a six-month evaluation period in support of AFCB research and development.

The AFCB’s will be installed in a prefurnished Arc Fault Circuit Interrupter-Junction Box (AFCI-JB) that will enclose all the AFCB’s and required instrumentation. The AFCB’s will not be mounted in the aircraft circuit breaker panels. It is important to note that the AFCB’s will be connected in series with the load side of the existing thermal circuit breakers. In other words, current circuit protection aboard the aircraft will not be compromised in any way by this installation.

The electrical, system, and mechanical integration of this installation will be accomplished at Atlantic City International Airport (ACIAP) using FAA technical and engineering personnel. The engineering personnel have been granted authority to approve “electrical systems” and “structures” data via FAA Form 8110-3, by the New York Aircraft Certification Office (NYACO). The engineering of this installation has been completed and the engineers are currently compiling reports to show compliance with applicable Federal Aviation Regulations (FAR).

This report describes the troubleshooting procedures to be conducted in the event there is an AFCB trip during ground testing or flight testing. All steps in this procedure shall be successfully followed until the source of the AFCB trip has been identified and corrected in accordance with this procedure and to the satisfaction of the WJHTC Electrical Systems DER, Code ACT-370.

2. Background

The integration of arc fault detection into circuit breakers represents a revolutionary change in circuit protection; which has changed little in the last thirty to forty years. There is abundant evidence of arc faults in all types of aircraft. Laboratory data clearly demonstrates that the current generated during an arcing fault can be very high, yet quite intermittent. The bimetallic elements in thermal breakers do not react quickly enough, if at all, to this ticking arc fault condition. If left unchecked, the arcing condition can develop into an arc tracking condition, potentially destroying a major portion of, or an entire wire bundle. Arcing can also result in many other serious safety hazards.

In 1999, the FAA and the Navy established a joint R&D project to develop aircraft AFCB’s. The goal of this effort is to develop a circuit breaker that integrates arc fault protection together with existing thermal protection into a form, fit, and functional replacement of existing thermal circuit breakers. In laboratory testing, the AFCB prototypes have been very effective in the detection of arcing faults.

In contrast to thermal breakers, which are passive in nature, AFCB’s actively monitor the circuits on which they are installed. Due to the nature of electrical systems, there are times when a normal condition may ‘look’ similar to an arc fault. When such a condition trips an
arc fault circuit breaker, it is defined as a nuisance trip. AFCB designs minimize the occurrence of nuisance tripping and maximize sensitivity to arc fault detection.

To address nuisance tripping, the FAA, Navy, and the AFCB developers, have conducted extensive tests to characterize the normal operation of electrical loads, and perturbations to electrical systems during normal events such as bus transfers, power on/off, transfer of power sources, etc. Laboratory tests today have provided a high level of confidence that nuisance tripping is being successfully controlled.

The certification request will permit the FAA to temporarily install AFCB’s aboard the B727-25C (N40) with the purpose of evaluating the circuit breakers, in-flight, over a six-month period. This will assure that the AFCB’s are evaluated against a wide range of actual electrical conditions.

3. System Description

The AFCB installation will consist of the following:

a. Eight (8) - Eaton Aerospace Corporation prototype arc fault circuit breakers of the following ratings: one 2.5 A, three 5A, one 7.5A, one 10A, and two 15A (Mounted in AFCI Junction Box).

b. One (1) – AFCI-JB.

c. Two (2) – AFCI-JB Test Unit wire harnesses, P18 and P6.

d. One (1) - 24 channel, Nicolet Odyssey data recorder.

e. One (1) – BNC Breakout Box.

f. One (1) – AFCI Junction Box – BNC Breakout Box Interface Harness.

g. Twenty-four (24) – 36-inch BNC connector cables.

h. One (1) – Trigger Alarm

The AFCI Junction Box (AFCI-JB) will contain the eight AFCB units. The test unit will be mounted in the rear, left side of the cockpit. The test unit will have by-pass switches that will disable the AFCB’s if desired. The test unit will be fabricated using standard best practices and in accordance with AC 43.13-1B and contain any possible AFCB failure.

The electrical connections for the system are shown schematically in FAA Drawing Number 9854415, Arc Fault Circuit Breaker Wiring. The AFCB’s mounted within the AFCI-JB will be electrically in series with the load side of the existing circuit breakers. The AFCI-JB wire harnesses, P-18 and P-6, connect the load side of the each aircraft circuit breaker to the line side of the respective AFCB and from the load side of the each AFCB to the feed wire for the respective load.

The BNC Breakout Box and the Odyssey data recorder will be mounted in the cabin of the aircraft. The AFCI-JB/BNC Breakout Box Interface Harness connects the AFCI-JB to the BNC Breakout Box.

The 24 BNC connectors on the BNC Breakout Box are connected to the Odyssey data recorder with 36” BNC coaxial cables.
Detailed installation instructions are provided in Section 4.

4. Certification Requirements

There are no FAA Technical Standard Orders for the equipment being installed during this modification. Experimental flight test is being performed to collect data necessary to obtain a one only STC to install the AFCB’s aboard N40 for an extended evaluation period.
5. **Installation of AFCB Test System On N40**

The electrical installation shall be completed in accordance with drawing number 9854415 under the guidance of the WJHTC Electrical Systems Designated Engineering Representative (DER), Code ACT-370. The mechanical installation shall be completed under the guidance of the WJHTC Mechanical Systems DER, Code ACT-370.

The following list contains general instructions for completing the installation (Full installation instructions are contained in the AFCB Ground Test Checkout Report). The installation shall be completed in accordance with all existing safety requirements and the necessary approvals shall be obtained in advance of starting the installation.

- The two AFCI-JB Interface wire harnesses, P-18 and P-6, shall be connected to the thermal circuit breakers in accordance with FAA Drawing number 9854415.

 Harness P-18 shall be connected to the:
 - Left Inboard Landing Lights (7.5A)
 - Navigation Lights (5A)
 - Window Lights (10A)
 - Left Ceiling Lights (15A)

 Harness P-6 shall be connected to the:
 - DME-2 (3A)
 - Auxiliary Pitot Heat (5A)
 - First Officers Window (5A)
 - AC Project Power (15A)

- Mount the AFCI-JB in the flight deck as per the Mechanical Systems DER instructions.

- Mount the Odyssey and the BNC Breakout Box in the cabin rack per the Mechanical Systems DER instructions.

- Insure that all mounting is secure.

- Route the AFCI-JB harnesses and the AFCI-JB/Breakout Box harness. Do not mate the harnesses to the AFCI-JB or the breakout box until electrical tests have been completed. Do not secure the harness until electrical tests have been completed.
6. Arc Fault Troubleshooting – General Background

Although AFCB’s can detect arcing on the circuit in which it is installed, it cannot determine the location of the arc along the circuit. Furthermore, means for easily troubleshooting an arc fault after and AFCB trip are under development but not currently available. This plan has been developed to establish a procedure for troubleshooting AFCB trips, should they occur.

An understanding of current methods of troubleshooting thermal trips will clarify the additional measures needed to troubleshoot an AFCB trip and specifically the procedures that will be followed during the FAA AFCB flight test program.

Troubleshooting circuit breakers is an iterative process. Generally, after a thermal circuit breaker trip, troubleshooting begins by evaluating the load(s) powered by the circuit. The load is either tested for correct operation, or is removed and replaced if its correct operation cannot be directly determined. The circuit is powered and if no additional trips are noted the corrective action is considered complete.

If additional trips of the same circuit occur, there are several options for corrective action. The load may still be suspected, and the problem may not be reproducible on the ground. The circuit breaker itself may be suspect and replaced (tripping of thermal circuit breakers under normal conditions, or failure of a circuit breaker to stay closed when depressed, are two common circuit breaker failure modes). Usually, the last item to be checked is the circuit wiring, mainly because of the inherent difficulties in testing and inspecting the wiring.

AFCB’s add another dimension of complexity to the troubleshooting problem. AFCB’s have two trip modes, thermal (current overload) and arc fault. There are unique procedures for troubleshooting each mode, and unfortunately, if one procedure fails to identify the problem it may be necessary to complete the other procedure to be certain that the problem has been resolved. Future AFCB’s will have the ability to indicate if the trip mode was thermal or arc fault related. The prototypes flown in this test program will not have this feature. However, the data recording instrumentation will be triggered by the AFCB’s arc fault detection circuit and therefore it will be known with certainty if the trip mode was thermal versus arc fault.

If the trip mode was arc fault related, the question remains was the arc trip a real arc or was it a nuisance trip? The instrumentation being used in these flights will record the current waveforms immediately before and after the AFCB indicates that an arc is present and a trip is initiated. This data will be analyzed by Eaton Aerospace to determine if it appears to be a real arc or a nuisance trip. If it is certain that the trip was nuisance related, then the breaker will be reset and flights testing may resume. If a nuisance trip is not certain, then further diagnostics will be required.

Provisions have been made to baseline the condition of the wiring on the eight circuits that will be used in the tests with Time Domain Reflectometry (TDR). During ground testing of the AFCB test system, each AFCB equipped circuit will be characterized with TDR. This data will form a baseline measurement against which future measurements will be compared. Changes in the measurement indicate possible locations at which the arcing may have occurred.
At this point, it is unclear if TDR is sensitive enough to detect the damage incurred by a wire during an arcing condition. If the TDR fails to identify the location of the fault, visual inspection of the circuit must be performed to determine the source of the fault.

7. **Detailed Troubleshooting Procedures**

All troubleshooting shall be performed by qualified FAA personnel under the direction of the Electrical Systems DER, Code ACT-370.

Upon an AFCB arc fault trip, the Odyssey data recording system will record the current and voltage waveforms from the eight circuits equipped with AFCB’s. A thermal trip of the AFCB or the aircraft circuit breaker will not cause the Odyssey to trigger on and record this data. Therefore, it will be known immediately if the trip was caused by an arc fault.

Appendix A contains the detailed process flow charts.
Appendix A

Troubleshooting Process Flowcharts
1

Troubleshoot and repair IAW Standard Operating Procedures for thermal circuit breaker trips

Conduct ground tests on circuit

Ground tests check ok?

Y

Obtain TDR Data From Tripped Circuit

Damage location discernable?

N

Email TDR Data to CM Tech. For Analysis

TDR Changed from baseline?

Y

Locate fault and repair

Conduct ground tests on circuit

N

Re-baseline circuit TDR characterization

Aircraft and circuit returned to service

End

Conduct visual inspection of circuit wiring

Damage location discernable?

Y

Locate fault and repair

Conduct ground tests on circuit

N

End
2

Ground tests check ok?

Y

Re-baseline circuit TDR characterization

N

Replace AFCB

Ground tests check ok?

Y

Repeat troubleshooting procedure

N

End

Aircraft and circuit returned to service

End
Arc Fault Circuit Breaker
Flight Test Program

Flight Test Plan
for
Hendry Arc Fault Circuit Breaker (AFCB) Installation
on
FAA Technical Center
Boeing 727-25C Aircraft N40

27 June 2002

FAA William J. Hughes Technical Center
Engineering and Modification Section, ACT-370
Maintenance, Inspection, and Repair Section, AAR-480

Prepared by: R.A. Pappas, AAR-480

Reviewed by: J. Beres, ACT-370

Approved by: Armando Gaetano
Manager, Engineering & Modifications Section, ACT-370
Table of Contents

1.0 INTRODUCTION ... 7
 1.1 Background .. 7
 1.2 Objective .. 7
 1.3 Scope .. 8

2.0 FLIGHT TEST GOALS ... 8

3.0 SYSTEM DESCRIPTION .. 8
 3.1 Arc Fault Circuit Breakers ... 8
 3.2 Arc Fault Circuit Interrupter - Junction Box and Aircraft Harnesses 8
 3.3 Instrumentation Equipment .. 8
 3.4 Aircraft Interfaces .. 8

4.0 AIRCRAFT INSTALLATION .. 9

5.0 CERTIFICATION REQUIREMENTS .. 9

6.0 FLIGHT TEST PROFILE REQUIREMENTS .. 9

7.0 LIMITATIONS ... 10

8.0 EMERGENCY PROCEDURES .. 11

9.0 NORMAL PROCEDURES .. 12
 9.1 Preflight .. 12
 9.2 Flight ... 12
 9.3 Postflight ... 13
1.0 INTRODUCTION

This document defines the flight test procedures for evaluating the performance of Arc Fault Circuit Breakers (AFCBs) in an FAA owned Boeing 727-25C aircraft. The effort will be conducted by the United States (U.S.) Federal Aviation Administration (FAA) at the William J. Hughes Technical Center (WJHTC), Atlantic City, New Jersey.

1.1 BACKGROUND

The integration of arc fault detection into circuit breakers represents a revolutionary change in circuit protection; which has changed little in the last thirty to forty years. There is abundant evidence of arc faults in all types of aircraft. Laboratory data clearly demonstrates that the current generated during an arcing fault can be very high, yet quite intermittent. The bimetallic elements in thermal breakers do not react quickly enough, if at all, to this ticking arc fault condition. If left unchecked, the arcing condition can develop into an arc tracking condition, potentially destroying a major portion of, or an entire wire bundle. Arcing can also result in many other serious safety hazards.

In 1999, the FAA and the Navy established a joint R&D project to develop aircraft AFCBs. The goal of this effort is to develop a circuit breaker that integrates arc fault protection together with existing thermal protection into a form, fit, and functional replacement of existing thermal circuit breakers. In laboratory testing, the AFCB prototypes have been very effective in the detection of arcing faults.

In contrast to thermal breakers, which are passive in nature, AFCBs actively monitor the circuits on which they are installed. Due to the nature of electrical systems, there are times when a normal condition may ‘look’ similar to an arc fault. When such a condition trips an arc fault circuit breaker, it is defined as a nuisance trip. AFCB designs minimize the occurrence of nuisance tripping and maximize sensitivity to arc fault detection.

To address nuisance tripping, the FAA, Navy, and the AFCB developers, have conducted extensive tests to characterize the normal operation of electrical loads, and perturbations to electrical systems during normal events such as bus transfers, power on/off, transfer of power sources, etc. Laboratory tests today have provided a high level of confidence that nuisance tripping of AFCBs is being successfully controlled.

AFCB development has progressed to the point where flight tests are appropriate to demonstrate compliance with applicable Federal Aviation Regulations (FARs).

1.2 OBJECTIVE

The objective of this task is to conduct an in-flight evaluation of AFCB performance.

The Federal Aviation Administration (FAA), William J. Hughes Technical Center (WJHTC) R&D Flight Program is performing a minor modification to their Boeing 727-25C aircraft. This temporary modification involves the installation of eight AFCB prototypes manufactured by the Hendry corporation. The AFCBs are to be installed for a six-month evaluation period in support of AFCB research and development.
1.3 **SCOPE**

The scope of this effort is to install AFCBs manufactured by the Hendry corporation in an FAA owned Boeing 727-25C aircraft and conduct a flight evaluation of the developmental AFCBs. Data recorded includes line voltage, load voltage, and current for each of the installed breakers. Data reduction efforts of any occurring arc faults will include identification of relationships between the trip conditions.

2.0 **FLIGHT TEST GOALS**

The following list describes the goals of the experimental flight test program, listed in order of importance.

- Complete fifty (50) or more hours of developmental flight test evaluation but not less than twenty-five (25) hours. Data generated during these flights is critical to the AFCB research and development program and for obtaining approval of the N-40 one-only STC.
- Evaluate the operation of the arc fault circuit breakers under standard B727 operational procedures.
- Evaluate the operation of the AFCB instrumentation and Odyssey data recording system for future unmanned data collection.

3.0 **SYSTEM DESCRIPTION**

The equipment being installed for the Arc Fault flight evaluation includes developmental prototype AFCBs installed in a junction box, an instrumentation recorder and interconnecting cables and wire harnesses. These items are described in the following paragraphs.

3.1 **ARC FAULT CIRCUIT BREAKERS**

Eight (8) - Hendry prototype arc fault circuit breakers of the following ratings: one 2.5 A, three 5A, one 7.5A, one 10A, and two 15A (mounted in AFCI Junction Box).

3.2 **ARC FAULT CIRCUIT INTERRUPTER - JUNCTION BOX AND AIRCRAFT HARNESS**

One (1) – AFCI-JB.
Two (2) – AFCI-JB Test Unit wire harnesses, P18 and P6

3.3 **INSTRUMENTATION EQUIPMENT**

One (1) - 24 channel, Nicolet Odyssey data recorder.
One (1) – BNC Breakout Box.
One (1) – AFCI JB – BNC Breakout Box Interface Harness.
Twenty-four (24) – 24-inch BNC connector cables.
One (1) – Trigger Alarm

3.4 **AIRCRAFT INTERFACES**

The electrical connections for the system are shown schematically in FAA Drawing Number 9854415, Arc Fault Circuit Breaker Wiring. The AFCBs mounted within the AFCI-JB will be electrically in series with the load side of the existing circuit breakers. The AFCI-JB wire harnesses, P-18 and P-6, connect the load side of the each aircraft circuit breaker to the line side.
of the respective AFCB and from the load side of the each AFCB to the feed wire for the respective load.

It is important to note that the AFCBs will be connected in series with the load side of the existing thermal circuit breakers. In other words, current circuit protection aboard the aircraft will not be compromised in any way by this installation.

The on-board Project Power Inverter provides 120VAC 60Hz power for the Data Acquisition System.

4.0 AIRCRAFT INSTALLATION

The AFCBs will be installed in an Arc Fault Circuit Interrupter-Junction Box (AFCI-JB) that will enclose all the AFCBs and required instrumentation interfaces. The AFCI-JB will be mounted in the rear, left side of the cockpit. The test unit will have bypass switches that will disable the AFCBs if desired.

The BNC Breakout Box and the Odyssey data recorder will be mounted in the cabin of the aircraft.

The electrical installation shall be completed in accordance with drawing number 9854415 under the guidance of the WJHTC Electrical Systems Designated Engineering Representative (DER). The mechanical installation shall be completed under the guidance of the WJHTC Mechanical Systems DER.

Detailed instructions for completing the installation can be found in the AFCB Ground Checkout Procedures Report.

5.0 CERTIFICATION REQUIREMENTS

There are no FAA Technical Standard Orders for the equipment being installed during this modification. Experimental flight test is being performed to collect data necessary to obtain a one only STC to install the AFCBs aboard N40 for an extended evaluation period.

6.0 FLIGHT TEST PROFILE REQUIREMENTS

N40 will be operated in conformance with Standard B727 Operations. The purpose of the flight test is to maximize the number of flight hours. Duration and distance of flights will be at the discretion of the pilot in command and within the operating restrictions established by the MIDO.

No excessive cycling of the aircraft is necessary.

As established by the MIDO, flight restrictions shall be removed to the maximum extent possible upon completion of flight hour thresholds established by the MIDO.

If possible, the aircraft will fly to Santa Barbara, California to permit Hendry engineers an opportunity to assess the AFCB installation aboard the aircraft. A flight to Seattle, Washington will also be conducted, if possible, to permit FAA Transport Directorate, ANM-100 engineers to observe the installation.
7.0 LIMITATIONS

It is proposed that the first 5 flight hours (Phase 1) be conducted within a 100-mile radius from Atlantic City International Airport. Upon satisfactory completion of this 5-hour period, it is requested that the remainder of the flights be conducted without restrictions (Phase 2).

An ACT-370 Safety Officer will be on all Phase 1 flights.

An AAR-480 engineer (or designee) must be aboard the aircraft during all AFCB flight tests to operate the Odyssey data recorder.

No AFCB equipped circuit shall be operated in-flight after an AFCB trip on the circuit, unless the pilot in command orders the operation of the circuit during an emergency. In this case, the flight engineer shall switch the associated bypass switch on the AFCI-JB to the bypass position. In addition, after an AFCB trip, the Flight Engineer shall pull the associated circuit breaker on the aircraft circuit breaker panel. Troubleshooting shall be performed in accordance with the AFCB Troubleshooting Procedures.

If there are two or more AFCB trips on a single electrical bus, the flight test shall be terminated and the aircraft will return to base immediately.

