
DOT/FAA/AR-08/33 
 
Air Traffic Organization 
NextGen & Operations Planning 
Office of Research and 
Technology Development 
Washington, DC  20591 
 

 

Development, Validation, and 
Demonstration of Technologies for 
the Health and Usage Monitoring 
Systems Airborne- and Ground-
Based Automated Testing and 
System Functionality Partition 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
December 2009 
 
Final Report 
 
 
This document is available to the U.S. public through 
the National Technical Information Service (NTIS),  
Springfield, Virginia  22161. 
 
 
 
 
 

 
 
U.S. Department of Transportation 
Federal Aviation Administration 

 



 

NOTICE 
 

This document is disseminated under the sponsorship of the U.S. 
Department of Transportation in the interest of information exchange.  The 
United States Government assumes no liability for the contents or use 
thereof.  The United States Government does not endorse products or 
manufacturers.  Trade or manufacturer's names appear herein solely 
because they are considered essential to the objective of this report.  This 
document does not constitute FAA certification policy.  Consult your local 
FAA aircraft certification office as to its use. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This report is available at the Federal Aviation Administration William J. 
Hughes Technical Center’s Full-Text Technical Reports page:  
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). 
 

 
 



 
  Technical Report Documentation Page 

1.  Report No. 
 

DOT/FAA/AR-08/33 

2. Government Accession No. 
 

 

3.  Recipient's Catalog No. 
 

 
5.  Report Date 
 

December 2009 

4.  Title and Subtitle 
 

DEVELOPMENT, VALIDATION, AND DEMONSTRATION OF 
TECHNOLOGIES FOR THE HEALTH AND USAGE MONITORING SYSTEMS 
AIRBORNE- AND GROUND-BASED AUTOMATED TESTING AND SYSTEM 
FUNCTIONALITY PARTITION 

6.  Performing Organization Code 
 
 

7.  Author(s) 
 

Andy Brooks  

8.  Performing Organization Report No. 
 

 
9.  Performing Organization Name and Address 
 

GE Aviation Systems, LLC 

10.  Work Unit No. (TRAIS) 
 
 

3290 Patterson Avenue SE 
Grand Rapids, MI 49512-1991 

11.  Contract or Grant No. 
 
 

12.  Sponsoring Agency Name and Address 
 

U.S. Department of Transportation 
Federal Aviation Administration 
Air Traffic Organization NextGen & Operations Planning 
Office of Research and Technology Development 
Washington, DC  20591 

13.  Type of Report and Period Covered 
 

Final Report 

 14.  Sponsoring Agency Code 
 

    ASW-112 
15.  Supplementary Notes 
The FAA William J. Hughes Technical Center Airport and Aircraft Safety R&D Division Technical Monitors were Dy Le and 
Traci Stadtmueller. 
16.  Abstract 

When applied to Health and Usage Monitoring System (HUMS) software, automated testing and building environments have the 
potential to significantly reduce development costs by improving quality and adding automation to portions of the software 
certification/recertification process. 

This report relates those technologies to HUMS in two ways:  (1) by describing the benefits of automated testing, and how they 
apply to HUMS and (2) by recommending processes, environments, and function partitioning related to automated testing.  Both 
ways are backed by GE Aviation’s own experiences in applying automated testing to HUMS on the Bell/Augusta Aerospace 609 
Tiltrotor Aircraft BA609 HUMS program and by a demonstration project that went through the tool qualification of an automated 
testing framework. 

This report investigates and summarizes current tools and the latest techniques and methods available to assist the automated 
building and testing of HUMS software.  The results of an industry survey included an evaluation of how the software industry 
typically employs these tools and their approaches to integrating the tools into a usable environment.  The report summarizes the 
current technology level of the research and makes recommendations for additional research. 

 

 

 

 

 

 
17.  Key Words 
 

HUMS, Certification, Automated testing, Software, Tools, 
Processes, Verification, Qualification 
 

18.  Distribution Statement 
 

This document is available to the U.S. public through the 
National Technical Information Service (NTIS), Springfield, 
Virginia 22161. 

19.  Security Classif. (of this report) 
 

Unclassified 

20.  Security Classif. (of this page) 
 

Unclassified 

21.  No. of Pages 
 

52 

22.  Price 

 
Form DOT F 1700.7  (8-72) Reproduction of completed page authorized



 

TABLE OF CONTENTS 
 

Page 
 

EXECUTIVE SUMMARY xi 
 
1. INTRODUCTION 1 
 
2. TRENDS IN SOFTWARE DEVELOPMENT 1 
 
3. INDUSTRY TECHNIQUES AND BEST PRACTICES AND THEIR 
 APPLICATION WITHIN DO-178B 2 
 
 3.1 Iterations 2 
 3.2 Test-Driven Development 3 
 
  3.2.1 Overview 3 
  3.2.2 Graphical User Interface Testing 5 
  3.2.3 Embedded Software and Hardware Testing 5 
 
 3.3 Customer Tests 5 
 3.4 Documentation 6 
 
  3.4.1 Face-to-Face Communication 6 
  3.4.2 Design, Assessments, and Written Artifacts 6 
  3.4.3 Collaborative Knowledge Management 7 
 
 3.5 Collective Code Ownership/Continuous Integration 7 
 
4. BENEFITS  8 
 
 4.1 General Benefits 8 
 4.2 Benefits to HUMS 10 
 
  4.2.1 Examples of the Potential Benefits of Automated Testing 10 
  4.2.2 Examples of Proven Benefits of Automated Testing 12 
 
5. PLANNING ISSUES 13 
 
 5.1 Tool Qualification 14 
 
  5.1.1 Relevant DO-178B Guidelines 14 
  5.1.2 Tool Classification 14 
  5.1.3 Qualification Data 14 
 

 iii



 

 5.2 Staff Planning 16 
 
  5.2.1 Learning to Write Good Tests 17 
  5.2.2 Learning to Follow Continuous Integration 17 
 
6. IMPLEMENTATION 17 
 
 6.1 Test Structure 18 
 6.2 Hardware and Network Infrastructure 19 
 
  6.2.1 Build Machine 19 
  6.2.2 Web Server 19 
  6.2.3 Developmental Configuration Management Server 19 
  6.2.4 Developer Machines 19 
 
 6.3 Tools  20 
 
  6.3.1 One-Step Build 20 
  6.3.2 Continuous Integration 22 
  6.3.3 Automated Test Framework 26 
  6.3.4 Mock Tools 26 
  6.3.5 Developmental Configuration Management/Version Control 27 
  6.3.6 Code Coverage 27 
  6.3.7 Static Analysis Tools 28 
  6.3.8 Documentation 28 
  6.3.9 Wiki 28 
 
 6.4 Process Changes 29 
 
  6.4.1 Build Rules 29 
  6.4.2 Test-Driven Development 29 
  6.4.3 Verification Guidelines 30 
 
7. SYSTEM FUNCTIONALITY PARTITION 32 
 
 7.1 Partitioning by Criticality 32 
 7.2 Partitioning by Testability 33 
 7.3 Partitioning by Probability of Change 33 
 7.4 Current Partitioning 33 
 
8. COST/BENEFIT ANALYSIS AND RECOMMENDATIONS 33 
 
 8.1 Retrofitting for Legacy HUMS 33 
 8.2 Green-Field HUMS 35 
 

 iv



 

 v

9. RESEARCH RESULTS AND CONCLUSIONS 35 
 
 9.1 Conclusions 35 
 9.2 General Results 35 
 9.3 Status of Technology Readiness Levels 36 
 
  9.3.1 Automated Testing of the HUMS Ground Station 36 
  9.3.2 Automated Testing of the HUMS Airborne System 36 
  9.3.3 Automated Testing of the HUMS Configurations 36 
 
10. REFERENCES 37 
 
APPENDICES 
 

A—Automated Testing of Health and Usage Monitoring System Configurations 
B—Examples of Process Changes 

 



 

LIST OF FIGURES 
 

Figure Page 
 
1 Simple Automated Build and Test System 18 
2 Software Structure of an Automated Test System 18 
3 Example Continuous Integration Status Page 23 
4 Microsoft Windows Taskbar Notification 23 
5 Cost and Benefit of Retrofitting Automated Build and Test Technologies 34 

 
 

 vi



 

LIST OF TABLES 
 

Table Page 
 
1 Qualification Data Required for a Software Verification Tool 15 
2 Causes of Broken Builds 25 
3 Technology With Cost and Benefit of Retrofitting 34 

 
 

 vii/viii



 

LIST OF ACRONYMS 
 

AW139 AgustaWestland 139 Helicopter 
BA609 Bell/Agusta Aerospace 609 Tiltrotor Aircraft 
CI Condition indicator 
CMMI Capability Maturity Model Integration 
COTS Commercial off-the-shelf 
DBMS Database management system 
DCM Developmental Configuration Management 
GUI Graphical user interface 
HGS HUMS ground station 
HUMS Health and Usage Monitoring System 
IM Instant Messenger 
MVP Model View Presenter 
OS Operating system 
PC Personal computer 
PSAC Plan for Software Aspects of Certification 
RTB Rotor Track and Balance 
SIL Safety Integrity Level 
SUM Structural Usage Monitoring 
TAS Tool Accomplishment Summary 
TDD Test-Driven Development 
TRL Technology Readiness Level 

 ix/x



 

EXECUTIVE SUMMARY 

The primary objectives of this research were to develop, validate, and demonstrate automated 
testing and system functionality partition methods for Health and Usage Monitoring Systems 
(HUMS) airborne- and ground-based stations. Particularly, this effort shall support Advisory 
Circular 29-2C, Section MG-15. 

This report relates those technologies to HUMS in two ways:  (1) by describing the benefits of 
automated testing, and how they apply to HUMS and (2) by recommending processes, 
environments, and function partitioning related to automated testing.  Both ways parts are backed 
by GE Aviation’s own experiences in applying automated testing to HUMS on the Bell/Agusta 
Aerospace 609 Tiltrotor Aircraft HUMS program and by a demonstration project that went 
through the tool qualification of an automated testing framework. 

This report summarizes current tools and the latest techniques and methods available to assist the 
automated building and testing of HUMS software.  The results of an industry survey included 
an evaluation of how the software industry typically employs these tools and their approaches to 
integrating the tools into a usable environment.  The report summarizes the current technology 
level of the research and makes recommendations for additional research. 
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1.  INTRODUCTION. 

When applied to Health and Usage Monitoring System (HUMS) software, automated test and 
build environments have the potential to significantly reduce development costs by improving 
quality and adding automation to portions of the software certification/recertification process. 

This report presents detailed research and should serve as a complete foundation for a 
development team to introduce automated test and build to their Health and Usage Monitoring 
Systems (HUMS) software. 

Sections 2-4 introduce automated build and test techniques and the benefits to HUMS. 

Sections 5-8 describe details of the technology as well as guidelines for incorporating the 
technology planning through full implementation and the related processes, while satisfying 
DO-178B [1] guidelines at every stage. 

Section 9 describes the research conclusions, current level of the research, and future research 
recommendations.  

