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EXECUTIVE SUMMARY

The primary objective of this study was to support the Federal Aviation Administration (FAA)
Operational Loads Monitoring Research Program by developing new and improved methods and
criteria for processing and presenting commercial transport airplane ground loads usage data.
The scope of activities performed involved (1) defining the service-related factors that affect the
operational life of commercial aircraft; (2) designing an efficient software system to reduce,
store, and process large quantities of optical quick access recorder data; and (3) reducing,
analyzing, and providing processed data in statistical formats that will enable the FAA to
reassess existing certification criteria. Equally important, these new data will also enable the
FAA, the aircraft manufacturers, and the airlines to better understand and control those factors
that influence the structural integrity of commercial transport aircraft.

The data presented in this report will provide the user with information comparing the side load
factors encountered during ground maneuvers for the B-747-400, B-767-200, B-737-400,
CRJ100, and A320 in actual operational usage. The University of Dayton Research Institute
database consisted of 95,862 flight hours for airplane models B-747-400; 44,990 flight hours for
the B-767-200; 89,269 flight hours for the B-737-400; 463 flight hours for the CRJ100; and
30,817 flight hours for the A320.
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1. INTRODUCTION.

Lateral acceleration certification criteria outlined by Title 14 Code of Federal Regulations (CFR)
for commercial aircraft ground operations are based primarily on two ground events that are
considered to be the most critical to the aircraft structure; those events being the touchdown
event (14 CFR 25.485) and turning (14 CFR 25.495). Data reduced using previously accepted
methods of ground phase breakdown showed that for the B-747-400 aircraft, the largest
magnitudes of lateral accelerations occurred during the landing roll phase. Since there was no 14
CFR criteria specified for side load spectrum during this phase of ground maneuver, additional
investigation ensued about possible causes. Further examination into the high Ny values that
appeared in the landing roll revealed that the occurrences were taking place within seconds after
main gear touchdown. Discussion of this fact with experienced flight loads professionals
resulted in the proposal that the current touchdown phase criteria did not capture the landing
event completely and should be re-evaluated.

The decision was made to extend the touchdown event to include the time period through nose
gear touchdown. At the request of the Federal Aviation Administration (FAA), the University of
Dayton Research Institute (UDRI) developed new criteria for the touchdown event and also
performed data reduction for ground phases on a selection of available aircraft. The FAA, along
with the Aviation Rulemaking Advisory Committee, displayed interest in additional criteria for
14 CFR 25.495, turning. The concern was that the current CFR’s turning criterion was too
stringent and could be lowered in special cases. Regulatory authorities in position to make
special conditions to 14 CFR 25.495 were hesitant to do so without the appropriate technical
substantiation. Initially, only the ground maneuver data generated for the B-747-400 had been
updated; however, similar data was requested for additional aircraft within the UDRI database
(B-737-400, B-767-200, A320, and CRJ100) for comparison purposes.

2. DATA REDUCTION CRITERIA.

The following section explains the criterion to identify the touchdown event that was used in
previous reports and then describes the procedure involved in updating this criteria. After the
description of the development of the new touchdown event, phase descriptions for the
remaining ground maneuvers are given.

2.1 TOUCHDOWN CRITERIA DEFINED.

The criteria for reporting lateral acceleration (Ny) occurring in the touchdown event was
previously 3 seconds prior to main gear squat closure until 1 second after main gear squat.
Figure 1 shows the results produced with this original criteria. The maximum Ny values were
observed to occur in the landing roll phase.

