
DOT/FAA/AR-11/2

Air Traffic Organization
NextGen & Operations Planning
Office of Research and
Technology Development
Washington, DC 20591

Handbook for the Selection and
Evaluation of Microprocessors
for Airborne Systems

February 2011

Final Report

This document is available to the U.S. public
through the National Technical Information
Services (NTIS), Springfield, Virginia 22161.

This document is also available from the
Federal Aviation Administration William J. Hughes
Technical Center at actlibrary.tc.faa.gov.

U.S. Department of Transportation
Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information exchange. The
United States Government assumes no liability for the contents or use
thereof. The United States Government does not endorse products or
manufacturers. Trade or manufacturer's names appear herein solely
because they are considered essential to the objective of this report. The
findings and conclusions in this report are those of the author(s) and do
not necessarily represent the views of the funding agency. This document
does not constitute FAA certification policy. Consult your local FAA
aircraft certification office as to its use.

This report is available at the Federal Aviation Administration William J.
Hughes Technical Center’s Full-Text Technical Reports page:
actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF).

 Technical Report Documentation Page
1. Report No.

DOT/FAA/AR-11/2
2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

HANDBOOK FOR THE SELECTION AND EVALUATION OF
5. Report Date

February 2011
MICROPROCESSORS FOR AIRBORNE SYSTEMS 6. Performing Organization Code

7. Author(s)

Bob Green1, Joseph Marotta2, Brian Petre3, Kirk Lillestolen4, Richard Spencer5, Nikhil
Gupta6, Daniel O’Leary7, Jason Dan Lee6, John Strasburger5, Arnold Nordsieck8, Bob
Manners9, and Dr. Rabi Mahapatra6

8. Performing Organization Report No.

9. Performing Organization Name and Address
1BAE Systems 2Honeywell Aerospace
600 Main Street 9201 San Mateo, Blvd., NE, MS C01
Johnson City, NY 13790 Albuquerque, NM 87113

3GE Aviation 4Hamilton Sundstrand Corporation
3290 Patterson Ave., SE One Hamilton Road, MS 3-2-K2
Grand Rapids, MI 49512-1991 Windsor Locks, CT 06096

5Federal Aviation Administration 6Texas A&M University
Technical Programs and Continued College Station, TX 77845
Airworthiness Branch, AIR-120
Washington, D.C. 20024

7Lockheed Martin 8Boeing
PO Box 745, MZ8667 PO Box 3707
Ft. Worth, TX 76101 Seattle, WA 98124

9Lumark Technologies, Inc.

10. Work Unit No. (TRAIS)

4904 Tydfil Court, Ste 100
Fairfax, Virginia 22030

11. Contract or Grant No.

12. Sponsoring Agency Name and Address

U.S. Department of Transportation
Federal Aviation Administration
Air Traffic Organization NextGen & Operations Planning
Office of Research and Technology Development

13. Type of Report and Period Covered

Final Report

Washington, DC 20591 14. Sponsoring Agency Code
 AIR-120

15. Supplementary Notes

The Federal Aviation Administration Airport and Aircraft Safety R&D Division COTR was Charles Kilgore.
16. Abstract
This Handbook provides research information intended to help aerospace system developers and integrators and regulatory agency
personnel in the selection and evaluation of commercial off-the-shelf microprocessors for use in aircraft systems.

This Handbook is based on the cooperative research accomplished by contributing members of the aerospace industry and the Federal
Aviation Administration (FAA) as part of the Aerospace Vehicle Systems Institute Microprocessor Evaluations Projects 1 through 5.
The project objectives were to (1) identify common risks of using systems-on-a-chip (SoC) and mitigation techniques to provide
evidence that they satisfy regulatory requirements and (2) evaluate existing regulatory policy and guidelines against the emerging
characteristics of complex, nondeterministic microprocessors and SoCs to support the certification of aircraft and qualification of
systems using these devices.

Complex aircraft system development requires more robust consideration of system failure and anomaly detection, correction, and
recovery. The safety net approach identified in this Handbook also may provide a means to reduce the growing difficulties and costs of
design assurance for highly integrated, complex, nondeterministic airborne electronic hardware and software within aircraft systems and
reduce the labor burden for FAA regulation compliance and design assurance. The safety net approach documented in this Handbook is
consistent with current FAA policy and guidelines.
17. Key Words

Microprocessor, System-on-a-chip, Safety net, Aircraft
certification, System qualification, Airborne electronic hardware,
Aircraft safety, System architecture, Simulation, Operational level
error detection and recovery, Integrated circuits, Avionics safety,
Architecture patterns

18. Distribution Statement

This document is available to the U.S. public through the National
Technical Information Service (NTIS), Springfield, Virginia
22161. This document is also available from the Federal Aviation
Administration William J. Hughes Technical Center at
actlibrary.tc.faa.gov.

