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EXECUTIVE SUMMARY 
 
The aging aircraft research programs conducted by the Federal Aviation Administration (FAA), 
National Aeronautics and Space Administration (NASA), and the aircraft industry have 
developed methodologies to assess widespread fatigue damage (WFD) in aircraft structures.  
During the course of the FAA WFD evaluations, technology gaps were identified.  One 
particular gap is a lack of understanding of the initial stages of multiple-site damage (MSD) 
crack formation and growth.  Knowledge of MSD nucleation time and pattern, (i.e., distribution), 
as well as its subsequent growth, is a prerequisite for planning an acceptable program to preclude 
the occurrence of WFD. 
 
As a follow-on to the FAA WFD evaluations, this report is the result of a study on the influence 
of residual stresses and production-quality holes on the fatigue behavior of laboratory coupons, 
laboratory flat-riveted lap joint specimens, curved-riveted lap joint panels from a retired narrow-
body aircraft, and data from the retired aircraft destructive evaluations.  The influence of residual 
stresses is accounted for in the life-prediction methodology by developing stress-intensity factor 
(SIF) solutions and codes for both two- and three-dimensional cracked bodies.  The influence of 
the production-quality hole is accounted for in the development of equivalent initial flaw size 
(EIFS) values to fit the experimental test data on the coupons and riveted lap joint panels. 
 
A 2024-T3 aluminum alloy (bare and clad) sheet material was selected because of its use in the 
majority of the current fleet of commercial aircraft.  NASA Langley Research Center supplied 
the bare material for part of this study because their material has a well-documented fatigue and 
fatigue crack growth history.  The Lockheed-Martin Aeronautics Company and Delta Air Lines, 
Inc., provided production-quality drilled-hole coupons, two-rivet lap joint specimens, and 
guidance on the critical parameters to be studied in this investigation. 
 
Attempts to measure or to establish the magnitude and distribution of the residual stresses in the 
production-quality drilled fastener holes were unsuccessful.  However, fatigue tests conducted 
on the coupons made of the 2024-T3 bare material with both production-quality and polished 
holes indicated that the residual stresses may be low.  In contrast to previous studies, production-
quality drilled holes generated compressive residual stresses that had a significant impact on the 
fatigue life.  Additionally, the three-dimensional finite element simulations of the riveting 
installation process demonstrated that residual stresses were induced around the fastener hole 
due to the severe plastic deformations and the various riveting parameters. 
 
Two- and three-dimensional stress analyses were developed to calculate the SIF for through, 
surface, and corner cracks emanating from a straight-shank fastener hole under various applied 
(remote tension, bending, fastener) loadings with an arbitrary residual-stress distribution.  These 
analyses were only for straight-shank holes, i.e., the countersunk configuration was not 
considered.  The two-dimensional SIF code was based on Green’s functions, whereas the three-
dimensional SIF code was based on a weight function analysis.  The Green’s function code 
(SIFK2D) and the weight function code (K3DL) are stand-alone codes, and they were used to 
generate SIF solutions for the FASTRAN life-prediction code. 
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Fatigue life analyses on the polished and production-quality, single-hole specimens and the two-
rivet lap joint specimens were made using the small-crack theory and the usual EIFS values for 
open-hole and lap joint specimens.  The predicted results on both the open-hole and two-rivet lap 
joint specimens agreed well with the test data.  An assessment on the impact of loose and tight 
rivets on the fatigue life of more realistic structural configurations was made using the results 
from the EIFS values determined from laboratory-riveted lap joint specimens and previous 
analyses of test results from a wide-body fuselage aircraft.  Studies at Delta Air Lines indicated 
that the right and left sides of the retired narrow-body (Boeing 727) aircraft had quite different 
cracking behaviors.  Predictions made on the curved panel tests conducted at the FAA Full-Scale 
Aircraft Structural Test Evaluation and Research facility indicated that the panels on one side of 
the aircraft could withstand about 90,000 additional pressure cycles to failure (panel had been 
subjected to about 60,000 flights before testing); whereas, the data and analyses from the 
destructive teardown of the retired aircraft by Delta Air Lines (lap joints from the other side of 
the aircraft) indicated that only an additional 10,000 flights would have been required to cause 
failure, if the fuselage had not been retired, inspected or repaired. 
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1.  INTRODUCTION. 

Over the past decade, the aging aircraft research programs conducted by the Federal Aviation 
Administration (FAA) [1], National Aeronautics and Space Administration (NASA) [2], and the 
aircraft industry have developed methodologies to assess widespread fatigue damage (WFD) in 
aircraft structure.  In a recent FAA-sponsored research project [3], The Boeing Company 
assessed and validated state-of-the-art fracture mechanics methods developed under previous 
FAA, NASA, and Department of Defense (DoD) programs.  For model calibration and 
verification, an extensive building-block test program was conducted starting with small 
coupons, leading to a more complex built-up fuselage structure tested at the FAA Full-Scale 
Aircraft Structural Test Evaluation and Research (FASTER) facility, and a full-scale test on the 
aft pressure bulkhead of an actual aircraft.  Emphasis of the WFD Assessment project was placed 
on determining the effects of multiple-site damage (MSD) on the residual strength of structural 
joints representative of commercial aircraft.  Using the STAGS finite element code and the 
critical crack tip opening angle criterion, accurate predictions of the residual strength (within 5% 
of test results) were made on complex fuselage structure and on an aft pressure bulkhead of an 
actual aircraft [4].  This effort demonstrated the successful technology transfer of a robust 
analysis methodology for assessing the residual strength of aircraft structure with MSD. 
 
During the course of the WFD Assessment project, technology gaps were identified.  One 
particular gap was a lack of understanding of the initial stages of MSD formation and growth.  
Knowledge of MSD nucleation time and pattern (i.e., distribution), as well as its subsequent 
growth, is a prerequisite for planning an acceptable program to preclude the occurrence of WFD.  
As a building block task in the WFD Assessment project to understand MSD initiation, fatigue 
and small-crack growth behavior of production-quality and polished holes in 2024-T3 aluminum 
alloy sheet material were investigated.  It was found that production-quality holes behaved quite 
differently from polished holes.  The production-quality holes produced fatigue lives that were 
over a factor of 5 times longer than the polished holes.  It has long been known that machining or 
the drilling process and fastener installation may induce compressive residual stresses at fastener 
holes.  Typically, these production-quality holes receive minimal working to deburr the edges of 
the holes to prevent premature cracking from the edge.  But the bore of the holes may have these 
machining residual stresses and/or rivet installation residual stresses present during flight 
operations.  The application of the FASTRAN life-prediction code [5] to predict fatigue lives 
and small crack growth behavior on test specimens in the WFD Evaluation project was fairly 
successful on the polished holes, but severely underestimated the fatigue lives on the production-
quality holes presumably due to residual stresses.  These results highlighted the need to include 
residual-stress distributions in the FASTRAN life-prediction methodology.  In the past, the 
FASTRAN life-prediction code and small-crack theory [6-8] have been quite successful in 
predicting the fatigue behavior in a variety of materials, especially the 2024-T3 aluminum alloy 
bare and clad, under both constant-amplitude and spectrum loading conditions. 
 
1.1  PURPOSE. 

The purpose of the present study was to investigate fastener hole residual stresses and hole 
quality and their influence on life-prediction methodology to study crack initiation and crack 
growth in aircraft structural joints commonly used in fuselages.  This research was a joint 
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activity between Mississippi State University, Georgia Institute of Technology, and Solid 
Solutions, Inc., with extensive collaboration with Lockheed-Martin Corporation, Delta Air 
Lines, and NASA Langley Research Center. 
 
The results of this project are published in three volumes.  The first volume, Assessment of 
Residual Stresses and Hole Quality on the Fatigue Behavior of Aircraft Structural Joints (this 
report), contains the experimental test programs on open-hole specimens (polished and as-drilled 
holes) and the two-rivet-row lap joint specimens, an elastic-plastic finite element analysis of the 
open-hole specimens, the development of two- and three-dimensional stress-analysis codes to 
calculate stress-intensity factors (SIF) for through, surface, and corner cracks at a hole under 
arbitrary loading, and the fatigue analyses of the laboratory specimens (open hole and lap joint), 
the curved lap joint panels removed from a retired narrow-body aircraft [9 and 10], and the 
actual lap joint sections destructively examined from the retired aircraft [11 and 12].  The second 
volume is on the assessment of hole drilling procedures and the fatigue performance of 
production-quality aircraft fastener holes [13]; and the third volume is on experimental and 
computational investigation of the riveting mechanics in aircraft fuselage structure [14]. 
 
In addition to the above documents, the FAA has sponsored a destructive teardown of a retired 
commercial B-727 aircraft.  This research project was conducted in parallel with the destructive 
teardown investigation made by Delta Air Lines. 
 
2024-T3 aluminum alloy sheet was the material selected for the open-hole specimens.  NASA 
Langley Research Center supplied the bare alloy and the single open-hole specimens for this 
study.  Lockheed-Martin and Delta Air Lines produced production-quality drilled holes in many 
samples using different drilling methods, and produced riveted lap joint specimens using various 
fastener installation procedures.  Attempts were made to measure or to establish the magnitude 
and distribution of the residual stresses in the production-quality drilled fastener holes.  Fatigue 
tests were conducted on the single open-hole specimens made of the 2024-T3 aluminum alloy 
with both production-quality and polished holes to calibrate the analysis methodology.  Fatigue 
tests were also conducted on two-rivet-row lap joint specimens prepared by Delta Air Lines. 
 
Two- and three-dimensional stress analysis codes were developed to calculate the SIFs for 
through, surface, or corner cracks at a hole under a wide variety of applied loading and with an 
arbitrary residual-stress distribution along the crack path.  The Green’s function method was 
used for the through-crack configurations.  The weight function analysis, K3DL, was developed 
and used to calculate SIFs for surface and corner crack at hole configurations.  These SIFs were 
then used in the FASTRAN life-prediction code.  Fatigue life analyses on polished and 
production-quality holes were performed using the small-crack theory.  The influence of 
nucleating particle distributions and of manufacturing defects on calculated fatigue lives was 
studied using equivalent initial flaw-sizes (EIFS) to fit fatigue lives on the various specimens and 
structural configurations. 
 
As a final verification of the approach developed, assessments on the impact of hole quality on 
more realistic structural configurations were made using the results from the retired narrow-body 
(Boeing-727) aircraft panels tested in the Destructive Evaluation and Extended Fatigue Test of 
Retired Aircraft Program, sponsored by the FAA and conducted by Delta Air Lines, and panels 
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tested in the FAA FASTER facility that had been removed from the retired aircraft.  Fatigue 
analyses were also conducted on three-rivet-row lap joint specimens, which are similar to the lap 
joints in a retired narrow-body (B-727) aircraft.  These analyses were to determine the EIFS for 
the fatigue analyses of the test panels removed from the retired aircraft and of the cracking 
observed in the actual lap joint sections of the retired aircraft. 
 
1.2  BACKGROUND. 

The machining and drilling process leaves a region of disturbed material along the edges of a 
drilled hole that can cause a residual-stress field, as shown in figure 1(a).  It was estimated that 
the depth of the residual-stress field is about 20 to 100 μm.  These residual stresses could affect 
the fatigue behavior of as-drilled open-hole specimens.  However, the drilling residual-stress 
field would be greatly altered by the rivet installation process, which yields the rivet and 
adjacent material in the rivet hole.  By contrast, the cold-working process (i.e., pulling a mandrel 
through the hole and yielding the material) produces a more significant residual-stress field 
(typically 0.5-5 mm [15]), as shown in figure 1(b).  A literature survey was conducted on the 
measurement and analyses of residual stresses due to the drilling and the fastener installation 
process.  However, no information was found on residual stresses due to the drilling process.  
Attempts to measure the residual stresses along the bore of the hole using X-ray diffraction were 
also unsuccessful.  Normal hole drilling residual-stress measurement methods were impractical due 
to the extremely small depth of the residual-stress field.  Finite element analyses (FEA) were also 
conducted on the fastener installation, as part of this study, but the results are given in a separate 
report [14]. 
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Figure 1.  Residual Stresses From Production-Quality and Cold-Worked Holes 
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The SIFs for surface, corner, and through cracks emanating from a fastener-loaded hole were 
determined from three-dimensional FEAs [16 and 17] and weight function methods (WFM) [18-20].  
These crack configurations were subjected to remote tension (S), remote bending (M), and pin 
loading (P), as shown in figure 2.  The SIF solutions for interference (Ι) loading and various 
residual-stress (σrs) distributions can be obtained by using either Green’s functions or weight 
functions for through cracks and weight functions for surface and corner cracks. 
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Figure 2.  Cracked Fastener Hole Subjected to Various Internal and External Stresses 

The current K3D (weight function analysis) code [21-23] can analyze surface and corner cracks (a/B 
< 0.6) at a hole in a specimen under remote tension and bending loads.  Figure 3 shows a 
comparison of SIFs for various depth corner cracks at a semicircular edge notch using the WFM and 
finite element method.  (Note that for a corner crack at a hole, the thickness B is equal to t; but for a 
surface crack at a hole, the thickness B is equal to 2t.)  For the mid-range (a/t = 0.2 and 0.5), both 
methods agreed within 3 percent.  The WFM can be applied to small-crack depths (a/t << 0.1) but 
not the finite element method.  However, in the previous study [22 and 23], the WFM was limited to 
a/t < 0.6. 
 
It was proposed to develop an option in the K3D code (K3DL) to calculate the SIFs for a surface and 
corner crack emanating from an open hole under an arbitrary residual-stress field (σrs) from the edge 
of the hole, as shown in figure 2.  The K3DL analyses will also be extended to cover very deep 
surface and corner cracks at the hole (a/B or a/t values up to 0.99).  The modification to the weight 
function code will use the recent results from Fawaz and Andersson [24 and 25] from high-fidelity 
finite element solutions. 
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Figure 3.  Comparison of WFM and the Finite Element Method for Corner Crack in Semicircular 

Edge Notch Under Remote Tension 

The cracked fastener hole, as shown in figure 2, is a current option in the life-prediction code, 
FASTRAN [5], except for the interference (Ι) and the residual-stress field (σrs) loading.  The 
K3DL code will be used with a version of the FASTRAN code that will allow the fatigue and 
fatigue crack growth analyses of small surface or corner cracks emanating from the hole under 
remote tension, remote bending, pin loading, and the residual-stress field. 
 
As previously mentioned, the 2024-T3 aluminum alloy sheet material proposed for this study has 
been well documented.  Hudson [26] and Phillips [27] have determined the fatigue crack growth 
properties over a very wide range in stress ratios (R = Pmin/Pmax) and crack growth rates that span 
over eight orders of magnitude.  In the Advisory Group for Aerospace Research and 
Development (AGARD) short crack [28 and 29] and NASA/Chinese Aeronautical Establishment 
cooperative programs [30], the crack growth rates for very small cracks (10 to 2 mm) were 
determined over a wide range in stress ratios.  Laz and Hillberry [31] conducted an extensive 
microstructural analysis of the inclusion particle distributions in this alloy.  They identified the 
inclusion particle distributions and the nucleating particle distributions that initiated cracks, as 
shown in figure 4.  The open bars show the percent of inclusions for a given inclusion depth (2a), 
and the solid bars show the percent of nucleating inclusions for a given nucleating depth.  They 
also presented information on the length of the inclusion particles and nucleating particles in the 
width direction (not shown).  The inclusion particle clusters were, generally, in pancake form 
and the length dimension was 2 to 3 times the depth.  These results show that the extreme tails of 
the distribution control the inclusion particle sizes that initiate cracks. 
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Figure 4.  Inclusion and Nucleating Particle Sizes in 2024-T3 Aluminum Alloy [31] 

In the AGARD program [28 and 29], fatigue tests were conducted on single edge notch tension 
specimens (KT = 3.15) for three applied stress levels at R = 0.  These specimens are very close to 
simulating the stress concentration for an open circular-hole specimen.  These results are shown 
in figure 5.  The open symbols show the results from several laboratories in Europe and North 
America.  The arrows indicate that the fatigue test was terminated at these number of cycles (or 
runout).  The FASTRAN life-prediction code was used to make fatigue life calculations on these 
specimens using the nucleating particle distributions from Laz and Hillberry [31].  Two initial 
crack sizes (or crack areas, 30 and 300 μm2, respectively) were selected to cover the upper and 
lower bounds from these particle distributions.  Thus, about 90 percent of the nucleating-particle 
sizes will fall within these bounds.  Using the effective stress-intensity factor range-and-rate 
relationship, previously established for this alloy, the calculated cycles to break through (2a = B) 
were made.  These results are shown as solid curves in figure 5 with a small-crack effective 
stress-intensity factor range threshold (ΔKeff)th = 0.8 MPa-m1/2.  The dashed line shows what 
would have happened if the small-crack (ΔKeff)th had been set at 1.0 MPa-m1/2.  For applied 
stress levels higher than 125 MPa, the upper- and lower-bound calculations fit the scatter in the 
fatigue tests extremely well.  Also, the lower-bound calculations fit the lower bound of the 
fatigue data very well. 
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Figure 5.  Measured and Calculated Fatigue Lives Using Small-Crack Theory and Extreme 
Inclusion Particle Sizes in 2024-T3 Aluminum Alloy KT = 3.15 Specimens 

Figure 6 compares the fatigue tests conducted in the WFD Evaluation project [3] on the circular-
hole specimens with polished and production-quality holes with the previous AGARD data.  The 
tests in the Boeing study were tested at the Beijing Institute of Aeronautical Materials at an R of 
0.1.  Due to the slightly higher stress ratio, the polished-hole specimens appear to be of the same 
family as the AGARD tests.  (The calculated fatigue lives for R = 0.1 would have been about 30 
percent longer than at R = 0 for the same stress level.)  The production-quality hole tests 
conducted at nearly the same applied stress levels lasted over 5 times longer than the polished 
specimens, presumably due to the machining compressive residual stresses. 
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Figure 6.  Comparison of Measured Fatigue Lives on Polished and Production-Quality Holes in 
2024-T3 Aluminum Alloy With AGARD Data 

1.3  RESEARCH OBJECTIVES. 

The objectives were to study the effects of fastener hole quality, to account for residual stresses 
around fastener holes in the stress analysis of two- and three-dimensional cracks, and to improve 
the life-prediction methodology for cracks growing in laboratory lap joint specimens and in 
aircraft structural joints commonly used in fuselages.  The material selected was 2024-T3 
aluminum alloy sheet material.  The NASA Langley Research Center provided the material for 
part of this study.  Lockheed-Martin and Delta Air Lines produced specimens with production-
quality holes using different drilling methods and fastener installation processes and laboratory 
lap joint specimens.  Attempts were made to measure or to establish the magnitude and 
distribution of the residual stresses in the production-quality fastener holes; however, the as-
drilled production-quality holes were found to have minimal residual stresses.  Fatigue tests and 
analyses were conducted on specimens made of the 2024-T3 aluminum alloy with both 
production-quality and polished holes to calibrate the analysis methodology.  Some polished-
hole specimens were also subjected to an overload or an underload to induce compressive or 
tensile residual stresses to study the influence of these stresses on fatigue lives.  In addition, 
some simple two-rivet-row lap splice joint specimens were made and tested under constant-
amplitude loading.  Fatigue analyses were conducted on both the two-rivet-row lap joint 
specimens and the results from the literature on three-rivet-row lap joint specimens to determine 
EIFS to fit these data. 
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Two-dimensional Green’s function and three-dimensional weight function codes were developed 
to calculate the SIFs for through, surface, and corner cracks at an open hole under a wide variety 
of applied loading and with an arbitrary residual-stress distribution along the crack path.  Both 
the two- and three-dimensional codes were used to calculate the SIF distributions for cracks at 
fastener holes under various applied loading conditions and residual-stress distributions.  These 
SIF distributions were used with the FASTRAN code to calculate the influence of residual 
stresses on crack growth lives using the traditional elastic superposition method. 
 
As a final verification of the approach developed, assessments of the life-prediction methodology 
on more realistic structural joint configurations were made using results from the destructive 
evaluation of a retired aircraft and extended fatigue testing of panels removed from the retired 
aircraft. 
 
2.  LABORATORY TEST SPECIMENS AND MATERIALS. 

In the experimental test program, two specimen designs were used.  The first was a single open-
hole specimen and the second was a two-rivet-row lap joint specimen.  The material used for the 
single open-hole specimens was 2024-T3 aluminum alloy bare material, whereas the lap joint 
specimens were made of 2024-T3 clad material. 
 
2.1  STRAIGHT-DRILLED, SINGLE OPEN-HOLE SPECIMENS. 

The specimen design selected for this study was a single open-hole specimen subjected to remote 
tensile loading, as shown in figure 7.  The rationale for selecting this specimen was to isolate the 
influence of the hole-drilling process from the rivet or fastener installation.  Thus, a detailed 
examination was made of the hole quality prior to rivet installation.  Attempts were made to 
measure residual stresses and/or the extent of disturbed material, prior to fatigue testing. 
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Figure 7.  Single Open-Hole Specimen Configuration 

Aluminum alloy (2024-T3 bare) sheet material was obtained from the NASA Langley Research 
Center.  This material is widely used in the aircraft industry (fuselages and wings) and the 
material at NASA Langley has a well documented fatigue and fatigue crack growth history.  A 
total of 120 blank specimens (51 x 280 x 2.3 mm) in the longitudinal transverse (LT) orientation 
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were machined, and 45 blank specimens in the transverse longitudinal (TL) orientation were 
machined from the same lot of material and shipped to Mississippi State University.  Some 
specimens (15 LT and 15 TL) had a 4.76 mm (3/16 in.) hole drilled with a process to minimize 
residual stresses (three-drill process) and then chemically polished.  The specimen layout for the 
LT orientation specimens is shown in figure 8.  Similarly, 15 TL specimens were cut from the 
large sheets. 
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Figure 8.  Specimen Layout for Single Open-Hole Configuration in the LT Orientation 

Forty-five specimen blanks made of the 2024-T3 bare alloys were supplied to both the 
Lockheed-Martin Corporation and Delta Air Lines.  A number of hole-drilling parameters were 
varied in preparing specimens with a single drilled hole (located in the center of the blank).  
During the preliminary investigation on hole drilling, eight factors were identified:  (1) operator 
experience, (2) drill bit condition, (3) axial bit speed, (4) drill bit length, (5) pressure, (6) pilot 
hole, (7) drill block, and (8) material.  These factors were considered in assessing the impact on 
drilled-hole quality [13]. 
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2.2  COUNTERSUNK TWO-RIVET-ROW LAP JOINT SPECIMENS. 

To study the influence of rivet installation on the fatigue behavior of simple lap joint specimens, 
a two-rivet-row lap joint specimen, as shown in figure 9, was prepared by Delta Air Lines and 
tested at Georgia Institute of Technology [14].  The lap joint specimen had two countersunk 
rivets installed under several conditions.  The rivet conditions considered were (1) standard-
driven rivets, (2) tight or overdriven rivets, and (3) underdriven rivets.  All specimens were 
subjected to a remote stress of 124 MPa at a stress ratio, Pmin/Pmax = 0. 
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Figure 9.  Two-Rivet-Row Lap Joint Specimen Configuration 

3.  EXPERIMENTS ON THE HOLE-DRILLING PROCESS. 

The purpose of this study was to find a correlation between the drilling techniques and the 
fatigue life of aircraft fastener holes.  During the experimental portion, which was conducted by 
the Georgia Institute of Technology, center holes were drilled into fatigue-tested 2024-T3 
aluminum alloy specimens, replicating those used on actual aircraft.  The details of this study are 
given in reference 13, but some typical results are given herein. 
 
Through discussions held with engineers and laboratory personnel at Lockheed-Martin and Delta 
Air Lines, eight probable significant factors were identified: 
 
1. Operator experience—since most aircraft rivet holes are drilled by hand, individual 

mechanics will likely drill holes in slightly different ways.  Hopefully, the quality of the 
hole improves with the operator’s experience. 

 
2. Bit condition—as drill bits are used, they become dull, which would likely change the 

way the operator drills the hole, the quality of the hole surface, and increase the 
temperature gradient about the hole. 

 
3. Axial bit speed—although fixed-speed, pneumatic drills are used, it was found that 

mechanics release the trigger at different times (such as when the drill bit penetrated the 
skin versus when the bit was completely withdrawn from the hole), which would likely 
produce different amounts of rifling inside the hole. 
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4. Bit length—two different sizes of bits are typically used in production, which may cause 
longer bits to bend, and shorter bits to “wobble” more during drilling. 