2.  TRENDS IN SOFTWARE DEVELOPMENT. 

Software development has existed as a discipline for only a matter of decades.  Early in its 
history, the nature of software development was quickly recognized.  Software development is 
far less constrained than other technical disciplines.  Compound this reality with changing 
development requirements to yield a recipe for bug-ridden software and cost overruns. 

In an attempt to manage the inherent risks of software, formal development processes emerged.  
Change was generally seen as an enemy to be combated with specification and significant 
upfront design.  The classical and prototypical “Waterfall” process emerged to introduce 
structured design to manage the risks of software.  The basic Waterfall process progresses 
through requirements gathering, design, implementation, testing, release, and maintenance in 
distinct, sequential phases.  Accomplish each step to a sufficient degree and success would seem 
assured.  However, even the author who named this approach, Winston Royce, recognized the 
risks of the Waterfall approach.  Royce stated the following on page two of Managing the 
Development of Large Software Systems:  “I believe in this concept, but the implementation 
described above is risky and invites failure.”  Though largely unrecognized, Royce went on to 
advocate within his paper a means for iterating and allowing for feedback between the stages of 
software development.  The Waterfall method as commonly understood is, in fact, the very thing 
Royce was attempting to avert. 

The past decade of software development has seen a general and growing recognition that 
change cannot be designed out of the software development process.  Instead, it must be 
embraced.   Requirements will inevitably change over the course of a project due to unforeseen 
business, technical, or user circumstances.  In addition, technical insight gained during the course 
of a project will directly affect the implementation of the system under development.  Ignoring 
these changes or attempting to design change out of the system invites brittleness in the form of 
systems that are difficult to maintain and dissatisfaction in the features eventually delivered.  
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More agile methodologies are taking root in industry to align the development process with the 
change inherent to it [2]. 

Best practices (and the supporting tools) discussed in this report include short iterations, test-
driven development, customer tests, documentation techniques, collective code ownership, and 
continuous integration. 

3.  INDUSTRY TECHNIQUES AND BEST PRACTICES AND THEIR APPLICATION 
WITHIN DO-178B. 

Dealing with change effectively (i.e., in an agile manner) manages the financial risk of 
traditional software and produces a quality product.  In contrast, preservation of human life in 
aerospace software is not a simple extension of dealing with change or producing economically 
sustainable quality.  The integrity and security necessary in life-critical systems is orthogonal to 
the standard financial and quality concerns of the broader software industry.  However, the agile 
methods taking hold in the broader industry have yielded success and are generally accepted as 
worthy of merging with the needs of high-integrity software systems such as those guided by 
DO-178B [3-8]. 

Agile techniques may seem, on the surface, to be risky and unstructured.  This is not the case.  
Even highly structured processes and certifications such as Capability Maturity Model 
Integration (CMMI) (popular in aerospace settings) have found compatibility with agile methods 
[9 and 10]. 

The best practices and tools have been used successfully by the authors of this report through 
direct experience over several years.  In this context, success has been measured anecdotally by a 
lack of bug reports or downtime in sizable software systems put into production use.  For 
instance, a software system put in use worldwide in multiple automobile production plants 
required nine months and three developers to implement.  To date, it has not generated a bug 
report.  Other organizations with whom the authors have worked have had similar experiences.  
Burke E. Porter Machinery of Grand Rapids, Michigan, has had success with two projects using 
the described tools and processes.  DaimlerChrysler’s Core Tools and Processes Group has used 
the tools and techniques discussed within this report to weather severe cutbacks and the recession 
of the late 1990s and early 2000s. 

The following best practices are tied directly or indirectly to automated build and automated test 
techniques.  Combined with supporting tools and adapted to the life-critical needs of aerospace 
software, these practices have the potential to deliver great value within aerospace applications.  
The following discussion does not concentrate on any particular level of certification (A-E) 
within DO-178B.  General recommendations are made with the understanding that real-world 
process experimentation and certification evaluations of the tools recommended must take place. 

3.1  ITERATIONS. 

An iteration is a compressed cycle of software development; design, implementation, testing, and 
delivery are all completed within a single iteration for a subset of system requirements.  All that 
is necessary to accomplish that limited set of requirements is performed in a single iteration.  The 
resulting progress is delivered to the customer or a customer proxy for exercise and feedback.  In 
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this way, large projects are divided into manageable chunks.  Measurable progress metrics (also 
known as velocity) can be gathered and monitored.  Requirement changes and system knowledge 
gained during development can be incorporated into the project.  Automated test and automated 
build techniques are intimately tied to the capability of delivering working software within the 
time confines of a single iteration.  Modern software processes concentrate on short iterations of 
development.  These iterations can last from 1 to 4 weeks (current trends favor 1 to 2 week 
iterations).   

Within DO-178B, short iterations have much promise.  In fact, DO-178B is clearly compatible 
with iterative methods.  The Spiral Model of software development is used to meet DO-178B 
objectives [11].  In essence, the Spiral model breaks down large projects into multiple, smaller 
projects and milestones generally on the order of 6 months.  Taken to its extreme, short iterations 
are the maturation of this approach. 

The stringent certification needs of aerospace software potentially require certain modifications 
to the short iterations used elsewhere in the software industry.  For instance, longer iterations of 
3 or 4 weeks may be necessary to make room for documentation and certification artifacts.  The 
involvement of a certification assessor and/or safety engineer in each iteration may also be 
necessary as part of creating the certification assurance case [12 and 8].  By embracing 
requirements and architectural changes within iterations and including the activities of assessors 
and safety experts, final certification assessments could be pushed well to the end of the project.  
The involvement of certification assessors and the incremental inclusion of requirements changes 
in this iterative fashion would likely limit the overall cost of certification assessment and prevent 
the cost of incorporating requirement changes after certification. 

3.2  TEST-DRIVEN DEVELOPMENT. 

3.2.1  Overview. 

In traditional software development, processes, requirements, and features are specified upfront 
followed by design, implementation, and then testing in distinct phases.  There is a growing 
recognition within industry that design, implementation, and testing are best accomplished in an 
iterative and concurrent manner.  In fact, the industry is moving toward a practice known as test-
driven development (TDD), where the testability of source code drives the low-level design of 
the software [13]. 

Requirements broadly specify the functional goals that software is to accomplish.  Some measure 
of architectural work will lay a foundation for the implementation of the source code.  In TDD 
however, low-level decisions on how particular source-level functions and methods are written 
are dictated by the demands of testability.  At the lowest level, testability refers to unit tests 
assembled into a test framework and run under automation. 

TDD is counterintuitive.  It prescribes that test code be programmed before the functional code 
those tests exercise is implemented.  Practicing TDD means designing software such that it can 
be tested at any time under automation.  Designing for testability in TDD is a higher calling than 
designing “good” code, because testable code is good code. 
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Traditional testing strategies rarely impact the design of production code, are onerous for 
developers and testers, and often leave testing to the end of a project when budget and time 
constraints threaten thoroughness.  TDD systematically inverts these patterns. 

Practicing TDD at the unit test level follows these basic steps: 

1. From the system requirements, identify a single piece of system functionality (a single 
function or method) necessary to implement a feature or part of a feature. 

2. Program a unit test to verify that functionality; add the test to the automated test suite. 

3. Stub out the production code under test (to allow the test code to compile). 

4. Compile; run the test and see it fails (due to the nonexistence of production source code). 

5. Flesh out the production code. 

6. Compile; run the test. 

7. Refactor the production code. 

8. Repeat steps 6 and 7 until the test passes and the production code is cleanly implemented. 

9. Repeat steps 1-8 until all features are implemented. 

The test-first approach of TDD encourages testing to pervade all aspects of a project.  TDD 
demands that design decisions pave the way for testability.  This extends from low-level unit 
testing on through integration, system, and acceptance testing.  Each type of testing views the 
system from a different perspective, builds upon the success of the previous level of testing, and 
increases the overall confidence in the system.  Test code and production code grow in parallel 
yielding fully tested code that implements the goals of the software requirements. 

TDD is compatible with DO-178B.  Low-level requirements can be directly related and traced to 
individual and groups of automated unit tests.  Successfully passing unit tests directly 
demonstrate that low-level requirements have been met.  High-level requirements can be directly 
related and traced to automated acceptance tests.  System tests (i.e., executable test 
programming) written in response to feature requirements and certification requirements become 
automated acceptance tests that demonstrate the certification requirements have been met. 

The needs of high-level DO-178B certification can be met by requiring the certification 
assessments to be expressed in terms of specific, defined tests.  In such a format, automated 
system tests can verify that these requirements have been met.  For example, an automated test 
could assert that the output of a coverage analysis tool indicates full coverage of the code.  As 
such, these system tests become certification acceptance tests that can be run at any time. 

The automated unit and system tests described in the preceding paragraphs constitute dynamic 
analysis (i.e., running the production code and testing it with running test code).  For higher 
levels of DO-178B verifiability, static analysis can also be included in the automated testing.  
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Static analysis tools enforce coding standards and inspect source code for known problems 
including such things as uninitialized variables, buffer overruns, etc.  A static analysis tool can 
easily be added to an automated build system that executes both dynamic and static analysis tests 
before releasing compiled artifacts. 

Dynamic and static analysis test frameworks (available both commercially and via open source) 
can be qualified. Running these tools against source code with traceability between individual 
tests and requirements should satisfy many of the DO-178B objectives [5]. 

3.2.2  Graphical User Interface Testing. 

Graphical user interface (GUI) testing presents special challenges.  A GUI design is subject to 
frequent changes as an application is developed and subjected to customer approval.  Further, 
GUI code is tightly linked to application functionality.  Effectively introducing input and 
inspecting output through on-screen graphical widgets is difficult to do thoroughly without 
automation, yet automation is difficult to accomplish with on-screen graphical widgets. 

The Model View Presenter (MVP) approach is a design pattern [14].  The MVP pattern (and 
particularly a method of use known as Presenter First) can be successfully employed to 
accomplish GUI testing [15 and 16].  MVP decouples the GUI widgets (View) from control logic 
(Presenter) and system state (Model).  Using this structure, the presentation logic and system 
state can be unit tested apart from on-screen widgets.  The View wraps widget functionality in 
the thinnest wrapper possible.  Widgets can be assumed to function free of the need of direct 
testing, or more rigorous tools and techniques can test the widgets directly apart from underlying 
application logic. 

MVP segregation allows the majority of the GUI to be unit tested alongside the application code 
in an automated test suite.  Use of this pattern does not eliminate on-screen testing.  However, it 
does lessen the extent of that testing requiring only verification of the underlying linkages.  
Where automated GUI-testing tools are insufficient for testing GUI logic, these same tools can 
accomplish much, if not all, of the basic linkage verification left by the MVP pattern.  
Traditional human-driven, exploratory testing remains beneficial and can proceed quite quickly 
given that most of the bugs in the GUI code will have been eliminated by unit testing. 

3.2.3  Embedded Software and Hardware Testing. 

Similar to MVP testing, embedded software can be implemented with the Model Conductor 
Hardware design pattern.  This pattern segregates hardware, system state, and logic in a testable 
manner that allows for automated unit tests of hardware, system state, and logic [17]. 