Limitations established by the MIDO shall be adhered to.
8.0 EMERGENCY PROCEDURES

In the event of an emergency (related or unrelated to the AFCB testing), the following procedures will be followed if ordered by the pilot in command.

The flight engineer shall bypass all AFCBs by closing the AFCB bypass switches on the AFCI-JB located behind the Captains chair.

- The flight engineer will set each AFCB to the open position.
- The Odyssey data recorder will be powered off by the engineer operating the system.

If power must be removed from the AFCI-JB the following steps will be completed:

- The flight engineer will open the eight circuit breakers on the aircraft circuit breaker panels. A colored button or other tag will uniquely identify these breakers. The eight circuit breakers and their respective locations are summarized in Table 1 below.

<table>
<thead>
<tr>
<th>AF CB Circuit#</th>
<th>CB Identity</th>
<th>Panel/Location</th>
<th>Rating (Amps)</th>
<th>Bus</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Left Inboard Landing Lights</td>
<td>P18-4 Lighting</td>
<td>7</td>
<td>115VAC Bus No. 1</td>
</tr>
<tr>
<td>2</td>
<td>Navigation Lights</td>
<td>P18-4 Lighting</td>
<td>5</td>
<td>115VAC Bus No. 2</td>
</tr>
<tr>
<td>3</td>
<td>Window Lights</td>
<td>P18-3 Lighting and Passenger Accommodations</td>
<td>10</td>
<td>115VAC Transfer Bus</td>
</tr>
<tr>
<td>4</td>
<td>Left Ceiling Lights</td>
<td>P18-3 Lighting and Passenger Accommodations</td>
<td>15</td>
<td>115VAC Transfer Bus</td>
</tr>
<tr>
<td>5</td>
<td>DME-2</td>
<td>P18-3 Electronic Load Circuit Breaker</td>
<td>3</td>
<td>115VAC Radio Bus No. 2</td>
</tr>
<tr>
<td>6</td>
<td>Heater-Pitot-Aux</td>
<td>P6-1 Miscellaneous AC, Anti-Ice & Rain</td>
<td>5</td>
<td>115VAC Bus No. 2</td>
</tr>
<tr>
<td>7</td>
<td>First Officers Window 4 & 5</td>
<td>P6-1 Miscellaneous AC, Anti-Ice & Rain</td>
<td>5</td>
<td>115 VAC Bus No. 3</td>
</tr>
<tr>
<td>8</td>
<td>Project Power</td>
<td>Project Power Junction Box</td>
<td>10</td>
<td>115VAC Bus No. 2</td>
</tr>
</tbody>
</table>
9.0 NORMAL PROCEDURES

9.1 PREFLIGHT

- Review flight plan with flight crew and all passengers.
- Review emergency procedures with flight crew and all passengers.
- Review all normal procedures with flight crew and all passengers.
- Flight engineer set all bypass switches on the AFCI-JB to normal except S8 (leave in BYPASS) and S1. Leave S1 in BYPASS until Landing light is on, then switch S1 to NORMAL.
- Apply power to the aircraft (Ground power or APU).
- Flight engineer close all AFCBs.
- Turn Odyssey data recorder to ON and wait for system to boot up and initialize. Start recording. Note the date, time, and recording number.
- If on ground power, start APU. Start Odyssey data recording and instruct flight engineer to transfer power from ground power to APU power. Record the date, time, and filename of the recording in the test logbook. Note that the recording was a ground power to APU transfer.
- If on APU power, start aircraft engines. Continue Odyssey data recording and instruct flight engineer to transfer power from APU to engine generators. Record the date, time, and filename of the recording in the test logbook. Note that the recording was an APU to engine generator power transfer.
- Continue the Odyssey data recording. Data will be recorded at the slow rate, 1kHz. Note the date, time, and filename in the test logbook. Also note the general conditions (weather, etc.) at this time.
- Proceed to flight phase in accordance with standard B727 start-up procedures.

9.2 FLIGHT

- Monitor Odyssey data recording system. The visual and aural trigger alarm mounted adjacent to the Odyssey data recorder will initiate when an AFCB has tripped and the Odyssey data recorder will automatically begin recording at the high sampling rate, 100kHz.
- If the trigger-alarm sounds, press the red reset button mounted on the trigger alarm enclosure to silence the trigger and extinguish the trigger alarm lights.
- Note the date, time, and the number of the AFCB(s) that caused the trigger. Also note the flight conditions and other information pertinent to the trigger event in the test logbook. Also note the new file name in the logbook with the start time of the recording.
9.3 POSTFLIGHT

- Continue to follow the flight procedures.
- Prior to engine shutdown, start APU or apply ground power. Switch aircraft power to APU or ground power. Shut engines in accordance with standard B727 operational procedures.
- Download data files from the Odyssey data recorder
- Shutdown the Odyssey data recorder.
- Shutdown aircraft in accordance with standard B727 operational procedures.

- - End of flight test procedures. - -
Arc Fault Circuit Breaker
Flight Test Program

Ground Checkout Procedures

for

Hendry
115 VAC Single Phase
Arc Fault Circuit Breaker (AFCB) Installation

on

FAA Technical Center
Boeing 727-25C Aircraft N40

18 June 2002

FAA William J. Hughes Technical Center
Engineering and Modification Section, ACT-370
Maintenance, Inspection, and Repair Section, AAR-480

Prepared by: R.A. Pappas, AAR-480

Reviewed by: J. Beres, ACT-370

Approved by: Armando Gaetano
Manager, Engineering & Modifications Section, ACT-370
Table of Contents

1.0 INTRODUCTION 7
 1.1 Background 7
 1.2 Objective 7
 1.3 Scope 8
2.0 CERTIFICATION REQUIREMENTS 8
3.0 SYSTEM DESCRIPTION 8
 3.1 Arc Fault Circuit Breakers 8
 3.2 Arc Fault Circuit Interrupter - Junction Box and Aircraft Harnesses 8
 3.3 Instrumentation Equipment 8
 3.4 Aircraft Interfaces 9
 3.5 Power Requirements 9
4.0 AIRCRAFT INSTALLATION 9
 4.1 AFCB Installation Instructions 9
 4.2 Instrumentation Equipment Installation Instructions 9
5.0 GROUND CHECKOUT PROCEDURES 10
 5.1 AFCB Electrical Tests 10
 5.2 AFCB Test Circuit Time Domain Reflectometry Baseline Tests 10
APPENDIX A – AFCB INSTALLATION INSTRUCTIONS / VERIFICATION SHEET 11
APPENDIX B - AFCB ELECTRICAL TEST PROCEDURES / VERIFICATION SHEET 12
APPENDIX C – TIME DOMAIN REFLECTOMETRY BASELINE TEST PROCEDURES / VERIFICATION SHEET 21
1. INTRODUCTION

This document defines the procedures for installing Arc Fault Circuit Breakers (AFCBs) in an FAA owned Boeing 727-25C aircraft and performing a ground test prior to a flight evaluation of the AFCBs. The effort will be conducted by the United States (U.S.) Federal Aviation Administration (FAA) at the William J. Hughes Technical Center (WJHTC), Atlantic City, New Jersey.

1.1 BACKGROUND

The integration of arc fault detection into circuit breakers represents a revolutionary change in circuit protection; which has changed little in the last thirty to forty years. There is abundant evidence of arc faults in all types of aircraft. Laboratory data clearly demonstrates that the current generated during an arcing fault can be very high, yet quite intermittent. The bimetallic elements in thermal breakers do not react quickly enough, if at all, to this ticking arc fault condition. If left unchecked, the arcing condition can develop into an arc tracking condition, potentially destroying a major portion of, or an entire wire bundle. Arcing can also result in many other serious safety hazards.

In 1999, the FAA and the Navy established a joint R&D project to develop aircraft AFCBs. The goal of this effort is to develop a circuit breaker that integrates arc fault protection together with existing thermal protection into a form, fit, and functional replacement of existing thermal circuit breakers. In laboratory testing, the AFCB prototypes have been very effective in the detection of arcing faults.

In contrast to thermal breakers, which are passive in nature, AFCBs actively monitor the circuits on which they are installed. Due to the nature of electrical systems, there are times when a normal condition may ‘look’ similar to an arc fault. When such a condition trips an arc fault circuit breaker, it is defined as a nuisance trip. AFCB designs minimize the occurrence of nuisance tripping and maximize sensitivity to arc fault detection.

To address nuisance tripping, the FAA, Navy, and the AFCB developers, have conducted extensive tests to characterize the normal operation of electrical loads, and perturbations to electrical systems during normal events such as bus transfers, power on/off, transfer of power sources, etc. Laboratory tests today have provided a high level of confidence that nuisance tripping of AFCBs is being successfully controlled.

AFCB development has progressed to the point where flight tests are appropriate to demonstrate compliance with applicable Federal Aviation Regulations (FARs).

1.2 OBJECTIVE

The objective of this task is to conduct an in-flight evaluation of AFCB performance.

The Federal Aviation Administration (FAA), William J. Hughes Technical Center (WJHTC) R&D Flight Program is performing a minor modification to their Boeing 727-25C aircraft. This temporary modification involves the installation of eight AFCB prototypes manufactured by the
Hendry Corporation. The AFCBs are to be installed for a six-month evaluation period in support of AFCB research and development.

1.3 SCOPE

The scope of this effort is to install AFCBs manufactured by Hendry in an FAA owned Boeing 727-25C aircraft and conduct a flight evaluation of the developmental AFCBs. Data recorded includes line voltage, load voltage, and current for each of the installed breakers. Data reduction efforts of any occurring arc faults will include identification of relationships between the trip conditions.

2. CERTIFICATION REQUIREMENTS

The certification request will permit the FAA to temporarily install AFCBs aboard the B727-25C (N40) with the purpose of evaluating the circuit breakers, in-flight, over a six-month period. This will assure that the AFCBs are evaluated against a wide range of actual electrical conditions.

There are no FAA Technical Standard Orders for the equipment being installed during this modification. Experimental flight test is being performed to collect data necessary to obtain a one only STC to install the AFCBs aboard N40 for an extended evaluation period.

3. SYSTEM DESCRIPTION

The equipment being installed for the Arc Fault flight evaluation includes developmental prototype AFCBs installed in a junction box, an instrumentation recorder and interconnecting cables and wire harnesses. These items are described in the following paragraphs.

3.1 ARC FAULT CIRCUIT BREAKERS

Eight (8) - Hendry prototype arc fault circuit breakers of the following ratings: one 2.5 A, three 5A, one 7.5A, one 10A, and two 15A (mounted in AFCI Junction Box).

3.2 ARC FAULT CIRCUIT INTERRUPTER - JUNCTION BOX AND AIRCRAFT HARNESS

One (1) – AFCI-JB.
Two (2) – AFCI-JB Test Unit wire harnesses, P18 and P6

3.3 INSTRUMENTATION EQUIPMENT

One (1) - 24 channel, Nicolet Odyssey data recorder.
One (1) – BNC Breakout Box.
One (1) – AFCI JB – BNC Breakout Box Interface Harness.
Twenty-four (24) – 24-inch BNC connector cables.
One (1) – Trigger Alarm
3.4 AIRCRAFT INTERFACES

The electrical connections for the system are shown schematically in FAA Drawing Number 9854415, Arc Fault Circuit Breaker Wiring. The AFCBs mounted within the AFCI-JB will be electrically in series with the load side of the existing circuit breakers. The AFCI-JB wire harnesses, P-18 and P-6, connect the load side of the each aircraft circuit breaker to the line side of the respective AFCB and from the load side of the each AFCB to the feed wire for the respective load.

3.5 POWER REQUIREMENTS

120VAC 60Hz power is required for power to the Data Acquisition System. The on board Project Power Inverter provides this power.

4. AIRCRAFT INSTALLATION

The electrical, system, and mechanical integration of this installation will be accomplished at Atlantic City International Airport (ACIAP) using FAA technical and engineering personnel. The engineering personnel have been granted authority to approve “electrical systems” and “structures” data via FAA Form 8110-3, by the New York Aircraft Certification Office (NYACO).

The AFCBs will be installed in an Arc Fault Circuit Interrupter-Junction Box (AFCI-JB) that will enclose all the AFCBs and required instrumentation. The AFCBs will not be mounted in the aircraft circuit breaker panels. It is important to note that the AFCBs will be connected in series with the load side of the existing thermal circuit breakers. In other words, current circuit protection aboard the aircraft will not be compromised in any way by this installation.

The AFCI-JB will contain the eight AFCB units. The AFCI-JB will be mounted on the floor in the rear, left side of the flight deck. The test unit will have by-pass switches that will disable the AFCBs if desired. The test unit will be fabricated using standard best practices and in accordance with AC 43.13-1B and contain any possible AFCB failure.

The electrical installation shall be completed in accordance with drawing number 9854415 under the guidance of the WJHTC Electrical Systems Designated Engineering Representative (DER). The mechanical installation shall be completed under the guidance of the WJHTC Mechanical Systems DER.

4.1 AFCB INSTALLATION INSTRUCTIONS

The installation shall be completed in accordance with all existing safety requirements and the necessary approvals shall be obtained in advance of starting the installation.

General instructions for completing the installation can be found at Appendix A.

4.2 INSTRUMENTATION EQUIPMENT INSTALLATION INSTRUCTIONS

The BNC Breakout Box and the Odyssey data recorder will be mounted in the cabin of the aircraft. The AFCI-JB/BNC Breakout Box Interface Harness connects the AFCI-JB to the BNC
Breakout Box. The 24 BNC connectors on the BNC Breakout Box are connected to the Odyssey data recorder with 24” BNC coaxial cables. General instructions for completing the installation can be found at Appendix A.

5. GROUND CHECKOUT PROCEDURES

After completion of the installation the following tests shall be conducted to demonstrate that the AFCB equipment was successfully integrated and operates properly.

5.1 AFCB ELECTRICAL TESTS

After the mechanical and electrical installation of the AFCB equipment has been accomplished the electrical tests presented at Appendix B shall be successfully completed and the results documented to support certification.

5.2 AFCB TEST CIRCUIT TIME DOMAIN REFLECTOMETRY BASELINE TESTS

Time Domain Reflectometry Baseline Tests to characterize the test circuits were performed during the previous series of flight tests using AFCBs from another manufacturer. Since the same test circuits are being used for this test the TDR Baseline Tests will not be performed. The procedures for these tests are shown at Appendix C. If, during integration and other testing, it is determined that a repeat of the TDR testing is required the equipment and contractor are available to support this series of tests.

- - End of Ground Checkout Procedure - -
APPENDIX A – AFCB INSTALLATION INSTRUCTIONS / VERIFICATION SHEET

The installation shall be completed in accordance with all existing safety requirements and the necessary approvals shall be obtained in advance of starting the installation. The following are general instructions for completing the installation. Record completion and any observations in the Completed/Comments column.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Completed/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The two AFCI-JB Interface wire harnesses, P-18 and P-6, shall be connected to the thermal circuit breakers in accordance with FAA Drawing number 9854415. Harness P-18 shall be connected to the following four aircraft circuits: 1. Left Inboard Landing Lights (7.5A) 2. Navigation Lights (5A) 3. Window Lights (10A) 4. Left Ceiling Lights (15A) Harness P-6 shall be connected to the following four aircraft circuits: 1. DME-2 (3A) 2. Auxiliary Pitot Heat (5A) 3. First Officers Window (5A) 4. AC Project Power (15A)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mount the AFCI-JB in the flight deck as per the Mechanical Systems DER instructions.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mount the Odyssey and the BNC Breakout Box in the cabin rack per the Mechanical Systems DER instructions.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Insure that all mounting is secure.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Route the AFCI-JB harnesses and the AFCI-JB/Breakout Box harness. Do not mate the harnesses to the AFCI-JB or the breakout box until electrical tests have been completed. Do not secure the harness until electrical tests have been completed.</td>
<td></td>
</tr>
</tbody>
</table>

- - End of Detailed Installation Instructions - -

Installation completed by _____________________ Verified by _____________________

Name and Date Name and Date
APPENDIX B - AFCB ELECTRICAL TEST PROCEDURES / VERIFICATION SHEET

The following Electrical Test Procedures shall be conducted to verify that there is continuity and no shorts in the AFCB project equipment and aircraft wiring. Record completion and any observations in the Completed/Comments column.

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Completed/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Open the eight (8) aircraft circuit breakers for the circuits being monitored during the AFCB Flight Test Program</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Confirm that the P-18 and P-6 harnesses from the aircraft circuit breaker panels to P1 and P2 on the AFCI-JB are disconnected from the AFCI-JB.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Prior to connecting the harnesses to the AFCI-JB, perform the following continuity and isolation checks performed in accordance with Table 1.</td>
<td></td>
</tr>
</tbody>
</table>

Table 1 – AFCI-JB Checkout

<table>
<thead>
<tr>
<th>AFCI-JB Connector Test Points</th>
<th>AFCB-x Position (Open/Closed) (x =1,2,3,4,5,6,7,8)</th>
<th>AFCB By-Pass Switch S-x (Normal/Bypass) (x = 1,2,3,4,5,6,7,8)</th>
<th>Expected Test Point Condition</th>
<th>Observed Condition (see Note)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1, 1 and 2</td>
<td>AFCB-1, Closed</td>
<td>S-1, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P1, 4 and 5</td>
<td>AFCB-2, Closed</td>
<td>S-2, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P1, 7 and 8</td>
<td>AFCB-3, Closed</td>
<td>S-3, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P1, 10 and 11</td>
<td>AFCB-4, Closed</td>
<td>S-4, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P2, 1 and 2</td>
<td>AFCB-5, Closed</td>
<td>S-5, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P2, 4 and 5</td>
<td>AFCB-6, Closed</td>
<td>S-6, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P2, 7 and 8</td>
<td>AFCB-7, Closed</td>
<td>S-7, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P2, 10 and 11</td>
<td>AFCB-8, Closed</td>
<td>S-8, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P1, 1 and 2</td>
<td>AFCB-1, Open</td>
<td>S-1, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>P1, 4 and 5</td>
<td>AFCB-2, Open</td>
<td>S-2, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>P1, 7 and 8</td>
<td>AFCB-3, Open</td>
<td>S-3, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>P1, 10 and 11</td>
<td>AFCB-4, Open</td>
<td>S-4, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>P2, 1 and 2</td>
<td>AFCB-5, Open</td>
<td>S-5, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>P2, 4 and 5</td>
<td>AFCB-6, Open</td>
<td>S-6, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>P2, 7 and 8</td>
<td>AFCB-7, Open</td>
<td>S-7, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>P2, 10 and 11</td>
<td>AFCB-8, Open</td>
<td>S-8, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>P1, 1 and 2</td>
<td>AFCB-1, Open</td>
<td>S-1, Bypass</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P1, 4 and 5</td>
<td>AFCB-2, Open</td>
<td>S-2, Bypass</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AFCB</td>
<td>S</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>P1, 7 and 8</td>
<td>AFCB-3, Open</td>
<td>S-3, Bypass</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P1, 10 and 11</td>
<td>AFCB-4, Open</td>
<td>S-4, Bypass</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P2, 1 and 2</td>
<td>AFCB-5, Open</td>
<td>S-5, Bypass</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P2, 4 and 5</td>
<td>AFCB-6, Open</td>
<td>S-6, Bypass</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P2, 7 and 8</td>
<td>AFCB-7, Open</td>
<td>S-7, Bypass</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>P2, 10 and 11</td>
<td>AFCB-8, Open</td>
<td>S-8, Bypass</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>AFCB-1, Red &</td>
<td>AFCB-1, Closed</td>
<td>S-1, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>Black Banana</td>
<td>AFCB-2, Red &</td>
<td>S-2, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>Plug Sockets</td>
<td>Black Banana</td>
<td>AFCB-3, Closed</td>
<td>S-3, Normal</td>
<td>Short</td>
</tr>
<tr>
<td>AFCB-3, Red &</td>
<td>AFCB-3, Closed</td>
<td>S-3, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>Black Banana</td>
<td>AFCB-4, Closed</td>
<td>S-4, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>Plug Sockets</td>
<td>AFCB-4, Closed</td>
<td>S-4, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>AFCB-5, Red &</td>
<td>AFCB-5, Closed</td>
<td>S-5, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>Black Banana</td>
<td>AFCB-6, Closed</td>
<td>S-6, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>Plug Sockets</td>
<td>AFCB-6, Closed</td>
<td>S-6, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>AFCB-7, Red &</td>
<td>AFCB-7, Closed</td>
<td>S-7, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>Black Banana</td>
<td>AFCB-8, Closed</td>
<td>S-8, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>Plug Sockets</td>
<td>AFCB-8, Closed</td>
<td>S-8, Normal</td>
<td>Short</td>
<td></td>
</tr>
<tr>
<td>AFCB-1, Red &</td>
<td>AFCB-1, Open</td>
<td>S-1, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Black Banana</td>
<td>AFCB-2, Red &</td>
<td>S-2, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Plug Sockets</td>
<td>Black Banana</td>
<td>AFCB-3, Open</td>
<td>S-3, Normal</td>
<td>Open</td>
</tr>
<tr>
<td>AFCB-3, Red &</td>
<td>AFCB-4, Red &</td>
<td>S-4, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Black Banana</td>
<td>Black Banana</td>
<td>AFCB-5, Open</td>
<td>S-5, Normal</td>
<td>Open</td>
</tr>
<tr>
<td>Plug Sockets</td>
<td>AFCB-5, Open</td>
<td>S-5, Normal</td>
<td>Open</td>
<td></td>
</tr>
<tr>
<td>Step</td>
<td>Procedure</td>
<td>Completed/Comments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Open the eight AFCBs in the AFCI-JB.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>On the AFCI-JB set S-1 through S-8 to Normal.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Open the eight aircraft circuit breakers.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>With aircraft power off, connect harness P-18 to AFCI-JB connector P-1 and harness P-6 to AFCI-JB connector P2.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Apply power (ground power or APU) to the aircraft.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Close the eight aircraft circuit breakers and verify</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Note - A measurement of 2.1 Megohms between test points will be seen when an open condition is expected. This is due to the voltage divider circuit added for instrumentation purposes.
that the associated loads are not energized.