19. Security Classif. (of this report)
 Unclassified

20. Security Classif. (of this page)
 Unclassified

21. No. of Pages
 60

22. Price

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

ACKNOWLEDGEMENTS

The authors would like to thank the following people for their direct contributions to this
Handbook and their persistent efforts throughout the course of this project:

 Floyd Fazi, Lockheed Martin
 Bob Green, BAE Systems
 Nikhil Gupta, Texas A&M University
 Charles Kilgore, FAA
 Jason Lee, Texas A&M University
 Kirk Lillestolen, Hamilton Sundstrand
 Rabi Mahapatra, Texas A&M University
 Bob Manners, Lumark Technologies, Inc.
 Joseph Marotta, Honeywell
 Arnold Nordsieck, Boeing
 Daniel O’Leary, Lockheed Martin
 Brian Petre, GE Aviation
 Richard Spencer, FAA
 John Strasburger, FAA

The authors acknowledge the following individuals and organizations for providing support to
the creation of this Handbook:

 Praveen Bhojwani, Texas A&M University
 Amita Biswas, Texas A&M University
 Luis Bonet, Glenn Beck, John McLellan, and John Abrams, Freescale Semiconductor
 David Beal, Chris Hall, Chad Margolin, and Jakob Engblom, Virtutech, Inc.
 Bob Chobot, BAE Systems
 Rob Clements, BAE Systems
 Robert Cox, Hamilton Sundstrand
 Wolfgang Denk, DENX Software Engineering
 Kyle Deutsch, BAE Systems
 Jon Diekama, GE Aviation
 Chris Eckert, GE Aviation
 Fred Fisher, AVSI
 John Gerard, Smiths Aerospace
 Dorina Hester, Boeing
 Gary Horan, FAA
 Yoonjin Kim, Texas A&M University
 Tod Lanham, GE Aviation
 John Lapointe, FAA
 Aaron Larson, Honeywell
 John Lewis, FAA
 Barbara Lingberg, FAA

iii

iv

 David Lund, AVSI
 Emmanuel Papadopoulos, FAA
 Eric Peterson, Honeywell
 James Peterson, Honeywell
 David Redman, AVSI
 Leanna Rierson, Digital Safety Consulting
 Tom Sherman, GE Aviation
 Tim Theriault, GE Aviation
 Craig Treece, Lockheed Martin
 Kurt Woodham, NASA

The authors would also like to thank all other technical experts and document reviewers who
supported the AVSI AFE43 project.

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY ix

1. INTRODUCTION 1

1.1 Scope 2
1.2 Document Organization 3

2. REGULATORY CONSIDERATIONS FOR MICROPROCESSOR-BASED

AIRBORNE APPLICATIONS 4

3. THE COTS MICROPROCESSOR COMMON RISKS AND RISK
MITIGATION 6

3.1 Visibility and Debug 7

3.1.1 Target Computer Environment 7
3.1.2 Simulated Computer Environment 9

3.2 Configuration-Related Issues 10
3.3 Resource-Sharing Considerations 12

4. SAFETY NETS 13

4.1 Microprocessor Selection and Safety Net Considerations 15

4.1.1 First-Time Use 15
4.1.2 Availability 15
4.1.3 Stability 16
4.1.4 Suitability 16
4.1.5 Testability 17

4.2 Safety Net Monitor Considerations 17

4.2.1 Hardware Monitor Considerations 17
4.2.2 Software Monitor Considerations 18
4.2.3 External Monitor Considerations 18
4.2.4 Internal Monitor Considerations 19

4.3 Architectural Safety Net Examples 19

4.3.1 Shared Resource Approach 19
4.3.2 Lock-Step Approach 21

v

4.3.3 Frame-Lock Approach 21
4.3.4 Dissimilar Architectures 22
4.3.5 Aircraft-Level Safety Assurance 22

4.4 Safety Net Conclusion 22

5. RESULTS AND FUTURE WORK 22

5.1 Results 22
5.2 Future Work 23

6. REFERENCES 23

7. GLOSSARY 24

APPENDICES

A—Research Experiments
B—Configuration-Related Issues Backup Information

vi

LIST OF FIGURES

Figure Page

1 Scope of the Handbook 3
2 Freescale MPC8572 Device Disable Register 10
3 Freescale MPC8572 Block Diagram 12

vii

viii

LIST OF ACRONYMS

AEH Airborne electronic hardware
AVSI Aerospace Vehicle Systems Institute
BIST Built-in self test
BIT Built-in test
CCB Core Complex Bus
CCSRBAR Configuration control and status base address register
COTS Commercial off-the shelf
CRI Certification review items
DEC Decrementer
DoS Denial of service
EMI Electromagnetic interference
FAA Federal Aviation Administration
FPGA Field-programmable gate arrays
I/O Input/output
IDE Integrated development environments
IP Intellectual Property
L2 Level 2
MMU Memory management unit
OS Operating system
PCI Peripheral component interconnect-express
RAM Random access memory
SEU Single event upset
SoC System-on-a-chip
UART Universal asynchronous receiver/transmitter
WCET Worst-case execution time
WDM Watchdog monitor

EXECUTIVE SUMMARY

This Handbook provides research information intended to help aerospace system developers and
integrators and regulatory agency personnel in the selection and evaluation of commercial
off-the-shelf (COTS) microprocessors for use in aircraft systems. Airborne electronic hardware
(AEH) includes modern state-of-the-art and highly integrated COTS microprocessors that
(1) may not provide adequate visibility and debug features to reveal internal functionality, (2) are
less predictable due to the interaction of advanced features, (3) have programmable
configuration capabilities available to application software, and (4) share resources across
multiple cores and devices. These highly complex COTS microprocessors are becoming more
challenging to test and to determine that they satisfy applicable functional and safety-related
requirements.