 
5. Pressure—each mechanic applies a different amount of pressure on the drill, which could 

cause different amounts of plastic deformation and temperature gradients. 
 
6. Pilot hole—sometimes mechanics drill a pilot hole before the final fastener hole.  This 

reduces the amount of material to be removed and may affect the plastic deformation, 
temperature gradient, and speed of drilling. 

 
7. Drill block—a guide is sometimes used by mechanics, which would likely improve hole 

quality. 
 
8. Material—aircraft are typically constructed with both 2000- and 7000-series aluminum 

alloys, while the material provided is 2024-T3 aluminum alloy. 
 
Discounting the material, these seven variables produced 96 possible combinations (the 
combination of a pilot hole and drill block is not typically used in industry).  With a minimum of 
three replicates of each combination (six would be preferred for fatigue tests), this would require 
288 fatigue test specimens.  Not only are the experiments limited by the number of test 
speciments (~300 combinations, compared with the 90 specimens that were provided), but also 
by time.  Therefore, a preliminary experimental program was devised to eliminate the variables 
that were likely to be insignificant. 
 
The preliminary experiments were conceived to save both time and material.  The concept was 
that multiple holes could be drilled in each specimen (see figure 10), and the holes could be 
compared for hole quality and residual-stress level.  The number of holes to be drilled was 
further reduced by employing a design of experiments, using a fractional factorial combination. 
 

 
 

Figure 10.  Multiple-Hole Specimen for the Preliminary Experiments 
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Approximately 100 holes were drilled at the Lockheed-Martin test facility.  A pneumatic, fixed-
speed drill, from the shop, was used for all holes.  A number of used bits were taken from the bit 
recycling bin at the tool crib, and were retained after use.  New bits were taken from the tool 
crib, and were retained after use, being used for only six holes each.  The pilot holes were drilled 
the day before the test in two specimens, as shown in figure 11. 
 

 
 

Figure 11.  Drill, Bits, Drill Block, and Coupons Before Drilling Holes 

During the drilling process, there was a very noticeable difference in the time taken to drill the 
holes with the dull versus sharp bits, and with the piloted versus nonpiloted holes.  There was 
also a noticeable difference in chip size between piloted (very small chips) and nonpiloted (long, 
helical-shaped chips) holes.  The first operator was a very experienced mechanic, the second was 
inexperienced.  The holes were either drilled with the trigger depressed all the way from 
beginning to end (“full”), or fully stopped upon penetration and withdrawn from the hole while 
stopped.  The mechanic either pressed down as hard as possible or as lightly as possible for the 
pressure variable.  Finally, standard 150-mm (6-in.) and 75-mm (3-in.) bits were used for long 
and short bits, respectively.  The material was rested on blocks of wood to keep from having to 
clamp the specimen, and the holes were drilled over the gap between the blocks so that there was 
nothing to disrupt the formation of the burr. 
 
From the multiple-hole specimens, each section with a hole was cutout and each hole was sliced 
in half (so that two semicircular sections were made of each hole) using electric-discharge 
machining (EDM); they were mounted for viewing with an optical microscope equipped with a 
digital camera.  Both sides of each hole were photographed and measured for surface length, 
hole length, coupon width, hole angularity (from perpendicular), entry burr size, and exit burr 
size (see figure 12). 
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Figure 12.  Sample of a Drilled-Hole Edge and Development of Burrs 

Surface roughness was one criterion used to judge hole quality, since it should indicate the 
amount of plastic deformation induced on the surface from the cutting action of the drill.  A 
surface roughness value was calculated by the deviation of the actual surface from a perfectly 
smooth surface.  The actual surface was measured by the length of a line, which traced the hole 
bore surface, and was divided by a straight line from entry to exit (a “perfect” hole surface, 
drilled at the same angle as the actual hole) to give a unit-less, raw roughness value.  However, 
this roughness value took into account both the small amplitude roughness, as well as the large, 
gouging deformations (see figure 13).  To remove the large deformations, a factor accounting for 
the size, shape, and length of the deformations was determined, and a “corrected roughness” was 
calculated.  The factor ranged from 0 to 9, and was figured in the following way: 
 
• A 5 was given to a diagonal-shaped gouge, a 7 to a curved gouge, and a 9 to a step-

shaped gouge. 
 
• A 3 was given to a small gouge, a 6 to a medium gouge, and a 9 to a large gouge. 
 
• These two numbers were averaged, and divided by the fraction of the bore surface that it 

encompassed. 
 
• If multiple gouges were found on a hole surface, the above calculations were repeated, 

and the factors were added together. 
 

 
 

Figure 13.  Sample of Different Gouge Shapes and Sizes 
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A second criterion of hole quality was burr length, since it would indicate the amount of 
deformation induced by the pressure of the bit and the movement of the bit through the hole.  
The value measured was simply the distance that the burr extended beyond the coupon surface.  
Since approximately half of the holes displayed burrs on the entry face, as well as the exit face, 
the entrance burrs were separately measured.  It was interesting to note that there were three 
characteristic burr shapes observed.  The first was a “curling” burr, which was very thin and 
curled back from the bore (figure 14(a)).  The curling shape was easily disfigured, so many were 
flattened before being mounted.  The second was a “triangular” burr, which curved back slightly 
from the bore, and dropped off sharply on the backside of the burr (see figure 14(b)).  The final 
shape was a “bulge” burr, which had a rounded shaped and reached its maximum height much 
further from the bore than the triangular burr (figure 14(c)).  There were also a wide variety of 
distances that the triangular and bulge burrs extended from the bore.  All of these geometries 
were noted in the data, but only the length perpendicular to the specimen surface was measured 
due to time constraints and the limited scope of the experiment.  The size and the shape of the 
burr may be indicative of the variables involved in the drilling process and may warrant future 
study. 
  

 
 
              (a) Curling Burr                     (b) Triangular Burr                         (c) Bulge Burr 
 

Figure 14.  Different Types of Burrs Found on the As-Drilled Holes 

The data was sorted by variable, each criterion was averaged over the variable, and the absolute 
value of the difference was calculated (e.g., all the roughness values for one operator were 
averaged, and all the roughness values for the other operator were averaged).  The differences 
were compared and ranked.  From these preliminary results, it was concluded that the pilot hole 
was clearly the most significant factor, followed by pressure, drill length, speed, and bit 
condition, in that order. 
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3.1  DEVELOPMENT OF HOLE-DRILLING METRICS. 

During this study, four hole-quality metrics were developed:  roughness, conicality, number of 
gouge marks, and angle of gouge marks.  In addition, burr sizes and geometries were recorded, 
since three distinct burr types were easily distinguished, both at the entry and exit faces of the 
coupons. 
 
Burrs may act as crack initiation sites.  They may appear on the exit face (the side of the hole 
which the bit exits), the entry face, or both.  The most noticeable type of burr is the curling burr, 
since it is long and slender and is usually found curled up like a cresting wave (figure 14(a)).  
This burr is believed to be the result of material from the end of the hole being pushed out and 
away from the bit as it exits the coupon, and is thought to have little correlation with residual 
stress levels induced during drilling.  The triangular burr (figure 14(b)) may be formed in a 
similar manner as the curling burr.  However, the base of the burr is wider than the burr is long.  
This burr may be more indicative of axial stresses induced during drilling, since it extends 
farther away from the bore of the hole.  The bulge burr is composed of a hump outside the bore 
(figure 14(c)).  This burr is thought to have a significant correlation to residual stresses in the 
hole, especially to axial stresses. 
 
One advantage to correlating burrs with residual-stress levels is that the measurement of burrs 
can be done easily and nondestructively, since they appear outside the bore of the hole.  The 
removal of burrs is an added machining expense, and the reduction of burr formation has been 
the subject of a number of investigations, so a literature review was conducted.  A study by Min, 
et al. [32] identified three types of exit burrs, which correspond to the triangular and curling 
burrs and was attributed to small-scale plasticity at the exit face.  Kim, et al. [33] identified the 
same types of burrs, but also recognized the importance of the entry burr, instead of restricting 
the analysis to burrs formed on the exit face.  The paper stated that high feed rates, cutting speed, 
and tool wear increase the burr size.  Also, smoothness of chip flow through the hole decreases 
burr size, indicating that burr formation is more than just a small-localized phenomenon.  Ko and 
Lee [34] developed a different burr type classification, which was related to the presence or 
absence of a burr cap—a thin remnant of material pushed aside by the drill tip.  This study 
attributed burr formation to material properties and drill geometry, as well as cutting conditions.  
None of these papers, nor any others found, explained the formation of the bulge burr. 
 
The desire was to develop metrics that quantified hole quality.  Since the effect of the size and 
shape of the burr on fatigue life could only be speculated, it was not used as a hole quality 
metric.  However, the burr data was recorded and will be compared with fatigue-life and 
residual-stress data after those tests are performed. 
 
Several different methods of measuring surface roughness were considered, but were rejected 
due to complications with the curved geometry of the holes.  The metric decided upon was the 
ratio of the traced surface of the hole to the length of a straight line drawn across the bore, as 
shown in figure 15.  The drilled holes were cut into two sections by EDM, polished, and 
mounted in epoxy.  The holes were photographed with an optical microscope equipped with a 
digital camera and were analyzed with imaging software.  The roughness was measured on each 
side of the cut bore, and the average value of the two sides was used.  To determine the 

 16 



 

endpoints of the traced and straight line used for measurement, edge lines were drawn along the 
entry and exit faces.  The traced line was started at the intersection of the edge line and the hole 
bore and ended at the intersection at the other side of the hole.  The imaging software traced the 
surface and calculated the trace length.  A straight line was then drawn between the same two 
intersection points used for the trace line, and the length was again calculated using the imaging 
software.  The trace-line length was then divided by the straight-line length, resulting in a 
number greater than or equal to 1.  The process was repeated for the opposite side of the hole, 
and the average of the two values was calculated. 
 

 
 

Figure 15.  Roughness and Conicality Measurements 

It was discovered that the typical hand-drilled hole was not only drilled at a slight angle from 
normal to the surface, but also had a larger diameter at the entry side than at the exit side.  Thus, 
these holes were more like sections of a cone.  Thus, conicality was used to describe the next 
metric.  In production, the amount of deviation from normal, or angularity, is important, because 
highly angular holes may not accept a rivet.  This angularity appears to be an issue of operator 
negligence, rather than a result of drilling variables such as bit sharpness.  A conical hole, 
however, may have more of an effect after production.  It may allow the fastener to loosen, 
reducing the fatigue life.  A conical hole deviates from the ideally, straight hole, just as a rough 
hole does from an ideally smooth one (roughness factor = 1.0).  Measuring this angle was 
straightforward.  A line perpendicular to the two edge lines already drawn for the roughness 
measurements was added, and the difference between the angle of this perpendicular line and the 
angle of the straight line connecting the endpoints was calculated.  Again, the imaging software 
gave the angle measurements.  If the endpoint line angled towards the bore center at the exit 
face, the angle was considered positive.  If it angled towards the bore center at the entry face, the 
angle was considered positive.  This same angle was calculated on the opposite side of the bore, 
and the two angles were added (figure 15).  Thus, a positive final angle meant that the hole had a 
larger diameter at the entrance than the exit, and the angle itself was the angle between the 
opposite edges of the cone. 
 
The next two metrics, gouge angle and gouge number, required a different perspective on the 
hole.  For these, the unmounted half of the hole was placed in the microscope, and a picture was 
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taken of the surface of the bore, rather than of its profile.  It was also noticed that many of the 
holes had one or more gouges along the bore, the result of the bit cutting into the bore as the 
operator’s hand strayed from normal.  These gouges presented opportunities for large stress 
concentrations.  Even with a visual inspection, grooves could be seen spiraling through the bores 
of the holes.  Another common characteristic, noticeable to the eye, was relatively smooth, flat, 
and cylindrical section at the exit end of the holes.  As viewed from the profile pictures, this 
region looked like a raised, flat region, and thus was labeled the plateau.  This plateau was likely 
the result of the drill punching through the material at the end as soon as the tip of the drill 
sufficiently pierced through the specimen.  This is substantiated by the absence of a plateau in 
the baseline set, which was machine drilled at a constant feed rate.  These features are difficult to 
quantify, since they have complex and differing geometries.  Therefore, after much 
consideration, the following two metrics were used. 
 
The first, a count of the number of gouge marks was simple—the more gouges present, the 
higher the probability that a crack would initiate at one of these points.  The bore surface was lit 
from an angle to reduce glare and bring out the surface features.  This readily identified the 
gouges, which contrasted well above the roughness of the surrounding surface.  Unfortunately, a 
camera is inferior to the human eye, and does not resolve the gouge marks as clearly; but even in 
the darker images, it was easy to count the gouges after some practice, as shown in figure 16. 
 

 
 

Figure 16.  Typical Gouge Angle and Gouge Number Measurements 

The second metric measured the angle of the gouges.  As the angle approaches 90 degrees, or the 
drilling axis, the gouge essentially becomes a notch.  At zero degrees, the gouge is oriented 
along the loading axis and has minimal effect.  To measure this angle, a line was first drawn 
along one face of the specimen, and another was drawn along a gouge mark—either the best-
defined mark, or the one with the highest angle, if there was a difference, which was rare.  The 
difference between the angles of the two lines was calculated. 
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3.2  DRILLED-HOLE QUALITY RESULTS. 

The results from the hole quality study are tabulated in table 1.  Results were calculated using a 
software package to conduct an analysis of means; thus, the results in table 1 are based on the 
average values of each variable/factor combination. 
 

Table 1.  Summary of Metrics for Hand-Drilling Experiments 

Variable Roughness Conicality Gouge Angle Gouge Number Overall Score 
Operator A 1.049 6.2 4.3 1.9  
Operator B 1.051 6.3 2.8 1.1  
Difference 0.002 0.0 1.5 0.8  
p-value 0.955 0.968 0.127 0.002  
Score 0.012 0.008 0.315 0.617 0.238 
      
No pilot 1.065 7.8 5.4 1.3  
Pilot hole 1.035 4.8 1.8 1.7  
Difference 0.031 3.0 3.5 0.4  
p-value 0.341 0.000 0.000 0.159  
Score 0.197 0.737 0.762 0.292 0.497 
      
Long bit 1.048 5.3 3.7 1.4  
Short bit 1.051 7.2 3.5 1.6  
Difference 0.003 1.8 0.2 0.2  
p-value 0.926 0.030 0.827 0.509  
Score 0.020 0.443 0.046 0.137 0.161 
      
New bit 1.024 5.7 3.5 1.3  
Old bit 1.045 6.7 3.7 1.7  
Difference 0.021 1.0 0.2 0.4  
p-value 0.117 0.240 0.848 0.097  
Score 0.132 0.242 0.040 0.342 0.189 
      
High pressure 1.044 5.6 3.0 1.4  
Low pressure 1.055 6.8 4.1 1.5  
Difference 0.012 1.2 1.1 0.1  
p-value 0.720 0.157 0.264 0.679  
Score 0.075 0.291 0.231 0.086 0.171 
      
Full speed 1.047 6.3 3.6 1.5  
Stopped 1.053 6.2 3.6 1.5  
Difference 0.006 0.0 0.0 0.1  
p-value 0.860 0.970 0.999 0.806  
Score 0.037 0.008 0.000 0.052 0.024 
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Table 1.  Summary of Metrics for Hand-Drilling Experiments (Continued) 
 
Ranking Roughness Conicality Gouge Angle Gouge Number Overall 

1 Pilot Pilot Pilot hole Operator Pilot 
2 Bit condition Bit length Operator Bit condition Operator 
3 Pressure Pressure Pressure Pilot hole Bit condition 
4 Withdrawal speed Condition Bit length Bit length Pressure 

 
The first step in the analysis was to calculate the averages for each combination.  For example, 
take the variable/factor combination of Operator versus Roughness.  For the Operator variable, 
half of the 96 holes were drilled by Operator A, the experienced mechanic; and the other half 
were drilled by Operator B, the novice.  Operator A produced holes with an average roughness 
of 1.049, while Operator B produced holes of average roughness 1.051.  Each combination in the 
table represents the average of two halves of the entire population.  Operator A drilled half of his 
holes with a pilot hole, just as Operator B did, and so on, with every combination. 
 
Once the averages were calculated, the absolute value of the differences was calculated.  For 
each unit, when one of the two variable options deviates from the population average, the other 
option must deviate an equal amount in the opposite direction.  The difference represents the 
portion of population variability that is the result of a given variable.  Comparing these 
differences among variables shows the relative importance of each variable. 
 
The p-value, a measure of the statistical significance of the difference of means, was also 
calculated for each combination.  The p-value is the probability that there really is no difference 
between the means, considering the variability of the data.  A small p-value, generally 
recognized as 0.10 or less, indicates that there is very low plausibility that the variable has no 
effect at all on the factor.  A p-value from 0.11 to 0.20 shows marginal significance.  The 
variables with low p-values are highlighted in the table.  P-values between 0.11 and 0.20 are 
italicized, while those less than 0.10 are in bold italics. 
 
Next, a method for normalizing the factors was devised.  Since the four metrics used were 
unlikely to be the only factors of hole quality affected, and the six variables considered were 
unlikely to be the only variables affecting hole quality, a statistical approach was used for the 
factor normalization.  For each metric, the standard deviation of that factor was calculated over 
the entire population.  The difference of means for each variable was then divided by the 
standard deviation.  This number is labeled “Score” in table 1.  The scores were averaged across 
metrics to yield an Overall Score.  An alternate method would be to use a “pooled standard 
deviation” calculation, which takes the variability of the separate variables into account.  
However, it is the overall metric variability that should be normalized, so the population standard 
deviation is a more appropriate choice.  The normalized scores are charted graphically in figure 
17(a)-(e). 
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Variables in all charts, from left to right:  
Operator, Pilot Hole, Bit Length, Bit Condition, 
Pressure, Withdrawal Speed 

 
Figure 17.  Summary of the Hand-Drilled Hole Rankings for the Various Metrics 

Using the individual metric scores and the overall score, the variables were ranked to determine 
their relative influences. The ranking is at the bottom of table 1.  The pilot hole is by far the most 
significant variable.  This is logical, since the pilot hole removes a large volume of material, 
reducing the amount of cutting (i.e., deformation) to be done in the final drilling and producing a 
much smoother hole.  A pilot hole also serves as a guide for the final drilling, reducing the 
conicality of the hole.  As for the angle of gouge marks, the results for the pilot hole are counter-
intuitive.  The mechanics remarked on how much easier it was to drill a hole over a pilot hole, 
which should result in faster drilling.  A hole drilled faster should make gouges at a steeper 
angle.  However, holes drilled without a pilot hole are significantly steeper than those drilled 
with a pilot hole.  The operator variable ranked second overall.  It was hypothesized early on that 
human factors would produce large differences.  Identifying human variables, however, is very 
complex and is outside the scope of this study. 
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The bit length, bit condition, and pressure variables ranked closely in the overall score.  Bit 
condition greatly affected roughness, as expected, and also produced significantly different 
numbers of gouges, as expected.  Bit condition may also greatly affect residual hoop stresses, 
since a sharp bit should cut cleanly through the material, while a dull bit should cause much 
more shearing.  The mechanics also commented on how much harder it was to drill with a dull 
bit, and the long, spiraling chips also indicate that the dull bit was deforming the surface much 
more than the new bits, which produced characteristically small chips.  Bit length scored high in 
conicality, with short bits resulting in much more conical holes than long bits.  This is a human 
interaction, as shown in the machine drilling results (table 2).  A long bit allows the operator to 
“eyeball” the drilling—allows him to see his work better—and gives him a longer lever arm on 
the drill, which makes it easier to correct the drill.  Pressure applied to the drill ranked fairly 
consistently across the metrics, giving it a fairly high score in the end.  Pressure, like bit length, 
is unlikely to affect hoop stresses, although pressure probably affects axial residual stresses. 
 
Surprisingly, bit speed upon withdrawal had very little influence on any of the metrics.  
Although it was believed that stopping the bit before withdrawing could greatly roughen the 
surface.  It may be that the bit traced along existing gouges, making them steeper and more likely 
to be crack initiation points, but an effective method of quantifying the sharpness of the gouges 
could not be established.  However, if this was the case, withdrawal speed should have had a 
significant effect on roughness, as a steeper gouge would increase the surface area.  As shown in 
tables 1 and 2, no such increase occurred. 
 
A set of 24 holes was drilled using a drill press at Delta Air Lines.  This was done in much the 
same way as the above set of 96 holes previously described, except that Operator and 
Withdrawal Speed were eliminated as variables.  Withdrawal Speed was eliminated because the 
bit was always kept spinning in a press, and Operator was eliminated because the press is 
automated, eliminating human effects.  Also, Pressure was replaced with Feed rate.  
Measurement and analysis was performed just as before, and the results are charted and 
tabulated in figure 18(a)-(e) and table 2. 
 
An interesting result to note is that the sum of the scores for conicality equals over 2.7.  Three 
times the standard deviation is approximately 99% of a normal distribution.  This suggests that 
the four variables considered make up the vast majority of the variables affecting conicality, at 
least in machine drilling.  It is surprising that conical shapes were produced at all, considering 
that the bits were rigidly fixed in the press, and also that the rankings for conicality are identical 
to hand drilling for the four variables used.  Also significant is that Roughness and Gouge 
Number both sum to about 1.9, which is about 95% of a normal distribution. 
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Table 2. Summary of Metrics for Baseline Experiments 

Variable Roughness Conicality Gouge Angle Gouge Number Average Score 
No Pilot 1.074 3.9 6.0 1.9  
Pilot Hole 1.076 0.7 3.2 0.8  
Difference 0.003 3.2 2.9 1.2  
p-value 0.804 0.001 0.218 0.069  
Score 0.106 1.245 0.511 0.739 0.650 
      
Long Bit 1.089 3.2 6.5 1.7  
Short Bit 1.061 1.5 2.7 1.0  
Difference 0.028 1.7 3.7 0.7  
p-value 0.004 0.108 0.105 0.311  
Score 1.110 0.660 0.665 0.422 0.714 
      
New Bit 1.069 2.6 5.5 1.3  
Old Bit 1.081 2.0 3.7 1.3  
Difference 0.013 0.7 1.9 0.0  
p-value 0.240 0.546 0.427 1.000  
Score 0.490 0.254 0.333 0.000 0.269 
      
High Feed 1.078 1.6 4.7 1.9  
Low Feed 1.072 3.0 4.5 0.8  
Difference 0.006 1.3 0.3 1.2  
p-value 0.589 0.212 0.913 0.069  
Score 0.227 0.518 0.046 0.739 0.382 
      
      

Ranking Roughness Conicality Gouge Angle Gouge Number Overall 
1 Bit Length Pilot Hole Bit Length Pilot/Feed Rate Bit length 

2 
Bit 
Condition Bit Length Pilot Hole  Pilot hole 

3 Feed Rate Feed Rate Bit Condition Bit Length Feed rate 

4 Pilot Hole 
Bit 
Condition Feed Rate Bit Condition Bit condition 
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Figure 18.  Summary of the Baseline-Drilled Hole Rankings for the Various Metrics 
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Bit Length replaced Pilot Hole as the overall most significant variable in the baseline test.  The 
long bit caused a lot of chatter during the drilling, and probably produced rough holes.  The 
longer bit also produced slightly triangular holes (figure 19(a) and (b)), which likely contributed 
to the conicality of the holes.  This raises an interesting point.  In hand drilling, the long bit 
resulted in a better hole (in regards to hole quality), since it reduced the conicality.  In machine 
drilling, the long bit resulted in both a rougher and more conical hole. 
 
 

 

 

 (a) Short bit  
 

 

 

 (b) Long bit  
 

Figure 19.  Examples of Holes Drilled with Short and Long Bits 

4.  FATIGUE TESTS ON SINGLE-HOLE SPECIMENS. 

In literature review [13], no studies could be found on the magnitude or effects of residual 
stresses from the hole-drilling process.  The measurement of residual stresses on pilot and test 
specimens, using X-ray diffraction, was not successful, mainly because the production-quality 
holes did not appear to exhibit significant residual stresses.  Because of the absence of residual 
stresses in the production-quality holes, the project concentrated on hole-quality and life-
prediction issues.  However, to induce a residual-stress field of known magnitude, some single-
hole test specimens were overloaded or underloaded to yield the hole and cause either 
compressive or tensile residual stresses. 
 