The main objective for redefining the touchdown criteria was to ensure that Ny occurrences
associated with the landing event are grouped with the landing event and not grouped in the
landing roll. In order to do this, the touchdown event was redefined to include the time period
through closure of the nose gear squat switch. This was accomplished by changing the
touchdown event criteria to start 3 seconds prior to main gear squat and end 1 second after nose
gear squat. The updated criteria would increase the time and also the occurrences of Ny



measured during the touchdown event, therefore reducing the time Ny is measured in the new
shortened landing roll. This was acceptable because it was important to group Ny events related
to landing within the touchdown event and not in the landing roll phase.
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FIGURE 1. B-747-400 CUMULATIVE Ny OCCURRENCES FOUND USING ORIGINAL
GROUND PHASE CRITERIA

2.2 NEW TOUCHDOWN CRITERIA DEVELOPMENT.

The new criteria for defining the landing event could simply be applied to the three aircraft in the
database on which the nose gear squat switch parameter was available (B-747-400, A320, and
CRJ100). The remaining two aircraft being evaluated for this study (B-767-200 and B-737-400)



did not have the nose gear squat indicator data recorded and, therefore, required an alternative
method of identifying when the nose gear was down. A detailed analysis of the data from the
three aircraft models, which had nose squat indications, was conducted to determine a consistent
method that would accurately estimate when the nose gear was down for those models without
nose squat indications. The primary candidate parameters for this supplemental nose gear study
were radio altitude and pitch angle.

2.2.1 Radio Altitude Method.

The method using radio altitude involved calculating the average altitude for each flight between
15 and 30 seconds after touchdown. The average altitude would serve as the reference that the
aircraft was down, then assuming the nose touched down when the aircraft crossed that average.
Figure 2 shows that for the B-747, the method performed well using this approximation when
compared to the nose gear squat indicator. However, the same method applied to the A320
resulted in misidentifying nose gear squat indicator early (figure 3). The radio altitude procedure
was ruled out when the results between the B-747-400 and the A320 for identifying nose gear
down were not comparable. The discrepancy with the radio altitude method was likely due to
the difference in location of the flight recorder within the airplanes.
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2.2.2 Pitch Angle Method.

The method for determining when the nose gear was down using pitch angle was applied
identically between the three aircraft used in the study (B-747-400, A320, and CRJ100). The
pitch angle method, similar to the radio altitude procedure, consisted of calculating the average
pitch angle of each flight between 15 and 30 seconds after main gear squat. This average was
used as the initial reference line and identified when the aircraft was flat on the runway, i.e.,
constant pitch angle. The original reference line was then shifted half of a degree to make sure
that the criteria would identify when the nose gear was down for every flight. When the
aircraft’s pitch angle first crossed the reference line (average pitch angle on the runway plus the
half a degree), the nose gear was assumed to be down and the touchdown event concluded
(figure 4). As figure 4 shows, the pitch angle method ensures that the nose squat is included
within the landing event.
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FIGURE 4. TIME HISTORY ILLUSTRATING PITCH ANGLE METHOD

Cumulative occurrences of Ny values measured in the touchdown event using the pitch angle
method were checked against Ny occurrences found using the criteria of identifying the end of
touchdown that uses nose squat plus a second. Figures 5 and 6 show the favorable results found
between the two methods for the B-747-400 and the A320 airplanes. Figure 7 contains the
results for the CRJ100. The CRJ100 in previous research was identified to land with lower pitch
angles than the other aircraft in the study, with some flat landings (main and nose touching down
simultaneously) occurring in the sample data set. This resulted in high Ny values being recorded
in both the landing event and the landing roll. The positive results from the B-747-400, A320,
and the explanation for inconsistency in the CRJ100 data confirmed that the pitch angle method
would ensure that the nose gear down condition was included in the touchdown event with
minimal affect on the landing roll.
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2.3 GROUND PHASES DEFINED.

UDRI separated the ground portion of each flight from the time it departed the gate area to its
return to the gate into phases called taxi-out, takeoff roll, touchdown event, landing roll, runway
turnoff, and taxi-in. Specific data reduction criteria were developed by UDRI and used to
identify the beginning and end of each of these phases. Figure 8 shows these phases and events.
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The criteria used to define each of these phases are summarized in table 1 and discussed in more
detail in the following paragraphs.