3.3  CUSTOMER TESTS. 

The practice of customer tests places the onus on the customer to specify, in terms of concrete 
tests, the set of conditions a piece of software must meet.  Automated system tests are 
programmed in accordance with these requirements.  As such, these system tests become 
acceptance tests and define the contract between the deliverable requirements and the production 
software.  A system created with the practice of TDD will have been incrementally architected in 
such a way that automated tests of this nature will be possible to create and execute. 
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In terms of DO-178B, this type of concrete acceptance test can codify the stringent safety, 
integrity, and certification requirements of the software under development.  If a safety engineer 
and/or certification assessor has participated in the previous iterations and all system 
requirements have been implemented as automated acceptance tests, certification of the software 
system approaches the formality of pushing a button to trigger the automated build system  
[3 and 8]. 

3.4  DOCUMENTATION. 

3.4.1  Face-to-Face Communication. 

Modern software development practices favor face-to-face communication over all other forms.  
Face-to-face communication significantly limits misinterpretation common in written 
communication and capitalizes on the positive effects of bringing humans within contact while 
working.  Ignorance of system aspects under development is limited by gathering those 
knowledgeable of the system and thus, increases project velocity.  Ultimately, face-to-face 
communication reduces the need for written communication and documentation and narrows the 
scope of written documentation to only that which is absolutely required. 

3.4.2  Design, Assessments, and Written Artifacts. 

While a software development effort is underway, the system is in a state of flux and will surely 
be perturbed by changing requirements or knowledge gained during development.  Thus, reality 
tends to quickly diverge from system documentation created at project onset.  As such, it is best 
practice to write as little documentation as possible upfront (within the constraints of the 
customer’s documentation requirements) while allowing tools to generate as much system 
documentation as possible.  Upon the system’s completion, existing documents and any not yet 
written can be made to reflect the final system accurately.  In this way, system documents are 
much more likely to reflect reality than reams of documents generated before the system has 
been completed. 

Practicing TDD affects documentation in two significant ways.  First, TDD allows testing to 
drive the low-level design of software.  A great amount of design effort up front is likely to be 
spent in vain as the true design will evolve over time.  Attempting to capture this up front design 
in detailed documentation will eventually yield obsolete documents.  Rather, allowing the design 
to evolve and then capturing reality in documents of limited scope towards the end of the project 
is more efficient.  Second, TDD prescribes test suites.  A suite of up-to-date unit tests is, in 
effect, executable documentation that captures the lowest levels of a system’s design.  Because 
this vital information is captured in this way, the need to represent it in detailed documents is 
further reduced.  If low-level system documents are required, automated tools can generate this 
documentation.  Automated documentation tools are able to represent relationships among 
functions, methods, classes, and modules and gather programmer comments into consistently 
formatted, push button generated documents. 

Ultimately, the documentation requirements of the customer and auditors dictate what is written 
and delivered.  A desire to write more than what is necessitated by these parties will often lead to 
irrelevant documentation and hours needlessly spent.  Using test suites and automated tools to 

 6



 

generate system documents complemented by high-level architectural overviews provides the 
most efficient means towards usable documentation. 

Best practices advocate limiting documentation as much as is practical.  In the case of DO-178B, 
documentation is critical to the certification process.  Two approaches can be used to handle the 
documentation requirements of aerospace software.  First, as much of the documentation 
generation as possible should be automated; this document generation can be included as part of 
the automated build system.  Additionally, it is quite conceivable that an automated tool could be 
created to meet the needs of requirements traceability by linking unit tests to individual project 
requirements.  Second, for the documentation that simply cannot be automatically generated but 
must be written, an agile approach exists for generating these documents.  As previously 
advocated, short iterations allow software teams to manage changing requirements and changing 
system knowledge.  This, of course, stresses traditional, documentation-heavy certification 
processes.  Instead of the normal linear approach to writing with a single primary author, the 
RaPiD7 method advocates gathering stakeholders together and generating all documentation 
concurrently over the course of several focused workshops [3 and 18].  Final editing is left to a 
single person.  With this approach, certification documentation can be generated and kept current 
in step with short iteration cycles. 

3.4.3  Collaborative Knowledge Management. 

Much of the knowledge of a system under development should be collected and shared among 
the development team.  The type of knowledge discussed here includes, for example, step-by-
step instructions on configuring support tools or information on how to set up particular 
hardware components within the system.  This knowledge is not typically well suited to be 
placed in source code comments or system documents.  Checking some form of developer 
documents into and out of a version control repository is generally too cumbersome and too 
difficult to search or navigate to be useful. 

If developer knowledge is not kept in an easily accessed and centrally located place, it is of little 
use to the team.  Further, if the means of adding to and updating a growing knowledge base are 
not simple and quick, important knowledge will not be collected.  Information critical to testing 
and build setup must be captured and shared.  Knowledge management tools make this an 
efficient process.  Knowledge management tools reduce the need for team members to relearn 
what was once known or what has been discovered by another team member. 

3.5  COLLECTIVE CODE OWNERSHIP/CONTINUOUS INTEGRATION. 

Source code must be community property among a software development team.  Individual 
investment in certain parts of any system is certainly valuable.  However, this must be balanced 
against the tendency to “own” source code and withhold it from the rest of the team.  In the end, 
owning source code in this way is likely to introduce unsound programming practices, given a 
lack of review by peers.  Further, source code managed by a single person usually causes 
significant problems when all the system’s source code is brought together in final integration.  
While developers may have certain expertise or have responsibility for certain system features, 
all team members must be able to view, refactor, and test all the source code.  This prevents 
costly design mistakes and costly integration efforts. 
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Continuous integration is the practice of rebuilding and testing an application frequently.  This 
practice ensures that flaws introduced into the application’s development are found and corrected 
quickly and that disparate system features are integrated into a whole as smoothly as possible.  
Continuous integration is most often aided by tools such as a source code repository, unit test 
frameworks, and automated build systems.  Continuous integration allows a system to be built, 
tested, and packaged at moment’s notice.  As such, the most recent working system is always at 
hand.  This provides value to the customer, eases final testing, and increases confidence in the 
system.  Continuous integration and automated testing complements collective code ownership 
by quickly exposing integration problems. 

Within the context of DO-178B, an automated build tool enables the practice of continuous 
integration.  Referring to all previous practices already discussed in this report, it is the 
automated build tool that runs all unit and static analysis tests, performs automated acceptance 
testing, generates automated documentation, and builds the release executables. 

4.  BENEFITS. 

4.1  GENERAL BENEFITS. 

There are many benefits to establishing an automated build and test environment, some of which 
are well publicized among continuous integration advocates.  Other benefits have been 
discovered through the experiences of GE Aviation Systems LLC, doing business as GE 
Aviation, and may be particular to HUMS.  The benefits that GE Aviation currently cites are 
listed below. 

1. Ensures system robustness through the ability to run the test suite repeatedly (regression 
testing) throughout development. 

Traditionally, an application may only need to pass one test on one piece of hardware 
prior to release to the customer.  Only later, after repeated use in different environments, 
do problems emerge related to the robustness of the software.  An automated test will 
typically test throughout development on a number of different machines. 

2. Enhances the design for maintainability and extensibility. 

Testing is an important part of any maintenance of software, and automating testing 
makes maintenance much simpler.  Often the person maintaining the software is different 
from the original author.  Any changes made can be quickly verified giving confidence 
that the changes are good. 

The automated tests will clearly demonstrate the software interface to the software 
maintainer.  Unit tests, in particular, serve as examples of correct usage and show how 
the original author intended a class to be used.  Thus, they serve as documentation that is 
always current and accurate, which contrasts written documentation that may contain 
errors and inconsistencies.  This helps with both maintaining and extending the software.  
TDD will usually lead to simpler designs that can be easily grown one step at a time [19].  
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3. The latest software application build is consistently available to support system-level 
testing and customer discussions. 

The latest version of a software project that is in development will be, at best, unstable 
and at worst, unable to build.  That usually results in an older, tested version of the 
project being used to support system level testing.  With an automated build and test, one 
is able to showcase, system test, or field new functions as soon as they are implemented, 
even if development is still going on in other areas. 

4. Frequent software releases to the customer are achievable. 

Without an automated build and test, each additional software release will add time and 
cost for building, integrating, and testing.  With automated testing, there is very little cost 
to each additional release, allowing frequent releases. 

5. Provides an accurate method for tracking software development progress. 

When measuring software development, progress credit is claimed before integration and 
testing.  Further development will often break existing functionality causing that 
measured progress to be artificial.  With automated testing in place, credit can only be 
claimed when a function is tested, and that function will be continuously tested as each 
new function is added. 

6. Increases confidence in the quality of the integrated application. 

Trade-offs need to be made in an attempt to avoid the cost of manual testing.  For 
example, a test fails on 1 procedure out of the 100 tested.  The code is reworked, but the 
cost of manually testing all the functions appears disproportionate to the benefit, so 
instead, an analysis is performed that assumes that the code change will only affect two 
functions, and only they need to be retested.  Unfortunately, these assumptions are not 
always correct, and unexpected effects often occur from software changes. 

Even if the problem fix was successful, if a simple error is made during the building of 
the software (for example a file not copied to the correct installation directory) it will not 
function correctly.  An automated build removes the risk of human failures and ensures 
consistent rebuilding of software.  This is especially important for larger project where a 
software build includes many steps. 

7. Provides confidence and easy introduction of new technologies. 

There is a lot of risk and resistance to the introduction of new technologies.  A minor 
change to a low-level function could result in the need to retest large portions of the 
system.  With automated testing in place that is no longer an issue; even minor 
improvements in technology (e.g., an operating system (OS) service pack) can be 
confidently introduced. 

8. Provides the ability to keep working up to the release date. 
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With a traditional life cycle, a period of time is usually reserved prior to the release date 
for a cycle of integration, testing, and rework.  With automated build and test, it is always 
possible to release a tested application at any time, with whatever functionality is in it at 
the time.  The related benefit is that if things go badly relative to the plan, you have the 
option of sacrificing functionality to make a release date. 

9. Requires less manual testing effort. 

This is the most obvious benefit of automated testing. 

10. Finds problems as early as possible in the development cycle. 

Because a manual test takes time and effort to execute, it is typical to only test software 
immediately prior to release.  The problem with this is twofold.  First, the timing is bad, 
and the release may need to be postponed at short notice.  Second, it may not be clear 
how or when this problem was introduced.  With automated testing, any failure will result 
directly from the last iteration of code changes, making debugging the problem a much 
simpler task. 

4.2  BENEFITS TO HUMS. 

Each benefit above translates to new benefits that are particular to HUMS.  (General Benefit 
numbers from 0 to 10 are shown in parenthesis). 

1. Time and cost to initial certification could be reduced.  (1, 3, 4, 5, 6, 8, 9, and 10) 

2. In general, problems with fielded systems would more likely be addressed.  (1, 2, and 9) 

3. In general, problems with fielded systems would be addressed earlier.  (4) 

4. In particular, problems related to performance (e.g., speed, reliability) with fielded 
systems would more likely be addressed.  (7) 

5. Increasing the scope of HUMS by interfacing to other aircraft systems would become an 
easier task.  (7) 

6. Could allow HUMS to move to a higher degree of certification, and increase its 
effectiveness.  (1, 6, and 9) 

Each benefit is covered in part by the examples from the following section. 