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Set AFCI-JB S-1 to Bypass, turn on using the cockpit switch and verify via visual means that the LEFT INBOARD LANDING LIGHTS are operating. Set S-1 to Normal.</td>
</tr>
<tr>
<td>11</td>
<td>Set AFCI-JB S-2 to Bypass, turn on using the cockpit switch and verify via visual means that the OSCILLATING NAVIGATION LIGHTS are operating. Set S-2 to Normal.</td>
</tr>
<tr>
<td>12</td>
<td>Set AFCI-JB S-3 to Bypass, turn on using the cockpit switch and verify via visual means that the WINDOW LIGHTS – LEFT SIDE are operating. Set S-3 to Normal.</td>
</tr>
<tr>
<td>13</td>
<td>Set AFCI-JB S-4 to Bypass, turn on using the cockpit switch and verify via visual means that the PASSENGER CEILING LIGHTS – LEFT SIDE are operating. Set S-4 to Normal.</td>
</tr>
<tr>
<td>14</td>
<td>Set AFCI-JB S-5 to Bypass, turn on using the cockpit switch and verify via visual means that the DME-2 is operating. Set S-5 to Normal.</td>
</tr>
<tr>
<td>15</td>
<td>Set AFCI-JB S-6 to Bypass, turn on using the cockpit switch and verify via the Pitot Ammeter that the HEATER-PITOT-AUX is operating. Set S-6 to Normal.</td>
</tr>
<tr>
<td>16</td>
<td>Set AFCI-JB S-7 to Bypass, turn on using the cockpit switch and verify via visual means that the FIRST OFFICER’S WINDOW HEATER is operating. Set S-7 to Normal.</td>
</tr>
<tr>
<td>17</td>
<td>Set AFCI-JB S-8 to Bypass, turn on using the cockpit switch and verify that the PROJECT POWER is operating. Set S-8 to Normal.</td>
</tr>
<tr>
<td>18</td>
<td>Close AFCB-1, turn on using the cockpit switch and verify via visual means that the LEFT INBOARD LANDING LIGHTS are operating. Open AFCB-1.</td>
</tr>
<tr>
<td>19</td>
<td>Close AFCB-2, turn on using the cockpit switch and verify via visual means that the OSCILLATING NAVIGATION LIGHTS are operating. Open AFCB-2.</td>
</tr>
<tr>
<td>20</td>
<td>Close AFCB-3, turn on using the cockpit switch and verify via visual means that the WINDOW LIGHTS – LEFT SIDE are operating. Open AFCB-3.</td>
</tr>
<tr>
<td>21</td>
<td>Close AFCB-4, turn on using the cockpit switch and verify via visual means that the PASSENGER CEILING LIGHTS – LEFT SIDE</td>
</tr>
</tbody>
</table>
22 Close AFCB-5, turn on using the cockpit switch and verify via visual means that the DME-2 is operating. Open AFCB-5.

23 Close AFCB-6, turn on using the cockpit switch and verify via the Pitot Ammeter that the HEATER-PITOT-AUX is operating. Open AFCB-6.

24 Close AFCB-7, turn on using the cockpit switch and verify via visual means that the FIRST OFFICER’S WINDOW HEATER is operating. Open AFCB-7.

25 Close AFCB-8, turn on using the cockpit switch and verify that PROJECT POWER is operating. Open AFCB-8.

26 Open the eight aircraft circuit breakers.

27 Connect the P-3 connector on the AFCI-JB to P-4 on the BNC Breakout Box with the AFCI-JB/BNC Breakout Box Interface Harness.

28 Using the 24” BNC connector cables, connect the BNC Breakout Box to the Odyssey data recorder in accordance with Table 2. For the eight channels noted in Table 2, install a 50-Ohm in-line terminator between the BNC cable and the Odyssey data recorder.
Table 2 – Odyssey Channel Assignments

<table>
<thead>
<tr>
<th>From BNC Breakout Box Connector BNC-x (x = 1,2,3…..22,23,24)</th>
<th>To Odyssey Data Recorder Channel Number x (x = 1,2,3…..22,23,24)</th>
<th>50-Ohm In-line Terminator Required? (Y/N)</th>
<th>Measurement Parameter Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNC-1</td>
<td>1</td>
<td>N</td>
<td>AFCB–1 Line Volts</td>
</tr>
<tr>
<td>BNC-9</td>
<td>9</td>
<td>N</td>
<td>AFCB–1 Load Volts</td>
</tr>
<tr>
<td>BNC-17</td>
<td>17</td>
<td>Y</td>
<td>AFCB–1 Current</td>
</tr>
<tr>
<td>BNC-2</td>
<td>2</td>
<td>N</td>
<td>AFCB–2 Line Volts</td>
</tr>
<tr>
<td>BNC-10</td>
<td>10</td>
<td>N</td>
<td>AFCB–2 Load Volts</td>
</tr>
<tr>
<td>BNC-18</td>
<td>18</td>
<td>Y</td>
<td>AFCB–2 Current</td>
</tr>
<tr>
<td>BNC-3</td>
<td>3</td>
<td>N</td>
<td>AFCB–3 Line Volts</td>
</tr>
<tr>
<td>BNC-11</td>
<td>11</td>
<td>N</td>
<td>AFCB–3 Load Volts</td>
</tr>
<tr>
<td>BNC-19</td>
<td>19</td>
<td>Y</td>
<td>AFCB–3 Current</td>
</tr>
<tr>
<td>BNC-4</td>
<td>4</td>
<td>N</td>
<td>AFCB–4 Line Volts</td>
</tr>
<tr>
<td>BNC-12</td>
<td>12</td>
<td>N</td>
<td>AFCB–4 Load Volts</td>
</tr>
<tr>
<td>BNC-20</td>
<td>20</td>
<td>Y</td>
<td>AFCB–4 Current</td>
</tr>
<tr>
<td>BNC-5</td>
<td>5</td>
<td>N</td>
<td>AFCB–5 Line Volts</td>
</tr>
<tr>
<td>BNC-13</td>
<td>13</td>
<td>N</td>
<td>AFCB–5 Load Volts</td>
</tr>
<tr>
<td>BNC-21</td>
<td>21</td>
<td>Y</td>
<td>AFCB–5 Current</td>
</tr>
<tr>
<td>BNC-6</td>
<td>6</td>
<td>N</td>
<td>AFCB–6 Line Volts</td>
</tr>
<tr>
<td>BNC-13</td>
<td>13</td>
<td>N</td>
<td>AFCB–6 Load Volts</td>
</tr>
<tr>
<td>BNC-22</td>
<td>22</td>
<td>Y</td>
<td>AFCB–6 Current</td>
</tr>
<tr>
<td>BNC-7</td>
<td>7</td>
<td>N</td>
<td>AFCB–7 Line Volts</td>
</tr>
<tr>
<td>BNC-14</td>
<td>14</td>
<td>N</td>
<td>AFCB–7 Load Volts</td>
</tr>
<tr>
<td>BNC-23</td>
<td>23</td>
<td>Y</td>
<td>AFCB–7 Current</td>
</tr>
<tr>
<td>BNC-8</td>
<td>Open</td>
<td>N</td>
<td>AFCB–8 Line Volts</td>
</tr>
<tr>
<td>BNC-15</td>
<td>15</td>
<td>N</td>
<td>AFCB–8 Load Volts</td>
</tr>
<tr>
<td>BNC-24</td>
<td>24</td>
<td>Y</td>
<td>AFCB–8 Current</td>
</tr>
<tr>
<td>Coax from AFCI-JB BNC-Trigger</td>
<td>8</td>
<td>N</td>
<td>Odyssey Trigger Input</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Procedure</th>
<th>Completed/Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>Turn on the Odyssey data recorder. The Odyssey data recorder takes several minutes to complete the boot process.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Close the eight aircraft circuit breakers. Verify that the voltage and current inputs to the data recorder are reading zero.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Close AFCB-1, turn on using the cockpit switch and verify via visual means that the LEFT INBOARD LANDING LIGHTS are operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 1, 9, and 17.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Close AFCB-2, turn on using the cockpit switch</td>
<td></td>
</tr>
</tbody>
</table>

G-17
and verify via visual means that the **OSCILLATING NAVIGATION LIGHTS** are operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 2, 10, and 18.

32	Close AFCB-3, turn on using the cockpit switch and verify via visual means that the **WINDOW LIGHTS – LEFT SIDE** are operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 3, 11, and 19.
33	Close AFCB-4, turn on using the cockpit switch and verify via visual means that the **PASSENGER CEILING LIGHTS – LEFT SIDE** are operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 4, 12, and 20.
34	Close AFCB-5, turn on using the cockpit switch and verify via visual means that the **DME** is operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 5, 13, and 21.
35	Close AFCB-6, turn on using the cockpit switch and verify via the Pitot Ammeter that the **HEATER-PITOT-AUX** is operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 6, 14, and 22.
36	Close AFCB-7, turn on using the cockpit switch and verify by via visual means that the **FIRST OFFICER’S WINDOW HEATER** is operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 7, 15, and 23.
37	Close AFCB-8, turn on using the cockpit switch and verify that **PROJECT POWER** is operating. Verify that the voltage and current waveforms are being properly measured on the Odyssey data recorder channels 8, 16 and 24.
38	Open and close the Left Inboard Landing Lights aircraft circuit breaker five times. Verify that AFCB-1 did not nuisance trip during the five open-close cycles.
39	Open and close the Navigation Lights aircraft circuit breaker five times. Verify that AFCB-2 did not nuisance trip during the five open-close
40	Open and close the Window Lights aircraft circuit breaker five times. Verify that AFCB-3 did not nuisance trip during the five open-close cycles.
41	Open and close the Left Ceiling Lights aircraft circuit breaker five times. Verify that AFCB-4 did not nuisance trip during the five open-close cycles.
42	Open and close the DME-2 aircraft circuit breaker five times. Verify that AFCB-5 did not nuisance trip during the five open-close cycles.
43	Open and close the Auxiliary Pitot Heat aircraft circuit breaker five times. Verify that AFCB-6 did not nuisance trip during the five open-close cycles.
44	Open and close the First Officers Window aircraft circuit breaker five times. Verify that AFCB-7 did not nuisance trip during the five open-close cycles.
45	Open and close the AC Project Power aircraft circuit breaker five times. Verify that AFCB-8 did not nuisance trip during the five open-close cycles.
46	With the eight aircraft circuit breakers and the eight AFCBs closed switch from ground power to APU power. Verify that no nuisance trips occurred. Switch from APU power to engine power. Verify that no nuisance trips occurred. Reverse this process and verify that no nuisance trips occurred after each step. Repeat this cycle four additional times.
47	With aircraft electrical power on (ground, APU, or engine) and the aircraft circuit breakers closed, begin recording on the Odyssey by pressing the record button. Open AFCB-1. The trigger alarm shall activate. Close AFCB-1 and reset the trigger alarm. Repeat this process for AFCB-2 through AFCB-8.
48	Turn on RADAR, IFF, RADAR Altimeter, and all Radios
49	With aircraft electrical power on (ground, APU, or engine) and the aircraft circuit breakers and AFCBs closed, test aircraft systems in accordance with the B727 Standard Start-up checklist. An Odyssey data recording shall be made as each load is tested. For voice communication, conduct
transmission checks on each radio. No AFCBs shall nuisance trip during these tests. Confirm that the AFCBs and instrumentation do not interfere with the operation of the aircraft system.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>Save all instrumentation recordings and download to removable disc.</td>
</tr>
<tr>
<td>51</td>
<td>Turn off instrumentation equipment</td>
</tr>
<tr>
<td>52</td>
<td>Set AFCI-JB S1 thru AFCI-JB S8 to BYPASS</td>
</tr>
<tr>
<td>53</td>
<td>Open AFCB-1 through AFCB-8</td>
</tr>
<tr>
<td>54</td>
<td>Shut down Aircraft Power IAW standard operating procedures</td>
</tr>
</tbody>
</table>

--- End of AFCB Electrical Tests ---

Electrical Tests completed by ___________________________ Verified by ___________________________

Name and Date Name and Date
Conduct Time Domain Reflectometry Baseline Tests

The eight AFCB test circuits will be characterized using a Time Domain Reflectometry (TDR) technique. The purpose of this test is to baseline the existing condition of each circuit to be used as a reference benchmark. If an AFCB should trip during flight test, a new TDR measurement of the effected circuit will be conducted and compared to the original benchmark. This will assist in determining the presence and location of the fault. The TDR testing will be conducted by CM Technologies under the supervision of John Beres.

TDR Tools and Equipment:

The tools and equipment listed below shall be supplied by CM Technologies.

- Electrical Characterization and Diagnostics (ECAD™) System 1100. The ECAD™ system injects a pulse of 1V amplitude, and 400μsec pulse width. In the worst case, the maximum energy of the pulse is 8μJ. The pulse applied in the Excited Dielectric Test (EDT), described below, is even lower. The pulse amplitude is only 200 mV and the pulse width is narrower than the 400μsec pulse used in the standard TDR test.

- Agilent 86100A Oscilloscope Mainframe with 54754A Time Domain Reflectometer Plug-in Module.

- Tabor 8020 Function Generator.

- Coupling network, test lead cables, and clips.

TDR Precautions

The ECAD™ System 1100 is designed to test de-energized wires. Computer logic first checks the circuit for AC and DC voltage and will not permit an automatic test if a significant voltage level is found (greater than 5 VDC or VAC). Attempting to test energized wiring may damage the ECAD instrumentation and/or represent a safety hazard to test personnel.

TDR Test Supervision

The WJHTC Electrical Systems DER is responsible for managing the arc fault circuit breaker installation and testing aboard N40. The CM Technologies field engineer shall discuss the test plan with the Electrical Systems DER to ensure compliance with all applicable FAA quality and/or testing procedures.
The WJHTC Electrical Systems DER (or designee) shall be responsible for opening any panels to gain access to breakers, opening breakers to de-energize circuits, and restoring the circuits to an operational (pre-test) condition.

TDR Procedure

ECAD

System 1100 Equipment Setup:
- Locate the ECAD System 1100 near the circuits to be tested. Ideally, the equipment will be located within 10 to 25 feet from the test location.
- Provide the equipment with a source of 120 VAC, 60 Hz power.
- Connect power, signal, and test leads to the equipment as required.
- Turn on the ECAD System 1100 and start the data acquisition software.
- Load the AFCB database files.
- Execute the system self-test. The self-test checks the proper operation of each instrument card and measures the electrical properties associated with the test lead.

ECAD Testing:
- Select the device/circuit to be tested from the ECAD AFCB database.
- Verify the circuit to be tested matches the circuit descriptive data (CDD) displayed in the ECAD software. Also, verify the circuit to be tested is de-energized.
- Connect the ECAD test clips to the circuit as indicated in the HIGH TEST PT and LOW TEST PT fields of the CDD screen.
- Using a digital multi-meter, measure resistance from the conductor to aircraft ground. If resistance is less than 500kΩ stop the test and troubleshoot the circuit wiring. If greater than 500kΩ, proceed to next step.
- The Insulation Resistance (IR) TEST VOLTS field of the CDD screen indicates the MAXIMUM IR test voltage that is allowed. The maximum applied voltage will be 50VDC. Testing at voltages greater than this value could damage circuit components. A value of zero (0) volts in this field indicates that an IR test is not to be performed for this configuration.
- Initiate a TEST of the selected configuration.
- Review the measurement data as required.
- Repeat ECAD Testing steps until all of the eight circuits have been characterized.

Excited Dielectric Test (EDT) Equipment Setup:
- Locate the EDT test equipment near the circuits to be tested. Ideally, the equipment will be located within 10 to 25 feet from the test location.
- Provide the equipment with a source of 120 VAC, 60 Hz power.
- Connect power, signal, and test leads to the equipment as required.
- Turn on the Agilent 86100A.

EDT Testing:
- Connect the alligator test clips to the same test locations that were used during the ECAD testing.
- Acquire three (3) TDR signatures using three (3) forcing function frequencies. The three frequencies will be determined from the insulation materials used in the circuit under test.
- Waveforms will be named and saved for storage in the Agilent 86100A.
- Review the TDR waveform as required.
- Repeat EDT Testing steps until all of the test configurations have been completed.

Circuit Restoration:
- Disconnect all test clips.
- Restore the circuit to normal as directed by the Electrical Systems DER.
- Perform functional test on the restored circuit, if needed.

--- End of Time Domain Reflectometry Baseline Tests ---

Attach test results to this verification sheet.

