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EXECUTIVE SUMMARY

Aircraft flying through clouds below 26,000 ft at subsonic speeds can experience ice formation
on critical aerodynamic surfaces. This situation can lead to the deterioration of aircraft
aerodynamic performance and handling qualities. Typically, ice accretion results from small
(5-50 pm), supercooled drops (drops cooled below freezing) that can freeze upon impact with the
aircraft surface. Recently, however, ice accretions resulting from supercooled large drops have
become a safety concern.

Ice accretion and drop trajectory computer codes, such as the National Aeronautics and Space
Administration (NASA) Glenn Research Center LEWICE code (LEWICE), can provide cost-
effective information for the design and certification of ice protection systems. In addition, these
codes are often used to predict ice shapes on critical aerodynamic surfaces for icing conditions
within the Appendix C icing envelope found in Title 14 Code of Federal Regulations (CFR).
These ice shapes are then examined to select those that have the potential to cause large
performance losses for further evaluation and testing.

The computation of ice shapes with ice accretion codes is usually performed incrementally by
building small layers of ice until the required ice shape is obtained. During each ice accretion
increment, a new flowfield is computed by the ice accretion code. This is followed by drop
trajectory and impingement calculations for the new ice shape and an ice accretion analysis. It is
important that during each ice accretion step, the impingement characteristics of the iced airfoil
are computed accurately, since the prediction of the next layer of ice relies heavily on the
computed impingement data.

Current drop trajectory and ice accretion codes were extensively tested for the 14 CFR Appendix
C icing conditions and, in general, have demonstrated good agreement with experimental
impingement data. Computation of large drop (i.e., drops outside the 14 CFR Appendix C
certification envelope) impingement characteristics, however, may require additional
improvements to the existing numerical models to include large drop impingement dynamics
phenomena, such as drop splashing and breakup, which were observed in recent experimental
impingement studies.

The main goal of the research effort described in this report was the development of an extensive
impingement database for a range of simulated LEWICE ice shapes to validate ice accretion
codes. Impingement experiments were conducted in the NASA Glenn Icing Research Tunnel
with an airfoil section representative of general aviation and commuter aircraft, with five glaze,
four mixed, and one rime ice shapes. Impingement data were obtained for median volumetric
diameters of 20, 52, 111, 154, and 236 um and an airspeed of 175 mph. Comparison of the
experimental impingement data with LEWICE-2D analysis data showed that, in general,
agreement between analysis and experiment was good for the 20-um case. However, for the
large drop cases, the impingement efficiencies predicted by LEWICE were considerably greater
than the experimental results for both the clean and iced airfoil cases. The observed differences
between experiment and analysis for the large drop cases were attributed to drop splashing,
differences between the analysis and experimental flowfields (particularly for the 22.5-min and
45-min ice shapes) and, in some cases, to drop breakup downstream of the ice shape horns.
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1. INTRODUCTION.

Aircraft flying at subsonic speeds through clouds below 8000 meters (approximately 26,000 ft)
can be subject to ice formation on critical aerodynamic surfaces. This situation can lead to the
deterioration of aircraft aerodynamic performance and handling qualities. Typically, ice
accretion results from small supercooled (cooled below freezing) drops freezing upon impact
with the aircraft surface. These drops are usually 5 to 50 microns in diameter. Recently,
however, ice accretions resulting from supercooled large drops (SLD) have become a safety
concern. The impact of SLD ice accretions on aircraft safety is under evaluation by the Federal
Aviation Administration (FAA) and the Joint Aviation Authorities (JAA). FAA/JAA rulemaking
is under development to ensure safe flight in SLD icing conditions.

Ice accretion and drop trajectory computer codes, such as the National Aeronautics and Space
Administration (NASA) Glenn Research Center LEWICE code (LEWICE), can provide
information for the design and certification of ice protection systems. In addition, ice accretion
codes are often used by aircraft manufacturers to predict ice shapes on critical aerodynamic
surfaces for a range of icing conditions within the Appendix C icing envelope in Title 14 Code of
Federal Regulations (CFR) Part 25. These ice shapes are then examined to select those that have
the potential of causing considerable losses in performance for further evaluation and testing.

The computation of ice shapes with ice accretion codes is usually performed incrementally by
building small layers of ice until the required ice shape is obtained. For example, a 22-minute
(min) glaze ice accretion might be constructed using 2-min time increments. During each ice
accretion increment, a new flowfield is computed by the ice accretion code. This is followed by
drop trajectory and drop impingement calculations for the new ice shape and an ice accretion
analysis. It is important that during each ice accretion step, the computer code provides an
accurate prediction of the impingement characteristics of the iced airfoil since the prediction of
the next layer of ice relies heavily on the computed impingement data.

Current drop trajectory and ice accretion codes were extensively tested for cloud conditions
within the 14 CFR Appendix C icing envelope and, in general, have demonstrated good
agreement with experimental impingement data. Application of these codes to compute large
drop (drops outside the current icing certification envelope) impingement, however, may require
additional improvements to the existing numerical models to include physical phenomena related
to large drop impingement dynamics, such as drop splashing and breakup [1, 2, and 3], that have
been observed in recent experimental impingement studies with large drops [4 and 5]. The
impact of these phenomena on the simulation of the impingement characteristics of acrodynamic
surfaces can be considerable, as demonstrated in references 6 and 7. Large drop experimental
and LEWICE impingement data presented in references 6 and 7 for two-dimensional airfoil
sections exhibited considerable differences in the magnitude and extent of the local impingement
efficiency. The main reason for the observed discrepancy between experiment and analysis was
attributed to large drop splashing effects. More impingement data are needed for clean- and
iced-wing geometries and for a range of large median volumetric diameters (MVD) to support
the development and validation of trajectory and ice accretion codes.



This report presents experiments conducted to provide the first extensive impingement database
on progressively larger glaze, mixed, and rime ice shapes for SLD, as well as 14 CFR Appendix
C icing conditions. The ice shapes tested were defined with the LEWICE ice accretion code for
a National Advisory Committee for Aeronautics (NACA) 23012 airfoil using 14 CFR Appendix
C icing conditions. In the following sections, the experimental and data reduction methods used
to generate the impingement data are discussed, and the results are compared to impingement
predictions obtained with the LEWICE code.

2. BACKGROUND.

The first extensive water drop impingement database was developed by NACA in the 1950s. A
dye-tracer technique was developed for measuring local impingement efficiency on aircraft
aerodynamic surfaces [8]. In this technique, water containing a small amount of water-soluble
dye was injected into the airstream ahead of the test article in the form of drops through a system
of spray nozzles. The surface of the body was covered with blotter material, upon which the
dyed water impinged and was absorbed. At the point of impact and drop absorption, a
permanent dye deposit (dye trace) was obtained. The impingement limits were obtained directly
from the rearmost dye trace on the absorbent material.

Data analysis consisted of removing the dyed blotter strips from the test article and punching out
small segments of the blotter material to determine local impingement characteristics. The dye
was dissolved out of each segment in a known quantity of water. The weight of the dye in this
solution was determined by the amount of light in a proper wavelength that was transmitted
through the solution using a calibrated colorimeter, a process known as colorimetric analysis.
The weight of water that impinged at any surface location per unit time was determined from the
weight of dye collected per unit area and from knowledge of the original concentration of the dye
in the water drops.

The liquid water content (LWC) in the cloud was determined using an aspirating device [8 and
9]. This device consisted essentially of a tube that sucked in the approaching air and cloud drops
at the freestream velocity (inlet velocity ratio 1) so that both the air streamlines and drops entered
the tube along straight-line paths. The dyed drops were deposited on a filter mounted within the
tube, leaving a dye trace that could be analyzed using colorimetric analysis. The drop size
distribution was determined by comparing experimental local impingement rates on cylinders of
different sizes with theoretical predictions of drop trajectories and impingement points using a
differential analyzer.

Between 1955 and 1958, NACA personnel developed a water drop impingement database for a
wide range of cylinders, airfoils sections, bodies of revolution, and a supersonic inlet [8-12]. For
most test configurations, the NACA method was sufficiently accurate. The error in evaluating
maximum local impingement efficiency varied from 10 to 25 percent [8 and 9]. The major
limitations of the NACA method included reduced spatial resolution and a laborious and time-
consuming process for reducing the experimental data. In addition, the uncertainty in measuring
the LWC and MVD values of the spray clouds used in the impingement tests was considerable.



In 1984, a research program was initiated to further expand and update the experimental water
drop impingement database. This program was sponsored by the NASA Glenn Research Center,
Cleveland, Ohio, and the FAA William J. Hughes Technical Center, Atlantic City International
Airport, New Jersey. The work was performed by researchers at Wichita State University
(WSU) and The Boeing Company. During this research program, an experimental method,
similar to the one used in the early 1950s by NACA researchers, was developed for measuring
local impingement efficiency [13]. A new method for extracting the impingement data from the
blotter strips was also developed. In this method, the amount of dye obtained on a blotter strip in
a given time interval was converted into local impingement efficiency distribution using a laser
reflectance spectroscopy method. Numerous tests showed the new data reduction method was
significantly more efficient than the method of colorimetric analysis used in the 1950s by NACA
personnel.

To generate the required spray clouds for the impingement tests, a 12-nozzle spray system was
fabricated. This system was designed to have a very fast on/off response because the spray
duration had to be very short (approximately 2-4 seconds) to avoid saturation of the blotter
paper. To achieve accuracy in using the reflectance method, dye penetration into the blotter
paper had to be kept to a minimum.

The first series of impingement tests was conducted in September 1985 for a period of 4 weeks
in the NASA Glenn Icing Research Tunnel (IRT). The geometries tested included a 4-inch
cylinder, a NACA 65,-015, an MS(1)-0317 supercritical airfoil, three simulated ice shapes, an
axisymmetric engine inlet model, and a Boeing 737-300 engine inlet model. The second, and
final, series of impingement tests was performed in the IRT in April 1989 and lasted for
approximately 4 weeks. Models tested during this phase of the research included two simulated
ice shapes, a Natural Laminar Flow airfoil section NLF(1)-0414F, an infinite span 30 degree
swept MS(1)-0317 wing, a finite span 30 degree swept NACA 0012 wing, and a Boeing 737-300
engine inlet model. The experimental impingement data obtained during the 1985 and 1989
impingement tests can be found in references 13 and 14. In summary, the water drop
impingement research program conducted between 1984 and 1993 was successful and expanded
the impingement database considerably.

A peer review of NASA Glenn Research Center icing research activities, conducted in 1994,
indicated that additional water drop impingement data were needed. Large drop impingement
data were also requested in response to a recent commuter aircraft icing-related accident that had
raised the question of the effect of ice accretion due to SLD on aircraft performance and handling
characteristics [15 and 16].

To address the needs of the icing community, the Icing Technology Branch at NASA Glenn
Research Center awarded WSU a research grant in 1995 to begin work on modernizing and
expanding the water drop impingement database. WSU and NASA conducted an industry
survey in November 1995 to identify geometries and conditions to be considered for the next
series of water drop impingement tests.

In December 1996, NASA awarded a second grant to WSU to improve the experimental method
developed during the 1984 to 1993 research program and to develop a more efficient reflectance



method using a charge-coupled device (CCD) camera to extract the impingement data from the
blotter strips. In addition, extensive impingement tests were planned in the NASA Glenn Icing
Research Tunnel with a range of two-dimensional airfoils, finite wings, and a turboprop S-duct
engine inlet.

The first series of the IRT impingement tests was conducted during the period of July 25 to
September 7, 1997. The second series of impingement tests was conducted from January 31 to
March 1, 1999. A total of 11 wind tunnel models were tested during these two IRT entries. Test
models included six two-dimensional airfoils, a two-dimensional, high-lift system, three swept
horizontal tails, and an engine inlet S-duct. Tests were performed for a range of angles of attack
(AOA) and for MVDs of 11, 11.5, 21, 92, and 94 microns. The 92- and 94-micron MVD case
was selected to provide preliminary SLD impingement data for assessing the performance of
trajectory computer codes for large drop conditions. Comparison of the experimental
impingement data with analysis data obtained with the NASA Glenn LEWICE-2D and
LEWICE-3D computer codes demonstrated good agreement for the 11-, 11.5-, and 21-micron
cases. However, for the 92- and 94-micron cases, the analysis produced considerably higher
overall impingement than the experiment for 9 of the 11 models tested and for all AOA. Details
of the 1997 and 1999 impingement research effort are provided in reference 17. The discrepancy
between analysis and experiment for large MVD conditions was attributed to drop splashing and
drop breakup effects, which are not currently modeled in the LEWICE code. It was determined
that additional experimental work was needed to elucidate SLD impingement physics and to
provide a more extensive SLD impingement database for trajectory code development and
validation.

Recent developments in aviation rulemaking addressing aircraft operations in SLD conditions,
which are outside the current icing certification envelopes, have heightened the need for
additional large drop impingement research. Specifically, the impact of SLD ice accretions on
aircraft safety is under evaluation by the FAA and the JAA. FAA/JAA rulemaking is under
development to ensure safe flight in large supercooled drop icing conditions. In support of the
rulemaking, NASA has provided a roadmap describing the technology required for implementing
the proposed SLD rulemaking, including atmospheric environment definition and
instrumentation, test methods, test facilities, and computer codes required to provide means of
compliance with the proposed rule.

Current drop trajectory and ice accretion computer codes are not validated for SLD conditions.
To address the need for validated analysis tools for simulating SLD impingement on aircraft
surfaces, the FAA awarded a grant to WSU in 2000 to document large drop impingement
dynamics using advanced imaging methods, to apply the dye tracer method developed at WSU to
obtain large drop impingement data for a range of airfoils, and to investigate the use of this
method for measuring impingement on airfoils with simulated ice shapes. To address the
program goals, WSU refined the experimental methodology for measuring large drop
impingement and made extensive updates to the hardware and software of the laser and CCD
reflectometers used for the reduction of the raw impingement data. In June 2001, experiments
were conducted with a 21-inch chord NACA 0012 airfoil section in the Goodrich Icing Wind
Tunnel facility using advanced flow visualization techniques to document basic large drop
impingement splashing for the first time. In September and October 2001, extensive



impingement tests were conducted at the NASA Glenn IRT facility. Impingement data were
obtained for a range of airfoil sections including three 36-inch chord airfoils (MS(1)-0317, GLCI[
305, and NACA 652-415), as well as a 57-inch chord Twin Otter horizontal tail section, and a
22.5- and 45-min LEWICE glaze ice shape for the Twin Otter tail section. Data were obtained
for MVDs of 11, 21, 79, 137, and 168 microns. The experimental impingement data were
compared to analysis data obtained with the LEWICE-2D computer code. The comparisons
demonstrated that for the large drop cases the LEWICE total collection efficiencies were
considerably greater than the experimental values for both the clean and iced airfoil cases.
Details of the 2000-2002 impingement program are provided in reference 6.

During the 2000-2002 impingement program, it was demonstrated that the improvements and
modifications made to the experimental methodology produced highly repeatable experimental
impingement data for airfoils with simulated ice shapes. Thereafter, in fall 2002, the FAA
awarded a grant to WSU to obtain small and large drop impingement data on a NACA 23012
airfoil with a series of progressively larger LEWICE ice shapes. The impingement data were
needed to expand the validation scope and database for the LEWICE code. The computation of
ice shapes with LEWICE is usually performed incrementally by building small layers of ice until
the required ice shape is obtained. During each ice accretion increment, a new flowfield is
computed by the ice accretion code. This is followed by drop trajectory and drop impingement
calculations for the new ice shape and an ice accretion analysis. It is important that during each
ice accretion step, the computer code provides an accurate prediction of the impingement
characteristics of the iced airfoil since the prediction of the next layer of ice relies heavily on the
computed impingement data. Impingement tests were performed in March and April 2003 with
ten simulated LEWICE ice shapes that included five glaze, four mixed, and one rime cases. The
new water drop impingement program from 2002 through 2004 was a collaborative effort
between the FAA, NASA, WSU, and Boeing. This report provides details of the methods used
and results obtained during this water drop impingement research effort.

3. DROP TRAJECTORY AND IMPINGEMENT PARAMETERS.

In this section, impingement parameters that are commonly used in the presentation of
theoretical and experimental data are discussed. They constitute the governing nondimensional
form of the drop trajectory equations. Their relevance to conditions with icing clouds of uniform
and nonuniform drop size distributions from small to large supercooled drops is also discussed.

3.1 DROP TRAJECTORY.

The forces acting on a small spherical drop moving in the steady flow of air include drop drag,
weight, and buoyancy. The predominant force exerted on a drop is the fluid dynamic drag
resulting from the relative (slip) velocity of air with respect to the drop. The development of the
drop trajectory equations is based on a simplified approach taken by researchers as early as the
1940s. In this approach, the quasi-steady motion of small spherical drops moving in the steady
flow of air is considered and it is assumed that the motion of drops does not disturb the airflow.
Since the physical phenomena involved in the process of ice accretion are very complex, these
assumptions are necessary and are commonly used in analytical tools for modeling ice



accretions. The main assumptions used in the derivation of the small particle trajectory
equations are summarized below:

o The Single phase airflow about the body, i.e., flowfield, is not disturbed by the presence
of drops.
o Quasi-steady-state approximation: at each instant and position, the steady-state drag and

other forces act on the particle.

o The drag coefficient for stationary sphere applies.

o Particles are assumed to be solid and spherical in shape.

o Particles do not rotate and have no lift and no moment.

o All drops that strike the airfoil deposit on the surface. Drops do not splash or breakup

during the impingement process.

J Drops do not interact with other drops.

. Compressible or incompressible potential flowfield of the gas phase about the body.

o Viscous flow effects, such as thick boundary layer formation and flow separation, are not
considered.

The drop trajectory equation is given below.

dU[ _ CD(Rev)'Rev'(I/i _Ui)_ (l_a)gLé‘zZ
dt 24K V2

0

(D

where K =p,V, d ? / 184 L, inertia parameter of drop

d = Drop diameter

p = Absolute air viscosity

V. = Freestream speed

t = Time, dimensionless with L/V

o= p/pp, density ratio of air to particle

L = Characteristic dimension of body

Re,..= Reynolds number of airflow relative to drop

U; = " directional component of particle velocity, dimensionless with V.,
V; = i" directional component of air velocity, dimensionless with V.,

3.2 IMPINGEMENT PARAMETERS.

Spray cloud characteristics and drop impingement parameters for clouds with a range of drop
sizes are discussed below.



3.2.1 Liquid Water Content.

Generally expressed in grams of water per cubic meter of cloud, the LWC of a cloud is defined
as the amount of water contained in a given volume of cloud. LWC,,.x values for icing clouds
according to the 14 CFR Appendix C icing envelopes are presented in reference 18. In icing
tunnels, the cloud LWC is controlled by the water and air pressures of the spray system used to
create the spray clouds.

3.2.2 Cloud Drop Distribution.

The distribution of drops in a cloud can be expressed in various forms [13]. The following four
types of distributions are most commonly used:

Number density of drops versus drop diameter

Percent of LWC versus drop diameter

Percent of LWC versus drop diameter normalized to MVD

Percent cumulative LWC versus drop diameter normalized to MVD

The Langmuir “D” is a distribution that has been employed in various analytical studies. This
and other similar distributions were established by Langmuir [19] from natural-icing cloud
measurements made on Mt. Washington. The rate of deposition of ice on slowly rotating
cylinders exposed to supercooled clouds blowing over the summit was correlated with theoretical
calculations. A dimensionless Langmuir “D” distribution is shown in figure 1.
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Figure 1. Langmuir “D” Dimensionless Distribution of Drop Sizes



3.2.3 Median Volumetric Diameter.

The MVD of a drop distribution is defined as the drop diameter for which half the total LWC is
contained in drops larger than the median and half in drops smaller than the median. Given a
drop distribution, the MVD can be calculated as follows:

. For a continuous distribution, if n(D) is the number of particles per unit sampling volume

having diameters between D and D+dD (volumes between V and V+dV), then Dyyp can
be calculated from

R

%pw_[j"fax n(x)x? dx

=0.5 )

o For a discrete distribution, if the particle number density is given in N, discrete groups
such that n4(D;) is the number of the particles in group i having diameters between D and
D+dD , then equation 2 can be written as

ERY (3)

where

Dk = the diameter of group K, is equal to the MVD (Dyyp)
p, = density of water, kg/m’

3.2.4 Local Impingement Efficiency.

Considering a body in a cloud with uniform drop size distribution, the local impingement
efficiency B for any point on the body surface is defined as the local drop flux rate at the body
surface normalized to the freestream flux rate. Referring to figure 2a, 3 is defined as the ratio of

that infinitesimal area dA. to the corresponding impingement area on the body surface d4;. This
definition follows from the continuity of drop mass flow.
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Figure 2a. Definition of Local Impingement Efficiency for a Body in a Cloud of Uniform
Drop Size

For a continuous nonuniform cloud distribution, the impingement efficiency is given by the
following expression:

F=—["Bdo @)
OJZ‘

where f3 is a function of drop size and therefore can be expressed as a function of @, the liquid
content for a given drop size.

For a discrete cloud distribution, B is defined as the weighted average of the local impingement

efficiency values due to each drop group in the cloud. Let o, be the LWC of the cloud, Aw; is the
partial LWC in the drops of size (d;) in the group (i) of the distribution, and N is the total number
of discrete size drop groups available. For a body exposed to a cloud with such a drop
distribution, the local impingement efficiency due to a single drop group of size d; is B;, where 3
is defined in figure 2a. The local impingement efficiency due to all N groups in the distribution
over an infinitesimal area of the body is given by the following expression:

B = ZB[AO)i (5)

1
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3.2.5 Total Impingement Efficiency.

The total impingement efficiency of a three-dimensional body exposed to a cloud of drop
distribution is defined as

— 1 =
E:A—fj[s dA, (6)

where

Ay is the projected frontal area of the body
dA; 1s an infinitesimal impingement area on the surface of the body

To integrate equation 6, B must be known as a function of surface location. Such a function can
be defined from experimental or analytical results.

3.2.6 Impingement Limits.

Drops that start out at freestream position (y.) (figure 2b), with respect to a reference line that

passes through the highlight (the most forward point at a=0") of a body downstream, will
impinge at some locations on that body. As these initial freestream drop positions increase in
distance from the reference line, they will impinge farther back along the surface of the body
until a maximum distance (Vo max) 1S obtained. This limiting trajectory is defined as the tangent
trajectory to the body at point P shown in figure 2b. Any drops starting at a freestream location
farther from the reference line than y, max Will miss the body entirely. The distance (S,,)
measured along the body surface from the highlight of the body to point P is called the limit of
impingement. This distance is usually expressed in dimensionless form by dividing S,, by the
characteristic length (L) of the body.

TANGENT TRAJECTORY

INTERMEDIATED TRAJECTORY

Yeo,m Yoo

REFERENCE POINT

REFERENCE LINE

[

X==o

TANGENT TRAJECTORY p

Figure 2b. Two-Dimensional Drop Trajectories for a Body in a Cloud of Uniform Drop Size

For two-dimensional flow, there are two impingement limits, an upper and lower (for external
flow, e.g., airfoil section) or an outer and inner (for partly internal flow, e.g., engine inlet). For
three-dimensional flow, the limits of impingement may vary spanwise along the surface of a
finite wing, or circumferentially along the surface of an engine inlet. For a drop distribution that
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varies from Dpin to Dmax, the impingement limits can be established for each drop size. The
maximum impingement limits are defined by the impingement limits of the largest drop diameter
in the distribution.

3.2.7 Summary of Drop Impingement Parameters.

Table 1 provides a list of definitions and expressions for key nondimensional parameters that
relate to drop impingement and trajectory. They include drop inertia parameter, K; drop
modified inertia parameter, Ky; Reynolds number based on MVD, Remyp; true drop range, A; and
independent impingement parameter, ¢, which represents the deviation of the drop drag force
from Stokes’ law. They are defined in such way that the drop diameter, d, has been eliminated
from the formulations. These nondimensional impingement parameters are also useful in linking
the impingement data presented in this report with early experimental and numerical studies of
airfoil water impingement characteristics [8§ and 9]. In some of the early studies, the
impingement characteristics of bodies were sometimes presented in terms of nondimensional
impingement parameters, such as K and ¢. Note that the definitions in table 1 are based on the
reference length, typically the airfoil chord for two-dimensional sections.
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Table 1. List of Drop Trajectory Parameters

Parameter

Definition

Expression

Reyp

Reynolds
number based
on drop
diameter

MVD-V Par here MVD represents MVD, p;, is the air density
u

and p is the absolute air viscosity

Drop inertia
parameter

_MyD?
18-u-c
the chord length of the airfoil model

P aropter Vo where py.p 18 the drop (water) density and c is

>

Ratio of the
true range of
drop as
projectile
injected into
still air to the
range of drop as
projectile
following
Stokes’ law

—0.022466-x* +0.20109- x* —0.59067 - x* +0.36072 - x +0.74544

where x = log(Re,,,, ) and 6 < Re,,;,, < 1000

Drop modified
inertia
parameter

Deviation of
the drop drag
force from
Stokes’ law

3.3 LARGE DROP IMPINGEMENT ISSUES.

The mathematical models for drop trajectory and impingement analysis have shown to be
accurate for icing conditions within the intermittent and continuous maximum icing envelopes
defined in the 14 CFR Appendix C [6 and 17]. For large drop impingement, however, the
current numerical models do not account for large drop impingement phenomena, such as drop
splashing and drop breakup [5 and 6]. In addition, large drop distortion, due to pressure
gradients, can result in considerably more drag force than that predicted by the current models,
which assume spherical drops.

3.3.1 Large Drop Deformation and Breakup.

Drops are held together by surface tension; however, as a drop moves closer to a surface, it is
subjected to nonuniform pressure forces, which cause the drop to deform. If the pressure force is
large enough, the drop cannot sustain its surface integrity and begins to break up.
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The drag change due to drop deformation was studied by Wright and Potapczuk [20]. Wright
compared calculations of impingement efficiency using LEWICE with two different drag
models. The first model was a standard drag model used in LEWICE. The second model was
devised by increasing the drag coefficient by 15% at all Reynolds numbers. Wright concluded
that the effect of drop deformation on impingement efficiency is negligible, as long as breakup
does not occur. The latter drag model was based on experimental results by Beard and
Pruppacher [21], which showed that drag of a deformed or nonspherical drop was at most 15%
higher than a sphere.

A variety of independent variables were used to correlate drop breakup properties such as
Weber, Bond, and Rabin numbers [4 and 22]. These parameters are defined as follows:

Weber Number We="> Z_"zD (7
d
Bond Number Bo = ﬂ(d—l/’j (®)
o, \ dt
Rabin Number Ra = VI:/Z 9)
and
Reynolds Number Re, = # (10)

Pilch [22] stated that there is a critical Weber number (We,.) below which drop breakup does not
occur. The critical Weber number was investigated experimentally for fluids with different
surface tension and viscosity values. A useful empirical correlation for the critical Weber
number was given by Pilch as:

We, =12-(1+1.077-0h'"°) (11)

where

Ohnesorge number (Oh) is given as:

Oh=—24_ (Oh~0.01 for water [4]) (12)

VP, Do,

The critical Weber number was found to be approximately 12 when the Ohnesorge number is
small (Oh <0.1).
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3.3.2 Large Drop Splashing and Reimpingement.

When water drops impinge on a surface, they may either (1) spread out on the surface without
splashing and create a thin film of water, (2) splash on impact and create secondary drops, or (3)
bounce off without breakup at very shallow impact angles [3 and 4]. Drop splashing is a
function of drop kinetic energy and contact angle [3 and 6], thus it depends heavily on the drop
mass and velocity profiles.

A splashing test conducted in 2001 [6] provided insight into the relation between drop mass and
velocity with splashing intensity. Splashing images were obtained using a 512- by 512-pixel
CCD PI-MAX-intensified camera from Princeton Instruments, which is capable of collecting 16[
bit images at a readout rate of 1 million pixels per second with 100-milliwatt red laser sheet
illumination.  Although these images did not provide quantitative results, the experiments
showed that splashing phenomena are indeed related to drop size and the impact velocity. The
intensity of drop splashing increased as the spray cloud MVD was increased for fixed airspeed; it
also increased as the airspeed was increased for fixed spray cloud MVD.

The impact parameter (K;p) [3] was used to define threshold conditions for incipient splash. The
K;p parameter is defined as follows:

K, =Oh-Re'” (13)

Research by Mundo [3] has shown that a value of Kj» exceeding 57.7 leads to incipient
splashing, whereas K;p less than 57.7 leads to complete deposition of the drop. Tan [4] showed
that on a 21-inch chord NACAO0012 airfoil with a relative drop-air velocity of 100 m/s and drop
diameter of 100 um, splashing occurred over a significant part of the surface.

When splashing occurred, secondary drops were ejected from the impingement point.
Rutkowsky, et al. [23] observed that for drop velocities below a threshold value, these secondary
drops reimpinged on the surface. However, when the velocity of the splashed drop exceeded the
threshold value, they were carried by the external flow past the trailing edge of an airfoil and did
not reimpinge. This threshold velocity was referred to as the escape velocity. Even though
splashed drops with velocity below the threshold value were shown to reimpinge on the airfoil
surface, locating the point of drop reimpingement was not a simple matter. The numerical study
conducted by Rutkowsky, et al., demonstrated that splashed drops did not necessarily reimpinge
close to the initial impingement location. As a result, drop splashing and reimpingement can
result in redistribution of the impinging water mass in ways not currently accounted for by statel
of-the-art ice accretion codes.

4. EXPERIMENTAL SETUP.

4.1 THE WIND TUNNEL FACILITY.

The 2003 water drop impingement tests were conducted in the NASA Glenn IRT. The IRT test
section has a 6- by 9-ft cross section and measures 20 ft long and can attain a maximum speed of
390 mph when it is empty. A plan view of the IRT circuit is shown in figure 3. The IRT is a
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closed-looped refrigerated facility with a total temperature controllable (from -20° to +33°F) test
section. The operational static pressure at the tunnel test section is near or below the
atmospheric value. Test models are typically installed on the tunnel turntable using a floor
mounting plate as shown in figure 4. A view of the test section is provided in figure 5. Two sets
of nozzles (the standard and MOD-1 types) are used in the IRT spray system, which consists of
10 spray bars with 54 nozzle locations per bar. The basic IRT nozzle design is shown in figure
6. Only 251 nozzles are currently being used to generate the required icing clouds. Two
mechanical vent doors located upstream of the heat exchanger can be open and shut remotely to
allow air to vent in and out of the facility. The IRT spray system is capable of simulating icing
clouds with MVDs in the range of 14 to 40 pm, and LWC of 0.3 to 3 g/m’, as shown in figures 7
and 8. In addition, a limited range of large drop clouds with MVDs in the range 70 to 270
microns can be produced in this facility. Further details regarding the IRT facility are provided
in reference 24.
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Figure 3. Plan View of NASA Glenn IRT
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Figure 8. The IRT Icing Cloud Operating Envelopes for MOD-1 Type Nozzles

4.2 TEST MODELS.

Details of the test models used in the 2003 impingement experiments and their related
instrumentation are given below.