In the hole-drilling study, eight variables were identified:  (1) operator experience, (2) drill-bit 
condition, (3) drill-bit speed, (4) drill-bit length, (5) drill-bit pressure, (6) use of pilot hole, (7) 
drill block, and (8) the material.  In addition, holes were drilled either by hand or by machine.  
Because the eight variables gave 192 different combinations and the project had only 90 
specimens, a preliminary test program was designed to identify the most significant variables.  
The drilling block was eliminated because it is seldom used in practice.  A design of experiments 
was used to reduce the number of test holes to 96.  The drill-hole experiments and measurements 
identified four metrics:  (1) surface roughness, (2) conicality, (3) gouge angle, and (4) number of 
gouges. 
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From the hole-drilling study, the fatigue test specimens (figure 7) had production-quality holes 
drilled either by hand or by machine for various combinations of the eight hole-drilling variables 
(see reference 13 for details). 
 
To develop a control group of single-hole specimens that have nearly pristine hole surfaces, a 
group of specimens were drilled at NASA Langley Research Center using a three-drill process to 
minimize machining residual stresses.  The specimens were then chemically polished with a 
procedure developed in the AGARD studies [28 and 29].  Fifteen LT orientation and 15 TL 
orientation single-hole specimens were drilled, polished, and tested at Georgia Institute of 
Technology. 
 
4.1  CONSTANT-AMPLITUDE LOADING. 

The polished and production-quality hole specimens were tested under constant-amplitude 
loading at three gross stress levels: (1) 172 MPa, (2) 145 MPa, and (3) 120 MPa, at 
R = Pmin/Pmax = 0 loading.  However, the primary loading was the 145 MPa loading. 
 
4.1.1  Polished Holes. 

Figure 20 shows the results of tests conducted on the polished-hole specimens for both the LT 
and TL orientations.  For comparison with data from the literature on single-hole specimens, 
made of the same material, data from Landers and Hardrath [35] are shown as open symbols.  
They had electropolished their specimens and conducted tests at two different hole diameter-to-
width (D/W) ratios.  The width and thickness of all specimens were identical, but the D/W ratio 
for the current specimens was slightly different.  But the new chemically polished specimen 
results fell very close to the expected behavior, except for the four tests at the lowest stress level.  
Here, three specimens were tested for 3 to 4 million cycles and the tests were stopped.  Only one 
test specimen failed early.  However, the limited test results indicated that the orientation (LT 
and TL) may not be a significant factor in the fatigue behavior. 
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Figure 20.  Comparison of Fatigue Lives for Electopolished and Chemically Polished Specimens 

Made of 2024-T3 Aluminum Alloy 
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4.1.2  Production-Quality Holes. 

Results of the fatigue tests conducted on the production-quality drilled hole specimens are shown 
in figure 21.  All of these tests were conducted in the LT orientation.  Tests were conducted on 
specimens prepared with both new and old drill bits, with and without pilot holes, using either 
hand-drilled or machine-drilled holes.  These results indicate that the fatigue lives are shorter 
than the electropolished specimens, presumably because of burrs and drilling marks on the holes.  
The drilling flaws appear to be more significant at the lower applied stress levels.  The fatigue 
tests conducted on the production-quality drilled holes showed no significant difference in 
fatigue lives between the various drilling parameters, because the machining marks may have 
eliminated any residual stress affects, resulting in a shorter fatigue life compared to the polished 
hole specimens.  The fatigue lives for the hand-drilled holes were shorter than the machined-
drilled holes at the lowest stress level.  Crack surfaces have been examined, and the majority of 
the cracks appear to have initiated along the bore of the hole, instead of the edge.  The quality of 
the hole surfaces appear to be the controlling factor instead of residual stresses. 
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Figure 21.  Comparison of Fatigue Lives for Polished and Production-Quality Open-Hole 
Specimens Made of 2024-T3 Aluminum Alloy 

4.2  SPIKE OVERLOAD AND UNDERLOAD TESTS. 

Because, the production-quality holes did not appear to have significant residual stresses, a 
group of polished-hole specimens were tested with either a 1.7 overload or a 1.7 underload prior 
to conducting the constant-amplitude fatigue test.  The overload and underload yielded the 
material at the edge of the hole and produced either a compressive or tensile residual-stress field.  
After the one cycle of prior loading, the specimens were then subjected to a cyclic maximum 
applied gross stress of 145 MPa at R = 0 until failure. 
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The overload and underload fatigue test results are shown in figure 22, as solid symbols.  Again, 
these results are compared with the previous electropolished specimens from National Advisory 
Committee for Aeronautics (NACA) TN-3631.  As expected, the tensile overload caused 
significant compressive residual stresses at the edge of the holes and produced a large increase 
(order of magnitude) in the fatigue lives.  However, the tests exhibited a large amount of scatter.  
This may have been due to the microcracks having SIF levels very close to the threshold for the 
2024-T3 aluminum alloy.  On the other hand, the compressive underload, which caused a tensile 
residual stress field at the edge of the hole, produced about a factor of 2 reduction in fatigue life. 
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Figure 22.  Comparison of Fatigue Lives for Polished Open-Hole Specimens Subjected to an 
Initial Overload or Underload Made of 2024-T3 Aluminum Alloy 

Later, these tests will be analyzed with the elastic-plastic finite element method to study the 
residual-stress fields under the overload and underload conditions; and fatigue life analyses will 
be made with the FASTRAN code. 
 
5.  THREE-DIMENSIONAL WEIGHT FUNCTION ANALYSES. 

A three-dimensional weight function code, K3D, [18-23] was enhanced herein to calculate SIFs 
due to (1) remote tension, (2) remote bending, (3) wedge-loading (to simulate rivet loading), and 
(4) an arbitrary residual-stress field for both corner and surface cracks at an open hole.  The 
recent SIF solutions, developed by Fawaz and Andersson [24 and 25], for very deep corner 
cracks (a/t = 0.1 to 0.99), in a plate with an open hole subjected to remote tension and bending 
loads, were used to calibrate the new weight function code.  The K3DL code, see appendix A, is 
used to generate SIF solutions for the crack configuration and loading of interest.  These SIF 
solutions are then used with the FASTRAN life-prediction code to calculate fatigue crack growth 
and fracture. 
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The SIF results are presented here in the form of the dimensionless F parameter, the boundary-
correction factor, as 
 
 Fi(φ) = K(φ) / [Si √(π a/Q)] (1) 
 
where φ is the parametric angle, Q is the elliptic integral of the second kind, and Si is a 
characteristic stress used to normalize the SIFs.  For remote tension, Si = St; for bending, Si = Sb; 
and for wedge loading in the hole, Si = Sp.  The stress, Sp, is the pin-bearing stress P/(DB) in the 
hole, where P = applied load, D = hole diameter, and B = plate thickness.  (Note that for a 
surface crack at an open hole, t = one-half the plate thickness; but for a corner crack at an open 
hole, t = full plate thickness.) 
 
5.1  CALIBRATION OF WEIGHT FUNCTION. 

Weight functions for a general case for this particular WFM is: 
 

 2 2 2
fixed free fixed

i ii D,i D,i D,i= + ( )( -W W W WT r )  (2) 
 
where, ri is a dimensionless restraining area, ri = ri(a/c, a/t, r/t, c/b); Ti is a monotonic transition 
function having the property of Ti(∞) = 0 (used currently) and Ti(0)=1.  Although this WFM has 
an exclusive advantage to avoid reference solutions and provide independent results in many 
cases, Ti needs to be determined in a general situation by calibration with reference solutions.  
The extensive results from Fawaz and Andersson [24 and 25] using highly refined FEA were 
used to calibrate the corner crack weight function.  But the first step was to identify the major 
deviations between the current WFM and the FEA results. 
 
Comparisons of the original WFM with the Fawaz-Andersson FEA results and the Newman-
Raju equations [17] were made for two load cases: remote tension and remote bending.  The 
crack configuration parameters considered were r/t = 1; a/c = 0.25, 0.333, 0.5, 1, 2, 3, and 4; a/t 
= 0.1 to 0.99, where applicable.  Of ~130 cases involving ~400 solutions compared, a few are 
discussed here for a/c = 0.5 and 2; a/t = 0.1 and 0.95.  It is noted that, unlike any other WFMs, 
the weight function results presented here are independent solutions without using any reference 
solutions for the crack configuration considered.  For shallow cracks (small a/t ratios), the 
current WFM was in good agreement with the FEA results for tension and bending loads and the 
Newman-Raju equations for tension and a wide range in a/c ratios.  But for the deep cracks 
(a/t >0.9 and a/c <2), there were large differences between the WFM and FEA results for both 
tension and bending loads.  Thus, the corner crack weight function needed to be calibrated for 
deep cracks.  For a/c = 2, the WFM results were in fair agreement with the FEA results.  The 
extensive comparisons lead to the following three observations: 
 
• Current weight function results are accurate for small a/t ratios for a wide range in a/c 

ratios; 
 
• For a/c >2, all the results from the weight function method are accurate and no calibration 

of the weight function was necessary; 

 29 



 

• Calibration of the weight function was necessary for a/c <2 with medium to deep cracks 
(the a/t range requiring calibration depends on a/c). 

 
These observations are consistent with the expectations based on the characteristics of this 
particular WFM and experiences with other comparisons.  The weight function for a corner crack 
at an open hole was developed and implemented into the K3DL code.  Extensive comparisons 
have been made among the Fawaz-Andersson [25] FEA results, the improved WFM, and the 
Newman-Raju [17] equations for remote tension and remote bending.  The calibration was based 
on the FEA results from Fawaz and Andersson for remote tension.  The calibrated weight 
function produced very satisfactory agreement with the FEA results over a wide range in crack 
configuration for tensile loading.  The bending results were not as good as tension, but still 
acceptable.  Very little can be done about the bending case because the weight function is 
independent of load and cannot be adjusted for both tension and bending loads.  Five a/c ratios 
were considered:  0.25, 0.5, 1, 1.5, and 2.  The calibration function is a smooth, monotonic 
function of a/c and a/t and should behave well in between these a/c ratios. 
 
5.2  COMPARISON OF K3DL WITH FEAs AND EQUATIONS. 

The definitions of the corner crack configuration parameters are shown in figure 23.  The K3DL 
code can analyze the corner crack configuration for a single corner crack (c1) or two symmetric 
corner cracks (c2) emanating from the hole in a plate subjected to remote tension, remote 
bending, wedge loading in the hole, and under any arbitrary residual-stress distribution.  
However, the solutions from the current code are basically for a cracked hole in an infinite body, 
and finite width corrections will have to be applied to these solutions for practical applications.  
Typical comparisons for remote tension and bending are shown in figures 24 to 29 for r/t = 1 and 
a/c = 0.5, 1 and 2 for a/t = 0.1 and 0.95, respectively.  The figures show the Fawaz-Anderson 
FEA results, the previous developed equations by Newman-Raju [17] for remote tension and 
bending, the Zhao-Newman-Sutton equation [36] for remote bending, and the new K3DL results.  
(Note that one-half of the plate width is denoted as “b” in the K3DL code, but W or 2w is plate 
width in the current report.) 
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Figure 23.  Definition of Crack Configuration Parameters for a Corner Crack at Open Hole 

Figure 24(a) shows the boundary-correction factor, Ft, as a function of the parametric angle, φ, 
for the case of two symmetric corner cracks at an open hole in a very wide plate subjected to 
remote tension with a/c = 0.5 and a/t = 0.1.  The square symbols are the Fawaz-Andersson FEA 
results, the solid curve is the Newman-Raju equation, and the circular symbols show the K3DL 
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results.  The FEA results produce the “so-called” boundary-layer effect where the crack 
intersects a free surface.  At the free surface, the SIF must be zero, because of the loss of the 
square-root singularity [37].  Thus, the peak value from the FEA results, which is slightly below 
the free surface, should be compared with the peak value from the K3DL code.  For this case, the 
Newman-Raju equation produces lower SIFs over the complete crack front, whereas the K3DL 
code matches the FEA results very well. 
 
Figure 24(b) shows the boundary-correction factor, Fb, as a function of the parametric angle, φ, 
for the case of two symmetric corner cracks at an open hole in a very wide plate subjected to 
remote bending, again, with a/c = 0.5 and a/t = 0.1.  Here, the dashed curve shows the Newman-
Raju [17] equation for bending, and the solid curve is an equation developed by Zhao, et al. [36].  
The Newman-Raju equation overestimates the SIFs for shallow crack (a/t < 0.2) for remote 
bending.  The Zhao, et al. equation was developed to correct this deficiency.  Again, the K3DL 
code matched the FEA results very well. 
 
Figure 25(a) and (b) show similar comparisons for a very deep (a/t = 0.95) crack for remote 
tension and bending loads, respectively.  The Newman-Raju bending equations agree fairly well 
with the FEA results.  But the Zhao, et al. equations, which were based on the original weight 
function code, had significant deficiencies.  The K3DL code results show some differences from 
the FEA results, but the results are acceptable.  Figures 26 to 29 show similar comparisons for 
a/c ratios of 1 and 2 for shallow and deep cracks.  The K3DL code results matched the FEA 
results fairly well over the complete range of crack configuration parameters. 
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Figure 24.  Comparisons of Boundary-Correction Factors for a/c = 0.5 With a/t = 0.1 Under (a) 

Remote Tension and (b) Remote Bending 
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Figure 25.  Comparisons of Boundary-Correction Factors for a/c = 0.5 With a/t = 0.95 Under (a) 

Remote Tension and (b) Remote Bending 

 33 



 

2φ / π
0.0 0.2 0.4 0.6 0.8 1.0

Ft

0

1

2

3

4

5

Fawaz-Andersson (2000)
Newman-Raju (1986)
K3DL (Zhao, 2004)

Two corner cracks at hole - Tension
r / w = 0; r / t = 1; a / c = 1; a / t = 0.1

 
 

(a) Remote Tension 
 

2φ / π
0.0 0.2 0.4 0.6 0.8 1.0

Fb

-1

0

1

2

3

4

Fawaz-Andersson (2000)
Newman-Raju (1986)
Zhao-Newman-Sutton (1995)
K3DL (Zhao, 2004)

Two corner cracks at hole - Bending
r / w = 0; r / t = 1; a / c = 1; a / t = 0.1

 
 

(b) Remote Bending 
 

Figure 26.  Comparisons of Boundary-Correction Factors for a/c = 1 With a/t = 0.1 Under (a) 
Remote Tension and (b) Remote Bending 
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Figure 27.  Comparisons of Boundary-Correction Factors for a/c = 1 With a/t = 0.95 Under (a) 
Remote Tension and (b) Remote Bending 
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Figure 28.  Comparisons of Boundary-Correction Factors for a/c = 2 With a/t = 0.1 Under (a) 
Remote Tension and (b) Remote Bending 
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Figure 29.  Comparisons of Boundary-Correction Factors for a/c = 2 With a/t = 0.95 Under (a) 
Remote Tension and (b) Remote Bending 
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5.3  CORNER CRACK AT HOLE. 

For qualitative evaluation of the SIF results from the K3DL code, three applied load cases were 
considered:  remote tension, remote bending, and wedge loading in the hole.  Crack 
configurations considered herein are r/t = 1 (close to the single-hole test specimen, r/t = 1.04); 
a/c = 0.5, 1, 2; and a/t = 0.01 to 0.99.  Only some typical results will be shown. 
 
Some additional comparisons for remote tension and bending are shown in figures 30 and 31, 
respectively.  The figures show the normalized SIF against a/t for two corner cracks at a circular 
hole.  The figures also show comparison among the Fawaz-Anderson FEA results, the previously 
developed equations by Newman-Raju, the Zhao-Newman-Sutton equations for only remote 
bending, and the new K3DL results.  The Fawaz-Andersson FEA results are the peak values near 
the free surfaces. 
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Figure 30.  Comparison of Boundary-Correction Factors for Remote Tension From Various 
Analyses and Equations for r/t = 1 and a/c = 1 

Figure 30 shows the boundary-correction factors at the free surface (φ = 0) and at the bore of the 
hole (φ = π/2).  The K3DL results compare very well at the free surface and fairly well at the 
maximum depth location with the FEA results.  At the maximum depth location, the K3DL 
results show slightly higher values at low a/t ratios than the FEA results.  Also, the rapid rise in 
the boundary-correction factors for very deep cracks (a/t > 0.9) are not captured by the K3DL 
code, but the results are acceptable and exhibit the same trends.  The Newman-Raju equations 
for a/t ratios less than 0.1 are modeling a boundary-layer effect (a reduction in the elastic stress 
concentration factor), which causes a slight drop in Ft near a/t = 0.  This stress concentration 
factor reduction at the free surface may not be accounted for in the K3DL code.  In addition, the 
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Fawaz-Andersson FEA results did not extend below an a/t value of 0.1.  Further study is required 
to resolve this issue. 
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Figure 31.  Comparison of Boundary-Correction Factors for Remote Bending From Various 
Analyses and Equations for r/t = 1 and a/c = 1 

Figure 31 shows the boundary-correction factors for the case of remote bending.  The K3DL 
code results are not as good as the case of tension for deep cracks.  Here, the K3DL code gave 
higher SIFs for the deep cracks.  The weight functions are independent of loading, and nothing 
can be done to modify the weight function for the bending load differences.  However, these 
results are acceptable because under pure bending, the cracks will not grow beyond an a/t ratio 
of about 0.66 due to the very low or negative SIFs.  In the case of combined tension and bending, 
the bending results for a/t > 0.66 are used, but the bending contribution to the total SIF will 
decrease.  The Newman-Raju equations for a/t ratios less than 0.2 severely overestimate the 
boundary-correction factors and do not approach the correct limit.  The stress concentration 
factor for a circular hole in a plate under bending (such as Reissner’s solution [38]) was not 
taken into account.  The Zhao-Newman-Sutton equations were developed to correct this 
deficiency in the Newman-Raju equations and approach the limiting stress concentration factor 
for a plate with a hole under bending. 
 
5.3.1  Remote Applied Loads. 

Figure 32 shows the boundary-correction factor distribution for remote tension, St, applied to a 
plate with a single corner crack at an open hole.  The crack configuration had r/t = 1 and a/c = 1 
with a/t ratios varying from 0.01 to 0.99.  The solid symbols near 2φ/π = 1 show the influence of 
the back face as the corner crack becomes very deep (rapid rise in Ft). 
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Figure 32.  Normalized SIFs (Ft) Under Remote Tension for Shallow to Deep Cracks 

Normalized boundary-correction factors for remote bending (applied outer fiber bending stress, 
Sb) are shown in figure 33 for r/t = 1 and a/c = 1 with a/t ratios varying from 0.01 to 0.99.  
Again, the crack configuration is a single corner crack at an open hole.  The negative boundary-
correction factors for deep cracks are only useful under combined loading, such that the sum of 
the SIFs is positive. 
 
Figure 34 shows the boundary-correction factors (Fw) for wedge loading in the hole.  The crack 
configuration is the same, as shown in figures 32 and 33, but the wedge loading is applied as a 
normal stress on the hole boundary with a cos(θ)-distribution (see appendix A).  Wedge loading 
is used to simulate the effects of fastener loading on the Mode I SIF.  (For simulated fastener 
loading, no information on the shear mode SIF is provided.) 
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Figure 33.  Normalized SIFs (Fb) Under Remote Bending for Shallow to Deep Cracks 
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Figure 34.  Normalized SIFs (Fw) Under Wedge Loading for Shallow to Deep Cracks 
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5.3.2  Residual-Stress Distributions. 

The K3DL code was modified to conduct a stress analysis of either surface or corner crack(s) at 
an open hole with an arbitrary residual-stress field along the crack path.  The residual-stress, σrs, 
distributions is expressed as 
 
 σrs/S0 = a0 + a1 ξ + a2 ξ2 + a3 ξ3 + a4 ξ4 (3) 
 
where S0 is a reference stress, such as the yield stress of the material, ai (i = 1, 2, 3, 4) are the 
coefficients selected to fit the residual-stress distribution, and ξ (= x/r) is the normalized 
coordinate distance from the edge of the hole (see appendix A). 
 
A comparison of residual-stress distributions caused by an overload or by cold-working a hole 
and the use of the polynomial equation was made.  Figure 35 shows a comparison of the residual 
stresses caused by the 1.7 overload on a specimen with an open hole and the polynomial 
equation chosen to fit these results.  The solid curve is the calculated residual stresses from 
ZIP2D [39] as a function of the normalized distance from the edge of the hole (ξ), and the 
dashed curve is the 4th degree polynomial equation chosen to fit these results.  The equation 
coefficients, a0 to a4, are used to compute the SIFs from the K3DL code. 
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Figure 35.  Comparison of Residual Stresses From an Overload and the Equation Chosen  
to fit the Results 

For illustrating the residual-stress capability in K3DL, an example residual-stress field due to 
cold expansion of a circular hole is considered.  The residual-stress distributions are from Park 
and Atluri [40].  Three different ratios of plastic zone radius (Ry) to hole radius are considered:  
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Ry/r = 1.1, 1.3, and 1.5.  The crack configurations considered are r/t = 1 (close to the single-hole 
test specimen); a/c = 1; and a/t = 0.01 to c/r = (x/r)max (valid range of polynomial expression for 
the residual stresses). 
 
Figure 36a shows the residual-stress distributions, where ξ = 0 is at the edge of the hole.  The 
yield stress σys is used to normalize the residual stress, σr.  The curve for Sr(x/r)_1104 is for the 
case of Ry/r = 1.1 with a valid range of ξ ≤0.4.  The residual-stress distribution Sr(x/r)_1306 is 
for Ry/r = 1.3 with a valid range of x/r ≤0.6.  And Sr(x/r)_1508 is for Ry/r = 1.5 with a valid 
range of ξ ≤ 0.8. 
 
An example of an SIF solution from one of the residual-stress distributions is shown in figure 
36b.  As expected, for the given residual-stress field, small cracks exhibit the most influence of 
the residual stresses, i.e., large negative values for F.  In the elastic superposition method, these 
boundary-correction factors must be added to the SIFs from the applied loading.  The residual-
stress effect becomes small as the crack becomes larger and tends to zero at the plate surface 
(φ = 0).  At the hole surface (φ = π/2), the residual-stress effect remains significant because the 
crack front is always in the compressive residual-stress field at this location. 
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Figure 36a.  Residual-Stress Distributions of a Cold-Worked Hole for Three Different  
Ry/r Ratios 
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Figure 36b.  Normalized SIFs Under Residual-Stress Distribution for Ry/r = 1.3 

5.4  SURFACE CRACK AT HOLE. 

The K3DL code can analyze a single surface crack (s1) or two symmetric surface cracks (s2) 
emanating from the center of a circular hole, as shown in figure 37, subjected to remote tension, 
wedge loading in the hole, and under any arbitrary residual-stress distribution along the crack 
path.  (Note that remote bending was not used because the surface crack would not grow in a 
semielliptical manner.)  The K3DL code defines the width of the cracked plate as 2b, whereas 
the total width is commonly defined as W or 2w.  However, the solutions from the current code 
are basically for a cracked hole in an infinite body and finite width corrections will have to be 
applied to these solutions for practical applications. 
 
The SIF results are calculated and presented in the form of the dimensionless F parameter, the 
boundary-correction factor, as given by equation 1.  Since Newman and Raju [41] developed a 
wide range of SIF solutions for the surface crack emanating from a circular hole using FEA as 
well as equations, comparisons are made among the FEA results, the equations, and the K3DL 
code.  Again, the particular crack configuration selected had an r/t ratio of unity and the a/c ratio 
was also unity.  This crack configuration was selected because these are common crack 
configuration parameters used in the aircraft industry. 
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Figure 37.  Definition for the Surface Crack Configuration Parameters 

Figure 38 shows the correction factors as a function of the crack-depth-to-plate-thickness (a/t) 
ratio for two symmetric surface cracks located at the center of a circular hole (r/t = 1; a/c = 1) 
subjected to remote tension.  The solid and dashed curves are the results from the K3DL code at 
the free surface location (φ = 0) and the maximum depth location (φ = π/2); the symbols are the 
results from the Newman-Raju equations [17].  The free surface results compared very well, 
except for the deep cracks; however, the maximum depth location exhibited some major 
differences.  The rapid rise in the correction factor from K3DL for deep cracks is similar to the 
rise shown for the corner crack problem. 
 