TDR Tests completed by ____________________________ Verified by ____________________________

Name and Date ____________________________ Name and Date ____________________________
Hendry Flight Test Records

Hendry Flight Test Hours

<table>
<thead>
<tr>
<th>Flight</th>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>In Service Time</th>
<th>Block Time</th>
<th>Cumulative In Service</th>
<th>Cumulative Block</th>
<th>Circuit Breaker Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/5/02</td>
<td>KACY</td>
<td>local</td>
<td>1.2</td>
<td>1.6</td>
<td>1.2</td>
<td>1.6</td>
<td>12.8</td>
</tr>
<tr>
<td>2</td>
<td>8/6/02</td>
<td>KACY</td>
<td>KSYR</td>
<td>2.2</td>
<td>2.3</td>
<td>3.4</td>
<td>3.9</td>
<td>18.4</td>
</tr>
<tr>
<td>3</td>
<td>8/6/02</td>
<td>KSYR</td>
<td>KACY</td>
<td>0.9</td>
<td>1.3</td>
<td>4.3</td>
<td>5.2</td>
<td>10.4</td>
</tr>
<tr>
<td>4</td>
<td>8/15/02</td>
<td>KACY</td>
<td>KGTF</td>
<td>4.3</td>
<td>4.5</td>
<td>8.6</td>
<td>9.7</td>
<td>36.0</td>
</tr>
<tr>
<td>5</td>
<td>8/15/02</td>
<td>KGTF</td>
<td>KBFI</td>
<td>1.4</td>
<td>1.7</td>
<td>10.0</td>
<td>11.4</td>
<td>13.6</td>
</tr>
<tr>
<td>6</td>
<td>8/16/02</td>
<td>KBFI</td>
<td>KACY</td>
<td>4.2</td>
<td>4.5</td>
<td>14.2</td>
<td>15.9</td>
<td>36.0</td>
</tr>
<tr>
<td>7</td>
<td>8/19/02</td>
<td>KACY</td>
<td>KGTF</td>
<td>4.4</td>
<td>4.5</td>
<td>18.6</td>
<td>20.4</td>
<td>36.0</td>
</tr>
<tr>
<td>8</td>
<td>8/19/02</td>
<td>KGTF</td>
<td>KANC</td>
<td>3.8</td>
<td>4.2</td>
<td>22.4</td>
<td>24.6</td>
<td>33.6</td>
</tr>
<tr>
<td>9</td>
<td>8/20/02</td>
<td>KANC</td>
<td>local</td>
<td>0.1</td>
<td>0.4</td>
<td>22.5</td>
<td>25.0</td>
<td>3.2</td>
</tr>
<tr>
<td>10</td>
<td>8/23/02</td>
<td>KACY</td>
<td>local</td>
<td>1.9</td>
<td>2.1</td>
<td>24.4</td>
<td>27.1</td>
<td>16.8</td>
</tr>
<tr>
<td>11</td>
<td>9/23/02</td>
<td>KACY</td>
<td>KMIA</td>
<td>2.3</td>
<td>2.5</td>
<td>26.7</td>
<td>29.6</td>
<td>20.0</td>
</tr>
<tr>
<td>12</td>
<td>9/24/02</td>
<td>KMIA</td>
<td>TSJ</td>
<td>2.3</td>
<td>2.5</td>
<td>29.0</td>
<td>32.1</td>
<td>20.0</td>
</tr>
<tr>
<td>13</td>
<td>9/24/02</td>
<td>TSJ</td>
<td>KMIA</td>
<td>2.4</td>
<td>2.6</td>
<td>31.4</td>
<td>34.7</td>
<td>20.8</td>
</tr>
<tr>
<td>14</td>
<td>9/25/02</td>
<td>KMIA</td>
<td>KMIA</td>
<td>3.1</td>
<td>3.5</td>
<td>34.5</td>
<td>38.2</td>
<td>25.5</td>
</tr>
<tr>
<td>15</td>
<td>9/26/02</td>
<td>KMIA</td>
<td>KMIA</td>
<td>2.4</td>
<td>2.6</td>
<td>36.9</td>
<td>40.8</td>
<td>20.8</td>
</tr>
<tr>
<td>16</td>
<td>9/26/02</td>
<td>KMIA</td>
<td>KACY</td>
<td>2.1</td>
<td>2.5</td>
<td>39.0</td>
<td>43.3</td>
<td>20.0</td>
</tr>
<tr>
<td>17</td>
<td>9/30/02</td>
<td>KACY</td>
<td>KGTF</td>
<td>4.1</td>
<td>4.3</td>
<td>43.1</td>
<td>47.6</td>
<td>34.4</td>
</tr>
<tr>
<td>18</td>
<td>9/30/02</td>
<td>KGTF</td>
<td>KBFI</td>
<td>1.3</td>
<td>1.5</td>
<td>44.4</td>
<td>49.1</td>
<td>12.0</td>
</tr>
<tr>
<td>19</td>
<td>9/30/02</td>
<td>KBFI</td>
<td>KBFI</td>
<td>2.3</td>
<td>2.6</td>
<td>46.7</td>
<td>51.7</td>
<td>20.8</td>
</tr>
<tr>
<td>20</td>
<td>9/30/02</td>
<td>KBFI</td>
<td>KBFI</td>
<td>2.4</td>
<td>2.8</td>
<td>49.1</td>
<td>54.5</td>
<td>22.4</td>
</tr>
<tr>
<td>21</td>
<td>10/1/02</td>
<td>KBFI</td>
<td>KBFI</td>
<td>2.3</td>
<td>2.5</td>
<td>51.4</td>
<td>57.0</td>
<td>20.0</td>
</tr>
<tr>
<td>22</td>
<td>10/1/02</td>
<td>KBFI</td>
<td>KBFI</td>
<td>2.3</td>
<td>2.6</td>
<td>53.7</td>
<td>59.6</td>
<td>20.8</td>
</tr>
<tr>
<td>23</td>
<td>10/2/02</td>
<td>KBFI</td>
<td>KBFI</td>
<td>3.1</td>
<td>3.3</td>
<td>56.8</td>
<td>62.9</td>
<td>26.4</td>
</tr>
<tr>
<td>24</td>
<td>10/3/02</td>
<td>KBFI</td>
<td>KGRB</td>
<td>3.1</td>
<td>3.3</td>
<td>56.8</td>
<td>62.9</td>
<td>26.4</td>
</tr>
<tr>
<td>25</td>
<td>10/3/02</td>
<td>KGRB</td>
<td>KGRB</td>
<td>2.6</td>
<td>3.1</td>
<td>59.4</td>
<td>66.0</td>
<td>24.8</td>
</tr>
<tr>
<td>26</td>
<td>10/4/02</td>
<td>KGRB</td>
<td>KACY</td>
<td>1.7</td>
<td>2.2</td>
<td>61.1</td>
<td>68.2</td>
<td>17.6</td>
</tr>
<tr>
<td>27</td>
<td>10/6/02</td>
<td>KACY</td>
<td>KGRB</td>
<td>1.8</td>
<td>2.0</td>
<td>62.9</td>
<td>70.2</td>
<td>16.0</td>
</tr>
<tr>
<td>28</td>
<td>10/6/02</td>
<td>KGRB</td>
<td>KGRB</td>
<td>2.1</td>
<td>2.3</td>
<td>65.0</td>
<td>72.5</td>
<td>18.4</td>
</tr>
<tr>
<td>29</td>
<td>10/7/02</td>
<td>KGRB</td>
<td>KGRB</td>
<td>1.6</td>
<td>1.8</td>
<td>66.6</td>
<td>74.3</td>
<td>14.4</td>
</tr>
<tr>
<td>30</td>
<td>10/8/02</td>
<td>KGRB</td>
<td>KGRB</td>
<td>2.5</td>
<td>2.7</td>
<td>69.1</td>
<td>77.0</td>
<td>21.6</td>
</tr>
<tr>
<td>31</td>
<td>10/8/2</td>
<td>KGRB</td>
<td>KGTF</td>
<td>1.6</td>
<td>1.8</td>
<td>70.7</td>
<td>78.8</td>
<td>14.4</td>
</tr>
<tr>
<td>32</td>
<td>10/9/02</td>
<td>KGTF</td>
<td>KGTF</td>
<td>1.6</td>
<td>1.9</td>
<td>72.3</td>
<td>80.7</td>
<td>15.2</td>
</tr>
<tr>
<td>33</td>
<td>10/9/02</td>
<td>KGTF</td>
<td>KGTF</td>
<td>1.6</td>
<td>1.7</td>
<td>73.9</td>
<td>82.4</td>
<td>13.6</td>
</tr>
<tr>
<td>34</td>
<td>10/10/02</td>
<td>KGTF</td>
<td>KGTF</td>
<td>1.5</td>
<td>1.8</td>
<td>75.4</td>
<td>84.2</td>
<td>14.4</td>
</tr>
<tr>
<td>35</td>
<td>10/11/02</td>
<td>KGTF</td>
<td>KACY</td>
<td>3.6</td>
<td>3.8</td>
<td>79.0</td>
<td>88.0</td>
<td>30.4</td>
</tr>
</tbody>
</table>

H-3
FAA AIRCRAFT REQUEST AND USE RECORD

1. Source of Aircraft
 • FAA • Rental • Out of Agency

2. Type of Aircraft Desired
 • FAR 91 • FAR 121 • Public

3. Date Requested
 8/15/92

4. Justification. (Explain why agency/Stakeholder Aircraft is being used. Show proposed Charity factor, number of passengers and crew, estimated flight hours, and rental cost.)

DATA COLLECTION AND SYSTEM
EVALUATION IN ACCORDANCE WITH
APPROVED FLIGHT TEST PLAN AND
APPROVED WEEKLY FLIGHT SCHEDULE

<table>
<thead>
<tr>
<th>Approval Required Before Flight</th>
<th>Signature</th>
<th>Printed Name</th>
<th>Brt Symbol</th>
<th>Date</th>
</tr>
</thead>
</table>

5. Requested By:

6. Approved By:

7. Chief or Regional
 Council Approval:
 (below record)

8. Aircraft Used
 • $72.7

9. Aircraft Registration
 (if different)
 • N490D

10. Activity
 • RDFP

11. User Organization
 • T-1706481

12. Restoration Account
 • T-1706481

13. Purpose of Flight
 (paid code)
 • Evaluation
 • Currency
 • Transportation
 • Check Flight

14. Time
 • Audit
 • Inspection
 • Training

15. Passengers
 • FAA • NAR • Other

16. Crew Data
 • Flight
 • B. Time

17. Rental Aircraft Data
 • Days

18. Fuel
 • Cost

FAA Form 4852-2 (9/97) printed 06/03-04/83-0020; Supervisor printed edition

AFTER FLIGHT: Fill in Remaining Officer Information

H-4
FAA Aircraft Request and Use Record

Aircraft Request

<table>
<thead>
<tr>
<th>Approval Requested By:</th>
<th>Signature</th>
<th>Printed Name</th>
<th>Rig Symbol</th>
<th>Date</th>
</tr>
</thead>
</table>

Aircraft Used

- Model: 727
- Registration: N740D
- Activity: T7008481

Purpose of Flight

- 01. Evaluation
- 07. Formal Training
- 08. Proficiency Check

Itinerary

<table>
<thead>
<tr>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>Time Out</th>
<th>Time in Service</th>
<th>Block Out</th>
<th>Time in</th>
<th>Block in</th>
<th>Time in</th>
<th>Block in</th>
<th>Block to Block</th>
<th>Name</th>
<th>RTG Symbol or Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/7/87</td>
<td>KSLF</td>
<td>KAA</td>
<td>1635</td>
<td></td>
<td>1530</td>
<td>0.9</td>
<td>1.3</td>
<td>S. Ranbazzo</td>
<td>A-C-B-D</td>
<td>KSLF - KAA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/8/87</td>
<td>KAA</td>
<td>MCO</td>
<td>0845</td>
<td></td>
<td>1130</td>
<td>2.5</td>
<td>3.0</td>
<td>M. McEddy</td>
<td></td>
<td>KAA - MCO</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crew Data

<table>
<thead>
<tr>
<th>Crew Identification</th>
<th>Rank</th>
<th>Category</th>
<th>Call Sign</th>
<th>Status</th>
<th>Start/End Time</th>
<th>Hours</th>
<th>Checked In</th>
<th>Checked Out</th>
<th>P</th>
<th>N</th>
<th>O</th>
<th>D</th>
<th>N</th>
<th>Hold</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beuhl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0700-0600</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faber</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0700-0600</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tatham</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0700-0600</td>
<td></td>
<td></td>
<td></td>
<td>P</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Previous Aircraft Data

- Method of Payment: 17b. Charges
- Contact at FPA: Rental
- Contact #: ___________________
- Action Card: $ ___________________
- Cancellation: $ ___________________
- 3rd Party Check: $ ___________________
- Purchase Order: $ ___________________

Footnotes

- FAA Form 4244-9 (6/87) D4-90 (04/11/80-08/19/82) Superseded previous versions

Data Collection and System

Evaluation in accordance with approved flight test plan and approved weekly flight schedule.
FAA Aircraft Request and Use Record

Data Collection and System Evaluation in Accordance with Approved Flight Test Plan and Approved Weekly Flight Schedule

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA</td>
<td>B-727</td>
<td>FAR 91</td>
<td>FAR 125</td>
<td>8/8/2002</td>
</tr>
</tbody>
</table>

Justification
(Explain why Agency/Personal Aircraft is being used. Show proposed itinerary, number of passengers and crew, estimated flight hours, and rental costs.)

Signature

<table>
<thead>
<tr>
<th>Approved By</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Signature]</td>
</tr>
</tbody>
</table>

Type Aircraft Used

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B-727</td>
<td>33</td>
<td>40</td>
<td>T</td>
<td>RDPP</td>
<td>T1708481</td>
</tr>
</tbody>
</table>

Purpose of Flight

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01. Automotive</td>
<td>08. Maintenance</td>
</tr>
<tr>
<td>02. Camera</td>
<td>09. Logistics</td>
</tr>
<tr>
<td>03. Transportation</td>
<td>10. Reimbursable</td>
</tr>
<tr>
<td>04. Check Flight</td>
<td>11. Test & Fort</td>
</tr>
<tr>
<td>05. Logistics</td>
<td>12. Accident Investigation</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Itinerary

<table>
<thead>
<tr>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>Flight</th>
<th>Block-out</th>
<th>Time in Service</th>
<th>Block-in</th>
<th>Time in Block</th>
<th>Full Name of Passenger(s) (Continue on reverse or attach)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/8/2002</td>
<td>BFI</td>
<td>ACV</td>
<td>8:00</td>
<td>05:18</td>
<td>05:20</td>
<td>13:01</td>
<td>12:45, 4:50</td>
<td></td>
</tr>
</tbody>
</table>

Total Time in Service (Takeoff to landing)
1.2

Total Flight Time (Block to Block)
4.5

Crew Data

Crew Identification	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z			
Van, J																													
Filer, J																													
Taheny, J																													
Blewey, J	C284																												

Aircraft Data

| 17a. Method of Payment | 17b. Charge
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Contractor / BPA rental line</td>
<td>A. Total rental time, hrs / mins</td>
</tr>
<tr>
<td></td>
<td>B. Cost / Hr</td>
</tr>
<tr>
<td></td>
<td>C. Rental Cost</td>
</tr>
<tr>
<td></td>
<td>D. Other Cost</td>
</tr>
<tr>
<td></td>
<td>E. Total Cost</td>
</tr>
</tbody>
</table>

Notes

<table>
<thead>
<tr>
<th>17c. Aircraft Rented From (Name, Address, and Phone)</th>
<th>18. Fee</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H-7
FAA AIRCRAFT REQUEST AND USE RECORD

3. Type Aircraft Desired: B-727
4. Class of Flight: FAR 121
5. Date Required: 8/19/2002

DATA COLLECTION AND SYSTEM
EVALUATION IN ACCORDANCE WITH
APPROVED FLIGHT TEST PLAN AND
APPROVED WEEKLY FLIGHT SCHEDULE

7. Type Aircraft Used: B-727
8. AOA, Code or Rental Category: 33
9. Registration (N) Number: HO
10. Activity: RDFP
12. Reimbursement Amount: 7706881

13. Purpose of Flight
 (H1 - 100, E1 - 101, M1 - 211, B1 - 202, M2 - 203)
 - H1 - Test Flights
 - M1 - Training Flights
 - B1 - Ferry Flights
 - M2 - Flight Testing

14. Itinerary

<table>
<thead>
<tr>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>Black Out</th>
<th>Time in Service</th>
<th>Block Out</th>
<th>Time in Soc</th>
<th>Block in Black</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/19/00</td>
<td>A00</td>
<td>GF</td>
<td>09:15</td>
<td>00:00</td>
<td>09:15</td>
<td>00:30</td>
<td>12:45</td>
<td>00:00</td>
</tr>
</tbody>
</table>

15. Passengers

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAUGHN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EHRHART</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAYLOR</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BERRY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Flight Time (Block to Block)

<table>
<thead>
<tr>
<th>Crew</th>
<th>Flight Time (Block to Block)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8.7</td>
</tr>
</tbody>
</table>

17. Rental Aircraft Data

<table>
<thead>
<tr>
<th>Contract #</th>
<th>Total Rental Time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of Payment</th>
<th>Charges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Purchase Order</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10,837</td>
</tr>
</tbody>
</table>

AFTER FLIGHT: Request Approving Officer Initials
FAA Aircraft Request and Use Record

Source of Aircraft:
- FAA

Type of Aircraft Requested:
- B-727

Type of Flight:
- FAR 91

Date Requested:
- 8/10/2002

Justification:
(Explain why Aircraft is being used. Include: number of passengers and crew, estimated flight hours, and additional details)

Data Collection and System Evaluation

Approved Flight Test Plan and Approved Weekly Flight Schedule

<table>
<thead>
<tr>
<th>Aircraft Request</th>
<th>Signature</th>
<th>Printed Name</th>
<th>Reg. Number</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft: B-727</td>
<td>33</td>
<td>H0</td>
<td>T</td>
<td>170 8/18</td>
</tr>
</tbody>
</table>

Registration Number:
- H0

User Organization:
- T

Activity:
- RDP

Reimbursable Account:
- 170 8/18

Type of Flight:
- Evaluation

Purpose of Flight:
- Test & Ferry

Itinerary:

<table>
<thead>
<tr>
<th>Date</th>
<th>From</th>
<th>To</th>
<th>Block Out</th>
<th>Time in Service</th>
<th>Block In</th>
<th>Time in Block</th>
<th>Block Out</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Passengers:
- 1

Full Name of Passenger(s):
- A. N.

Flight Time (in Hours and Minutes):
- 1.0

<table>
<thead>
<tr>
<th>Crew Data</th>
<th>Flight Time (in Hours and Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crew Identification:
- Van Hoy, L
- Elkhart, N
- Tatham, T

Rental Aircraft Data:

Method of Payment:
- Contract or SPA rental

Contract #:
- []

A. Total Flight Time:
- []

Other Cost:
- []

Total Cost:
- $415

Aircraft Rental From:
- []

Type:
- [] AVGas
- [] C - Commercial
- [] D - Direct

Cost:
- [] []

How Purchased:
- []

Date:
- 8/10/2002

Crew:
- []

Additional Details:
- []

Note:
- After flight, place in home office binder.