4.2.1 MS(1)-317 Airfoil.

The MS(1)-317 airfoil is representative of modern medium speed airfoils. It was designed in the
mid-1970s for general aviation aircraft [25]. This two-dimensional airfoil was constructed out of
fiberglass skin, which was epoxied to an aluminum spar and aluminum ribs. The interior of the
airfoil model was filled with foam. An aluminum plate was installed at each end of the model
for mounting in the IRT test section. The model had a nominal span of 72 inches and a chord of
36 inches and was mounted vertically in the test section. The maximum thickness for this airfoil
was 6.12 inches (¢max/c = 0.17) and was located at 37.5% chord. The airfoil’s center of rotation
was at 42% chord. A total of 47 static pressure taps were available for this airfoil. These taps
were distributed in the chordwise direction 35.5 inches above the tunnel floor. The MS(1)-317
airfoil section and model installation details are given in figures 9a-9c. Impingement data for
this airfoil were obtained during the 1985, 1997, 1999, and 2001 IRT tests performed by WSU

and Boeing. This airfoil was used during the 2003 IRT impingement to verify the repeatability
of the experimental setup.
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Figure 9c. MS(1)-0317 Airfoil Installed in the IRT Test Section

4.2.2 NACA 23012 Airfoil.

The NACA 23012 airfoil is representative of general aviation and commuter aircraft wing

sections. The two-dimensional wind tunnel model was designed and fabricated at WSU. It was

constructed out of aluminum with a 72-inch span and 36-inch chord. The maximum thickness

for this airfoil was 4.32 inches (tmax.c = 0.12), and it was located at approximately 30% chord.

The airfoil’s center of rotation was at 50% chord. The airfoil was instrumented with 65 pressure

taps at a spanwise location 30 inches above the tunnel floor—40 taps on the suction surface, 23

on the pressure surface, plus 2 pressure ports located at the leading and trailing edges of the

airfoil. The NACA 23012 airfoil section and model installation details are given in figures 10al’
10c.
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Figure 10c. NACA 23012 Airfoil Installed in the IRT Test Section

4.2.3 LEWICE Ice Shapes for NACA 23012 Airfoil.

The simulated ice shapes for the 36-inch airfoil were determined using the LEWICE 2.2
computer code [26] with the following icing conditions:

. Vo =175 mph

o AOA =25°

. MVD =20 um

o LWC =0.5 g/m’

. Pressure altitude: 1,800 ft—selected to approximate the static pressure (approximately
13.75 pounds per square inch (psi); 13.75 x 6,895 = 94,806 Pa) in the IRT test section for
a test speed of 175 mph. In the actual tests, the freestream static pressure ranged from

13.73 to 13.87 with an average value of 13.80, which is close to 13.75 used in the icing
analysis.
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The ice shapes tested for the 2003 impingement test are listed below:
. Glaze Icing Conditions

- 5-min Glaze: 5-min glaze ice accretion, 1.25-min time step, model installation
details are given in figures 11a-11c

- 10-min Glaze: 10-min glaze ice accretion, 1.25-min time step, model installation
details are given in figures 12a-12¢

- 15-min Glaze: 15-min glaze ice accretion, 1.25-min time step, model installation
details are given in figures 13a-13c

- 22.5-min Glaze: 22.5-min glaze ice accretion, 1.25-min time step, model
installation details are given in figures 14a-14c

- 45-min Glaze: 45-min glaze ice accretion, 2.5-min time step, model installation
details are given in figures 15a-15c

o Mixed Icing Conditions

- 7.5-min Mixed: 7.5-min mixed ice accretion, 1.25-min time step, model
installation details are given in figures 16a-16¢

- 15-min Mixed: 15-min mixed ice accretion, 1.25-min time step, model
installation details are given in figures 17a-17¢

- 22.5-min Mixed: 22.5-min mixed ice accretion, 1.25-min time step, model
installation details are given in figures 18a-18c

- 45-min Mixed: 45-min mixed ice accretion, 2.5-min time step, model installation
details are given in figures 19a-19¢

. Rime Icing Condition

- 45-min Rime: 45-min rime ice accretion, 2.5-min time step, model installation
details are given in figures 20a-20c

All glaze ice shapes were computed by NASA personnel with LEWICE 2.2 using a total
temperature of 267.9 K (approximately -5°C). All mixed ice shapes were obtained at 264 K
(approximately -9°C), whereas the 45-min rime ice shape was obtained at 2523 K
(approximately -21°C). The LEWICE input files for the above ice shapes are provided in
appendix A.

The two airfoil sections, MS-317 and NACA 23012, are shown in figure 21. The glaze, mixed,
and rime ice shapes tested are presented in figures 22 and 23.

23



0.5

04 —
0.3 —
0.2 —
0.1 —

o ——

-0.1 —

Y/IC

-0.2 —

-0.3 —

0.4 —]

-0.5 T T T T T T T " T " T T T " T T T " "
-0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
X/C

Figure 11a. NACA 23012 With 5-min Glaze Ice Shape
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Figure 11c. Various Views of NACA 23012 With 5-min Glaze Ice Shape Installation in the IRT
Test Section and Blotter Strip Installation
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Figure 12a. NACA 23012 With 10-min Glaze Ice Shape
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Figure 12b. NACA 23012 With 10-min Glaze Ice Shape Installation in the IRT Test Section
(top view)
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Figure 12¢. Various Views of NACA 23012 With 10-min Glaze Ice Shape Installation in the
IRT Test Section and Blotter Strip Installation
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Figure 13a. NACA 23012 With 15-min Glaze Ice Shape
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Figure 13b. NACA 23012 With 15-min Glaze Ice Shape Installation in the IRT Test Section
(top view)
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Figure 13c. Various Views of NACA 23012 With 15-min Glaze Ice Shape Installation in the
IRT Test Section ad Blotter Strip Installation
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Figure 14a. NACA 23012 With 22.5-min Glaze Ice Shape
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Figure 14b. NACA 23012 With 22.5-min Glaze Ice Shape Installation in the IRT Test Section
(top view)
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Figure 14c. Various Views of NACA 23012 With 22.5-min Glaze Ice Shape Installation in the
IRT Test Section ad Blotter Strip Installation
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Figure 15a. NACA 23012 With 45-min Glaze Ice Shape
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Figure 15b. NACA 23012 With 45-min Glaze Ice Shape Installation in the IRT Test Section
(top view)
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Figure 15¢. Various Views of NACA 23012 With 45-min Glaze Ice Shape Installation in the
IRT Test Section and Blotter Strip Installation
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Figure 16a. NACA 23012 With 7.5-min Mixed Ice Shape
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Figure 16b. NACA 23012 With 7.5-min Mixed Ice Shape Installation in the IRT Test Section
(top view)
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Figure 16¢. Various Views of NACA 23012 With 7.5-min Mixed Ice Shape Installation in the
IRT Test Section and Blotter Strip Installation
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Figure 17a. NACA 23012 With 15-min Mixed Ice Shape
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Figure 17b. NACA 23012 With 15-min Mixed Ice Shape Installation in the IRT Test Section
(top view)
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Figure 17c. Various Views of NACA 23012 With 15-min Mixed Ice Shape Installation in the
IRT Test Section and Blotter Strip Installation
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Figure 18a. NACA 23012 With 22.5-min Mixed Ice Shape
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Figure 18b. NACA 23012 With 22.5-min Mixed Ice Shape Installation in the IRT Test Section
(top view)
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Figure 18c. Various Views of NACA 23012 With 22.5-min Mixed Ice Shape Installation in the
IRT Test Section and Blotter Strip Installation
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Figure 19a. NACA 23012 With 45-min Mixed Ice Shape
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Figure 19b. NACA 23012 With 45-min Mixed Ice Shape Installation in the IRT Test Section
(top view)
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Figure 19c. Various Views of NACA 23012 With 45-min Mixed Ice Shape Installation in the
IRT Test Section and Blotter Strip Installation
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Figure 20a. NACA 23012 With 45-min Rime Ice Shape
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Figure 20b. NACA 23012 With 45-min Rime Ice Shape Installation in the IRT Test Section
(top view)

42



Figure 20c. Various Views of NACA 23012 With 45-min Rime Ice Shape Installation in the
IRT Test Section and Blotter Strip Installation
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Figure 21. Comparison of Clean Airfoil Sections
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Figure 22a. Comparison of Clean NACA 23012 and Glaze Ice Shape Sections
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Figure 22¢c. Comparison of Clean NACA 23012 and Rime Ice Shape Sections
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4.2.4 Installation of LEWICE Ice Shapes on NACA 23012.

To ensure repeatable and precise installation of the LEWICE ice shapes to the wing leading
edge, the airfoil was designed with a removable leading edge, as shown in figure 24a. The
removable leading edge extended 1.5 inch on the pressure surface (4.167% chord) and 0.8 inch
on the suction surface (2.22% chord) over the entire span of the wing model. All the LEWICE
ice shapes were constructed out of aluminum and were designed so the removable portion of the
wing leading edge was part of each ice shape, as shown in figure 23. For ice shapes with long
ice limits, however, this method of ice shape installation resulted in a small step between the
wing surface and the ice shape trailing edge as shown in figure 24b. To maintain a smooth
transition between the ice shape and the wing surface over the spanwise region where the
impingement data were collected, 6-inch span inserts (plugs) were fabricated that extended to the
ice limits in the chordwise direction as shown in figure 24b. Each ice shape was designed with
two inserts, one for the upper surface and one for the lower surface. On the suction (upper)
surface the inserts extended from 2.22% chord to 6.5% chord, while along the lower surface, the
inserts extended from 4.167% chord to 15% chord. In the spanwise direction, the inserts
extended from 33 inches to 39 inches above the tunnel floor. Photos of the slots on wing surface
for the ice shape inserts are provided in figures 24c-24d. Note that all pressure taps on the airfoil
were placed 30 inches above the tunnel floor so the installation of the ice shape inserts did not
affect the number of active ports. However, when an ice shape was installed, approximately ten
pressure ports near the airfoil leading edge were eliminated. Active pressure ports for the clean
wing and for each ice shape configuration are provided in appendix A.

Figure 24a. NACA 23012 Airfoil With the Leading-Edge Section Removed
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Figure 24c¢. Slot for Ice Shape Insert on the Pressure Surface

48



Figure 24d. Slot for Ice Shape Insert on the Suction Surface

4.3 DYE TRACER METHOD.

The dye tracer technique was initially developed by NACA [8] and was subsequently modified
by Papadakis, et al. [13 and 14]. In the modified method, distilled water containing a known
concentration of blue dye (0.3 g of FD&C Blue No. 1 dye per liter of water) is injected into the
airstream of the IRT in the form of a drop spray cloud through a specially designed 16-nozzle
spray system. The test models are covered with thin strips of blotter paper (James River Paper
Company Verigood 100# Blotting Paper) in areas of interest and are exposed to the spray cloud
for a certain length of time. The amount of dye mass per unit area of blotter strip obtained in a
given time interval is measured using reflectance spectroscopy. The water impingement
characteristics of a test model are obtained by converting the dye color density distribution on
each strip into water impingement density using specially developed calibration curves.

4.4 SPRAY SYSTEM.

The impingement tests were conducted with an automated 16-nozzle spray system, which was
developed by WSU and can produce consistent and repeatable short-duration sprays (as short as
0.75 second). The short spray duration was needed to avoid blotter saturation and dye
penetration into the blotter paper. These requirements were dictated by the data extraction
method, which relies on accurate reflectance measurements from the surface of the dye-laden
blotter strips. The IRT spray system was not capable of providing short-duration sprays and
could not be used with the blue dye solution required for the impingement tests. The 16-nozzle
system was based on a 12-nozzle system also developed by WSU. Details of the development
and testing of the 12-nozzle spray system can be found in references 13 and 17. The expansion
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from 12 to 16 nozzles was based on tests conducted by Papadakis, et al. [17], which showed that
for large drop clouds, cloud uniformity over the region of interest was considerably reduced and
more nozzles were needed to cover the impingement region for the test models selected.

Blue dye solution was stored in a 30-gallon stainless steel supply tank. The dye was transported
under pressure to 16 nozzle assemblies using rubber hoses. Each nozzle assembly consisted of
an IRT MOD-1 spray nozzle, nozzle housing, a fast action solenoid valve, an oil-filled pressure
gage, a SETRA™ 206 pressure transducer to monitor water pressure, an adjustable flow valve, a
0.75-in.-diameter, 3-ft-long stainless steel pipe for the atomizing air supply, a support bracket for
attaching the nozzle to the IRT spray bars, and a range of fittings for connecting the nozzle to the
spray system air and water supply lines.

Water pressure for the supply tank was obtained from a 125 pounds per square inch gauge (psig)
air line, while a separate 100 psig high-volume flow air source (atomizing air manifold) provided
air to the nozzle assemblies for atomizing the water. Quick-response pressure regulators were
used for setting the water and atomizing air pressures. These regulators were continually
adjusted using miniature electropneumatic transducers to maintain the required pressures. The
electropneumatic transducers were controlled by feedback loops incorporated into the spray
system computer control unit. The activation pressure for the electropneumatic transducers was
set to 130 psig and was obtained from a low-volume high-pressure source. This source was
independent of the water and atomizing air pressure lines to ensure that fluctuations in the high
volume lines did not affect the operation of the electropneumatic transducers.

The pressure of the atomizing air was monitored at the supply-line regulator with a SETRA 204
transducer. In addition, three SETRA 206 transducers were used to monitor atomizing air
pressures at selected nozzles. A SETRA 204 pressure transducer was installed in the water tank
to monitor the water pressure. Also, two high-precision analog pressure gauges were installed at
the water tank and at the regulator of the atomizing air line to confirm the pressure readings from
the electronic transducers. Pressure transducers characteristics are summarized in table 2.
Before the IRT test entry, the NASA Glenn flow calibration laboratory tested and calibrated all
the pressure transducers used in the WSU spray system.

Table 2. Summary of Pressure Transducer Characteristics

Range Thermal Thermal
Transducer Usage (psig) Error Zero Shift Error | Span Shift Error
16 SETRA 206 | Water lines 0-125 [ #0.13% FS | £1.0% FS/100°F | +1.5% FS/100°F
1 SETRA 204 | Main air line 0-100 | +0.11% FS | £0.4% FS/100°F | #£0.3% FS/100°F
1 SETRA 204 | Water tank 0-100 | +0.11% FS | £0.4% FS/100°F | £0.3% FS/100°F
4 SETRA 206 | Nozzle air lines | 0-100 | £0.13% FS | £1.0% FS/100°F | +1.5% FS/100°F

Note: All transducers were calibrated at a temperature of S0°F.

The NASA Glenn IRT MOD-1 nozzles were selected for the 2003 impingement tests. Details of
the specific spray nozzles used can be found in reference 6. These nozzles have a lower flow
rate (approximately 1/3) for a given air pressure and delta pressure (Pyaeer-Pair) than the standard
IRT nozzles so that longer spray times could be achieved without saturating the blotter strips.
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Longer spray times are desirable because they result in more stable sprays. These nozzles were
also capable of producing the large MVD sizes that were needed for the large drop impingement
tests.

Although the impingement tests are conducted at warm temperatures, typically 50°F, sometimes
during testing the tunnel temperature is lowered to near freezing to control the humidity levels in
the airstream. To ensure that nozzle freeze-out did not occur during impingement tests, the water
temperature in the spray system was monitored continually with two thermocouples. One
thermocouple was placed inside the housing of spray nozzle 9, and the other was placed
immediately downstream, of the 30-gallon supply tank. Nozzle 9 was chosen because it was
located approximately in the center of the tunnel plenum where the total air temperature was
approximately equal to the average of the total freestream temperature. T-Type NPT
thermocouples (Omega TC-T-NPT-G-72) were used and were connected to Omega TX-251
transmitters to amplify the voltage difference before connecting to the spray system computer.
Two drum heaters were also wrapped around the supply tank to maintain the dye solution at the
desired temperature and prevent the water in the spray system from freezing.

A sensitive flow meter was installed in the main water supply line of the spray system to ensure
that the spray system was working properly and that the amount of water sprayed was repeatable.
This instrument was capable of measuring volume flow rates in the range 0.02 to 1.0 gallon per
minute with an accuracy of 0.2% full scale (FS). The flow meter was calibrated by the NASA
Glenn flow calibration laboratory prior to the start of the tests.

Fast-acting solenoid valves were used to turn the spray on and off. During testing, the main air
supply solenoid was turned on approximately 30 seconds before the spray was initiated to allow
the atomizing air pressure to stabilize. Next, the 16 water solenoid valves were activated by the
computer system and a spray cloud was produced. The MVD of the spray cloud was set by
varying the spray system air-to-water pressure ratio. The duration of the spray was controlled by
the computer hardware.

Sixteen brackets were designed and built for mounting the 16-nozzle spray system to the IRT
spray bars. The brackets allowed for a more precise installation of the 16 nozzle assemblies.
The complete 16-nozzle spray system is shown in figures 25a and 25b. The installation of the
spray system and the coordinates of each spray nozzle with respect to the IRT spray bars are
shown in figures 26a and 26b.
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Figure 25b. Views of WSU Spray System Installed From the IRT Test Section
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Figure 26a. Schematic Drawing of the 2003 WSU Spray System
(all dimensions in inches)

WSU Nozzle NASA MOD-1 Ct Y-Coordinate Z-Coordinates

Assembly # Nozzle # (in) (in)
1 M277 0.00400 +19.000 +9.000/SP4
2 M264 NA -7.000 +11.500/SP3
3 M234 0.00399 +8.500 +17.500/SP3
4 M217 0.00398 -3.750 +8.750/SP2
5 M308 0.00401 +16.125 +8.500/SP6
6 M243 0.00401 -24.000 +17.250/SP4
7 M300 NA -28.875 +11.750/SP5
8 M233 0.00400 -3.500 +11.500/SP5
9 M242 0.00401 +12.750 +12.000/SP5
10 M210 0.00406 +29.500 +10.250/SP5
11 M249 0.00401 -18.000 +6.000/SP7
12 M252 0.00403 -34.750 +17.500/SP6
13 M269 NA -6.500 +17.500/SP6
14 M291 NA +7.250 +17.750/SP6
15 M268 NA -3.000 +9.000/SP7
16 M203 NA -15.125 +17.250/SP3
17 NA -34.75 +16.500/SP4

Figure 26b. The WSU Spray System Nozzle Locations With Respect to the IRT Spray Bars
(2003 IRT entry)
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A heavy-duty electronic balance was used to monitor the amount of liquid that remained in the
supply tank. A Vaisala humidity sensor was also installed at the inlet of the IRT test section, to
record the relative humidity and temperature of the airstream. In previous impingement tests [6,
13, and 17], the only available humidity and temperature readings were provided by the IRT
humidity sensor, which was located on the IRT spray bar in the plenum chamber.

Various components of the spray system—the stainless steel pressure tank for storing the dye
solution, the main air and water pressure lines, and the air and water pressure regulators are
shown in figures 27 and 28. A close-up view of one of the WSU nozzle assemblies is provided

in figure 29. The schematic of the spray system shown in figure 30 provides a summary of key
system components.
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Figure 27. Main Air Supply Control System for WSU Spray Nozzles
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Figure 30. Schematic of the New WSU 16-Nozzle Spray System

The WSU spray system was assembled and tested extensively at WSU before it was transported

to NASA Glenn for the water drop impingement tests.

During the impingement tests at the

NASA Glenn IRT facility, detailed analyses of recorded spray system parameters were
performed. The results showed that the system was capable of maintaining air and water
pressures to within +1.5 psi from the required settings, as demonstrated in table 3.

Table 3. Cloud MVD and Corresponding Spray System Parameters From Test Measurements
(2003 IRT tests)

Average Average
Air Supply Average Average Average Air AP = Volume Flow
MVD Pressure Tank Water | Water Pressure Pressure at Pyater-Pair Rate Spray
Range at Regulator Pressure at Nozzle Nozzle at Nozzle 16 Nozzles Time
(um) (psig £psi) | (psig +psi) (psig +psi) (psig +psi) (psi) (GPM) (sec)
20 £0.5 22.1+0.3 70.4 £1.0 66.2 +1.3 18.2 +0.5 48.0 0.276 1.5
52+2.0 9.9 0.5 453 £1.0 41.9+£1.2 7.6 +0.3 34.3 0.167 1.5
111£5.0 5.8+0.3 37.2+0.9 34.2+1.0 4.340.3 29.9 0.104 1.5
154 £5.0 4.8 £0.3 55.5+£1.2 52.0+14 3.5+0.2 48.5 0.105 1
236 £10.0 4.8+0.4 70.4 £1.1 66.4 £1.3 3.5+0.3 62.9 0.091 0.75

(Pressures, flow rates, and errors were calculated from randomly selected tests for each MVD case.)
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During the impingement tests, high-pressure air from the IRT spray bars was used to enhance
cloud mixing and to improve the uniformity of LWC in the test section. The IRT spray bars
were also used periodically to produce very fine sprays to maintain the required relative humidity
in the test section. These fine sprays were produced prior to the start of the impingement tests.
Another method used to control the humidity was releasing water steam downstream of the test
section.

4.5 SPRAY SYSTEM DATA ACQUISITION AND CONTROL.

A 900-MHz Pentium™ III personal computer (PC), equipped with a data acquisition (DAQ) card
and a digital input/output (DIO) board was used to monitor and control the performance of the
spray system. Data acquisition and system control software was developed to monitor, store, and
analyze spray system performance parameters. A schematic of the spray system data acquisition
and control is shown in figure 31.

DAQ Controller DIO B 16 Water Pressure
Card CpPU Card Transducers
<—| Flow Meter | 1 Main Air - 3 Air Pressure
— \ Solenoid D Transducers
<—| Humidity Sensor | SSR
Thermocouples
<—| P | \ 16 Water | |< Water Tank -
<—| Balance | Solenoids Pressure Transducer
Transducer - Main Air Pressure
- Box B - Transducer
A
Water Line Electropneumatic | Water Pressure
S SCB Transducer - Regulator
Air Line Electropneumatic | Air Pressure
Transducer - Regulator

CPU = Computer processing unit
SSR = Solid-state relay

Figure 31. Schematic of the Spray System Data Acquisition and Control

The DAQ card used was a PCI-6071E from National Instruments™, with 32 input differential
channels and a sampling rate capability of up to 1,200,000 samples per second. The signals from
all spray system pressure transducers, thermocouples, the humidity sensor, flow meter, and tank
balance were directed to the PCI-6071 board through an I/O shielded connector block (SCB).
All signals from the pressure transducers were transferred to the SCB through shielded cables
from two control units that provided the excitation voltage for the SETRA transducers. The
signals from the electropneumatic transducers used to control the air and water pressures were
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processed through a Fairchild™ control box before connecting to the SCB (figure 32).
Thermocouple signals were passed through a National Instruments SC-2311 signal-conditioning
unit that was modified to provide the required excitation voltages. The humidity sensor and the
tank balance were equipped with their own power supplies and signal-conditioning units.
Consequently, they were directly connected to the SCB.

1
\ Shrieteted 1/0

Connector'Block

Transducer BoX f
Solid-state Relay Unit

Figure 32. Main Components of the Spray System Data Acquisition and Control

A solenoid valve on the water line of each nozzle assembly enabled the spray to be switched on
and off individually from the spray system computer. Another solenoid valve was installed in
the main air supply, which provided high-pressure air for atomizing water sprays. Seventeen
digital solid-state relay (SSR) modules were installed on three backplane boards to activate and
deactivate these solenoid valves. The SSR modules were controlled by a high-speed, 32-bit
parallel digital I/O ISA interface DIO card, PCI-DIO-32HS from National Instruments.

The spray system software was developed using LabVIEW™, a graphical programming
language for DAQ, analysis, and presentation. The LabVIEW software provided a Windows® [
driven menu for controlling and monitoring the performance of the spray system. Any
combination of nozzles and transducers could be selected from the window menu. The user
could also specify spray time, plot the transducer signals in real time, and store a range of test
parameters as well as other information related to each test. Figure 33 shows spray system
performance parameters recorded with LabVIEW during a typical spray system test. All test
parameters and transducer readings were also written to a Microsoft” Excel® file at the end of
each test.
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Figure 33. LabVIEW Program Used to Control and Monitor Spray System Performance
(Display is not from an actual test run.)

Data from the DAQ board were recorded at regular time intervals for the complete spray
duration. The sampling rates were varied based on spray time. For the shortest 0.75-sec spray,
the sampling interval was 0.005 sec. For the longer sprays (1-4 sec), a sampling interval of 0.01
sec was used. This was done to keep the size of the output files to a manageable level, while
providing sufficient resolution for monitoring the spray system parameters.

4.6 CLOUD UNIFORMITY.

One of the vital aspects of the experimental method is cloud uniformity, since it has a significant
effect on test repeatability and accuracy. A spray cloud is characterized by three parameters:
drop size, drop distribution, and LWC. Of the three parameters, LWC uniformity is the most
difficult to control. Extensive cloud uniformity tests were conducted to set the locations of the
16 nozzles to provide a 1-ft-high by 2-ft-wide uniform cloud region centered in the IRT test
section. Cloud uniformity was accomplished when LWC variation within the 1- by 2-ft test area
for all spray conditions selected for the impingement tests was within +20% of the average.
Note that for the test models, AOA, and MVD cases used in the 2003 impingement tests, the
cloud area corresponding to model impingement region was 0.5 ft high by 1 ft wide. For this
smaller cloud region, LWC uniformity was within =10% of the average.
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During the 2003 impingement tests, cloud uniformity was measured using a laser imaging
method and a grid and blotter method. In the laser imaging method, a laser sheet was established
in the test section with its plane normal to the tunnel axis. Light scattered by the drops crossing
the laser sheet was recorded with a CCD camera and was converted through software to LWC
intensity. The laser sheet was established with a 5-watt argon-ion laser beam that was
transmitted to a collimator through a fiber optic cable. The beam from the collimator was
directed to a mirror attached to a rotating galvanometer that reflected the beam to a large (64-cm
long) cylindrical lens. As the laser beam scanned the span of the lens, a laser sheet was produced
across the tunnel test section. The laser sheet setup is shown in figures 34a through 34e. The
location of the laser sheet plane with respect to the IRT test section is shown in figure 35a.

-

“and Beam

'/f- Laser Head
/

Splitter

Figure 34b. Close-Up of the Laser Head Setup
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Figure 34e. Close-Up of the Galvanometer
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A 14-bit CCD array camera installed outside the tunnel near the second tunnel control room was
used to capture the laser sheet images by means of a borescope. The borescope was installed
through the tunnel sidewall and was placed downstream of the laser sheet as shown in figures
35a and 35b. Approximately 2 inches of the borescope was extended into the tunnel and was
exposed to the flow. The uniformity tests were conducted with all the lights turned off in the test
section and in the secondary control room. In addition, the lights in the main control room were
dimmed. All light sources other than the laser light sheet had to be eliminated to ensure that the
cloud images recorded by the CCD camera were not affected by unwanted light sources and
reflections. With the tunnel set to the required airspeed (175 mph), the spray system was
activated for approximately 30 to 50 seconds and several CCD images were recorded. In the
CCD images, the high light-intensity regions corresponded to high LWC regions and vice versa.
Using camera software, the images were analyzed to determine variations in LWC within the

desired uniformity region.
27 CCD Camera ——>
| «—— North Wall

Tunnel Wall ‘
l Boroscope
Flow
Direction
—
Laser Sheet Turntable

Tunnel Wall

| > South Wall
Plenum | Test Section

Chamber

Figure 35a. Laser Sheet and CCD Camera Axial Locations in the IRT Test Section
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Head

Outer North Wall .Inner North Wall

Figure 35b. The CCD Camera Installation in the IRT

In the second method (grid/blotter) for establishing cloud uniformity, a 6- by 6-ft stainless steel
grid with horizontal and vertical grid spacing of 6 inches was installed in the test section as
shown in figure 36. The plane of the grid was normal to the flow and passed through the center
of the turntable. Blotter strips were installed on the grid to cover an area 2 ft high by 2 ft wide,
as shown in figure 37. The tunnel was brought up to test speed and the blotters were sprayed.
The dye distribution on each blotter was determined using the CCD reflectometer described in
section 5. This grid/blotter method was found to be laborious and time-consuming.

Center of the IRT
Test Section

Figure 36. The 6- by 6-ft Grid Installed in the IRT Test Section
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Figure 37. Blotter Strips Attachment on the 6- by 6-ft Grid

The majority of the cloud uniformity tests were conducted with the laser sheet method. The
grid/blotter method was used at the end of the uniformity tests to verify the results obtained with
the laser sheet method. The final spray nozzles locations are given in figure 26.

4.7 MVD AND LWC MEASUREMENTS.

Drop size and distribution measurements for all spray conditions were determined using the
NASA Glenn Forward Scattering Spectrometer Probe (FSSP), the one-dimensional (1D) Optical
Array Cloud Probe (OAP-C), and the 1D Optical Array Precipitation Probe (OAP-P). The OAP[]
P is also known as the OAP-Y probe due to the geometrical arrangement of the two probe arms
containing the mirrors that are used to direct the laser beam. Details of the FSSP and OAPs can
be found in reference 27. The data from these instruments were combined to obtain a single drop
distribution using algorithms customarily employed for this purpose by the IRT drop-sizing
specialists. Configuration diagrams and pictures of the installed FSSP and OAP are provided in
figures 38a and 38b and 39a through 39c. The LWC measurements were conducted using the

NASA Glenn heated wire King Probe Model KLWC-5 described in reference 28. The probe
operates on the theory that when a heated wire is maintained at a constant temperature, any
excess power consumed by the wire impacted by the water is proportional to the mass of the
water. The installation of the King Probe in the IRT test section is shown in figures 40a and 40b.
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Figure 38a. Forward Scattering Spectroscopy Probe Optical Configuration

Figure 38b. The FSSP Installed in the IRT Test Section
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Figure 39a. Optical Array Probe Configuration

Figure 39b. The OAP-C Installed in the IRT Test Section
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Figure 40a. King Probe Installed in the IRT Test Section
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Figure 40b. King Probe (looking downstream)

Two sets of drop and LWC measurements were conducted during the 6-week impingement tests.
The first set was performed after the completion of the cloud uniformity tests and the second
near the end of the impingement tests. Each series of drop size, drop distribution, and LWC tests
consisted of several repeated measurements of the desired spray cloud conditions. Note that the
LWC measurements taken with the King Probe were used to evaluate spray cloud characteristics
and to compare with local LWC measurements conducted with the collector mechanism. The
King probe LWC measurements were not used in the reduction of the experimental impingement
data.

To determine the effect of cloud unsteadiness on LWC, short- and long-duration sprays were
conducted during the LWC measurements. Traces of LWC as a function of time showed no
significant impact of spray duration on the average LWC value. Measured MVD and LWC
distributions obtained at the center of the IRT test section are summarized in figures 41 through
45. MVD sizes and corresponding spray system air and water pressure settings are given in
table 3.