To study the source of these differences, comparisons were also made with the finite element 
results from Tan, et al. [42].  Figure 39 shows the distribution of the correction factor against the 
normalized parametric angle, 2φ/π, for the case of a/t = 0.2.  The open circular symbols show the 
early finite element results [16], which showed a rapid drop-off in the correction factor near the 
maximum depth location.  This drop-off was later found to be due to ill-shaped elements near the 
hole boundary [42].  The method used by Raju and Newman [16 and 41] to generate their models 
produced ill-shaped elements in the region where the crack front intersected the hole boundary.  
These elements produced a stiffer model and significantly reduced the SIF.  However, in 
developing the wide-range equations, Newman and Raju [17 and 41] neglected this rapid drop-
off, as shown by the solid curve.  The method used by Tan, et al. [42] generated a model with 
low aspect ratio elements in the region of the crack front and hole boundary.  Their model 
produced results higher (about 7%) than the equations near the maximum depth location.  The 
solid symbols show the recent results from the K3DL code, which were slightly higher than the 
FEA results from Tan, et al.  Thus, it is concluded that the K3DL code is producing more 
accurate SIFs than the Newman-Raju equations. 
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Figure 38.  Comparison of K3DL Results and Equations for a Surface Crack Configuration 

 

 
 

Figure 39.  Comparison of Results for a Surface Crack Configuration Using Various  
Models and Equations 
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6.  TWO-DIMENSIONAL GREEN’S FUNCTION ANALYSES. 

The SIF solutions for a pair of concentrated forces applied to the upper and lower crack surfaces 
are used as a Green’s function to generate the SIF solutions for the same crack configuration 
subjected to any arbitrary stress distribution on the crack surfaces.  A two-dimensional code, 
SIFK2D, was developed to calculate the SIFs for several different through crack configurations 
under arbitrary loading on the crack surfaces:  (1) a crack in an infinite plate, (2) an edge crack 
in a semi-infinite plate, (3) a single crack emanating from a circular hole in an infinite plate, and 
(4) two symmetric cracks emanating from a circular hole in an infinite or finite width plate.  
Application of the Green’s function code to these four crack configurations are presented and 
discussed in appendix B. 
 
In this section, the code was used to calculate the SIFs for a single crack emanating from a 
circular hole in an infinite plate subjected to remote uniform stress using the Green’s function, 
developed by Shivakumar and Forman [43].  In addition, the application to a single crack at a 
circular hole under both remote uniform stress and a residual-stress distribution is analyzed and 
discussed. 
 
6.1  SINGLE CRACK AT OPEN HOLE UNDER REMOTE TENSION. 

The single crack at a hole is perhaps one of the most important crack configurations in the 
aircraft industry because of the very large number of fastener holes in the wings and fuselages.  
The crack configuration is shown in figure 40, where the crack length, c, is measured from the 
edge of the hole.  The crack configuration was first analyzed by Bowie [44] using conformal 
mapping, but later Newman [45] obtained a more accurate solution using boundary collocation. 
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Figure 40.  Single Crack at an Open Hole in an Infinite Plate Subjected to Uniform  
Remote Stress 
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Figure 41 shows the normalized SIF solution using the SIF2D code as a function of the c/r ratio.  
The circular symbols show the Green’s function solution and the dashed curve shows an 
equation developed by Newman [46].  Later, slight improvements were made to the equation for 
either a single or two symmetric cracks emanating from the hole [47].  Both solutions approach 
the theoretical limit of 0.707 as the c/r ratio approaches infinity.  The equation also approaches 
the theoretical limit as c/r approaches zero (1.1215 times the local stress concentration). 
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Figure 41.  Comparison of Normalized SIFs for a Single Crack at an Open Hole Subjected to 
Uniform Remote Stress 

6.2  GENERAL STRESS DISTRIBUTIONS FOR CRACKS AT HOLES. 

The SIF2D code was developed with several options for analyzing the effects of arbitrary stress 
distributions along the crack location.  The stresses along the crack location could be input in 
either a table or equation format.  In the code, the normal stress equations were implemented in 
either positive or negative powers as  
 

  (4) 

2 3
1 2 3 4 5

2 3
1 2 3 4 5

σ ( / ) ( / ) ( / ) ( / )
                                     or
σ ( / ) ( / ) ( / ) ( / )

A A x r A x r A x r A x r

A A r x A r x A r x A r x

= + + + +

= + + + +

4

4

 
The code is valid for expressions up to x4 (or fourth order degree polynomial equations) only, but 
the code could be easily modified for higher order terms.  To illustrate the use of the code for an 
arbitrary stress distribution around the hole, a single crack emanating from the edge of the hole 
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under both remote uniform stress and a residual-stress distribution, σrs, as shown in figure 42, 
was analyzed. 
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Figure 42.  Single Crack at an Open Hole Subjected to Remote Stress and Residual-Stress 
Distribution 

From a previous study [48], sponsored by the FAA, the residual stresses around a cold-worked, 
reamed, and slotted hole were determined from an FEA of a 7075-T6 aluminum alloy.  These 
residual stresses are shown in figure 43a.  The residual stresses were normalized by the yield 
stress of the material and plotted against x/r; the edge of the hole was at x/r = 1.  The EDM 
notch, which has no residual stresses applied along the notch surfaces, extended to an x/r ratio of 
about 1.05.  Each data point shows the input values into the residual-stress table.  Figure 43b 
shows the stresses along the intended path of the crack at maximum and minimum applied stress 
(solid and dashed curves, respectively).  The dash-dot curve shows the stresses without the 
presence of residual stresses from elasticity theory by Timoshenko [49].  Using the SIF2D code, 
the SIFs at maximum and minimum applied stress with and without the residual stresses are 
shown in figure 43c.  At the tip of the EDM notch (assumed to be a crack), the SIF is unaffected 
by the presence of the residual stresses and is identical to that caused by the Timoshenko stresses 
around a hole.  But as the crack extends, the maximum SIF (solid curve) sharply drops and 
reaches a minimum after a small amount of crack extension.  The SIF at the minimum applied 
stresses is always negative, as shown by the dashed curve.  The differences between the solid 
and dashed curves give the stress-intensity factor range, ΔK; and the effective stress ratio (Reff = 
Kmin/Kmax) is shown in figure 43d.  These values are used in the various codes to make fatigue 
crack growth life predictions. 
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Figure 43a.  Calculated Residual Stresses Around a Circular Hole From Cold Working,  
Reaming, and Slotting 
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Figure 43b.  Residual Stresses Around a Circular Hole at Maximum and Minimum  
Applied Stresses 
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Figure 43c.  Calculated SIFs With and Without Residual Stresses at Maximum and Minimum 
Applied Stresses 
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Figure 43d.  Calculated Stress Ratio (Kmin/Kmax) With and Without Residual Stresses at 
Maximum and Minimum Applied Stresses 
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7.  FINITE ELEMENT ANALYSIS OF SINGLE-HOLE SPECIMEN. 

Because the drilled single-hole test specimens appear to have no residual stresses or because the 
drilling flaws were large enough to offset the effects of the residual stresses on fatigue life, the 
finite element method was used to study the residual stresses caused by a 1.7 overload and a 
1.7 underload.  These residual stresses were used later to verify the capabilities of the 
FASTRAN [5] life-prediction code, which accounts for the influence of residual stresses on 
crack growth and the decay in the residual stresses as the crack grows.  In addition, the FEAs 
were used to simulate fatigue crack growth and crack closure; comparisons were made between 
the FEAs and the FASTRAN simulations. 
 
7.1  ELASTIC AND ELASTIC-PLASTIC STRESS ANALYSES. 

The two-dimensional, elastic-plastic finite element code, ZIP2D [39], has been used to analyze 
the single-hole specimen.  A two-dimensional finite element model of the test specimen was 
developed and the mesh is shown in figure 44.  The model had about 3500 elements and 3700 
degrees of freedom.  The material was assumed to be elastic-perfectly plastic with a flow stress 
of 345 MPa (50 ksi).  Figure 45 shows the shape and size of the plastic zone at the 1.7 overload 
(about 72% of the flow stress).  The model is one-quarter of the specimen, and the x and y 
coordinates are normalized by the hole radius. 
 
Figure 46 shows the nodal average stresses along the centerline of the specimen (x axis) at three 
levels of loading.  The normal stress, σyy, has been normalized by the flow stress of the material, 
and the distance, again, is normalized by the hole radius.  The insert in figure 46 shows the 
loading that was applied to the finite element model.  The dash-dot curve (A) shows the normal 
stresses at the 1.7 overload (Smax/σo = 0.72 or 248 MPa) that correspond to the plastic zone 
shown in figure 45.  The dashed curve (B) shows the compressive residual stresses that develop 
at the hole surface and the balancing tensile stresses away from the hole.  The solid curve (C) 
shows the normal stresses at the constant-amplitude loading (145 MPa or 21 ksi). 
 
In figure 47, the nodal average stresses along the centerline of the specimen after the 1.7 
underload are, again, shown at three levels of remote loading.  The insert shows the loading that 
was applied to the finite element model.  The dash-dot curve (A) shows the normal stresses at the 
1.7 underload (Smax/σo = – 0.72 or – 248 MPa).  The dashed curve (B) shows the tensile residual 
stresses that develop at the hole surface and the balancing compressive stresses away from the 
hole, and the curve (C) shows the normal stresses at the constant-amplitude loading (145 MPa). 
 
Figure 48 shows a summary of the stress distributions after the overload, after the underload, and 
during the constant-amplitude loading.  The results from the overload produced very low stresses 
near the hole boundary (0.2 as compared to 1.05 times the flow stress), whereas the underload 
caused higher stresses than the constant-amplitude loading.  However, the differences were not 
as large as those for the overload (1.1 σo as compared to 1.05 σo).  These results partly explain 
why the overload caused the fatigue lives to be an order of magnitude longer than the constant-
amplitude results.  However, the fatigue lives after the underload were only about a factor of 2 
less than the constant-amplitude case. 
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Figure 44.  Two-Dimensional Finite Element Model of the Single-Hole Fatigue Test Specimen 
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Figure 45.  Plastic Zone Shape and Size After the 1.7 Overload on the Open-Hole Specimen 
(One-quarter of specimen) 

 53 



 

x / r

1.0 1.5 2.0 2.5 3.0

σyy / σo

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

S / σo = 0.72

0.42

0.0

A

B

C

2

1

0
Time

S / Smax

A

B

C

 
 

Figure 46.  Nodal Average Stresses Along x Axis for 1.7 Overload, Zero Load, and Constant-
Amplitude Loading Used in Fatigue Tests 
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Figure 47.  Nodal Average Stresses Along x Axis at the 1.7 Underload, Zero Load, and 
Constant-Amplitude Loading Used in Fatigue Tests 
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Figure 48.  Nodal Average Stresses Along x Axis After Overload, Underload, and Constant-
Amplitude Loading Used in Fatigue Tests 

7.2  SIMULATED FATIGUE CRACK GROWTH AND CRACK CLOSURE. 

Fatigue tests were conducted on the production-quality open-hole specimens under either 
constant-amplitude loading, a single-spike overload followed by constant-amplitude loading, or a 
single-spike underload followed by constant-amplitude loading. Elastic-plastic finite element 
analyses of these loading conditions were conducted to determine the stress states around the 
hole.  In particular, the effects of residual stresses on fatigue crack growth and crack closure due 
to overloads and underloads were studied and compared to the FASTRAN code [5]. 
 
The two-dimensional finite element code, ZIP2D [39], was used again with a very refined model 
of a crack emanating from a circular hole to simulate fatigue crack growth and crack closure 
under plane-stress conditions.  The mesh had about 7000 elements and 3600 nodes.  Although 
the model was highly refined, the smallest element size (0.02 mm) was orders of magnitude 
larger than the actual fatigue crack growth rates.  Thus, comparisons were also made with two 
crack growth simulations from FASTRAN.  In the first simulation, the crack growth increment 
was equal to the element size in the finite element model.  In the second simulation, the actual 
fatigue crack growth rates for a crack in the 2024-T3 aluminum alloy were used. 
 
Figure 49 shows the crack-opening stress, Sop, normalized by the maximum applied stress, as a 
function of crack length for constant-amplitude loading.  The initial crack length ci was one 
element size (0.02 mm).  The solid curve represents the FEA results and the other curves 
represent the FASTRAN simulations.  The larger element size could produce higher crack-
opening stresses from the FEA.  FASTRAN, using the actual crack growth increments, produced 
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a lower crack-opening stress than the FEA.  Higher crack-opening stresses were obtained from 
FASTRAN simulations using the larger crack growth increments, as used in the FEA. 
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Figure 49.  Crack-Opening Stresses for Constant-Amplitude Loading for a Crack Emanating 
From a Circular Hole 

Appling the 1.7 overload followed by the same constant-amplitude loading (as shown in figure 
49), produced very high crack-opening stresses, as shown in figure 50.  The FASTRAN 
simulations also produced high crack-opening stresses and had similar behavior, but the crack-
opening stresses approached a lower value than the FEA results as the crack grew away from the 
hole.  Again, this could be due to the larger element size in the FEA.  Figure 51 shows the results 
of the 1.7 underload followed by the same constant-amplitude loading.  The extent of the 
influence of the underload was about 2 mm of crack growth before the opening levels stabilized, 
very similar to the overload case.  Again, the FASTRAN simulations produced lower crack- 
opening stresses than the FEA, but larger size crack growth increments in FASTRAN produced 
slightly higher crack-opening stresses. 
 
Figures 52 and 53 show a comparison of all load cases from the FEA and FASTRAN 
simulations, respectively.  In both cases, the overload caused a much larger influence on crack-
opening stress levels than the same magnitude of underload.  Both the overload and underload 
results approached the constant-amplitude results as the crack grew away from the hole.  These 
results show that the influence of the overload and underload occurs over a larger amount of 
crack growth for FASTRAN than with the FEA.  This may be due to the tensile biaxial stress 
field around the hole in the FEA, whereas in FASTRAN, the constraint factor was assumed to be 
unity.  A slightly higher constraint factor, such as 1.15, would have reduced the length of 
influence. 
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Figure 50.  Crack-Opening Stresses for a Single-Spike Overload Followed by Constant-
Amplitude Loading for a Crack at a Hole 
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Figure 51.  Crack-Opening Stresses for a Single-Spike Underload Followed by Constant-
Amplitude Loading for a Crack at a Hole 
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Figure 52.  Comparison of Crack-Opening Stresses From FEA for the Three Load Cases 
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Figure 53.  Comparison of Crack-Opening Stresses From FASTRAN for the Three Load Cases 
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8.  FATIGUE ANALYSIS OF SINGLE-HOLE SPECIMENS. 

Over the past 2 decades, various studies on small- or short-crack growth behavior in metallic 
materials have led to the realization that the fatigue life of many engineering materials is 
affected by crack growth from microstructural features, such as inclusion particles, voids, or slip 
band formation (see references 28-30).  Concurrently, improved fracture mechanics analyses of 
some of the crack tip shielding mechanisms, such as plasticity-induced crack closure [47], and 
analyses of surface or corner crack configurations [16, 22, and 25] have led to more accurate 
crack growth and fatigue life-prediction methods.  Thus, small-crack theory is the treatment of 
fatigue as a crack propagation process from a microdefect (or crack) to failure [6 and 8].  Herein, 
small-crack theory is used to calculate the fatigue behavior of the 2024-T3 aluminum alloy 
specimens tested in the current program.  The details of the analysis procedures are given in 
reference 50 and are not repeated here.  See appendix C for improvements made in FASTRAN 
to calculate fatigue lives. 
 
8.1  FATIGUE ANALYSES BASED ON SMALL-CRACK THEORY. 

Prior to conducting the fatigue (S-N) test on the single-hole test specimens made of the 2024-T3 
aluminum alloy material, FASTRAN was used to analyze the older fatigue data on the same 
material for open-hole specimens with hole diameters that are slightly lower and higher than that 
used in the current test program.  Figure 54 shows the fatigue data from NACA TN-3631 [35].  
The specimens were 51 mm wide and had D/W ratios of 0.0625 and 0.125.  (The D/W ratio for 
the current test specimens is 0.094.)  The fatigue data extends from the fatigue limit to extremely 
high stress levels (above the yield stress of the material).  Note that the aluminum alloy does not 
have a well-defined endurance limit.  The symbols show the test data on specimens that had been 
electropolished.  In the FASTRAN analysis, a semicircular surface crack located along the hole 
bore was assumed to cause the fatigue failure of the specimens.  The radius of the surface crack 
was varied until a best fit of the data was found.  A 6-μm (0.00024-in.) flaw was found to fit the 
mean of the test data quite well.  However, in the range of applied stress levels from 150 to 250 
MPa, the calculated lives fell somewhat short of the test data (about a factor of 2 or less).  The 
reason for this behavior is not known, but this behavior has been observed on other comparisons 
made on the 2024-T3 aluminum alloy.  The upper and lower (dashed) curves show the effects of 
flaw size on fatigue lives and bound most of the test data quite well.  From previous studies, 
these flaw sizes are related to the inclusion particle clusters in the 2024-T3 aluminum alloy 
material [6, 28, and 31]. 
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Figure 54.  Comparison of Fatigue Data on the 2024-T3 Aluminum Alloy Open-Hole Specimens 

With FASTRAN Calculations Using Three Flaw Sizes 

8.2  CONSTANT-AMPLITUDE LOADING TESTS. 

FASTRAN was used to establish the stress levels for the fatigue test program on polished and 
production-quality specimens.  Figure 55 shows S-N data on 2024-T3 aluminum alloy specimens 
with hole diameters that smaller and larger than the project test specimen [35].  The dashed 
curves are upper- and lower-bound calculations using inclusion particle distributions in the 
2024-T3 aluminum alloy.  The solid curve shows calculations based on a flaw size to fit the 
mean of the test data.  Three stress levels were selected for the polished specimens, as shown by 
the three horizontal lines, denoted by A, B, and C.  A number of tests were conducted at each 
stress level, but B was the primary stress level used in the test program.  Identical series of tests 
were conducted for the LT and TL orientations.  A number of polished specimens were also 
tested under a single overload or an underload (to induce a residual stress field) followed by 
constant-amplitude loading at a gross applied stress level of 145 MPa (21 ksi). 
 
The polished specimens were drilled and chemically polished at the NASA Langley Research 
Center and tested at Georgia Institute of Technology.  Both LT and TL specimens were drilled 
and polished.  These results are shown as solid symbols in figure 56.  Very little difference was 
observed between the LT and TL orientations for the limited test results, but the results at the 
two lowest stress levels did not agree as well as expected with the older fatigue data.  The 
baseline applied stress level (145 MPa or 21 ksi) results fell short of the previous data, but the 
limited results at the lowest stress level produced nearly all runouts (no failure after 3 million 
cycles). 
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Figure 55.  Stress Against Cycles for 2024-T3 Aluminum Alloy Sheet Material With a Central 
Hole Under R = 0 Conditions 
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Figure 56.  Comparison of Fatigue Lives for Electropolished and Chemically Polished 
Specimens Made of 2024-T3 Aluminum Alloy 
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The production-quality, drilled-hole specimen results are shown in figure 57.  All of these tests 
were in the LT orientation, but most specimens were hand drilled, while a smaller subset was 
machine drilled.  Again, at the two lowest test stress levels, the hand-drilled specimens fell short 
of the expected behavior, presumably due to drilling marks.  However, the limit results on the 
machine-drilled specimens fell closer to the mean of the older polished data.  The machine-
drilling process may have produced less drilling marks than the hand-drilled holes. 
 
Figure 58 shows a summary of all the constant-amplitude test data.  This figure shows all the 
specimens that were tested at Georgia Institute of Technology, the electropolished NACA data 
[35], and the calculated results from FASTRAN, using upper and lower bounds based on initial 
defect sizes.  The polished specimens indicated that the LT and TL orientations did not affect the 
fatigue lives.  However, the polished specimens at the lowest test stress level (121 MPa) did not 
agree with the electropolished results from the NACA report.  Three out of four specimens were 
classified as runouts and did not fail after 3 million cycles.  But three drilled-hole test specimens 
(diamonds), tested at the lowest applied stress level, failed at fatigue lives much lower than the 
NACA results.  These results indicated that either the drilling defects were large enough to cause 
shorter fatigue lives or that tensile residual stresses may be present.  At the highest test stress 
level (172 MPa), the limited test data on the polished (three tests) and hole-drilled (one test) 
results fell close together and agreed with the calculated median (dashed) curve. 
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Figure 57.  Comparison of Fatigue Lives for Polished and Production-Quality Open-Hole 
Specimens Made of 2024-T3 Aluminum Alloy 
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Figure 58.  Fatigue Lives for Drilled-Hole and Baseline Specimens as a Function of Stress Level 

Surprisingly, the polished test data at the medium stress level also fell short of the limited NACA 
data and the predicted mean results (solid curve).  Also, the polished test data were not too 
different from the drilled-hole test data.  This behavior was unexpected.  The edge of the hole 
would yield under these loading conditions, if compressive residual stresses were not present.  
But this stress level is close to the same applied stress level used in the previous test and analysis 
program [3], which showed an effect of hole drilling and longer fatigue lives. 
 
8.3  SPIKE OVERLOAD AND UNDERLOAD TESTS. 

Because the production-quality holes did not appear to have significant residual stresses, a group 
of polished-hole specimens were tested with either a 1.7 overload or a 1.7 underload prior to 
conducting the constant-amplitude fatigue test.  The overload and underload yielded the material 
at the edge of the hole and produced either a compressive or tensile residual-stress field, 
respectively.  After one cycle of prior loading, the specimens were subjected to a cyclic 
maximum applied gross stress of 145 MPa at R = 0 until failure. 
 
Figure 59 shows the fatigue tests on the overload and underload tests as solid triangular symbols.  
Again, these results are compared with the previous electropolished specimens from NACA TN-
3631.  As expected, the tensile overload caused significant compressive residual stresses at the 
edge of the holes and produced a large increase (order of magnitude) in the fatigue lives.  
However, the tests did exhibit a large amount of scatter.  This may have been due to the 
microcracks having SIF levels very close to the threshold for the 2024-T3 aluminum alloy.  On 
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the other hand, the compressive underload, which caused a tensile residual-stress field at the 
edge of the hole, produced about a factor of 2 reduction in fatigue life. 
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Figure 59.  Fatigue Lives for Polished Specimens Subjected to Overload or Underload Prior to 
Constant-Amplitude Loading 

FASTRAN predicted a factor of 10 increase in fatigue life after the overload and a 23% 
reduction in fatigue life after the underload using the 6-μm flaw size, as shown in figure 58 
(vertical lines).  FASTRAN was unable to correlate the hole-drilled specimens with a single 
EIFS without either considering a tensile residual-stress field at the edge of the hole or a 
statistical variation because of the limited test results at the highest and lowest test stress level.  
As shown by the three curves in figure 58, a 6-μm flaw would be needed at the highest stress 
level, but about a 10-μm flaw size would be needed at the lowest stress level.  A tensile residual-
stress field could be eliminated at the higher applied stress level (due to hole yielding), but may 
be retained at the lower applied stress levels.  These data require further study. 
 
Figure 60 shows a comparison of specimens tested at the median stress level (145 MPa).  The 
baseline (polished) results are shown as the solid symbols and the horizontal line is their average 
life.  The production-quality hole specimens (old or new drill bit; with or without a pilot hole) 
fell together in a very tight band (open circular symbols).  The small horizontal line is the 
average of the drilled-hole specimens (30% lower than the baseline fatigue life).  Surprisingly, 
the 1.7-overload tests showed a large amount of scatter.  The effect of the overload increased the 
fatigue life more than 18 times longer than the polished specimens.  However, the 1.7-underload 
tests showed a reduction in the fatigue life of only about 40% from the baseline tests. 
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Figure 60.  Comparison of Test and Predicted Fatigue Lives for Single-Hole Specimens 

9.  FATIGUE ANALYSIS OF LABORATORY LAP JOINT SPECIMENS. 

During the past decade, research on the aging aircraft fleets by the FAA, NASA, and the DoD 
have generated test and analysis data on riveted lap joints from simple laboratory specimens to 
curved test panels [51].  The results on the laboratory specimens have been used to improve and 
verify the fatigue and crack growth methodologies for lap joint configurations.  In preparing for 
the fatigue life predictions on the FT-2 panel (removed from a retired B-727 aircraft and tested at 
the FAA William J. Hughes Technical Center), it was believed that some analyses of laboratory 
lap splice joints would help determine the initial discontinuity size or initial flaw size to be used 
in the analyses.  Based on the teardown information being generated on the B-727 [9-12], the 
cracking observed on the right side of the aircraft and the noncracking observed on the left side 
may indicate that the left side had “tight” rivets.  Even the cracking on the right-hand side had 
indications of tight rivets because the cracks were not located at the 0- and 180-degree locations, 
but at various locations on the opposite side of the rivet from the rivet load. 
 