H-9
FAA AIRCRAFT REQUEST AND USE RECORD

Use of FAA Aircraft shall be in compliance with 49 U.S.C. 44552a

1. Aircraft Used
- **Registration:** N33
- **Type:** B-72

2. Aircraft Data
- **Activity:** T
- **User Organization:** R&DPP
- **Reimbursement Account:** 7170 8491

3. Date
- **Request Date:** 8/23/02
- **Flight Date:** 8/23/02

4. Approval
- **Requested By:**
- **Approved By:**
- **Approved:**
- **Chief or Regional Officer Approving:**

5. Purpose of Flight
- **Type:**
 - 03. Check Flight
- **Category:**
 - 08. Professional Training

6. Data Collection and System
- **Evaluation in Accordance With:**
- **Approved Flight Test Plan:**
- **Approved Weekly Flight Schedule:**

7. Aircraft Information
- **Airline:**
- **Carve Data:**
 - **Crew Data:**
 - **Flight Time:**
 - **Flight Hours:**
 - **Total Flight Time:**
 - **Block Time:**
 - **Total Flight Time (Block to Block):**
 - **Flight Days:**
 - **Flight Hours:**
 - **Updated:**

8. Flight Time
- **Flight Hours:**
- **Flight Days:**

9. Method of Payment
- **Method:**
- **Contact or FAA contact:**
- **Contact:**
- **Account:**
- **Account:**
- **Account:**

10. Aircraft Data
- **Aircraft Data:**
- **Aircraft Type:**
- **Aircraft Hours:**
- **Aircraft Hours:**
- **Aircraft Hours:**

11. Flight Time
- **Flight Time:**

12. Flight Hours
- **Flight Hours:**
Aircraft / Simulator Request and Approval Data

<table>
<thead>
<tr>
<th>1. Source of Aircraft</th>
<th>2. Aircraft Type Desired</th>
<th>3. Date(s) Required</th>
<th>4. Type of Flight</th>
<th>5. Passenger Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVY</td>
<td>0 Rental</td>
<td>9/23/22</td>
<td>FAR 91</td>
<td>Reportable to GSA: 0 Yes / 0 No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Space Available for passengers: 0 Yes</td>
</tr>
</tbody>
</table>

JRF Codes:
- 01. Evaluation
- 04. Check Flight
- 07. Formal Training
- 15. Observation Flight
- 17. Ground Time
- 18. Procedure
- 19. Repositioning
- 20. R&D
- 28. Test & Ferry

Justification:

DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH
APPROVED FLIGHT TEST PLAN AND ANNEXED WEEKLY FLIGHT SCHEDULE

Aircraft Utilization Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>VT809873736</td>
<td>RDEP</td>
<td>T30653675</td>
<td>T</td>
<td>RDEP</td>
<td>T30653675</td>
</tr>
</tbody>
</table>

Flight

<table>
<thead>
<tr>
<th>Flight</th>
<th>Signature</th>
<th>Printed Name / Title</th>
<th>Rig Symbol</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Itinerary

<table>
<thead>
<tr>
<th>Leg #</th>
<th>POF 1</th>
<th>POF 2</th>
<th>e. From</th>
<th>f. To</th>
<th>g. Block Out</th>
<th>h. Takeoff</th>
<th>i. Landing</th>
<th>j. Block In</th>
<th>k. Time in Flight (TFF)</th>
<th>l. Total Time (TOT)</th>
<th>m. # of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ACY</td>
<td>MIA</td>
<td>1945</td>
<td>56088</td>
<td>50741315</td>
<td>2</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Crew Member Accomplishments

<table>
<thead>
<tr>
<th>Flight Time (Enter Flight Times in Hours and Tenths)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. CREW #</td>
</tr>
<tr>
<td>--</td>
</tr>
<tr>
<td>CT014 Student</td>
</tr>
<tr>
<td>CT024 Michael</td>
</tr>
<tr>
<td>CT024 Michael</td>
</tr>
<tr>
<td>CT024 Michael</td>
</tr>
</tbody>
</table>

Fuel Data

<table>
<thead>
<tr>
<th>How Purchased</th>
<th>c. KV</th>
<th>d. Jet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After Flight

AFTER FLIGHT: Return to Approving Office without Delay

FAA Form 4040-6 R&D Flight Program Only
Aircraft / Simulator Request and Approval Data

<table>
<thead>
<tr>
<th>1. Source of Aircraft</th>
<th>2. Aircraft Type Desired</th>
<th>3. Date(s) Required</th>
<th>4. Type of Flight</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFAA</td>
<td>C-727</td>
<td>9/23/02</td>
<td>FAA 91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Passenger Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reportable to USA</td>
</tr>
<tr>
<td>Space Available for Passengers</td>
</tr>
</tbody>
</table>

Justification:

DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Aircraft Utilization Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>T</td>
<td>RFD</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Itinerary

<table>
<thead>
<tr>
<th>Leg #</th>
<th>POF 1</th>
<th>POF 2</th>
<th>From</th>
<th>To</th>
<th>Block Out</th>
<th>Takeoff</th>
<th>Landing</th>
<th>Block In</th>
<th>Time in Service (TIS)</th>
<th>Total Time (TOT)</th>
<th># of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>MIA</td>
<td>SSJ</td>
<td>12:45</td>
<td>50811</td>
<td>1105</td>
<td>11:15</td>
<td>2:3</td>
<td>2:5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>558</td>
<td>MIA</td>
<td>16:30</td>
<td>55952</td>
<td>2:10</td>
<td>1:55</td>
<td>2:4</td>
<td>2:6</td>
<td></td>
</tr>
</tbody>
</table>

Crew Member Accomplishments

<table>
<thead>
<tr>
<th>Crew #</th>
<th>PI</th>
<th>Flight Time (Enter Flight Times in Hours and Tenths)</th>
</tr>
</thead>
<tbody>
<tr>
<td>004</td>
<td></td>
<td>2:5 2:4 2:5</td>
</tr>
<tr>
<td>010</td>
<td></td>
<td>2:6 2:5</td>
</tr>
<tr>
<td>022</td>
<td></td>
<td>1:0 1:1</td>
</tr>
<tr>
<td>004</td>
<td></td>
<td>1:0 1:1</td>
</tr>
</tbody>
</table>

Fuel Data

<table>
<thead>
<tr>
<th>21. Fuel Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>How Purchased</td>
</tr>
<tr>
<td>---------------</td>
</tr>
<tr>
<td>a. Fuel Ticket #</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

FAA Form 4040-8 R&D Flight Program Only

AFTER FLIGHT: Return to Approving Office without Delay

H-12
DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH
APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Airplane / Simulator Request and Approval Data

1. Source of Aircraft
 - FAA
 - Rental

2. Aircraft Type Desired
 - B737

3. Date(s) Required
 - 2/25/82

4. Type of Flight Required
 - FAR 81

5. Passenger Information
 - Reportable to ODA
 - Yes
 - Space Available for passengers
 - Yes

Justification:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>03. Transportation</td>
<td>R&D</td>
<td>10. Test & Ferry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Approval Required Before Flight

7. Requested by

8a. Approved by

8b. Approved by

9. Aircraft Utilization Data

|---------------------------|---------------------------|--------------------|--------------|----------------|--------------------------|

15. Itinerary

<table>
<thead>
<tr>
<th>16. Crew Member Accomplishments</th>
<th>Flight Time (Enter Flight Times in Hours and Tenths)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17. Fuel Data</th>
<th>How Purchased</th>
<th>M = Military</th>
<th>D = Contract</th>
<th>B = Bulk</th>
<th>O = Other</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>a. Fuel Ticket #</th>
<th>b. AV or Jet</th>
<th>c. How Purchased</th>
<th>d. # Liners Purchased</th>
<th>e. # Gallons Purchased</th>
<th>f. Cost of Fuel</th>
</tr>
</thead>
</table>

FAA Form 4040-6 R&D Flight Program Only

AFTER FLIGHT: Return to Approving Office without Delay
DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Approval Requester's Name: [Signature]
Printed Name / Title: [Printed Name]
Reg Symbol: [Reg Symbol]
Date: [Date]

Aircraft Utilization Data

<table>
<thead>
<tr>
<th>Registration (N) Number</th>
<th>Aircraft Make / Model</th>
<th>Aircraft Class</th>
<th>User Code</th>
<th>Cost Center</th>
</tr>
</thead>
<tbody>
<tr>
<td>MY40</td>
<td>38</td>
<td>37</td>
<td>T</td>
<td>RDP</td>
</tr>
</tbody>
</table>

Itinerary

<table>
<thead>
<tr>
<th>Leg #</th>
<th>POF 1</th>
<th>POF 2</th>
<th>From</th>
<th>To</th>
<th>Block Out</th>
<th>Takeoff</th>
<th>Landing</th>
<th>Block In</th>
<th>Time in Service (TIS)</th>
<th>Total Time (TOT)</th>
<th># of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MIA</td>
<td>MIA</td>
<td>0910</td>
<td>1115</td>
<td>314</td>
<td>114</td>
<td>21</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MIA</td>
<td>ALY</td>
<td>1315</td>
<td>1510</td>
<td>316</td>
<td>116</td>
<td>21</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

To: [Total Time (TOT)]: 4.5
of Passengers: 1

Crew Member Accomplishments

<table>
<thead>
<tr>
<th>Crew #</th>
<th>Name</th>
<th>Date 1</th>
<th>Date 2</th>
<th>Date 3</th>
<th>Date 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD10</td>
<td>Garcia</td>
<td>07/10</td>
<td>07/10</td>
<td>07/10</td>
<td>07/10</td>
</tr>
<tr>
<td>CD10</td>
<td>Rivas</td>
<td>07/15</td>
<td>07/15</td>
<td>07/15</td>
<td>07/15</td>
</tr>
<tr>
<td>CD10</td>
<td>Martin</td>
<td>07/20</td>
<td>07/20</td>
<td>07/20</td>
<td>07/20</td>
</tr>
</tbody>
</table>

Fuel Data

<table>
<thead>
<tr>
<th>Fuel Ticket #</th>
<th>Gas</th>
<th>Jet</th>
<th>How Purchased</th>
<th>Purchased</th>
<th>Cost of Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAA Form 4040-6 R&D Flight Program Only

AFTER FLIGHT: Return to Approving Office without Delay
Aircraft / Simulator Request and Approval Data

<table>
<thead>
<tr>
<th>1. Source of Aircraft</th>
<th>2. Aircraft Type Desired</th>
<th>3. Date(s) Required</th>
<th>4. Type of Flight</th>
<th>5. Passenger Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>X FAA</td>
<td>B 727</td>
<td>7/30/72</td>
<td>FAR 81</td>
<td>Reportable to GSA 0 Yes 0 No Space Available for passengers 0 Yes</td>
</tr>
</tbody>
</table>

Justification:

- DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Approvals required below

<table>
<thead>
<tr>
<th>7. Requested by</th>
<th>8a. Approved by</th>
<th>8b. Approved by</th>
<th>9C. CAA or Regional Counsel Approval</th>
</tr>
</thead>
</table>

Aircraft Utilization Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N 40</td>
<td>B 727</td>
<td>3</td>
<td>T</td>
<td>RDPF</td>
<td>T0710 E</td>
</tr>
</tbody>
</table>

15. Itinerary

<table>
<thead>
<tr>
<th>Leg #</th>
<th>From</th>
<th>To</th>
<th>A</th>
<th>Block Out</th>
<th>B</th>
<th>Takeoff</th>
<th>C</th>
<th>Landing</th>
<th>Block In</th>
<th>Total Time (TTS)</th>
<th>Total Time (TOT)</th>
<th>Number of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BACY</td>
<td>CY</td>
<td>4</td>
<td>9:30</td>
<td>5</td>
<td>14:00</td>
<td>3</td>
<td>15:00</td>
<td>4:1</td>
<td>4.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CGTF</td>
<td>CF</td>
<td>4</td>
<td>11:00</td>
<td>5</td>
<td>14:00</td>
<td>3</td>
<td>15:00</td>
<td>4:3</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>KBFG</td>
<td>BG</td>
<td>4</td>
<td>11:15</td>
<td>5</td>
<td>14:15</td>
<td>3</td>
<td>15:15</td>
<td>3:00</td>
<td>3:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Crew Member Accomplishments

<table>
<thead>
<tr>
<th>Flight Time (Enter Flight Times in Hours and Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

21. Fuel Data

<table>
<thead>
<tr>
<th>How Purchased</th>
<th>C = Commercial</th>
<th>M = Military</th>
<th>D = Contract</th>
<th>B = Bulk</th>
<th>O = Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Fuel Ticket #</td>
<td>b. AV or Jet</td>
<td>c. How Purchased</td>
<td>d. # Liters Purchased</td>
<td>e. # Gallons Purchased</td>
<td>Total Cost of Fuel</td>
</tr>
<tr>
<td>7.77</td>
<td>784</td>
<td>D</td>
<td></td>
<td></td>
<td>SS BY Y</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAA Form 4040-6 R&D Flight Program Only

AFTER FLIGHT: Return to Approving Office without Delay

H-15
(Use of FAA aircraft must be in compliance with Order 4040.9 as amended)

Aircraft / Simulator Request and Approval Data

<table>
<thead>
<tr>
<th>1. Source of Aircraft</th>
<th>2. Aircraft Type Desired</th>
<th>3. Date(s) Required</th>
<th>4. Type of Flight</th>
<th>5. Passenger Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA</td>
<td>B727</td>
<td>10/19/02</td>
<td>FAR 81</td>
<td>Reportable to GSA 0 Yes 0 No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Space Available for passengers 0 Yes</td>
</tr>
</tbody>
</table>

Justification:

DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Aircraft Utilization Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N40</td>
<td>B727</td>
<td>33</td>
<td>T</td>
<td>R6DP</td>
<td>T-0710E</td>
</tr>
</tbody>
</table>

Itinerary

<table>
<thead>
<tr>
<th>Leg #</th>
<th>POE 1</th>
<th>POE 2</th>
<th>From</th>
<th>To</th>
<th>Block Out</th>
<th>Takeoff</th>
<th>Landing</th>
<th>Block In</th>
<th>Time in Service (TIS)</th>
<th>Total Time (TOT)</th>
<th># of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K8F1</td>
<td>K8F1</td>
<td>0825</td>
<td>5111.1</td>
<td>5144.1</td>
<td>110</td>
<td>2.3</td>
<td>2.8</td>
<td>4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>K8F1</td>
<td>K8F1</td>
<td>1405</td>
<td>5114.1</td>
<td>5164.4</td>
<td>1635</td>
<td>2.3</td>
<td>2.5</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Crew Member Accomplishments

<table>
<thead>
<tr>
<th>Flight Time (Enter Flight Times in Hours and Tenths)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew Name</td>
</tr>
<tr>
<td>B1001</td>
</tr>
<tr>
<td>2.5 2.5 2.5 2.5</td>
</tr>
<tr>
<td>15 1 1</td>
</tr>
<tr>
<td>T007</td>
</tr>
<tr>
<td>2.8 2.5 2.8</td>
</tr>
<tr>
<td>15 1 1</td>
</tr>
<tr>
<td>T023</td>
</tr>
<tr>
<td>2.3</td>
</tr>
</tbody>
</table>

Fuel Data

How Purchased:
- C = Commercial
- M = Military
- D = Contract
- B = Bulk
- O = Other

<table>
<thead>
<tr>
<th>a. Fuel Ticket #</th>
<th>b. AVG or JET</th>
<th>c. How Purchased</th>
<th>d. # Liters Purchased</th>
<th>e. # Gallons Purchased</th>
<th>f. Cost of Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAA Form 4040-6 R&D Flight Program Only

AFTER FLIGHT: Return to Approving Office without Delay
DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH
APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Approval required before Flight

<table>
<thead>
<tr>
<th>Flight</th>
<th>Signature</th>
<th>Printed Name / Title</th>
<th>Rig Symbol</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Requested by</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8a. Approved by</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8b. Approved by</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8c. U.S. or regional Counsel Approval</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aircraft Utilization Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N4D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. Itinerary

<table>
<thead>
<tr>
<th>a. Date of Flight</th>
<th>b. Leg #</th>
<th>c. POF 1</th>
<th>d. From</th>
<th>e. To</th>
<th>f. Block Out</th>
<th>g. Taxi</th>
<th>h. Block In</th>
<th>i. Time in Service (TIS)</th>
<th>j. Total Time (TOT)</th>
<th>k. # of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/1/02</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

m. Totals

| | 2.3 | 2.6 |

16. Crew Member Accomplishments

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CT 006</td>
<td>B. F. Y.</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>CT 007</td>
<td>V. A. H.</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>CT 023</td>
<td>G. A. Y.</td>
<td>2.6</td>
<td></td>
</tr>
</tbody>
</table>

21. Fuel Data

<table>
<thead>
<tr>
<th>a. Fuel Ticket #</th>
<th>b. AV</th>
<th>c.</th>
<th>d. # Liters</th>
<th>e. # Gallons</th>
<th>f. Cost of Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FAA Form 4040-6 R&D Flight Program Only

AFTER FLIGHT: Return to Approving Office without Delay

H-17
Aircraft / Simulator Request and Approval Data

<table>
<thead>
<tr>
<th>1. Source of Aircraft</th>
<th>2. Aircraft Type Desired</th>
<th>3. Date(s) Required</th>
<th>4. Type of Flight</th>
<th>5. Passenger Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisional FAA</td>
<td>B727</td>
<td>10/22/82</td>
<td>FAR 91</td>
<td>Space Available for passengers: Yes</td>
</tr>
<tr>
<td>3. Rent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PQF Codes:

- 04. Check Flight
- 05. Logistics
- 06. R&D
- 07. Formal Training
- 08. Proficiency G&F
- 10. Test & Ferry
- 15. Observation Flight
- 16. Other
- 17. Ground Time
- 19. Repositioning

Justification:

DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Aircraft Utilization Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N-180</td>
<td>B727</td>
<td>33</td>
<td>T</td>
<td>RDFP</td>
<td>T-0710X</td>
</tr>
</tbody>
</table>

Itinerary

<table>
<thead>
<tr>
<th>Leg #</th>
<th>POE 1</th>
<th>POE 2</th>
<th>From</th>
<th>To</th>
<th>Block Out</th>
<th>Takeoff</th>
<th>Landing</th>
<th>Block In</th>
<th>Service (TIS)</th>
<th>Total Time (TOT)</th>
<th># of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K80F</td>
<td>K80F</td>
<td></td>
<td></td>
<td>0450</td>
<td>0450</td>
<td>0450</td>
<td>0450</td>
<td>3120</td>
<td>3.2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>K80R</td>
<td>K80R</td>
<td></td>
<td></td>
<td>1440</td>
<td>1440</td>
<td>1440</td>
<td>1440</td>
<td>2140</td>
<td>3.1</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1440</td>
<td></td>
<td></td>
<td>1440</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1440</td>
<td></td>
<td></td>
<td>1440</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m. Totals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5.7</td>
<td>6.4</td>
</tr>
</tbody>
</table>

Crew Member Accomplishments

<table>
<thead>
<tr>
<th>Flight Time (Enter Flight Times in Hours and Minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>CY-006</td>
</tr>
<tr>
<td>CY-017</td>
</tr>
<tr>
<td>CY-023</td>
</tr>
<tr>
<td>CY-024</td>
</tr>
</tbody>
</table>

Fuel Data

<table>
<thead>
<tr>
<th>How Purchased</th>
<th>M = Military</th>
<th>D = Contract</th>
<th>B = Bulk</th>
<th>O = Other</th>
<th>a. Fuel Ticket #</th>
<th>b. AV</th>
<th>c. How Purchased</th>
<th>d. # Liters Purchased</th>
<th>e. # Gallons Purchased</th>
<th>f. Cost of Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>C = Commercial</td>
<td></td>
</tr>
</tbody>
</table>

After Flight

AFTER FLIGHT: Return to Approving Office without Delay
DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

1. Source of Aircraft
 X FAA
 0 Rental

2. Aircraft Type Desired
 8727

3. Date(s) Required
 To:

4. Type of Flight
 FAR 81

5. Passenger Information
 Reportable to OSA: Yes
 Space Available for Passengers: Yes

Justification:

Approval Required Data

Flight
Signature
Printed Name/Title
F stamped Symbol
Date

7. Requested by
8. Approved by
9. Approved by
10. FEMA or Regions
11. Counsel Approval

Aircraft Utilization Data

9. Registration (N) Number
 N-140

10. Aircraft Make/Model
 B727

11. Aircraft Class
 T

12. User Code
 RDFS

13. Cost Center

14. Reimbursement Acc. (T)
 E 07106

15. Itinerary
 a. Date of Flight
 01/10/92

 b. Leg #
 1

 c. From
 KCRB

 d. To
 MAEY

 e. Block Out
 1020

 f. Block In
 1330

 g. Takeoff
 1314

 h. Landing
 1330

 i. Time in Service (TIS)
 17

 j. Total Time (TOT)
 2,2

 k. # of Passengers

16. Crew Member Accomplishments

a. Crew #

<table>
<thead>
<tr>
<th>Crew Name</th>
<th>e. OIC</th>
<th>d. MCC</th>
<th>c. Pilot</th>
<th>b. FPE</th>
<th>a. Other</th>
<th>j. IMC</th>
<th>k. Flight</th>
<th>i. Takeoff</th>
<th>m. Landing</th>
<th>n. IMC</th>
<th>q. Approch</th>
</tr>
</thead>
<tbody>
<tr>
<td>ET COGUY</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ET OZ7</td>
<td>2</td>
<td>2</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ET OZ2</td>
<td></td>
</tr>
<tr>
<td>ET OZ2</td>
<td></td>
</tr>
</tbody>
</table>

17. Fuel Data

How Purchased:
 C = Commercial
 M = Military
 D = Contract
 B = Bulk
 0 = Other

a. Fuel Ticket #

b. AV or Jet
 Gas
 Fuel

c. How Purchased
 Purchased

d. # Gallons

F = Cost of Fuel

FAA Form 4040-6 R&D Flight Program Only

AFTER FLIGHT: Return to Approving Office Without Delay

H-19
DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Approval Required by:
Signature:
Printed Name / Title:
Reg Symbol:
Date:

Aircraft Utilization Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Flight Time (Enter Flight Times in Hours and Tenths)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