TABLE 1. FLIGHT PHASE CRITERIA

Phase/Event Defining Conditions
Taxi-Out From engine start to beginning of takeoff roll
Takeoff Roll Ground acceleration > 2kts/sec for at least 20 seconds beginning

with the time slice where the first ground speed rate change
greater than 2 kts/sec for that sequence occurred

Touchdown Event From 3 seconds prior to main gear squat switch on until 1 second
after nose gear squat (or pitch angle method)

Landing Roll Begins immediately following touchdown event and ends at the
start of runway turnoff

Runway Turnoff From first sequential magnetic heading change >2 degrees in the

same direction from runway heading and subsequent heading
changes >13.5 degrees

Taxi-In After runway turnoff to gate or recorder shutdown




2.3.1 Taxi-Out and Taxi-In.

UDRI defined all aircraft movement from engine start-up until the aircraft begins its takeoff roll
as being taxi-out. Taxi-in was defined as beginning from the point where the aircraft completed
its turnoff from the active runway after its landing roll to when the aircraft was parked at the gate
or the recorder was shutdown.

2.3.2 Takeoff and Landing Roll.

UDRI identified the beginning of the takeoff roll by searching for ground speeds that accelerated
at rates greater than 2 kts/sec for a minimum duration of 20 seconds. Then, when these values
were found, the beginning of the takeoff roll was assigned as being the time slice where the first
ground speed rate change greater than 2 kts/sec for that sequence occurred. The takeoff roll ends
at liftoff with the squat switch off signal.

The landing roll phase was defined as beginning immediately after the touchdown event and
ending when the aircraft starts its turnoff from the active runway.

2.3.3 Runway Turnoff.

UDRI used changes in magnetic heading to identify the beginning and the end of the aircraft’s
turnoff from the active runway. After the aircraft touched down and was on the ground for four
seconds, the subsequent average magnetic heading readings were used to define the aircraft’s
landing centerline. UDRI then searched for magnetic heading changes that continuously moved
in the same direction away from this centerline. When the aircraft’s sequential magnetic heading
change exceeded 13.5 degrees from the direction of the landing centerline or the integrated
distance from the centerline exceeded 100 feet, the time slice associated with the first sequential
heading change greater than 2 degrees from the landing centerline in the direction of the turn was
defined as the beginning of the airplane’s turnoff from the runway.

UDRI developed the 100-foot deviation as an alternate method of identifying flights involving
shallow turns from the runway that did not exceed the 13.5 degree turn criteria. This method
used aircraft ground speed and magnetic heading to calculate the aircraft’s position relative to the
runway centerline. Then, as above, the time slice associated with the first aircraft movement
away from the landing centerline in the direction of the turn was defined as the beginning of the
aircraft’s turnoff from the runway.

The end point of this turnoff from the runway was also identified using magnetic heading
readings. UDRI developed an algorithm that used the changes in magnetic heading, while the
aircraft was in its turn, to identify when the aircraft had either returned to taxiing in a straight
line or was turning in the opposite direction. The first point that provided this indication was
then defined as the end point of the turnoff from the runway. This point is also the beginning of
the taxi-in phase.



3. DATA PRESENTATION.

The statistical data presented in this section provided the FAA and aircraft manufacturers with
the information that was needed to assess the side load factors for each of the defined ground
phases for the B-747-400, B-767-200, B-737-400, CRJ100, and A320. Table 2 reports the
amount of flight hours, total number of flights, and the average flight length for each of the five
aircraft used in this study. All data were checked, and any suspicious flights were analyzed and
removed if the data were found to be faulty.

TABLE 2. FLIGHT STATISTICS

Average Flight Time
Aircraft Flights Flight Hours (Hours)
B-747-400 11,064 95,862 8.66
B-767-200 6,551 44,990 6.87
B-737-400 60,734 89,269 1.47
CRJ100 359 463 1.29
A320 10,066 30,817 3.06

Table 3 lists the statistical formats for which the data were processed. The side load factor data
formats are grouped together within the table in an attempt to categorize the results by aircraft
model and by individual ground phases.