4.2.1  Examples of the Potential Benefits of Automated Testing. 

4.2.1.1  General Benefit for an Evolving HUMS. 

Over the last 15 years, evidence has clearly shown that the most effective systems are ones that 
have modified the HUMS on a regular basis as a result of field experience.  These changes can 
fall into the categories of diagnostic changes in the light of fault case experience or rig test work, 
man-machine interface changes to better present the information to the end user, and data 
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collection/regime/signal processing changes that modify the way the data is collected on the 
vehicle.  Good systems design and configurability can help make this process of change easier.  
However in practice, with the growth rate of knowledge with regard to the application of HUMS 
being so rapid, it is essential to have a cost-effective process for making software changes to the 
HUM system, particularly the ground station. 

Fault cases are typically classified in two categories:  Classical and Novel. Classical faults have 
diagnostic algorithms that were expressly designed to be detected, and whose behavior could 
have been predicted in advance.  An example would be a gear tooth crack or bearing raceway 
damage. 

As an example of learning from experience, GE Aviation has reviewed fault case histories from 
over 2 million HUMS flight hours and has been able to determine that at least 50% of all faults 
detected, or detectable by HUMS, have fallen into a Novel category. 

Novel faults are detected in a way that is hard to predict through theory.  An example would be 
detecting airframe cracking from a change in gearbox vibration signatures.  The importance of 
this almost equal split between Novel and Classical is that its highly possible that some Novel 
faults may be missed on the first occurrence; however, if there is a clear signature/pattern in the 
data, then there is no excuse for missing the fault twice.  Typically, this will require changes to 
the system software and hence a need to be able to make software changes in a timely and cost 
effective manner. 

Automated testing is vital in making these small and incremental changes cost effective.  Section 
7.3 discusses how partitioning can be used in these areas of high change to further reduce 
certification costs. 

4.2.1.2  General Benefit for a Higher Software Certification Level. 

With a desire to move toward certified credits with HUMS, there has been a move toward a 
higher software certification level.  Typically, a move from DO-178A level D to level C or B. 

Systems that have already been developed to this higher level have resulted in higher software 
development and modification costs.  It is interesting to note that, for the GE Aviation’s systems 
fielded to these two different levels, there has been less modification and update of the higher 
certified systems, primarily due to the higher cost of change.  Ironically, this has resulted in the 
lower certification systems with the higher rate of change being more effective systems on the 
aircraft. 

The move to higher certification levels is going to be necessary to exploit the full benefits that 
HUMS can offer, but one key challenge will be to adopt the higher certification levels without 
compromising the ability to change and evolve the systems in a cost effective manner. 

The use of automated testing, with its proven reduction in the costs of software retest, is likely to 
be a key enabler to adopt higher system certification levels. 
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4.2.1.3  United Kingdom Ministry of Defence Merlin HUMS. 

The United Kingdom Ministry of Defence has two HUMS in service, which provide an 
interesting contrast in terms of validation approaches.   The report “Contrasting Approaches to 
HUMS Validation—A Military Perspective” [20] shows how the validation approaches ended up 
affecting both the initial functionality and the maintainability of the system. 

The Merlin HUMS was certified to a high level (Safety Integration Level (SIL) S4) and was 
tightly integrated into the critical aircraft systems.  By contrast, the GenHUMS, initially 
introduced on the Chinook, was certified to a lower level (SIL S2). 

As an example of the functionality differences, the GenHUMS for Chinook had up to 50 
condition indicators (CI), whereas the Merlin HUMS was limited to just 4.  This was due to the 
anticipation of the extensive qualification requirements for each CI algorithm’s software. 

After the Merlin HUMS was certified and in service, changes could not be incorporated without 
a reissue of the full aircraft software suite, so a software ‘bug’ that prevented the onboard system 
from writing data to the data transfer cartridge could not be corrected for over a year. 

With automated testing, the negative aspects related to achieving a higher certification should be 
reduced by eliminating the testing costs of both the initial certification and subsequent 
recertifications. 

4.2.1.4  AgustaWestland 139 Helicopter HUMS. 

This is purely an example of where time and effort would have been saved by automated testing.  
The Augusta Wesland 139 Helicopter (AW139) HUMS ground station (HGS) was initially 
required to work on the Microsoft® Windows 2000® OS.  By 2004, it became clear that it would 
be difficult to purchase personal computers (PC) that came with anything other than Microsoft 
Windows XP®.  No changes were required to the software; GE Aviation had internally used the 
HGS on Windows XP for over a year without any problems. The documentation had to change 
OS from Windows 2000 to Windows XP, which was straight forward.  The only significant cost 
of the change was manually repeating the test in the new environment. 

This is an example of a common issue in the HUMS ground environment, where retesting is 
required when updating commercial off-the-shelf (COTS) software such as database 
management systems (DBMS), OS service packs, .NET framework, and similar application 
frameworks. 

4.2.2  Examples of Proven Benefits of Automated Testing. 

The Bell/Augusta Aerospace 609 Tiltrotor Aircraft (BA609) HGS has highlighted many 
automated testing benefits.  In general, the benefits are visible on a day-to-day basis.  For 
example, additions to functionality and problem report fixes have been implemented in less time 
and cost than prior to the introduction of automated testing. 

The following are more examples from the BA609 HUMS where the benefit is greater than just a 
time and cost savings. 
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4.2.2.1  BA609 HUMS DBMS. 

Recently on the BA609 HUMS, GE Aviation was able to change DBMS from Borland’s® 

InterBase® to Foundation Inc.’s Firebird®.  Although InterBase was sufficient for the job, the 
installation and licensing of it was extremely awkward, and thus unpopular with current 
customers.  However, neither issue was great enough to justify the change in previous iterations.  
But after the BA609 HUMS had automated testing in place, it was possible to implement and 
verify the change easily. 

Not only was the change easier to verify with automated testing, but it was also easier to 
implement the change because problems from introducing the new DBMS are noticed 
immediately in failed tests.  Without automated testing, the implementation would only uncover 
a fraction of the problems immediately.  Some may only be spotted at the next complete system 
test.  At this stage, it may be difficult to associate the problems with one particular change.  At 
worst, the problems are unsolvable, meaning that the change and everything built on that change 
would need to be rolled back.  With automated testing, any unsolvable problem would be spotted 
immediately, and the change would be removed before anything was built upon it. 

4.2.2.2  BA609 HUMS Download Speed. 

Poor performance is often a problem that is first experienced by the customer.  However with 
automated testing, any performance problems first become an issue for the software development 
team.  Since the automated test suite is run each time a developer checks-in code, it is important 
for the development team that this test runs quickly.  Well-designed tests are crucial; however, if 
the underlying HUMS functionality is slow, the test cannot be fast. 

Often, performance problems are fixed by optimizing foundational code that is executed 
repeatedly.  The issue with changing this sort of code is that it often impacts more than just the 
area that requires optimizing.  Normally, this would require a lot of testing effort and hence be 
avoided.  Automated tests providing good coverage of the changed code can detect introduced 
errors and thereby reduce the aversion to making important performance-improving changes. 

When automated testing was introduced to the BA609 HUMS, GE Aviation was able to make 
simple (but high-impact) changes to the foundational code, and the automated tests alerted to any 
unwanted side effects that were introduced.  As a result, the overall download time was 
improved threefold for a large dataset.  Previous attempts on the BA609 HUMS to improve 
download speed had been limited because of the risk of introducing these side effects. 

5.  PLANNING ISSUES. 

Allowing automated testing techniques to be used as part of an aircraft certification where they 
replace human processes requires rigorous processes similar to those used when writing and 
verifying traditional manual tests.  The need to consider these processes will require additional 
planning work. 
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5.1  TOOL QUALIFICATION. 

5.1.1  Relevant DO-178B Guidelines. 

The requirement for any tools used during a software development is normally revealed during 
the planning stages.  For a DO-178B project, this will mean that it is documented in the Plan for 
Software Aspects of Certification (PSAC) [1]. 

DO-178B states:  “The Plan for Software Aspects of Certification (PSAC) should include a 
listing of all software tools and justification for why each tool does or does not require 
qualification.” 

5.1.2  Tool Classification. 

DO-178B describes verification tools as “Tools that cannot introduce errors, but may fail to 
detect them.”  Clearly, automated testing tools are relied upon to detect errors and potentially 
could fail to detect them.  DO-178B describes development tools as “Tools whose output is part 
of airborne software and thus can introduce errors.” 

Automated test frameworks do not and cannot affect the contents of built software items, 
because they are used after the application is built and therefore are not classified as software 
development tools.  It is theoretically possible that a test framework could be used as a software 
development tool on project, which is why this analysis needs to take place on each project that 
uses a tool.  The successful qualification of a tool for one project does not imply that it is 
qualified for all projects.  However, the qualification data produced for one project can be used 
for other projects as long as the tool is being used in the same way. 

Another option is to use automated testing tools only during development and to perform the 
formal verification by other means.  Therefore, this does not eliminate, reduce, or automate any 
DO-178B processes and hence requires no tool qualification.  However, since this report 
demonstrates that qualifying automated testing tools is relatively simple on all but the smallest 
projects, when using automated testing, it is most cost-effective to use this for formal verification 
also. 

In conclusion, for most projects, automated testing tools should be classed as a software 
verification tools and not development tools. 

5.1.3  Qualification Data. 

Table 1 shows the data required for tool qualification of a software verification tool [2]. 
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Table 1.  Qualification Data Required for a Software Verification Tool 

Data Available/Submit DO-178B Reference 
PSAC Submit 12.2 

12.2.3.a 
12.2.4 

Tool operational requirements Available 12.2.3.a(1) 
12.2.3.1 
12.2.4 

Software accomplishment summary Submit 12.2.4 
Tool verification results Available 12.2.3.c 

Note that there are no differences in the tasks required based on the criticality level of the 
software that is being verified by the tool.  However, it would be expected that more attention 
would be given to the qualification data for higher levels of software criticality. 

5.1.3.1  The PSAC. 

The PSAC is where the automated testing tools will first be acknowledged as being used for 
software verification and will identify the qualification data that is to be produced. 

5.1.3.2  Tool Qualification Plan. 

GE Aviation used their document titled “Tool Qualification Plan” as a holder for the tool 
operational requirements and the test procedures used for verification. 

5.1.3.2.1  Tool Operational Requirements. 

The operational requirements for the tool specify the functionality of the tool that is being used, 
and the environment in which it is used. 

For vendor software, as with most automated testing tools, the requirements usually have to be 
reverse engineered from the documented functionality. 

It is normal to capture requirements for the full functionality of the tool, even if beyond those 
actually needed.  One may restrict the operational requirements to only cover a subset of the tool 
functionality that is being used.  However, if this is done, then the use of the tool needs to be 
restricted within the project to make sure that undocumented functions are not used. 

By qualifying a tool completely, it is far more likely that the tool can be reused on other projects 
with the same qualification data. 