21. Fuel Data

<table>
<thead>
<tr>
<th></th>
<th>a. Fuel Ticket #</th>
<th>b. AV</th>
<th>c. How Purchased</th>
<th>d. # Ltrs Purchased</th>
<th>e. # Gallons Purchased</th>
<th>Cost of Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7620.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7620.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH
APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

<table>
<thead>
<tr>
<th>Aircraft Utilization Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>K140</td>
</tr>
</tbody>
</table>

15. Date of Flight: 10/17/77

<table>
<thead>
<tr>
<th>Mileage</th>
<th>Hours</th>
<th>Fuel</th>
<th>Total Time (TOT)</th>
<th># of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.6</td>
<td>1.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Crew Member Accomplishments

21. Fuel Data

H-21
Aircraft / Simulator Request and Approval Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FAA</td>
<td>B7-27</td>
<td>June 10 - June 12</td>
<td>FAR 91</td>
<td>Reportable to GSA 0 Yes 0 No</td>
</tr>
<tr>
<td>0 Rental</td>
<td></td>
<td></td>
<td></td>
<td>Space Available for passengers 0 Yes</td>
</tr>
</tbody>
</table>

F Codes:
- 01. Evaluation
- 02. Currency
- 03. Transportation
 - 01. C & G
 - 03. Logistics
 - 10. Test & Ferry

Justification:

DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Approval Required Before Flight

<table>
<thead>
<tr>
<th>Requested by</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8a. Approved by</th>
<th>8b. Approved by</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Center or Regional Council Approval</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Aircraft Utilization Data

<table>
<thead>
<tr>
<th>9. Registration (N) Number</th>
<th>10. Aircraft Make / Model</th>
<th>11. Aircraft Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>31-40</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>RDFP</td>
<td>T-0714</td>
</tr>
</tbody>
</table>

Itinerary

<table>
<thead>
<tr>
<th>Log #</th>
<th>e. From</th>
<th>d. To</th>
<th>Block In</th>
<th>Service Time (TIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>KCFP</td>
<td>KCLF</td>
<td>9:25</td>
<td>12:35</td>
</tr>
<tr>
<td></td>
<td>KCLF</td>
<td>KCFP</td>
<td>9:25</td>
<td>12:35</td>
</tr>
<tr>
<td>3</td>
<td>KCFP</td>
<td>KCLF</td>
<td>9:25</td>
<td>12:35</td>
</tr>
<tr>
<td>4</td>
<td>KCLF</td>
<td>KCFP</td>
<td>9:25</td>
<td>12:35</td>
</tr>
</tbody>
</table>

Crew Member Accomplishments

Flight Time (Enter Flight Times in Hours and Tents)

<table>
<thead>
<tr>
<th>a. Flight</th>
<th>b. Crew Member</th>
<th>c. PIC</th>
<th>d. SIC</th>
<th>e. Flight</th>
<th>f. FE</th>
<th>g. Other</th>
<th>h. Hood</th>
<th>i. MAC</th>
<th>j. Night</th>
<th>k. Takeoff</th>
<th>l. Block In</th>
<th>m. Landing</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-02</td>
<td>B. E. L.</td>
<td>2.7</td>
<td>8</td>
<td>2.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>01-02</td>
<td>V. A. N. J.</td>
<td>2.7</td>
<td>8</td>
<td>2.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>01-02</td>
<td>G. E. T. N. E.</td>
<td>2.7</td>
<td>8</td>
<td>2.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>01-02</td>
<td>B. E. L.</td>
<td>2.7</td>
<td>8</td>
<td>2.7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Fuel Data

<table>
<thead>
<tr>
<th>How Purchased</th>
<th>C = Commercial</th>
<th>M = Military</th>
<th>D = Contract</th>
<th>B = Bulk</th>
<th>O = Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Fuel Ticket #</td>
<td>b. AV or Jet Fuel</td>
<td>c. How Purchased</td>
<td>d. # Liters Purchased</td>
<td>e. # Gallons Purchased</td>
<td>f. Cost of Fuel</td>
</tr>
<tr>
<td>16 8 2.4 31</td>
<td>8</td>
<td>D</td>
<td></td>
<td>2.12</td>
<td></td>
</tr>
<tr>
<td>7 7 0 9 71</td>
<td>8</td>
<td>G</td>
<td></td>
<td>2.54</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- FAA Form 4040-6 R&D Flight Program Only
- AFTER FLIGHT: Return to Approving Office without Delay

<table>
<thead>
<tr>
<th>20. Office Use Only</th>
<th>Initials</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FAA Form 4040-6 R&D Flight Program Only

AFTER FLIGHT: Return to Approving Office without Delay

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>327/AA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 Rental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>03. Transportation</td>
<td>30. R&D</td>
<td>10. Test & Ferry</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Justification:

DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Flight Utilization Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N-427</td>
<td></td>
<td>353</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Itinerary

<table>
<thead>
<tr>
<th>15. Itinerary</th>
<th>16. Crew Member Accomplishments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flight Time (Enter Flight Times in Hours and Tents)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
</tr>
</tbody>
</table>

Fuel Data

How Purchased:

- C = Commercial
- M = Military
- D = Contract
- B = Bulk
- O = Other

<table>
<thead>
<tr>
<th>a. Fuel Ticket #</th>
<th>b. AV</th>
<th>c. How Purchased</th>
<th>d. # Gallons Purchased</th>
<th>e. Cost of Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>7177432</td>
<td>b</td>
<td>d</td>
<td>2.52</td>
<td>2.52</td>
</tr>
<tr>
<td>3581472</td>
<td>b</td>
<td>d</td>
<td>2.1</td>
<td>2.1</td>
</tr>
</tbody>
</table>

H-23
(Use of FAA aircraft must be in compliance with Order 4040.9 as amended).

<table>
<thead>
<tr>
<th>Aircraft / Simulator Request and Approval Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Source of Aircraft</td>
</tr>
<tr>
<td>FAA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01: Evaluation</td>
<td>04: Check Flight</td>
<td>07: Formal Training</td>
<td>15: Observation Flight</td>
</tr>
<tr>
<td>02: Currency</td>
<td>05: Logistics</td>
<td>08: Proficiency O&S</td>
<td>16: Other</td>
</tr>
<tr>
<td>03: Transportation</td>
<td>06: R&D</td>
<td>10: Test & Ferry</td>
<td>17: Ground Time</td>
</tr>
<tr>
<td>08: Proficiency O&S</td>
<td>18: Other</td>
<td>19: Repositioning</td>
<td></td>
</tr>
</tbody>
</table>

DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

<table>
<thead>
<tr>
<th>Approval Required Before Flight</th>
<th>Signature</th>
<th>Printed Name / Title</th>
<th>Rig Symbol</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Aircraft Utilization Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T</td>
<td>RDP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Itinerary</th>
<th>a. Date of Flight</th>
<th>b. POF 1</th>
<th>c. POF 2</th>
<th>d. From</th>
<th>e. To</th>
<th>f. Block Out</th>
<th>g. Takeoff</th>
<th>h. Landing</th>
<th>i. Block In</th>
<th>j. Time in Service (TIS)</th>
<th>k. Total Time (TOT)</th>
<th>l. # of Passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>KCF</td>
<td>KCF</td>
<td>08:55</td>
<td></td>
<td>1:10</td>
<td>10:45</td>
<td>J.5</td>
<td>1.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Crew Member Accomplishments</th>
<th>Flight Time (Enter Flight Times in Hours and Tents)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21. Fuel Data

<table>
<thead>
<tr>
<th>How Purchased</th>
<th>a. Fuel Ticket #</th>
<th>b. AV or Jet</th>
<th>c. How Purchased</th>
<th>d. # Liters Purchased</th>
<th>e. # Gallons</th>
<th>f. Cost of Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial</td>
<td>2411734133</td>
<td>Gas</td>
<td>D</td>
<td></td>
<td>394.4</td>
<td></td>
</tr>
</tbody>
</table>

FAA Form 4040-6 R&D Flight Program Only

AFTER FLIGHT: Return to Approving Office without Delay

H-24
DATA COLLECTION AND SYSTEM EVALUATION IN ACCORDANCE WITH APPROVED FLIGHT TEST PLAN AND APPROVED WEEKLY FLIGHT SCHEDULE

Approval required before flight
7. Requested by
 a. Approved by
 b. Approved by
 8. Charter or regional counsel approval

Aircraft Utilization Data
9. Registration (N) Number
10. Aircraft Make / Model
11. Aircraft Class
12. User Code
13. Cost Center

15. Itinerary
 a. Date of Flight
 b. POF 1
 c. POF 2
 d. From
 e. To
 f. Block Out
 g. Takeoff
 h. Landing
 i. Block In
 j. Time in Service (TIS)
 k. Total Time (TOT)
 l. # of Passengers

 m. Totals

16. Crew Member Accomplishments
 a. Crew #
 b. Crew Name
 c. PIC
 d. SIC
 e. Flight
 f. FE
 g. EF
 h. Other
 i. Hood
 j. PMC
 k. LMC
 l. SIC
 m. Takeoff
 n. Landing
 o. Hourly
 p. Approach

21. Fuel Data
 How Purchased:
 C = Commercial
 M = Military
 D = Contact
 B = Bulk
 O = Other

 a. Fuel Ticket #
 b. AV Gas
 c. How Purchased
 d. # Liters
 e. # Gallons
 f. Cost of Fuel

FAA Form 4040-6 R&D Flight Program Only

AFTER FLIGHT: Return to Approving Office without Delay
APPENDIX I—HENDRY TROUBLESHOOTING PROCEDURES
Arc Fault Circuit Breaker
Flight Test Program

Troubleshooting Procedures

for

Hendry Arc Fault Circuit Breaker (AFCB) Installation

on

FAA Technical Center
Boeing 727-25C Aircraft N40

15 June 2002

FAA William J. Hughes Technical Center
Engineering and Modification Section, ACT-370
Maintenance, Inspection, and Repair Section, AAR-433

Prepared by: R.A. Pappas, AAR-433

Reviewed by: J. Beres, ACT-370

Approved by: Armando Gaetano
Manager, Engineering & Modifications Section, ACT-370
Table of Contents

1.0 INTRODUCTION ... 7
 1.1 Background .. 7
 1.2 Objective .. 7
 1.3 Scope .. 8

2.0 FLIGHT TEST GOALS ... 8

3.0 SYSTEM DESCRIPTION ... 8
 3.1 Arc Fault Circuit Breakers ... 8
 3.2 Arc Fault Circuit Interupter - Junction Box and Aircraft Harnesses 8
 3.3 Instrumentation Equipment .. 8
 3.4 Aircraft Interfaces ... 8

4.0 AIRCRAFT INSTALLATION .. 9

5.0 CERTIFICATION REQUIREMENTS .. 9

6.0 ARC FAULT TROUBLESHOOTING .. 9
 6.1 Arc Fault Troubleshooting Background ... 9
 6.2 Detailed Troubleshooting Procedures .. 10

APPENDIX A – TROUBLESHOOTING PROCESS FLOWCHARTS ... 11
1.0 INTRODUCTION

This document defines the troubleshooting procedures to be used during the Arc Fault Circuit Breakers (AFCBs) performance evaluation on an FAA owned Boeing 727-25C aircraft. The effort will be conducted by the United States (U.S.) Federal Aviation Administration (FAA) at the William J. Hughes Technical Center (WJHTC), Atlantic City, New Jersey.

1.1 BACKGROUND

The integration of arc fault detection into circuit breakers represents a revolutionary change in circuit protection; which has changed little in the last thirty to forty years. There is abundant evidence of arc faults in all types of aircraft. Laboratory data clearly demonstrates that the current generated during an arcing fault can be very high, yet quite intermittent. The bimetallic elements in thermal breakers do not react quickly enough, if at all, to this ticking arc fault condition. If left unchecked, the arcing condition can develop into an arc tracking condition, potentially destroying a major portion of, or an entire wire bundle. Arcing can also result in many other serious safety hazards.

In 1999, the FAA and the Navy established a joint R&D project to develop aircraft AFCBs. The goal of this effort is to develop a circuit breaker that integrates arc fault protection together with existing thermal protection into a form, fit, and functional replacement of existing thermal circuit breakers. In laboratory testing, the AFCB prototypes have been very effective in the detection of arcing faults.

In contrast to thermal breakers, which are passive in nature, AFCBs actively monitor the circuits on which they are installed. Due to the nature of electrical systems, there are times when a normal condition may ‘look’ similar to an arc fault. When such a condition trips an arc fault circuit breaker, it is defined as a nuisance trip. AFCB designs minimize the occurrence of nuisance tripping and maximize sensitivity to arc fault detection.

To address nuisance tripping, the FAA, Navy, and the AFCB developers, have conducted extensive tests to characterize the normal operation of electrical loads, and perturbations to electrical systems during normal events such as bus transfers, power on/off, transfer of power sources, etc. Laboratory tests today have provided a high level of confidence that nuisance tripping of AFCBs is being successfully controlled.

AFCB development has progressed to the point where flight tests are appropriate to demonstrate compliance with applicable Federal Aviation Regulations (FARs).

1.2 OBJECTIVE

The objective of this task is to conduct an in-flight evaluation of AFCB performance.

The Federal Aviation Administration (FAA), William J. Hughes Technical Center (WJHTC) R&D Flight Program is performing a minor modification to their Boeing 727-25C aircraft. This temporary modification involves the installation of eight AFCB prototypes manufactured by the Hendry corporation. The AFCBs are to be installed for a six-month evaluation period in support of AFCB research and development.
1.3 Scope

The scope of this effort is to install AFCBs manufactured by the Hendry corporation in an FAA owned Boeing 727-25C aircraft and conduct a flight evaluation of the developmental AFCBs. Data recorded includes line voltage, load voltage, and current for each of the installed breakers. Data reduction efforts of any occurring arc faults will include identification of relationships between the trip conditions.

2.0 Flight Test Goals

The following list describes the goals of the experimental flight test program, listed in order of importance.

- Complete fifty (50) or more hours of developmental flight test evaluation but not less than twenty-five (25) hours. Data generated during these flights is critical to the AFCB research and development program and for obtaining approval of the N-40 one-only STC.
- Evaluate the operation of the arc fault circuit breakers under standard B727 operational procedures.
- Evaluate the operation of the AFCB instrumentation and Odyssey data recording system for future unmanned data collection.

3.0 System Description

The equipment being installed for the Arc Fault flight evaluation includes developmental prototype AFCBs installed in a junction box, an instrumentation recorder and interconnecting cables and wire harnesses. These items are described in the following paragraphs.

3.1 Arc Fault Circuit Breakers

Eight (8) - Hendry prototype arc fault circuit breakers of the following ratings: one 2.5 A, three 5A, one 7.5A, one 10A, and two 15A (mounted in AFCI Junction Box).

3.2 Arc Fault Circuit Interrupter - Junction Box and Aircraft Harnesses

One (1) – AFCI-JB.
Two (2) – AFCI-JB Test Unit wire harnesses, P18 and P6

3.3 Instrumentation Equipment

One (1) - 24 channel, Nicolet Odyssey data recorder.
One (1) – BNC Breakout Box.
One (1) – AFCI JB – BNC Breakout Box Interface Harness.
Twenty-four (24) – 24-inch BNC connector cables.
One (1) – Trigger Alarm

3.4 Aircraft Interfaces

The electrical connections for the system are shown schematically in FAA Drawing Number 9854415, Arc Fault Circuit Breaker Wiring. The AFCBs mounted within the AFCI-JB will be electrically in series with the load side of the existing circuit breakers. The AFCI-JB wire harnesses, P-18 and P-6, connect the load side of the each aircraft circuit breaker to the line side.
of the respective AFCB and from the load side of the each AFCB to the feed wire for the respective load.

It is important to note that the AFCBs will be connected in series with the load side of the existing thermal circuit breakers. In other words, current circuit protection aboard the aircraft will not be compromised in any way by this installation.

The on-board Project Power Inverter provides 120VAC 60Hz power for the Data Acquisition System.

4.0 AIRCRAFT INSTALLATION

The AFCBs will be installed in an Arc Fault Circuit Interrupter-Junction Box (AFCI-JB) that will enclose all the AFCBs and required instrumentation interfaces. The AFCI-JB will be mounted in the rear, left side of the cockpit. The test unit will have bypass switches that will disable the AFCBs if desired.

The BNC Breakout Box and the Odyssey data recorder will be mounted in the cabin of the aircraft.

The electrical installation shall be completed in accordance with drawing number 9854415 under the guidance of the WJHTC Electrical Systems Designated Engineering Representative (DER), Code ACT-370. The mechanical installation shall be completed under the guidance of the WJHTC Mechanical Systems DER, Code ACT-370.

Detailed instructions for completing the installation can be found in the AFCB Ground Checkout Procedures Report.

5.0 CERTIFICATION REQUIREMENTS

There are no FAA Technical Standard Orders for the equipment being installed during this modification. Experimental flight test is being performed to collect data necessary to obtain a one only STC to install the AFCBs aboard N40 for an extended evaluation period.

6.0 ARC FAULT TROUBLESHOOTING

6.1 ARC FAULT TROUBLESHOOTING BACKGROUND

Although AFCBs can detect arcing on the circuit in which it is installed, it cannot determine the location of the arc along the circuit. Furthermore, means for easily troubleshooting an arc fault after and AFCB trip are under development but not currently available. This plan has been developed to establish a procedure for troubleshooting AFCB trips, should they occur.

An understanding of current methods of troubleshooting thermal trips will clarify the additional measures needed to troubleshoot an AFCB trip and specifically the procedures that will be followed during the FAA AFCB flight test program.

Troubleshooting circuit breakers is an iterative process. Generally, after a thermal circuit breaker trip, troubleshooting begins by evaluating the load(s) powered by the circuit. The load is either tested for correct operation, or is removed and replaced if its correct operation cannot be
directly determined. The circuit is powered and if no additional trips are noted the corrective action is considered complete.

If additional trips of the same circuit occur, there are several options for corrective action. The load may still be suspected, and the problem may not be reproducible on the ground. The circuit breaker itself may be suspect and replaced (tripping of thermal circuit breakers under normal conditions, or failure of a circuit breaker to stay closed when depressed, are two common circuit breaker failure modes). Usually, the last item to be checked is the circuit wiring, mainly because of the inherent difficulties in testing and inspecting the wiring.

AFCB’s add another dimension of complexity to the troubleshooting problem. AFCB’s have two trip modes, thermal (current overload) and arc fault. There are unique procedures for troubleshooting each mode, and unfortunately, if one procedure fails to identify the problem it may be necessary to complete the other procedure to be certain that the problem has been resolved. Future AFCB’s will have the ability to indicate if the trip mode was thermal or arc fault related. The prototypes flown in this test program will not have this feature. However, the data recording instrumentation will be triggered by the AFCB’s arc fault detection circuit and therefore it will be known with certainty if the trip mode was thermal versus arc fault.

If the trip mode was arc fault related, the question remains was the arc trip a real arc or was it a nuisance trip? The instrumentation being used in these flights will record the current waveforms immediately before and after the AFCB indicates that an arc is present and a trip is initiated. This data will be analyzed by Hendry Aerospace to determine if it appears to be a real arc or a nuisance trip. If it is certain that the trip was nuisance related, then the breaker will be reset and flights testing may resume. If a nuisance trip is not certain, then further diagnostics will be required.

Provisions have been made to baseline the condition of the wiring on the eight circuits that will be used in the tests with Time Domain Reflectometry (TDR). During ground testing of the AFCB test system, each AFCB equipped circuit will be characterized with TDR. This data will form a baseline measurement against which future measurements will be compared. Changes in the measurement indicate possible locations at which the arcing may have occurred.

At this point, it is unclear if TDR is sensitive enough to detect the damage incurred by a wire during an arcing condition. If the TDR fails to identify the location of the fault, visual inspection of the circuit must be performed to determine the source of the fault.

6.2 DETAILED TROUBLESHOOTING PROCEDURES

All troubleshooting shall be performed by qualified FAA personnel under the direction of the Electrical Systems DER, Code ACT-370.