Relative humidity studies conducted during the 1997 and 1999 impingement tests [17 and 29]
showed that the effect of relative humidity on LWC was considerable, particularly for the
I1-micron MVD. Based on the findings of these studies, the 2003 impingement tests were
conducted at a relative humidity of 70% +4%.
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Figure 41. Measured MVD and LWC Distributions for 2003 IRT Tests

(MVD =20 pm)
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Figure 42. Measured MVD and LWC Distributions for 2003 IRT Tests
(MVD =52 pm)
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Figure 43. Measured MVD and LWC Distributions for 2003 IRT Tests

(MVD = 111 pm)
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Figure 44. Measured MVD and LWC Distributions for 2003 IRT Tests

(MVD = 154 pm)
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Figure 45. Measured MVD and LWC Distributions for 2003 IRT Tests

(MVD = 236 pm)
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4.8 REFERENCE COLLECTOR MECHANISM.

To correct the experimental impingement data for local variations in LWC, a measurement of
local LWC was needed at all locations in the IRT test section where the test model blotter strips
were positioned. A reference collector device was developed at WSU to address this need.
Details of the development of the collector device are provided in reference 13.

The collector device had six short blades and one long blade. Each blade was 0.2 inch wide and
1 inch in chord, as shown in figure 46a. The original cross section of the blade was triangular as
discussed in references 6, 13, and 14. For the 2003 impingement tests, computational fluid
dynamic analysis was used to redesign the cross section of the collector blade to reduce flow
separation and improve local LWC measurements. A rectangular shaped section was found to
provide the least disturbance to the flowfield because it minimized vortex shedding downstream
of the blade leading edge. The length (span) of the collector blades was 4 inches for the short
blades and 9 inches for the long blade.

[® 3]

___________________________

©

———————————

©

Figure 46a. Reference Collector Mechanism Blades

The collector device was tested in the empty IRT test section, with its long 9-inch blade placed
both horizontally and vertically to provide a detailed map of the local LWC in the proximity of
model blotter strip locations. The horizontal extent of local LWC measurements was determined
by the distance between the upper and lower ice horns of the largest ice shape tested. This
distance was approximately 4.7 inches and required data from the reference collector device to
be collected at multiple locations in the test section. Collector tests were performed with the
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long blade placed vertically at locations A, B, C, and D to provide local LWC values for data
reduction. The four locations are shown in figure 46b and described below.

o Location A: the furthest point provided by the lower horn of all ice shapes away from the
centerline of the tunnel at the test AOA.

. Location B: the centerline of the tunnel.

J Location C: the projected location of the leading edge of the clean airfoil at the test
AOA.

. Location D: the furthest point provided by the upper horn of all ice shapes away from the

centerline of the tunnel at the test AOA.

Secondary Control Room

North Wall

+A.0.A. 7/(

+ Turntable

Turntable
South Wall

|
Primary Control Room

Figure 46b. Collector Vertical Blade Locations in the IRT Test Section

In addition, extensive tests were performed with the collector blade placed horizontally 37.5
inches above the tunnel floor. With the blade horizontal, local LWC data could be collected over
the complete horizontal extent of the impingement region of interest. The problem with placing
the blade horizontally is that small vertical fluctuations in the spray cloud could impact the
accuracy of the local LWC measurements for sprays less than 2 seconds in duration. Local LWC
data obtained with the horizontal blade are typically used to provide a more accurate assessment
of local LWC variation over the region of impingement compared to the results obtained from
uniformity tests. Approximately 168 collector tests were performed to provide the required local
LWC measurements for the analysis of the impingement data. On the average, eight repeated
tests were performed for each MVD and collector location case.
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For the collector tests, 0.2-inch-wide blotter strips were placed on the long collector blade so the
plane of each blotter strip was normal to the flow. All collector tests were performed at the same
airspeed and cloud conditions as those used for the test models. In addition, the spray duration
for the collector tests was identical to that used for the airfoil tests.

The impingement data from the collector strips were analyzed using the data reduction methods
described in section 5. The collector dye mass per unit area and its impingement efficiency were
used to obtain the LWC in the freestream, which was then used to convert the raw impingement
data for each test model into impingement efficiency distributions. Table 4 provides computed
impingement efficiencies obtained with the LEWICE code for the collector blades for all spray
cloud conditions used in the impingement tests. The table shows that the collector blade had
high impingement collection efficiency. This is attributed to the small chord and thickness of the
collector blades.

Table 4. Collector Theoretical Efficiency and King Probe LWC Measurements for
2003 Test MVDs

MVD Average LWC* Collector Efficiency
(um) (g/m’) (%)
20 0.19 89
52 0.40 92
111 0.73 95
154 1.44 97
236 1.89 100

*The King Probe LWC data is not used in the data reduction, it is only used to
compare with collector trends

For clean, glaze, and mixed ice geometries, the collector dye mass used for normalization of the
local impingement data was the average value from locations A, B, C, and D, which were
obtained with the long collector blade placed vertically. The collector dye mass selected for the
reduction of the rime ice shape data was from location B only. This was done because the horn
of this ice shape was very close to location B, and its extent in the direction normal to the airfoil
chord (i.e., ice thickness) was considerably smaller than the other ice shapes tested.

4.9 TEST MATRIX.

Models and conditions for the 2003 impingement tests are provided in table 5. All tests were
conducted at total air temperature of 40°-77°F and a relative humidity of 70% +4%.
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Table 5. Test Models and Conditions for 2003 Impingement Tests

Total Number Number of Average Number Total
of Surface Active Surface Angle of MVD Airspeed of Runs Number
Test Model Pressure Taps Pressure Taps Attack (um) (mph) per MVD | of Runs

MS(1)-0317 (¢ =36 in.) 47 34 a=0° 20,52, 111, 175 l1to4 15
154,236

NACA 23012 (¢ =36 in.) 65 61 a=2.5° 20,52, 111, 175 4 20
154,236

NACA 23012 with 5-min glaze 55 52 a=2.5° 20,52, 111, 175 2to 4 14

ice shape (¢ =36 in.) 154,236

NACA 23012 with 10-min 55 52 a=2.5° 20,52, 111, 175 4t05 21

glaze ice shape (¢ = 36 in.) 154,236

NACA 23012 with 15-min 55 52 a=2.5° 20,52, 111, 175 4to5 21

glaze ice shape (¢ =36 in.) 154, 236

NACA 23012 with 22.5-min 55 52 o=2.5° 20,52, 111, 175 4to5 21

glaze ice shape (¢ = 36 in.) 154,236

NACA 23012 with 45-min 55 52 a=2.5° 20,52, 111, 175 3t05 20

glaze ice shape (¢ = 36 in.) 154,236

NACA 23012 with 7.5-min 55 52 a=2.5° 20,52, 111, 175 2to4 14

mixed ice shape (¢ =36 in.) 154,236

NACA 23012 with 15-min 55 52 a=2.5° 20,52, 111, 175 4t05 22

mixed ice shape (¢ =36 in.) 154, 236

NACA 23012 with 22.5-min 55 52 a=2.5° 20,52, 111, 175 4 20

mixed ice shape (¢ =36 in.) 154,236

NACA 23012 with 45-min 55 52 a=2.5° 20,52, 111, 175 4 20

mixed ice shape (¢ =36 in.) 154, 236

NACA 23012 with 45-min 55 52 o=2.5° 20,52, 111, 175 2to03 12

rime ice shape (¢ = 36 in.) 154,236

Collector mechanism N/A N/A N/A 20,52, 111, 175 33to 36 169
154,236

Uniformity 6 x 6 ft grid N/A N/A N/A 20,52, 111, 175 5t06 28
154,236

MVD LWC measurements N/A N/A N/A 20,52, 111, 175 2 10
154,236

N/A = Not applicable

4.10 PRESSURE MEASUREMENTS.

The two airfoil models used in the 2003 impingement test were equipped with surface pressure
ports, as discussed in section 4.2. Note that the ten ice shapes tested were not instrumented with
pressure taps. However, pressure measurements were made immediately downstream of the ice
shapes. The IRT electronically scanned pressure (ESP) system was used to perform the pressure
measurements. The ESP system consisted of six 32-port pressure modules with a range of £5 psi
differential. One data port in each module was used for pressure checks. Thus, the total number
of ports available for pressure measurements was 186 ports (31 ports per module). The ESP
system used a three-point pressure calibration system to all port transducers. The calibration
pressures were measured with precision digital quartz transducers. The three-point calibration
was performed every 400 cycles (approximately 15 minutes) to ensure that the error in the
measurements did not exceed 0.1% of the full-scale [6].
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4.11 IMPINGEMENT TEST PROCEDURE.

To obtain water drop impingement data for each test model, the following procedures were
followed:

1.

The spray system air and dyed water pressures were set to generate the desired MVD.
Air and water pressure settings for all MVD sizes used in the impingement tests are given
in table 3.

Blotter strips were attached to the model at the required spanwise location using
aluminum tape. The blotter strips were approximately 1.5 inches wide and had two
different lengths (24 and 48 in.). The longer strips were used on selected cases and for
long duration sprays to study the extent of the impingement limits. For the 2003
impingement test, blotter strip installation fixtures were designed to ensure that the
blotter attachment was precise and consistent between tests. The fixtures consisted of ten
0.75-in.-thick plastic plates (one for each ice shape), which were cut to match the
LEWICE ice shape traces, as shown in figure 15. In addition, each plastic plate was
undercut to accommodate the thickness of the blotter paper. A table platform was also
constructed with brackets for attaching the table platform to the wing. The platform was
used to maintain the blotter installation fixtures horizontally while installing the blotter
paper. After the blotter strip was fitted and taped down following the contour of the ice
shape, pencil marks were used to mark locations of interest on each ice shape, e.g., the
peaks and valleys between the horns and the location corresponding to the clean wing
leading edge. The marks were inscribed on the blotter installation tools to make certain
that the pencil markings were consistent.

Once the tunnel was set to the required speed, water steam was injected into the airstream
to attain the required level of relative humidity. Once the speed, relative humidity, and
the airstream temperature were stable, the spray system was activated for a certain period
of time (0.75 to 4.5 seconds, based on the MVD, as shown in table 3) and a dye trace was
obtained on the blotter strips attached to the model.

After the spray was completed, the tunnel speed was set to idle. Each blotter strip was
carefully removed from the model and hung in the control room to dry before storage.
The model was then wiped clean with alcohol and a new blotter strip was attached for the
next test.

Each test condition was repeated two to three times (i.e., three to four tests per MVD and
AOA) to establish a measure of test repeatability. Blotter strips from the repeated tests
were processed immediately after the strips were dried, using the CCD system (a
description of the CCD data reduction system can be found in section 5.2.3) to evaluate
test repeatability before model changes. Note that the data reduction conducted in the
IRT was preliminary and was only used to evaluate data repeatability.

Prior to the production impingement tests, test sprays for all MVD cases were carried out with
model blotter strips and collector strips to assess dye penetration into the blotter and to set the
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appropriate spray time duration for each MVD case. Dye penetration into the blotter strips was
evaluated by carefully segmenting the strip and viewing the cross section of each strip under a
microscope to determine the level of dye penetration. The allowed depth of dye penetration into
the blotter strip was limited to less than 30% of the blotter thickness to ensure that reflectance
measurements were not adversely affected by dye penetration.

The collector mechanism was tested several times between model tests to provide local LWC
measurements for reducing the model impingement results.

5. DATA REDUCTION METHODS.

Two different methods were used to extract the data from the dye-laden blotter strips. The first
method, developed by NACA in the 1950s, was based on colorimetric analysis [8]. The second
method, which was found to be significantly more efficient and provided higher-resolution
impingement data, was based on diffuse reflectance spectroscopy [13 and 17] developed by
WSU and Boeing in the 1980s. Descriptions of the data reduction methods and the systems used
for analyzing the 2003 raw impingement data from the blotter strips are presented below.

5.1 COLORIMETRIC ANALYSIS.

The principle of colorimetric analysis conforms to Beer’s law, which states that the light
absorbance of a solute at a particular wavelength is a function of its concentration in the solution.
Thus, absorbance measurement can be used to measure concentration. To extract the dye
amount from a blotter strip, it was cut into small segments and stored in test tubes. Cutting each
blotter segment into smaller pieces helped to speedup the dye-dissolving process. A precise
amount of deionized water was then added to each test tube to fully submerge the pieces of each
small blotter strip segment.

After sealing the tubes, the diluted blotter strips were refrigerated for 1 to 2 days to allow dye
extraction to occur. A highly soluble dye was used in the impingement test so no mechanical
agitation was required to extract the dye from the blotter paper. A white blotter strip (i.e., blotter
strip with no dye on it) was also diluted to observe if the blotter fiber in suspension could affect
the concentration reading and whether any correction was needed. The dye solution
concentration was then measured using a spectrophotometer. The device used in this analysis
was a GENESYS™ 20 spectrophotometer using a wavelength of 629 nanometers (nm). This
wavelength was used since the maximum absorption of the blue dye selected for the
impingement tests occurred at 629.5 nm [6]. Figure 47 depicts the equipment used in the
colorimetric analysis.

For the colorimetric analysis to work, a relation between absorption and dye concentration must
be established. Carefully prepared dye solutions with known concentrations were measured
using the spectrophotometer to provide the relation needed. The relation between concentration
and absorption readings from the spectrophotometer was found to be linear.
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Figure 47. Spectrophotometry Equipments Used for Colorimetric Analysis

After the concentration of the diluted blotter strip was determined, it was multiplied by the
volume of the deionized water added in the dilution process to obtain the dye mass. Due to the
fact that the colorimetric analysis is laborious and time-consuming, this method was used only
with specially prepared dyed blotter strips for the purpose of defining the reflectance calibration
curves (described in section 5.2.1). In addition, a few model impingement strips and collector
strips were reduced using colorimetric analysis to verify the impingement results obtained from
the reflectance measurements.

5.2 REFLECTANCE SPECTROSCOPY.

The principle of the reflectance spectroscopy method is that when a dye-laden blotter strip is
illuminated by a light source, the intensity of light scattered from the blotter surface can be used
to measure the dye mass per unit area of the blotter strip. Regions on the blotter strip
corresponding to high impingement rates are darker in color and reflect less light than those
corresponding to low impingement rates. Regions with no dye accumulation are white and
scatter the maximum amount of light. The relation between dye concentration and reflectance is
not linear and is defined from calibration tests.

To enhance the sensitivity of the reflectance method, the dye must have strong absorption at the
wavelength of the light source used for illuminating the blotter strips. For improved accuracy,
dye penetration normal to the blotter surface should be kept to a minimum since the data
reduction method relies on surface reflectance measurements. Tests to define the calibration
curves and the two data reduction systems are described below.

5.2.1 Reflectance Calibration Curve.

The reflectance calibration curve relates normalized reflectance from the dye-laden blotter strip
(i.e., reflectance of dye-laden blotter paper divided by reflectance of white blotter paper) to dye
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mass and therefore, water impingement on the blotter strip. The curve is a standard against
which the reflectance of each blotter strip is compared during the data reduction process.

Blotter strips were placed on a 6- by 6-ft grid installed in the IRT tests section, as described in
section 4.6, and were sprayed with same dye solution used for the tests models. By varying the
time that the strips were exposed to the spray, blotter strips with a range of uniform color
densities were obtained, covering the spectrum from a very light blue to a dark blue color. The
strips were measured 24 in. long and 1.5 in. wide.

These blotter strips were stored for analysis at WSU. The calibration strips were scanned using
laser and CCD reflectometers. The recorded reflectance measurements were then used to
identify uniform color density regions on each sample strip. Disks with a diameter of 1 inch
were then punched out from these uniform color areas. The mass of the blue dye on each disk
was extracted using colorimetric analysis described in section 5.1. Subsequently, the dye mass
from each blotter disk was divided by the disk area to provide the dye mass per unit area. In
addition to the calibration disks, selected and tested collector blotter strips were also analyzed
using colorimetric analysis and used as calibration points.

The dye mass per unit area and reflectance data obtained from the disks and collector strips were
used to define the standard reflectance calibration curves for the laser and the CCD reflectometer
systems. The normalized reflectance calibration curve, as shown in figure 48, was produced by
plotting the normalized reflectance from all blotter calibration samples against the corresponding
dye mass per unit area. The calibration results show that the normalized reflectance of the laser
data reduction system is very similar to the CCD system, thus, only one calibration curve was
needed. In this curve, a normalized reflectance value of 1.0 corresponds to the white blotter
paper and indicates zero dye mass.
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Figure 48. Reflectometer Calibration Curve
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5.2.2 Laser Reflectometer.

The first data reduction system used for the analysis of the 2003 impingement data was the laser
reflectometer, which was developed and tested extensively during the 1985 and 1993
impingement research programs conducted by WSU and The Boeing Company [13 and 17]. The
data reduction system uses a laser beam to illuminate the blotter strip. In brief, the ratio of the
intensity of the reflected light from the blotter paper to the light intensity of the laser beam is a
measure of impingement efficiency.

The main components of the laser reflectometer are depicted in figures 49a and 49b and include
(1) a red helium-neon (He-Ne) laser with a wavelength of 632.8 nm, (2) a rotating drum for
mounting the blotter strips, (3) a convergent lens for focusing the reflected light from the blotter
strip onto a silicon photo detector, (4) an EG&G silicon photo detector for converting the
reflected light collected by the lens into a voltage (V7), which was stored for further analysis, and
(5) a splitter glass plate and another silicon photo detector for monitoring fluctuations in laser
light intensity. The voltage (V) from the second photo detector was also stored and was used in
the data analysis. Note that the maximum absorption of the blue dye selected for the
impingement tests occurred at 629.5 nm, which is very close to the wavelength of the laser, thus
ensuring that small changes in the dye color density could be resolved by the system.
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Figure 49a. Schematic of Automated Laser Reflectometer and Digital Data Acquisition System
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Figure 49b. Laser Reflectometer Data Reduction Setup

Voltages from the photo detectors and the rotating drum were monitored and controlled by a PC
by means of a data acquisition board. A LabVIEW program was developed during this research
program to control the operation of the reflectometer, but also analyze and plot the reflectance
data. Details of the laser reflectometer can be found in reference 17.

Converting raw color-density distribution from a dye-laden blotter strip into impingement
efficiency distribution involved a number of steps. First, the raw reflectance versus surface
distance data were extracted by mounting each blotter strip on the drum of the laser reflectometer
and scanning the strip along its length, as shown in figure 50a. The voltages V; and V, obtained
from the two photo detectors during a scan were stored in computer files and their ratio was used
to generate the raw reflectance values, as shown in equation 14. These values were then
normalized by the average raw reflectance of a reference white blotter strip, which was scanned
before and after each dye-laden blotter strip. The normalization equation is shown in the
equation below.

_ Laser Intensity After Reflectance 'V,
Laser Intensity Prior to Reflectance 'V,

(14)

raw

R,...(Dyed blotter strip)
R, (White blotter strip)

(15)

normalized
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Figure 50a. Scan Locations for Test Model and Reference Collector Strips

Typical normalized reflectance values from a blotter strip are plotted in figure 50b. Note that
long blotter strips had to be scanned in segments because the reflectometer could only
accommodate rectangular strips with a maximum length of 16.5 inches. The normalized
reflectance data from each segment of the blotter were then combined, using a computer
program, and stored for further analysis. The spatial resolution of the reflectometer was 47 data
points per inch.

Normalized Reflectance

0.6 —

05 T T T[T I T T[T T T[T T T[T T[T T T[T T I T [ TTrT
-200  -150  -100 -50 0 50 100 150 200

<= Lower Surface | Upper Surface =>

Distance (mm)

Figure 50b. Typical Normalized Surface Reflectance Distribution for a Dyed Blotter Strip Using
the Laser Data Reduction System
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5.2.3 Charge-Coupled Device Reflectometer.

The second data reduction system made use of a CCD array camera for digitizing the images of
the dyed blotter strips, which were then stored in arrays of reflectance intensities for later
analysis. The CCD system developed by WSU is shown in figures 51a and 51b. The system
consisted of a Pentium 200-MHz PC, a CCD array camera with 14-bit resolution, a camera
electronics unit, a camera PC controller, a 24-mm Nikkor™ lens, 12 red high-flux light emitting
diode (LED) lights, a power supply for the LEDs, a camera stand, and a portable dark room for
reducing the data.

(A) Computer
(B) CCD Control Unite

(C) CCD Camera

(D) Light Control Unit

(E) Light Units

(F) Power Supply for Lights
(G) Table

(H) Portable Dark Room

J

.’E\  s—
 — |

Figure 51a. Schematic Diagram of the CCD Reflectometer

Figure 51b. Charge-Coupled Device Data Reduction System Setup
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The lighting system that was developed by WSU personnel in 2001 [6] consisted of 12 red high-
flux LED illuminators, as shown in the schematic provided in figure 52a. The LEDs were
OptoTechnology High Flux LED Illuminators, Shark Series, OTL-630A-5-10-66-E, with 630 nm
wavelength. This wavelength was chosen to match the absorption characteristics of the blue dye
so small changes in dye color density could be better resolved by the system. The LEDs were
connected in parallel to a single power supply. A 1-kilowatt potentiometer was connected in
series to each LED. With its light intensity adjusted individually, uniform illumination covered a
large area. The potentiometers were placed on a single circuit board and mounted onto an
aluminum frame designed for the 12 LEDs. The aluminum frame consisted of two plates with a
wide rectangular slot to house the LEDs and a T-shape bar for structural reinforcement. The
rectangular slot allowed adjustment of the LED locations to achieve uniform illumination over
the image capture area. Uniform illumination was determined with a sensitive light meter. The
aluminum plate holding the LEDs and the potentiometers was mounted on a light steel frame
attached to the CCD camera mount, as shown in figure 52b.
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Figure 52a. Schematic Diagram of the CCD Reflectometer Lighting System

The data from each dye-laden blotter strip were extracted as follows. Each strip was placed next
to a reference scale on a table inside a specially constructed dark room. The highlight on the
blotter strip was aligned with a fixed mark on the reference scale. The LED lights were set to the
required intensity level by adjusting the voltage and amperage of the two power supplies. The
camera shutter was activated through the PMIS® software, and it was kept open for a specified
time period, which was determined during the system calibration. A 512- by 512-pixel array
image of the blotter strip was obtained and stored on disk for later analysis. The camera was
capable of resolving nearly 14 bits (or approximately 16,000 level) of intensity values of
scattered light from the blotter strip. The blue strip was removed and a white reference strip was
placed on the table in the same location. The process was repeated and a 512- by 512-pixel
image of the white strip was also obtained and stored.
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Figure 52b. Charge-Coupled Device Reflectometer Lighting Setup

After the data were extracted, the images were processed through Windows-driven software that
was written in PV-WAVE command language. The process for generating the reflectance data
from these images involved the following steps:

1.

Each dyed strip image and the corresponding white strip image were read using the
PV-WAVE software developed at WSU. Both images were corrected using reference
images to compensate for camera noise and lens distortions, which were obtained and
stored during the calibration of the CCD array camera.

The stored images were in arrays of reflectance intensities and pixel locations only, thus,
a relation between real distance and pixel location had to be established. The program
allowed users to define a length scale by selecting two points on the blotter strip image.
The number of pixels in the horizontal direction and the actual distance between the
selected points were used to establish the length scale.

Using the computer mouse, a rectangular region was selected on the white strip image.
This region was processed by the software to provide an average reflectance value for the
white paper.

For a dye-laden blotter strip, a region that was large enough to cover the complete extent
of dye impingement was selected using the computer mouse as shown in figure 53.
Using the highlight on the strips (typically the point on the leading edge of the test
geometry corresponding to y/c = 0), the location of zero distance can be defined.
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Figure 53. Blotter Strip Image Analysis Region for CCD Data Reduction System

The software produced an array of reflectance versus surface distance for the dyed strip. These
values were processed through a 3-point moving average algorithm and the smoothed values
were normalized by the average intensity of a white blotter strip using equation 15. An array of
normalized intensity values (i.e., 0 to 1) versus surface distance was obtained for each blotter
strip, as shown in figure 54, and was stored in a file for further analysis.

I

Normalized Reflectance
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Figure 54. Typical Normalized Surface Reflectance Distribution for a Dyed Blotter Strip Using
CCD Data Reduction System
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A FORTRAN program was developed to extract the impingement efficiency distribution from
the stored normalized reflectance data that were generated from either reflectance measurement
method. Because impingement tests were repeated a number of times for each test condition, the
program processed the normalized intensity values from several blotter strips into a single array
of averaged normalized intensity versus surface distance. This array was then converted into dye
mass (pug/cm?®) versus surface distance using the calibration curve shown in figure 48. The
impingement efficiency for each data point recorded was then obtained using the following
equation.

Local Dye Mass per Unit Area -

B = B collector (16)

X
Average Collector Dye Mass per Unit Area
Collector strips were reduced prior to the model strips since the collector dye mass was required

for normalization in defining the impingement efficiency of each test model. The values of
Booieeror 01 all spray cloud conditions used in the impingement tests are given in table 4.

6. LEWICE-2D IMPINGEMENT ANALYSIS METHOD.

Analysis results for all test cases presented in this report were obtained by NASA Glenn
personnel using the LEWICE-2D code. This code is a panel-based ice accretion code that
applies a time-stepping procedure to calculate an ice shape. The potential flowfield in LEWICE
[30] is calculated with the Douglas Hess-Smith 2-D panel code. This potential flowfield is then
used to calculate the trajectories of the water drops and the impingement distribution on the
body.

Prior to the impingement analyses, the computed flowfield from the LEWICE code was
compared to the measured pressured distributions for each model and AOA tested. If the
agreement between the experimental and the computed pressure was not favorable, the AOA in
the computer code was slightly modified until a good match was obtained. This small
adjustment in AOA was necessary because the LEWICE code does not account for wind tunnel
wall and flow angularity effects. For the cases involving the large 22.5- and 45-min ice shapes,
it was not possible to match the experimental pressure distributions due to flow separation
immediately downstream from the ice shape horns. LEWICE uses a potential flow code that
cannot simulate regions with extensive flow separation. For such cases, a Navier-Stokes
flowfield should be used prior to conducting trajectory analysis with the LEWICE code. This
was not attempted in this work.

Next, the impingement characteristics were computed using a 27-point (also referred to as 27[]
bin) discrete approximations of the experimental drop distributions measured with the FSSP,
OAP-C, and OAP-P during the impingement tests (table 6 and figure 55). A 10-bin discrete drop
size distribution was also generated for each MVD case for use with the public version of the
LEWICE code, which allows up to a maximum of 10 drop sizes per distribution. The 10-bin
drop size distributions is shown in table 7 and figure 56.
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Table 6. The 27-Bin Drop Distributions

Bin Analytical Drop Size (um)

Number % MVD =20 pm MVD =52 um MVD =111 pm MVD =154 um MVD =236 pm

1 4.75 3.771785 6.544005 10.86511 13.63081 15.90700
2 4.75 8.424081 15.16583 24.51947 32.00148 45.33918
3 4.75 10.07453 18.61629 29.64239 47.12857 74.84499
4 4.75 11.55813 21.20615 34.95594 67.20577 102.0387
5 4.75 12.97915 23.57229 44.73852 84.29376 122.5518
6 4.75 14.30065 25.88050 58.34341 98.09358 141.6284
7 4.75 15.50242 28.27308 70.67189 110.1533 160.5375
8 4.75 16.65027 30.93579 81.29308 120.7427 178.4472
9 4.75 17.67680 34.45036 91.18996 131.1980 197.6876
10 4.75 18.60940 40.80994 100.9387 142.4821 217.9631
11 4.75 19.54230 51.35849 110.5958 153.9673 240.7987
12 4.75 20.50887 63.07714 119.4937 164.8876 271.0245
13 4.75 21.50879 73.98405 128.8270 175.5589 320.0266
14 4.75 22.50936 85.72330 140.1095 187.0793 393.5336
15 4.75 23.58441 99.79768 152.8340 199.5778 455.5443
16 4.75 24.73329 115.9025 165.8621 211.8856 494.6245
17 4.75 25.98042 138.7903 179.3563 223.9060 534.1075
18 4.75 27.47479 164.9857 193.7323 240.1437 577.9580
19 4.75 29.32443 185.6289 207.1929 263.9714 624.0164
20 4.75 31.84920 202.7462 219.6752 299.4286 670.9214
21 1.00 33.81317 212.4191 227.3925 327.2080 701.1499
22 1.00 34.83165 215.5869 230.1392 341.6878 713.6254
23 1.00 36.21635 219.7380 237.7504 358.1966 728.3444
24 0.50 37.46642 223.6459 250.5209 375.0911 742.1095
25 0.50 38.74237 226.3273 264.2335 389.0540 752.6775
26 0.50 40.66698 229.0086 279.5445 400.9250 763.2454
27 0.50 44.36609 253.9263 312.5888 425.0598 1046.765
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Figure 55. The 27-Bin Drop Distributions
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Table 7. The 10-Bin Drop Distributions

Bin Analytical Drop Size (um)

Number | % |MVD=20pum | MVD=52pum | MVD=111pum | MVD =154 um | MVD =236 um
1 5.00 3.850397 6.693706 11.05374 13.88450 16.25037
2 10.00 9.390637 16.88090 27.48959 44.44510 63.65823
3 20.00 13.80175 25.44875 56.48542 90.28305 135.4827
4 30.00 19.60797 59.17969 111.1060 154.1635 298.5197
5 20.00 25.4820 131.2511 170.8107 218.3283 508.4572
6 10.00 30.73474 192.7506 212.7639 284.4519 645.4684
7 3.00 35.19787 216.5703 235.0038 343.7168 715.8689
8 1.00 38.32569 224.9867 257.7010 380.2672 7473936
9 0.50 40.66701 229.0087 279.5447 400.9252 763.2455
10 0.50 4436619 253.9279 312.5901 425.0601 1046.767
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Figure 56. The 10-Bin Drop Distributions
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7. RESULTS AND DISCUSSION.

In this section, potential sources of experimental error and the steps taken to minimize or
eliminate these errors are discussed. In addition, the experimental water drop impingement data
for the two airfoils and the ten ice shapes tested in 2003 are presented and compared to the
LEWICE analysis data. All experimental data are averaged data from repeated tests. The
impingement analysis data were obtained with the LEWICE computer code using the procedure
discussed in section 6.

In most cases, the impingement data are presented in the form of local impingement efficiency
(B) plotted versus surface distance(s) in millimeters (mm). Surface distance is measured from

the highlight (a reference point where s = 0 mm), which in all cases, corresponds to the location
near the leading edge where y/c is zero. For the clean airfoil, the highlight was at the leading
edge, while for the ice shapes, the highlight was located between the ice horns. Note that
negative surface distance corresponds to the upper surface of the airfoil. Geometric parameters,
as well as flow and drop parameters for the airfoils and ice shapes, are summarized in table 8.