5.1.3.2.2  Test Procedures. 

DO-178B states:  “The qualification criteria for software verification tools should be achieved by 
demonstration that the tool complies with its Tool Operational Requirements under normal 
operational conditions.” 
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So for an automated testing tool, the test procedures need only test the tool under normal 
operating conditions on the target development environment.  Typically, for the most basic 
automated testing tool this will mean: 

• Passes, failures, and errors (when the testing abnormally exits) are reported correctly. 

• Tests that assertions pass and fail correctly given the appropriate arguments; e.g., tests 
that assertEquals(1,2) causes a failure and assertEquals(1,1) causes a pass. 

New test procedures can be created to test the operational requirements under normal operational 
conditions.  However, most automated testing tools come with a test suite that fully tests all 
functionality.  These vendor-supplied tests usually go far beyond the testing required and 
perform white box testing of the internal functionality.  When using vendor-supplied tests, the 
tests should be carefully verified to ensure that all requirements are fully tested.  Since these 
white box tests have knowledge of the software internals, this verification work can be 
significant and may be costlier than writing one’s own tests. 

5.1.3.3  Test Results. 

Automated tests may be an unconventional practice in some organizations, and it is wise to 
discuss the best way to execute and document the tests with the software quality assurance 
personnel. 

Since the tool needs to be tested in its operational environment, tests may need to be repeated on 
different platforms, or when a new OS is used.  Therefore, it is good practice to ensure that the 
test procedures are developed to be independent of OS.  

5.1.3.4  Tool Accomplishment Summary. 

The Tool Accomplishment Summary (TAS) will identify a version of the tool and the 
documentation set that goes along with it.  This may include identification of the test results for 
each tested platform.  It will include any known problems and any restrictions on usage.  The 
TAS should be developed separately from the main software accomplishment summary, which 
will reference the TAS.  

5.2  STAFF PLANNING. 

The learning curve for developers is greater than that for the typical software engineering change 
of switching programming languages.  The change here is that of process followed rather than 
just new syntax and updated design philosophies. 

The two greatest issues for developers are learning how to write good tests and understanding the 
continuous integration philosophy. 
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5.2.1  Learning to Write Good Tests. 

Developers will initially find it difficult to write automated tests.  The tests are often misapplied 
by developers as a means to execute the code to prove that it is working.  The developer then has 
to evolve these informal and experimental tests into a well-structured test. 

Training in writing good tests is useful, and due to the popularity of Agile and Microsoft 
Windows XP methods, there are many training materials available. 

When practicing continuous integration, it is common for a developer who has introduced new 
functionality to have to modify an automated test produced by another developer.  This can be 
beneficial as an additional form of review.  Where possible, it is best to plan the development 
team so that at least one person on the team has strong experience in developing automated tests. 

Harder still is the transition to TDD (see section 6.4.2) where tests are written prior to application 
code, a transition that yields many benefits. 

5.2.2  Learning to Follow Continuous Integration. 

The challenge here is to quickly learn the continuous integration build rules (see section 6.4.1).  
If not learned and followed, this can adversely affect the entire development team in addition to 
the individual.  Unfortunately, these rules can only be successfully learned on the job, and should 
be enforced strictly to encourage new developers to adapt quickly. 

Section 6.3.2.5 discusses the common causes of broken builds, which are often caused as result 
of developer inexperience. 

6.  IMPLEMENTATION. 

There will be common aspects to all implementations and the processes used.  Figure 1 shows 
the basic infrastructure and the steps taken for each build cycle. 
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Figure 1.  Simple Automated Build and Test System 

6.1  TEST STRUCTURE. 

Automated tests are part of an automated test system compiled separately from the system 
application software.  The application software tested is the final application binaries, including 
any nondevelopmental items or COTS software. 

The system application software must have no dependencies on the test system.  For DO-178B 
verification, any tests must be performed on the final application binaries and on the target 
platform. 

The automated test system stimulates functionality within the application, and then compares the 
actual outputs against verified expected results (see figure 2). 
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Automated Test System
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Test
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Test Results
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Figure 2.  Software Structure of an Automated Test System 
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The diagram above shows the link between the automated tests and the application under test.  
For acceptance testing, which verifies that the software meets its functional requirements, the 
application is used through its normal interfaces (from the outside).  For unit testing, which tests 
a single class or module in isolation, the tests run against isolated parts of the system by 
interfacing at the class or module layer. 

Automated test frameworks are described in more detail in section 6.3.3. 

6.2  HARDWARE AND NETWORK INFRASTRUCTURE. 

A network of machines is required to achieve all the functional requirements of a continuous 
integration and automated build and test environment.  This section documents the role of each 
of those machines. 

6.2.1  Build Machine. 

The Build Machine is the name commonly given to the computer that controls the execution of 
the automated build.  This computer will have continuous integration software (see section 6.3.2) 
running to detect changes to the Developmental Configuration Management (DCM) (i.e., when 
developers update the source code). 

Often, build execution will be the bottleneck of the automated build and test environment.  
Therefore, it is often worth investing more in the hardware capabilities of this machine.  In 
particular, multiprocessor capabilities can give great benefits, but will require independent 
processes or threads in the software (similar to distributed builds) to be properly exploited. 

6.2.2  Web Server. 

Other than the version control tool the web server will be the main human interface to the 
continuous integration environment.  A build status page will typically show the status of each 
build with controls to get more data or override the scheduling options.  The web server 
functions require little computing power and do not require a dedicated machine per project.  
Typically, the infrastructure is set up so a single web server provides build results from a number 
of different projects.  Alternatively each project may have a combined build machine and web 
server. 

6.2.3  Developmental Configuration Management Server. 

Typically, DCM will already be standardized in most software development organizations.  A 
continuous integration environment requires good performance from the DCM, which in part is 
influenced by the choice of hardware. 

6.2.4  Developer Machines. 

When a software developer checks in changes that render the project unbuildable, or cause tests 
to fail, then the build has been broken (see section 6.3.2.5), and it impedes the progress of others 
on the team.  To avoid this, each developer is expected to run the tests on his local build before 
checking in.  The tests must pass before he is allowed to check in. 
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Therefore, developers will now run automated build and tests as part of their everyday 
development.  Although this is highly beneficial, developers cannot spend too much time waiting 
for tests to complete.  Developers will run only the tests related to the software they are working 
on until they are ready to check-in, when they must run the full suite of tests.  This can be time-
consuming, so it is recommended to invest well in optimizing the test design and the hardware 
capabilities of developer machines, too. 

6.3  TOOLS. 

6.3.1  One-Step Build. 

One-step build tools allow source code and tests to be compiled and run without direct user 
interaction.  These tools often replace or supplement project files created by integrated 
development environments (e.g., Microsoft Visual Studio®). 

For existing projects, setting up the one-step build will often be a time-consuming task.  The 
starting point will be the build instructions.  On some projects, it may not be practical for 
individual engineers to ever build and integrate the entire system.  The build instructions are 
often a more of a log of the tasks carried to build the software, and any attempt to recreate the 
build will run into difficulties. 

Using GE Aviation’s preferred one-step build tool, Apache Ant®, it is possible to call other 
processes directly as one would in a batch file.  However, it is usually worth looking to see if 
Apache Ant has built-in support for what you are trying to do.  For example, Apache Ant has 
built-in tasks for 

• most of the common OS command line tools 

• compilation-related tasks 

• many Sun Microsystems’® Java™ related tasks (Apache Ant is designed to be extendable 
using Java) 

Moving to a one-step build instantly documents most of the build process, so builds should be 
consistently reproducible.  Some tool setup instructions will still need capturing even with a one-
step build.   

6.3.1.1  Typical Tasks Within the One-Step Build. 

The one-step build procedure is needed to give as much confidence as possible in the status of 
the modified source code.  Anything that can automatically give a pass/fail indication of the 
modifications status should be included in this build.  The following are typical tasks that are 
included during a one-step build. 

• Clean—Prepare the build environment by deleting any artifacts from previous builds.  
These artifacts may include:  test results, intermediate objects files, and executable files. 
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• Compile Application—Compile and link the application source code to produce 
executable binaries. 

• Compile Tests—Compile and link the test source code to produce executable binaries. 

• Build Configuration Data—Build the source configuration data into files that are 
delivered with the application. 

• Build Test Data—Build the test data used in the testing of the application but not 
delivered with the application.  This may include alternative configurations. 

• Static Analysis—Use a tool to perform a static analysis on the application and test source 
code (see section 6.3.7). 

• Execute Tests—Execute the test binaries that were produced at the compile test task.  

• Code Coverage—Depending on the code coverage analysis tool used, this may involve 
instrumenting the original source code, recompiling, and re-executing the test binaries 
(see section 6.3.6). 

• Build Installer—PC-based software, such as HUMS ground stations, is typically 
delivered as a single setup file.  This task typically relies on tools such as Microvision 
InstallShield®, Altris® Wise Installation Studio®, Nullsoft Scriptable Install System, or 
Inno Setup for producing the installation package. 

The tasks that are typically not included in the main one-step build are: 

• Installing the software for the build environment, since this only needs to be done once. 

• Other one-time setup tasks. 

• Generating documentation (see section 6.3.8).  This is an important task; however, it will 
not give an automatic pass/fail indication. 

• Retrieving source from version control.  This is a useful task to automate; however, it 
would interfere with any local modifications and is usually a task performed only on the 
continuous integration server. 

A one-step build tool may be used to automate these tasks; however, they will not be part of the 
main scheduled build. 

Any failure of any build step must be reported unambiguously.  Avoid or minimize nonfailure 
messages so the pass/failure notification will not be obscured. 

6.3.1.2  Multithreaded Build. 

Multithreading allows the build to complete in a shorter time span by running some tasks in 
parallel.  To achieve this benefit, a build machine with multiple processors (or processor cores) is 
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required to allow tasks to run in parallel.  The ability to design the build by selecting independent 
tasks that could be run in parallel is also required. 

To implement this, Apache Ant provides a <parallel> tag, which will execute the tasks inside it 
in parallel.  There is also a <sequential> tag, which will execute the items in it in sequence 
(useful when placed in a parallel tag).  For instance, one thread could be building the source code 
while the other is populating a database with test data. 

6.3.2  Continuous Integration. 

Continuous integration systems work in conjunction with version control and one-step tools to 
monitor changes in a source code repository and automatically build the software under 
development.  Choice of a continuous integration system may depend on the choice of other 
tools being used and the software development environment. 

6.3.2.1  Status Information. 

Build rules (see section 6.4.1) determine when developers are permitted to check-in and check-
out source code.  Adhering to these rules requires that developers have access to the current build 
status at any time. 

Most continuous integration tools provide several mechanisms for doing this, with personal 
preference usually dictating which method the developer uses.  Typically, continuous integration 
tools use build logs to store the build results, which can then be presented in a number of 
different ways. 

6.3.2.1.1  Web Page. 

The most widespread way to present the status is via a web page.  This way it is easily accessible 
by all developers and can be linked to from other web-based resources. 