Resolutions to certification process challenges should offer the possibility of establishing and
maintaining standards that support the continual change and growth of technologies and
operations. Such resolutions can include

 establishing qualitative as well as quantitative methods to certify aircraft with embedded

nondeterminate complex or critical applications.

 establishing accepted standards of architectural patterns for critical, complex systems and

methods for validation and design assurance.

 establishing industrywide accepted methods for design assurance of COTS

microprocessor and microprocessor-based systems.

 streamlining the certification process.

This Handbook is based on the cooperative research accomplished by contributing members of
the aerospace industry and the Federal Aviation Administration (FAA) as part of the Aerospace
Vehicle Systems Institute Microprocessor Evaluations Projects 1 through 5. The research
underlying this Handbook addressed the use of COTS microprocessors and systems-on-a-chip
(SoC) in safety-critical avionics. The project objectives were to (1) identify common risks of
using SoCs and mitigation techniques to provide evidence that they satisfy regulatory
requirements and (2) evaluate existing regulatory policy and guidelines against the emerging
characteristics of complex, nondeterministic microprocessors, and SoCs to support the
certification of aircraft and qualification of systems using these devices.

Considering the growing complexity of microprocessors, the research revealed the increasing
impracticality of providing safety assurance at the device level alone. The combination of
growing complexity of both software and hardware will drive the need to evaluate large complex
systems at the system level. The rate of change and growing complexity is accelerating, and the
time between new generations of hardware and software is shrinking. The complexity of most
COTS components has grown and continues to grow beyond the capability to exhaustively test
them. The overlapping phases of development, certification, deployment, and life cycle
maintenance together with COTS obsolescence accentuate the need for rapid and evolving

ix

x

methodologies. FAA policy, guidelines, and practices may need to be updated to accept these
methodologies.

Complex aircraft system development requires more robust consideration of system failure and
anomaly detection, correction, and recovery. The safety net approach identified in this
Handbook also may provide a means to reduce the growing difficulties and costs of design
assurance for highly integrated, complex, nondeterministic AEH and software within aircraft
systems, and to reduce the labor burden for FAA regulation compliance and design assurance.

A safety net is defined herein as the employment of mitigations and protections at the
appropriate level of aircraft and system design to help ensure continuous safe flight and landing.
The safety net methodology focuses on the assumption that a microprocessor will misbehave.
The ability to protect against unexpected behavior, damage, injury, and instability over the
service life outside, or at a level above the device itself, is necessary as appropriate for the design
assurance level.

The safety net approach is an alternative way to mitigate the risks associated with COTS
microprocessors via both passive and active methods designed into aircraft systems. If it is not
feasible to show that complex aircraft systems are sufficiently free of anomalous behavior by
evaluating system components, the safety net alternative can mitigate unforeseen or undesirable
COTS microprocessor operation by detecting and recovering from anomalous behavior at the
operational system level. This approach requires the safety net to be designed as a function
within the aircraft system. The safety net can include passive monitoring functions, active fault
avoidance functions, and control functions for recovery of system operations. System
architecture and control and recovery functions should be designed to facilitate effective system
recovery from anomalous events. Safety nets should show that systems are sufficiently
impervious to anomalous behavior by ensuring continuous functional availability and reliability,
satisfying applicable regulations, and meeting airworthiness requirements. This includes
verifying any disabled functionality from the COTS will remain inactive in the specific
application.

A multilevel safety net approach is required for complex and critical applications in systems that
cannot be fully assured at the component level and is significantly linked to the assigned design
assurance level required by regulation, contractual obligation, and the integrated complexity at
the device level. The design of safety nets, in general, is becoming a complex, application-
specific art form that will be required to detect, resolve, and validate recovery in a run-time
environment to the required levels of availability and safety. The safety net approach
documented in this Handbook is consistent with current FAA policy and guidelines.

The use of COTS microprocessors may be predominant in future aerospace systems. The use of
COTS microprocessors avoids the drastically increasing costs of custom microprocessor design.
This Handbook does not address the use of custom device design.

1. INTRODUCTION.

This Handbook is based on Aerospace Vehicle Systems Institute (AVSI) Microprocessor
Evaluations Projects 1 through 5 [1-5]. Microprocessors and systems-on-a-chip (SoC) have
become extremely complex and densely packaged. Recent changes in commercial off-the-shelf
(COTS) microprocessors can be characterized as both physical and functional changes.
Physically, transistor density has continued its exponential increase, allowing for hundreds of
millions to billions of transistors to be placed on a single device. As of 2010, 65- and 45-nm
devices are common in the COTS marketplace, and 32 nm and smaller devices are beginning to
enter the marketplace or are on the near horizon. In addition to decreased device size, the
functional capability of COTS devices has expanded. It is no longer necessary for different
system components to be implemented as discrete devices. Instead, a single COTS SoC may
contain multiple microprocessor cores, input/output (I/O) devices, memory controllers, and other
functionality. As a result, deterministic performance is difficult or impossible to predict in some
cases. These devices require additional evaluation methods beyond that identified in current
regulatory requirements to achieve the resilience required to meet safety and reliability
requirements. Aircraft systems that contain these COTS devices may require multilevel safety
nets to be designed into them.