Table 8. Summary of Model Geometry and Impingement Parameters

Chord tmax x/c at Voo AOA | MVD Re,
Geometry (in.) (in.) tmax | (mph) | (deg.) | (um) | (million) | Remvp K Ko [0)

MS(1)-0317 36 6.12 0.376 175 0 20 4.92 108 0.108 | 0.037 | 107,054
(0.914) | (0.155) 52 491 279 0.731 | 0.170 | 106,772
111 491 596 3329 | 0.542 | 106,613
154 491 828 6.409 | 0.873 | 106,851
236 4.92 1269 15.053 | 1.544 | 106,985
NACA 23012 36 4.32 0.300 175 2.5 20 4.58 100 1.106 | 0.038 | 94,271
(0.914) | (0.110) 52 4.58 260 0.720 | 0.172 | 94,243
111 4.57 554 3.278 | 0.553 | 93,795
154 4.58 772 6314 | 0.895 | 94,346
236 4.59 1184 14.832 | 1.602 | 94,554
NACA 23012 36 4.32 0.300 175 2.5 20 4.61 101 0.106 | 0.038 | 95,313
with 5-min (0.914) | (0.110) 52 4.60 261 0.720 | 0.172 | 94,988
glaze ice 111 4.60 558 3279 | 0.552 | 94,936
shape 154 4.61 776 6315 | 0.892 | 95,413
236 4.61 1190 14.831 | 1.596 | 95,488
NACA 23012 36 4.32 0.300 175 2.5 20 4.56 100 0.106 | 0.038 | 93,612
with 10-min (0.914) | (0.110) 52 4.57 260 0.719 | 0.172 | 94,043
glaze ice 111 4.53 550 3.269 | 0.554 | 92,569
shape 154 4.56 768 6.307 | 0.896 | 93,635
236 4.56 1177 14.807 | 1.607 | 93,539
NACA 23012 36 4.32 0.300 175 2.5 20 4.53 99 0.106 | 0.038 | 92,286
with 15-min (0.914) | (0.110) 52 4.53 258 0.718 | 0.173 | 92,569
glaze ice 111 4.54 551 3271 | 0.554 | 92,703
shape 154 4.52 762 6.292 | 0.898 | 92,274
236 4.52 1167 14.776 | 1.613 | 92,195

All dimensions are in English units (inch and mph); values inside parenthesis are in SI units (meter and m/s)
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Table 8. Summary of Model Geometry and Impingement Parameters (Continued)

Chord tmax x/c at Voo AOA | MVD Re,

Geometry (in.) (in.) tmax | (mph) | (deg.) | (um) | (million) | Remvp K Ko Q
NACA 23012 36 4.32 0.300 175 2.5 20 4.54 99 0.106 | 0.038 | 92,558
with 22.5-min | (0.914) | (0.110) 52 4.56 259 0.720 | 0.173 | 93,289
glaze ice 111 4.54 551 3278 | 0.555 | 92,779
shape 154 4.55 766 6.310 | 0.898 | 93,080

236 4.55 1174 14.808 | 1.610 | 93,075
NACA 23012 36 432 0.300 175 2.5 20 4.56 100 0.106 | 0.038 | 93,496
with 45-min (0.914) | (0.110) 52 4.56 259 0.719 | 0.173 | 93,676
glaze ice 111 4.56 554 3275 | 0.553 | 93,688
shape 154 4.57 769 6.301 | 0.895 | 93,781

236 4.57 1179 14.800 | 1.604 | 93,871
NACA 23012 36 432 0.300 175 2.5 20 4.55 99 0.106 | 0.038 | 92,950
with 7.5-min | (0.914) | (0.110) 52 4.54 258 0.718 | 0.173 | 92,944
mixed ice 111 4.55 552 3274 | 0.554 | 93,050
shape 154 4.55 765 6.303 | 0.897 | 92,970

236 4.55 1174 14.803 | 1.609 | 93,067
NACA 23012 36 4.32 0.300 175 2.5 20 4.52 99 0.106 | 0.038 | 91,965
with 15-min (0.914) | (0.110) 52 4.53 258 0.719 | 0.173 | 92,440
mixed ice 111 4.54 551 3275 | 0.555| 92,755
shape 154 4.52 761 6.298 | 0.900 | 91,909

236 4.52 1166 14790 | 1.616 | 91,846
NACA 23012 36 432 0.300 175 2.5 20 4.46 98 0.106 | 0.038 | 89,894
with 22.5-min | (0.914) | (0.110) 52 4.47 254 0.717 | 0.173 | 90,247
mixed ice 111 4.47 543 3265 | 0.557 | 90,287
shape 154 4.46 752 6.283 | 0.904 | 89,913

236 4.46 1152 14756 | 1.626 | 89,960
NACA 23012 36 432 0.300 175 2.5 20 4.49 98 0.106 | 0.038 | 90,951
with 45-min (0.914) | (0.110) 52 4.48 255 0.717 | 0.173 | 90,419
mixed ice 111 4.47 543 3264 | 0.557 | 90,214
shape 154 4.49 756 6.288 | 0.902 | 90,799

236 4.50 1161 14774 | 1.619 | 91,280
NACA 23012 36 432 0.300 175 2.5 20 4.55 100 0.106 | 0.038 | 93,158
with 45-min (0.914) | (0.110) 52 4.55 259 0.719 | 0.173 | 93,272
rime ice shape 111 4.56 553 3277 | 0.554 | 93,400

154 4.55 767 6.306 | 0.897 | 93,174

236 4.55 1175 14811 | 1.609 | 93,184

All dimensions are in English units (inch and mph); values inside parenthesis are in SI units (meter and m/s)

7.1 DISCUSSION OF EXPERIMENTAL ERRORS.

A discussion of potential sources of error affecting the impingement data can be found in
reference 17. In general, the experimental errors can be divided into two groups. The first group
involves errors in the experimental method used to obtain the raw impingement data, while the
second group includes errors related to the data reduction methods. Errors in the experimental
method originate from variations in spray system performance, cloud uniformity, cloud
unsteadiness, tunnel flow conditions, relative humidity, inaccuracies in measuring local LWC,
cloud MVD, and cloud drop distribution.
variations in blotter paper properties, light illumination intensity, and errors in the normalized
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reflectance calibration curves and in the data reduction systems. As discussed in reference 17,
several improvements have been made to the experimental and data reduction methods since
1996, and these improvements have significantly enhanced the quality of the experimental.

During the impingement experiments, extreme care is taken to monitor all aspects of the
experiment and to perform daily checks of all systems used in the experimental and data
reduction methods. Experience gained from 20 years of testing has shown that the best indicator
of data quality is test repeatability. During production runs, each test condition is typically
repeated three to four times. In addition, during each IRT entry a considerable number of repeats
(as many as 10 to 20) are performed with selected configurations to better assess test
repeatability. In addition, prior to the start of the production runs, impingement tests are
conducted with a calibration model to verify the experimental setup with results from prior IRT
entries. During the 2003 impingement tests, processes were developed to ensure consistency in
all aspects of the experimental and data reduction methods, as described in sections 7.1.1 and
7.1.2. Samples of the variation in the spray system water flow rates for different geometries are
presented in figure 57, whereas the time traces in spray system pressures for different MVD
conditions are presented in figure 58.
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7.1.1 Experimental Method.

Some important aspects of the experimental method that was used are as follows.

o Extensive tests were performed in a WSU laboratory to calibrate and verify the
performance of the spray system two months prior to the impingement tests. During
these tests the spray behavior of each of the 16 nozzles was documented and analyzed to
determine the on-off response of each nozzle. This was done for all MVD conditions
selected for the tests.

o All spray system transducers were calibrated by the NASA Glenn calibration laboratory
prior to the IRT entry.
o A process was developed for preparing large quantities (about 30 gallons) of dye

solution. Accurate gravimetric balances were used to precisely measure the amount of
dye and water to be mixed every time a new batch of dye solution was prepared.
Solution samples were checked with a spectrophotometer to ensure consistency in the dye
concentration. Furthermore, each time a new batch of solution was added to the tank,
samples of the solution were taken from various parts of the spray system, such as the
tank, before and after the water filter, and from selected spray nozzles to ensure that the
solution was consistent throughout the spray system components.

o Experiments were conducted in a laboratory for the first time to investigate the effect of
dye on water surface tension properties, as discussed in reference 17. It was found that
the dye had no impact on water surface tension. Surface tension plays a significant role
in large drop impingement dynamics, as discussed in reference 2.

o Preliminary spray tests were performed in the IRT with all MVD conditions selected for
the impingement tests to determine the spray time required for optimum color density and
dye penetration into the blotter paper. Blotter strips from these preliminary tests were
segmented and examined under a microscope to determine the level of dye penetration.
The spray times selected maintained maximum dye penetration to less than 30% of the
blotter paper thickness for most MVD cases.

o The spray system was tested each day prior to the start of the tests by conducting single
and combination nozzle sprays. During each test, the volume flow from each nozzle was
monitored to ensure consistent nozzle performance. Note that a slightly blocked nozzle
can affect cloud uniformity and impact the experimental results. The IRT MOD-1
nozzles installed on the WSU spray system were carefully picked to have very similar
flow rates.

o To eliminate potential problems with nozzle freeze-out during the impingement tests,
thermocouples were installed at strategic locations of the spray system to monitor the
temperature of the dye solution. Water temperature was maintained above 40°F using
heaters attached to the dye solution tank of the spray system. Nozzle freeze-out can have
a significant impact on LWC uniformity.
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Extensive uniformity tests were performed prior to the start of the production runs to
ensure uniform LWC distribution in the test section for all MVD conditions, as described
in section 2.4.

During production runs, test sprays were performed prior to the tunnel start and the spray
system performance was assessed by examining the time traces stored by the computer
system that was used to control and monitor spray system performance. The test sprays
were performed to determine if all nozzles were spraying properly.

Special tools were developed for installing the blotter strips on the ice shape. Experience
with impingement tests showed that data repeatability was considerably affected by how
well the blotter conformed to the surface of the geometry. Even if the blotter paper was
only slightly raised above the surface of the geometry, the impingement data would be
affected. The tools ensured that the paper conformed to the model surface and that the
paper installation was identical for each test. A tool was designed for each ice shape
using a computer numerically controlled milling machine. Each tool had several
reference markings on it for relating the dye trace on the blotter paper to locations on the
surface of the airfoil and ice shape.

Each impingement test was repeated several times and the blotter strips were analyzed
with the CCD reflectometer to verify test repeatability. All data obtained from each day
were analyzed the following morning. The results were used to determine if additional
runs were needed for a specific test condition before installing the next ice shape on the
airfoil.

For each test condition, one long spray was performed and the dye trace on the blotter
paper was used to verify the impingement limits obtained from the short sprays. The
verification was performed by visual inspection. Blotter strips from the long sprays were
saturated with dye and could not be analyzed with the data reduction systems. However,
selected strips were analyzed using colorimetric analysis, and the results were used to
verify the data from the laser and CCD reflectometers.

Humidity has been shown to have a significant effect on LWC for small and large drops
[11, 14, and 17]. During the 2003 impingement tests, the relative humidity in the IRT
test section was maintained at 70% +4%. Humidity was monitored with humidity sensors
installed in the test section and on the IRT spray bars. A process was also developed for
setting tunnel humidity for the impingement tests.

Repeated measurements of spray cloud drop distribution and LWC properties were
performed to document the spray clouds and to assess the repeatability of the spray
system air and water pressure settings. Measurements were conducted before and after
the impingement tests to warrant consistencies within the test period.

Over 160 local LWC measurements were performed in the IRT test section using the
collector device. These measurements were taken over a range of model surface
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locations to evaluate local variations in LWC uniformity and to obtain reference LWC
values for data analysis (figures 59a and 59b).

Figure 59a. Typical Laser Sheet Produced in the IRT Test Section

MVD =20 um MVD =111 pm

High LWC -
Region

Figure 59b. Sample of Cloud Uniformity Images Obtained Using the Laser Sheet Method
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o During production runs, impingement data for the test models and collector device were
obtained with the same batch of dye to ensure that potential small changes in dye
concentration did not affect the impingement data.

J A concern in impingement testing was dye recirculation in the IRT circuit. Blotter strips
were placed at strategic locations upstream of the spray bars and were monitored at
regular intervals during the impingement tests. No dye trace was ever found on these
blotter strips.

o Pressure data for each test model were obtained at the start and end of the impingement
tests to verify flow conditions and evaluate the repeatability of the pressure data.

7.1.2 Data Reduction Method.

Some important aspects of the data reduction method that were used are as follows.

J Blotter paper properties are important to the quality of impingement results, as discussed
in reference 11. The complex geometries of the tested ice shapes resulted in crease
formation on certain locations of the blotter strips. The effect of creasing on reflectance
measurements was evaluated during laboratory tests at WSU with the CCD reflectometer,
and it was found that it did not affect the data reduction.

o New calibration curves were prepared for both data reduction systems to develop the
relationship between normalized reflectance and dye mass density. The calibration was
conducted using dyed blotter strips that were generated in laboratory tests, as well as
those generated during the IRT tests.

o The impingement data from the dye-laden blotter strips were extracted using both laser
and CCD reflectometers, and the results from the two systems were compared for
consistency.

J During the data reduction process, reference strips were used at regular time intervals to

verify the repeatability of the data reduction systems.

o Selected blotter strips were reduced repeatedly over a period of several months to
evaluate the repeatability of the data reduction process.

J Blotter strip illumination uniformity during data reduction with the CCD reflectometer
was monitored at selected locations with an accurate light meter to verify that the light

intensity over the blotter strip was consistent throughout the data reduction process.

o Each blotter strip was visually inspected independently by two researchers to verify the
impingement curves produced by the data reduction systems.
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o Selected collector strips were analyzed, using colorimetric analysis, for comparison with
the collector dye mass data obtained with the laser and CCD reflectometers. The results
were found to be in good agreement.

7.2 PRESSURE DISTRIBUTIONS.

Experimental pressure data for the MS(1)-0317 at zero AOA were compared to the analysis
results obtained with LEWICE, as shown in figure 60, and demonstrated good agreement.
Pressure data for the clean and iced NACA 23012 airfoil with an AOA of 2.5° are presented in
figures 61 through 71. The pressures provided are for the airfoil surfaces only, since the ice
shapes were not instrumented with pressure taps. The LEWICE pressure distributions presented
were obtained at an AOA of 2.1°, because this angle resulted in the closest match to the
experimental pressure distributions. Note that LEWICE uses a potential flow (panel) method to
compute surface pressures that does not model tunnel wall effects and viscous flow effects, such
as boundary layers and wakes and regions of flow separation.

Comparison of the experimental and LEWICE pressure distributions were in good agreement for
the clean NACA 23012 airfoil and for the 5- and 10-min glaze ice shapes, as shown in figures 61
through 63. For the 15- and 22.5-min glaze ice shapes, LEWICE did not match the experimental
data over the forward 10% to 20% chord, as shown in figures 64 and 65. In both cases, flow
separation in the form of a long leading-edge bubble is evident in the experimental pressure
distributions. For the 45-min ice shape, the leading-edge bubble over the forward 30%-35%
chord of the NACA 23012 airfoil downstream of the ice shape upper and lower horns was not
predicted by LEWICE, as shown in figure 66.
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Figure 60. Comparison of Pressure Distribution for MS(1)-317 Airfoil at o = 0°
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Figure 65. Comparison of Pressure Distribution for NACA 23012 With 22.5-min Glaze Ice
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Figure 66. Comparison of Pressure Distribution for NACA 23012 With 45-min Glaze Ice Shape
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Figure 67. Comparison of Pressure Distribution for NACA 23012 With 7.5-min Mixed Ice
Shape at a0 = 2.5°
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Figure 68. Comparison of Pressure Distribution for NACA 23012 With 15-min Mixed Ice Shape
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Figure 69. Comparison of Pressure Distribution for NACA 23012 With 22.5-min Mixed Ice
Shape at o = 2.5°
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Figure 70. Comparison of Pressure Distribution for NACA 23012 With 45-min Mixed Ice Shape
ato =2.5°
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Figure 71. Comparison of Pressure Distribution for NACA 23012 With 45-min Rime Ice Shape
ato =2.5°

For the NACA 23012 airfoil tested with the 7.5-, 15-, 22.5-, and 45-min mixed ice shapes, the
computational and experimental pressure data were in good agreement, as shown in figures 67
through 70. The reason for the improved correlation between LEWICE and the experimental
data in the case of the mixed ice accretion is attributed to the more streamlined shape of the
mixed ice shapes.

The experimental and analysis pressure data for the NACA 23012 airfoil with the 45-min rime
ice shape exhibited good agreement, as shown in figure 71. This was attributed to the

streamlined shape of the rime ice.

7.3 IMPINGEMENT RESULTS.

7.3.1 Test Repeatability.

Test repeatability is an important indicator of the quality of the experimental results. Test
repeatability is assessed by computing the maximum percent variation, Ryax of repeated tests
from the average. For clean airfoils and wings, the maximum variation in the test data is
typically observed at the point of maximum impingement efficiency (i.e., the peak of the
impingement curve). However, with the simulated ice shapes tested, multiple sharp
impingement peaks were obtained, making it difficult to compute the value of Rvax. The
absolute maximum local impingement efficiency observed at the leading-edge region of the
clean or iced models is denoted by g , whereas the minimum local impingement efficiency

observed between the upper and lower horns of the tested glaze and mixed ice shapes is denoted
by g,. The g, and g, values of the experimental data are shown in table 10. To better define

test repeatability for the iced configurations, an additional parameter, Rarga, Was computed by
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determining the maximum percent difference in the total area under the impingement curve of
each repeated test from the average. This difference is representative of the variation in total
impingement efficiency.

Table 9. Summary of Test Repeatability Results

Test Case

AOA
(deg)

MVD
20 um

MVD

52

Lm

MVD
111 ym

MVD
154 um

MVD
236 um

1{AREA

RMAX

1{AREA

RMAX

1{AREA 1{MAX

1{AREA RMAX

RAREA RMAX

MS(1)-0317

2.1

1.6

NA

NA

NA NA

NA NA

NA NA

NACA 23012

2.5

5.6

4.9

2.6

1.6

7.6 9.4

2.2 1.3

53 4.8

NACA 23012
with 5-min
glaze ice shape

2.5

5.1

2.9

1.5

0.2

1.9 0.6

9.1 11.4

1.4 0.4

NACA 23012
with 10-min
glaze ice shape

2.5

1.8

1.2

5.1

3.9

6.9 6.4

1.4 7.2

8.6 3.4

NACA 23012
with 15-min
glaze ice shape

2.5

1.0

1.4

2.0

2.2

34 7.8

2.5 7.5

7.8 8.8

NACA 23012
with 22.5-min
glaze ice shape

2.5

1.4

2.5

2.9

2.1

5.3 7.1

3.6 8.2

12.3 12.5

NACA 23012
with 45-min
glaze ice shape

2.5

53

12.5

23

4.1

32 4.5

2.7 2.5

0.8 1.3

NACA 23012
with 7.5-min
mixed ice
shape

2.5

1.2

0.2

0.9

04

1.1 4.4

3.8 6.0

23 5.0

NACA 23012
with 15-min
mixed ice
shape

2.5

32

25

3.2

1.9

5.1 6.9

8.5 12.4

6.6 59

NACA 23012
with 22.5-min
mixed ice
shape

2.5

1.8

2.6

0.6

4.8

1.1 3.7

6.7 7.4

7.3 7.8

NACA 23012
with 45-min
mixed ice
shape

2.5

34

8.4

8.2

8.4

1.8 2.6

3.1 7.8

3.8 7.5

NACA 23012
with 45-min
rime ice shape

2.5

3.6

2.1

4.1

5.1

6.8 8.7

34 6.5

2.1 24

Rarea = % repeatability for the area under the curve

Ruax = % repeatability of the maximum beta
NA = Data not available
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Table 10. Summary of Impingement Efficiency Data for 2003 IRT Tests

Test
Conditions _
E. — E:
AOA | MVD Si S, Su S _ _ (%)
Model (deg)) | (um) By | (mm) | By | (mm) | (mm) | (mm) X/C Xl/C Ep Eg s

MS(1)-0317 0 20 |046] -3 | NA| NA | 98 | 80 | 0.0744 | 0.0696 | 0.1868 | 0.1759 6.2
NACA23012 | 25 | 20 |056| 3 | NA| NA | -64 | 145 | 0.0458 | 0.1505 | 0.1738 | 0.1865 -6.8
52 1071 3 | NA| Na | 84 | 200 | 00661 | 02104 | 05102 | 0.3000 70.1

111 [085] 3 | NA| NA | -105 | 277 | 0.0882 | 0.2945 | 06753 | 0.4150 | 627

154 1092 2 | NA| NA | -121 | 340 | 0.1052 | 03634 | 07643 | 05118 | 493

236 |095]| 2 | NA | NA | -131 | 380 | 0.1159 | 04072 | 0.8403 | 0.5622 | 495

NACA23012 | 25 | 20 |043| 8 |035| 10 | -91 | 171 | 0.0679 | 0.1748 | 0.1788 | 0.1805 20.9
with 5-min 52 053] -9 |044| 11 | -100 | 233 | 00773 | 02424 | 0.5236 | 0.2823 85.5
f}ﬁi e 111 |068] -8 |054] 11 | -110 | 270 | 0.0879 | 0.2829 | 0.6928 | 0.3961 74.9
154 073 -9 053] 9 | -130 | 310 | 0.1092 | 03266 | 0.7830 | 0.4963 57.8

236 | 073 | -8 |058| 9 | -140 | 360 | 0.1200 | 0.3813 | 0.8590 | 0.5228 64.3

NACA23012 | 25 | 20 |040| 13 [033]| 8 | -101 | 205 | 0.0676 | 0.2056 | 0.1902 | 0.1713 11.0
with 10-min 52 1049 | 14 |042] 9 | -122 | 250 | 0.0886 | 0.2547 | 0.5539 | 0.2366 134.1
fﬁlz;‘zlce 111 |060] 14 048] 9 | -135 | 329 | 0.1035 | 03411 | 07400 | 03251 | 127.6
154 070 13 048] 8 | -148 | 357 | 0.1175 | 03717 | 08320 | 0.4103 | 1028

236 | 073 | 14 |055| 9 | -165 | 367 | 0.1359 | 03827 | 0.9168 | 0.4942 85.5

NACA23012 | 25 | 20 [045| 23 [033| 8 | -121 | 205 | 0.0754 | 0.1960 | 0.2124 | 0.1862 14.1
with 15-min 52 [059] 23 |043] 8 | -125 | 250 | 0.0796 | 02451 |0.6223 | 02857 | 117.8
fkllzz?ce 111 067 14 049 -7 | -142 | 280 | 0.0976 | 02779 | 0.8198 | 03423 | 1395
154 |085] 14 053] -8 | -162 | 343 | 0.1191 | 03468 | 09269 | 0.4351 | 113.0

236 1092 14 |058] -9 | -170 | 395 | 0.1277 | 04036 | 1.0177 | 0.5277 92.9

NACA23012 | 25 | 20 |047| -35 |028| -8 | -45 | 38 | -0.0268 | 0.0023 | 0.2515 | 0.2319 8.5
with 22.5-min 52 1059| 36 [039] -8 | -45 | 257 | -0.0268 | 0.2348 | 0.7069 | 0.3236 118.4
fﬁiﬁ‘ce 111|071 ] 14 [o046| -7 | -45 | 271 | -0.0268 | 02501 | 09212 | 04015 1294
154 080 12 047 -8 | -210 | 325¢ | 0.1411 | 030917 | 1.0874 | 0.4436 | 145.1
236 | 088 | 13 | 053 | -8 | -230 | 325f | 0.1628 | 0.3091F | 1.1840 | 0.4988 | 137.4
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Table 10. Summary of Impingement Efficiency Data for 2003 IRT Tests (Continued)

Test
Conditions E ~ E
AOA | MVD Si S, Su Si _ _ (%)
Model (deg) | (um) By (mm) | B, (mm) | (mm) | (mm) X/C Xy/C Ep Eg ¢

NACA 23012 25 20 033 | -64 |0.11] -7 -83 61 | -0.0555 | -0.0555 | 0.3227 | 0.2705 19.3
with 45-min 52 046 | -65 | 026| -8 -83 57 | -0.0555 | -0.0555 | 0.6360 | 0.4360 45.9
glaze ice shape 111 | 053 | 68 |033] 29 T T I T 0.7586 | 0.5239 44.8
154 | 062 | 12 |038| -30 1 1 % 1 0.8097 | 0.6072 33.3

236 | 065 | 13 | 041 | -30 1 1 1 1 0.8455 | 0.6362 32.9

NACA 23012 25 20 047 | -9 |036 9 -85 190 | 0.0548 | 0.0548 | 0.1896 | 0.1377 37.7
with 7.5-min 52 060 | 14 | 047 9 98 252 | 0.0681 | 0.0681 | 0.5434 | 0.2411 125.4
mixed ice shape 111 | 066 | -11 | 050 | -4 -130 | 300 | 0.1019 | 0.1019 | 0.7108 | 0.3496 103.3
154 | 079 | 14 |0.59 9 2152 | 375 | 0.1256 | 0.1256 | 0.8006 | 0.4600 74.0

236 | 079 | 13 | 0.60 8 -155 | 380 | 0.1289 | 0.1289 | 0.8751 | 0.4754 84.1

NACA 23012 25 20 045 | -14 023 ] -6 -125 | 310 | 0.0814 | 0.0814 | 0.1921 | 0.1563 22.9
with 15-min 52 061 | -14 |028| -6 2135 | 330 | 0.0919 | 0.0919 | 0.5942 | 0.2963 100.5
mixed ice shape 111 | 067 | -15 | 029 -8 | -145 | 360 | 0.1026 | 0.1026 | 0.7789 | 0.3854 102.1
154 | 077 | 17 030 | -8 2170 | 430 | 0.1295 | 0.1295 | 0.8683 | 0.5024 72.8

236 | 077 | 15 029 | -8 2175 | 460 | 0.1349 | 0.1349 | 0.9501 | 0.5040 88.5

NACA 23012 25 20 051 | -17 [011] -5 -110 | 280 | 0.0534 | 0.0534 | 0.1809 | 0.1579 14.6
with 22.5-min 52 1061 | -17 [013| -6 | -140 | 325 | 0.0845 | 0.0845 | 0.6021 | 0.2602 131.4
mixed ice shape 111 | 068 | -18 [0.13 | -7 -160 | 330 | 0.1058 | 0.1058 | 0.7939 | 0.3566 122.6
154 | 076 | 24 |013 | -7 -175 | 425 | 0.1220 | 0.1220 | 0.8892 | 0.4718 88.5

236 | 0.81 | 23 |012]| -7 2185 | 440 | 0.1328 | 0.1328 | 0.9671 | 0.5140 88.2

NACA 23012 25 20 055 | -1 |004] 27 -140 85 0.0698 | 0.0698 | 0.1690 | 0.1713 1.3
with 45-min 52 072 | -2 [007] 25 -150 90 0.0804 | 0.0804 | 0.5424 | 0.2874 88.7
mixed ice shape 111 | 073 | -2 008 23 -180 | 420 | 0.1123 | 0.1123 | 0.8819 | 0.3731 136.4
154 1078 | 73 o011 ] 22 200 | 490 | 0.1340 | 0.1340 | 1.0041 | 0.4737 112.0
236 | 087 | -1 |o010] 22 205 | 520 | 0.1394 | 0.1394 | 1.0808 | 0.5208 107.5

NACA 23012 25 20 0.52 0 NA | NA | -125 | 263 | 0.0629 | 0.0629 | 0.1855 | 0.1253 48.0
with 45-min 52 068 | -4 | NA | NA | -144 | 320 | 0.0829 | 0.0829 | 0.5424 | 0.2683 102.2
rime ice shape 111 | 074 2 [ NA| NA | -174 | 350 | 0.1149 | 0.1149 | 0.7135 | 0.3697 93.0
154 | 0.83 1 NA | NA | -188 | 390 | 0.1300 | 0.1300 | 0.8041 | 0.4491 79.0

236 | 091 | -1 | NA | NA | -191 | 440 | 0.1333 | 0.1333 | 0.8772 | 0.5670 54.7

NA = Data not available
1 = End of blotter strip
1 = Analysis in progress




The nomenclature for table 10 is as follows:
1. 1 represents the maximum impingement efficiency.

2. S; represents the surface distance from the reference point (the highlight) to the location
of the maximum impingement efficiency.

3. [, represents the minimum impingement efficiency on the front surface of the simulated
ice shapes.
4. S, represents the surface distance from the reference point (the highlight) to the location

of the minimum impingement efficiency on the front surface of the simulated ice shapes.

5. Sy and S; represent the surface distances of impingement limits on the upper and lower
surfaces. x,/c and xj/c represent the stations of the impingement limits on the upper and
lower surfaces with respect to the chord.

— A
6. E represents the total impingement efficiency, which is defined as E = —2, where 4 ;
|
represents the projected frontal area of the airfoil (4, = 2.672" per unit span). Ey is
computational total impingement efficiency using LEWICE 1.6 (modified 27-bin
version) and E g is the experimental total impingement efficiency. A few E 1 exceeded
1.0 due to the presence of artificial impingement tails.

Data repeatability for the 2003 impingement tests, conducted with the NACA 23012 airfoil, and
the five glaze ice shapes are shown in figures 72 through 82 and in table 9. The maximum
variation (Rmax) in g, from the average of repeated runs (3 to 4 per test case) was less than 10%

for 52 out of 56 cases tested. In addition, the maximum variation in the area under the
impingement curve (Rarpa), was less than 10% for 55 out of 56 cases tested. These values
indicate very good test repeatability. In only 4 out of the 56 tested cases, Rvyax was between
10% and 13%, and in one case, the value of Rarga Was between 10% and 13%.