The CruiseControl™ web page, as shown in figure 3, displays each project (build) along with the 
result of the last build.  Since CruiseControl is open source software, GE Aviation has 
customized it to expose a button on the status page, which allows one to pause the build (to 
overcome a common problem with our version control system) in addition to the standard forced 
build button.   

This page will be accessed frequently by developers and, as shown in figure 3, can be used as a 
portal to add links to other project content, in this case the Sun Javadoc™ documentation and the 
code coverage analysis. 

The status page will usually contain links to historical build information, allowing the 
development team to track important metrics such as build time and percentage of failed builds. 
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Figure 3.  Example Continuous Integration Status Page 

6.3.2.1.2  Other. 

Among the other popular methods of displaying status is the use of the Microsoft Windows 
taskbar notification area.  The screenshot shown in figure 4 is taken from CCTray, a utility 
provided for CruiseControl.NET. 

 

Figure 4.  Microsoft Windows Taskbar Notification 

The advantage of the system tray icon is that it is always running and active, and it provides an 
instant reporting mechanism if there are any changes to the system. 

Really Simple Syndication Feeds are available from CruiseControl and other continuous 
integration tools, which can be displayed in a web browser or directly on the desktop.   

6.3.2.2  Instant Reporting. 

For developers who have just changed the build, seeking out status information is not suitable.  If 
a developer has broken the build, it is important that they not ignore it. 

This is particularly important for developers who are new to continuous integration and might 
otherwise ignore the status of the build machine. 

Experience has showed that at the start of projects, or when new developers are introduced to 
continuous integration, strong encouragement is required to ensure that the build is not broken 
because of carelessness, and that if it is broken, it is fixed promptly. 
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6.3.2.2.1  Email. 

Email is often the most efficient way of instantly and automatically communicating the build 
information in a way that gets noticed.  Typically, software developers will have an email client 
continuously running, and read mail as it arrives. 

6.3.2.2.2  Instant Messengers. 

Instant messengers (IM) are becoming more popular in offices and, in many cases, are replacing 
email as the standard form of messaging.  In such cases, emails may be checked infrequently and 
IM may be the preferred choice for communicating the build information. 

Note that IM is currently not a standard part of most information technology infrastructures and, 
worse still, may be explicitly blocked from use like email once was. 

6.3.2.3  Backup Strategy. 

The reason for backing up the build machine is not because it contains anything that is not stored 
elsewhere (since the build machine should reflect the developer’s machines), but rather because 
it is an essential resource that needs restoring immediately if it ever fails.  Thus, a backup 
strategy that backs up whole partitions rather than selections of individual files is preferred.  
Backing up selections of files may miss important configuration information, which then has to 
be laboriously recreated. 

6.3.2.4  Build Rules. 

Build rules are required to ensure that the use of continuous integration environment is consistent 
and reliable for each developer.   These rules are detailed in section 6.4.1. 

6.3.2.5  Broken Builds. 

A broken build occurs when any task in the one-step build fails. 

The broken build is a useful indication that something requires fixing; however, these errors 
should have been spotted by the developer running the exact same one-step build prior to 
checking in. 

The problematic side effects of a broken build are that, while the build is broken, other 
developers are unable to check-in and need to wait for the changes that fix the build before 
rerunning their tests.   This usually means additional testing runs prior to check-in, and the 
developer having to start on a new task while waiting to complete the previous task. 

Table 2 lists some of the general causes of broken builds.  The first three cases are almost always 
caused by human errors, which can be avoided.  For these reasons, developers who are new to 
continuous integration or the project will break the build far more often than experienced 
developers. 
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Table 2.  Causes of Broken Builds 

Error Cause 
Developer version control error The developer forgets to check-in all changes.  In particular, when a developer 

checks in all the files that were checked-out, and forgets to add new files. 
 
A common cause for a broken build, especially if the Version Control System is 
unintuitive or labor intensive. 

Developer assumptions The developer performs an impact analysis of the change made and performs 
regression testing rather than running a complete build.  The assumptions made 
are not correct, and the failure is caught by the build machine. 
 
A likely cause of build failures when the build length is too long and developers 
try to short circuit the process. 

Build machine setup When the build machine setup is different from the developer’s causing an 
automated test to fail.  Usually, this occurs when a new tool is introduced but not 
installed on the build machine. 

Intermittent failures An intermittent failure is one that does not occur in every build.  These are 
difficult to detect, and a temptation is to forget these when they disappear 
following another build.  Often, these occur because of the increased memory 
usage or other resource issues when running automated tests in sequence without 
idle time. 
 
Nightly builds (0) can help detect intermittent failures. 
 
If left unresolved, intermittent failures can significantly reduce productivity. 

Build process differences Broken builds can occur due to subtle differences in build process between the 
developers’ machines and the build machine.  Sometimes these differences are 
inadvertent and once spotted can be easily resolved; however on other occasions, 
the differences may be by design. 
 
For example, during the BA609 HUMS development, the build process executed 
on the developer machines compiled the source code with debug information 
(critical to allow developer debugging), whereas the build machine ran a build 
without debug information.  This caused a number of builds to fail, mostly where 
the compilation failed due to warnings that were not generated in debug mode. 
 
These build process differences should be avoided where possible.  However on 
the BA609 HUMS, the additional time for developers to compile and run tests 
without debug information was considered prohibitive for the benefit it would 
give. 

 
6.3.2.6  Dependant Builds. 

Dependant builds occur when one project has a software dependency on another project, 
requiring the other project to be built first.  In some situations, it will not make sense to perform 
a build unless another build has succeeded.  For example, a successful build of the HUMS Rotor 
Track and Balance (RTB) diagnostics may trigger separate integration tests for each HUMS.  
CruiseControl and other tools have features to directly support this. 
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6.3.2.7  Nightly Builds. 

A nightly build is a build that is run at a scheduled time during the night, often regardless of 
whether or not changes have been detected.  The benefit of a nightly build is that it does not take 
any valuable processing time from the build machine during working hours. 

Nightly builds are usually used for tasks that do not require immediate feedback to the user or 
are heavily time consuming.  Nightly builds can be used for the main application build and test 
giving greater confidence in the integrity of the build by being able to detect intermittent failures. 

6.3.3  Automated Test Framework. 

A test framework allows tests to be written in same language as the code being tested by 
providing simple functions for comparing actual results to expected results. 

Unit test frameworks provide standard interfaces and automated methods for running and 
reporting the success of developer written unit tests [8].  The framework hosts one or more test 
classes in a suite comprised of individual unit test methods.  These test methods are separate 
from the production code under test but mirror the naming structure of that production code in 
some way.  Frameworks are tied directly to individual programming languages. 

Test frameworks provide test setup and teardown functions for test classes and suites that can be 
overridden by the developer for any needed test initialization and cleanup.  Unit test frameworks 
for object-oriented languages usually provide an abstract test case class that provides 
setup/teardown functionality, test calling, suite registration, and helper functions. 

Test functions within the suite are written to perform a single action and then assert that a state 
was realized or an action occurred in the code under test.  Unit test frameworks provide a set of 
assertion functions, or macros, that allow the framework to compare the expected results of a 
method under test with the actual results.  These assertions usually exist for the all the basic 
types in the native language, for example, Assert.AreEqual(34.2, x, 0.0001).  This NUnit (.NET) 
example shows how the double-precision, floating point value x matches the expected value of 
34.2 within the delta of 0.0001. 

A test framework also provides facilities for reporting the results of the tests.  Frameworks are 
usually able to report the results in a way that is supported by continuous integration tools. 

Since the test framework itself partly automates DO-178B verification processes, it is classified 
as a verification tool and thus must be qualified, see section 5.1.  Also, the tests themselves must 
be reviewed, see section 6.4.3. 

6.3.4  Mock Tools. 

Mocking is used to simulate (mock) other parts of the system that are being used but not being 
tested and is used in conjunction with unit test frameworks. 
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Mocking serves to eliminate application classes from tests of other classes by replacing the 
application class with a mock.  Consequently, the complexity of individual tests is reduced as 
one piece of a system can be tested in isolation from the rest of the system. 

In the absence of a mock tool, the mocked version of a class must be produced through manual 
coding.  Mock tools aid mocking by reducing the amount of code needed to produce a mock.  
They help the readability by allowing all the test code to be in one place with no additional 
classes required.  Mock tools help to ensure that all mocks are produced in a consistent manner 
aiding readability and reducing maintenance costs. 

Currently, mock tools are available for run-time-hosted languages like Sun Microsystems Java 
and Microsoft C#.  Run-time-hosted languages provide a means for dynamically inspecting and 
creating objects through reflection.  These features lend themselves well to the idea of mock 
objects.  Mock tools for compiled languages may eventually become prevalent as well. 

However, like a unit test framework, a mock tool would be classified as a software verification 
tool by DO-178B and hence, would need qualifying.  This would be a relatively straightforward 
task (depending on the amount of functionality the mocking tool has), although it needs to be 
balanced against the small increase in productivity of using a mocking tool over hand-coding of 
mocks. 

6.3.5  Developmental Configuration Management/Version Control. 

A version control system tracks, groups, and stores all sets of changes to the source and 
configuration files comprising a project.  Typically, a server and client cooperate to allow 
developers to commit files to a repository, manage file change collisions among multiple users, 
and revert files to specific versions. 

To have an automated build and test environment, a version control tool is required for DCM.  
The version control tool will be the main interface between the software developers and the main 
build. 

Since CruiseControl and other continuous integration tools have support for most popular 
version control systems, a software organization’s standard tool can normally be used.  If a tool 
is not supported, CruiseControl allows implementation of plug-ins to add support for further 
tools.  GE Aviation has performed this task to allow use of Serena® Dimensions®, which was 
previously unsupported. 

6.3.6  Code Coverage. 

Code coverage tools are already widely used in the development of avionics software to identify 
portions of system not well-tested or even to find obsolete and unused pieces of production code. 

Execution of a code coverage tool is readily automatable.  Including it in the one-step build 
allows the addition of code coverage in the pass/fail criteria. 

By integrating code coverage into the continuous integration build, one is able to understand 
code coverage issues earlier in the lifecycle.  This can be done by producing a report with every 
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build showing the code coverage analysis.  Or, taken to an extreme, a build could be made to fail 
unless there was complete code coverage. 

6.3.7  Static Analysis Tools. 

Static Analysis tools analyze the source code or object code of the software without executing 
the software. 

Most static analysis tools provide functions for detecting design flaws, naming violations, 
common performance problems and language specific errors.  Many problems that static analysis 
tools detect are often called out in coding standards.  Static analysis tools can be used to 
demonstrate adherence to coding standards. 

More advanced static analysis tools use a set of rules to evaluate source code for looping errors, 
buffer problems, pointer issues, and related matters. 

Static analysis tools can be an excellent complement to dynamic analysis (as performed by 
automated tests).   Static analysis attempts to prevent outlier conditions, such as those that may 
not otherwise show themselves until the system has been run continuously for long periods of 
time. 

When used as part of the continuous integration, the errors that static analysis tools can detect are 
caught earlier and cost less to fix. 