This Handbook has been written for experienced system designers and regulatory personnel. It
is intentionally not prescriptive in nature. It is intended to support the development of new
approaches to the design assurance and safety evaluation leading to the approval of airborne
systems. The design of an airborne system, the selection of airborne electronic hardware (AEH)
(e.g., microprocessor) devices within the system, and the architecture of the system will be
unique for each application. The potential sources of nondeterminism and the challenges of
design assurance of AEH devices must be determined for each system. This Handbook does not
attempt to identify sources of microprocessor nondeterminism because they will be unique for
each system and will proliferate in the future. System designers have to evaluate the risks
associated with the candidate microprocessors and design the system architecture and the safety
nets to mitigate these risks.

This Handbook does not constitute Federal Aviation Administration (FAA) policy or guidance;
rather, it is the result of FAA- and industry-funded research and may contribute to future policy
or guidance.

The purpose of this Handbook is to

 document common areas of concerns regarding the use of COTS microprocessors in

complex and/or safety-critical systems.

 provide approaches, information, and examples for mitigating the concerns through a

safety net.

 provide access to the research on which the content of this Handbook is based.

1

 provide example approaches to resilient systems through methods defined in this
Handbook under the overarching term safety nets.

 reveal how existing regulatory policy and guidance may be augmented to support the

creation of resilient systems through safety net approaches safeguarding the use of
microprocessor technologies in complex and/or safety-critical systems.

1.1 SCOPE.

This Handbook can be used for the development and approval of aerospace systems containing
embedded COTS microprocessors.

Note: Within this Handbook the term “microprocessors” shall be understood to include COTS
microprocessors and SoCs unless otherwise specified. The term SoCs will be used when the text
refers to only SoCs. The overloaded term microprocessor may tend to camouflage the
differences between the two; therefore, it is highly recommended that users planning to use SoCs
in aircraft systems fully understand the technical differences between microprocessors and SoCs.

The intended users include system developers, integrators, and all personnel in both industry and
the FAA responsible for aircraft certification and system qualification.

As shown in figure 1, the Handbook relates current FAA policy and guidance (section 2) to both
microprocessor and SoC risks and risk mitigation (section 3) and safety net assurance
approaches (section 4). As described in section 3, the device risks and risk mitigation
considerations may be used by project personnel to consider in the use of COTS microprocessors
in aircraft systems. The safety net assurance approaches may be considered by project personnel
as an approach to mitigating these risks. The information in this Handbook is intended to
provide system design and safety assurance approaches that facilitate the use of complex COTS
microprocessors without incurring the difficulties associated with legacy methods of design
assurance by test and analysis of components. This Handbook is also intended to aid FAA
personnel during aircraft certification and policy review. The authors hope the use of COTS
microprocessors and their associated safety net approaches in aircraft systems will lead to
enhanced FAA policy and guidance over time.

Both the FAA and aerospace industry members participated in the research on which this
Handbook is based. Use of the Handbook content should be coordinated between project and
regulatory personnel.

Acceptance of the safety net and the related assurance approaches documented in this Handbook
are predicated upon the mutual development and acceptance of the project-unique design and
assurance methodologies and their effectiveness in meeting safety and airworthiness
requirements.

2

Project
Aircraft/System

Design Assurance
Safety Assurance

Project-Unique
System and Application

Design

Aircraft Certification

Regulatory Considerations

Microprocessor & SoC
Risks and Mitigation

Section 3

FAA Policy and Guidance
for COTS SoCs

and Microprocessors
Section 2

Safety Net
Assurance Approaches

Section 4

FAA Review
& Policy/Guidance

Evolution

Note: The yellow blocks identify the scope of the Handbook.

Figure 1. Scope of the Handbook

1.2 DOCUMENT ORGANIZATION.

 Section 1 identifies the purpose and scope of this Handbook and identifies the research
on which it is based.

 Section 2 provides an overview of the current regulatory considerations for using COTS

microprocessors in airborne systems.

 Section 3 provides an overview for using COTS microprocessors, and some of the risks
of using microprocessor technologies are described. These risks are described in terms of
hardware and software considerations; tool use and limitations; development
environments, information requirements and constraints, performance monitoring, fault
insertion and analysis; simulation uses and constraints; and programmable characteristics
(e.g., configuration control, excessive capabilities and disabling/enabling features,
emerging technologies, and the resource-sharing effect on timing).

 Section 4 introduces safety net approaches; related changes to design, development, and

safety; integrated device characteristics; operational considerations of safety nets,
error/anomaly detection, recovery, and validation mechanisms; and architectural
requirements for safety nets.

3

 Section 5 summarizes the Handbook and the future research that can be based on its
content.

 Section 6 provides references.

 Section 7 contains a glossary defining the terminology used in this Handbook.

2. REGULATORY CONSIDERATIONS FOR MICROPROCESSOR-BASED AIRBORNE
APPLICATIONS.

Current FAA policy and guidance does not directly address the use of COTS microprocessors
and SoCs in aircraft systems. However, the existing policy and guidance can be used as a basis
from which this Handbook builds upon to help provide an applicant with an acceptable means of
demonstrating that their system meets the applicable airworthiness requirements.