Figure 83 shows the repeatability of the experimental setup by comparing experimental
impingement data obtained with the MS(1)-0317 airfoil during five IRT entries spanning the
time period from 1985 to 2003 [6, 13, 17, and 29]. The results are for MVDs in the range of 19
to 21 um and show very good agreement in magnitude and overall trend. LEWICE analysis data
for an MVD of 20 um are also provided for comparison and are in very good agreement with the
experimental data.
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B NACA 23012 Airfoil

0.9 — AOA =2.5deg., MVD = 20 um

R,rea = 5.64%, R o = 4.91%

B O Average

0.8 — Run# 418

N N Run# 419

— ——=-——== Run# 420

0.7 —

Local Impingement Efficiency (B)
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<--Upper Surface | Lower Surface -->

Surface Distance from Highlight (mm)

Figure 72a. NACA 23012 Repeatability, MVD =20 um
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Figure 72b. NACA 23012 Repeatability, MVD = 52 um
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E NACA 23012 Airfoil

AOA =2.5deg., MVD = 111 um
Rgrea = 7:61%, R\oy = 9.45%
o] Average
Run# 406
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——-——=-- Run# 408

Local Impingement Efficiency ()
|

0.2 —
0.1 —
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Figure 72c. NACA 23012 Repeatability, MVD =111 um

1
4 NACA 23012 Airfoil
0.9 — AOA =2.5deg., MVD = 154 um
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Figure 72d. NACA 23012 Repeatability, MVD = 154 um
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NACA 23012 Airfoil

AOA =2.5deg., MVD = 236 um
Rarea = 5:30%, R o, = 4.79%
o] Average
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Figure 72e. NACA 23012 Repeatability, MVD =236 um

E NACA 23012 with
09 — 5-min. Glaze Ice Shape
AOA = 2.5 deg., MVD = 20 im
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Local Impingement Efficiency (B)
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Figure 73a. NACA 23012 With 5-min Glaze Ice Repeatability, MVD = 20 um
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8 NACA 23012 with
09 — 5-min. Glaze Ice Shape

AOA =2.5deg., MVD =52 um
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Figure 73b. NACA 23012 With 5-min Glaze Ice Repeatability, MVD = 52 um
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Figure 73c. NACA 23012 With 5-min Glaze Ice Repeatability, MVD =111 um
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B NACA 23012 with
09 5-min. Glaze Ice Shape
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Figure 73d. NACA 23012 With 5-min Glaze Ice Repeatability, MVD = 154 um
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Figure 73e. NACA 23012 With 5-min Glaze Ice Repeatability, MVD = 236 um
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B NACA 23012 with
09 | 10-min. Glaze Ice Shape
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Figure 74a. NACA 23012 With 10-min Glaze Ice Repeatability, MVD = 20 um
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Figure 74b. NACA 23012 With 10-min Glaze Ice Repeatability, MVD = 52 um

118



NACA 23012 with
10-min. Glaze Ice Shape

0.9 —
AOA =2.5deg., MVD = 111 um
7 Rarea = 6.92%, Ry = 6.40%
0.8 — O Average
Run# 565
1 === == Run# 566
——-——=- Run# 567

o
3
|

o
=)
|

o
13
|

o
=
|

=}
w
|

Local Impingement Efficiency ()

D o Sy

f T ‘ T ‘ 1T ‘ 1T ‘ 1T ‘ 1T ‘ TT

-120 -80 -40 0 40 80 120 160 200 240
<--Upper Surface | Lower Surface -->

Surface Distance from Highlight (mm)

Figure 74c. NACA 23012 With 10-min Glaze Ice Repeatability, MVD =111 pum

1
4 NACA 23012 with
09 10-min. Glaze Ice Shape
) AOA =25 deg., MVD = 154 um
b Rarea = 1.35%, Ryyay = 7.17%
0.8 —| o Average
—_ Run# 615
= = === Run# 616
——=-——-- Run# 617
3 07 — un;
c
) i
)
= 0.6 —
=
i}
w i
c
L 05—
£
[ -
(o)}
£ 04—
[oR
g 4
© 0.3 —
(&
o -
-
0.2 —
0.1 —
) &G

&

‘H\‘H\‘H\‘H‘H\‘H\‘\H‘\H‘\H‘

-160 -120 -80 -40 0 40 80 120 160 200 240 280 320 360
<-- Upper Surface | Lower Surface -->

Surface Distance from Highlight (mm)

Figure 74d. NACA 23012 With 10-min Glaze Ice Repeatability, MVD = 154 um
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Figure 74e. NACA 23012 With 10-min Glaze Ice Repeatability, MVD = 236 um
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Figure 75a. NACA 23012 With 15-min Glaze Ice Repeatability, MVD =20 um
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NACA 23012 with
15-min. Glaze Ice Shape
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Figure 75b. NACA 23012 With 15-min glaze Ice Repeatability, MVD = 52 um
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Figure 75¢c. NACA 23012 With 15-min Glaze Ice Repeatability, MVD = 111 um
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i NACA 23012 with
15-min. Glaze Ice Shape
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Figure 75d. NACA 23012 With 15-min Glaze Ice Repeatability, MVD = 154 um
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Figure 75e. NACA 23012 With 15-min Glaze Ice Repeatability, MVD =236 um
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b NACA 23012 with
0.9 — 22.5-min. Glaze Ice Shape
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Figure 76a. NACA 23012 With 22.5-min Glaze Ice Repeatability, MVD = 20 um
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Figure 76b. NACA 23012 With 22.5-min Glaze Ice Repeatability, MVD = 52 um

123



NACA 23012 with
22.5-min. Glaze Ice Shape

0.9
AOA =2.5deg., MVD = 111 pm
g Rarea = 5-33%, Rypay = 7.09%
08 O Average

Run# 427

- 7N === Run# 428
——=-——=-- Run# 429

Local Impingement Efficiency (B)

-120 -80 -40 0 40 80 120 160 200
<-- Upper Surface | Lower Surface -->

Surface Distance from Highlight (mm)

Figure 76c. NACA 23012 With 22.5-min Glaze Ice Repeatability, MVD =111 um

b NACA 23012 with

09 — 22.5-min. Glaze Ice Shape

AOA = 2.5 deg., MVD = 154 pim
Rarea = 3-61%, Rya = 8.20%

@] Average

Run# 427

————— Run# 428

——=-——-- Run#429

Local Impingement Efficiency (B)

-120 -80 -40 0 40 80 120 160 200 240 280 320
<-- Upper Surface | Lower Surface -->

Surface Distance from Highlight (mm)

Figure 76d. NACA 23012 With 22.5-min Glaze Ice Repeatability, MVD = 154 um
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Figure 77a. NACA 23012 With 45-min Glaze Ice Repeatability, MVD =20 um
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Figure 77c. NACA 23012 With 45-min Glaze Ice Repeatability, MVD = 111 um
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Figure 77e. NACA 23012 With 45-min Glaze Ice Repeatability, MVD =236 um
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Figure 78b. NACA 23012 With 7.5-min Mixed Ice Repeatability, MVD = 52 um
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Figure 78d. NACA 23012 With 7.5-min Mixed Ice Repeatability, MVD = 154 um

129



b NACA 23012 with

0.9 — 7.5-min. Mixed Ice Shape
i AOA =2.5 deg., MVD = 236 um
Rarea = 2.27%, Ryyay = 5.04%
0.8 — (e} Average

Run# 649
————— Run# 650

Local Impingement Efficiency (B)

-150 -100 -50 0 50 100 150 200 250 300 350
<--Upper Surface | Lower Surface -->

Surface Distance from Highlight (mm)

Figure 78e. NACA 23012 With 7.5-min Mixed Ice Repeatability, MVD = 236 um

b NACA 23012 with
09 — 15-min. Mixed Ice Shape

AOA = 2.5 deg., MVD = 20 m
Rarea = 3-23%, Rypgy = 2.53%

0.8 — (@] Average

Run# 528

1 |===== Run# 529

0.7 — ——-——=-- Run#534
0.6 —
0.5 —

Local Impingement Efficiency (B)

-160  -120 -80 -40 0 40 80 120 160 200
<-- Upper Surface | Lower Surface -->

Surface Distance from Highlight (mm)

Figure 79a. NACA 23012 With 15-min Mixed Ice Repeatability, MVD =20 um
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Figure 79b. NACA 23012 With 15-min Mixed Ice Repeatability, MVD = 52 um
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Figure 79e. NACA 23012 With 15-min Mixed Ice Repeatability, MVD = 236 um
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Figure 80a. NACA 23012 With 22.5-min Mixed Ice Repeatability, MVD = 20 um
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Figure 80b. NACA 23012 With 22.5-min Mixed Ice Repeatability, MVD = 52 pm
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Figure 80c. NACA 23012 With 22.5-min Mixed Ice Repeatability, MVD =111 um
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Figure 80d. NACA 23012 With 22.5-min Mixed Ice Repeatability, MVD = 154 um
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Figure 80e. NACA 23012 With 22.5-min Mixed Ice Repeatability, MVD = 236 um
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Figure 81a. NACA 23012 With 45-min Mixed Ice Repeatability, MVD =20 um
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Figure 81b. NACA 23012 With 45-min Mixed Ice Repeatability, MVD = 52 um
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Figure 81c. NACA 23012 With 45-min Mixed Ice Repeatability, MVD =111 um
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Figure 81le. NACA 23012 With 45-min Mixed Ice Repeatability, MVD = 236 um
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Figure 82a. NACA 23012 With 45-min Rime Ice Repeatability, MVD =20 um
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Figure 82b. NACA 23012 With 45-min Rime Ice Repeatability, MVD = 52 um
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Figure 82c. NACA 23012 With 45-min Rime Ice Repeatability, MVD =111 um
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Figure 82d. NACA 23012 With 45-min Rime Ice Repeatability, MVD = 154 um
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Figure 82e. NACA 23012 With 45-min Rime Ice Repeatability, MVD =236 um
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7.3.2 Experimental and LEWICE Impingement Data.

Comparisons of LEWICE and experimental impingement data are provided in figures 84a
through 94e for all tested configurations. The experimental data presented were obtained by
averaging results from repeated tests conducted for each geometry and test condition. All
experimental data presented were reduced with the CCD reflectometer. Impingement data
reduced using the laser reflectometer were practically identical to those obtained with the CCD
data reduction system. The main difference between the CCD and laser reflectometer data
occurred in regions between the ice shape horns where creases were present in the blotter paper.
The laser reflectometer, which relies on point reflectance measurements, was more sensitive to
the crease formation than the CCD system. Consequently, the impingement curves obtained
from the laser reflectometer data reduction were not as smooth in the region between the ice
shape horns as those from the CCD system. The LEWICE impingement curves were generated
by NASA personnel using LEWICE 1.6. As discussed in section 6, the LEWICE analyses were
performed by NASA personnel using 27-bin approximations of the spray cloud drop
distributions measured with the FSSP and OAPs during the experimental investigation.
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Figure 84a. Impingement Efficiency Distribution for NACA 23012 Airfoil
(c=361in., V=175 mph, AOA = 2.5°, MVD =20 pm)
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Figure 84b. Impingement Efficiency Distribution for NACA 23012 Airfoil
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Figure 84c. Impingement Efficiency Distribution for NACA 23012 Airfoil
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7.3.2.1 NACA 23012 Airfoil.

On the clean NACA 23012 airfoil, good agreement between experiment and analysis was
observed for the 20-um case. For the larger MVDs, however, LEWICE predicted higher total
water impingement and greater impingement limits compared to the experimental data. Total
impingement efficiency based on the experimental data, ranged from 18.7% to 56.2% as the
MVD was increased from 20 to 236 um compared to 17.4% to 84% for LEWICE.

7.3.2.2 NACA 23012 Airfoil With Simulated Glaze Ice Shapes.

Overall, the trends in the computed and experimental impingement curves were in good
agreement for most of the ice shapes tests. However, for the large MVDs of 52, 111, 154, and
236 um, the efficiency and extent of water impingement predicted by LEWICE were
considerably greater than those obtained from the experiment. Even for the 20-um case, the
LEWICE impingement efficiencies near the leading edge (the region between ice horns) were
higher than the experimental values by approximately 0.1 to 0.25, depending on surface location.
Although the exact reason for the observed differences is not known, potential contributors
include the difference in the experimental and computed flowfields, as shown in figures 62
through 66, and small variations in cloud uniformity within the region of measurement.

Experimental, E,, and LEWICE, E,, total impingement efficiencies for the five glaze ice

shapes are provided in table 10. Note that in all cases, E, and E, increased as MVD increased,
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albeit at different rates. For the five MVDs tested, the maximum E, was obtained with the

45-min ice shape, and the minimum was obtained with the 10-min glaze ice shape. The results
also demonstrate the differences between LEWICE and experimental total impingement

efficiencies, AE = E, —E,. For the 20-um case, AE ranged from -0.002 to 0.05, depending on

the test configuration. For the large drop cases (52, 111, 154, and 236 um), AE ranged from
0.24 to 0.69 and increased as the ice shape size increased from 5-min to 22.5-min glaze ice
shape. The observed difference between LEWICE and the experimental impingement
efficiencies was mainly due to the impingement region downstream of the ice horns, which was
considerably overpredicted by LEWICE. For the 45-min ice shape, AE was smaller than the
remaining four glaze ice shapes because the horns of this ice shape shielded the airfoil surface
downstream of the horns from direct drop impingement. LEWICE and experimental
impingement data downstream of the horns were in good agreement. For the large MVDs
(greater than 20 pum), the maximum total impingement efficiency computed with LEWICE
corresponded to the 22.5-min glaze ice shape, whereas the experimental data showed that
maximum total impingement was obtained with the 45-min glaze. The main reason for the
difference between the experiment and the analysis is due to an interpolation method used in
LEWICE to compute impingement efficiency between adjacent surface points, as discussed in
section 7.3.2.5.

7.3.2.3 NACA 23012 Airfoil With Simulated Mixed Ice Shapes.

The trends and other notable features exhibited by the computational and experimental
impingement are as follows:

o The total impingement efficiency and the extent of impingement limits increased as the
MVD increased. For the 52-, 111-, 154-, and 236-um MVD cases, LEWICE
significantly overpredicted both the impingement limits and the local impingement
efficiencies. For the 20-um case, LEWICE predicted higher local impingement
efficiency over the ice shape region by up to 0.2, depending on surface location.

J Total impingement efficiencies based on E, and E, increased as MVD increased, albeit
at different rates.

o For MVD of 20 um, AE ranged from -0.002 to 0.05, while for the larger MVDs AE

ranged from 0.27 to 0.56. For most of the large MVDs, AE increased as the ice shape
size increased.

o Referring to figures 93b through 93e, the secondary impingement peaks on the upper and
lower surfaces (indicated by the symbols A and B, respectively) were due to direct
impingement by the large drops. Note that the peaks predicted by LEWICE (A1 and B1)
were considerably higher than the experimental peaks (A2 and B2). The main reason for
the difference is drop splashing, which is not simulated in LEWICE. Another interesting
observation is that the experimental impingement peak (B2) on the lower surface
occurred downstream of the peak predicted by LEWICE. A possible reason for this
difference is drop breakup downstream of the lower horn, which is not simulated in
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LEWICE. Studies performed at WSU (not presented in this report) with simulated ice
shapes featuring large horns have shown that large drops could breakup downstream of
the horns. The trajectories of the drop fragments (smaller drops) are affected by the shear
flow behind the ice horn and, as a result, impinge further downstream compared to the
impingement location without drop breakup. In addition, because the airfoil surface
slope is lower at the point where the drop fragments impinge, the incoming water mass is
spread over a larger surface area resulting in lower local impingement efficiency.

7.3.2.4 NACA 23012 Airfoil With Simulated Rime Ice Shape.

For the 45-min rime ice shape, the total impingement efficiency increased as the MVD size
increased. LEWICE predictions of the local impingement efficiency and extent of water
impingement, however, were considerably greater than the experiment, especially for the larger
MVDs. For all MVDs tested, LEWICE overpredicted the total impingement efficiency by 0.06
to 0.36.

7.3.2.5 Comments on the Difference Between Experimental and LEWICE Results.

For the large MVD cases (52, 111, 154, and 236 um) involving the 10-min glaze, 15-min glaze,
22.5-min glaze, 15-min mixed, 22.5-min mixed, and 45-min mixed ice shapes, the LEWICE data
corresponding to the region immediately downstream of the horns (region A, figure 86b)
exhibited a gradual decrease in g compared to the sharp drop seen in the experimental data. The

reason for this difference is attributed to a numerical artifact in LEWICE. A detailed explanation
is provided below.

The interpolation scheme used to calculate collection efficiency at a surface point in LEWICE
can have difficulties for geometries with multiple impingement regions. Multiple impingement
regions can occur on complex ice shapes, highly cambered wings, and multi-element wings. The
method predicts water impingement in some of these cases where, in fact, there is no water
impingement. The problem is due to the way the method calculates collection efficiency and
assigns it to a surface point.

Collection efficiency is calculated as the distance between two adjacent impacting particles
divided by the distance between these trajectories at the freestream release point. The collection
efficiency at any surface point located between the impact points is calculated using the
collection efficiency generated from these two particles.

The interpolation problem occurs when the two adjacent impacting particles are not part of the
same impact region, but of two different impingement regions. In these cases, the trajectories are
actually the limiting, or tangent, trajectories of two distinct impingement regions. For example,
one trajectory represents the aft impingement limit of a forward impingement region and one
trajectory represents the forward limit of the aft impingement region. In these cases, the
collection efficiency between the two regions should be zero, but LEWICE interpolates values
linearly between the two regions from the value at the limits of both regions. Solutions to this
problem are complicated because it is difficult to differentiate between two distinct smaller
impingement regions and one larger one. One approach for solving the impingement efficiency
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interpolation issue in LEWICE is the use of the Monte-Carlo method for computing drop
impingement efficiency. This method is presented in appendix E along with computed
impingement curves obtained with a Monte-Carlo trajectory code developed at NASA Glenn.
The computed impingement curves show the same sharp drop-off behind the ice horns as those
from the experimental results. Note that Monte-Carlo computations are very intensive due to the
large number of drops that are needed to accurately compute the impingement characteristics, as
discussed in appendix E.

One crucial point to note is that although these errors appear large for some cases, they probably
do not greatly affect the ice shape generation in LEWICE. This is because the observed errors
occur mostly when there is a mismatch between the drop size used to generate the ice shape and
the one used for the comparison to the experimental data. When the collection efficiencies are
compared using the same drop size for the experimental data and to generate the ice shape, the
agreement is good. For larger drop sizes, the error increases mostly in the region aft of the ice
shape due to the larger drops hitting further back on the wing and forming a secondary
impingement region.

The falloff in agreement between the experimental and LEWICE collection efficiencies for the
case of drops larger than those used to accrete the ice shape is due to a close coupling between
the icing and impingement limits for ice shapes. In general, as the ice shape generation
progresses, the impingement limits, which are directly related to drop size, and the icing limits
converge. This implies that the drops used to generate the ice shape do not impact aft of the
icing limit. For this drop size, generally, there is only a single impingement region with no
associated interpolation errors. When the drop size is increased from this value, the drops begin
to hit aft of the ice shape, which results in secondary impingement regions. The formation of
these secondary impingement regions causes interpolation errors between the two impingement
regions, as described above. Therefore, there is an observed discrepancy in the comparison to
the experimental data.

Other potential reasons for the discrepancies between the analysis and the experimental
impingement data include the following:

o There are differences between the actual and the computed flowfield, particularly in the
region between the horns. Also, flow separation downstream of the horns is not well
modeled by potential flow models such as the one used in LEWICE. For the large ice
shapes, the pressure data presented indicate considerable differences between the
LEWICE and the experimental flowfields.

J Drop splashing was observed during large drop impingement experiments in references
6 and 7. The effect of splashing reduced water mass deposited on the surface of the

airfoil. LEWICE does not model the effects of large drop splashing.

o Errors associated with the experimental investigation
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7.3.3 The Effect of Geometry.

In this section, the change in the impingement characteristics as a function of ice shape size is
discussed. The ice accretions considered are the five progressively larger (5 to 45 min) glaze ice
shapes and the four mixed condition cases ranging from the 7.5- to the 45-min ice shapes. In
addition, the differences between the impingement efficiencies of the three types of ice shapes
tested are compared.

7.3.3.1 NACA 23012 Airfoil With Simulated Glaze Ice Shapes.

Figure 95 shows the change in water impingement efficiency as the glaze ice shapes become
progressively larger in size, while the MVD is kept constant. The main observations from the
experimental results presented are as follows:

o The extent of the water impingement in the vicinity of the leading edge increased
monotonically as the size of the glaze ice shape was increased. For the 5-min glaze ice,
the extent of water impingement over the leading edge ranged from approximately
-25 (upper surface) to +25 mm (lower surface). For the 45-min ice shape the
impingement extent was from -80 to +60 mm.

. Multiple local impingement peaks were observed between the ice horns. The magnitude
of the peaks decreased near the center of the ice shape (s = 0 mm) and increased near the
horn tips as the ice shapes became progressively larger.

o For all MVD cases, the maximum local impingement efficiency of the clean airfoil was
greater than the maximum impingement efficiency of the ice shapes tested.

. Secondary impingement peaks were observed over the lower and upper surfaces of the
airfoil downstream of the ice horns. These secondary peaks occurred between -30 and
-90 mm (upper surface) and +30 and +60 mm (lower surface). The secondary
impingement peaks decreased in magnitude and extent as the ice shapes increased in size
from 5 to 15 min. For the 22.5- and 45-min ice shapes, no secondary peaks were
observed immediately downstream of the horns due to the large horn size.

. For all MVDs tested, the maximum local impingement efficiency of the 45-min ice shape
was less than the other four ice shapes.

. For all MVD cases, the total water impingement efficiency decreased in the following
sequence: clean airfoil, 5-min glaze ice shape, and 10-min glaze ice shape. For the
15-,22.5-, and 45-min ice accretions, the total impingement efficiency increased as the
ice shape size was increased, except for the 236-um case. For all MVD cases, the
maximum total impingement efficiency was obtained with the 45-min ice shape, while
the minimum total impingement efficiency was obtained with the 10-min glaze ice shape.
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Figure 95. Impingement Efficiency Variation With Glaze Ice Test Geometry:
Experimental Data, All MVDs

7.3.3.2 NACA 23012 Airfoil With Simulated Mixed Ice Shapes.

Figure 96 shows the change in impingement efficiency as the mixed ice shapes become
progressively larger in size, while the MVD is kept constant. The key observations from the

experimental results presented are as follows:

The coverage of water impingement in the airfoil leading-edge vicinity increased
monotonically as the size of the mixed ice shape increased from 7.5- to 22.5-min. For the
7.5-min mixed ice shape, the extent of water impingement over the leading edge ranged
from approximately -20 (upper surface) to +20 mm (lower surface). For the 22.5-min ice
shape, the impingement extent was from -45 to +35 mm. For the 45-min mixed ice
shape, the impingement extent increased substantially, from -10 mm to +90 mm. These
limits on both surfaces shifted toward the upper surface, a trend not observed with the

smaller ice shapes (7.5 to 22.5 min).
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Multiple local impingement peaks were observed between the ice horns. The magnitude
of the peaks decreased near the center of the ice shape (s = 0 mm) and increased near the
horn tips as the ice shapes became progressively larger.

For most MVDs tested, the maximum local impingement efficiency increased as the ice
shape size increased.

Maximum local impingement efficiency for the clean airfoil was greater than all mixed
ice shape cases and for all MVDs tested (except for the 45-min 52-um case).
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Figure 96. Impingement Efficiency Variation With Mixed Ice Test Geometry:
Experimental Data, All MVDs

Secondary impingement peaks were found downstream of the ice shapes between -30 and
-80 mm along the airfoil upper surface and from +30 to +300 mm over the lower surface
of the airfoil. The extent of the impingement peaks shifted downstream along both upper
and lower surfaces as the ice shape size was increased.

For most of the mixed ice shapes tested, the total impingement efficiency increased as the
size of the ice accretion increased from 7.5 to 45 min. The 15-min mixed ice shape with
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MVDs of 52, 111, and 154 um had higher total impingement efficiency than its larger

counterparts.
all MVDs tested. From table 10, the trends observed among the three types of ice shapes are as

Figure 97 summarizes the impingement efficiency obtained with the 45-min rime ice shape for
follows:

7.3.3.3 Comparison Between Glaze, Mixed, and Rime Ice Shape.
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For all MVDs tested with the 45-min ice shapes, the glaze ice shape had the lowest

maximum local impingement efficiency.

150  -120



Multiple peaks within the ice horns were observed in the glaze and mixed ice shape
cases, while the rime ice shape had a single impingement peak.

The secondary impingement peaks (downstream of the horns) on the glaze ice shapes
shifted downstream from the highlight (s = 0 mm) by similar amounts as the ice shape
size increased, while for the mixed ice shape the peak on the lower surface shifted
significantly more than on the upper surface.

The secondary impingement peaks in the glaze ice shapes tended to flatten out as the ice
shape increased in size from 5 to 45 min. On the contrary, the secondary peaks in the
mixed ice shape impingement curves remained distinctive as the ice shape increased in
size from 7.5 to 45 min.

7.3.4 The Effect of MVD.

The effect of MVD on impingement efficiency for all tested ice shapes is shown in figures 98
through 110 and in table 10. In figures 98 and 99, local impingement efficiency () is plotted
versus surface distance from the highlight. In figures 100 through 110, impingement efficiency
(horizontal axis) is plotted versus y/c and is related to model geometry to better illustrate the
relation between impingement efficiency and body location.

The experimental results demonstrate the following trends.

In general, local impingement efficiency and extent for the tested configurations
increased as the cloud MVD was increased from 20 to 236 um. Note that for the 45-min
glaze ice shape, the impingement limits did not change with MVD, because the large
horns of this ice shape prevented impingement downstream of the horns for the AOA.
The incremental growth in g (difference in g between adjacent MVD cases) decreased as
the MVD was increased. The most growth in g was observed between 20 and 52 pm and

between 52 and 111 pm. For most of the larger MVDs, however, the growth in
decreased.

For all glaze geometries, the change in total impingement efficiency between the 20- and
52-um MVD cases, defined as AE = E,, — E,,, ranged from 0.065 to 0.166, depending
on the glaze ice shape. The incremental growth in total impingement efficiency as the
MVD was increased from 52 to 111 um ranged from 0.057 to 0.114. Further increases in

MVD from 111 to 154 um, and then from 154 to 236 um, resulted in total impingement
efficiency increments of 0.042 to 0.100 and 0.027 to 0.093, respectively.

For all mixed ice shape geometries, the change in total impingement efficiency between
the 20- and 52-um MVD cases ranged from 0.102 to 0.140, depending on the ice shape.
The incremental growth in total impingement efficiency as the MVD was increased from
52 to 111 pm ranged from 0.086 to 0.109. Further increases in MVD from 111 to
154 pm, and then from 154 to 236 um, resulted in total impingement efficiency
increments of 0.101 to 0.117 and 0.002 to 0.047, respectively.
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For the 45-min rime ice shape, the increments in total impingement efficiency as the

MVD was increased from 20 to 236 um were 0.143, 0.101, 0.079, and 0.118.
The results shown in figures 98 and 99 indicate multiple impingement peaks between the

ice shape horns in the glaze and mixed ice shape cases. In general, these peaks became

more prominent as the MVD and the size of the ice were increased.
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Figure 100. Experimental y/c vs Beta, NACA 23012
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Figure 101. Experimental y/c vs Beta, NACA 23012 With 5-min Glaze Ice Shape
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Figure 102. Experimental y/c vs Beta, NACA 23012 With 10-min Glaze Ice Shape
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Figure 103. Experimental y/c vs Beta, NACA 23012 With 15-min Glaze Ice Shape
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Figure 104. Experimental y/c vs Beta, NACA 23012 With 22.5-min Glaze Ice Shape
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Figure 105. Experimental y/c vs Beta, NACA 23012 With 45-min Glaze Ice Shape
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Figure 106. Experimental y/c vs Beta, NACA 23012 With 7.5-min Mixed Ice Shape
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Figure 107. Experimental y/c vs Beta, NACA 23012 With 15-min Mixed Ice Shape
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Figure 108. Experimental y/c vs Beta, NACA 23012 With 22.5-min Mixed Ice Shape
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Figure 109. Experimental y/c vs Beta, NACA 23012 With 45-min Mixed Ice Shape
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Figure 110. Experimental y/c vs Beta, NACA 23012 With 45-min Rime Ice Shape
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7.4 DROP TRAJECTORIES.

Drop trajectories for selected test cases are shown in figures 111 through 114 to elucidate the
impingement distribution trends observed with the iced configuration. The drop trajectories
presented are for the clean NACA 23012 airfoil, the three 45-min ice shapes, and all five MVDs.
All trajectories were computed with the LEWICE 1.7 code using a single drop-size set equal to
the MVD of the experimental drop distribution.

a. MVD =20 um

b. MVD = 52 um

e. MVD = 236 ym

Figure 111. Particles Trajectories: Figure 112. Particles Trajectories:
NACA 23012 Airfoil NACA 23012 With 45-min Glaze Ice
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e. MVD =236 ym

Figure 113. Particles Trajectories: Figure 114. Particles Trajectories:
NACA 23012 With 45-min Mixed Ice NACA 23012 With 45-min Rime Ice
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The drop trajectories shown in figures 111 through 114 for the 20-um case demonstrate
considerable deflection in the vicinity to the ice shapes. The deflection of the trajectories
became progressively smaller as the MVD size increased. At a drop size of 236 um, the
trajectories calculated for the 45-min mixed case were practically straight.

The experimental and computed impingement distributions shown exhibit several peaks in the
region between the ice horns in the glaze and mixed ice shape cases. The trajectory simulations
can be used to explain how these peaks form. For example, from the trajectory results shown in
figure 112e, it is evident that near point A on the upper ice horn the impingement efficiency will
be relatively high since the surface is nearly normal to the incoming drops. However, as the
drops hit between locations A and B the impingement efficiency decreases due to the local slope
of the surface. In the region between locations B and C the impingement efficiency increases or
decreases depending on local slope.

The formation of the peaks in the experimental results was due to direct drop impingement as in
the LEWICE case, but also due to potential water reimpingement due to drop splashing. The
version of LEWICE used for the analysis did not have a splashing model so the deposition due to
reimpingement was not included. Additional drop trajectories are provided in appendix D.

8. SUMMARY AND CONCLUSIONS.

Extensive wind tunnel tests were conducted at the National Aeronautics and Space
Administration (NASA) Glenn Icing Research Tunnel (IRT) to expand the water drop
impingement database for simulated ice shape configurations and for supercooled large drop
(SLD) conditions. Tests were conducted with an MS(1)-0317 airfoil, and with a clean and iced
National Advisory Committee for Aeronautics (NACA) 23012 airfoil. The iced configurations
included ten simulated ice shapes that were defined with the NASA Glenn LEWICE 2.2 ice
accretion code (LEWICE). The ice accretions tested with the NACA 23012 airfoil included 5-,
10-, 15-, 22.5-, and 45-min glaze ice shapes, 7.5-, 15-, 22.5-, and 45-min mixed ice shapes, and a
45-min rime ice shape. Test conditions included freestream velocity of approximately 175 mph,
2.5 degrees AOA, and cloud MVD of 20, 52, 111, 154, and 236 um. Each experimental
condition was repeated 3 to 4 times to establish a measure of test repeatability. Comparisons of
experimental with impingement analysis data obtained with the NASA Glenn LEWICE
(modified 27-bin, version 1.6) ice accretion code were performed. Below is a summary of key
findings based on the work performed.

8.1 TEST REPEATABILITY.

o Repeated drop distribution measurements showed that the variation in MVD was
+0.5 um from the average for the 20-um cloud, £2 um for the 52-um cloud, 5 um for
the 111- and 154-um clouds, and £10 pm for the 236-pum cloud.

o For 55 of the 56 cases presented, the variation in total impingement efficiency of repeated
impingement tests (3 to 4 tests) from the average was less than 10%. The number of
repeated tests performed per test condition was not sufficient to establish a statistical
average. However, the variations recorded were consistent for the 389 impingement tests
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conducted with the two airfoils, ten ice shapes, and the collector device. In addition,
impingement data for the MS(1)-0317 airfoil obtained during the 2003 IRT entry were in
very good agreement with the data obtained for similar test conditions during five
previous IRT entries. Thus, it would be reasonable to conclude that the experimental
method used was repeatable.

8.2 PRESSURE DATA.

Comparison of experimental and LEWICE pressure distributions for the clean NACA 23012
airfoil and for most of the ice shapes tested were in good agreement. The main differences in the
LEWICE and the experimental pressure distributions were observed with the large glaze ice
shapes. In the 15- and 22.5-min glaze ice shape cases, LEWICE did not match the experimental
pressure data over the forward 10% to 20% chord. For the 45-min ice shape, considerable
disagreement between the experimental and the LEWICE pressure distributions were observed
for the entire upper and lower surfaces. The observed discrepancy between experiment and
analysis was due to the limitations of the potential method used in LEWICE in simulating
viscous flowfields with extensive flow separation.

8.3 EXPERIMENTAL IMPINGEMENT DATA.

The impingement data for the clean NACA 23012 airfoil exhibited the following trends:

° Maximum impingement efficiency of 56%, 71%, 85%, 92%, and 95% for MVDs of 20,
52, 111, 154, and 236 um, respectively. The corresponding values of total impingement
efficiency were 19%, 30%, 42%, 51%, and 56%.