6.3.8  Documentation. 

Documentation systems generate developer and system documentation from the source code of a 
project.  This type of functionality usually requires that comments be placed in the source files 
using a standard notation.  Each documentation system will often have its own preferred 
documentation notation standard while also supporting several others.  Comment notation styles 
are often simple formats readable by both a developer and the documentation tool. 

The choice of documentation system often depends on the specific language in which software is 
being developed, but most systems can also be configured to generate documentation from any 
file using the proper notation. 

It may not be desirable to perform document generation as part of the immediate build cycle, 
since it is time-consuming and can give no pass or fail indication. 

It is better employed as parts of a build scheduled overnight, thereby consuming fewer build 
machine resources, but still being up-to-date enough to be of benefit. 

6.3.9  Wiki. 

Wikis are knowledge management systems that take the form of a collaborative website that can 
be edited directly. 
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Wikis can be usefully employed as part of the development process to capture information that is 
outside the scope of requirements and is not specific to system documentation.  Examples of 
such information include instructions for setting up development systems, coding standards, 
contact lists, etc. 

Wikis are particularly useful since they encourage up-to-date documentation by requiring little 
effort to update them.  When continuous integration is employed, it is crucial that the build can 
be accurately recreated, for example when a new developer joins the team.  A Wiki allows this 
information to be easily documented and easily updated when errors or omissions are discovered.  
This information can be easily transferred from the Wiki to formal documentation such as a 
version description document when development is complete. 

6.4  PROCESS CHANGES. 

6.4.1  Build Rules. 

Build rules are required to ensure that the use of continuous integration environment is consistent 
and reliable for each developer. 

The rules employed will vary between organization based on existing company processes and 
roles and the company culture.  These rules only apply within the development cycle of design, 
implementation and test, prior to formal testing. 

Typically, the rules will suggest that the individual who checked in code that broke the build will 
be asked to fix it (other punishments will vary by organization).  Other rules will be introduced 
to reduce the risk of breaking the build.  See table B-1 in appendix B for an example. 

6.4.2  Test-Driven Development. 

As the name suggests, with TDD the tests come before all other parts of the development.  In 
fact, the tests will also be a driver for some of the requirements analysis. 

One obvious issue with TDD is that it cannot be retrofitted.  However, TDD can be practiced 
when developing new functionality for a legacy project, although existing code may need to be 
modified to make it testable. 

In general, the main benefits of TDD (as part of automated build and test) are covered in section 
4.1.  The key advantages of TDD (test first), overwriting the code and then writing the test, are as 
follows: 

• When deriving low-level requirements, test cases are a useful communication tool 
between the development team and the domain experts. 

• TDD reduces the probability of developing software that does not meet the 
undocumented requirements of the system. 
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• TDD forces the developers to produce testable software.  The test case will specify the 
interface to the software.  Testable software usually equates to better designed, more 
maintainable, and more extensible. 

• The tests can take the place of debugging often making it easier to find and fix problems 
in the software [21]. 

In theory, practicing TDD should result in 100% code coverage of the developer’s tests.  This is 
because each line of application code is in response to a test case, and the practice encourages the 
developer to construct the simplest possible solution (i.e., not adding code for features not 
currently required or tested). 

6.4.3  Verification Guidelines. 

The verification process for automated tests is similar to that for manual tests.  The main added 
complication is that of qualifying the verification tools to be used.  Tool qualification is covered 
in section 5.1. 

Once the tools are qualified, anything built on top of those tools must be manually verified.  For 
the BA609 HUMS, a checklist was developed that was refined as part of this research. 

The BA609 HUMS checklist often refers to “Verified” calls.  These are calls made by the 
automated test code to report acceptance tests that have passed, which help with the traceability 
between requirements and tests. 

For the BA609 HUMS, this was used to report Dynamic Object-Oriented Requirements System 
(DOORS) requirement identifiers that uniquely identified each requirement.  This allows one to 
compare requirements tested versus actual requirements, ensuring full functional test coverage 
and to provide a list of all the requirements tested. 

6.4.3.1  Checklist. 

6.4.3.1.1  Check Test Consistency With Test Documentation or With Tested Functionality. 

This will vary depending on how the test is documented.  A document may contain a list of the 
test procedures along with traceability to the requirement it intends to test. 

The code itself may provide the links to complete the traceability to the requirements. 

There are many scenarios in which this check is important.  Causes for this check to catch an 
error include requirements that have changed or been removed without the test code having been 
updated accordingly or copy and paste errors where a whole test is copied but either the assertion 
or verified call is not updated correctly. 
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6.4.3.1.2  Ensuring That the Test Fails if Functionality Fails. 

If functionality fails, it is imperative that the test cannot pass.  This usually happens if the 
assertions are incorrect or are avoided by the code flow.  Code coverage analysis helps spot the 
former case; the latter case can only be detected manually. 

An example of this verification error was detected where the requirement was to send a message 
if an event happened.  The automated test called the functionality to raise the message, and then 
had an assertion in the message handler to assert that the message was correct.  However, if no 
message was sent, the test still passed.  This was not the case in the example since the application 
code did work.  What was missing was an assertion after the functionality call to assert that the 
message handler had been entered. 

6.4.3.1.3  Requirements Verification Criteria. 

Requirements may be marked as verified even though they have not completely tested within the 
test fixture.  This can happen if a requirement needs two test cases to be verified, but it is still 
desirable to mark it in the code as tested. 
 
For example, the requirement may read “Serial numbers and start times shall be displayed for 
Left & Right Engines,” but the serial numbers and start times are tested separately in a different 
test. 

The solution is usually to either split into two requirements, or to move all the test code into the 
same test fixture. 

6.4.3.1.4  Adequate Test Data. 

Where applicable, it is necessary to check that the test data inputs are adequate for the test and 
that the expected results are consistent with the inputs. 

6.4.3.1.5  False Positives. 

It is necessary to check for tests that can give false positives (i.e., certain conditions are 
considered passes that should be considered failures).  This often happens because of inadequate 
understanding by the tester of the control flow through the software. 

False negatives will cause problems by causing the tests to fail unexpectedly or intermittently; 
they are discovered when they happen, and do not need to be explicitly sought in review. 

6.4.3.1.6  Boundary Cases. 

As with manual testing, it is important to test boundary cases.  Take the example of a function 
that takes a name and returns true if the person is male.  To adequately test the function, one will 
at least need to pass in both a male and female name.  There may also be failure cases, for 
example, a name that is not recognized. 
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Selection of boundary cases is implementation specific and requires understanding of the 
algorithm implementation. 

6.4.3.1.7  Test Source Code Follows Coding Standards. 

Coding standards for test source code should be employed mainly for consistency of style and to 
outlaw dangerous practices.  The quality of the test code is vital since it is often used as a 
guideline for using the application code, and will be frequently updated when performing 
continuous integration. 

6.4.3.1.8  Other. 

If the code is being read for the verification review, it is cost-effective to combine this review 
with other review activities.  An example of this is section 6.4.3.1.7, since this check is not 
strictly required for a verification review but is of great benefit during development. 

7.  SYSTEM FUNCTIONALITY PARTITION. 

HUMS are made up of many different functions.  To partition different functions of the HUMS 
means that the functions are designed to not affect each other except through the defined 
interface.  For example, if a HUMS has two functions, RTB and Structural Usage Monitoring 
(SUM), it may be possible to partition those functions, allowing the assumption that a change to 
RTB will have no impact on SUM and vice versa. 

The partitioning method allowed will vary by certification level.   For example, for lower levels 
of certification, it may be sufficient to have the functions partitioned by running in separate 
processes within the operating system.  Whereas, for higher levels, those functions may have to 
run on dedicated processors or in a partitioned operating system. 

Some functions of a HUMS may be independent by definition.  For example, the ground-based 
RTB function typically will be completely independent of the SUM.  Other functions may be 
partitioned by running in different processes within an OS or by running on a dedicated 
processor. 

Automated testing and partitioning complement each other, and can both be used to reduce the 
time and cost of certifying a HUMS. 

7.1  PARTITIONING BY CRITICALITY. 

Different functions of the system may have different criticality levels arising from the Functional 
Hazard Analysis. 

The requirements for certifying (and hence, the time and cost) increase proportionally with the 
criticality level.  By isolating functions that have lower criticality levels, the effort of certifying 
these functions can be reduced. 

Often, an investment is made to partition functions that may change criticality even if their 
current criticality levels are the same. 
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7.2  PARTITIONING BY TESTABILITY. 

Ideally, the entire system would be automatically tested.  There may be factors, however, that 
stop certain parts of the system from being tested this way.  Typically, these are parts of the 
HUMS with complicated external interfaces to the users, to the HUMS sensors, and to other 
aircraft hardware. 

In these situations, partitioning can be used to isolate those parts of the system that are difficult 
to test. 

7.3  PARTITIONING BY PROBABILITY OF CHANGE. 

As discussed in section 4.2.1.1, the HUMS is a continually evolving system.  However, certain 
areas of the system will be far less likely to change after initial certification. 

Again, ideally the entire system would be automatically tested, in which case the amount of 
change is no longer an issue. 

However, for parts of the system not covered by automatic testing (or as an alternative to 
automatic testing), partitioning can be used to isolate parts of the system that are likely to change 
from those that will not. 

7.4  CURRENT PARTITIONING. 

Typically, HUMS is only partitioned at a high level, usually the natural partition of ground-based 
and aircraft-based.  In some cases, the aircraft-based portion is partitioned further by criticality of 
function; however, this is rarely the case for the ground-based station. 

Often, the scope and usage of HUMS is reduced to allow a lower criticality.  This reduces initial 
time and cost, and time and cost of subsequent maintenance.  However, higher certification 
levels are going to be necessary to exploit the full benefits that HUMS can offer. 

The authors currently have no knowledge of any attempts to partition HUMS to a more granular 
level or of any attempts to partition by testability or probability of change. 

8.  COST/BENEFIT ANALYSIS AND RECOMMENDATIONS. 

8.1  RETROFITTING FOR LEGACY HUMS. 

The definition of legacy HUMS here refers to HUMS that have fully developed functionality but 
without any incorporation of automated build and test technologies. 

The steps in table 3 are successive stages of implementation of a completely automated and 
tested build in the typical order that a project would implement them.  For the most part, later 
steps build upon the earlier steps. 

A project may implement as many of the stages as it sees fit, stopping when the returns are less 
than the cost of implementation. 
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Table 3.  Technology With Cost and Benefit of Retrofitting 

Technology Level 

Estimated 
Cost 

(in hours) 

Cumulative 
Cost 
(%) 

Cumulative 
Benefit 

(%) 
1.  One-step build 100  2 10 
2.  Continuous integration (build machine) 50  3 15 
3.  Execution of target application 50  4 25 
4.  Few broad shallow automated tests 100  6 40 
5.  Automated tests for all requirements 2200  50 85 
6.  Unit tests for all classes 2000  90 99 
7.  100% code coverage for test execution 500  100 100 

 

Along with each technology is an estimate of the cost and benefit to a project of a similar size to 
the BA609 HGS (~800 thousand source/software line of code).  The BA609 HGS is just above 
level 5, with 98% requirements testing coverage and a reasonable number of unit tests written. 