Herein, two studies on simple lap joint specimens were used to establish appropriate crack 
configurations and the EIFSs.  These crack configurations and EIFS values were then used to 
calculate fatigue lives and crack growth in fuselage lap joints in a retired narrow-body passenger 
aircraft and for a curved panel cut from the retired aircraft and tested in a pressure-box facility. 
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9.1  STRESS ANALYSIS OF CRACKS AT RIVET-LOADED FASTENER HOLES. 

Stress-intensity factors for a corner crack or a through crack emanating from a typical fastener-
loaded hole under remote applied stress, remote bending, bypass stress, fastener load, and 
interference, as shown in figure 61, are given in reference 52.  One of the restrictions for the 
corner crack equations is that the crack aspect ratio, a/c, is fixed, and the influence of rivet 
interference is based on a simple approximation.  Stress-intensity factor equations for a surface 
crack in a plate under remote tension and bending are given in reference 53. 
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Figure 61.  Crack Configuration and Loading for Rivet-Loaded Hole 

9.2  MATERIAL CRACK GROWTH PROPERTIES. 

The material used in the laboratory lap joint specimens and the narrow-body fuselage structure 
was 2024-T3 thin-sheet clad aluminum alloy.  Fatigue crack growth rate data on a clad 
aluminum alloy were obtained from Schijve, Jacobs, and Tromp [54].  The yield stress was 360 
MPa, and the ultimate tensile strength was 490 MPa.  These data covered a wide range of stress 
ratios (R = -0.1 to 0.73).  Previously, Newman [55] had developed steady-state crack-opening 
stress equations from the FASTRAN crack closure model for middle-crack tension, M(T), 
specimens subjected to constant-amplitude loading at various stress levels, stress ratios (R), and 
constraint factors (α).  These equations were used to develop the effective stress-intensity factor 
range against rate relation for the clad alloy, as shown in figure 62.  The symbols show the test 
data for the various stress ratio tests.  The data correlated very well with the same constraint 
factors that had been used for the bare material [56].  Additional small-crack data on a thin-sheet 
2024-T3 bare aluminum alloy [57] were used to estimate the effective SIF range results at 
extremely low crack growth rates near threshold.  The solid curve shows the ΔKeff baseline 
relation (see table 3) used in all subsequent fatigue and crack growth calculations.  The dashed 
curve shows the relation obtained from the bare material.  For most of the data, the clad and bare 
results agreed quite well. 
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Figure 62.  Fatigue Crack Growth Rate Properties for 2024-T3 Alclad Material 

 
Table 3.  Effective Stress-Intensity Factor Against-Rate Relation for 2024-T3 (Alclad) 

ΔKeff, MPa-m1/2 dc/dN, m/cycle 
0.75 1.00e-11 
1.05 1.00e-10 
2.05 2.00e-09 
4.00 1.00e-08 
7.60 1.00e-07 
10.7 4.00e-07 
17.0 3.00e-06 
35.0 1.00e-04 
85.0 1.00e-02 

α = 2.0 1.00e-07 
α = 1.0 1.50e-06 

 
9.3  NORTHWESTERN UNIVERSITY THREE-RIVET-ROW TEST SPECIMENS. 

Conner, Fine, and Achenbach [58] conducted a large number of lap joint tests on specimens, as 
shown in figure 63.  The specimens were prepared by riveting together two Alclad 2024-T3 
aluminum alloy panels, one with three countersunk rivet holes and one with three straight-shank 
holes.  The rivets were made of 2017-T4 aluminum alloy and the hole diameter was about 
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4.8 mm.  The specimens were fatigue tested at remote stress levels of 103 to 180 MPa at a stress 
ratio of 0.1.  When the specimens were fatigued at the lowest stress levels (103 and 129 MPa), 
the cracks initiated and grew as “eyebrow” cracks at the faying surface on the straight-shank 
hole side, but when the higher stress levels were applied (154 and 180 MPa) the cracks initiated 
as corner cracks along the faying surface. 
 

 
 

Figure 63.  Three-Rivet-Row Lap Joint Specimen Tested at Northwestern University 

The latter is the typical crack configuration used in the national aging aircraft programs for the 
FAA and NASA.  At the lowest applied stress levels, the cracks in the lap joint specimens 
initiated and grew as eyebrow cracks at the opposite end of the hole from the fastener loads, as 
shown by the C-scan in figure 64a.  But at the highest applied stress levels, the cracks in the lap 
joint specimens initiated and grew at approximately the 0 and 180 degree locations, as shown in 
figure 64b. 
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Figure 64a.  Initiation Sites for Cracks in Lap Joint Specimens Tested at Low-Applied  
Stress Levels 

 

 
 

Figure 64b.  Initiation Sites for Cracks in Lap Joint Specimens Tested at High-Applied  
Stress Levels 

FASTRAN was used to calculate the fatigue lives of these specimens using two different crack 
models.  The first was the eyebrow-type crack, shown in figure 65.  Here, a surface crack which 
was assumed as the initial crack size was subjected to remote tension and bending loads.  The 
rivet was totally neglected in these analyses.  The bending stress was estimated from the 
Hartman-Schijve strength of materials approach [59] and was 0.34 times the remote applied 
stress.  Figure 66a shows the results of tests conducted with 103 MPa with R = 0.1.  The crack 
length, 2c, was measured using an acoustic microscope and includes the hole diameter plus crack 
growth on both sides of the hole.  In the eyebrow crack analyses, an initial surface crack length, 
ci, of 2.4 mm was assumed.  The initial crack depth, ai, was then chosen to fit the bounds of the 
three test specimens.  The 15-μm deep crack gave nearly an upper bound and the 30-μm deep 
crack gave a lower bound. 
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Figure 65.  Crack Configuration Modeled for the Eyebrow Crack 
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Figure 66a.  Crack Growth in Riveted Lap Joint at a Low-Applied Stress Level 
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For tests conducted at a higher-applied stress level, as shown in figure 66b, the crack 
configuration used in the tests and analyses was a corner crack located at the edge of the straight-
shank hole.  The bending stress was calculated to be 0.39 times the applied stress.  Again, the 
crack length, 2c, was measured with the acoustic or optical microscope and the crack length 
included the hole diameter.  The initial corner crack size was, again, chosen to fit the upper and 
lower bounds of the test data.  Here, a 50- and 100-μm crack fit the results fairly well. 
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Figure 66b.  Crack Growth in Riveted Lap Joint at a High-Applied Stress Level 

9.4  GEORGIA INSTITUTE OF TECHNOLOGY AND DELTA AIR LINES TWO-RIVET-
ROW TEST SPECIMENS. 

Recently, two-rivet-row lap joint specimens were tested at Georgia Institute of Technology [14].  
The lap joint specimen is shown in figure 67.  Several rivet conditions were considered:  
(1) standard-driven rivets, (2) tight or overdriven rivets, or (3) underdriven rivets.  All specimens 
were subjected to a remote stress of 124 MPa.  Figure 68a shows the fatigue test results on the 
underdriven rivet condition, which had an average life of about 80,000 cycles.  In the fatigue 
analyses, a semicircular corner crack (a/c = 1) was assumed to occur along the faying surface of 
straight-shank hole.  Various EIFS values were assumed.  It was found that a 6-μm crack fit the 
average results quite well.  The upper and lower bounds were captured quite well by the 4- and 
15-μm crack, respectively.  The test results for the standard- and overdriven rivets are shown in 
figure 68b.  Here, it was found that the standard- and overdriven rivets produced nearly the same 
cycles to failure.  The average fatigue life was about 60% larger than for the underdriven rivets.  
Again, a semicircular corner crack was assumed as the EIFS; but an interference value of 7 μm 
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was needed to fit the mean of the test results with a 6-μm initial crack.  Again, the fatigue scatter 
was captured quite well by the 4- to 15-μm initial crack. 
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Figure 67.  Two-Rivet-Row Lap Joint Specimen Tested at Georgia Institute of Technology 
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Figure 68a.  Fatigue Lives of Lap Joint Specimens With Underdriven Rivets 
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Figure 68b.  Fatigue Lives of Lap Joint Specimens With Standard and Overdriven Rivets 

10.  FATIGUE ANALYSIS OF CURVED LAP JOINT TEST PANELS. 

One of the objectives of the B-727 teardown investigation was to remove panels from a retired 
narrow-body aircraft [9-12] after about 60,000 flights and conduct continued fatigue tests on the 
large panels.  These panel tests and the teardown investigation were to establish the current state 
of cracking in the fuselage during an actual flight history and to provide cracking data from 
continued fatigue testing to verify life-prediction methods and codes. 
 
Two of the curved fuselage panels removed from the retired aircraft were tested in a pressure-
box at the FAA William J. Hughes Technical Center [10].  Prior to testing, predictions were 
made on the expected fatigue life of the FT-2 panel, shown in figure 69.  Because these panels 
were removed from the side of the aircraft, which had apparently tight rivets, the surface crack 
model (see figure 66b) was used to make fatigue life and crack growth predictions.  Figures 70 
and 71 show the predicted crack length, 2c, against cycles, N, for two levels of bending.  The 
flight history was assumed to be at 94.5 MPa at R = 0 for 59,495 cycles, and the stress applied to 
the FT-2 panel was 98 MPa at R = 0.1 until failure.  The original life predictions were made with 
a 100-μm depth initial surface crack, which predicted failure in about 150,000 cycles (see figure 
70).  After nearly 100,000 pressure cycles on the FT-2 panel, the test was terminated due to 
loading fixture failures.  But close examination of the lap joint region indicated no cracking.  
Later, the FT-1 panel was tested to 180,000 cycle, again, with no indication of cracking.  Recall 
that the initial crack depths that needed to fit the lap joint laboratory specimens ranged from 15- 
to 30-μm.  Using these values produced no significant cracking after 100,000 cycles and failure 
from 200,000 to over 300,000 cycles.  Whether the FT-1 and FT-2 panels could have withstood 
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this large increase in pressure cycles could not be determined.  However, the predictions seem to 
be reasonable for the tight-rivet conditions. 
 

 
Figure 69.  Curved Panel (FT-2) From Narrow-Body Aircraft Tested at the FAA  

William J. Hughes Technical Center 
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Figure 70.  Influence of Secondary Bending on Predicted Crack Growth in Narrow-Body 
Aircraft 
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Figure 71.  Predicted Crack Growth in Narrow-Body Aircraft and Continued Testing at the FAA 

William J. Hughes Technical Center 

11.  FATIGUE ANALYSIS OF CRACKING IN B-727 TEARDOWN AIRCRAFT. 

The FAA [9] teamed with Delta Air Lines [10-12] to conduct a destructive evaluation of a 
retired, narrow-body passenger aircraft that had nearly 60,000 flights.  Some of the objectives of 
the program were to characterize the state of MSD at riveted fastener holes in the fuselage of an 
aircraft at the design service goal, and to develop or verify analysis methods that can correlate 
and predict the state of MSD at any point in time.  For the narrow-body aircraft, observations on 
cracking from the destructive examination of the fuselage joints indicated that one side of the 
aircraft appeared to have tight (within specifications) rivets, whereas the other side of the aircraft 
appeared to have underdriven (55%) rivets [11 and 12].  Faying surface origins were 
predominate, despite a majority of underdriven rivets.  A large number of cracks were examined 
with a scanning electron microscope (SEM) to count striations and to backtrack the cracking 
history to reconstruct the crack length against flight cycle behavior [12].  The measured crack 
length against flight cycle results tended to fall within a fairly narrow band considering the 
complexity of the structural joints.  Several curved fuselage panels were removed from the other 
side of the fuselage, and one panel was tested in a pressure-box facility. 
 
The objective of this section is to use FASTRAN [5] and small-crack theory to calculate fatigue 
lives and crack growth in the narrow-body aircraft.  Comparisons were made between AFGROW 
[60] and FASTRAN for crack growth in the narrow-body aircraft and the reconstructed crack 
length against flight pressure cycle history. 
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The retired, narrow-body passenger aircraft was destructively examined to determine the state of 
cracking in the fuselage lap joint regions on one side of the aircraft [11 and 12].  On the other 
side, several curved fuselage panels were removed from the aircraft.  A drawing of structural 
details around the horizontal lap joint is shown in figure 68.  Fatigue cracks would be expected 
to be present and grow in the horizontal three-rivet row lap joint near the center of the panel.  
Figure 72 shows the cross section at a rivet location showing the inner and outer sheets with an 
internal doubler and the countersunk rivet.  Cracks were expected to initiate and grow from the 
faying surface as corner cracks or surface cracks.  In the following, comparisons were made 
between the measured and calculated cracking in the aircraft fuselage structure and the cracking 
in a curved fuselage panel removed from the aircraft and tested at the FAA William J. Hughes 
Technical Center. 
 

 
 

Figure 72.  Typical Rivet Configuration in Narrow-Body Aircraft 

AFGROW and FASTRAN have both been used to calculate the cracking in the retired aircraft 
during its 60,000 pressure cycle history.  Of concern was the restriction in FASTRAN that the 
a/c ratio had to be held constant, such as a/c = 1.  Figure 73 shows a comparison of the a/c ratio 
for a test case, which had 37% fastener load, 63% bypass load, and 85% bending.  The solid 
curve is the result from AFGROW for a corner crack growing at a fastener-loaded hole in which 
crack growth is independent in the a and c directions (a/c variable).  The predicted a/c ratio was 
almost unity until the crack began to break through the sheet thickness (a/t = 1).  For a/t ratios 
greater than unity, AFGROW analyses modeled an oblique crack front until the crack transitions 
into a straight-through crack.  However, FASTRAN assumes that the a/c ratio is held constant at 
unity until breakthrough.  Thereafter, a straight-through crack is assumed until failure.  Because 
of the compensating effects of the remote loads causing higher stress-intensity factors along the 
depth, a direction, and bending causing lower stress-intensity factors along the depth direction, 
the crack in AFGROW was predicted to grow nearly as a quarter-circular (a/c = 1) crack. 
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Figure 73.  Measured and Calculated Crack Growth From Riveted Joints in  
Narrow-Body Aircraft 

A large number of rivet locations have been examined from the retired passenger aircraft and a 
large number of cracks were found emanating from the rivet holes.  A number of these cracks 
were examined in an SEM to count striations and to backtrack the cracking history to reconstruct 
the crack length against flight cycle behavior [12].  Some of these results are shown in figure 74.  
The open symbols show results on a surface crack emanating along the faying surface but near 
the fastener hole, and the solid symbols show a corner or surface crack emanating from the edge 
of the fastener hole.  The dashed curve is a calculated result from AFGROW using an EIFS of 5-
μm radius corner crack.  The EIFS value was chosen to roughly fit the mean of the measured 
data.  The solid curves show calculations made with FASTRAN for three values of EIFS ranging 
from 9- to 20-μm radius corner crack.  Both codes produced essentially the same results, in that, 
the shape of the crack length against flights curves were similar.  The only major difference was 
in the small-crack regime (5 to 20 μm), where FASTRAN predicted faster crack growth.  
FASTRAN calculations were also carried out to failure, which indicated that if not repaired or 
replaced, the fuselage is predicted to go to failure from 70,000 to 90,000 flights. 
 

 77 



 

Flights
0 2e+4 4e+4 6e+4 8e+4 1e+5

Crack
length,
c, mm

Crack #1
Crack #2
Crack #3
Crack #4
Crack #5
Crack #6
Crack #7
Crack #8
Crack #9
Crack #10
Crack #11
Crack #12
Crack #13
AFGROW
FASTRAN

Narrow-body aircraft

10

1

0.1

0.01

a / t = 1

a / c = 1

FASTRAN:  a / t = 1
   Through (center) crack
AFGROW:  a / t = 1
   Oblique crack

100

a / c variable

 
 

Figure 74.  Comparison of AFGROW and FASTRAN Crack-Shape Analyses for a Typical 
Riveted Lap Joint 

12.  SUMMARY. 

This report is the result of a study conducted on the influence of residual stresses and production-
quality holes on the fatigue behavior of laboratory coupons, laboratory flat-riveted lap joint 
specimens, curved-riveted lap joint panels from a retired narrow-body aircraft, and data from the 
retired aircraft destructive evaluations.  The influence of residual stresses was accounted for in 
the life-prediction methodology by developing stress-intensity factor solutions and codes for 
both two- and three-dimensional cracked bodies.  The influence of the production-quality hole 
was accounted for by developing EIFS values to fit the experimental test data on the coupons 
and riveted lap joint panels. 
 
The material selected was 2024-T3 aluminum alloy (bare and clad) sheet because of its use in the 
majority of the current fleet of commercial aircraft.  The NASA Langley Research Center 
supplied the bare material for part of this study because their material has a well-documented 
fatigue and fatigue crack growth history.  Lockheed-Martin Aeronautics Company and Delta Air 
Lines, Inc. provided production-quality drilled-hole coupons, the two-rivet lap joint specimens, 
and guidance on the critical parameters studied in this investigation. 
 
Attempts to measure or to establish the magnitude and distribution of the residual stresses in the 
production-quality drilled fastener holes were unsuccessful.  However, fatigue tests conducted 
on the coupons made of the 2024-T3 bare material, with both production-quality and polished 
holes, indicated that the residual stresses may be low compared to previous studies; this, in turn, 
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indicated that production-quality drilled holes generated compressive residual stresses that had a 
significant impact on the fatigue life.  The three-dimensional finite element simulations of the 
riveting-installation process demonstrated that residual stresses were induced around the fastener 
hole due to the severe plastic deformations and the various riveting parameters. 
 
Two- and three-dimensional stress analyses were developed to calculate the SIFs for through, 
surface, and corner cracks emanating from a straight-shank fastener hole under various applied 
(remote tension, bending, fastener) loading and with an arbitrary residual-stress distribution.  
These analyses were only for straight-shank holes, i.e., the countersunk configuration was not 
considered.  The two-dimensional SIF code was based on Green’s functions, whereas the three-
dimensional SIF code was based on a weight function analysis.  The Green’s function code 
(SIFK2D) and the weight-function code (K3DL) are stand-alone codes, and they were used to 
generate stress-intensity factor solutions for the FASTRAN life-prediction code. 
 
Fatigue-life analyses on the polished and production-quality single-hole specimens and the two-
rivet lap joint specimens were made using the small-crack theory and the usual EIFS values for 
open-hole and lap joint specimens.  Fatigue crack growth rate data on bare material was used on 
the polished and production-quality single-hole specimens, while Alclad material data was used 
on the lap joint specimens, curved panels, and the actual aircraft joint analyses.  The predicted 
results on both the open-hole and two-rivet lap joint specimens agreed well with the test data.  
An assessment on the impact of loose and tight rivets on the fatigue life of more realistic 
structural configurations was made using the results from the EIFS values determined from 
laboratory-riveted lap joint specimens and previous analyses of test results from a wide-body 
fuselage aircraft.  Studies at Delta Air Lines indicated that the right and left sides of the retired 
narrow-body (B-727) aircraft had quite different cracking behaviors.  Predictions made on the 
curved-panel tests conducted at the FAA FASTER facility indicated that the panels on one side 
of the aircraft could withstand about 90,000 additional pressure cycles to failure (the panel had 
been subjected to about 60,000 flights before testing); whereas, the data and analyses from the 
destructive teardown of the retired aircraft by Delta Air Lines (lap joints from the other side of 
the aircraft) indicated that only an additional 10,000 flights would have been required to cause 
failure, if the fuselage had not been retired, inspected, or repaired. 
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APPENDIX A—THREE-DIMENSIONAL WEIGHT FUNCTION METHOD AND  
USER GUIDE 

 
A.1  INTRODUCTION. 
 
K3DL (K3D_v3.5) is a computer program for calculating the Mode-I stress-intensity factors for 
semielliptical surface crack(s) and quarter-elliptical corner crack(s) emanating from a circular 
hole in a wide plate under various loading conditions.  The following four crack configurations 
are considered:  a single surface crack (s1) at the center of hole bore, two symmetric surface 
cracks (s2) at center of hole bore, a single corner crack (c1) at the edge of the hole, and two 
symmetric corner cracks (c2) at the edge of the hole.  The loading conditions fall into two 
categories: (1) predefined loads, which include remote tension, remote bending (corner cracks 
only), wedge loading in the hole, and biaxial loads and (2) user-defined loads, which allow users 
to analyze any loading conditions of interest, provided the pertinent uncracked stress 
distributions can be represented by a polynomial. 
 
The analysis method used in K3D is a three-dimensional (3-D) weight function method 
developed in references A-1 and A-2, and enhanced during the National Aeronautics and Space 
Administration (NASA) Aircraft Structural Integrity Program with detailed analysis of the above 
crack configurations given in references A-3 and A-4.  The first version of K3D is described in 
reference A-5. 
 
Version 3.5 of the K3D computer code (K3DL) extends the crack depth range from a/t = 0.90 to 
0.99.  Two new load categories were added:  (1) residual stress cases due to a cold-worked hole 
and (2) user-defined load using a polynomial equation.  More importantly, the weight function 
for corner cracks has been calibrated against the accurate finite element solutions recently 
developed by Fawaz and Andersson [A-6 and A-7].  As a result of the calibration, the K3DL 
results for corner cracks are no longer subject to the limitation requiring sufficient restraining 
areas and are believed to be reasonably accurate for the entire a/t range with arbitrary a/c ratios 
for a wide plate. 
 
For version 3.5, the form of input to K3DL has been changed from an interactive mode to file 
input, which is more efficient and convenient for mass production of stress-intensity factors. 
 
A.2 THEORY AND GENERAL FEATURES. 
 
The 3-D weight-function method [A-1 and A-2] was developed based on the slice synthesis 
model [A-8], the general weight-function expressions for two-dimensional (2-D) crack problems 
[A-9], and the exact solutions for a pressurized embedded elliptical crack in an infinite body 
[A-10].  The basic idea of this approach is to decompose a 3-D cracked body into two types of 
orthogonal slices of infinitesimal thickness.  Each slice is in a generalized plane-stress state 
while containing a through-thickness crack.  The properties of the 3-D cracked body are built 
into the slices by considering two effects:  (1) the mechanical coupling between adjacent slices 
and (2) the restraining effect of the uncracked area on the cracked slices.  The 3-D property of a 
plane crack with elliptic-arc front is further assumed to be divisible into two parts:  (1) the 
fundamental part that is common to all such cracks regardless of their configuration (corner 
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crack, surface crack, or embedded crack), the relative size of the crack with respect to the width 
or thickness, or loading condition and (2) the particular part that depends on the given 
configuration and loading conditions.  The fundamental part of the solutions is obtained by using 
the known exact stress and crack-face displacement solutions for a pressurized embedded 
elliptical crack in an infinite body [A-10].  For brevity, herein, the focus is on two symmetric 
corner cracks at a hole in describing the method. 
 
A.2.1  MODELING AND THE WEIGHT FUNCTIONS. 
 