J The upper and lower impingement limits increased considerably as the MVD was
increased. For the 236-um case, the upper impingement limit extended to 11.6% chord

and the lower impingement limit to 40.7% chord. Impingement limits locations for the
clean NACA 23012 airfoil are shown in figure 115.

. For the large MVDs of 111, 154, and 236 um, the growth in maximum and total
impingement efficiencies and in the extent of impingement was reduced as the MVD was
increased from 111 to 236 pum.

8.3.1 Glaze Ice Shapes.

The impingement data for the NACA 23012 airfoil with the five glaze ice shapes exhibited the
following trends:

o Considerable impingement, characterized by multiple peaks, was observed in the leading-
edge region between the ice horns. The impingement efficiency was, in general, greater
near the horn tips than in the cavity between the horns, particularly for the larger ice
shapes.

. Impingement efficiency and extent increased while MVD increased. Summary of
chordwise locations of the impingement limits are provided in figures 116 through 120.
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Figure 115. Experimental Impingement Limits for NACA 23012 Airfoil at AOA =2.5°

o
H
o
o
H

0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

0.25 _LLLLLLLL|J_LLLLLL|I

0.2
0.15
0.1
0.05

] Location of Maximum Thickness

’J__r Upper (Suction) Surface

|IIII|IIII|IIII|IIII|IIIIC|>IIII|IIII|IIII|IIII|IIII|
|

-0.05 T Lower (Pressure) Surface
|
0.1 I ! AOA=2.5 deg., MVD=20 um
-0.15 I AOA=2.5 deg., MVD=52 um
| H — — — AOA=2.5deg., MVD=111 um
-0.2 — — AOA=2.5deg., MVD=154 um
I —-——  AOA=2.5deg., MVD=236 um
-0.25 II|IIIIIIII'I TTTTTTT I|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|IIIIIIIII|

o

A 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
XIC
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Figure 119. Experimental Impingement Limits for NACA 23012 Airfoil With 22.5-min Glaze
Ice Shape at AOA =2.5°
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Figure 120. Experimental Impingement Limits for NACA 23012 Airfoil With 45-min Glaze Ice
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o In general, for all MVD, cases the total impingement efficiency decreased in the
following sequence: clean, 5-min glaze ice shape, 10-min glaze ice shape. For the 15-,
22.5-, and 45-min glaze ice shapes, however, the total impingement efficiency increased
as the size of the ice shape was increased. For all MVD cases, the maximum total
impingement efficiency was obtained with the 45-min ice shape while the minimum total
impingement efficiency was obtained with the 10-min glaze ice shape.

o For the 5-, 10-, and 15-min ice shapes, considerable impingement was observed on the
upper and lower airfoil surfaces, downstream of the horns for MVDs, in the range of 52
to 236 um. The efficiency and extent of the impingement decreased as the horn size was
increased. For the 22.5- and 45-min ice shapes a sharp drop in impingement downstream
of the horns was observed due to the horn shielding effect.

8.3.2 Mixed Ice Shapes.

The impingement data for the NACA 23012 airfoil with the four mixed ice shapes exhibited the
following trends:

J Multiple impingement peaks were observed in the leading-edge region between the ice
horns. The peak within the cavity area of the larger ice shapes was smaller than the
impingement peaks obtained near the tip of the ice horns.

o In general, total impingement efficiency for all tested mixed ice shapes was lower than
for the clean airfoil.

o Impingement efficiency and extent increased as the MVD was increased. For each
MVD, the minimum total impingement efficiency was obtained with the 7.5-min mixed
ice shape.

J The upper and lower impingement limits increased as the MVD was increased for all

mixed ice shape cases. The upper impingement limits for each MVD were very similar
for all ice shapes. The upper impingement limit was in the range of 5% to 8%, 7% to 9%,
10% to 11%, 12% to 13%, and 13% to 14% of chord for MVDs of 20, 52, 111, 154, and
236 um, respectively. The lower impingement limit was found to be in the range of -4%
to 30%, -3% to 32%, 31% to 36%, 39% to 43%, and 40% to 47% of chord as the MVD
was increased from 20 to 236 um. The negative sign indicates that the impingement limit
was on the ice shape upstream of the airfoil leading edge. Impingement limits locations
for the NACA 23012 airfoil with the mixed ice shapes are shown in figures 121-124.
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Figure 121. Experimental Impingement Limits for NACA 23012 Airfoil With 7.5-min Mixed
Ice Shape at AOA =2.5°
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8.3.3 Rime Ice Shape.

The impingement data for the NACA 23012 airfoil with the rime ice shape exhibited the
following trends:

. Total impingement efficiency for the 45-min rime ice shape was less than the clean
NACA 23012 airfoil for all MVDs, except for the 236-um case.

. Only a single peak was observed in the vicinity of the airfoil leading edge. The
maximum local impingement efficiency for each tested MVD was also lower than the
clean NACA 23012 airfoil.

J Maximum impingement efficiency of the 45-min rime ice shape was 52%, 68%, 74%,
83%, and 91%, while total impingement efficiency was 13%, 27%, 37%, 45%, and 57%
for MVDs of 20, 52, 111, 154, and 236 um, respectively.

o As the MVD increased from 20 to 236 um, for the 45-min rime ice shape, the upper limit
ranged from 6% to 13% chord, while the lower impingement limit ranged from 20% to
40% chord. Impingement limits locations for the NACA 23012 airfoil with 45-min rime
ice shape are shown in figure 125.
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Figure 125. Experimental Impingement Limits for NACA 23012 Airfoil With 45-min Rime Ice
Shape at AOA =2.5°
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8.4 LEWICE VS EXPERIMENTAL IMPINGEMENT DATA.

For the 20-um MVD and the clean airfoil, the LEWICE and the experimental data were in good
agreement. For the iced configurations, however, the predicted impingement efficiency for the
20-um MVD was higher than that obtained experimentally. For the large MVD cases of 52, 111,
154, and 236 pm, the LEWICE impingement data exhibited considerably higher local and total
impingement efficiencies and greater impingement limits compared to the experimental results.
A possible reason for the observed differences between LEWICE and experiment for the large-
MVD cases is drop splashing, which is not simulated in the LEWICE code. Another potential
reason is the difference between the computed and the experimental flowfields, particularly for
the large 22.5- and 45-min glaze ice shapes. Finally, a numerical interpolation scheme used in
LEWICE to compute impingement efficiency, resulted in unrealistic impingement tails
immediately downstream of the large glaze ice shape horns. This further exacerbated the
difference between experimental and computed total impingement efficiencies. It was
demonstrated that the use of the Monte-Carlo method to compute impingement efficiency in
these cases improved the correlation between the experimental and computed results.

8.5 RECOMMENDATIONS FOR FURTHER WORK.

Experiments using advanced imaging methods should be conducted to investigate and document
large drop splashing on large glaze ice shapes to determine the effects of splashed drops on the
impingement characteristics of ice accretions. Of interest is the deposition of splashed drops in
the region between the horns and the trajectories of drops splashing of the horn tips.

Based on the pressure data presented, the LEWICE did not match the experimental results
particularly for the cases of the 22.5- and 45-min ice shapes. A Navier-Stokes analysis should be
performed for the large ice shapes and the computed flowfield should be used in place of the
LEWICE potential flow solution to perform a new impingement analysis.

A drop splash and breakup model should be incorporated in a trajectory code and the model
should be used to compute impingement characteristics for the tested ice shapes. The calibration
of this model may require additional impingement data at lower and higher tunnel speeds than
those available in the 1985-2003 impingement data base.
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APPENDIX A—MODEL GEOMETRY AND PRESSURE PORT COORDINATES
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Table A-1. Coordinates of MS(1)-0317 Airfoil

Lower Surface Upper Surface
x/c y/c x/c y/c x/c ylc | x/c y/c x/c y/c x/c y/c
1 -0.0024 | 0.3147 -0.0695 0.0000 0.0022 | 0.2795 0.0972 1 -0.0024

0.9848 -0.0007 | 0.2977 -0.0690 0.0001 0.0042 | 0.2959 0.0980
0.9725 0.0002 | 0.2811 -0.0684 0.0004 0.0062 | 0.3118 0.0986
0.9603 0.0007 | 0.2643 -0.0676 0.0008 0.0081 | 0.3251 0.0990
0.9469 0.0007 | 0.2473 -0.0667 0.0013 0.0101 | 0.3375 0.0993
0.9332 0.0002 | 0.2306 -0.0657 0.0018 0.0120 | 0.3527 0.0996
09193 -0.0006 | 0.2145 -0.0645 0.0025 0.0139 | 0.3690 0.0997
0.9051 -0.0017 | 0.1982 -0.0631 0.0032 0.0157 | 0.3854 0.0997
0.8907 -0.0032 | 0.1814 -0.0616 0.0040 0.0176 | 0.4020 0.0995
0.8760 -0.0050 | 0.1657 -0.0600 0.0049 0.0193 | 0.4183 0.0992
0.8612 -0.0070 | 0.1502 -0.0582 0.0059 0.0211 | 0.4341 0.0988
0.8460 -0.0093 | 0.1348 -0.0562 0.0068 0.0229 | 0.4498 0.0983
0.8304 -0.0119 | 0.1199 -0.0540 0.0079 0.0246 | 0.4658 0.0975
0.8145 -0.0147 | 0.1055 -0.0516 0.0090 0.0262 | 0.4818 0.0966
0.7981 -0.0177 | 0.0911 -0.0489 0.0101 0.0279 | 0.4971 0.0956
0.7812 -0.0210 | 0.0772 -0.0459 0.0113 0.0295 | 0.5129 0.0943
0.7640 -0.0244 | 0.0640 -0.0427 0.0126 0.0311 | 0.5290 0.0929
0.7443 -0.0283 | 0.0496 -0.0385 0.0138 0.0326 | 0.5446 0.0913
0.7249 -0.0323 | 0.0394 -0.0350 0.0152 0.0341 | 0.5601 0.0896
0.7061 -0.0361 | 0.0323 -0.0321 0.0165 0.0355 | 0.5755 0.0877
0.6903 -0.0392 | 0.0273 -0.0298 0.0180 0.0370 | 0.5908 0.0857
0.6732 -0.0425 | 0.0238 -0.0280 0.0194 0.0383 | 0.6063 0.0836
0.6576 -0.0454 | 0.0213 -0.0267 0.0209 0.0397 | 0.6223 0.0812
0.6433 -0.0479 | 0.0196 -0.0257 0.0224 0.0410 | 0.6383 0.0787
0.6273 -0.0507 | 0.0179 -0.0247 0.0245 0.0428 | 0.6545 0.0760
0.6112 -0.0533 | 0.0162 -0.0236 0.0276 0.0453 | 0.6713 0.0730
0.5956 -0.0557 | 0.0145 -0.0225 0.0320 0.0485 | 0.6871 0.0701
0.5802 -0.0578 | 0.0129 -0.0213 0.0384 0.0527 | 0.7018 0.0673
0.5648 -0.0597 | 0.0113 -0.0201 0.0479 0.0579 | 0.7178 0.0639
0.5488 -0.0615 | 0.0098 -0.0188 0.0588 0.0628 | 0.7353 0.0602
0.5328 -0.0632 | 0.0083 -0.0175 0.0708 0.0671 | 0.7518 0.0565
0.5172 -0.0646 | 0.0070 -0.0160 0.0835 0.0709 | 0.7687 0.0528
0.5014 -0.0658 | 0.0056 -0.0145 0.0967 0.0743 | 0.7858 0.0489
0.4851 -0.0669 | 0.0044 -0.0129 0.1103 0.0774 | 0.8025 0.0451
0.4690 -0.0679 | 0.0034 -0.0112 0.1245 0.0802 | 0.8211 0.0407
0.4529 -0.0687 | 0.0024 -0.0095 0.1391 0.0828 | 0.8389 0.0365
0.4367 -0.0693 | 0.0016 -0.0076 0.1541 0.0852 | 0.8565 0.0324
0.4202 -0.0698 | 0.0010 -0.0057 0.1690 0.0873 | 0.8758 0.0278
0.4061 -0.0701 | 0.0005 -0.0038 0.1843 0.0892 | 0.8946 0.0233
0.3966 -0.0702 | 0.0002 -0.0018 0.2001 0.0910 | 09130 0.0189
0.3824 -0.0703 | 0.0000 0.0002 0.2156 0.0925 | 09312 0.0145
0.3655 -0.0703 0.2313 0.0939 | 0.9486 0.0103
0.3487 -0.0702 0.2473 0.0952 | 0.9658 0.0062
0.3317 -0.0699 0.2633 0.0962 | 0.9827 0.0020
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Table A-2. Coordinates of Active Pressure Ports of MS(1)-0317 Airfoil

Lower Surface Upper Surface

x/c y/c x/c y/c

1.0000 -0.00236 0.0090 0.02624
0.8500 -0.00932 0.0250 0.04282
0.8000 -0.01772 0.0500 0.06098
0.7000 -0.03612 0.0750 0.06941
0.6500 -0.04792 0.1000 0.07465
0.6000 -0.05566 0.1500 0.08515
0.5500 -0.06151 0.2500 0.09516
0.5000 -0.06581 0.3000 0.09797
0.3500 -0.07019 0.3500 0.09956
0.3000 -0.06901 0.4000 0.09953
0.2500 -0.06670 0.4500 0.09827
0.2000 -0.06314 0.5000 0.09557
0.1500 -0.05714 0.5500 0.09131
0.1000 -0.05157 0.6000 0.08358
0.0750 -0.04592 0.6500 0.07596
0.0250 -0.02804 0.7000 0.06726
0.0190 -0.02472 0.7500 0.05654
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Table A-3. Coordinates of NACA 23012 Airfoil

Lower Surface Upper Surface
x/c y/c x/c y/c x/c  ylc x/c y/c x/c y/c x/c y/c
1.0000 -0.0013 | 0.0234 -0.0170 -0.0002 0.0008 | 0.7958 0.0313
0.9783 -0.0038 | 0.0118 -0.0124 -0.0005 0.0031 | 0.8185 0.0282
0.9556 -0.0063 | 0.0096 -0.0112 -0.0005 0.0054 |0.8411 0.0251
0.9330 -0.0088 | 0.0077 -0.0099 -0.0001 0.0076 | 0.8637 0.0220
0.9103 -0.0112 | 0.0059 -0.0085 0.0004 0.0099 | 0.8863 0.0187
0.8876 -0.0135 | 0.0043 -0.0070 0.0012  0.0120 | 0.9088 0.0154
0.8649 -0.0157 | 0.0028 -0.0053 0.0022  0.0141 | 0.9314 0.0120
0.8421 -0.0179 | 0.0015 -0.0034 0.0034 0.0161 | 0.9540 0.0086
0.8194 -0.0200 | 0.0005 -0.0013 0.0099 0.0241 | 0.9765 0.0050
0.7967 -0.0220 0.0280 0.0379 | 1.0000 0.0013
0.7740 -0.0240 0.0483  0.0483
0.7512  -0.0259 0.0696  0.0563
0.7285 -0.0277 0.0916  0.0624
0.7057 -0.0295 0.1140 0.0670
0.6830 -0.0312 0.1365 0.0703
0.6602 -0.0328 0.1592  0.0727
0.6375 -0.0344 0.1820 0.0742
0.6147 -0.0358 0.2048  0.0752
0.5919 -0.0372 0.2276  0.0757
0.5691 -0.0385 0.2504 0.0760
0.5463 -0.0397 0.2732  0.0759
0.5236 -0.0408 0.2961 0.0756
0.5008 -0.0418 0.3189  0.0750
0.4780 -0.0427 0.3417 0.0742
0.4552 -0.0435 0.3645 0.0732
0.4323 -0.0441 0.3873  0.0721
0.4095 -0.0446 0.4100 0.0707
0.3867 -0.0449 0.4328  0.0692
0.3639 -0.0451 0.4556  0.0676
0.3411 -0.0451 0.4783  0.0659
0.3183 -0.0449 0.5011  0.0640
0.2954 -0.0445 0.5238  0.0620
0.2726 -0.0438 0.5465 0.0599
0.2498 -0.0429 0.5692  0.0577
0.2271 -0.0417 0.5919 0.0554
0.2043 -0.0401 0.6146  0.0530
0.1816 -0.0382 0.6373  0.0506
0.1588 -0.0360 0.6600  0.0480
0.1362 -0.0336 0.6826  0.0454
0.1135 -0.0310 0.7053  0.0427
0.0908 -0.0283 0.7280  0.0400
0.0682 -0.0255 0.7506  0.0371
0.0456 -0.0220 0.7732  0.0342
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Table A-4. Coordinates of Active Pressure Ports of NACA 23012 Airfoil

Lower Surface Upper Surface

x/c y/c x/c y/c
1.0000 0.00000 0.0000 0.00886
0.9500 -0.00693 0.0031 0.01589
0.9000 -0.01223 0.0061 0.02001
0.8500 -0.01716 0.0090 0.02329
0.8000 -0.02175 0.0120 0.02623
0.7500 -0.02601 0.0300 0.03921

0.7000  -0.02994 | 0.0400  0.04456
0.6500  -0.03352 | 0.0500  0.04915
0.6000  -0.03673 | 0.0600  0.05306
0.5500  -0.03951 | 0.0800  0.05949
0.5000  -0.04183 | 0.1000  0.06435
0.4500  -0.04360 | 0.1400  0.07075
04000  -0.04474 | 0.1600  0.07272
03500  -0.04512 | 0.1800  0.07408
03000  -0.04456 | 02000  0.07497
0.2500  -0.04289 | 0.2400  0.07589
0.2000  -0.03979 | 0.2600  0.07596
0.1500  -0.03506 | 0.2800  0.07583
0.1000  -0.02938 | 0.3000  0.07548
0.0750  -0.02626 | 03200  0.07496
0.0500  -0.02261 | 0.3400  0.07428
0.0250  -0.01728 | 0.3600  0.07343
0.0100  -0.01121 | 0.3800  0.07245
0.0042  -0.00681 | 0.4000  0.07134
0.0010  -0.00245 | 0.4400  0.06874
0.5200  0.06232
0.5600  0.05859
0.6000  0.05456
0.6400  0.05026
0.6800  0.04571
0.7200  0.04093
0.7600  0.03593
0.8000  0.03071
0.8500  0.02389
0.9000  0.01673
0.9500  0.00919
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Table A-5. Coordinates of NACA 23012 With 5-min Glaze Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c
1.0000 -0.0013 | 0.0375 -0.0213 -0.0025 0.0016 | 0.6826 0.0454
0.9783 -0.0038 | 0.0197 -0.0175 -0.0026 0.0039 | 0.7053 0.0427
09556 -0.0063 | 0.0174 -0.0171 -0.0023 0.0062 | 0.7280 0.0400
0.9330 -0.0088 | 0.0152 -0.0168 -0.0024 0.0084 | 0.7506 0.0371
09103 -0.0112 | 0.0129 -0.0167 -0.0035 0.0104 | 0.7732 0.0342
0.8876 -0.0135| 0.0099 -0.0160 -0.0037 0.0127 | 0.7958 0.0313
0.8649 -0.0157 | 0.0074 -0.0145 -0.0030 0.0151 | 0.8185 0.0282
0.8421 -0.0179 | 0.0059 -0.0128 -0.0016 0.0180 | 0.8411 0.0251
0.8194 -0.0200 | 0.0052 -0.0106 0.0001 0.0214 | 0.8637 0.0220
0.7967 -0.0220 | 0.0037 -0.0088 0.0016 0.0234 | 0.8863 0.0187
0.7740 -0.0240 | 0.0019 -0.0071 0.0037 0.0243 | 0.9088 0.0154
0.7512  -0.0259 | 0.0004 -0.0053 0.0068 0.0242 | 0.9314 0.0120
0.7285 -0.0277 | -0.0008 -0.0034 0.0088 0.0251 | 0.9540 0.0086
0.7057 -0.0295 | -0.0020 -0.0006 0.0223  0.0350 | 0.9765 0.0050
0.6830 -0.0312 0.0280 0.0379
0.6602 -0.0328 0.0483 0.0483
0.6375 -0.0344 0.0696 0.0563
0.6147 -0.0358 0.0916 0.0624
0.5919 -0.0372 0.1140 0.0670
0.5691 -0.0385 0.1365 0.0703
0.5463 -0.0397 0.1592 0.0727
0.5236 -0.0408 0.1820 0.0742
0.5008 -0.0418 0.2048 0.0752
0.4780 -0.0427 0.2276 0.0757
0.4552 -0.0435 0.2504 0.0760
0.4323 -0.0441 0.2732 0.0759
0.4095 -0.0446 0.2961 0.0756
0.3867 -0.0449 0.3189 0.0750
0.3639 -0.0451 0.3417 0.0742
0.3411 -0.0451 0.3645 0.0732
0.3183 -0.0449 0.3873 0.0721
0.2954 -0.0445 0.4100 0.0707
0.2726 -0.0438 0.4328 0.0692
0.2498 -0.0429 0.4556 0.0676
0.2271 -0.0417 0.4783 0.0659
0.2043 -0.0401 0.5011 0.0640
0.1816 -0.0382 0.5238 0.0620
0.1588 -0.0360 0.5465 0.0599
0.1362 -0.0336 0.5692 0.0577
0.1135 -0.0310 0.5919 0.0554
0.0908 -0.0283 0.6146 0.0530
0.0830 -0.0277 0.6373 0.0506
0.0602 -0.0248 0.6600 0.0480
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Table A-6. Coordinates of Active Pressure Ports of NACA 23012 With 5-min Glaze Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c
1.0000 0.00000 0.0300 0.03921
0.9500 -0.00693 0.0400 0.04456
0.9000 -0.01223 0.0500 0.04915
0.8500 -0.01716 0.0600 0.05306
0.8000 -0.02175 0.0800 0.05949
0.7500 -0.02601 0.1000 0.06435
0.7000 -0.02994 0.1400 0.07075
0.6500 -0.03352 0.1600 0.07272
0.6000 -0.03673 0.1800 0.07408
0.5500 -0.03951 0.2000 0.07497
0.5000 -0.04183 0.2400 0.07589
0.4500 -0.04360 0.2600 0.07596
0.4000 -0.04474 0.2800 0.07583
0.3500 -0.04512 0.3000 0.07548
0.3000 -0.04456 0.3200 0.07496
0.2500 -0.04289 0.3400 0.07428
0.2000 -0.03979 0.3600 0.07343
0.1500 -0.03506 0.3800 0.07245
0.1000 -0.02938 0.4000 0.07134
0.0750 -0.02626 0.4400 0.06874
0.0500 -0.02261 0.5200 0.06232
0.5600 0.05859
0.6000 0.05456
0.6400 0.05026
0.6800 0.04571
0.7200 0.04093
0.7600 0.03593
0.8000 0.03071
0.8500 0.02389
0.9000 0.01673
0.9500 0.00919
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The following is the LEWICE 2.2 input file for the NACA 23012 with 5-min glaze ice shape.

Glaze 5-min Case
&LEW?20
ITIMFL=0
TSTOP = 3
IBOD = 1
IFLO = 4
DSMN = 4.0D-4

NPL 24

&END

&DIST

FLWC =0.05,0.1,0.2,0.3, 0.2, 0.1, 0.03, 0.01, 0.005, 0.005
DPD =4.,9.7,14.2, 20.9, 28.2, 45.2, 70.1, 88.9, 103.4, 164.
&END

00.

&ICE1

CHORD =0.9144
AOA =25

VINF = 78.2
LWC =0.50
TINF =267.87
PINF =94806.00
RH =100.0
&END

&LPRNT

FPRT =1

HPRT =1

BPRT =1

TPRT =0

&END

&RDATA

&END
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Table A-7. Coordinates of NACA 23012 With 10-min Glaze Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c
1.0000 -0.0013 | 0.0171 -0.0194 -0.0038 0.0002 | 0.5919 0.0554
0.9783 -0.0038 | 0.0149 -0.0200 -0.0040 0.0025| 0.6146 0.0530
0.9556 -0.0063 | 0.0106 -0.0206 -0.0040 0.0048 | 0.6373 0.0506
0.9330 -0.0088 | 0.0081 -0.0205 -0.0042 0.0078 | 0.6600 0.0480
09103 -0.0112 | 0.0060 -0.0197 -0.0060 0.0094 | 0.6826 0.0454
0.8876 -0.0135|0.0043 -0.0181 -0.0080 0.0115] 0.7053 0.0427
0.8649 -0.0157|0.0031 -0.0161 -0.0084 0.0137 | 0.7280 0.0400
0.8421 -0.0179 | 0.0026 -0.0139 -0.0081 0.0160 | 0.7506 0.0371
0.8194 -0.0200 | 0.0028 -0.0116 -0.0071 0.0181 | 0.7732 0.0342
0.7967 -0.0220 | 0.0023 -0.0094 -0.0068 0.0204 | 0.7958 0.0313
0.7740 -0.0240 | 0.0006 -0.0078 -0.0070 0.0227 | 0.8185 0.0282
0.7512 -0.0259 {-0.0010 -0.0061 -0.0066 0.0250 | 0.8411 0.0251
0.7285 -0.0277 |-0.0023 -0.0042 -0.0053 0.0268 | 0.8637 0.0220
0.7057 -0.0295 |-0.0032 -0.0021 -0.0031 0.0276 | 0.8863 0.0187
0.6830 -0.0312 -0.0010 0.0269 | 0.9088 0.0154
0.6602 -0.0328 0.0010 0.0257| 09314 0.0120
0.6375 -0.0344 0.0033 0.0253 | 0.9540 0.0086
0.6147 -0.0358 0.0056 0.0249 | 0.9765 0.0050
0.5919 -0.0372 0.0081 0.0251 | 1.0000 0.0013
0.5691 -0.0385 0.0141 0.0297
0.5463 -0.0397 0.0339 0.0420
0.5236 -0.0408 0.0483 0.0483
0.5008 -0.0418 0.0696 0.0563
0.4780 -0.0427 0.0916 0.0624
0.4552 -0.0435 0.1140 0.0670
0.4323 -0.0441 0.1365 0.0703
0.4095 -0.0446 0.1592 0.0727
0.3867 -0.0449 0.1820 0.0742
0.3639 -0.0451 0.2048 0.0752
0.3411 -0.0451 0.2276 0.0757
0.3183 -0.0449 0.2504 0.0760
0.2954 -0.0445 0.2732 0.0759
0.2726 -0.0438 0.2961 0.0756
0.2498 -0.0429 0.3189 0.0750
0.2271 -0.0417 0.3417 0.0742
0.2043 -0.0401 0.3645 0.0732
0.1816 -0.0382 0.3873 0.0721
0.1588 -0.0360 0.4100 0.0707
0.1362 -0.0336 0.4328 0.0692
0.1179 -0.0319 0.4556 0.0676
0.0948 -0.0294 0.4783 0.0659
0.0717 -0.0266 0.5011 0.0640
0.0486 -0.0236 0.5238 0.0620
0.0257 -0.0198 0.5465 0.0599
0.0193 -0.0188 0.5692 0.0577
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Table A-8. Coordinates of Active Pressure Ports of NACA 23012 With 10-min Glaze Ice Shape

Lower Surface Upper Surface

x/c y/c x/c y/c
1.0000 0.00000 0.0300 0.03921
0.9500 -0.00693 0.0400 0.04456
0.9000 -0.01223 0.0500 0.04915
0.8500 -0.01716 0.0600 0.05306
0.8000 -0.02175 0.0800 0.05949
0.7500 -0.02601 0.1000 0.06435
0.7000 -0.02994 0.1400 0.07075
0.6500 -0.03352 0.1600 0.07272
0.6000 -0.03673 0.1800 0.07408
0.5500 -0.03951 0.2000 0.07497
0.5000 -0.04183 0.2400 0.07589
0.4500 -0.04360 0.2600 0.07596
0.4000 -0.04474 0.2800 0.07583
0.3500 -0.04512 0.3000 0.07548
0.3000 -0.04456 0.3200 0.07496
0.2500 -0.04289 0.3400 0.07428
0.2000 -0.03979 0.3600 0.07343
0.1500 -0.03506 0.3800 0.07245
0.1000 -0.02938 0.4000 0.07134
0.0750 -0.02626 0.4400 0.06874
0.0500 -0.02261 0.5200 0.06232
0.5600 0.05859
0.6000 0.05456
0.6400 0.05026
0.6800 0.04571
0.7200 0.04093
0.7600 0.03593
0.8000 0.03071
0.8500 0.02389
0.9000 0.01673
0.9500 0.00919
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The following is the LEWICE 2.2. Input file for the NACA 23012 with 10-min glaze ice shape.

Glaze 10-min Case
&LEW?20
ITIMFL=0

TSTOP =
IBOD
IFLO
DSMN = 4.0D-4

NPL 24

&END

&DIST

FLWC =0.05,0.1,0.2,0.3,0.2, 0.1, 0.03, 0.01, 0.005, 0.005
DPD =4.,9.7,14.2,20.9, 28.2, 45.2, 70.1, 88.9, 103.4, 164.
&END

&ICE1

CHORD =0.9144

AOCA =25

VINF = 78.2

LWC =0.50

TINF =267.87

PINF =94806.00

RH =100.0

&END

&LPRNT

FPRT
HPRT
BPRT
TPRT
&END
&RDATA
&END

00.