FAA Advisory Circular AC 20-152 [6] notes that hardware life cycle data may not be available
to satisfy the objectives of RTCA/DO-254, and therefore, alternative methods or processes are
required to ensure that COTS microprocessors perform their intended functions and meet
airworthiness requirements. No other guidance regarding COTS microprocessors is provided.

FAA Order 8110.105 [7] limits the discussion of COTS components to COTS Intellectual
Property (IP), which it defines as commercially available, functional logic blocks that are
implemented within custom micro-coded components, such as programmable logic devices,
field-programmable gate arrays (FPGA), or similar programmable components. Although no
specific policy or guidance is provided for COTS microprocessors, it does mention COTS
processor cores. Many of the concerns presented in FAA Order 8110.105, section 4-9.b also
apply to COTS microprocessors:

“(1) COTS components, including IP, are developed by a company other than the
applicant and hardware developer. Intended to provide specific functions or
abilities in many different applications, COTS components may or may not have
been developed using a rigorous design assurance method (such as RTCA/DO-
254). Given this, we must ensure that the applicant and hardware developer show
that using COTS IP complies with the applicable airworthiness requirements,
regulations, policy and guidance for that project.” [7]

“(2) Availability of COTS IP doesn’t automatically guarantee that it can be used
in a manner that complies with airworthiness requirements, regulations, policy
and guidance. Depending on the complexity of the COTS IP and the availability
of IP documentation, applicants and/or hardware developers may have significant
work to show compliance for the system or equipment.” [7]

“(3) Using a COTS IP in a simple electronic hardware/complex electronic
hardware (SEH/CEH) device that is installed in airborne systems or equipment
should satisfy applicable functional and safety-related requirements.
RTCA/DO-254 Section 11.2 may not be sufficient for design assurance of a

4

COTS IP implemented in a SEH/CEH that supports level A and B aircraft, and
other safety critical, functions. As a result, applicants may need to develop or
augment system architectural mitigation, component verification, testing, analysis
and other life cycle data of a COTS IP. All this is needed to demonstrate its
intended function, show it is free from anomalous behavior, satisfies applicable
regulations, and meets airworthiness requirements.” [7]

Although FAA Order 8110.105 does not specifically address COTS microprocessors, many of
the issues applicable to COTS IP also apply to COTS microprocessors and SoCs, and therefore,
some of the guidance of section 4-9.b.(4) of the Order can be used as a basis for the techniques
presented in sections 3 and 4 of this Handbook:

 Paragraph (b) states that the applicant and system developer can use extensive testing and

analysis to gain detailed information about the functionality, and how it operates during
boundary and failure conditions. This should include testing and analysis of any
functionality that will not be used or activated in the specific application. Section 3 of
this Handbook presents some examples of activities that the system developer can
perform to gain a better understanding of the system and, therefore, design mitigation
techniques to avoid or contain an undesirable or catastrophic action by the
microprocessor.

 Paragraph (c) states that architectural mitigations at the device, board, line replaceable

unit, or system level can be employed to detect and/or mitigate unforeseen or undesirable
operation. Sections 3 and 4 of this Handbook present some examples of mitigation
techniques that the system developer can employ to eliminate or minimize the effect of
an error that occurs as a result of an event either internal or external to the
microprocessor.

Note that it is not intended for the techniques in this Handbook to be applied to COTS IP soft
processor cores, since it is expected that the developer will have the appropriate life cycle data
available and DO-254 processes apply [8].

The techniques presented in this Handbook are intended to help developers provide additional
layers of protection through the development of mitigations that are incorporated at the
appropriate level of the design. As microprocessor technologies continue to evolve, these
techniques will become more critical in assuring the safe operation of the airborne systems in
which they are employed. However, it is important to note that these techniques, such as safety
nets, are in addition to, and do not replace, current FAA-accepted methods for selecting a
microprocessor and designing and testing the system in which it is used. These methods include:

 Testing operating system and hosted applications on the actual hardware to be approved.

 Monitoring current errata sheets and technical notes so that developers are aware of

known or newly discovered problems, undocumented features, and microprocessor
limitations that may adversely affect system operation. There should be a process in

5

place to determine if any actions are required as a result of changes to the errata sheets or
technical notes.

 Establishing and maintaining a configuration control plan for the microprocessor

throughout the life cycle of the system. There should be a process established for the
microprocessor manufacturer to provide notification of any changes to the
microprocessor, and for the design approval holder to review the changes and determine
the effect on the operation of their system.

 Microprocessors used in applications where failure could result in catastrophic or

hazardous failure conditions should have appropriate service experience so that the
applicant has confidence that the device is mature and design deficiencies are known.

 The microprocessor should be operated within the environmental limits established by

the microprocessor manufacturer. If these limits are exceeded in the operational
environment, the applicant should verify through testing that all production
microprocessors will meet the system environmental requirements.

As previously noted, the airborne market for these devices is insignificant when compared to
other markets such as consumer electronics, automobiles, and telecommunications. Applications
in these other markets are less susceptible to anomalous behavior resulting from internal and
external events. Therefore, the aviation industry should learn how to cope with the increasing
complexity and resulting vulnerabilities of these devices. The authors of this Handbook hope
that the techniques and guidance provided herein will be used by system developers to better
understand and mitigate the vulnerabilities of their devices, and that certification authorities will
embrace these techniques and continue to pursue relevant policy and guidance to the aviation
community.