Figure A-1 shows a typical configuration to be considered.  Although remote tension is shown, the 
crack configuration can be subjected to any other Mode I loading, or combinations thereof.  This 
cracked body is decomposed, as shown in figure A-2, into two types of orthogonal slices of 
infinitesimal thickness.  Each slice is assumed to be in a generalized plane-stress state.  The symbols 
Ra and Rc in figure A-2, defined as the restraining areas, represent the uncracked area outside the 
sliced region.  Designating the slices parallel to the a axis of the crack as a-slices and those parallel 
to the c axis as c-slices, the subscripts “a” or “c” denote quantities corresponding to a- or c-slices, 
respectively.  Note that a-slices correspond to edge-cracked configurations, whereas c-slices 
correspond to symmetric cracks from hole configurations, as shown in figure A-3(a) and (b), 
respectively.  Referring to figure A-3, another distinction needs to be made:  basic slices and spring 
slices.  The a-slice in figure A-3(a) is designated as a basic slice, because the thin slice is subjected 
to the same applied load, S, and has the same elastic modulus, E, as the 3-D cracked body.  The c-
slice in figure A-3(b) is called a spring slice, because it is subjected to no externally applied load, 
and has a different elastic modulus, Es, which will be described in the forthcoming sections.  The 
loading of the spring slices in figure A-3(b) is such that the superposition of the two kinds of slices 
satisfies the loading condition of the original 3-D crack problem.  Note that in figure A-3, the springs 
are placed on the slices’ boundaries towards where the crack extends and the distributed forces, 
P(x,y), are applied to the crack faces.  These two elements simulate, respectively, the restraining 
effect due to the uncracked area Ri and the mechanical coupling between the adjacent basic slices 
due to the internal stress present on the free-body diagram of an a-slice.  P(x,y) is the z component of 
the uncracked stress induced by all the internal coupling stresses acting on an a-slice’s surface.  It is 
noted that representing the internal coupling stress by P(x, y) is sufficient, involving no assumption, 
and is justified by the superposition principle.  The other components of the uncracked stress, which 
are not normal to the crack surface, do not play a role in the model for Mode I crack problems and 
can be discarded.  Thus, all the 3-D properties necessary for considering Mode I crack problems 
have, in principle, been incorporated into the slice models, and hence, their effects can be 
represented. 
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Figure A-1.  Two Symmetric Corner Cracks at a Hole Under Remote Tension 
 

 
 

Figure A-2.  Decomposition of the Corner Cracked Body Into (a) a-Slices and (b) c-Slices 
 
Before determining P(x,y) (the load aspect), the weight function (the configuration aspect) will be 
considered.  The slices shown in figure A-3 have elastic boundary constraints exerted by 
constraining springs with stiffness ki (i = a,c).  To represent the constraining effect of the uncracked 
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area outside the sliced region, the stiffness ki is a function of restraining area Ri (i = a,c).  Using a 
properly nondimensionalized form for Ri, gives 
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in which ri, (i = a,c), varies from 0 to ∞.  In general, ki, as a function of ri, cannot be determined 
without embarking upon 3-D analysis.  However, the following judgment can be made:  ki is a 
monotonic function of ri.  That is, ki → 0 as ri → 0 (which is the case shown in figure A-4), and ki → 
∞ as ri → ∞ (which is the case shown in figure A-5).  Thus, these two limiting conditions serve as 
the lower and the upper bounds for the slices in figure A-3.  Based on these bounding conditions, the 
weight functions are constructed for the slices shown in figure A-3 as follows 

  (A-2) fixed free fixed
2 2i ii D,i D,i D,i= + ( )( -W W W WT r 2 )

 
where Wi (i = a, c) is the weight function for the slices in figure A-3.  W2D,i fixed and W2D,i free are the 
weight functions for the 2-D cracks with fixed-boundary condition (figure A-5) and with free-
boundary condition (figure A-4), respectively.  Ti(ri), designated as the transition factor, is an 
unknown function of restraining area, ri, which satisfies Ti(∞) = 0 and Ti(0) = 1.  Although equation 
A-2 reduces the determination of the weight functions for the slices in figure A-3 to the 
determination of the transition factor Ti(ri), as was done for an embedded elliptical crack [A-1], it 
does not change the fact that, in general, it cannot be determined without 3-D analysis. 
 

 

 
 

Figure A-3.  Positive Spring Stiffness (0 < ki < ∞), (a) a-Slices and (b) c-Slices 
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Figure A-4.  Zero Spring Stiffness (ki = 0), (a) a-Slices and (b) c-Slices 
 

 
 

Figure A-5.  Infinite Spring Stiffness (ki = ∞), (a) a-Slices and (b) c-Slices 
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However, equation A-2 can be used under two types of situations.  The first situation is (W2D,i free-
W2D,i fixed) = 0 and Ti(ri) = 0, the first term W2D,i fixed alone can be used as Wi.  This corresponds to 
cases of (1) an elliptical crack in an infinite body, (2) a surface crack in a semi-infinite body, or (3) a 
corner crack in a quarter-infinite body; where both a/t and c/b are zero.  The second situation is 
(W2D,i free-W2D,i fixed) > 0 and Ti(ri) = 0.  Mathematically, this is for ri = ∞, situations that result in 
infinite width or infinite thickness dimensions. 
 
Physically, the situations where W2D,i fixed can be used as Wi are not limited to the cases of ri = ∞.  
W2D,i fixed applies to a wide range of cases in which the presence of a crack will not cause localized 
deformation on the boundary surfaces where the constraining springs of the slices act.  This is why, 
unlike any other weight function methods in the literature, this method has an exclusive advantage to 
provide accurate stress-intensity factors for many practical situations without using any reference 
solutions.  This fact, in turn, verified that the assumptions made in developing the method are sound 
[A-11]. 
 
A.2.1.1  Plate of Infinite Width. 
 
For the case of an infinite width (c+r)/b = 0 and Ti(ri) = 0.  The particular weight functions Wi for the 
corner cracks reduce to W2D,i fixed, and they are given by 

 a de xW = W (a , y)  (A-3a) 
 

  (A-3b) x),c(W=W yhc 2

 

where Wde is the weight function for double edge cracks and Wh2 is the weight function for two 
symmetric cracks emanating from a hole in an infinite plate. 
 
A.2.1.2  Plate of Finite Width. 
 
Accurate stress-intensity factor solutions for corner cracks emanating from a hole in a wide plate 
were recently developed by Fawaz and Andersson using an hp-version finite element method [A-6 
and A-7].  Thus, it became feasible to determine the transition factor T(r) in equation A-2 by 
calibrating the weight function against the finite element analysis (FEA) data.  The first step was to 
identify when the weight-function results start to deviate from the FEA results.  This was achieved 
by comparing stress-intensity factors obtained using the lower bound weight function, equation A-3, 
with those from the FEA [A-6 and A-7]. 
 
The comparison led to the following three observations.  First, the weight-function results are 
accurate for small a/t ratios and any a/c ratio.  Second, for a/c > 2, the results from the weight-
function method are accurate for the entire range of a/t ≤ 0.99, thus no calibration of the weight 
function was necessary.  Third, calibration of the weight function is necessary for a/c ≤ 2 for 
medium to deep cracks (the a/t range requiring calibration depends on a/c, because the restraining 
area is a strong function of both a/t and a/c). 
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These observations are consistent with the expectations based on the characteristics of this 
particular weight-function method and the experiences.  Using a selected set of the FEA data for 
remote tension at r/t = 1 [A-6 and A-7], a transition factor has been determined as a simple 
function of a/c and a/t ratios, through a trial and error process.  As a result of the calibration, the 
K3DL results for corner cracks are no longer subject to the limitation requiring sufficient 
restraining areas and are believed to be reasonably accurate for the entire a/t range with arbitrary 
a/c ratios for a wide plate. 
 
A.2.2  SOLUTION PROCEDURES. 
 
As mentioned earlier, the solution to a 3-D crack problem is divided into two parts:  the fundamental 
part and the particular part.  These will be described in the following sections. 
 
A.2.2.1  Fundamental Part. 
 
This part of the solution provides two fundamental relations.  The first one is between the elastic 
moduli of the basic slices and the spring slices.  The second one is between the stress-intensity 
factors for a 3-D cracked body and the slices.  The first relation determines the elastic modulus of 
the spring slices.  The second allows the determination of stress-intensity factors for a 3-D cracked 
body by using the stress-intensity factors for the slices.  These relations have been obtained [A-1] by 
calibrating the method against the exact solutions for stress-intensity factors and crack-face 
displacements of a pressurized embedded elliptical crack in an infinite body [A-10].  These relations 
[A-1] are discussed briefly in the following sections. 
 
A.2.2.1.1  Elastic Modulus of Spring Slices. 
 
The spring slices are devised to represent the mechanical coupling between adjacent basic slices, 
which are modeled by springs.  While the spring force is a function of applied loads and 
configuration parameters, the stiffness of the spring can be reasonably assumed to be a function of 
material and the crack aspect ratio only.  The results are 
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where ν is the Poisson’s ratio, and Φ is the complete elliptic integral of the second kind. 
 
A.2.2.1.2  Stress-Intensity Factors. 
 
Referring to figure A-6 for definition of crack parameters, the following equation gives the relation 
between stress-intensity factors K(ϕ) for a 3-D crack at location ϕ on the crack front, and the stress-
intensity factors Ki for the two orthogonal slices intersecting at a common point (x,y) as 
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Figure A-6.  Definition of Crack Parameters 

 
where n = 1 for Ki ≤ 0 and n = 2 for Ki > 0.  η is an empirical function of ν, a/c and Δϕ for 
considering the transition between plane-strain and plane-stress states near the intersection point 
of crack front with the free surface [A-3 and A-4].  The validity of equation A-5 has been proven 
analytically for a pressurized embedded elliptical crack in an infinite body [A-1] and numerically 
for various cracks of elliptic-arc front in finite bodies under a variety of loading conditions, see 
for example references A-1 to A-4 and A-11, indicating that the assumptions made in the method 
are valid.  Note that the derived fundamental solutions are universally applicable to any other 
planar cracks of elliptical, semielliptical, or quarter-elliptical crack front. 
 
A.2.2.2  Particular Part. 
 
This part of the solution process for a 3-D crack problem deals with the particular configuration and 
loading conditions of the problem in question.  The stress-intensity factors for both types of 
orthogonal slices are determined, with the aid of the fundamental solution, by using 2-D weight-
function theory [A-9, A-12, and A-13].  Then, the stress-intensity factors for the 3-D crack are 
obtained by using the fundamental relations given above.  For the case of an infinite width plate, the 
slices are reduced to those in figure A-5.  Their weight functions are given in equation A-3.  Using 
the 2-D weight-function theory [A-9, A-12, and A-13], the stress-intensity factors for the slices are 
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The crack-face displacements for the slices are: 

 1 xa
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in which Ea = E, Ec = Es, which is given by equation A-4.  The only unknown in these equations is 
the spring force P(x,y), which can be determined by the compatibility requirement on the crack-face 
displacements as 

 a x c yV (a ,x, y)=V (c ,x, y)  (A-8) 

 

Then, K(ϕ) is obtained by using equation A-5. 
 
For those who have knowledge of the slice synthesis method [A-8 and A-14], it is helpful to point 
out the important differences between the current 3-D weight-function method and the slice 
synthesis method [A-8 and A-14].  The differences lie in the following three aspects:  (1) concept, 
(2) formulation, and (3) accuracy.  First, the restraining area concept proposed in this method allows 
consideration of the effect of the uncracked area, which proved to be the most important factor 
affecting the accuracy.  Following this concept, the key issue and task of the method is to determine 
the 3-D weight functions, rather than synthesizing the 2-D slices [A-8 and A-14].  Second, the 
fundamental solutions derived as part of this method allows determination of stress-intensity factors 
along the entire crack front, not just at the two end points as in the slice synthesis method [A-8 and 
A-14].  Third, for many practical cases of surface and corner cracks, while the current method 
produces accurate results without using any reference solutions, the results based on the slice 
synthesis method [A-8] are often in error even for relatively small cracks of a/t < 0.4.  To correct 
large errors in stress-intensity factors from the slice synthesis method [A-8], Saff and Sanger [A-14] 
used a finite element method to calculate surface crack stress-intensity factor for remote tension, 
thus to obtain a correction factor on stress-intensity factor from the slice synthesis method [A-8]. 
 
A.2.3  UNCRACKED STRESS DISTRIBUTION. 
 
A.2.2.1  Three-Dimensional Solutions. 
 
The uncracked stress distribution, S(x,y), used in the weight-function method, was obtained by the 3-
D FEA [A-15].  To facilitate its application, the uncracked stress distribution was then fitted using 
the following equation: 
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where 
 

I = highest order in E/r 
J = highest order in E/T 

 
where q = 2j-2 for remote tension and wedge loading, and q = 2j-1 for remote bending.  The S0 is a 
reference stress and S0 = St = S for remote tension; S0 = Sw = P/(2rt) for wedge loading, and S0 = Sb 
(remote outer fiber bending stress) for remote bending.  The applied load in the hole is designated as 
P.  The coordinate system used in equation A-9 is shown in figure A-7.  The local stress variation in 
the thickness direction occurs in the proximity of the hole, even for the in-plane loading cases of 
remote tension and wedge loading.  The 3-D solutions account for the stress variations along the 
plate thickness direction.  Therefore, the use of the 3-D solutions is recommended whenever possible 
and is especially beneficial for the cases of small r/t ratios in combination with small a/t or c/r ratios.  
 

 ζ 

 
 

Figure A-7.  Coordinate System Used for 3-D Stress Distributions 
 
The user-defined load is also expressed in the same form as equation A-9.  Note that equation A-9 is 
based on a coordinate system different from the ones used in the weight functions, as shown in 
figure A-8.  Therefore, a coordinate transformation is performed in K3DL to convert s(ξ, ζ) to S(x, 
y), which is expressed as 

 2 2( ) ( )0 1 1

I J x y qiS(x, y) / S = e +1ij r ti = j =

−∑ ∑  (A-10) 
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Figure A-8.  Four Crack Configurations Considered in K3D:  Confi = s1, s2, c1, and c2 

 
A.2.3.2  Two-Dimensional Solutions. 
 
Various 2-D uncracked stress solutions are taken from references A-16 to A-20.  An ordinary 
polynomial is used to express the uncracked stress distribution from these 2-D analyses: 

 
 

(A-11) 
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where zij = 0 for j > 0, except for bending.  These 2-D stress solutions do not give as accurate stress-
intensity factor solutions as using the 3-D stresses for small cracks (c/r<0.2) with a small hole 
(r/t <1), but satisfactory results are achieved as the crack and/or hole gets larger (see discussions in 
references A-3 and A-4). 
 
A.2.4  CRACK CONFIGURATIONS. 
 
Figure A-8 shows the four crack configurations considered, where Confi is the crack configuration 
identifier used in K3DL.  It also shows the coordinate system used and the configuration parameters.  
It is assumed that the height and width of the plate are large enough to ignore the finite height and 
width effects. 
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A.2.5  DIMENSIONLESS CONFIGURATION PARAMETERS. 
 
All the geometrical dimensions involved in determining stress-intensity factors are grouped into 
three dimensionless parameters.  They are the hole radius, r/t, the crack aspect ratio, a/c, and the 
crack depth, a/t.  Since K3DL has extended the applicable a/t range to a/t ≤ 0.99, there are no 
practical limitations on a/c and a/t ratios.  However, the crack length should not exceed the 2 times 
of the hole radius, i.e., c/r ≤ 2, where the c/r ratio is obtained by using the three dimensionless 
parameters as c/r = (a/t)/(a/c)/(r/t).  This limitation is practically unimportant because it is more than 
likely that a corner or surface crack will penetrate through the thickness and become a through crack 
prior to reaching c/r = 2. 
 
A.2.6  LOAD TYPES. 
 
Loading conditions can be predefined or user-defined.  The predefined loads are either from 3-D 
solutions that correspond to several r/t ratios for which stress solutions from 3D finite element 
analysis are available, or from 2-D solutions, which are independent of r/t ratios.  Illustrations are 
given in the following to show the various predefined loading conditions considered.  Except for 
remote bending, all the other loading conditions are applicable to both corner cracks and surface 
cracks.  For 3-D uncracked stress solutions for remote tension and wedge loading in the hole, 
distinctions are made in r/t ratios for surface cracks and corner cracks.  The x/r limits are also given 
for the cases in which x/r limit is less than 2 (LI = 2-4, 9, where LI is the load identifier in K3DL).  It 
is important to observe these limits to ensure the accuracy of the stress-intensity factor solutions. 
 
A.2.6.1  Predefined Loads From 2-D Analysis. 
 
Various predefined loads from 2-D analysis are shown in figure A-9(a-g), with the corresponding LI 
value indicated.  The applicable range of x/r is also given if it is less than 2. 
 
A.2.6.2   Predefined Loads From 3-D Analysis. 
 
Various predefined loads from 3-D analysis are shown in figure A-10(a-c), with the corresponding 
LI value indicated.  The applicable ranges of x/r are all greater than 2, the weight function’s current 
limit in c/r.  
 
A.2.6.3  Cold-Worked Hole Residual Stress. 
 
Three cases are included for the cold-worked-hole residual stresses.  They are shown in figure A-11.  
The applicable x/r ranges are, respectively, 0.4, 0.6, and 0.8, as indicated by the curves. 
 
A.2.6.4  User-Defined Loads Using Polynomial Coefficients. 
 
This load type increases versatility and convenience for considering any load, whether it is applied 
or residual stress that can be represented as a fourth-order polynomial.  Without requiring a separate 
load file, this option reads the polynomial coefficients from the same input file to K3DL. 
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Figure A-9.  Predefined Loading for 2-D Analyses 
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Figure A-9.  Predefined Loading for 2-D Analyses (Continued) 
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Figure A-9.  Predefined Loading for 2-D Analyses (Continued) 
 
 

 
 

Figure A-10.  Predefined Loading for 3-D Analyses 
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Figure A-10.  Predefined Loading for 3-D Analyses (Continued) 
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Figure A-10.  Predefined Loading for 3-D Analyses (Continued) 
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Figure A-11.  Predefined Loading for Cold-Worked Hole Residual Stresses:  LI = 91, 92, and 93 
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A.2.6.5  User-Defined Loads Using File loadn.in. 
 
For more complicated cases, user-defined load represented by equation A-9 is stored in a file named 
loadn.in under C:\K3D_35\LOADUSER\.  The user’s task is to fit the uncracked normal stress 
distribution of interest to the form of equation A-9.  Then, put the fitting coefficients in “loadn.in” in 
the format as demonstrated in the following example. 
 
Example of user-defined load:    
from frt010t.dat: r/T = 0.1, tension 
 
       4,5,0 
     C(1,1) =,     1.0015 
     C(2,1) =,     0.5686 
     C(3,1) =,     1.3635 
     C(4,1) =,     0.1362 
 
     C(1,2) =,     0.0546 
     C(2,2) =,     -2.4735 
     C(3,2) =,    10.9350 
     C(4,2) =,     -5.7419 
 
     C(1,3) =,     -1.9571 
     C(2,3) =,     73.8347 
     C(3,3) =,  -292.3556 
     C(4,3) =,   157.7183 
 
     C(1,4) =,      12.1344 
     C(2,4) =,   -537.1776 
     C(3,4) =,  2335.5908 
     C(4,4) =, -1302.9163 
 
     C(1,5) =,     -19.9296 
     C(2,5) =,    963.5619 
     C(3,5) =, -5364.8208 
     C(4,5) =,  3101.1921 
 
As shown in this example, C(i, j) correspond to Cij in equation A-9.  The first three lines can be any 
legal characters.  The fourth line contains three integers in the order of I, J, ISYM, where 
 
 I = the highest order in ξ/r, 
 J = the highest order in ζ/T, 
 ISYM  = 0 for symmetric load,  

= 1 for antisymmetric load, with respect to the ξ-axis, see figure A-7. 
 
It should be noted that C(i, j) is grouped in terms of j = 1, 2, ..., J, and each group is separated with 
another by a blank line. 
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A.2.7  OUTPUT FILE. 
 
The output file contains a title, dimensionless geometrical parameters, loading condition, and five 
typical coefficients of the stress equation.  Following these items are the results of dimensionless 
stress-intensity factors, F, versus parametric angles along the crack front expressed in degrees.  The 
dimensionless stress-intensity factors, F, are represented as 

 o /F( )= K( ) / ( a Q )Sφ φ π  (A-12) 

 
where S0 is the reference stress, Q is equal to Φ2 and given by the following equations [A-21]. 
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The parametric angle always starts from the c axis (see figure A-6). 
 
A.2.8  BOUNDARY LAYER TREATMENT. 
 
At the intersection of the crack front with the free surface, also known as the boundary layer, the 
stress singularity is weaker than 1/2 at the interior points for ν > 0 [A-21 to A-23].  Theoretically, the 
stress-intensity factor is not meaningful in the boundary layer.  However, experimental evidences 
have consistently shown that stress-intensity factors based on the neighboring interior points can 
correlate well with the fatigue crack propagation data for various 3-D cracks, see for example 
reference A-24.  Assuming a 1/2 stress singularity a priori, the 3-D weight-function method does not 
reflect the weaker singularity in the boundary layer.  The stress-intensity factors obtained by using 
the 3-D weight-function method have good agreement with the finite element solutions in the 
interior, but are slightly higher in the boundary layer in most of the cases.  Based on the observations 
that the finite element solutions correlate experimental data well, an empirical treatment is adopted 
in the weight-function solutions such that the stress-intensity factors at the intersection points are 
replaced by extrapolations, using values at the two inner points. 
 
A.2.9  LIMITATIONS FOR SURFACE CRACKS. 
 
As described earlier, for surface crack, the current weight function method does not use the general 
form of the weight functions given by equation A-2.  Instead, a simplified form, equation A-3, is 
used, which is valid for Ti(ri) = 0.  Physically, this situation corresponds to the cases in which the 
crack will not cause localized deformation on the boundary surfaces where the constraining springs 
of the slices act.  For this situation to be true, the restraining areas, ri, are required to be greater than, 
or equal to, a critical value, ri.  The value of ri can be determined by comparing the stress-intensity 
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factor solutions from the weight-function method with the finite element analysis for a series of 
cases with different ri values. 
 
Based on the available data, ra = 13.5 is recommended for surface cracks.  Since the current weight 
function (Wc) and the uncracked stress solutions are for the cases of a wide plate (r/b ≤ 0.2), the 
values of rc are not of concern (any practical case in this range will produce a negligible Tc(rc), and 
make equation A-3b valid).  For corner cracks, ri values are calculated from equation A-1.  For 
surface cracks, ri values can be obtained by doubling the corresponding values for corner cracks. 
 
Use of the K3DL for the cases with smaller restraining areas than ra may underestimate the actual 
solution because of the omission of the second term in equation A-2.  In this case, the obtained 
solution serves as a lower bound only.  However, it follows from equation A-1 that small ra values 
occur when a small a/c ratio (for example 0.4) combines with a large a/t ratio (for example 0.6), 
which is not a commonly encountered situation. 
 
A.3  USER GUIDE. 
 
A.3.1  FORMAT OF THE INPUT FILE. 
 
The name of the input file to K3DL is K3D_35.in.  For efficient file management, the input is 
structured such that only one of the four crack configurations (c1, c2, s1, and s2) is permitted in a 
given K3D_35.in file.  A file can contain as many cases as desired with different configuration 
parameters and/or loads.  All or portion of the cases contained in the K3D_35.in file can be 
calculated in a single execution of K3DL, depending on a control parameter in the file.  The 
description given below in this section applies to all load categories, except a special case for 
category P, which is described in section A.3.3. 
 
Once the crack configuration is specified in an input file, only five data lines are needed for a given 
case.  The format of the input file, K3D_35.in, is best illustrated by using an example, as given 
below.  In looking at a K3D_35.in file, it contains the following: 
 

* confi = 'c2' 
c2 
* r/t,  a/c,   a/t;   job name = 'c2ten10_03_01' 
1.00 0.300 0.01 
c2ten10_03_01 
* LOADC = '3', LI = 63; CAGAIN = 'n'o 
3 
63 
no 

 
The above file is the format for a single case input file.  The lines starting with an “*” are comment 
lines.  The others are data lines.  The meaning and contents of each line are explained one by one, as 
follows. 
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• * confi = 'c2': A comment indicating that this file is for the two corner cracks. 
 
• c2:  A character value telling K3DL that the analysis is for the two corner cracks. 

• * r/t,  a/c,   a/t;   job name = 'c2ten10_03_01':  A comment suggesting the contents of the two 
following data lines—the first is for values 
of r/t, a/c, and a/t; the second is the job 
name for the case.  

• 0.300 0.01:  Values for r/t, a/c, and a/t, in that order, separated by a space or a comma. 

• c2ten10_03_01: A character value for the job name, the output file name for the resulting 
stress-intensity factor will be c2ten10_03_01.txt, i.e., job name suffixed 
with .txt.  Here, the name was chosen to signify that it is for the two corner 
cracks (c2), under remote tension (ten), with r/t = 1.0 (10), a/c = 0.3 (03), 
and a/t = 0.01 (01). 

• LOADC = '3', LI = 63; CAGAIN = 'n'o:  A comment suggesting the contents of the three 
following data lines—the first is a character 
value  for the load category, the second is an 
integer value for load identification number in 
the category, the third is a character value to 
indicate whether this is the end of the execution, 
or to continue with another case for the two 
corner cracks. 

• 3: A character value indicating that the uncracked stress distribution is from the 3-D finite 
 element analysis [A-10]. 

• 63: An integer value for load identification number, 63 is for remote tension with  
 r/t = 1.0. 

• no:  A character value to indicate that this is the end of the execution. 

This single case input file can be extended to include as many cases as desired.  To do so, simply 
change the character value of the last line from no to yes, and add additional sections for cases to be 
analyzed.  Separate each section with a blank, or a comment line.   
 