6
1
8

oo N
ORRPF
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Table A-9. Coordinates of NACA 23012 With 15-min Glaze Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c x/c  ylc x/c y/c x/c y/c x/c y/c

1.0000 -0.0013 | 0.0195 -0.0192 -0.0052 0.0012 | 0.5011 0.0640
0.9783 -0.0038 | 0.0177 -0.0205 -0.0053 0.0035 | 0.5238 0.0620
0.9556 -0.0063 | 0.0162 -0.0223 -0.0053 0.0065 | 0.5465 0.0599
0.9330 -0.0088 | 0.0142 -0.0232 -0.0067 0.0081 | 0.5692 0.0577
09103 -0.0112 ] 0.0110 -0.0247 -0.0103 0.0106 | 0.5919 0.0554
0.8876 -0.0135] 0.0086 -0.0255 -0.0118 0.0124 | 0.6146 0.0530
0.8649 -0.0157 | 0.0064 -0.0259 -0.0124 0.0146 | 0.6373 0.0506
0.8421 -0.0179 | 0.0041 -0.0256 -0.0119 0.0169 | 0.6600 0.0480
0.8194 -0.0200 | 0.0022 -0.0244 -0.0119 0.0191 | 0.6826 0.0454
0.7967 -0.0220 | 0.0008 -0.0226 -0.0129 0.0212 | 0.7053 0.0427
0.7740 -0.0240 | 0.0000 -0.0205 -0.0141 0.0232 | 0.7280 0.0400
0.7512  -0.0259 [-0.0005 -0.0182 -0.0148 0.0253 | 0.7506 0.0371
0.7285 -0.0277 [-0.0006 -0.0155 -0.0147 0.0276 | 0.7732 0.0342
0.7057 -0.0295 [-0.0003 -0.0132 -0.0137 0.0296 | 0.7958 0.0313
0.6830 -0.0312| 0.0005 -0.0111 -0.0119 0.0309 | 0.8185 0.0282
0.6602 -0.0328 | 0.0000 -0.0090 -0.0096 0.0308 | 0.8411 0.0251
0.6375 -0.0344 -0.0017 -0.0072 -0.0078  0.0295 | 0.8637 0.0220
0.6147 -0.0358 |-0.0031 -0.0053 -0.0056 0.0288 | 0.8863 0.0187
0.5919 -0.0372|-0.0041 -0.0033 -0.0035 0.0280 | 0.9088 0.0154
0.5691 -0.0385(-0.0048 -0.0011 -0.0013 0.0275 | 0.9314 0.0120
0.5463 -0.0397 0.0006 0.0262 | 0.9540 0.0086
0.5236 -0.0408 0.0029 0.0256 | 0.9765 0.0050
0.5008 -0.0418 0.0061 0.0250 | 1.0000 0.0013
0.4780 -0.0427 0.0087  0.0257
0.4552 -0.0435 0.0246 0.0368
0.4323 -0.0441 0.0483 0.0483
0.4095 -0.0446 0.0696 0.0563
0.3867 -0.0449 0.0916 0.0624
0.3639 -0.0451 0.1140 0.0670
0.3411 -0.0451 0.1365 0.0703
0.3183 -0.0449 0.1592 0.0727
0.2954 -0.0445 0.1820 0.0742
0.2726 -0.0438 0.2048 0.0752
0.2498 -0.0429 0.2276  0.0757
0.2271 -0.0417 0.2504 0.0760
0.2043 -0.0401 0.2732  0.0759
0.1816 -0.0382 0.2961 0.0756
0.1588 -0.0360 0.3189 0.0750
0.1539 -0.0358 0.3417 0.0742
0.1310 -0.0335 0.3645 0.0732
0.1083 -0.0310 0.3873 0.0721
0.0855 -0.0285 0.4100 0.0707
0.0627 -0.0257 0.4328 0.0692
0.0400 -0.0225 0.4556 0.0676
0.0219 -0.0193 0.4783 0.0659
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Table A-10. Coordinates of Active Pressure Ports of NACA 23012 With 15-min
Glaze Ice Shape

Lower Surface Upper Surface

x/c y/c x/c y/c
1.0000 0.00000 0.0300 0.03921
0.9500 -0.00693 0.0400 0.04456
0.9000 -0.01223 0.0500 0.04915
0.8500 -0.01716 0.0600 0.05306
0.8000 -0.02175 0.0800 0.05949
0.7500 -0.02601 0.1000 0.06435
0.7000 -0.02994 0.1400 0.07075
0.6500 -0.03352 0.1600 0.07272
0.6000 -0.03673 0.1800 0.07408
0.5500 -0.03951 0.2000 0.07497
0.5000 -0.04183 0.2400 0.07589
0.4500 -0.04360 0.2600 0.07596
0.4000 -0.04474 0.2800 0.07583
0.3500 -0.04512 0.3000 0.07548
0.3000 -0.04456 0.3200 0.07496
0.2500 -0.04289 0.3400 0.07428
0.2000 -0.03979 0.3600 0.07343
0.1500 -0.03506 0.3800 0.07245
0.1000 -0.02938 0.4000 0.07134
0.0750 -0.02626 0.4400 0.06874
0.0500 -0.02261 0.5200 0.06232
0.5600 0.05859
0.6000 0.05456
0.6400 0.05026
0.6800 0.04571
0.7200 0.04093
0.7600 0.03593
0.8000 0.03071
0.8500 0.02389
0.9000 0.01673
0.9500 0.00919
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The following is the LEWICE 2.2 input file for the NACA 23012 with 15-min glaze ice shape.

Glaze 15-min Case
&LEW?20
ITIMFL=0
TSTOP = 900.

IBOD 1

IFLO 12

DSMN = 4.0D-4

NPL 24

&END

&DIST

FLWC =0.05,0.1,0.2,0.3,0.2, 0.1, 0.03, 0.01, 0.005, 0.005
DPD =4.,9.7,14.2,20.9, 28.2,45.2, 70.1, 88.9, 103.4, 164.
&END

&ICE1

CHORD =0.9144

AOCA =25

VINF = 78.2

LWC =0.50

TINF =267.87

PINF =94806.00

RH =100.0

&END

&LPRNT

FPRT =

HPRT =

BPRT =

TPRT =

&END

&RDATA

&END
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Table A-11. Coordinates of NACA 23012 With 22.5-min Glaze Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c

1.0000 -0.0013| 0.0175 -0.0225 -0.0067 0.0002 | 0.1820 0.0742
0.9783 -0.0038| 0.0155 -0.0242 -0.0069 0.0027 | 0.2048 0.0752
0.9556 -0.0063| 0.0118 -0.0273 -0.0069 0.0051 | 0.2276 0.0757
0.9330 -0.0088| 0.0102 -0.0289 -0.0080 0.0070 | 0.2504 0.0760
09103 -0.0112| 0.0083 -0.0303 -0.0108 0.0089 | 0.2732 0.0759
0.8876 -0.0135| 0.0067 -0.0320 -0.0127 0.0107 | 0.2961 0.0756
0.8649 -0.0157| 0.0050 -0.0334 -0.0139 0.0126 | 0.3189 0.0750
0.8421 -0.0179| 0.0033 -0.0349 -0.0148 0.0148 | 0.3417 0.0742
0.8194 -0.0200| 0.0011 -0.0353 -0.0150 0.0170 | 0.3645 0.0732
0.7967 -0.0220| -0.0011 -0.0348 -0.0156 0.0192 | 0.3873 0.0721
0.7740 -0.0240| -0.0031 -0.0335 -0.0175 0.0203 | 0.4100 0.0707
0.7512 -0.0259| -0.0045 -0.0318 -0.0195 0.0214 | 0.4328 0.0692
0.7285 -0.0277| -0.0054 -0.0297 -0.0214 0.0228 | 0.4556 0.0676
0.7057 -0.0295]| -0.0058 -0.0274 -0.0232 0.0245 | 0.4783 0.0659
0.6830 -0.0312] -0.0057 -0.0251 -0.0258 0.0270 | 0.5011 0.0640
0.6602 -0.0328]| -0.0053 -0.0211 -0.0274 0.0288 | 0.5238 0.0620
0.6375 -0.0344| -0.0047 -0.0176 -0.0286 0.0307 | 0.5465 0.0599
0.6147 -0.0358| -0.0041 -0.0144 -0.0293 0.0329 | 0.5692 0.0577
0.5919 -0.0372| -0.0033 -0.0122 -0.0294 0.0351 | 0.5919 0.0554
0.5691 -0.0385| -0.0023 -0.0102 -0.0286 0.0373 | 0.6146 0.0530
0.5463 -0.0397| -0.0030 -0.0081 -0.0269 0.0387 | 0.6373 0.0506
0.5236 -0.0408| -0.0044 -0.0062 -0.0247 0.0389 | 0.6600 0.0480
0.5008 -0.0418| -0.0054 -0.0042 -0.0226 0.0381 | 0.6826 0.0454
0.4780 -0.0427| -0.0062 -0.0020 -0.0205 0.0372 | 0.7053 0.0427
0.4552 -0.0435 -0.0185 0.0362 | 0.7280 0.0400
0.4323 -0.0441 -0.0165 0.0351 | 0.7506 0.0371
0.4095 -0.0446 -0.0145 0.0340 | 0.7732 0.0342
0.3867 -0.0449 -0.0126 0.0327 | 0.7958 0.0313
0.3639 -0.0451 -0.0105 0.0314 | 0.8185 0.0282
0.3411 -0.0451 -0.0081 0.0299 | 0.8411 0.0251
0.3183 -0.0449 -0.0061 0.0290 | 0.8637 0.0220
0.2954 -0.0445 -0.0039 0.0283 | 0.8863 0.0187
0.2726 -0.0438 -0.0017 0.0278 | 0.9088 0.0154
0.2498 -0.0429 0.0002 0.0265| 09314 0.0120
0.2271 -0.0417 0.0023 0.0258 | 0.9540 0.0086
0.2043 -0.0401 0.0045 0.0252 | 0.9765 0.0050
0.1760 -0.0381 0.0068 0.0249 | 1.0000 0.0013
0.1532 -0.0359 0.0090 0.0259

0.1304 -0.0336 0.0252 0.0372

0.1076 -0.0311 0.0483 0.0483

0.0848 -0.0286 0.0696 0.0563

0.0621 -0.0258 0.0916 0.0624

0.0393 -0.0229 0.1140 0.0670

0.0210 -0.0200 0.1365 0.0703

0.0188 -0.0207 0.1592 0.0727
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Table A-12. Coordinates of Active Pressure Ports of NACA 23012 With 22.5-min
Glaze Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c
1.0000 0.00000 0.0300 0.03921
0.9500 -0.00693 0.0400 0.04456
0.9000 -0.01223 0.0500 0.04915
0.8500 -0.01716 0.0600 0.05306
0.8000 -0.02175 0.0800 0.05949
0.7500 -0.02601 0.1000 0.06435
0.7000 -0.02994 0.1400 0.07075
0.6500 -0.03352 0.1600 0.07272
0.6000 -0.03673 0.1800 0.07408
0.5500 -0.03951 0.2000 0.07497
0.5000 -0.04183 0.2400 0.07589
0.4500 -0.04360 0.2600 0.07596
0.4000 -0.04474 0.2800 0.07583
0.3500 -0.04512 0.3000 0.07548
0.3000 -0.04456 0.3200 0.07496
0.2500 -0.04289 0.3400 0.07428
0.2000 -0.03979 0.3600 0.07343
0.1500 -0.03506 0.3800 0.07245
0.1000 -0.02938 0.4000 0.07134
0.0750 -0.02626 0.4400 0.06874
0.0500 -0.02261 0.5200 0.06232
0.5600 0.05859
0.6000 0.05456
0.6400 0.05026
0.6800 0.04571
0.7200 0.04093
0.7600 0.03593
0.8000 0.03071
0.8500 0.02389
0.9000 0.01673
0.9500 0.00919

A-21



The following is the LEWICE 2.2 input file for the NACA 23012 with 22.5-min glaze ice shape.

Glaze 22.5-min Case
&LEW?20

ITIMFL=0

TSTOP = 1350.

IBOD 1

IFLO 18

DSMN = 4.0D-4

NPL 24

&END

&DIST

FLWC =0.05,0.1,0.2,0.3,0.2, 0.1, 0.03, 0.01, 0.005, 0.005
DPD =4.,9.7,14.2,20.9, 28.2, 45.2, 70.1, 88.9, 103.4, 164.
&END

&ICE1

CHORD =0.9144

AOCA =25

VINF = 78.2

LWC =0.50

TINF =267.87

PINF =94806.00

RH =100.0

&END

&LPRNT

FPRT
HPRT
BPRT
TPRT
&END
&RDATA
&END

oo N
ORRPF
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Table A-13. Coordinates of NACA 23012 With 45-min Glaze Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c
1.0000 -0.0013| 0.0232 -0.0248 -0.0108 0.0006 | -0.0233 0.0476 | 0.6146 0.0530
0.9783 -0.0038| 0.0208 -0.0269 -0.0111 0.0038 | -0.0210 0.0468 | 0.6373 0.0506
0.9556 -0.0063| 0.0181 -0.0284 -0.0130 0.0055|-0.0194 0.0450 | 0.6600 0.0480
0.9330 -0.0088| 0.0164 -0.0303 -0.0161 0.0076 | -0.0179 0.0430 | 0.6826 0.0454
0.9103 -0.0112| 0.0146 -0.0320 -0.0180 0.0092 | -0.0160 0.0413 | 0.7053 0.0427
0.8876 -0.0135| 0.0133 -0.0341 -0.0196 0.0112|-0.0134 0.0397 | 0.7280 0.0400
0.8649 -0.0157| 0.0118 -0.0361 -0.0207 0.0134|-0.0114 0.0384 | 0.7506 0.0371
0.8421 -0.0179| 0.0106 -0.0383 -0.0213 0.0158 | -0.0094 0.0370 | 0.7732 0.0342
0.8194 -0.0200| 0.0082 -0.0401 -0.0219 0.0197 | -0.0072 0.0353 | 0.7958 0.0313
0.7967 -0.0220| 0.0063 -0.0418 -0.0233 0.0216 | -0.0050 0.0338 | 0.8185 0.0282
0.7740 -0.0240| 0.0050 -0.0439 -0.0256 0.0229 | -0.0028 0.0327 | 0.8411 0.0251
0.7512 -0.0259| 0.0038 -0.0467 -0.0279 0.0242 | -0.0009 0.0312 | 0.8637 0.0220
0.7285 -0.0277| 0.0019 -0.0483 -0.0309 0.0257 | 0.0012 0.0298 | 0.8863 0.0187
0.7057 -0.0295| 0.0009 -0.0505 -0.0330 0.0271 | 0.0039 0.0294 | 0.9088 0.0154
0.6830 -0.0312| 0.0013 -0.0529 -0.0351 0.0283 | 0.0066 0.0288 | 0.9314 0.0120
0.6602 -0.0328| 0.0006 -0.0553 -0.0383 0.0303 | 0.0090 0.0281 | 0.9540 0.0086
0.6375 -0.0344| -0.0014 -0.0565 -0.0408 0.0319| 0.0114 0.0282 | 0.9765 0.0050
0.6147 -0.0358| -0.0039 -0.0559 -0.0437 0.0339| 0.0139 0.0296 | 1.0000 0.0013
0.5919 -0.0372| -0.0062 -0.0566 -0.0464 0.0358 | 0.0191 0.0331
0.5691 -0.0385| -0.0081 -0.0583 -0.0484 0.0371 | 0.0280 0.0379
0.5463 -0.0397| -0.0098 -0.0600 -0.0517 0.0393 | 0.0483 0.0483
0.5236 -0.0408| -0.0122 -0.0604 -0.0538 0.0406 | 0.0696 0.0563
0.5008 -0.0418| -0.0145 -0.0596 -0.0568 0.0425| 0.0916 0.0624
0.4780 -0.0427| -0.0163 -0.0579 -0.0597 0.0446 | 0.1140 0.0670
0.4552 -0.0435| -0.0175 -0.0557 -0.0619 0.0468 | 0.1365 0.0703
0.4323 -0.0441| -0.0183 -0.0534 -0.0631 0.0490 | 0.1592 0.0727
0.4095 -0.0446| -0.0185 -0.0509 -0.0638 0.0518| 0.1820 0.0742
0.3867 -0.0449| -0.0185 -0.0484 -0.0636 0.0543 | 0.2048 0.0752
0.3639 -0.0451| -0.0185 -0.0459 -0.0626 0.0565| 0.2276  0.0757
0.3411 -0.0451| -0.0184 -0.0414 -0.0607 0.0581 | 0.2504 0.0760
0.3183 -0.0449| -0.0181 -0.0381 -0.0584 0.0588 | 0.2732 0.0759
0.2954 -0.0445| -0.0178 -0.0350 -0.0560 0.0583 | 0.2961 0.0756
0.2726 -0.0438| -0.0170 -0.0311 -0.0536 0.0579| 0.3189 0.0750
0.2498 -0.0429| -0.0163 -0.0281 -0.0512 0.0574| 0.3417 0.0742
0.2271 -0.0417| -0.0154 -0.0248 -0.0488 0.0572| 0.3645 0.0732
0.2043 -0.0401| -0.0146 -0.0223 -0.0463 0.0571| 0.3873 0.0721
0.1816 -0.0386| -0.0133 -0.0184 -0.0435 0.0556 | 0.4100 0.0707
0.1569 -0.0364| -0.0124 -0.0157 -0.0411 0.0551| 0.4328 0.0692
0.1322 -0.0339| -0.0115 -0.0134 -0.0390 0.0538 | 0.4556 0.0676
0.1074 -0.0313| -0.0100 -0.0100 -0.0366 0.0533 | 0.4783 0.0659
0.0827 -0.0285| -0.0095 -0.0074 -0.0344 0.0520 | 0.5011 0.0640
0.0581 -0.0256| -0.0100 -0.0046 -0.0320 0.0518 | 0.5238 0.0620
0.0334 -0.0223| -0.0106 -0.0019 -0.0299 0.0506 | 0.5465 0.0599
0.0270 -0.0217 -0.0277 0.0495| 0.5692 0.0577
0.0251 -0.0232 -0.0256 0.0483 | 0.5919 0.0554
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Table A-14. Coordinates of Active Pressure Ports of NACA 23012 With 45-min
Glaze Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c
1.0000 0.00000 0.0300 0.03921
0.9500 -0.00693 0.0400 0.04456
0.9000 -0.01223 0.0500 0.04915
0.8500 -0.01716 0.0600 0.05306
0.8000 -0.02175 0.0800 0.05949
0.7500 -0.02601 0.1000 0.06435
0.7000 -0.02994 0.1400 0.07075
0.6500 -0.03352 0.1600 0.07272
0.6000 -0.03673 0.1800 0.07408
0.5500 -0.03951 0.2000 0.07497
0.5000 -0.04183 0.2400 0.07589
0.4500 -0.04360 0.2600 0.07596
0.4000 -0.04474 0.2800 0.07583
0.3500 -0.04512 0.3000 0.07548
0.3000 -0.04456 0.3200 0.07496
0.2500 -0.04289 0.3400 0.07428
0.2000 -0.03979 0.3600 0.07343
0.1500 -0.03506 0.3800 0.07245
0.1000 -0.02938 0.4000 0.07134
0.0750 -0.02626 0.4400 0.06874
0.0500 -0.02261 0.5200 0.06232
0.5600 0.05859
0.6000 0.05456
0.6400 0.05026
0.6800 0.04571
0.7200 0.04093
0.7600 0.03593
0.8000 0.03071
0.8500 0.02389
0.9000 0.01673
0.9500 0.00919

A-25



The following is the LEWICE 2.2 input file for the NACA 23012 with 45-min glaze ice shape.

Glaze 45-min Case
&LEW?20

ITIMFL =1

TSTOP = 2700.

IBOD 1

IFLO 18

DSMN = 4.0D-4

NPL 24

&END

&DIST

FLWC =0.05,0.1,0.2,0.3,0.2, 0.1, 0.03, 0.01, 0.005, 0.005
DPD =4.,9.7,14.2,20.9, 28.2, 45.2, 70.1, 88.9, 103.4, 164.
&END

&ICE1

CHORD =0.9144

AOCA =25

VINF = 78.2

LWC =0.50

TINF =267.87

PINF =94806.00

RH =100.0

&END

&LPRNT

FPRT
HPRT
BPRT
TPRT
&END
&RDATA
&END

oo N
ORRPF
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Table A-15. Coordinates of NACA 23012 With 7.5-min Mixed Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c
1.0000 -0.0013| 0.0115 -0.0160 -0.0062 0.0023 | 0.7506 0.0371
0.9783 -0.0038| 0.0093 -0.0163 -0.0063 0.0046 | 0.7732 0.0342
0.9556 -0.0063| 0.0065 -0.0167 -0.0069 0.0068 | 0.7958 0.0313
0.9330 -0.0088| 0.0040 -0.0170 -0.0087 0.0081 | 0.8185 0.0282
09103 -0.0112| 0.0019 -0.0163 -0.0108 0.0091 | 0.8411 0.0251
0.8876 -0.0135| 0.0008 -0.0144 -0.0119 0.0110 | 0.8637 0.0220
0.8649 -0.0157| 0.0010 -0.0121 -0.0116 0.0133 | 0.8863 0.0187
0.8421 -0.0179| 0.0002 -0.0101 -0.0100 0.0148 | 0.9088 0.0154
0.8194 -0.0200]| -0.0017 -0.0087 -0.0080 0.0159 | 0.9314 0.0120
0.7967 -0.0220]| -0.0032 -0.0070 -0.0039 0.0170 | 0.9540 0.0086
0.7740 -0.0240| -0.0045 -0.0050 -0.0008 0.0178 | 0.9765 0.0050
0.7512 -0.0259| -0.0053 -0.0029 0.0032 0.0213 | 1.0000 0.0013
0.7285 -0.0277| -0.0058 -0.0007 0.0215 0.0351
0.7057 -0.0295 0.0419 0.0457
0.6830 -0.0312 0.0483 0.0483
0.6602 -0.0328 0.0696 0.0563
0.6375 -0.0344 0.0916 0.0624
0.6147 -0.0358 0.1140 0.0670
0.5919 -0.0372 0.1365 0.0703
0.5691 -0.0385 0.1592 0.0727
0.5463 -0.0397 0.1820 0.0742
0.5236 -0.0408 0.2048 0.0752
0.5008 -0.0418 0.2276 0.0757
0.4780 -0.0427 0.2504 0.0760
0.4552 -0.0435 0.2732 0.0759
0.4323 -0.0441 0.2961 0.0756
0.4095 -0.0446 0.3189 0.0750
0.3867 -0.0449 0.3417 0.0742
0.3639 -0.0451 0.3645 0.0732
0.3411 -0.0451 0.3873 0.0721
0.3183 -0.0449 0.4100 0.0707
0.2954 -0.0445 0.4328 0.0692
0.2726 -0.0438 0.4556 0.0676
0.2498 -0.0429 0.4783 0.0659
0.2271 -0.0417 0.5011 0.0640
0.2043 -0.0401 0.5238 0.0620
0.1816 -0.0382 0.5465 0.0599
0.1588 -0.0360 0.5692 0.0577
0.1362 -0.0336 0.5919 0.0554
0.1135 -0.0310 0.6146 0.0530
0.0908 -0.0283 0.6373 0.0506
0.0682 -0.0255 0.6600 0.0480
0.0605 -0.0250 0.6826 0.0454
0.0377 -0.0218 0.7053 0.0427
0.0153 -0.0170 0.7280 0.0400
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Table A-16. Coordinates of Active Pressure Ports of NACA 23012 With 7.5-min
Mixed Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c
1.0000 0.00000 0.0300 0.03921
0.9500 -0.00693 0.0400 0.04456
0.9000 -0.01223 0.0500 0.04915
0.8500 -0.01716 0.0600 0.05306
0.8000 -0.02175 0.0800 0.05949
0.7500 -0.02601 0.1000 0.06435
0.7000 -0.02994 0.1400 0.07075
0.6500 -0.03352 0.1600 0.07272
0.6000 -0.03673 0.1800 0.07408
0.5500 -0.03951 0.2000 0.07497
0.5000 -0.04183 0.2400 0.07589
0.4500 -0.04360 0.2600 0.07596
0.4000 -0.04474 0.2800 0.07583
0.3500 -0.04512 0.3000 0.07548
0.3000 -0.04456 0.3200 0.07496
0.2500 -0.04289 0.3400 0.07428
0.2000 -0.03979 0.3600 0.07343
0.1500 -0.03506 0.3800 0.07245
0.1000 -0.02938 0.4000 0.07134
0.0750 -0.02626 0.4400 0.06874
0.0500 -0.02261 0.5200 0.06232
0.5600 0.05859
0.6000 0.05456
0.6400 0.05026
0.6800 0.04571
0.7200 0.04093
0.7600 0.03593
0.8000 0.03071
0.8500 0.02389
0.9000 0.01673
0.9500 0.00919
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The following is the LEWICE 2.2 input file for the NACA 23012 with 7.5-min mixed ice shape.

Mixed 7.5-min Case
&LEW?20
ITIMFL=0
TSTOP =
IBOD
IFLO
DSMN = 4.0D-4

NPL 24

&END

&DIST

FLWC =0.05,0.1,0.2,0.3,0.2, 0.1, 0.03, 0.01, 0.005, 0.005
DPD =4.,9.7,14.2,20.9, 28.2, 45.2, 70.1, 88.9, 103.4, 164.
&END

&ICE1

CHORD =0.9144

AOCA =25

VINF = 78.2

LWC =0.50

TINF = 264.

PINF =94806.00

RH =100.0

&END

&LPRNT

FPRT
HPRT
BPRT
TPRT
&END
&RDATA
&END

50.

4
1
6
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Table A-17. Coordinates of NACA 23012 With 15-min Mixed Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c
1.0000 -0.0013| 0.0095 -0.0178 -0.0100 0.0004 | 0.6373 0.0506
0.9783 -0.0038| 0.0069 -0.0187 -0.0108 0.0032 | 0.6600 0.0480
0.9556 -0.0063| 0.0044 -0.0197 -0.0128 0.0042 | 0.6826 0.0454
0.9330 -0.0088| 0.0012 -0.0213 -0.0169 0.0050 | 0.7053 0.0427
09103 -0.0112] -0.0023 -0.0228 -0.0200 0.0054 | 0.7280 0.0400
0.8876 -0.0135| -0.0050 -0.0233 -0.0225 0.0064 | 0.7506 0.0371
0.8649 -0.0157| -0.0076 -0.0237 -0.0235 0.0084 | 0.7732 0.0342
0.8421 -0.0179| -0.0096 -0.0227 -0.0229 0.0106 | 0.7958 0.0313
0.8194 -0.0200| -0.0106 -0.0206 -0.0214 0.0124 | 0.8185 0.0282
0.7967 -0.0220| -0.0107 -0.0183 -0.0195 0.0137 | 0.8411 0.0251
0.7740 -0.0240]| -0.0102 -0.0161 -0.0155 0.0157 | 0.8637 0.0220
0.7512 -0.0259| -0.0093 -0.0140 -0.0127 0.0169 | 0.8863 0.0187
0.7285 -0.0277| -0.0076 -0.0124 -0.0091 0.0181 | 0.9088 0.0154
0.7057 -0.0295| -0.0064 -0.0106 -0.0069 0.0185 | 0.9314 0.0120
0.6830 -0.0312] -0.0071 -0.0084 -0.0037 0.0188 | 0.9540 0.0086
0.6602 -0.0328] -0.0082 -0.0064 -0.0009 0.0194 | 0.9765 0.0050
0.6375 -0.0344| -0.0090 -0.0042 0.0010 0.0210 | 1.0000 0.0013
0.6147 -0.0358| -0.0096 -0.0020 0.0158 0.0326
0.5919 -0.0372 0.0362 0.0436
0.5691 -0.0385 0.0483 0.0483
0.5463 -0.0397 0.0696 0.0563
0.5236 -0.0408 0.0916 0.0624
0.5008 -0.0418 0.1140 0.0670
0.4780 -0.0427 0.1365 0.0703
0.4552 -0.0435 0.1592 0.0727
0.4323 -0.0441 0.1820 0.0742
0.4095 -0.0446 0.2048 0.0752
0.3867 -0.0449 0.2276 0.0757
0.3639 -0.0451 0.2504 0.0760
0.3411 -0.0451 0.2732 0.0759
0.3183 -0.0449 0.2961 0.0756
0.2954 -0.0445 0.3189 0.0750
0.2726 -0.0438 0.3417 0.0742
0.2498 -0.0429 0.3645 0.0732
0.2271 -0.0417 0.3873 0.0721
0.2043 -0.0401 0.4100 0.0707
0.1816 -0.0382 0.4328 0.0692
0.1588 -0.0360 0.4556 0.0676
0.1362 -0.0336 0.4783 0.0659
0.1135 -0.0310 0.5011 0.0640
0.0983 -0.0300 0.5238 0.0620
0.0753 -0.0275 0.5465 0.0599
0.0523 -0.0246 0.5692 0.0577
0.0294 -0.0211 0.5919 0.0554
0.0118 -0.0172 0.6146 0.0530
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Table A-18. Coordinates of Active Pressure Ports of NACA 23012 With 15-min
Mixed Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c
1.0000 0.00000 0.0300 0.03921
0.9500 -0.00693 0.0400 0.04456
0.9000 -0.01223 0.0500 0.04915
0.8500 -0.01716 0.0600 0.05306
0.8000 -0.02175 0.0800 0.05949
0.7500 -0.02601 0.1000 0.06435
0.7000 -0.02994 0.1400 0.07075
0.6500 -0.03352 0.1600 0.07272
0.6000 -0.03673 0.1800 0.07408
0.5500 -0.03951 0.2000 0.07497
0.5000 -0.04183 0.2400 0.07589
0.4500 -0.04360 0.2600 0.07596
0.4000 -0.04474 0.2800 0.07583
0.3500 -0.04512 0.3000 0.07548
0.3000 -0.04456 0.3200 0.07496
0.2500 -0.04289 0.3400 0.07428
0.2000 -0.03979 0.3600 0.07343
0.1500 -0.03506 0.3800 0.07245
0.1000 -0.02938 0.4000 0.07134
0.0750 -0.02626 0.4400 0.06874
0.0500 -0.02261 0.5200 0.06232
0.5600 0.05859
0.6000 0.05456
0.6400 0.05026
0.6800 0.04571
0.7200 0.04093
0.7600 0.03593
0.8000 0.03071
0.8500 0.02389
0.9000 0.01673
0.9500 0.00919
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The following is the LEWICE 2.2 input file for the NACA 23012 with 15-min mixed ice shape.

Mixed 15-min Case
&LEW?20
ITIMFL=0

TSTOP = 900.

IBOD 1

IFLO 12

DSMN = 4.0D-4

NPL 24

&END

&DIST

FLWC =0.05,0.1,0.2,0.3,0.2, 0.1, 0.03, 0.01, 0.005, 0.005
DPD =4.,9.7,14.2,20.9, 28.2, 45.2, 70.1, 88.9, 103.4, 164.
&END

&ICE1

CHORD =0.9144

AOCA =25

VINF = 78.2

LWC =0.50

TINF = 264.