3. THE COTS MICROPROCESSOR COMMON RISKS AND RISK MITIGATION.

This section provides an overview of using COTS microprocessors and the risks presented by
their deployment in aerospace systems.

It is important to distinguish between discrete COTS microprocessors and SoCs when discussing
certain elements of risk and safety analysis. The task of ascertaining safety considerations is
more complicated for SoCs due to the broad variety in SoC designs. Unlike the case of discrete
COTS microprocessors, where the majority of features of interest are similar across most
microprocessors, SoC components tend to vary significantly based on the product selected,
making safety analysis more complicated. Not only are the safety concerns due to the features of
individual IP cores an issue, but interaction amongst them presents a verification challenge to
system designers. Additionally, certain systems using SoCs may not require particular on-chip
cores and would require the disabling of those cores for safety reasons.

Resources used by safety nets are expected to change as the underlying technology of the system
it is protecting (or implemented within the safety net itself) evolves. An example of this occurs
when configuration register changes (the addition of new, removal of old, exposure of

6

hidden/reserved registers) are needed because separate, discrete microprocessors; system
controllers; and other components are replaced with a single SoC. The safety net design must be
examined and perhaps adjusted when such technology changes are implemented or when the
device must be approved within a new application. The discussion above needs to be considered
while formulating a safety net.

After reviewing the designs of a variety of modern COTS microprocessors across a group of
manufacturers, product families, and technology generations, three areas of common risk were
identified for all these devices [4]:

 Visibility and Debug—the inability to observe the internal operation of the device during
system use and development (see section 3.1.).

 Configuration-Related Issues—software accessibility to device configuration during

system operation (see section 3.2).

 Resource-Sharing Considerations—performance unpredictability due to multiple on-chip
shared resources (see section 3.3).

3.1 VISIBILITY AND DEBUG.

During background research, a physical target computer environment and a simulated target
computer environment were setup to perform experiments. Setting up these environments
exposed visibility and debug challenges that could arise during system development and
analysis; some of these challenges are described in the remainder of this section. The system
developer should document the configuration of the test environment and identify any
differences, limitations, and constraints of the simulated environment, if used, in relation to the
physical environment. Based on the visibility and debug challenges identified, system
developers should consider the following items when setting up their evaluation environment.

3.1.1 Target Computer Environment.

A target, or physical, computer environment was established to perform experiments and provide
evidence and insight, which led to the conclusions of the research. The target computer
environment included a development board for the SoC selected for evaluation, board support
software, a COTS operating system, and COTS tools for development and debug. (Details can
be found in reference 5.) The following software and hardware considerations were noted during
the target computer environment evaluation.

Software considerations:

 Software integration—Operating systems, license agreements, and board support

software are typically included with target development boards. System developers
should work closely with the integrated circuit device manufacturer when setting up the
development environment to ensure compatibility of tools selected for the development
environment.

7

 Debug capabilities—Tools provide visibility and debug capabilities to assist with system
and application software development. These tools should be evaluated to verify that
they provide the capabilities needed for the system being developed.

 Multicore support—Additional tool capabilities are required to effectively use, debug,
and develop multicore SoC applications. Beyond the typical compile and debug
capabilities used in single-core development, individual and group control of the
processing cores are important in testing multicore applications. Also, some projects
may require programming language support for multicore development, including
multithreading capabilities and shared access to on-chip devices.

 Integrated development environments (IDE) for safety-critical embedded systems—
Safety-critical embedded system designers may find that they are limited in the available
choices for IDE compared to standard embedded system development. Applicants
should be aware of the IDE’s suitability with respect to their specific project
requirements in addition to tool qualification issues.

Hardware considerations:

 Limited visibility into device internal operation—manufacturer documentation is

intended to support the use of the device based on the capabilities described in the User’s
Manual and device characteristics documented in the data or errata sheet. The internal
operation is frequently proprietary information. For example, the User’s Manual may
document how to configure the use of cache memory, but the cache algorithm being used
internally by the device may be proprietary.

 Performance monitoring—Hardware performance monitors may be provided by the
manufacturer to provide insight into the internal operation of a microprocessor. These
monitors allow system designers to track various system activities and performance
statistics during application development and execution. Typical uses of hardware
performance monitors include gathering level 1 and level 2 cache statistics and
measuring cycle counts to estimate application execution times. Performance monitors
may also allow a system designer to observe the activity of functions resident on the
microprocessor, including memory controllers, PCI-Express (PCIe) and Ethernet
controllers, and direct memory access engines. These performance monitors are uniquely
designed for each COTS microprocessor, and access to the performance monitors
typically requires custom software and is not fully supported by COTS operating
systems.

 Fault insertion—The ability to insert faults internal to the microprocessor may be limited
or not achievable. An applicant may not be able to demonstrate that faults are correctly
detected if the faults cannot be injected. The safety net methodology should mitigate
these types of faults.