Upon an AFCB arc fault trip, the Odyssey data recording system will record the current and voltage waveforms from the eight circuits equipped with AFCB’s. A thermal trip of the AFCB or the aircraft circuit breaker will not cause the Odyssey to trigger on and record this data. Therefore, it will be known immediately if the trip was caused by an arc fault.

Appendix A contains the detailed process flow charts.
APPENDIX A – TROUBLESHOOTING PROCESS FLOWCHARTS
Start: Circuit Breaker Trip

AFCB Trip or Aircraft CB Trip?

Odyssey Trigger? (Y/N)

Download Odyssey Waveform Data

Email Odyssey Waveform Data to Hendry

Probable arc fault or nuisance trip?

Obtain TDR Data From Tripped Circuit

Email TDR Data to CM Tech. For Analysis

TDR Changed from baseline?

Arc Fault

Nuisance

Obtain TDR Data From Tripped Circuit

Email TDR Data to CM Tech. For Analysis

Damage location discernable?

Locate fault and repair

Conduct ground tests on circuit

Damage location discernable?

Locate fault and repair

Conduct ground tests on circuit

Conduct visual inspection of circuit wiring

1

Nuisance Confirmed

Conduct ground tests on circuit
Troubleshoot and repair IAW Standard Operating Procedures for thermal circuit breaker trips

Conduct ground tests on circuit

Ground tests check ok?

Y

Re-baseline circuit TDR characterization

Aircraft and circuit returned to service

End

N

Obtain TDR Data From Tripped Circuit

Email TDR Data to CM Tech. For Analysis

TDR Changed from baseline?

Y

Conduct visual inspection of circuit wiring

Damage location discernable?

N

Damage location discernable?

N

Locate fault and repair

Conduct ground tests on circuit

Y

Locate fault and repair

Conduct ground tests on circuit
Aircraft and circuit returned to service

Re-baseline circuit TDR characterization

Ground tests check ok?

Y

Replace AFCB

N

Ground tests check ok?

Y

Repeat troubleshooting procedure

N

End

End

End

I-14
Time Domain Reflectometer (TDR) Test Results

for

Arc-Fault Circuit Breaker Flight Test Installation

On

FAA Technical Center
Boeing 727-25C Aircraft N40

Conducted by:

CM Technologies
27-28 August 2001
ECAD Testing
ARC Fault Circuit Breaker Wiring (Tail ID - N40)

On August 27 and 28, 2001, the ECAD Division of CM Technologies acquired preliminary data on selected circuits which are part of the FAA's Arc Fault Circuit Breaker Program. A detailed description of the circuits tested is as follows;

Circuit - AFCB1

Description: Left Inboard Landing Lights
Device Code: AFCB1_L_INBD_LNDG_LT
Drawing: E33-42-01
Test Area: Panel P18, Breaker C251
Test Set Up:
- Breaker C251 – open
- Left Inboard Landing Light Switch, S22 – closed
- Left Inboard Landing Light Transformer T5 – disconnected.

Testing configurations associated with this circuit:: 1, Test Cfg. A

Circuit – AFCB2

Description: Oscillating Navigation Lights
Device Code: AFCB2_OSCIL_NAV_LT
Drawing: E33-43-01
Test Area: Panel P18, Breaker C258
Test Set Up:
- Breaker C258 - open
- Navigation Light Switch S17 – closed
- Right Green Navigation Light L12 – disconnected
- Left Red Navigation Light L13 – disconnected

Testing configurations associated with this circuit:: 7, Test Cfgs. A – G.
Note: Connector D4148J could not be located during the testing.

connector D4470J to connector D454 (at L14). Connector D4470J remained disconnected from the circuit for the remaining test configurations.

Circuit AFCB3

Description: Window Lights Left Side
Device Code: AFCB3_WNDW_LITE_LEFT
Drawing: E33-21-11
Test Area: Panel P18, Breaker C1023
Test Set Up:
- Breaker C1023- open
- Jumper installed between A1 & A2 contacts of R625 Window Light Relay
- Lead LV and HV1 removed from T158 Window Light Transformer
- Leads LV and HV1 were bolted together

Testing configurations associated with this circuit: 3, Test Cfgs. A-C.

Circuit AFCB4

Description: Passenger Ceiling Lights Left Side
Device Code: AFCB4_PSGR_CEIL_LT_L
Drawing: E33-22-02
Test Area: Panel P18, Breaker C273
Test Set Up:
 - Breaker C273 - open
 - Jumper installed between T1 & L1 contacts of R626 Ceiling Lt Relay
 - Lead HV1 and HV2 removed from T24 Ceiling Lights Transformer
 - Leads HV1 and HV2 were bolted together

Testing configurations associated with this circuit: 2, Test Cfgs. A & B.

Circuit AFCB5

Description: DME No. 2
Device Code: AFCB5_DME_NO_2
Drawing: E.O. 23269
Test Area: Panel P18, Breaker C73
Test Set Up:
 - Breaker C73 – open

Testing configurations associated with this circuit: 1, Test Cfg. A.

Circuit AFCB6

Description: Heater – Pitot – Aux.
Device Code: AFCB6_HTR_PITOT_AUX
Drawing: E30-31-01
Test Area: Panel P6, Breaker C137
Test Set Up:
 - Breaker C137 – open
 - Jumper installed between Pin 4 of D4080P and Pin 10 of D4080J
 - A21 Auxiliary Pitot Heater disconnected

Testing configurations associated with this circuit: 1, Test Cfg. A

Circuit AFCB7

Description: First Officers Window Heat 4 and 5
Device Code: AFCB7_1ST_OF_WDW_HTR
Drawing: E30-41-01
Test Area: Panel P6, Breaker C152
Test Set Up:
• Breaker C152 – open
• Jumper installed between Pin 3 of D4082J and Pin 15 of D4082P
Testing configurations associated with this circuit: 1, Test Cfg. A

Test Cfg. A: Test Lead – High connected to load side of Brkr. C152, wire no. W484-007-20. Test Lead – Low connected to ground. Entire circuit characterized from Brkr. C152 to S173, which may have been open due to high temperature of local environment.

Circuit AFCB8

Description: Project Power (phase A of 400/60 Hz converter)
Device Code: AFCB8_PROJECT_POWER
Drawing: 9954014
Test Area: Project Power J-Box, Breaker CB5
Test Set Up:
• Breaker CB5 – open
• K3 contact jumpered
• PS1 removed
Testing configurations associated with this circuit: 1, Test Cfg. A

Test Cfg. A: High connected to load side of Brkr. CB5, wire XP36B10A. Test Lead – Low connected to ground. Entire circuit characterized from Brkr. CB5 to PS1 connector.
ECAD SYSTEM 1100 Version 7.00 DATA CHART

CIRCUIT IDENTIFICATION

DEVICE CODE : AFCD1_L100_L100_LT
DESCRIPTION : LEFT INBOARD LANDING LIGHT
DEVICE TYPE : CBL
CONFIGURATION : A

TEST AREA : BREAKER PANEL P10
TERMINATION : BREAKER
HIGH TEST POINT : USG0
LOW TEST POINT : GROUND
COMMENTS : LEAD TO GROUND

OPERATOR IDENTIFICATION

LAST NAME :
FIRST NAME :

REMARKS

MEASUREMENT UNITS

MEASUREMENT UNITS (QUALITY)

TEST DC + DC DC RESISTANCE DC RESISTANCE RESISTANCE C CAPACITANCE (RESISTANCE) (QUALITY)
DATE TIME VOLTAGE (OHMS) 1 mA (OHMS) 1 k (OHMS) 1 k
R 06/27/2001 10:40 2.61 > 500.00 k 5.91 k -50.21 k C 3.17 m / 117.7 ohm
T 06/27/2001 10:40 2.61 > 500.00 k 5.91 k -50.21 k C 3.17 m / 117.7 ohm

INSULATION RESISTANCE DATA

IN TEST IN (OHMS) RESISTANCE POLARIZATION (1) = TEST
(2) = REFERENCE
VOLTAGE FIRST TIME (SECONDS) DATA
R 100 302.21 M 401.57 M 60 1.77
T 100 302.21 M 401.57 M 60 1.77

TDR Signature(s)

Vertical (Ohms) / Horizontal (Time) (Div = 2/div)

TEST (GAIN)
TIME BASE : 50 ns
FT/DIVISION : Approx 15.0

REFERENCE (GAIN)
TIME BASE : 50 ns
FT/DIVISION : Approx 15.0
ECAD SYSTEM 1100 Version 7.00 DATA CHART

FILE SET: C:\ECAD\DATA\JOBNAME

CIRCUIT IDENTIFICATION

DEVICE CODE: AC1052, OSCILLATOR NAVIGATION LIGHTS
DESCRIPTION: OSCILLATING NAVIGATION LIGHTS
DEVICE TYPE: D1L
CONFIGURATION: R

TEST AREA: BREAKER PANEL P20
TERMINATION: BREAKER
ID CODE: C20
HIGH TEST POINT: USG
LOW TEST POINT: GROUND
COMMENTS: LEAD TO GROUND, ENTIRE CIRCUIT

OPERATOR IDENTIFICATION

OF LAST NAME:
AS LAST NAME:
REV:

TEST RESULTS

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>VOLTAGE</th>
<th>DC + AC</th>
<th>DC RESISTANCE</th>
<th>AC RESISTANCE</th>
<th>1 MΩ (ΩMS)</th>
<th>1 KΩ (KΩMS)</th>
<th>10Ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/27/2001</td>
<td>12:46</td>
<td>1.20</td>
<td>>500.00 k</td>
<td>1.27 k</td>
<td>-11.43 k</td>
<td>C</td>
<td>13.98 m / 111.21 m</td>
<td></td>
</tr>
<tr>
<td>06/27/2001</td>
<td>12:46</td>
<td>1.20</td>
<td>>500.00 k</td>
<td>1.27 k</td>
<td>-11.43 k</td>
<td>C</td>
<td>13.98 m / 111.21 m</td>
<td></td>
</tr>
</tbody>
</table>

INSULATION RESISTANCE DATA

<table>
<thead>
<tr>
<th>HI TEST</th>
<th>LO (ΩMS)</th>
<th>VOLTAGE</th>
<th>CURRENT</th>
<th>POWER</th>
<th>HILO</th>
<th>LII</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>65.99 M</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>100</td>
<td>65.99 M</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
<td>0.05</td>
</tr>
</tbody>
</table>

TDMA Signature(s)

Horizontal (feet) / Vertical (Ωms = 2/div)

TEST (GND)

TIME BASE: 50 ns
FT/DIVISION: Approx 15.0

REFERENCE (GND)

TIME BASE: 50 ns
FT/DIVISION: Approx 15.0

2A
ECAD SYSTEM 1100 Version 7.00 DATA CHART

CIRCUIT IDENTIFICATION

DEVICE CODE : PFR2, OSCILLATOR strip
DESCRIPTION : OSCILLATING NAVIGATION LIGHTS
DEVICE TYPE : CBL
CONFIGURATION : D
TEST AREA : BREAKER PANEL P10
TERMINATION : BREAKER
HIGH TEST POINT : 4776
LOW TEST POINT : GROUND
COMMENTS : LEAD TO GROUND, CONNECTOR 04770, S/N 259
ID CODE : C250
ID CODE : 02-20

OPERATION IDENTIFICATION

TP LAST NAME :
AS LAST NAME :
MDA :
FIRST NAME :
FIRST NAME :

MEASUREMENT UNITS
H = MILLION
L = INDUCTANCE (HUMS)
U = UNIT
M = MILLI (MMS)
K = KILO
C = CAPACITANCE (KMS)
N = NEO (NMS)
DO = DEGRESS

DATE TIME TIME TIME TIME TIME TIME
08/27/2001 15:29 1.74 780.00 k 2.99 k 70.72 k 5.91 n 72.21 M
08/27/2001 15:29 1.74 780.00 k 2.99 k 70.72 k 5.91 n 72.21 M

INSULATION RESISTANCE DATA

TIME TEST TIME TEST TIME TEST TEST
08/27/2001 15:29 1.74 780.00 k 2.99 k 70.72 k 5.91 n 72.21 M

LEGEND

(T) = TEST
(I) = REFERENCE
1 = TERA
6 = GIGA
M = MILLI
K = KILO
U = MICRO
C = NEO
D = DEGRESS

R 100 156.00 M 179.90 M 60 1.00
T 100 156.00 M 179.90 M 60 1.00

TDR Signature(s)

Horizontal (feet) / Vertical (Ohm = 2/div)

TEST (CABLE)
TIME BASE: 50 nS
Ft/DIVISION: Approx 15.0

REFERENCE (CABLE)
TIME BASE: 50 nS
Ft/DIVISION: Approx 15.0
Circuit Identification

- **Device Code**: NEC200, Oscillating Navigation Lights
- **Description**: Oscillating Navigation Lights
- **Device Type**: CBA
- **Configuration**: C

Test Area Identification
- **Test Area**: Breaker Panel P10
- **Termination**: Breaker
- **High Test Point**: 10000 VDC
- **Low Test Point**: Ground

Remarks
- **Comments**: Lead to ground, 10 Conn. Strip

Test Results

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>Voltage (V)</th>
<th>DC + (ohms)</th>
<th>DC Resistance (ohms)</th>
<th>Resistance (ohms)</th>
<th>Inductance (nH)</th>
<th>Capacitance (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R 08/29/2001 09:30</td>
<td>1.90</td>
<td>1900.00 VDC</td>
<td>8.21 k</td>
<td>142.65 k</td>
<td>1.12 m / 57.00 m</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Insulation Resistance Data

Test
- **Voltage**: 100 VDC
- **Duration**: 60 sec

Polarization
- **Polarization**: 25°

TDR Signature(s)

![TDR Signature Graph](image)

Test (Solid)
- **Time Base**: 50 ns
- **FT/Division**: Approx 15.0

Reference (Hatched)
- **Time Base**: 50 ns
- **FT/Division**: Approx 15.0
ECAD SYSTEM 1100 Version 7.00 DATA CHART

File Set: [ECADDATA/1100]

CIRCUIT IDENTIFICATION
DEVICE CODE : AITEGOSCLMANLT
DESCRIPTION : Oscillating Navigation Lights
DEVICE TYPE : CBL
CONFIGURATION : E
TEST AREA : BREAKER PANEL P10
TERMINATION : CONNECTOR
HIGH TEST POINT : 0456
LOW TEST POINT : GROUND
COMMENTS : Lead to ground, to breaker 250

OPERATOR IDENTIFICATION
OP LAST NAME : FIRST NAME :
AS LAST NAME : FIRST NAME :

TEST DATA

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>DC + AC</th>
<th>DC RESISTANCE</th>
<th>DC RESISTANCE</th>
<th>RESISTANCE</th>
<th>C (CAPACITANCE/ASSUMED (F/UNIT))</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/27/2001</td>
<td>16:22</td>
<td>2.68</td>
<td>500.00 k</td>
<td>6.57 k</td>
<td>140.76 k</td>
<td>C 1.13 n / 46.76 m</td>
</tr>
<tr>
<td>08/27/2001</td>
<td>16:22</td>
<td>2.68</td>
<td>500.00 k</td>
<td>6.57 k</td>
<td>140.76 k</td>
<td>C 1.13 n / 46.76 m</td>
</tr>
</tbody>
</table>

INSULATION RESISTANCE DATA

<table>
<thead>
<tr>
<th>VR TEST</th>
<th>VR (VOLS)</th>
<th>DURATION (SECONDS)</th>
<th>POLARIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>100</td>
<td>65.31 M</td>
<td>75.30 M</td>
</tr>
<tr>
<td>T</td>
<td>100</td>
<td>65.31 M</td>
<td>75.30 M</td>
</tr>
</tbody>
</table>

LEGEND

R = RESISTANCE
L = INDUCTANCE/QUALITY (QUANTITY)
V = VOLTAGE

(1) = TEST
T = terra
G = giga
M = mega
k = kilo

(2) = REFERENCE
m = milli
μ = micro
n = nano
p = picos

TDR Signature(s)

Horizontal (feet) / Vertical (Ohm - /div)

TEST (GALRED)
TIME BASE : 50 nS
FT/DIVISION : Approx 15.0

REFERENCE (GALRED)
TIME BASE : 50 nS
FT/DIVISION : Approx 15.0

ECAD SYSTEM 1100 Version 7.00 DATA CHART

CIRCUIT IDENTIFICATION
- **Part Number**: A0022_SCS114 мощ.4
- **Description**: Oscillating Navigation Lights
- **Device Type**: C1L
- **Configuration**: C
- **Test Method**: Breaker Panel P1B
- **Termination**: Connector
- **ID Code**: P451-05
- **High Test Point**: UG0B
- **Low Test Point**: Ground
- **Comments**: Lead to ground, to right nav green light

OPERATOR IDENTIFICATION
- **First Name**:
- **Last Name**:
- **Mon**:

MEASUREMENT UNITS
- **L**: Inductance/Inductance (mH)
- **C**: Capacitance/Capacitance (nF)

<table>
<thead>
<tr>
<th>Test</th>
<th>Test</th>
<th>DC + AC</th>
<th>DC Resistance</th>
<th>DC Resistance</th>
<th>Reistance</th>
<th>C</th>
<th>Capacitance/Resistance (µF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Time</td>
<td>Voltage</td>
<td>(kV)</td>
<td>1 kHz (µS)</td>
<td>1 kHz (µS)</td>
<td>1 kHz (µS)</td>
<td>µF</td>
</tr>
<tr>
<td>08/27/2001</td>
<td>14:29</td>
<td>1.74</td>
<td>500.00 k</td>
<td>4.58 k</td>
<td>-94.67 k</td>
<td>C</td>
<td>4.59 µF / 121.08 n</td>
</tr>
<tr>
<td>08/27/2001</td>
<td>14:29</td>
<td>1.74</td>
<td>500.00 k</td>
<td>4.58 k</td>
<td>-94.67 k</td>
<td>C</td>
<td>4.59 µF / 121.08 n</td>
</tr>
</tbody>
</table>

INSULATION RESISTANCE DATA

<table>
<thead>
<tr>
<th>Test</th>
<th>To</th>
<th>Voltage</th>
<th>Duration</th>
<th>Polariation</th>
<th>First</th>
<th>Final</th>
<th>(Seconds)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>100</td>
<td>375.35 M</td>
<td>60</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>100</td>
<td>375.35 M</td>
<td>60</td>
<td>1.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LEGEND
- (1) Test
- (2) Reference
- T = Term
- G = giga
- M = mega
- k = kilo
- n = milli
- µ = micro
- µ = nano
- p = pico

TOR Signature(s)

![Graph](image)

- **Test (Solid)**
 - Time Base: 50 nS
 - Vertical: Approx 15.0

- **Reference (Dashed)**
 - Time Base: 50 nS
 - Vertical: Approx 15.0
ECAD SYSTEM 1100 Version 7.00 DATA CHART

Circuit Identification
- **Device Code**: JF02_0051
- **Description**: Oscillating Navigation Lights
- **Device Type**: 06
- **Configuration**: G
- **Test Area**: Breaker Panel P10
- **Termination**: Connector
- **ID Code**: 04/0P
- **High Test Point**: 1400
- **Low Test Point**: Ground
- **Comments**: Lead to Ground, 10 Left NAV Red Light

Operator Identification
- **UP Last Name**:
- **UP First Name**:
- **UP MD**:
- **AS Last Name**:
- **AS First Name**:
- **MD**:

Measurement Information
<table>
<thead>
<tr>
<th>Test</th>
<th>Test DC + AC</th>
<th>DC Resistance</th>
<th>DC Resistance</th>
<th>Resistance</th>
<th>E</th>
<th>Capacitance/Capacitive (F/Unit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>Time</td>
<td>Voltage</td>
<td>(Ohms)</td>
<td>1 kHz (Ohms)</td>
<td>1 kHz (Ohms)</td>
<td>1 kHz (Ohms)</td>
</tr>
<tr>
<td>09/27/2001 16:51</td>
<td>1.90</td>
<td>500.00 k</td>
<td>4.22 k</td>
<td>-35.49 k</td>
<td>4.40 m</td>
<td>115.25 m</td>
</tr>
<tr>
<td>09/27/2001 16:51</td>
<td>1.90</td>
<td>500.00 k</td>
<td>4.23 k</td>
<td>-35.49 k</td>
<td>4.40 m</td>
<td>115.25 m</td>
</tr>
</tbody>
</table>