An extended version of the above K3D_35.in file is given below.  Please note that the last line of the 
last section is no, to conclude the execution of K3DL.  Replace yes with no to end at that section.   
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* confi = 'c2', r/t = 1.00, a/c = 0.3 
c2 
* r/t a/c a/t ; job name = 'c2ten10_03_01' 
1.00 0.3 0.01 
c2ten10_03_01 
* LOADC = '3', LI = 63; CAGAIN = 'y'es 
3 
63 
yes 
 
1.00 0.3 0.10 
c2ten10_03_10 
* 
3 
63 
yes 
 
1.00 0.3 0.20 
c2ten10_03_20 
* 
3 
63 
yes 
 
1.00 0.3 0.30 
c2ten10_03_30 
* 
3 
63 
yes 
 
1.00 0.3 0.40 
c2ten10_03_40 
* 
3 
63 
yes 
 
1.00 0.3 0.50 
c2ten10_03_50 
* 
3 
63 
yes 
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1.00 0.3 0.60 
c2ten10_03_60 
* 
3 
63 
No 

 
A.3.2  INPUT SPECIFICATIONS. 
 
The admissible values of the data lines in K3D_35.in are given in this section.  As described in the 
previous section, there are six data lines in a single case K3D_35.in input file.  The six data lines are 
in the following order. 
 
1. Crack configuration 
2. Dimensionless configuration parameters 
3. Job name for output file for stress-intensity factors 
4. Load category 
5. Load identification number 
6. Execution control   
 
The input specifications for these six items are as follows. 
 
A.3.2.1  Crack Configuration. 
 
The admissible values for the crack configurations are: c1, c2, s1, and s2; for one corner crack, two 
symmetric corner cracks, one surface crack, and two symmetric surface cracks, respectively, as 
shown in figure A-8. 
 
A.3.2.2  Dimensionless Configuration Parameters. 
 
The admissible a/t ratio is a/t ≤ 0.99.  There is no practical limit for r/t and a/c ratios.  However, the 
resulting c/r ratio must be in the range of c/r ≤ 2. 
 
A.3.2.3  Job Name. 
 
The job name may consist of any legal characters and spaces, and up to 70 characters long.  The 
result file name for the stress-intensity factor is “jobname.txt”. 
 
A.3.2.4.  Load Category. 
 
Admissible character values for the load category are 2, 3, u (or U), r (or R), and p (or P), for 
uncracked stress distribution from 2-D analysis, 3-D finite element analysis, user-defined residual-
stress field, or polynomial coefficients entered by the user, respectively.   
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A.3.2.5  Load Identifier. 
 
Admissible LI for each load category is summarized as follows.   
 
Load Category 2: 
 

LI = 0:  Remote Tension r/b = 0.2 
 

  1:  Remote Tension r/b = 0 
 

  2:  Biaxial Tension r/b = 0, x/r < = 1.25 
 

  3:  Perpendicular Tension, Parallel Compression r/b = 0, x/r < = 1.25 
 

  4:  Biaxial Load, λ Input by User r/b = 0, x/r < = 0.70 
 

  5:  Wedge Loaded Hole: cos2θ -distribution, r/b = 0 
 

  6:  Wedge Loaded Hole: cosθ -distribution, r/b = 0 
 

  9:  Remote Bending r/t = 0.5, x/r < = 1, for corner cracks only 
 

11:  Uniform Crack Face Pressure 
 
Load Category 3: 
 

LI = 51  :  3-D Bending, r/b = 0.2, r/T = 2.50, for corner cracks only 
        52  :  3-D Bending, r/b = 0.2, r/T = 1.50, for corner cracks only 
        53  :  3-D Bending, r/b = 0.2, r/T = 1.00, for corner cracks only 
        54  :  3-D Bending, r/b = 0.2, r/T = 0.50, for corner cracks only 
        55  :  3-D Bending, r/b = 0.2, r/T = 0.25, for corner cracks only 
        56  :  3-D Bending, r/b = 0.2, r/T = 0.10, for corner cracks only 
 
        61  :  3-D Tension, r/b = 0.2, r/T = 2.50 
        62  :  3-D Tension, r/b = 0.2, r/T = 1.50 
        63  :  3-D Tension, r/b = 0.2, r/T = 1.00 
        64  :  3-D Tension, r/b = 0.2, r/T = 0.50 
        65  :  3-D Tension, r/b = 0.2, r/T = 0.25 
        66  :  3-D Tension, r/b = 0.2, r/T = 0.10 
 
        71  :  3-D Wedge Load: Cos, r/b = 0.2, r/T = 2.50 
        72  :  3-D Wedge Load: Cos, r/b = 0.2, r/T = 1.50 
        73  :  3-D Wedge Load: Cos, r/b = 0.2, r/T = 1.00 
        74  :  3-D Wedge Load: Cos, r/b = 0.2, r/T = 0.50 
        75  :  3-D Wedge Load: Cos, r/b = 0.2, r/T = 0.25 
        76  :  3-D Wedge Load: Cos, r/b = 0.2, r/T = 0.10 

 A-25 



Note that T is the plate thickness (see figure A-7).  For corner cracks, T = t, while for surface 
cracks, T = 2t (see figure A-8).  Therefore, for surface cracks, the corresponding r/t ratios for the 
above load cases are twice those for corner cracks, see figure A-10. 
 
Load Category U: 
 

LI = 84:  User-defined stress distribution, stored in file  
 C:\K3D_35\LOADUSER\loadn.in 

 
Load Category R: 
 

LI = 91:  Residual stress due to hole cold expansion, Ry/r = 1.1, x/r < = 0.4 
LI = 92:  Residual stress due to hole cold expansion, Ry/r = 1.3, x/r < = 0.6 
LI = 93:  Residual stress due to hole cold expansion, Ry/r = 1.5, x/r < = 0.8 

 
The Ry is the radius of the elastic-plastic zone boundary due to cold expansion of the hole.  The 
corresponding distribution of the residual stress is given in figure A-11. 
 
Load Category P: 
 

LI = 200:  User-entered coefficients for any fourth-order polynomial stress field 
 
A.3.3  FORMAT OF THE INPUT FILE FOR LOAD CATEGORY P. 
 
The previous descriptions on the input are applicable to this case as well, with one exception:  an 
additional data line is required following the LI.  This additional data line is to provide the five 
coefficients for a fourth-order polynomial, in the sequence of α0, α1, α2, α3, α4, as defined in the 
following equation 

 i
i

=i r
x=S(x)/S )(

4

0
0 α∑  (A-14) 

where the origin of the x axis is at the edge of the hole, as shown in figures A-8 through A-11.  
An example input file for this case is as follows. 
 

* s2pol2010_p200.in: Jim's overload residual stress 
s2: 2 surface cracks  
*rt    ac    at  
2.00 1.000 0.50 
s2pol201050_p200 
* LOADC = 'P', LI = 200; CAGAIN = 'n'o 
P 
200 
-1.1921   4.2668    -4.568   1.9487    -0.2885 
no 
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A.3.4  CONTENTS OF THE OUTPUT FILE. 
 
The following is the content of file “c2ten10_03_06.txt”, obtained using the input file described 
earlier.   
 

   *** TWO CORNER CRACKS AT HOLE  r/b = 0 ***                                       
 
   r/t =    1.0000  a/c =   0.3000   a/t =   0.6000 
 
 3D TENSION, r/b = 0.2, r/t = 1.00                                          
 
 e00 =     0.994   e10 =     0.000   e20 =     0.690   e30 =     0.000   e40 =     0.635 
  
 NORMALIZED STRESS-INTENSITY FACTOR: F = K/[S(pi*a/Q)^.5]                           
 
   degree          F 
  
     0.1         1.1824 
     5.6         1.1740 
   11.2         1.1654 
   16.9         1.1660 
   22.5         1.1842 
   28.1         1.2275 
   33.8         1.2879 
   39.4         1.3533 
   45.0         1.4213 
   50.6         1.4953 
   56.2         1.5798 
   61.9         1.6803 
   67.5         1.8034 
   75.0         2.0156 
   82.5         2.3420 
   86.2         2.6012 
   89.9         2.8605 
 

Note that for confirmation purposes, the fourth entry in the output file contains five coefficients, 
which are partial terms of the coefficients of the stress distribution used.   
 
A.3.5  EXAMPLE FILES. 
 
For quick up and running of K3DL, five example input files are included in the distribution CD, and 
will be stored in C:\K3D_35\EXAMPLE directory after installation.  The result files obtained using 
these example input files are also included in the same directory.  These example files can be  
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used to verify the installation.  The example input files can also be used as a template for generating 
additional input files for other cases.  The five example input files are described below. 
 
• K3D_35.in:  The content of the file is the same as that described in section A.3.1.   

• K3D_35_c2ten1003.in:  Input file for two corner cracks (c2), under remote tension (ten), 
with r/t = 1.0 (denoted as 10) and a/c = 0.3 (03).  The above 
K3D_35.in is a copy of this file.  To use this or any other input file 
than K3D_35.in, save a copy of it as K3D_35.in, i.e., overwrite the 
existing K3D_35.in with the one to be calculated. 

• K3D_35_s2ten2010.in:  Input file for two surface cracks (s2), under remote tension (ten), 
with r/t = 2.0 (20) and a/c = 1.0 (10). 

• K3D_35_c1ben2520.in:  Input file for one corner crack (c1), under remote bending (ben), 
with r/t = 2.5 (25) and a/c = 2.0 (20). 

• K3D_35_s1wed2005.in:  Input file for one surface crack (s1), under wedge loading (wed), 
with r/t = 2.0 (20) and a/c = 0.5 (05). 

A.4  COMPUTER INSTALLATION. 
 
A.4.1  INSTALLATION. 
 
The instructions for installing the K3DL program is given herein and is included in the program 
CD.  The file name is “how_to_install.txt”. 
 
To install K3D version 3.5 to the C drive on your PC:  
 
 Double click on the file name “install.bat”, in the program CD. 
 
 Then, drag “shortcut to k3d_35.exe” in C:\K3D_35 onto your Desktop. 
 
A.4.2  EXECUTION. 
 
To run K3D version 3.5: 
 
 Double click on the filename “k3d_35.exe” in C:\K3D_35. 
 

Or, double click on the “shortcut to k3d_35.exe” icon on your Desktop. 
 
A.4.3  VERIFICATION. 
 
A sample input file to K3D version 3.5, k3d_35.in, is included in C:\K3D_35.  Running K3DL 
will produce result files in the same directory.  For verification, compare the results obtained 
using the sample input file with those in the C:\K3D_35\EXAMPLE subdirectory. 
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APPENDIX B—TWO-DIMENSIONAL GREEN’S FUNCTION METHOD AND  
USER GUIDE 

 
B.1  INTRODUCTION. 
 
The stress-intensity factor solutions for a pair of concentrated forces applied to the upper and 
lower crack surfaces are used as a Green’s function to generate the stress-intensity factor 
solutions for the same crack configuration subjected to any arbitrary stress distribution on the 
crack surfaces.  Herein, a two-dimensional (2-D) code, SIFK2D, is developed to calculate the 
stress-intensity factors for several different through crack configurations under arbitrary loading 
on the crack surfaces: (1) a crack in an infinite plate, (2) an edge crack in a semi-infinite plate, 
(3) a single crack emanating from a circular hole in an infinite plate, and (4) two symmetric 
cracks emanating from a circular hole in an infinite- or finite-width plate. 
 
The analysis code, SIFK2D, was developed to calculate the stress-intensity factors using the 
Green’s functions developed by Irwin [B-1] for a crack in an infinite plate, Hartranft and Sih 
[B-2] for an edge crack in a semi-infinite plate, Shivakumar and Forman [B-3 to B-5] for a single 
or two symmetric cracks emanating from a circular hole in an infinite plate, and Newman [B-6] 
for two symmetric cracks emanating from a circular hole in an infinite- or finite-width plate.  
Stress-intensity factors obtained from using Shivakumar-Forman Green’s functions are 
compared with those developed by Newman [B-6 and B-7] for a single or two symmetric cracks 
emanating from a circular hole in an infinite- or finite-width plate.  Stress-intensity factors are 
obtained for these cases in which the concentrated (or wedge) forces act on the crack surfaces.  
The solutions are obtained for various loading cases where the expressions for the normal 
stresses in the absence of a crack are known (such as normal stresses in the neighborhood of a 
hole [B-8]) along the line in which the actual crack lies.  These solutions are compared with 
exact or numerical solutions from the Tada, Paris, and Irwin Handbook [B-9]. 
 
B.2  CRACK IN AN INFINITE PLATE. 
 
The Mode I stress-intensity factor for a single crack of length, 2c, subjected to remote uniform 
stress, S, in an infinite plate [B-9], as shown in figure B-1, is 
 

 IK S cπ=  (B-1) 
 

The Mode I stress-intensity factor for a crack in infinite plate with a pair of concentrated forces 
acting on the crack face, shown in figure B-2, is given by 
 

 
2 2

2
I

PcK
c c bπ

=
−

 (B-2) 
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Figure B-1.  Crack in an Infinite Plate Subjected to Remote Uniform Stress 
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Figure B-2.  Crack in an Infinite Plate With Symmetric Pair of Concentrated Forces  
on Crack Faces 

 
The SIFK2D.for FORTRAN code was used to calculate the stress-intensity factors for a crack in 
an infinite plate by using the Green’s function from the concentrated force solution, given by 
equation B-2, from the stress analysis handbook [B-9].  Although the stress-intensity factor 
solution for a crack in an infinite plate subjected to remote uniform applied stress can be found 
by equation B-1, this configuration was used to help develop the Green’s function code.  The 
concentrated force solutions are useful through superposition techniques to develop solutions for 
arbitrary loading on the same crack configuration.  The technique involves first solving for the 
stresses present on the crack surface with the crack absent and then using the concentrated force 
solutions to apply distributed forces to eliminate these stresses on the crack surfaces.  For the 
internally cracked infinite plate, the concentrated force solution is given by equation B-2, which 
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can be integrated to obtain stress-intensity factors.  In this solution, the load P is replaced with 
σdx  and b with x for the integration, where σ σ( ,0)x=  is the normal stress on the crack surface 
with the crack absent.  Input of the crack surface loading is made either in equation or in tabular 
form.  Herein, the integrals were evaluated by numerical integration, where the crack surface 
was divided into a number of incremental elements, Δx.  Initially, only concentrated forces were 
used to calculate the stress-intensity factor for all elements.  Because the stress-intensity factor 
solution is very sensitive to the stress distribution near the crack tip, a crack tip element was 
introduced to improve the convergence of the numerical integration scheme.  For simplicity, a 
uniform stress was applied on the crack tip element as 
 

 1 2σ σσ
2
+

=     (B-3) 
 

where σ1 and σ2 are the stresses acting on the crack tip element at x = c and x = c-Δx, 
respectively.  In the numerical integration routine, the exact stress-intensity factor solution was 
used for the crack tip element as 
 

    2 2π(Δ )
πTipK σ= x  (B-4) 

 
A convergence study was made to determine the number of elements required to achieve an 
accurate solution, as shown in figure B-3, for a crack in an infinite plate subjected to uniform 
applied remote stress.  The normal stress used in the Green’s function code was A1 equal unity 
(see equation B-5) or the applied stress, S = 1.  The exact solution for F is unity.  The open 
symbols show the results for the code using only concentrated forces for all elements, and the 
convergence rate to the exact solution was very slow.  Using the code with the crack tip element 
greatly improved the rate of convergence, in that even ten elements produced a solution within 1 
percent of the exact solution.  These results show that 100 to 1000 elements are required to 
achieve a very accurate solution. 
 
However, for stress distributions with higher stress gradients, the usefulness of the constant-
stress crack tip element needed to be evaluated.  Figure B-4 shows the results obtained from the 
stress-intensity factor code for a crack in an infinite plate subjected to a linear-stress distribution.  
(Note that the stress distribution must be symmetric about the y axis in the current code.)  The 
stress-intensity factor solution has been normalized by the exact solution [B-9].  Again, 100 to 
1000 elements produced a very accurate solution. 
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Figure B-3.  Convergence Study of an Internally Cracked Plate Under Uniform Stress 
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Figure B-4.  Convergence Study of an Internally Cracked Plate Under Linear Stress 
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In the code, the normal stresses acting on the crack surfaces were implemented in equation form 
to be of either positive or negative powers as 
 

 σ = A1 + A2 x + A3 x2 + A4 x3 + A5 x4 
   (B-5) 
 σ = A1 + A2/x + A3/x2 + A4/x3 + A5/x4 

 

However, the stress distribution must be symmetric about the y axis in the current code. 
 
B.3  EDGE CRACK IN A SEMI-INFINITE PLATE. 
 
The stress-intensity factor for an edge crack in semi-infinite plate with a pair of concentrated 
forces acting on the crack face [B-2 and B-9], as shown in figure B-5, is given by equation B-6, 
which is same as equation B-2, but with a geometric correction factor to account for the free 
surface. 
 

 

2 2

5/4

2 ( )
π

( ) 1.3 0.3( )

I
PcK F

c c b

F b c b c

=
−

= −

b c

 (B-6) 
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Figure B-5.  Edge Crack in Semi-Infinite Plate With Concentrated Forces on Crack Faces 
 
The SIFK2D code has been used to calculate the stress-intensity factors for the edge-crack 
configuration under two different loadings.  One has a uniform remote applied stress (figure B-6) 
and the other has fourth-order stress distribution acting on the crack surfaces.  The same Green’s 
function technique, as explained earlier, was used for these crack configurations.  Again, the 
stress distributions on the crack surfaces may either be used in equation (equation B-5) or in 
table form. 
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Figure B-6.  Edge Crack in Semi-Infinite Plate With Remote Uniform Stress 
 
The stress-intensity factor solution for an edge crack in a semi-infinite plate subjected to remote 
uniform stress [B-9] is  
 
 1.1215  IK S cπ=  (B-7) 

 
The SIFK2D code produced a boundary-correction factor (F) of 1.1219 using 1000 elements 
(recommended value).  To subject the SIFK2D code to a more severe loading, the edge crack 
configuration was subjected to a fourth-order stress distribution.  These results are shown in 
figure B-7.  The stress-intensity factor has been normalized by the accurate handbook value.  
Even with the severe stress gradient, 100 to 1000 elements produced a solution that was within 
0.5 percent of the handbook solution. 
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Figure B-7.  Normalized Stress-Intensity Factors for an Edge Crack in Semi-Infinite Plate Under 

a Fourth-Order Stress Distribution 
 
B.4  SINGLE CRACK FROM A CIRCULAR HOLE IN AN INFINITE PLATE. 
 
Shivakumar and Forman [B-3 and B-4] developed stress-intensity factor solutions for a pair of 
concentrated forces applied to a crack emanating from a circular hole in an infinite plate, see 
figure B-8. 
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Figure B-8.  Single Crack Emanating From a Circular Hole in an Infinite Plate With 
Concentrated Forces on Crack Faces 
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The stress-intensity factor equations were given by 
 

 (λ, )
πI
PK F

c
β=  (B-8) 
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The coefficients of Cm,n were determined in reference B-3 to fit the numerical results and are 
listed in table B-1. 
 

Table B-1.  The Coefficients of Cm,n 
 

Cm,n 
m Cm,0 Cm,1 Cm,2 Cm,3 
1  0.8164  -4.5911   7.6059   -3.8529 
2  0.0492 17.3181 -36.8465   20.6753 
3 -0.4831 -30.5563   75.4833 -44.3540 
4 -0.1746 26.2877 -73.1167   44.2607 
5  0.7952  -8.4570   26.8666  -16.7296 

 
The SIFK2D code was used to calculate stress-intensity factors for a single crack emanating 
from circular hole in an infinite plate using the Green’s functions developed by Shivakumar and 
Forman [B-3 and B-4].  Two types of loading conditions were tested.  For simplicity, a uniform 
stress was applied on the crack surfaces so that the equation for the normal stress would be  
σ = 1.0 and then a more complex equation, such as the Timoshenko stress distribution for a 
circular hole under remote uniform stress were used.  In the code, the normal stress equation was 
implemented to be of either positive or negative powers as  
 

  (B-9) 

2 3
1 2 3 4 5

2 3
1 2 3 4 5

σ ( / ) ( / ) ( / ) ( / )
                                     or
σ ( / ) ( / ) ( / ) ( / )

A A x r A x r A x r A x r

A A r x A r x A r x A r x

= + + + +

= + + + +

4

4

 
The code is valid for expressions up to x4 (or 4th degree polynomial equations) only, but could be 
easily modified for higher-order terms.  For simple uniform stress, σ = 1, the coefficients are  
A1 = 1, A2 = A3 = A4 = A5 = 0.  The code has an option to select either positive or negative powers 
of x, depending upon the stress distribution.  The other loading assumed for testing the validity 
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of code was the Timoshenko stress distribution for a hole in an infinite plate [B-8].  The normal 
stress equation is given by 
 
  (B-10) 2σ 1 0.5( / ) 1.5( / )r x r x= + + 4

 
and the coefficients would be  A1 = 1, A2 = 0, A3 = 0.5, A4 =0, A5 = 1.5. 
 
Assume a single crack at a circular hole in an infinite plate under remote uniform stress.  This 
remote uniform stress produces normal stresses according to Timoshenko [B-8], as given by 
equation B-10, with the crack absent.  The SIFK2D code input for this loading condition may be 
made either in equation or in table form.  Here, the equation form was used and the crack 
surfaces were divided into 1000 elements based on the previous convergence studies.  Using the 
Green’s function developed by Shivakumar and Forman, the stress-intensity factors are 
calculated for the Timoshenko stress distribution and the results are shown in figure B-9, as 
symbols.  These results have also been compared with an equation developed by Newman 
[B-6 and B-7] (dashed curve). 
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Figure B-9.  Comparison of Boundary-Correction Factors for a Single Crack at a Circular Hole 

Between Newman’s Equation and the Shivakumar-Forman Green’s Function 
 

Newman’s equation was based on results from a boundary-collocation analysis [B-6 and B-7] 
and is 
 

 πs s s s
h hK K F S d F∞= = h  (B-11) 

 
where sK∞  is for a crack in an infinite plate without a hole, d = r + c, and s

hF  is the boundary-
correction factor for the circular hole. 
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The equation for s
hF  is 

 

 1s
h

rF
d

= − nf

4

4

  (B-12) 

 

where n = 1 is for a single crack and n = 2 is for two symmetric cracks. The functions fn 
determined to fit the numerical results from reference B-7 were 
 

                (B-13a) 2 3
1 0.707 0.765λ 0.282λ 0.74λ 0.872λf = + + + +

and 
               (B-13b)  2 3

2 1 0.358λ 1.425λ 1.578λ 2.156λf = + + − +
 

where λ = / (r d r r c= + ) . 
 
B.5  TWO SYMMETRIC CRACKS FROM A CIRCULAR HOLE IN AN INFINITE- OR 
FINITE-WIDTH PLATE. 
 
Newman [B-6] obtained the stress-intensity factors for two symmetric cracks emanating from a 
circular hole subjected to symmetric pairs of concentrated forces in an infinite plate, as shown in 
figure B-10, from a boundary-collocation analysis.  An equation was fit to the numerical results 
and is given by 
 

    
2 2

2
π ( )

p p p
h h

PdK K F F
d d b

∞= =
−

p
h  (B-14) 

 
where pK∞  is for a crack in an infinite plate without a hole, d = r + c, and  is the boundary-
correction factor for the circular hole. 

p
hF

 
The equation for the boundary-correction factor is 
 

    

2

1 2

2 4
1

2 4
2

1 γ 1 γ1
1 λ 1 λ

0.02λ 0.558λ

0.221λ 0.046λ

p
hF A A

A

A

− −⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
= − +

= +

 (B-15) 

 

where γ = b/d and λ = r/d for λ  γ ≤ ≤  1 and 0 ≤  λ < 1. 
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Figure B-10.  Two Symmetric Cracks at a Circular Hole in an Infinite Plate Subjected to 
Concentrated Forces on the Crack Surfaces 

 
Shivakumar and Forman [B4 and B-5] also developed stress-intensity factor solutions for two 
symmetric cracks emanating from a circular hole subjected to a symmetric pair of concentrated 
forces in an infinite plate.  These equations are 
 

     ( )
πI I
PK F

c
c±=  (B-16) 

 
where FI(c+) refers to the right crack tip and FI(c-) refers to the left crack tip. 
 