8

 Industry benchmarks—The use of industry benchmarks may help demonstrate timing
characteristics and the potential effect of shared resources on timing. The benchmarks
that were investigated used memory to simulate the hardware I/O and did not exercise the
microprocessor-shared hardware resources on the target computer. The limitations of
industry benchmarks to fully exercise microprocessor behavior should be understood and
augmented with other tests.

3.1.2 Simulated Computer Environment.

A simulated computer environment was established to perform experiments and provide
evidence and insight, which led to the conclusions of the research. The environment included a
host environment, a simulation of the microprocessor device selected for evaluation, COTS
simulation support software, a COTS operating system, and COTS tools for development and
debug. The following software and hardware considerations were noted during the simulated
computer environment evaluation.

The software considerations were:

 Applicants should be aware that the primary focus of the microprocessor simulation is on

application software development. Typically, hardware evaluation is a secondary
concern, if addressed at all.

 Modeling configuration and internal registers—The simulated computer environment
typically models the minimum set of configuration and internal registers to support
software execution. The differences between the simulated computer environment and
the target computer should be documented by the system developer as part of the test
environment. Evaluating the system response in a simulated environment requires
accurate modeling of all configuration registers.

The hardware considerations were:

 Limited modeling of hardware—Hardware interfaces and modeling of microprocessor

functions may be limited to those items required for application software development.

 The timing and cycle accuracy of the simulated target computer should be assessed. If
the target computer model is not cycle accurate, functions which are timing sensitive
should be verified in the target computer environment.

 Modeling of device performance—Internal microprocessor performance monitors may

not be modeled in the simulator.

 Focus of microprocessor models is on the simulation of core central processing units,
modeling of other microprocessor-resident functionality may be limited.

9

3.2 CONFIGURATION-RELATED ISSUES.

Configuration register changes are a growing concern for avionic microprocessor applications
since continued device integration has allowed an increasing proportion of the entire system to
be configured through software. If a microprocessor is not configured properly, erroneous
behavior, including improper data processing, stack overflows, erroneous interrupts, machine
checks, data loss, data corruption, or inadequate throughput, may occur.

Over time, the number of configuration registers per microprocessor has grown significantly.
For example, the Freescale™ MPC8572 SoC has more than 500 software-accessible
configuration registers that control basic functionality of the processing cores and on-chip
devices [9]. In addition to these configuration registers, various device functions may be set
externally via pullup/pulldown pins, which are sampled shortly after a hardware reset or
internally via software. Incorrect settings or inadvertent changes are areas of concern that must
be addressed.

In general, the capabilities of most microprocessors exceed what is required by typical
applications. Care should be taken to provide assurance that unused capabilities are properly
disabled. In legacy avionics with many discrete system devices, this concern was addressed
through physical disconnection of the unused devices to power sources and the rest of the
system. However, COTS SoCs have removed the physical separation between devices and
processors and have given control of device configuration to software. Therefore, the
deactivation of unused features has become an additional consideration within the set of
configuration-related issues. In addition to proper deactivation of unused features and devices,
system designers should assure that those features and devices cannot be reactivated through
erroneous software or environmental effects. Inadvertent activation of an unused device may
cause unintended and undesirable operation, such as erroneous interrupts, data loss, data
corruption, machine check cycles, and stack overflow, among others.

As an example of how the deactivation of unused features has changed for modern COTS
microprocessors, figure 2 shows the Freescale MPC8572 device disable register.

Figure 2. Freescale MPC8572 Device Disable Register [9]

This register is used by the system to determine whether each of the major on-chip devices of the
system should be enabled or disabled by setting particular fields of the register to 0 (enabled) or
1 (disabled). This configuration register contains 24 single-bit readable and writeable fields that
are associated with the 24 on-chip devices of the SoC. For example, bits 16 and 18 control the

10

two E500 processing cores [10], bits 2, 5, and 6 control the three PCIe controllers, and bits 24
through 27 control the four triple-speed Ethernet controllers. A single bit flip in this register can
disable a critical on-chip device or one of the processors, and research has demonstrated that
erroneous writes to this register can render the system inoperable [5]. Therefore, system
designers should be aware of the risks of software erroneously modifying the system
configuration space.

Several microprocessor devices also offer the user the flexibility of locating the configuration
registers in external memory space, which makes them more vulnerable to corruption. This
capability also makes the system susceptible to loss of all configuration data if the pointers to the
external memory locations are corrupted.

Configuration registers may change by software errors (inadvertent writes), by single event
upsets (SEU), hardware defects, hardware faults (such as a noisy power supply core voltage,
signal integrity issues, ground bounce, etc.), or electromagnetic interference (EMI). Refer to
appendix B for a description of power supply-related issues.

In light of the risks identified with the current technology and trends and the criticality of proper
microprocessor configuration register settings, the risks associated with incorrect configuration
register settings should be understood. Each register should be assessed for:

 Intended setting for each register bit within the system being implemented and the reason

for selected setting

 Identification of each operational phase at which each register is being set (i.e., initial
power up, power on reset, built-in test (BIT), and exception processing)

 Identification of disabled functions

 Impact to system if the state of the register bit is unintentionally changed

- It is recommended that the impact of an inadvertent change to critical
registers or registers of questionable impact, be verified through
simulation, if possible.

- The simulation environment should implement an algorithm that has the

ability to randomly change configuration settings.