The cost of each stage will differ depending on the complexity of the project.  For example, a 
one-step build is simpler if all source is compiled using the same compiler. 

Figure 5 shows that after level 4 (Few Broad Shallow Automated Tests) the returns start to 
diminish, and for legacy projects the decision on how far to go will probably depend on the life 
of the project.  It is expected that it will always be a good investment to get to level 4. 
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Figure 5.  Cost and Benefit of Retrofitting Automated Build and Test Technologies 
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8.2  GREEN-FIELD HUMS. 

Green-field HUMS are new HUMS that introduce these autobuild and test technologies from the 
outset.  The majority of the initial start-up cost is primarily due to the setup of the build machine 
(since there is initially no code to build or test), therefore getting to level 3 is straight forward. 

From GE Aviation’s experience on adding the new functions required for the BA609 HGS, 
having continuous integration means that the new functions can be developed for less, even if 
both unit tests and acceptance tests are added as part of the task.  In fact, the actual cost was only 
51% of the original budget for these tasks.  The original budget had assumed a large cost of 
reintegrating, retesting, and fixing other areas of the system affected by the change.  The 
recommendation is to go to at least level 5 for green-field systems. 

9.  RESEARCH RESULTS AND CONCLUSIONS. 

9.1  CONCLUSIONS. 

Automated build and test tools are already quite mature and, once technical expertise is achieved, 
the main roadblock to rollout is developer understanding.  Developers need training in the 
process as well as on the tools. 

The benefits of automated build and test are well understood and exploited throughout the 
software industry.  The assumed difficulties of initially aligning with DO-178B certifiable 
processes were actually straightforward.  All the benefits of automated build and test still hold 
true when accomplished under DO-178B. 

Automated testing and continuous integration should go hand in hand.  Most benefits of 
automated testing will not materialize unless continuous integration is employed. 

There are benefits for both legacy and green-field Health and Usage Monitoring System 
(HUMS). 

All HUMS software developers should try to exploit this technology. 

9.2  GENERAL RESULTS. 

Following on from this research, future HUMS software developments should be able to: 

• Implement automated testing of HUMS ground software and replicate most processes in 
this research and demonstration project. 

• Implement automated testing of HUMS airborne software; replicate many processes in 
this research and demonstration project, and translate others to the embedded domain. 

This should realize, to some extent, all HUMS benefits outlined in section 4.2. 
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9.3  STATUS OF TECHNOLOGY READINESS LEVELS. 

The Technology Readiness Levels (TRL) and assessment guide used were those supplied by the 
Federal Aviation Administration, adapted from GAO/NSIAD-99-162 Best Practices, Appendix I, 
Technology Readiness Level Descriptions. 

The technical proposal for the research identified the initial TRL for automated testing of HUMS 
in general as TRL 6 (system/subsystem model or prototype demonstration in a relevant 
environment).  This was based on the introduction of the technology during the BA609 HUMS 
Ground Station development by GE Aviation. 

Sections 9.3.1-9.3.3 identify a particular TRL for each HUMS subsystem where automated 
testing could be applied. 

9.3.1  Automated Testing of the HUMS Ground Station. 

The 2006-2007 research focused on this area and provided an easy to follow demonstration 
project along with DO-178B software verification tool qualification.  Internally at GE Aviation, 
this has been used as a basis for tool qualifications of similar tools by other teams.  In the ground 
environment, there is a wealth of tools and accessible knowledge available.  Other vendors 
should be able to easily introduce automated testing to their ground products. 

The automated testing of the HUMS ground station had a TRL of 6 at the start of the program, 
and a TRL of 8 upon completion. 

9.3.2  Automated Testing of the HUMS Airborne System. 

The 2006-2007 research covered this area and discussed techniques for dealing with typical 
problems encountered during automated testing.  The unit-testing framework tool qualification 
will simply follow from our JUnit qualification; with no extra artifacts required for higher DO-
178B safety criticality levels (see section 5.1.3) that are more likely to be required for airborne 
software.  The majority of tools and techniques used in the embedded environment are identical 
to the ground environment.  However, until verified by a targeted demonstration project, the use 
of this technology in the embedded environment may be more difficult for other vendors to 
exploit. 

The automated testing of the HUMS airborne system had a TRL of 3 at the start of the program, 
and a TRL of 6 upon completion. 

9.3.3  Automated Testing of the HUMS Configurations. 

This is a subsystem of the HUMS, which is not software itself, and is outside the scope of this 
research.  However, the benefit of automated testing in this area is clear, but there has been no 
investigation into the challenges involved.  Appendix A discusses this in detail. 

Due to the lack of research, the automated testing of the HUMS configurations did not have a 
TRL at the start of the program, and had a TRL of 2 upon completion. 
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APPENDIX A—AUTOMATED TESTING OF HEALTH AND USAGE MONITORING 
SYSTEM CONFIGURATIONS 

 
A typical Health and Usage Monitoring System (HUMS) will allow configuration of the 
measurement and diagnostic so that it can be reused on different aircraft types.  This 
configuration forms a subsystem of the HUMS that requires validation as part of the certified 
system.  The costs of verifying this configuration are disproportionately higher than the 
development costs. 

Testing a HUMS configuration presents unique challenges to those of software. 

• Amount of configuration to test 
The HUMS monitors many components in many different flight conditions, and produces 
many health indicators for each component. 

• Knowing what is the expected result 
Prior to use on the aircraft, testing has to be based on known fault cases, with most test 
data needing to be synthesized. 

• Execution and Simulation 
The real HUMS vibration system has many inputs and integrated systems.  Ideally, the 
configuration could be tested in a partly simulated software environment.  However, there 
would be many challenges to this simulation. 

• Frequency of Change 
The HUMS vibration configuration needs to be matured based on flight testing on the 
aircraft.  During flight test the configuration will change many times.  During the first 
year of maturity on revenue flights, the configuration may need to change another few 
times.  After that, the changes will become less frequent and may occur only when new 
fault cases become detectable. 

• Long Duration of Measurements 
HUMS vibration measurements may take a long time to execute.  If the testing needs to 
be manned, this becomes an issue. 

• Availability of Target Hardware 
The HUMS target hardware may be expensive or in short supply.  Ideally, a HUMS 
applications engineer could test a vibration configuration from their own personal 
computer (PC). 

• Awkward Current Test Environment 
Current test environments will include signal generators, PC-based simulators, and the 
target hardware.  These systems can take time to set up and may need to be changed 
depending on which aircraft configuration is being tested. 
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• Configuration is an overlooked aspect of HUMS development 
The development costs of the HUMS Configuration are often underbudgeted and left 
until the end of the development.  As a result, the verification strategy is often 
compromised for short-term savings. 

During flight test, it is best to avoid loss of confidence in the HUMS and maximize the amount 
of time the HUMS is functioning on the aircraft.  A broken HUMS configuration could cause the 
entire HUMS to fail. 

Testing should be considered in system and software design so that simulation software can be 
easily added and there is no reliance on the target hardware.  Ideally, all testing should be able to 
occur on the desktop PC of the application engineer who is developing the configuration. 

Software will need to be developed for the following functions. 

• Simulating the acquisition software that acquires the raw data from the accelerometers, 
tachometers, rotor blade trackers, and other HUMS sensors. 

• Capturing the HUMS outputs.  In the case of HUMS data written to file, no work is 
needed since these outputs can be easily compared with those expected.  In a case where 
the HUMS provides a real-time response (e.g., to a cockpit display unit), those outputs 
need to be diverted by software and compared to expected results. 

• Producing synthetic raw aircraft data for each sensor.  A tool is useful here (since it may 
be time consuming) although not absolutely necessary since this is not a repeated step. 

• Executing the test and comparing actual with expected results 
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APPENDIX B—EXAMPLES OF PROCESS CHANGES 
 
Table B-1 shows examples of build rules that GE Aviation used for the BA609 Health and Usage 
Monitoring System (HUMS). 

Table B-1.  Example Build Rules—BA609 HUMS 
 

1 Before committing any changes, update your local copy to get other 
developers’ changes, then re-run the build and test.  If the build machine is 
currently building, wait until it is done before checking in. 

2 After committing any changes, check that the build machine is still running 
before leaving. 

3 If you have broken the build, it is your responsibility to fix it. 
4 Do not commit when the build is broken, unless you are fixing the build.  Rule 

1 should prevent this. 
5 If you run out of time when fixing the build machine, it is better to undo what 

has broken the build than to leave it broken. 
 
Table B-2 shows a HUMS ground station (HGS) with the following requirement: 
 
The HGS shall display separate sorted lists of Components, Accelerometers, Flight Regimes, and 
Condition Indicators (CIs). 

Table B-2.  HUMS Ground Station Requirement Example 
 

CIs Components Accelerometers Flight Regimes 
1R Left Engine Lateral Ground 
2R Right Engine Vertical Hover 
3R    

By giving a developer a requirement like this, they will most likely notice that all values are 
strings and write code to sort all the strings alphabetically.  However, by looking at some test 
cases, things may not be so straightforward.  Table B-3 shows some inputs for CIs. 

Table B-3.  Example Test Cases for Sorting CIs 
 

Test Input Output 
1 [1R, 2R, 3R] [1R, 2R, 3R] 
2 [3R, 1R, 2R] [1R, 2R, 3R] 
3 [5R, 2R, 3R, 4R, 1R, 6R,  

7R, 8R, 10R, 9R] 
[1R, 2R, 3R, 4R, 5R, 6R,  
7R, 8R, 9R,10R] 

4 [1T, 1R, 2R, 2T, 3T, 3R] [1R, 2R, 3R, 1T, 2T, 3T] 
 
R = Main rotor  T = Tail rotor 
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The first two cases are straightforward.  The third case makes one realize that a standard 
computerized string comparison will not suffice; 10R would be in between 1R and 2R. 

The fourth case shows that the harmonics should be grouped by Rotor.  Table B-4 shows some 
inputs for components. 

Table  B-4.  Example Test Cases for Sorting Components 
 

Test Input Output 
1 [Left Engine, Right Engine] [Left Engine, Right Engine] 
2 [Right Engine, Left Engine] [Left Engine, Right Engine] 
3 [Right Engine, Left Engine, 

MWGB] 
[Left Engine, MWGB, Right Engine]? 
[Left Engine, Right Engine, MWGB]? 

4 [Right Engine, Left Engine, Right 
Prop Rotor, Left Prop Rotor] 

[Left Engine, Left Prop Rotor, Right Engine, Right 
Prop Rotor]? 
 
[Left Engine, Right Engine, Left Prop Rotor, Right 
Prop Rotor] ? 

5 [MWGB, TGB, Right Engine, 
Left Engine, Right Prop Rotor, 
Left Prop Rotor] 

? 

 
MWGB = Mid-wing gearbox 
TGB = Tail gearbox 

By the third test case, it has been identified that the developer just may not want to sort the lists 
alphabetically.  The correct behavior will depend on the application, and possibly on the cost of 
implementation. 

The issues shown in this example are not new.  The developer may or may not face these with 
any traditional development method.  The benefit of test-driven development is that it forces the 
developer to think about the detail of the requirements upfront. 
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