  1/2 2 1/2 1/2
β( ) [(1 β) / (1 β)] ( ,β) [2(1 ) / (1 β ) {(1 β) / (1 β)} ]IF c A Fα+ += + − + × + − − + −

  1/2( ) [(1 β) / (1 β)] [1 (α,β)]IF c A− −= − + −
 

where 

    
6 6 3

/2 /2 /2
,0 ,

1 1 1
(α,β) α αm m

m m n
m m n

A A A± ± ±

= = =

= +∑ ∑∑ βn

8   2 2 4 6
β (1 β )(0.2945 0.3912β 0.7635β 0.9942β 0.5094β )F = − − + − +

 
The coefficients of ,m nA±  are determined to fit the numerical results in references B-4 and B-5 and 
are listed in table B-2. 
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Table B-2.  The Coefficients of ,m nA±  and ,m nA  
 

m 
,0mA+  ,1mA+  ,2mA+  ,3mA+  

1   0.1206  -0.0152   0.0247    0.2199 
2  -0.9213  -1.0104   2.3663   -5.1128 
3    5.6288   0.7841    -5.23304   22.1371 
4 -11.1246   2.0877   5.4043    -44.1147 
5    9.9127  -2.7520  -7.3772   43.7751 
6   -2.6132   0.9076   4.8125  -16.9059 
m 

,0mA−  ,1mA−  ,2mA−  ,3mA−  
1    0.1370  -0.3747    0.7558   -0.2165 
2    0.0769    1.8495   -5.7783    0.2717 
3    7.4482 -10.4449  30.1129   -3.8853 
4 -19.4000  24.3391 -73.9272  16.4607 
5   21.3576 -23.1096  77.4179 -21.6280 
6   -8.6197    7.7426 -28.5877    8.9970 
m 

,0mA  ,1mA  ,2mA  ,3mA  
1     0.8164   -4.5911    7.6059  -3.8529 
2     0.0492  17.3181 -36.8465  20.6753 
3    -0.4831 -30.5563  75.4833 -44.3540 
4    -0.7146   26.2877 -73.1167  44.2607 
5     0.7952    -8.4570  26.8666   -16.7296 

 
B.5.1  INFINITE-WIDTH PLATE. 
 
The Green’s functions developed by Newman [B-6] and Shivakumar-Forman [B-4 and B-5] for 
two symmetric cracks emanating from a circular hole in an infinite plate were used to calculate 
the stress-intensity factors for two different loading conditions.  The two loading conditions 
were:  (1) uniform stress acting on the crack surface and (2) the Timoshenko stress distribution 
for a circular hole under uniform remote stress acting along the crack surface.  The input for 
these loading conditions was made in equation form, but the loading could also have been input 
in tabular form. 
 
For the uniform stress case, the crack surface was divided into 1000 elements based on the 
previous convergence studies.  Various c/r ratios were considered and the solutions were within 
±0.5 percent of the handbook solutions using either the Newman or Shivakumar-Forman Green’s 
functions. 
 
The second loading considered was the Timoshenko stress distribution acting along the crack 
surface (equation B-10).  This loading condition is equivalent to the case of a remote uniform 
stress, S, applied to the same crack configuration, as shown in figure B-11.  First, a convergence 
study was made on the two symmetric crack configuration.  For this study, a c/r ratio was 
selected as 0.1.  Both the Newman and Shivakumar-Forman Green’s functions were used.  For 
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this crack configuration, a FADD2D [B-10] boundary-element analysis was made and these 
results are shown as the solid horizontal line shown in figure B-12.  The symbols show the 
results from the Shivakumar-Forman and Newman Green’s function analyses using a wide range 
in elements.  Again, more than ten elements are required to achieve a solution within 1 percent 
of the FADD2D solution. 
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Figure B-11.  Two Symmetric Cracks From a Hole Subjected to Remote Uniform Stress 
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Figure B-12.  Comparisons of Stress-Intensity Factors From the Two Green’s Functions for Two 
Cracks at a Hole Under Remote Tension 
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Figure B-13a shows the normalized stress-intensity factors for two symmetric cracks from a hole 
under remote uniform stress from c/r ratios of 0.01 to 4.  All SIFK2D solutions from the Green’s 
functions and the Newman equation agreed within 1 percent over the wide range in c/r ratios.  
An expanded view for c/r ratios less than 0.1 are shown in figure B-13b.  These results show that 
the Shivakumar-Forman equations produce more accurate stress-intensity factor solutions, but 
the Newman Green’s function gave results within about 1 percent for a c/r ratio of 0.01.  The 
percent differences between the two Green’s function approaches and the equation are shown in 
figure B-14.  The equation is within ±0.2 percent of accurate boundary collocation [B-6 and B-7] 
or boundary-element [B-10] solutions.  As the c/r ratio approaches zero, the Shivakumar-Forman 
equations continue to produce accurate stress-intensity factor solutions and these equations are 
recommended for use on other loading conditions applied to the two-symmetric cracks from a 
hole configuration.  However, the Newman Green’s function equations are much simpler and 
easier to program than the Shivakumar-Forman equations. 
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Figure B-13a.  Normalized Boundary-Correction Factor for Two Symmetric Cracks at a Hole 
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Figure B-13b.  Normalized Boundary-Correction Factor for Two Symmetric Cracks at a Hole—

Expanded View 
 

Crack length to hole radius, c / r

0.01 0.1 1 10 100

P
er

ce
nt

 D
iff

er
en

ce
 fr

om
 E

qu
at

io
n

-1.0

-0.5

0.0

0.5

1.0
Newman Green's function
Shivakumar-Forman Green's function

Equation: +/- 0.2%

 
 

Figure B-14.  Percent Difference Between Newman and Shivakumar-Forman Green’s Functions 
and Newman’s Equation for Two Symmetric Cracks at a Hole 

 
B.5.2  FINITE-WIDTH PLATE. 
 
The equations given in the preceding sections for stress-intensity factors (equations B-12 and 
B-13) by Newman [B-6] are for cracks emanating from a circular hole in an infinite plate.  But 
these quantities are influenced by the finite width of the plate.  Therefore, some approximate 
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finite-width corrections were developed in reference B-6.  The stress-intensity factor for a crack 
in a finite-width plate is 
 
     WK K F∞=  (B-17) 
 
where K∞ is the stress-intensity factor for cracks emanating from a circular hole in an infinite 
plate and FW is the finite-width correction for the particular loading condition. 
 
B.5.2.1   Remote Uniform Stress. 
 
The approximate boundary-correction factor for two symmetric cracks emanating from a circular 
hole in a finite-width plate subjected to uniform stress is 
 

    π πsec sec
2 2

S
W

rF
W W

⎛ ⎞ ⎛= ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

d ⎞
⎟  (B-18) 

 
where d = c + r for r/W 0.5 and d/W ≤ ≤ 0.7.  (Note that W is one-half of the width of the crack 
configuration.)  Equation B-17 is within ±2 percent of boundary-collocation results [B-7].  The 
equation accounts for the influence of width on the stress concentration at the edge of hole and 
the influence of width on stress-intensity factors. 
 
B.5.2.2   Partially Loaded Crack. 
 
The approximate boundary-correction factor for two symmetric cracks emanating from a circular 
hole in a finite-width plate subjected to partial loading on the crack surface was obtained from 
the infinite periodic array of cracks solution [B-6 and B-9].  The modified correction factor is  
 

   
1 1

2 1

1 12 1

sin sin sec
2sin sin

W
B B dF

b b W
d d
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− −
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⎞
⎟  (B-19) 

 
where 

( ) ( )sin π 2 sin π 2K KB b W d W=  
 
for r/W  0.25 and d/W  0.7.  These equations have been incorporated into the SIFK2D code 
for the case of two symmetric cracks emanating from a circular hole in a finite-width plate. 

≤ ≤
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B.6  USER GUIDE FOR SIFK2D.FOR. 
 
Input Data File: 
 

1. READ(*,*) TITLE 

Any 80-character title that describes the problem. 
 

2. READ(*,*) NGREEN  (If NGREEN = 0, 1 or 2 go to step 5) 
 

NGREEN =  0 – Crack in infinite plate 
     =  1 – Edge crack in semi-infinite plate 
     =  2 – Single crack from circular hole in infinite plate 

   (default Shivakumar-Forman Green’s function solution) 
     =  3 – Two symmetric cracks from circular hole in infinite- or 
               finite-width plate 

 
3. READ(*,*) NSOLT, NFWC 

 
NSOLT = Solution type 
             = 1 – Newman Green’s function solution 
             = 2 – Shivakumar-Forman Green’s function solution 

 
NFWC = Finite-width correction 
            =  1 – No finite-width correction (infinite plate) 
            =  2 – Finite-width correction 

 
4. READ(*,*) WIDTH   (NGREEN = 3 and NFWC = 2 only) 

 
WIDTH = w =  Half-width of plate (2w is total width of plate) 

 
5. READ(*,*) RAD, CRK1, CRK2, INC 

 
RAD = Radius of circular hole  (RAD = 0 if NGREEN = 0 or 1) 

 
CRK1 = Initial crack length 

 
CRK2 = Final crack length 

 
INC = Number of crack increments 

 
6. READ(*,*) NOE 

 
NOE = Number of elements along crack surface (usually set to 1000) 

 
7. READ(*,*) NEOT    (If NEOT = 2 go to step 10) 

 
NEOT = Equation or table form 
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         = 1 – Crack-surface stresses in equation form 
         = 2 – Crack-surface stresses in table format 

 
8. READ(*,*) NOP  

 
NOP = Positive powers or negative powers of ‘x’ in the stress function 
         = +1  Positive powers of ‘x’ 
         = –1  Negative powers of ‘x’ 

 
9. READ(*,*) A1, A2, A3, A4, A5 

 
A1, A2, A3, A4, A5 = Coefficients of polynomial equation 
                                    (For either positive or negative powers of ‘x’) 

 
10. READ(*,*) TABLE 

 
TABLE = Create stress-distribution table filename (like hole.txt) 

  Filename (up to 20 characters): 
  TITLE – Any description of stress data table (up to 80 characters) 
  NUM 
  X(1)        SIG(1) 
  X(2)        SIG(2) 
  …           … 
  X(NUM)  SIG(NUM) 

NUM = Number of points in stress data table (i = 1 to NUM) 
 X(i) = Coordinate distance measured from the center of the circular hole 

SIG(i) = Corresponding value of normal stress 
 
B.6.1  EXAMPLE OF INPUT AND OUTPUT FILES FOR SINGLE CRACK FROM A HOLE. 
 
Examples of input and output data files for a single crack emanating from a circular hole in an 
infinite plate using the exact normal stresses solution from Timoshenko [B-8] and the 
Shivakumar-Forman Green’s function are as follows [B-3 and B-4]. 
 
Input file: 
 
 SINGLE CRACK FROM CIRCULAR HOLE (REMOTE STRESS) 

 2 

 1.0  0.01  0.1  100 

 1000 

 1 

 -1 

 1  0  0.5  0  1.5 
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Output file: 
 
 SINGLE CRACK FROM CIRCULAR HOLE (REMOTE STRESS)  

  NGREEN =  2 

  RAD =   0.1000E+01 

  NUMBER OF ELEMENTS (NOE) = 1000 

  NEGATIVE POWERS: A1,A2,A3,A4,A5 

     0.10000E+01   0.00000E+00   0.50000E+00   0.00000E+00   0.15000E+01 

  SINGLE CRACK FROM CIRCULAR HOLE 

  SHIVKUMAR-FORMAN SOLUTION 

          CRACK               KI                       F 

       0.10000E-01    0.58398E+00    0.32947E+01 

       0.10900E-01    0.60856E+00    0.32887E+01 

       0.11800E-01    0.63202E+00    0.32826E+01 

               M                        M                        M  

               M                        M                        M  

               M                        M                        M  

       0.98200E-01    0.15510E+01    0.27925E+01 

       0.99100E-01    0.15557E+01    0.27882E+01 

       0.10000E+00    0.15604E+01    0.27839E+01 
 
B.6.2  EXAMPLE OF INPUT AND OUTPUT FILES FOR TWO-SYMMETRIC CRACKS 
FROM A HOLE. 
 
Examples of input and output data files for two symmetric cracks emanating from a circular hole 
in a finite-width plate using a table input format for the normal stresses in an uncracked plate 
along the line of the intended crack location and the Newman Green’s function are as follows 
[B-6]. 
 
Input file: 
 
 TWO-SYMMETRIC CRACKS FROM CIRCULAR HOLE 

 3 

 1  2 

 4.0 
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 1.0  0.001  0.2  100 

 1000 

 2 

 hole.txt 
 
The table, hole.txt, of normal stresses along a radial line from a circular hole perpendicular to the 
remote applied stress, S, in an uncracked plate was obtained from the Timoshenko [B-8] stress 
solution for a hole in an infinite plate for demonstration.  In general, a finite element or 
boundary-element analysis may be used to generate the normal stresses in the uncracked plate of 
interest.  The normal stresses along the intended crack location are used in the K2D code to 
calculate the stress-intensity factors as a function of crack length from the hole.  The hole.txt file 
is given by: 
 
 Circular Hole in Plate (S = 1) 
 32 
 1.00000   3.00000 
 1.00500   2.96541 
 1.01000   2.93162 
 1.01500   2.89861 
 1.02000   2.86635 
 1.03000   2.80403 
 1.04000   2.74448 
 1.06000   2.63314 
 1.08000   2.53121 
 1.10000   2.43774 
 1.12500   2.33150 
 1.15000   2.23570 
 1.17500   2.14909 
 1.20000   2.07060 
 1.30000   1.82105 
 1.40000   1.64556 
 1.50000   1.51852 
 1.60000   1.42419 
 1.70000   1.35261 
 1.80000   1.29721 
 1.90000   1.25360 
 2.00000   1.21875 
 2.10000   1.19051 
 2.20000   1.16734 
 2.30000   1.14812 
 2.40000   1.13202 
 2.50000   1.11840 
 2.60000   1.10679 
 2.70000   1.09681 
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 2.80000   1.08818 
 2.90000   1.08066 
 3.00000   1.07407 
 
 
Output file: 
 
 TWO-SYMMETRIC CRACKS FROM CIRCULAR HOLE  

  NGREEN =  3 

  NSOLT =  1 

  WIDTH =   0.4000E+01 

  RAD =   0.1000E+01 

  NUMBER OF ELEMENTS (NOE) = 1000 

  TABLE FILENAME = hole.txt             

  TWO-SYMMETRIC CRACKS FROM CIRCULAR HOLE 

  NEWMAN SOLUTION 

          CRACK                KI                     F                      FW 

       0.10000E-02    0.18863E+00    0.33655E+01    0.10131E+01 

       0.29900E-02    0.32492E+00    0.33525E+01    0.10132E+01 

       0.49800E-02    0.41772E+00    0.33396E+01    0.10133E+01 

       0.69700E-02    0.49229E+00    0.33269E+01    0.10135E+01 

               M                        M                        M                          M  

               M                        M                        M                          M  

               M                        M                        M                          M  

       0.19403E+00    0.19576E+01    0.25073E+01    0.10287E+01 

       0.19602E+00    0.19630E+01    0.25015E+01    0.10289E+01 

       0.19801E+00    0.19684E+01    0.24957E+01    0.10291E+01 

       0.20000E+00    0.19736E+01    0.24899E+01    0.10293E+01 
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APPENDIX C—IMPROVEMENTS TO FASTRAN—FATIGUE CRACK GROWTH  
LIFE-PREDICTION CODE 

 
C.1  INTRODUCTION. 
 
The previous FASTRAN crack-closure model and life-prediction code, see references C-1 to 
C-4, distributed to industry is Version 3.81.  The basic FASTRAN code has not changed since 
the early 1990s, but a number of coding bugs have been fixed and a number of new stress-
intensity factor (K) solutions and options have been added.  There were four significant changes 
made to the current release version of FASTRAN (Version 3.82).   
 
1. A new table lookup for cracks emanating from holes 
2. Make the transcendental functions (sin, cos, etc.) double precision 
3. Replaced SUBROUTINE OPEN(SO,SIG) with SUBROUTINE OPEND(SO,SIG) 
4. Implemented K-analogy for both two- and three-dimensional crack configurations 
 
C.2  NEW TABLE LOOKUP. 
 
For cracks emanating from holes (NTYP = -99), a new table look-up format was implemented.  
The FASTRAN code uses the stress-intensity factor equation in the form 
 
     K = S (π c’)1/2 F        (C-1) 
 
where c’ = c + r, c is the crack length measured from the edge of the hole, r is the hole radius, 
and F accounts for the influence of the hole and external boundaries on the stress-intensity 
factor.  The older table look-up version input values of F against c’/w.  However, a more 
accurate form is 
 
     K = S (π c)1/2 Fc        (C-2) 
 
where the stress-intensity factor is expressed in term of the crack length measured from the hole.  
The new table look-up version input values of Fc against c/w, and then the code converts to the 
required form as F = (c/c’)1/2 Fc. 
 
To illustrate the improved table look-up procedure, an example of two symmetric cracks 
growing from a circular hole in 2024-T3 aluminum alloy is used.  In FASTRAN, the case of two 
symmetric cracks from a hole is NTYP = -4, and the stress-intensity factors are given by a very 
accurate equation.  In contrast, the stress-intensity factors are approximated by the new table 
look-up method by using 17, 30, or 50 points, respectively, as shown in figure C-1.  The 
comparison of the fatigue crack growth predictions from an initial small crack length of 0.02 mm 
is shown in figure C-2.  All predictions are within a few percent (< 3%) of the more accurate 
predictions using the equation. 
 

 C-1



c / w

0.000 0.005 0.010 0.015

Fc

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Equation (NTYP = -4)
Table (50 points)
Table (30 points)
Table (17 points)

K = S (π c)1/2 Fc
r = 2.54 mm
w = 254 mm

 
 
Figure C-1.  Stress-Intensity Factors for Two Symmetric Cracks at a Hole Using an Equation or 

Various Points in Table Look-Up Procedure 
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Figure C-2.  Fatigue Crack Growth Predictions Made on 2024-T3 Aluminum Alloy Using the 
Equation or Various Table Look-Up Approximations 
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C.3  DOUBLE-PRECISION OPERATION. 
 
In the early use and development of FASTRAN, using workstations, the code was compiled 
using double precision.  However, the code is now generally used on PCs.  The code uses 
IMPLICIT REAL*8 (A-H,O-Z) command and the transcendental functions (e.g., sin and cos) are 
changed to double precision.  Thus, compilation of the code will automatically be double 
precision. 
 
C.4  SUBROUTINE OPEND(SO,SIG). 
 
Some compilers have difficulty with the subroutine named “open,” since this command is used.  
Thus, the subroutine has been renamed OPEND, since this routine calculates the crack-opening 
stress levels from crack surface displacements.  (Currently, this subroutine is not used.  The 
crack-opening stresses are calculated from SUBROUTINE OPENK, which uses the contact 
stress-intensity factors to calculate the crack-opening stresses.) 
 
C.5  K-ANALOGY. 
 
The FASTRAN code has two analytical crack-closure models in the current code (Version 3.81).  
One is a modified Dugdale model (MDM) for a “central crack in a finite-width plate” and the 
other is the MDM for “two symmetric cracks emanating from a circular hole.”  These models are 
used to calculate the crack-opening stresses during crack growth under various specified load 
histories.  It was found many years ago that K-analogy may be used to transfer crack-opening 
stress histories from one crack configuration to the other.  The FASTRAN (Version 3.81) had K-
analogy was implemented for only the compact tension specimen.  The revised FASTRAN code 
(Version 3.82) has been updated to apply K-analogy to all two-dimensional (2-D) crack 
configurations, like that used for the compact specimen.  K-analogy has also been implemented 
for all three-dimensional (3-D) crack configurations, such as the surface and corner crack 
configurations, by using the “highest” stress-intensity factor of the two locations (maximum 
depth or free-surface locations) used to propagate a 3-D crack.  By using the highest stress-
intensity factor, the code will error on the conservative side, i.e., the crack-opening stress levels 
will be lower, and crack growth rates will be higher, than using the average K value. 
 
FASTRAN Code modification: 
 
Old coding in FASTRAN Version 3.8 (NASA version) 
C  
      KAPP=0 
      IF(KCONST.EQ.0.AND.NTYP.EQ.2) KAPP=1 
c 
c     KAPP=1 
c     IF(NTYP.EQ.1) KAPP=0 
c     IF(NTYP.EQ.2.AND.KCONST.EQ.1) KAPP=0 
C 
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New coding in FASTRAN Version 3.82  
C  
c      KAPP=0 
c      IF(KCONST.EQ.0.AND.NTYP.EQ.2) KAPP=1 
C (See Subroutine APPK) 
       KAPP=1 
       IF(NTYP.EQ.1.OR.NTYP.EQ.-4) KAPP=0 
       IF(NTYP.EQ.2.AND.KCONST.EQ.1) KAPP=0 
C 
 
Subroutine APPK 
C 
      SUBROUTINE APPK 
C CALCULATES RSF FOR K-ANALOGY  
C USES CENTER-CRACK SIMULATION FOR NTYP GREATER THAN OR EQUAL TO ZERO 
C USES CRACK FROM HOLE SIMULATION FOR NTYP LESS THAN ZERO 
      IMPLICIT REAL*8 (A-H,O-Z) 
      COMMON/BIGC/A,C,D,DMAX,PI,CPI,S(50),Y(50),G(50),H(50),X(50), 
     1V(50),XX(10),XY(10),PCT(10),W,T,FA,FC,FD,FS(50),SYIELD,SULT,  
     2DISP(50,50),ALP,CMAX,DS(50),RAD,SMINC,OMEGA,AMIN,XKT,RADIUS, 
     3DCMAX,GAMMA,SMINSP,SMAXSP,RSF,CI,CN,AI,AN,SC(50),DELTA,EMOD,  
     4RIVETS,RLF1,RLF2,WR,WJ,  
     5LFAST,LTYP,NTYP,MELE,KF,M,NALP,NRHO,NEP,NBCF,NFLT,MAXFLTS,NPC, 
     6NODKL,KNTYP 
      REAL KF,M  
      FA=0.0 
      NTYPX=NTYP 
      NTYP=1 
      IF(NTYPX.LT.0) NTYP=-4 
      NTYPZ=NTYP 
      CALL EBCF(C) 
      FCCT=FC 
      NTYP=NTYPX 
      CALL BCF(0,C,0) 
      FCT=FC 
      IF(FA.GT.FC) FCT=FA 
      RSF=FCT/FCCT 
c 
c     CW=C/W 
c     WRITE(4,1111) NTYPZ,NTYP,CW,FCT,FCCT,RSF 
c1111 FORMAT(2X,'NTYPZ=',I3,2X,'NTYP=',2X,I3,2X,'CW=',E11.4, 
c    12X,'FCT=',E11.4,2X,'FCCT=',E11.4,2X,'RSF=',E11.4) 
c 
      RETURN 
      END 
C 
 
To illustrate the K-analogy concept, figure C-3(a) shows a general 2-D crack configuration and 
figure C-3(b) shows the FASTRAN model (central crack in a finite-width panel subjected to 
remote uniform stress, NTYP = 1).  The objective is to apply an applied stress, S’, to the model 
to give the same K history as applied to the specimen.  The crack-opening stress calculated from 
the model is then used on the general crack configuration.  For example, the stress-intensity  
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factor for the general crack configuration is 
 
     Kcon = P/(WB) √(πc) Fcon       (C-3) 
 
where P is the applied load and Fcon is the boundary-correction factor.  Note that equation C-3 is 
expressed as a stress, P/(WB), times the square root of the crack length.  This form is a general 
form and the boundary-correction factor accounts for configuration details.  The stress-intensity 
factor for the center-crack tension model is  
 
     Kcct = S’ √(πc) Fcct        (C-4) 
 
Equating equations C-3 and C-4 gives 
 
 
     S’ = (P/(WB) Fcon/Fcct        (C-5) 
 
Thus, S’ is then applied to the model in FASTRAN and the crack-opening stress is calculated.  
This value is then used with equation C-3 to calculate the effective stress-intensity factor and, 
consequently, the fatigue crack growth rate. 
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Figure C-3.  General Crack Configuration and Loading Applied to Model to Determine  
Crack-Opening Stress 

 
For through cracks emanating from a hole (NTYP = negative value), the second model in 
FASTRAN (NTYP = -4)—two symmetric cracks emanating from a circular hole in a finite-
width plate—is used to calculate the crack-opening stress for the general crack configuration. 
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For 3-D crack configurations, such as a surface crack (figure C-4(a)) and a corner crack 
emanating from a hole (figure C-4(b)), the highest stress-intensity factor of Ka or Kc is used in 
the two respective models to calculate crack-opening stress.  A surface crack uses the first model 
(NTYP = 1) and the corner crack at a hole uses the second model (NTYP = -4). 
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                      (a) Surface Crack                                                  (b) Corner Crack at Hole 
 

Figure C-4.  Three-Dimensional Crack Configurations Modeled in FASTRAN 
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