TABLE 3. STATISTICAL DATA FORMATS

Data Description Figure
LATERAL LOAD FACTOR BY AIRCRAFT MODEL
B-747-400
Cumulative Occurrences of Lateral Load Factor per Flight by Ground Phase A-1
Cumulative Occurrences of Lateral Load Factor per Flight Hour by Ground Phase A-2
Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight by Ground Phase A-3
Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight Hour by Ground Phase | A-4
Summary Cumulative Occurrences of Lateral Load Factor per Flight by Ground Phase A-5
Summary Cumulative Occurrences of Lateral Load Factor per Flight Hour by Ground Phase A-6
B-767-200
Cumulative Occurrences of Lateral Load Factor per Flight by Ground Phase A-7
Cumulative Occurrences of Lateral Load Factor per Flight Hour by Ground Phase A-8
Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight by Ground Phase A-9
Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight Hour by Ground Phase | A-10
Summary Cumulative Occurrences of Lateral Load Factor per Flight by Ground Phase A-11
Summary Cumulative Occurrences of Lateral Load Factor per Flight Hour by Ground Phase A-12
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TABLE 3. STATISTICAL DATA FORMATS (Continued)

Data Description Figure
LATERAL LOAD FACTOR BY AIRCRAFT MODEL (continued)

B-737-400

Cumulative Occurrences of Lateral Load Factor per Flight by Ground Phase A-13

Cumulative Occurrences of Lateral Load Factor per Flight Hour by Ground Phase A-14

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight by Ground Phase A-15

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight Hour by Ground | A-16

Phase

Summary Cumulative Occurrences of Lateral Load Factor per Flight by Ground Phase A-17

Summary Cumulative Occurrences of Lateral Load Factor per Flight Hour by Ground Phase A-18

CRJ100

Cumulative Occurrences of Lateral Load Factor per Flight by Ground Phase A-19

Cumulative Occurrences of Lateral Load Factor per Flight Hour by Ground Phase A-20

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight by Ground Phase A-21

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight Hour by Ground | A-22

Phase

Summary Cumulative Occurrences of Lateral Load Factor per Flight by Ground Phase A-23

Summary Cumulative Occurrences of Lateral Load Factor per Flight Hour by Ground Phase A-24

A320

Cumulative Occurrences of Lateral Load Factor per Flight by Ground Phase A-25

Cumulative Occurrences of Lateral Load Factor per Flight Hour by Ground Phase A-26

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight by Ground Phase A-27

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight Hour by Ground | A-28

Phase

Summary Cumulative Occurrences of Lateral Load Factor per Flight by Ground Phase A-29

Summary Cumulative Occurrences of Lateral Load Factor per Flight Hour by Ground Phase A-30

LATERAL LOAD FACTOR BY GROUND PHASES

TAXI-OUT

Cumulative Occurrences of Lateral Load Factor per Flight During Taxi-Out by Aircraft Model A-31

Cumulative Occurrences of Lateral Load Factor per Flight Hour During Taxi-Out by Aircraft Model A-32

TAKEOFF ROLL

Cumulative Occurrences of Lateral Load Factor per Flight During Takeoff by Aircraft Model A-33

Cumulative Occurrences of Lateral Load Factor per Flight Hour During Takeoff by Aircraft Model A-34

TOUCHDOWN

Cumulative Occurrences of Lateral Load Factor per Flight During Touchdown by Aircraft Model A-35

Cumulative Occurrences of Lateral Load Factor per Flight Hour During Touchdown by Aircraft Model A-36

LANDING ROLL

Cumulative Occurrences of Lateral Load Factor per Flight During Landing Roll by Aircraft Model A-37

Cumulative Occurrences of Lateral Load Factor per Flight Hour During Landing Roll by Aircraft Model | A-38
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TABLE 3. STATISTICAL DATA FORMATS (Continued)

Data Description Figure
LATERAL LOAD FACTOR BY GROUND PHASES (Continued)

RUNWAY TURNOFF

Cumulative Occurrences of Lateral Load Factor per Flight During Runway Turnoff by Aircraft Model A-39

Cumulative Occurrences of Lateral Load Factor per Flight Hour During Runway Turnoff by Aircraft A-40

Model

TAXI-IN

Cumulative Occurrences of Lateral Load Factor per Flight During Taxi-In by Aircraft Model A-41

Cumulative Occurrences of Lateral Load Factor per Flight Hour During Taxi-In by Aircraft Model A-42