PINF =94806.00

RH =100.0

&END

&LPRNT

FPRT
HPRT
BPRT
TPRT
&END
&RDATA
&END

oo N
ORRPF
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Table A-19. Coordinates of NACA 23012 With 22.5-min Mixed Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c
1.0000 -0.0013| 0.0111 -0.0178 -0.0142 0.0007 | 0.5238 0.0620
0.9783 -0.0038| 0.0090 -0.0187 -0.0164 0.0014 | 0.5465 0.0599
0.9556 -0.0063| 0.0062 -0.0199 -0.0187 0.0017 | 0.5692 0.0577
0.9330 -0.0088| 0.0030 -0.0217 -0.0230 0.0016 | 0.5919 0.0554
09103 -0.0112] -0.0007 -0.0236 -0.0272 0.0018 | 0.6146 0.0530
0.8876 -0.0135| -0.0028 -0.0244 -0.0298 0.0023 | 0.6373 0.0506
0.8649 -0.0157| -0.0058 -0.0252 -0.0317 0.0035 | 0.6600 0.0480
0.8421 -0.0179| -0.0087 -0.0258 -0.0324 0.0056 | 0.6826 0.0454
0.8194 -0.0200| -0.0110 -0.0259 -0.0319 0.0079 | 0.7053 0.0427
0.7967 -0.0220| -0.0141 -0.0256 -0.0306 0.0098 | 0.7280 0.0400
0.7740 -0.0240| -0.0164 -0.0253 -0.0289 0.0113 | 0.7506 0.0371
0.7512 -0.0259| -0.0186 -0.0246 -0.0267 0.0128 | 0.7732 0.0342
0.7285 -0.0277| -0.0205 -0.0233 -0.0228 0.0148 | 0.7958 0.0313
0.7057 -0.0295]| -0.0217 -0.0214 -0.0198 0.0162 | 0.8185 0.0282
0.6830 -0.0312] -0.0216 -0.0191 -0.0151 0.0179 | 0.8411 0.0251
0.6602 -0.0328]| -0.0207 -0.0170 -0.0124 0.0187 | 0.8637 0.0220
0.6375 -0.0344| -0.0194 -0.0151 -0.0084 0.0195 | 0.8863 0.0187
0.6147 -0.0358]| -0.0177 -0.0135 -0.0058 0.0197 | 0.9088 0.0154
0.5919 -0.0372| -0.0156 -0.0127 -0.0028 0.0198 | 0.9314 0.0120
0.5691 -0.0385| -0.0128 -0.0116 -0.0007 0.0207 | 0.9540 0.0086
0.5463 -0.0397| -0.0110 -0.0102 0.0026 0.0237 | 0.9765 0.0050
0.5236 -0.0408| -0.0112 -0.0080 0.0069 0.0276 | 1.0000 0.0013
0.5008 -0.0418]| -0.0121 -0.0059 0.0166 0.0342
0.4780 -0.0427| -0.0128 -0.0036 0.0372 0.0446
0.4552 -0.0435] -0.0133 -0.0014 0.0483 0.0483
0.4323 -0.0441 0.0696 0.0563
0.4095 -0.0446 0.0916 0.0624
0.3867 -0.0449 0.1140 0.0670
0.3639 -0.0451 0.1365 0.0703
0.3411 -0.0451 0.1592 0.0727
0.3183 -0.0449 0.1820 0.0742
0.2954 -0.0445 0.2048 0.0752
0.2726 -0.0438 0.2276 0.0757
0.2498 -0.0429 0.2504 0.0760
0.2271 -0.0417 0.2732 0.0759
0.2043 -0.0401 0.2961 0.0756
0.1816 -0.0382 0.3189 0.0750
0.1588 -0.0360 0.3417 0.0742
0.1362 -0.0336 0.3645 0.0732
0.1237 -0.0330 0.3873 0.0721
0.1007 -0.0306 0.4100 0.0707
0.0777 -0.0281 0.4328 0.0692
0.0547 -0.0254 0.4556 0.0676
0.0319 -0.0218 0.4783 0.0659
0.0140 -0.0180 0.5011 0.0640
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Table A-20. Coordinates of Active Pressure Ports of NACA 23012 With 22.5-min
Mixed Ice Shape

Lower Surface Upper Surface

x/c y/c x/c y/c
1.0000 0.00000 0.0300 0.03921
0.9500 -0.00693 0.0400 0.04456
0.9000 -0.01223 0.0500 0.04915
0.8500 -0.01716 0.0600 0.05306
0.8000 -0.02175 0.0800 0.05949
0.7500 -0.02601 0.1000 0.06435
0.7000 -0.02994 0.1400 0.07075
0.6500 -0.03352 0.1600 0.07272
0.6000 -0.03673 0.1800 0.07408
0.5500 -0.03951 0.2000 0.07497
0.5000 -0.04183 0.2400 0.07589
0.4500 -0.04360 0.2600 0.07596
0.4000 -0.04474 0.2800 0.07583
0.3500 -0.04512 0.3000 0.07548
0.3000 -0.04456 0.3200 0.07496
0.2500 -0.04289 0.3400 0.07428
0.2000 -0.03979 0.3600 0.07343
0.1500 -0.03506 0.3800 0.07245
0.1000 -0.02938 0.4000 0.07134
0.0750 -0.02626 0.4400 0.06874
0.0500 -0.02261 0.5200 0.06232
0.5600 0.05859
0.6000 0.05456
0.6400 0.05026
0.6800 0.04571
0.7200 0.04093
0.7600 0.03593
0.8000 0.03071
0.8500 0.02389
0.9000 0.01673
0.9500 0.00919
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The following is the LEWICE 2.2 input file for the NACA 23012 with 22.5-min mixed ice
shape.

Mixed 22.5-min Case
&LEW?20

ITIMFL=0

TSTOP = 1350.

IBOD 1

IFLO 18

DSMN = 4.0D-4

NPL 24

&END

&DIST

FLWC =0.05,0.1, 0.2, 0.3,0.2, 0.1, 0.03, 0.01, 0.005, 0.005
DPD =4.,9.7,14.2,20.9, 28.2,45.2, 70.1, 88.9, 103.4, 164.
&END

&ICE1

CHORD =0.9144

AOCA =25

VINF = 78.2

LWC =0.50

TINF = 264.

PINF =94806.00

RH =100.0

&END

&LPRNT

FPRT =

HPRT =

BPRT =

TPRT =

&END

&RDATA

&END
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Table A-21. Coordinates of NACA 23012 With 45-min Mixed Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c
1.0000 -0.0013 | 0.0126 -0.0223 | -0.0342 -0.0024 | -0.0646 0.0011 | 0.3873 0.0721
0.9783 -0.0038 | 0.0095 -0.0245|-0.0374 -0.0029 | -0.0652 0.0033 | 0.4100 0.0707
0.9556 -0.0063 | 0.0065 -0.0269 | -0.0402 -0.0030 | -0.0648 0.0055 | 0.4328 0.0692
0.9330 -0.0088 | 0.0043 -0.0286 | -0.0435 -0.0031 | -0.0635 0.0073 | 0.4556 0.0676
09103 -0.0112 | 0.0011 -0.0306 | -0.0462 -0.0031 |-0.0614 0.0083 | 0.4783 0.0659
0.8876 -0.0135-0.0013 -0.0322 | -0.0500 -0.0028 | -0.0592 0.0090 | 0.5011 0.0640
0.8649 -0.0157 | -0.0033 -0.0333 | -0.0527 -0.0026|-0.0570 0.0094 | 0.5238 0.0620
0.8421 -0.0179 | -0.0057 -0.0343 | -0.0562 -0.0023 |-0.0548 0.0101 | 0.5465 0.0599
0.8194 -0.0200 | -0.0087 -0.0355|-0.0585 -0.0019 |-0.0527 0.0108 | 0.5692 0.0577
0.7967 -0.0220 | -0.0109 -0.0367 | -0.0609 -0.0016 | -0.0502 0.0116 | 0.5919 0.0554
0.7740 -0.0240 | -0.0132 -0.0370 | -0.0630 -0.0006 | -0.0474 0.0127 | 0.6146 0.0530
0.7512 -0.0259 | -0.0155 -0.0375 -0.0452 0.0137 | 0.6373 0.0506
0.7285 -0.0277 | -0.0183 -0.0380 -0.0405 0.0158 | 0.6600 0.0480
0.7057 -0.0295 | -0.0215 -0.0379 -0.0365 0.0176 | 0.6826 0.0454
0.6830 -0.0312|-0.0246 -0.0377 -0.0337 0.0184 | 0.7053 0.0427
0.6602 -0.0328 | -0.0269 -0.0376 -0.0295 0.0199 | 0.7280 0.0400
0.6375 -0.0344 | -0.0292 -0.0377 -0.0258 0.0210 | 0.7506 0.0371
0.6147 -0.0358 | -0.0315 -0.0377 -0.0228 0.0215 | 0.7732 0.0342
0.5919 -0.0372 | -0.0339 -0.0375 -0.0196 0.0219 | 0.7958 0.0313
0.5691 -0.0385[-0.0368 -0.0372 -0.0169 0.0223 | 0.8185 0.0282
0.5463 -0.0397 | -0.0405 -0.0365 -0.0146 0.0223 | 0.8411 0.0251
0.5236 -0.0408 | -0.0429 -0.0356 -0.0123 0.0223 | 0.8637 0.0220
0.5008 -0.0418 | -0.0447 -0.0343 -0.0100 0.0222 | 0.8863 0.0187
0.4780 -0.0427 | -0.0461 -0.0325 -0.0078 0.0220 | 0.9088 0.0154
0.4552 -0.0435|-0.0468 -0.0303 -0.0055 0.0219 | 0.9314 0.0120
0.4323 -0.0441 | -0.0467 -0.0280 -0.0032 0.0216 | 0.9540 0.0086
0.4095 -0.0446 | -0.0461 -0.0259 -0.0002 0.0217 | 0.9765 0.0050
0.3867 -0.0449 | -0.0451 -0.0238 0.0019 0.0226 | 1.0000 0.0013
0.3639 -0.0451 | -0.0434 -0.0213 0.0060 0.0265
0.3411 -0.0451|-0.0417 -0.0195 0.0248 0.0394
0.3183 -0.0449 | -0.0397 -0.0175 0.0457 0.0487
0.2954 -0.04451-0.0376 -0.0158 0.0696 0.0563
0.2726 -0.0438 | -0.0347 -0.0135 0.0916 0.0624
0.2498 -0.0429 | -0.0319 -0.0117 0.1140 0.0670
0.2271 -0.0417 | -0.0299 -0.0106 0.1365 0.0703
0.1995 -0.0403 | -0.0277 -0.0098 0.1592 0.0727
0.1766 -0.0385 | -0.0255 -0.0095 0.1820 0.0742
0.1538 -0.0365 | -0.0232 -0.0096 0.2048 0.0752
0.1310 -0.0342 | -0.0212 -0.0086 0.2276 0.0757
0.1083 -0.0316 | -0.0203 -0.0066 0.2504 0.0760
0.0855 -0.0290 | -0.0210 -0.0044 0.2732 0.0759
0.0627 -0.0263 | -0.0226 -0.0029 0.2961 0.0756
0.0400 -0.0238 | -0.0249 -0.0024 0.3189 0.0750
0.0174 -0.0208 | -0.0282 -0.0021 0.3417 0.0742
0.0146 -0.0209 | -0.0315 -0.0021 0.3645 0.0732
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Table A-22. Coordinates of Active Pressure Ports of NACA 23012 With 45-min
Mixed Ice Shape

Lower Surface Upper Surface

x/c y/c x/c y/c
1.0000 0.00000 0.0300 0.03921
0.9500 -0.00693 0.0400 0.04456
0.9000 -0.01223 0.0500 0.04915
0.8500 -0.01716 0.0600 0.05306
0.8000 -0.02175 0.0800 0.05949
0.7500 -0.02601 0.1000 0.06435
0.7000 -0.02994 0.1400 0.07075
0.6500 -0.03352 0.1600 0.07272
0.6000 -0.03673 0.1800 0.07408
0.5500 -0.03951 0.2000 0.07497
0.5000 -0.04183 0.2400 0.07589
0.4500 -0.04360 0.2600 0.07596
0.4000 -0.04474 0.2800 0.07583
0.3500 -0.04512 0.3000 0.07548
0.3000 -0.04456 0.3200 0.07496
0.2500 -0.04289 0.3400 0.07428
0.2000 -0.03979 0.3600 0.07343
0.1500 -0.03506 0.3800 0.07245
0.1000 -0.02938 0.4000 0.07134
0.0750 -0.02626 0.4400 0.06874
0.0500 -0.02261 0.5200 0.06232
0.5600 0.05859
0.6000 0.05456
0.6400 0.05026
0.6800 0.04571
0.7200 0.04093
0.7600 0.03593
0.8000 0.03071
0.8500 0.02389
0.9000 0.01673
0.9500 0.00919
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The following is the LEWICE 2.2 input file for the NACA 23012 with 45-min mixed ice shape.

Mixed 45-min Case
&LEW?20

ITIMFL =1

TSTOP = 2700.

IBOD 1

IFLO 18

DSMN = 4.0D-4

NPL 24

&END

&DIST

FLWC =0.05,0.1,0.2,0.3,0.2, 0.1, 0.03, 0.01, 0.005, 0.005
DPD =4.,9.7,14.2,20.9, 28.2, 45.2, 70.1, 88.9, 103.4, 164.
&END

&ICE1

CHORD =0.9144

AOCA =25

VINF = 78.2

LWC =0.50

TINF = 264.

PINF =94806.00

RH =100.0

&END

&LPRNT

FPRT
HPRT
BPRT
TPRT
&END
&RDATA
&END

oo N
ORRPF
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Table A-23. Coordinates of NACA 23012 With 45-min Rime Ice Shape

Lower Surface Upper Surface
x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c x/c y/c
1.0000 -0.0013| -0.0076 -0.0203 -0.0603 0.0012 | 0.6373 0.0506
0.9783 -0.0038| -0.0102 -0.0202 -0.0576 0.0027 | 0.6600 0.0480
0.9556 -0.0063| -0.0125 -0.0205 -0.0550 0.0037 | 0.6826 0.0454
0.9330 -0.0088| -0.0164 -0.0212 -0.0511 0.0051 | 0.7053 0.0427
09103 -0.0112] -0.0206 -0.0222 -0.0464 0.0067 | 0.7280 0.0400
0.8876 -0.0135| -0.0260 -0.0237 -0.0409 0.0083 | 0.7506 0.0371
0.8649 -0.0157]| -0.0286 -0.0241 -0.0379 0.0092 | 0.7732 0.0342
0.8421 -0.0179| -0.0310 -0.0244 -0.0352 0.0104 | 0.7958 0.0313
0.8194 -0.0200| -0.0359 -0.0245 -0.0301 0.0128 | 0.8185 0.0282
0.7967 -0.0220| -0.0402 -0.0244 -0.0252 0.0153 | 0.8411 0.0251
0.7740 -0.0240| -0.0457 -0.0240 -0.0223 0.0171 | 0.8637 0.0220
0.7512 -0.0259| -0.0498 -0.0237 -0.0177 0.0204 | 0.8863 0.0187
0.7285 -0.0277]| -0.0531 -0.0234 -0.0151 0.0222 | 0.9088 0.0154
0.7057 -0.0295| -0.0567 -0.0226 -0.0123 0.0238 | 0.9314 0.0120
0.6830 -0.0312] -0.0598 -0.0214 -0.0098 0.0250 | 0.9540 0.0086
0.6602 -0.0328| -0.0617 -0.0199 -0.0053 0.0266 | 0.9765 0.0050
0.6375 -0.0344| -0.0637 -0.0177 -0.0016 0.0280 | 1.0000 0.0013
0.6147 -0.0358] -0.0649 -0.0158 0.0036 0.0303
0.5919 -0.0372] -0.0657 -0.0136 0.0241 0.0403
0.5691 -0.0385]| -0.0661 -0.0114 0.0454 0.0487
0.5463 -0.0397| -0.0663 -0.0091 0.0696 0.0563
0.5236 -0.0408| -0.0658 -0.0062 0.0916 0.0624
0.5008 -0.0418] -0.0650 -0.0040 0.1140 0.0670
0.4780 -0.0427| -0.0638 -0.0021 0.1365 0.0703
0.4552 -0.0435| -0.0624 -0.0003 0.1592 0.0727
0.4323 -0.0441 0.1820 0.0742
0.4095 -0.0446 0.2048 0.0752
0.3867 -0.0449 0.2276 0.0757
0.3639 -0.0451 0.2504 0.0760
0.3411 -0.0451 0.2732 0.0759
0.3183 -0.0449 0.2961 0.0756
0.2954 -0.0445 0.3189 0.0750
0.2726 -0.0438 0.3417 0.0742
0.2460 -0.0429 0.3645 0.0732
0.2232 -0.0419 0.3873 0.0721
0.2003 -0.0406 0.4100 0.0707
0.1775 -0.0390 0.4328 0.0692
0.1546 -0.0372 0.4556 0.0676
0.1318 -0.0353 0.4783 0.0659
0.1090 -0.0334 0.5011 0.0640
0.0862 -0.0314 0.5238 0.0620
0.0634 -0.0292 0.5465 0.0599
0.0405 -0.0273 0.5692 0.0577
0.0177 -0.0254 0.5919 0.0554
-0.0047 -0.0208 0.6146 0.0530
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Table A-24. Coordinates of Active Pressure Ports of NACA 23012 With 45-min Rime Ice Shape

Lower Surface Upper Surface

x/c y/c x/c y/c
1.0000 0.00000 0.0300 0.03921
0.9500 -0.00693 0.0400 0.04456
0.9000 -0.01223 0.0500 0.04915
0.8500 -0.01716 0.0600 0.05306
0.8000 -0.02175 0.0800 0.05949
0.7500 -0.02601 0.1000 0.06435
0.7000 -0.02994 0.1400 0.07075
0.6500 -0.03352 0.1600 0.07272
0.6000 -0.03673 0.1800 0.07408
0.5500 -0.03951 0.2000 0.07497
0.5000 -0.04183 0.2400 0.07589
0.4500 -0.04360 0.2600 0.07596
0.4000 -0.04474 0.2800 0.07583
0.3500 -0.04512 0.3000 0.07548
0.3000 -0.04456 0.3200 0.07496
0.2500 -0.04289 0.3400 0.07428
0.2000 -0.03979 0.3600 0.07343
0.1500 -0.03506 0.3800 0.07245
0.1000 -0.02938 0.4000 0.07134
0.0750 -0.02626 0.4400 0.06874
0.0500 -0.02261 0.5200 0.06232
0.5600 0.05859
0.6000 0.05456
0.6400 0.05026
0.6800 0.04571
0.7200 0.04093
0.7600 0.03593
0.8000 0.03071
0.8500 0.02389
0.9000 0.01673
0.9500 0.00919
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The following is the LEWICE 2.2 input file for the NACA 23012 with 45-min rime ice shape.

Rime 45-min Case
&LEW?20

ITIMFL =1
TSTOP = 2700.

IBOD 1

IFLO 18

DSMN = 4.0D-4

NPL 24

&END

&DIST

FLWC =0.05,0.1,0.2,0.3,0.2, 0.1, 0.03, 0.01, 0.005, 0.005
DPD =4.,9.7,14.2,20.9, 28.2, 45.2, 70.1, 88.9, 103.4, 164.
&END

&ICE1

CHORD =0.9144

AOCA =25

VINF = 78.2

LWC =0.50

TINF =252.32

PINF =94806.00

RH =100.0

&END

&LPRNT

FPRT
HPRT
BPRT
TPRT
&END
&RDATA
&END

oo N
ORRPF
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APPENDIX C—SUMMARY OF EXPERIMENTAL AND LEWICE IMPINGEMENT

DATA—ALL TEST GEOMETRIES AND MEDIAN VOLUMETRIC DIAMETERS
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APPENDIX D—DROP TRAJECTORIES

The trajectories presented in this appendix were computed using the LEWICE 1.7 code and the
10-point discrete approximations (table 5) of the measured drop distributions. Figures D-1
through D-8 consist of ten trajectory plots each, one plot for each drop size in the measured drop
distributions. Each of the ten plots in the figures was obtained with the LEWICE code using a
single drop size. Note that the LEWICE code does not simulate large drop splashing, thus, the
trajectory simulations for the large-median volumetric diameter (MVD) cases do not include
drop splashing effects. Furthermore, for some cases, such as the 45-min glaze ice shape, the
flowtield predicted by LEWICE was not in good agreement with the experimental pressure data,
as shown in figure 66. This was due to the inability of the potential flow method used in
LEWICE to simulate flow separation and viscous effects such as the ones associated with large
glaze ice accretions. Despite these limitations, however, the computed trajectories provide
insight into the contributions made by the individual drop sizes in the spray clouds used in the
experiments. Consider, for example, the computed trajectories for the 45-min glaze ice shape
shown in figure D-4. For the large MVD of 236 um, the smallest drop in the 10-point
distribution was 16.3 um. For this drop size, the trajectories experienced considerable deflection
near the 45-min ice shapes. The remaining nine drop sizes in the distribution ranged from 63.7
to 1046.8 um. For these drop sizes the deflection of the trajectories became progressively
smaller until about 508.5 pum. For drops larger than 508.5 pm, the trajectories were practically
straight. Thus, for the 2.5-degree angle of attack used in the experiments, the small drops in the
distribution contributed more to the impingement in the upper horn area, while the impingement,
due to the large drops in the distribution, was more even across the region between the two
horns.

D-1



i. MVD =279.5 um

j. MVD =312.6 um

Figure D-1. Computed Drop Trajectories With LEWICE Code; NACA 23012 With 5-min
Glaze Ice, 111-um Spray Cloud
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—————— |
e. MVD =170.8 ym

i. MVD =279.5 pm j. MVD =312.6 um

Figure D-2. Computed Drop Trajectories With LEWICE Code; NACA 23012
With 10-min Glaze Ice, 111-pum Spray Cloud
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i. MVD =40.6 pm j- MVD =443 pm

Figure D-3. Computed Drop Trajectories With LEWICE Code; NACA 23012 With 45-min
Glaze Ice, 20-um Spray Cloud
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a. MVD =163 um b. MVD =63.7 um

e. MVD =508.5 um f. MVD =645.5 um

%f %\
/y'/:y"

g. MVD=715.9 ym h. MVD = 747.4 um

i. MVD =763.2 um j- MVD =1046.8 um

Figure D-4. Computed Drop Trajectories With LEWICE Code; NACA 23012
With 45-min Glaze Ice, 236-um Spray Cloud
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i. MVD =40.6 pm j. MVD =443 pm

Figure D-5. Computed Drop Trajectories With LEWICE Code; NACA 23012
With 45-min Mixed Ice, 20-um Spray Cloud
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e. MVD =508.5 um f. MVD = 645.5 um

————
g. MVD=7159 ym h. MVD = 747.4 um

i. MVD =763.2 ym j. MVD = 1046.8 pm

Figure D-6. Computed Drop Trajectories With LEWICE Code; NACA 23012
With 45-min Mixed Ice, 236-um Spray Cloud
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a. MVD =3.8 um b. MVD=9.3 um

i. MVD =40.6 pm j. MVD =443 pm

Figure D-7. Computed Drop Trajectories With LEWICE Code; NACA 23012 With
45-min Rime Ice, 20-um Spray Cloud
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c. MVD =135.5 pm d. MVD =298.5 um

=

f. MVD = 645.5 um

- ——

g. MVD=715.9 um h. MVD =747.4 um

——

i. MVD =763.2 pm j. MVD = 1046.8 pm

Figure D-8. Computed Drop Trajectories With LEWICE Code; NACA 23012
With 45-min Rime Ice, 236-um Spray Cloud
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APPENDIX E— IMPINGEMENT ANALYSIS DATA COMPUTED WITH A MODIFIED
LEWICE CODE USING THE MONTE-CARLO METHOD

Computations of collection efficiency were conducted with a modified LEWICE program
capable of performing drop trajectory analysis using the Monte-Carlo method. The Monte-Carlo
method was developed to allow the incorporation of more sophisticated drop-splashing and drop-
breakup models. The method also overcomes some of interpolation difficulties found in the
public version of the LEWICE code, which effect the computation of collection efficiency in
shadow impingement regions downstream of ice shapes with large horns.

The Monte-Carlo collection efficiency method involves the tracking of individual particles to
and about a body. The method has the capability to recursively track the resulting particles from
a drop breakup (due to excessive acceleration or deceleration) or splash (due to impact with the
surface). The method stores the amount of mass collected from the impacting drops at each
surface panel. From this mass, the local collection efficiency is calculated. The following
equations are used to calculate the collection efficiency at each panel due to a drop distribution
that can breakup due to splashing or excessive acceleration.

_ ndis
Bm = l/erBimAmi (E'l)
i=1
nimpy,
Bim = Di3Ai /(NiAm) z dimj3 (E-2)

=1
where

ﬁm = collection efficiency at panel m

o- = total normalized liquid water content

Aw; = fraction of total liquid contained in drop i in distribution

Bim = collection efficiency at panel m due to drop 1 in distribution

A, = freestream release area of impacting particles of drop 1 in distribution
A, = area of panel m

D; = diameter of drop i in distribution

dimj = diameter of drop j impacting panel m from drop 1 in distribution

ndis = number of drops defining distribution

nimpi, = number of particles impacting panel m from drop i in distribution
Ni = number of particles released from free-stream for particle size i

In the Monte-Carlo collection efficiency method, the impact drops are totaled to compute the
correct collection efficiency at the surface. The term Monte-Carlo does not necessarily suggest
randomization employed in release of particles from a distribution. For the computations
presented in this appendix, an evenly distributed set of particles for each of the 27 bins (about
1000) were released from the freestream position. The number of particles that hit each surface
panel and panel area were used to calculate the collection efficiency. Figures E-1 through E-50



compare experimental impingement data for the ten ice shapes and the five tested MVDs with
LEWICE data obtained with the standard version of the LEWICE 1.6 code (in-house 27-bin) and
the LEWICE Monte-Carlo version. Consider, for example, as shown in figures E-7, E-12, E-17,
E-18, and E-43, the artificial impingement tails produced by the interpolation method in the
standard LEWICE version are absent in the results obtained with the Monte-Carlo version of
LEWICE. Note that no attempt was made to model drop-splashing and breakup with the
LEWICE Monte-Carlo version. In figures E-53 through E-60, the total impingement efficiency
distributions obtained with the two LEWICE methods for a given geometry are compared to the
experimental data as a function of MVD size. Figures E-61 and E-62 summarize the total
impingement efficiency distributions as function of geometry and MVD size from the
experimental and LEWICE Monte-Carlo results, respectively. The percentage differences in
total impingement efficiency between LEWICE 1.6 and the experimental data for all geometries
and MVDs are presented in figure E-63. The percentage differences in total impingement
efficiency between LEWICE Monte-Carlo and experimental data are shown in figure E-64.

Table E-1. Summary of Impingement Efficiency Data for 2003 IRT Tests

Test Conditions _ . _ (E -E o/ (E e -E o/ (E -E W/ (E e -E o/
Model AOA | MVD E. E: E e E:®) E : %) E Luc (%) E Luc (%)

NACA 23012 2.5 20 0.1788 | 0.1805 | 0.1714 0.9 5.0 -1.0 53
with 5-min 52 0.5236 | 0.2823 | 0.5061 85.5 79.3 477 442
glaze ice shape

111 0.6928 | 0.3961 | 0.6719 74.9 69.6 442 41.0

154 0.7830 | 0.4963 | 0.7619 57.8 53.5 37.6 349

236 0.8590 | 0.5228 | 0.8369 64.3 60.1 402 37.5
NACA 23012 2.5 20 0.1902 | 0.1713 | 0.1859 11.0 8.5 10.2 7.9
with 10-min 52 0.5539 | 0.2366 | 0.5066 134.1 114.1 62.6 533
glaze ice shape

111 0.7400 | 0.3251 | 0.6708 127.6 106.3 61.9 515

154 0.8320 | 0.4103 | 0.7597 102.8 85.2 55.5 46.0

236 0.9168 | 0.4942 | 0.8372 85.5 69.4 50.5 41.0
NACA 23012 2.5 20 02124 | 0.1862 | 0.2104 14.1 13.0 12.5 115
with 15-min 52 0.6223 | 0.2857 | 0.5146 117.8 80.1 65.4 445
glaze ice shape

111 0.8198 | 0.3423 | 0.6713 139.5 96.1 71.1 49.0

154 0.9269 | 0.4351 | 0.7607 113.0 74.8 64.7 238

236 1.0177 | 05277 | 0.8372 92.9 58.7 58.5 37.0
NACA 23012 2.5 20 02515 | 02319 | 0.2501 8.5 7.9 7.8 73
with 22.5-min 52 | 07069 | 03236 | 04977 118.4 538 77.0 35.0
glaze ice shape

111 0.9212 | 0.4015 | 0.6615 129.4 64.8 78.6 39.3

154 1.0874 | 0.4436 | 0.7493 145.1 68.9 85.9 40.8

236 1.1840 | 0.4988 | 0.8291 137.4 66.2 82.6 39.8
NACA 23012 2.5 20 0.3227 | 02705 | 0.3077 19.3 13.7 17.0 12.1
with 45-min 52 | 0.6360 | 04360 | 0.6356 45.9 4538 315 314
glaze ice shape

111 0.7586 | 0.5239 | 0.7605 448 452 30.9 31.1

154 0.8097 | 0.6072 | 0.8122 33.3 33.8 249 252

236 0.8455 | 0.6362 | 0.8469 32.9 33.1 247 249
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Table E-1. Summary of Impingement Efficiency Data for 2003 IRT Tests (Continued)

Test Conditions (EL_ EE)/ (ELMC_ EE)/ (EL_EE)/ (ELMC'EE)/
Model AOA | MVD E. E: E ve E (%) E : %) E tve (%) E tue (%)
NACA 23012 2.5 20 0.1896 | 0.1377 | 0.1688 37.7 226 30.7 18.4
with 7.5-min 52 0.5434 | 02411 | 0.5063 125.4 110.0 59.7 524
mixed ice
shape 111 0.7108 | 0.3496 | 0.6737 103.3 92.7 53.6 48.1
154 | 0.8006 | 0.4600 | 0.7627 74.0 65.8 447 39.7
236 | 0.8751 | 04754 | 0.8368 84.1 76.0 47.8 432
NACA 23012 25 20 0.1921 | 0.1563 | 0.1700 229 8.8 211 8.1
with 15-min 52 0.5942 | 0.2963 | 0.5059 100.5 70.7 58.9 414
mixed ice
shape 111 0.7789 | 0.3854 | 0.6738 102.1 74.8 58.4 42.8
154 | 0.8683 | 0.5024 | 0.7619 72.8 51.7 48.0 34.1
236 | 0.9501 | 0.5040 | 0.8379 88.5 66.2 53.2 39.8
NACA 23012 25 20 0.1809 | 0.1579 | 0.1603 14.6 15 143 L5
with 22.5-min 52 | 06021 | 02602 | 05021 131.4 93.0 68.1 482
mixed ice
shape 111 0.7939 | 0.3566 | 0.6701 122.6 87.9 65.3 46.8
154 | 0.8892 | 04718 | 0.7612 88.5 61.3 54.8 38.0
236 | 0.9671 | 0.5140 | 0.8374 88.2 62.9 54.1 38.6
NACA 23012 25 20 0.1690 | 0.1713 | 0.1564 1.3 8.7 15 9.5
with 45-min 52 | 05424 | 02874 | 04903 88.7 70.6 52.0 414
mixed ice
shape 111 0.8819 | 0.3731 | 0.6548 136.4 75.5 77.7 43.0
154 1.0041 | 04737 | 0.7494 112.0 58.2 70.8 36.8
236 1.0808 | 0.5208 | 0.8299 107.5 59.3 67.5 37.2
NACA 23012 25 20 0.1855 | 0.1253 | 0.1541 48.0 23.0 39.1 18.7
with 45-min 52 | 05424 | 02683 | 05013 102.2 86.9 547 46.5
rime ice shape
111 0.7135 | 0.3697 | 0.6726 93.0 81.9 51.1 45.0
154 | 0.8041 | 04491 | 0.7616 79.0 69.6 46.6 41.1
236 | 0.8772 | 0.5670 | 0.8355 54.7 47.4 37.1 32.1

E represents the total impingement efficiency, which is defined as g _ A5, where A, represents the projected
f

frontal area of the airfoil. E g is the experimental total impingement efficiency. E [ is the computational total

impingement efficiency using LEWICE 1.6. Note that few E exceeded 1.0 due to the presence of artificial

impingement tails. E pyc is the computational total impingement efficiency using LEWICE Monte-Carlo.
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Figure E-61. Summary of Experimental Total Impingement Efficiency Distributions
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Figure E-62. Summary of LEWICE Monte-Carlo Total Impingement Efficiency Distributions
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Figure E-63. Percentage Difference in Total Impingement Efficiency Between LEWICE 1.6 and
Experimental Data
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Figure E-64. Percentage Difference in Total Impingement Efficiency Between LEWICE
Monte-Carlo and Experimental Data
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