Insulation Resistance Data
- **Test**
- **Test DC + AC**
- **DC Resistance**
- **DC Resistance**
- **Resistance**
- **E**
- **Capacitance/Capacitive (F/Unit)**

TDR Signature(s)

Legend
- (1) = TEST
- (2) = REFERENCE
- T = Tera
- G = Giga
- M = Mega
- K = Kilo
- M = Milli
- u = Micro
- n = Nano
- p = Pico

Reference Lines
- **Test (Solid)**
 - Time Base: 50 ns
 - FT Division: Approx 15.0

- **Reference (Dashed)**
 - Time Base: 50 ns
 - FT Division: Approx 15.0
ECAD SYSTEM 1100 Version 7.00 DATA CHART

File Set: [FILESET]

CIRCUIT IDENTIFICATION

DEVICE CODE : HIB0 produção, LEFT_HALF
DESCRIPTION : WINDOW LIGHT LEFT SIDE
DEVICE TYPE : CRL
CONFIGURATION : A
TEST AREA : BREAKER PANEL P10
TERMINATION : BREAKER
ID CODE : C1002
HIGH TEST POINT : USGHD
ID CODE : 179-10
LOW TEST POINT : GROUND
ID CODE : P10
COMMENTS : LEAD TO GROUND, ENTIRE CIRCUIT (LOADS CONNECTED)

OPERATION IDENTIFICATION

UP LAST NAME : [UP LAST NAME]
FIRST NAME : [FIRST NAME]

MID :

H MEASUREMENT UNITS
L INDUCTANCE/QUALITY (QUANTITY)
C CAPACITANCE (UNIT)

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>VOLTAGE</th>
<th>DC RESISTANCE 1 kHz</th>
<th>DC RESISTANCE 1 kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/28/2001 10:42</td>
<td>0.61 n</td>
<td>7.08</td>
<td>12.10</td>
<td>-16.56</td>
</tr>
<tr>
<td>08/28/2001 10:42</td>
<td>0.61 n</td>
<td>7.08</td>
<td>12.10</td>
<td>-16.56</td>
</tr>
</tbody>
</table>

INSULATION RESISTANCE DATA

| R | 0 | 0 | 0 | 0 | 0 |
| T | 0 | 0 | 0 | 0 | 0 |

TDI SIGNATURE(S)

LEGEND

(k) = TEST
(s) = REFERENCE

(1) = VOLTAGE
(2) = TIME (US)
(3) = UNIT
(4) = SIGNATURE

REFERENCE (OBSERVED)
TIME BASE : 50 ns
FT/DIVISION : Approx. 15.0

REFERENCE (OBSERVED)
TIME BASE : 50 ns
FT/DIVISION : Approx. 15.0

Horizontal (feet) / Vertical (Ohm = 2/div)

3A
ECAD SYSTEM 1100 Version 7.00 DATA CHART

CIRCUIT IDENTIFICATION

DEVICE CODE: AFCH_4637, LITE LEFT
DESCRIPTION: WITHOUT LIGHT LEFT SIDE
DEVICE TYPE: CHL
CONFIGURATION: D

TEST AREA: BREAKER PANEL P18
TERMINATION: CONNECTOR ID CODE: DP84J1
HIGH TEST POINT: GND ID CODE: 604-20 PIN:
LOW TEST POINT: GROUND ID CODE:
COMMENTS: LEAD TO GROUND, TEST FROM CONNECTOR TO LOAD

OPERATOR IDENTIFICATION

OP LAST NAME: SERENA
OP AS LAST NAME:
OP NO:
FIRST NAME:
KCN

U MEASUREMENT UNITS:
I INDUCTANCE (WINDINGS)
C CAPACITANCE (WINDINGS)

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>DC VOLTS</th>
<th>DC RESISTANCE</th>
<th>DC RESISTANCE</th>
<th>REACTANCE</th>
<th>CAPACITANCE RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/20/2000</td>
<td>09:59</td>
<td>0.59</td>
<td>4.82</td>
<td>14.17</td>
<td>-29.93</td>
<td>5.32 uF / 417.47 mohm</td>
</tr>
<tr>
<td>9/20/2000</td>
<td>09:59</td>
<td>0.59</td>
<td>4.82</td>
<td>14.17</td>
<td>-29.93</td>
<td>5.32 uF / 417.47 mohm</td>
</tr>
</tbody>
</table>

INSULATION RESISTANCE DATA

<table>
<thead>
<tr>
<th>VOLT</th>
<th>RES</th>
<th>DUTY</th>
<th>REA</th>
<th>(OHMS)</th>
<th>(HOURS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

TOR Signature(s)

Horizontal (feet) / Vertical (Ohm = 2/Div)

TEST (SOLID)
TIME BASE: 50 ns
FT/DIVISION: Approx 15.0

REFERENCE (DASHED)
TIME BASE: 50 ns
FT/DIVISION: Approx 15.0
ECAD SYSTEM 1100 Version 7.00 DATA CHART

FILE SET: [REDACTED]

CIRCUIT IDENTIFICATION

DEVICE CODE: ALFRED LAMP LITE LEFT
DESCRIPTION: VERSAL VENT LEFT SIDE
DEVICE TYPE: C
CONFIGURATION: C

TEST AREA: BREAKER PANEL P18
TERMINATION: CONNECTOR
ID CODE: [REDACTED]
HIGH TEST POINT: GND
LOW TEST POINT: GND
COMMENTS: LEAD TO GROUND, TEST FROM CONNECTOR TO LOAD

OPERATOR IDENTIFICATION

UP LAST NAME: [REDACTED]
UP FIRST NAME: [REDACTED]
AS LAST NAME: [REDACTED]
AS FIRST NAME: [REDACTED]

MEASURED UNITS: U
INDUCTANCE/MISCELLANEOUS (µH)
TEST DATE: 08/30/2001
TEST TIME: 10:21
TEST RESISTANCE: 0.57 µH
TEST VOLTAGE: 6.41
TEST FREQUENCY: 16.00
TEST CAPACITANCE: 36.80
COMMENTS: [REDACTED]

MEASURED UNITS: U
INDUCTANCE/MISCELLANEOUS (µH)
TEST DATE: 08/30/2001
TEST TIME: 10:21
TEST RESISTANCE: 0.57 µH
TEST VOLTAGE: 6.41
TEST FREQUENCY: 16.00
TEST CAPACITANCE: 36.80
COMMENTS: [REDACTED]

INSULATION RESISTANCE DATA

TO TEST TO (OHMS) PARALLEL POLARIZATION
VOLTAGE FIRST FINAL (SECONDS) READ
R 0 0 0 0 0 0
T 0 0 0 0 0 0

TEST(SRLED)
TIME SCALE: 50 µS
FR/DIVISION: Approx 15.0

REFERENCE (REDLED)
TIME BASE: 50 µS
FR/DIVISION: Approx 15.0

TOR Signature(s)
ECAD System 1100 Version 7.00 Data Chart

File Set: C\EXSIAM\DATA\QHMAC

Circuit Identification

Device Code: AFEM_PGA0_CEIL_L_L_L
Description: PASSENGER CEILING LIGHTS LEFT
Device Type: CBL.
Configuration: A

Test Area: BREAKER PANEL P14
Termination: BREAKER
ID Code: C273

High Test Point: USAR
Low Test Point: GROUND
ID Code: 671-16

Comments: LEAD TO GROUND, ENTIRE CIRCUIT (WITH LAST CONN)

Operator Identification

Op Last Name: SERECA
Op First Name: KCH

Insulation Resistance Data

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Voltage (Volts)</th>
<th>DC Resistance (Ohms)</th>
<th>DC Resistance (Ohms)</th>
<th>DC Resistance (Ohms)</th>
<th>DC Resistance (Ohms)</th>
<th>Indicated</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/28/2001</td>
<td>11:44</td>
<td>0.50 m</td>
<td>5.89</td>
<td>227.61</td>
<td>215.27</td>
<td>L</td>
<td>39.26 m / 945.79 m</td>
</tr>
<tr>
<td>08/28/2001</td>
<td>11:44</td>
<td>0.50 m</td>
<td>9.69</td>
<td>227.61</td>
<td>215.27</td>
<td>L</td>
<td>39.26 m / 945.79 m</td>
</tr>
</tbody>
</table>

TDR Signature(s)

Vertical (Ohms) / Horizontal (Feet)

Test (Solid)
- Time Base: 50 nS
- Ft/Division: Approx 15.0

Reference (Dashed)
- Time Base: 50 nS
- Ft/Division: Approx 15.0

4A
ECAD SYSTEM 1100 Version 7.00 DATA CHART

CIRCUIT IDENTIFICATION
DEVICE CODE: JEMM_PSGR_CEIL_L_L_L
DESCRIPTION: PASSENGER CEILING LIGHTS LEFT
DEVICE TYPE: ODL
CONFIGURATION: B

TEST AREA: BREAKER PANEL PIN
TERMINATION: BREAKER
HIGH TEST POINT: USUAL
LOW TEST POINT: GROUND
COMMENTS: LEAD TO GROUND, USES 200 MV DC OX (NO LOADS)

OPERATOR IDENTIFICATION
UP LAST NAME: SERENA
AG LAST NAME:
MSN:

FIRST NAME: KEH

TEST TEST DC + DC RESISTANCE DC RESISTANCE RESISTANCE C CAPACITANCE/RESISTANCE (OHMS)
NOTE TIME VOLTAGE (VOLTS) 1 kHz (OHMS) 1 kHz (OHMS) VALUE
R 08/26/2001 13:26 74,50 m > 500,00 k 54 k -124.95 k C 1.27 m / 45.66 n
T 08/26/2001 13:26 74,50 m > 500,00 k 54 k -124.95 k C 1.27 m / 45.66 n

INSULATION RESISTANCE DATA

LEGEND

T = TEST
U = UNTESTED
I = INDUCTION
M = INSURANCE
L = LATER
D = DISINTEGRATE

TO TEST TO (OHMS) WITHIN POLARIZATION (5) = TEST (6) = REFERENCE
TO TEST FIRST FINAL (SECONDS) DATE
R 100 24.65 M 27.50 M 60 1.89
T 100 24.65 M 27.50 M 60 1.89

TDR Signature(s)

Horizontal (feet) / Vertical (Ohm = 2/div)
ECAD SYSTEM 1100 Version 7.00 DATA CHART

COMPONENT IDENTIFICATION

DEVICE CODE: HECHE ONE-MDL. 1 2
DESCRIPTION: DISTANCE MEAS. EQUIPMENT NO.2
DEVICE TYPE: DIN
CONFIGURATION: A

TEST AREA: BREAKER PANEL P18
TERMINATION: BREAKER
ID CODE: C76
HIGH TEST POINT: 0613
ID CODE: 099-22
LOW TEST POINT: GROUND
ID CODE:
COMMENTS: LEAD TO GROUND, BAR TO OPEN RELAY CONTACT

OPERATOR IDENTIFICATION

UP LAST NAME: SELLA
AS LAST NAME:
NAME:

FIRST NAME: JCM
FIRST NAME:

MEASUREMENT UNITS
L. INDUCTANCE (UNIT: Q, OHMS)
C. CAPACITANCE (UNIT: FARADS)

<table>
<thead>
<tr>
<th>TEST</th>
<th>VOLT</th>
<th>TIME</th>
<th>VOLUME</th>
<th>DC RESISTANCE</th>
<th>RESISTANCE</th>
<th>AC RESISTANCE</th>
<th>RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>更为精确</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R 06/28/2001 13:36</td>
<td>2.95</td>
<td>500.00</td>
<td>14.90</td>
<td>-131.40</td>
<td>C</td>
<td>1.21 n / 113.41 n</td>
<td></td>
</tr>
<tr>
<td>T 06/28/2001 13:36</td>
<td>2.95</td>
<td>500.00</td>
<td>14.90</td>
<td>-131.40</td>
<td>C</td>
<td>1.21 n / 113.41 n</td>
<td></td>
</tr>
</tbody>
</table>

INSULATION RESISTANCE DATA

<table>
<thead>
<tr>
<th>TEST</th>
<th>VOLT</th>
<th>FIRST</th>
<th>TIME</th>
<th>POLARIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(E) = REFERENCE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(F) = TEST</td>
</tr>
<tr>
<td>R 100</td>
<td>1.15 G</td>
<td>1.94 G</td>
<td>60</td>
<td>1.15</td>
</tr>
<tr>
<td>T 100</td>
<td>1.15 G</td>
<td>1.94 G</td>
<td>60</td>
<td>1.15</td>
</tr>
</tbody>
</table>

TOR Signature(s)

Vertical (Ohm) / Horizontal (ft) = 2/Div
ECAD SYSTEM 1100 Version 7.00 DATA CHART

CIRCUIT IDENTIFICATION
DEVICE CODE: AFC89Y.P010.P010
DESCRIPTION: HEATER PIVOT RMT.
DEVICE TYPE: CM
CONFIGURATION: A
TEST AREA: BREAKER PANEL P10
TERMINATION: BREAKER
HIGH TEST POINT: 1044
LOW TEST POINT: GROUND
CONCERNS: CONNECT TO GROUND, JUMPER 9908657 TO 990865710 AHR OUT

OPERATOR IDENTIFICATION
UP LAST NAME: SEDRA
AS LAST NAME:
FIRST NAME:

U MEASUREMENT UNTHEFTED
L INDUCTANCE/QUALITY (QUANTITY)

<table>
<thead>
<tr>
<th>TEST</th>
<th>TEST</th>
<th>AC = DC</th>
<th>AC RESISTANCE</th>
<th>DC RESISTANCE</th>
<th>RESISTANCE</th>
<th>CAPACITANCE/DISSIPATION (2/UNIT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DATE</td>
<td>TIME</td>
<td>VOLTAGE</td>
<td>(OMS)</td>
<td>1 kOhm</td>
<td>(OMS)</td>
<td>1 kOhm</td>
</tr>
<tr>
<td>08/26/2001 14:15</td>
<td>0.20</td>
<td>500.00 &</td>
<td>7.26 &</td>
<td>-108.96 &</td>
<td>C</td>
<td>1.50 & / 71.91 &</td>
</tr>
<tr>
<td>08/26/2001 14:15</td>
<td>0.20</td>
<td>500.00 &</td>
<td>7.26 &</td>
<td>-108.96 &</td>
<td>C</td>
<td>1.50 & / 71.91 &</td>
</tr>
</tbody>
</table>

INSULATION RESISTANCE DATA

<table>
<thead>
<tr>
<th>IN TEST</th>
<th>TR (OMS)</th>
<th>DURATION</th>
<th>PARTICIPATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOL:AGE</td>
<td>FIRST</td>
<td>TIME</td>
<td>(SECONDS)</td>
</tr>
<tr>
<td>R</td>
<td>100</td>
<td>1.79 G</td>
<td>3.29 G</td>
</tr>
<tr>
<td>T</td>
<td>100</td>
<td>1.79 G</td>
<td>3.29 G</td>
</tr>
</tbody>
</table>

TOR Signature(s)

Legend:
- (1) = TEST
- (2) = REFERENCE
- Q = nano
- U = micro
- G = mega
- B = kilo

REFERENCE (RMS): TIME BASE = 50 uS
F/T DIVISION = Approx 15.0

6A
ECAD SYSTEM 1100 Version 7.00 DATA CHART

CIRCUIT IDENTIFICATION

DEVICE CODE: NF08_Project_Power
DESCRIPTION: Project Power (Phase A)
DEVICE TYPE: CBL
CONFIGURATION: A
TEST AREA: P000 Plan J-Box
TERMINATION: Breaker
ID CODE: C68
HIGH TEST POINT: GND
LOW TEST POINT: GND
COMMENTS: Lead to GND, P01 removed, CS CONTACT JUMPERED

OPERATOR IDENTIFICATION

DP LAST NAME: SEDER
RS LAST NAME: KEN

<table>
<thead>
<tr>
<th>TEST</th>
<th>TIME</th>
<th>DC + DC</th>
<th>DC RESISTANCE</th>
<th>DC RESISTANCE</th>
<th>RESISTANCE</th>
<th>CAPACITANCE/RESISTANCE (F/OMIL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 kHz (OHMS)</td>
<td>1 kHz (OHMS)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>08/28/01</td>
<td>16:12</td>
<td>978.85 m</td>
<td>500.00 k</td>
<td>-6.49 k</td>
<td>-151.94 k</td>
</tr>
<tr>
<td>T</td>
<td>08/28/01</td>
<td>16:12</td>
<td>978.85 m</td>
<td>500.00 k</td>
<td>-6.49 k</td>
<td>-151.94 k</td>
</tr>
</tbody>
</table>

INSULATION RESISTANCE DATA

<table>
<thead>
<tr>
<th>TEST</th>
<th>TIME</th>
<th>DC + DC</th>
<th>DC RESISTANCE</th>
<th>DC RESISTANCE</th>
<th>RESISTANCE</th>
<th>CAPACITANCE/RESISTANCE (F/OMIL)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 kHz (OHMS)</td>
<td>1 kHz (OHMS)</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>100</td>
<td>37.10 m</td>
<td>38.75 m</td>
<td>60</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>100</td>
<td>37.10 m</td>
<td>38.75 m</td>
<td>60</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

TDR Signature(s)

Horizontal (feet) / Vertical (Ohm = 2/Div)

TEST (SOLID)
TIME BASE: 50 ns
FT/DIVISION: Approx 15.0
REFERENCE (Onground)
TIME BASE: 50 ns
FT/DIVISION: Approx 15.0

7A
ECAD SYSTEM 1100 Version 7.00 DATA CHART

TEST AREA: BREAKER PANEL P6
TEST TERMINATION: BREAKER
HIGH TEST POINT: GROUND
LOW TEST POINT: GROUND
COMMENTS: LEAD TO GND, JUMPER D402P/2 TO D402P/15 15R OUT

OPERATOR IDENTIFICATION
OP LAST NAME: SERENA
AS LAST NAME:

FIRST NAME: KEN

DATE: 08/29/2001
TIME: 14:41
AC + DC
AC RESISTANCE
AC RESISTANCE
RESISTANCE

<table>
<thead>
<tr>
<th>DATE</th>
<th>TIME</th>
<th>DC VOLTAGE</th>
<th>DC CURRENT</th>
<th>DC RESISTANCE</th>
<th>DC RESISTANCE</th>
<th>RESISTANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>08/29/2001</td>
<td>14:41</td>
<td>> 500.00 k</td>
<td>7.14 k</td>
<td>-103.59 k</td>
<td>C</td>
<td>1.54 m / 68.89 n</td>
</tr>
<tr>
<td>08/29/2001</td>
<td>14:41</td>
<td>> 500.00 k</td>
<td>7.14 k</td>
<td>-103.59 k</td>
<td>C</td>
<td>1.54 m / 68.89 n</td>
</tr>
</tbody>
</table>

INSULATION RESISTANCE DATA

<table>
<thead>
<tr>
<th>VOLTAGE</th>
<th>FIRST</th>
<th>FINAL</th>
<th>(SECOND)</th>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>100</td>
<td>644.72 M</td>
<td>806.75 M</td>
<td>60</td>
</tr>
<tr>
<td>T</td>
<td>100</td>
<td>644.72 M</td>
<td>806.75 M</td>
<td>60</td>
</tr>
</tbody>
</table>

TDI Signature(s)

LEGEND

(1) = TEST
(2) = REFERENCE

T = Tera
G = Giga
M = Mega
k = Kilo

m = Milli
u = Micro
n = Nano
p = Pico

TEST (SIGNAL)
TIME BASE: 50 ns
FT/ DIVISION: Approx 15.0

REFERENCE (SIGNAL)
TIME BASE: 50 ns
FT/ DIVISION: Approx 15.0