CORRECTED LATERAL LOAD FACTOR BY GROUND PHASES

TAXI-OUT

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight During Taxi-Out by | A-43
Aircraft Model

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight Hour During Taxi- | A-44
Out by Aircraft Model

TAKEOFF ROLL

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight During Takeoff Roll | A-45
by Aircraft Model

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight Hour During A-46
Takeoff Roll by Aircraft Model

TOUCHDOWN

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight During Touchdown | A-47
by Aircraft Model

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight Hour During A-48
Touchdown by Aircraft Model

LANDING ROLL

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight During Landing Roll | A-49
by Aircraft Model

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight Hour During A-50
Landing Roll by Aircraft Model

RUNWAY TURNOFF

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight During Runway A-51
Turnoff by Aircraft Model

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight Hour During A-52
Runway Turnoff by Aircraft Model

TAXI-IN

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight During Taxi-In by A-53
Aircraft Model

Cumulative Occurrences of (Recorded Weight/Max Landing Weight)*Ny per Flight Hour During Taxi-In | A-54
by Aircraft Model

Figures A-1 through A-54 are presented in appendix A. It should also be noted that the data
presented in these figures were checked and any data found to be erroneous was removed.

Cumulative occurrence of lateral load factor plots provided in appendix A present data in two
forms, by flight and by flight hours. The values of Ny presented are the absolute value with no
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differentiation between left and right turns. These plots provide ground phase data grouped by
aircraft model. Additionally, the data is provided for each ground phase separately for
comparison between different aircraft models.

Data contained in the plots that are identified as corrected have Ny values that were adjusted to
take into account weight loss that occurs in flight when fuel mass is burned off. Lateral load
factors reported in these plots have been multiplied by the corresponding gross weight at
touchdown and then divided by the maximum ramp or landing weight as appropriate for that
aircraft model. Gross weight was not available for the CRJ100 model, so the corrected data in
these plots were multiplied by the maximum landing weight and, again, divided by the maximum
ramp weight. Table 4 provides the numerical values of maximum landing and ramp weights
used by each model.

TABLE 4. DESIGN WEIGHT VALUES USED FOR Ny CORRECTION

B-747-400 | B-767-200 | B-737-400 A320 CRJ100

(Ib) (Ib) (Ib) (Ib) (Ib)
Maximum Ramp Weight 877,000 352,200 143,000 162,920 | 53,250
Maximum Landing Weight | 652,000 278,000 121,000 142,195 | 47,000

The takeoff roll phase for the CRJ100 contained some high Ny values. Closer examination as to
why shows that the CRJ100, because of its small size, is capable of quickly accelerating around
the turn from the taxiway to the runway for takeoff. As a result, instead of the Ny appearing in
the taxi-out phase as it should, the plane has met the criteria for takeoff roll based on its
acceleration, even though it is still turning onto the runway.

4. CONCLUSIONS.

In support of a number of Federal Aviation Administration certification initiatives and Aviation
Rulemaking Advisory Committee activities, data formats for ground phase operations that were
not previously available have been included in this report. The updated ground phase criteria
and the large quantity of flight data within this report make it a very complete resource for
characterizing aircraft lateral load factor during ground operations. The data herein has been
presented in a manner that allows for individual aircraft to be studied (plots by model) as well in
a way that allows comparisons among different aircraft models to be made (plots by phase).

The figures in appendix A shows that, in general, the size of the aircraft does appear to be a
significant factor of not only when high Ny values occur, but also the magnitude of Ny. Small
aircraft such as the CRJ100 and B-737, for example, tend to see most of their higher Ny
occurrences while turning (due to higher speeds and gear layout). Larger aircraft are prone to
encounter lower values of Ny taxiing and tend to have their highest Ny occurrences found during
the touchdown event and rollout.

As data for future aircraft models or increased flight hours for existing models become available,

these same formats will be created and provided either in future flight load reports or in a manner
similar to this report.
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APPENDIX A—COMPARITIVE SIDE LOAD FACTOR DATA
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