 Timing and rate of impact to system of an unintentionally changed register bit.

 Errata sheet information

Once this analysis has been completed, safety net methodologies can be employed to mitigate the
identified risks. Refer to section 4 for information on safety net methodologies.

11

3.3 RESOURCE-SHARING CONSIDERATIONS.

Modern microprocessors differ from previous technology in that many processing, memory, and
I/O components reside within a single device, and many of these components are designed to be
shared to optimize system performance. The multiple processing components compete to initiate
requests to their memory and I/O targets. Additionally, the I/O components can initiate requests
to memory targets through direct memory access. Whether initiated by a processor or I/O
controller, requests travel over shared on-chip interconnects, typically a single on-chip bus. This
Handbook defines shared resources as any on-chip or off-chip components that are accessible to
multiple initiators. Examples of shared resources include on-chip memory controllers, hardware
accelerators, level 2 (L2) and/or level 3 caches, on-chip busses and, on-chip Ethernet controllers.

Modern microprocessors feature a number of shared resources. As shown in figure 3, the two
e500 cores of the Freescale MPC8572 share a single L2 cache [9]. Additionally, the two
processing cores share a single on-chip bus to access the other major components of the system,
including the various I/O controllers and memory controllers.

It is highly recommended that the system designer analyze the access protocol for these shared
resources and the run-time behavior of all programs that share a given resource. Based on this
analysis, the designer should ensure that even with the sharing of resources, the system will
continue to run in a predictable manner (continuous operation). In some conditions, hard
shutdowns can be an acceptable safety protection mechanism.

Figure 3. Freescale MPC8572 Block Diagram [9]

Sharing resources is a major contributor towards nondeterminism and worst-case execution time
(WCET) analysis challenges in modern COTS microprocessors. Nondeterminism arises because
the availability of a shared resource becomes largely dependent on the run-time behavior of other
processes sharing the same resource. In many cases, the run-time behavior of programs is data-
dependent and cannot be predicted offline. WCET analysis depends on understanding all

12

conditions that lead to timing delays and then bounding for worst-case conditions. Multiple
shared resources on a single device complicate this analysis due to the great increase in the
number of delay conditions.

Pellizoni, et al. [11], describe the challenges in predicting the WCET in a multitasking system.
They show that, due to the interference between cache-fetching activities and I/O peripheral
transactions, tasks can suffer computation time variance of up to 46% in a typical embedded
system.

To further assess the timing delays and nondeterminism caused by resource sharing, additional
experiments were performed using a simple matrix multiplication program on the Freescale
MPC8572 platform considering the L2 cache as the shared resource [5]. Each processing core
executed its own copy of a matrix multiplication program that required using the shared L2
cache due to the program size. The experiments showed that the execution time of the matrix
multiplication program can increase by as much as 17% as L2 cache interference increases.

Moscibroda, et al. [12], describe that in a multicore system, multiple programs running on
different cores can interfere with each other’s memory access requests, thereby adversely
affecting performance. They show that a competing program running on one processing core
can result in a denial of service (DoS) on the other processing core, due to the inherent
unfairness in memory controller access policy. The performance of a blocked application can be
reduced by as much as 2.9 times in a typical dual-core system. Moscibroda, et al., identify the
memory access scheduling algorithm as the main source of inequality in memory access,
allowing the DoS to occur. Shared resource access policy and scheduling is addressed in
section 4.3.1.

Industry trends indicate that the ratio of processing cores to various shared resources in COTS
SoCs will increase over time. Instead of two processing cores sharing a common cache, memory
controllers, and I/O devices, there will be four, eight, or more processing cores sharing these
resources. This will increase the competition for shared resources among processing cores,
worsening potential unpredictability issues.

4. SAFETY NETS.

A safety net in the context of this Handbook is defined as the employment of mitigations and
protections at the appropriate level of aircraft and system design to help ensure continuous safe
flight and landing.

Assuring that the microprocessor is absent of uncertainty at the device level alone is no longer
feasible; therefore, a multilevel safety net becomes essential. A multilevel safety net concept
considers the discrete devices, the circuits, individual components directly supporting the use of
microprocessors, and higher-level system architectures. The multilevel safety net can be viewed
as an architectural approach.

Multilevel safety net protection is significantly linked to the assigned design assurance level
required by regulation and/or contractual obligation and the integrated complexity at the device

13

level. Modern microprocessor technology necessitates the need for a multilevel safety net. For
example, failure of a flight control system may result in a catastrophic condition, whereas the
failure effects of a lavatory system may be limited to passenger discomfort. Therefore, a safety-
critical system using a particular microprocessor requires a higher level of safety than a
nonessential system using the same microprocessor. This demonstrates the need for a multilevel
safety net approach where the safety net may respond differently in different levels of criticality.
A failure in the flight control system will most likely require a high-priority response with
limited recovery time, while a failure in the lavatory may only require a low-priority response
with a longer recovery time. Error detection and recovery from anomalous conditions may occur
at different hierarchical levels within the system (e.g., chip level, board level, subsystem, or
system).

Since the criticality of the lavatory system is lower than the flight control system, fundamentals
for a multilevel safety net should be established as an acceptable approach.

Industry research has shown that the susceptibility of random access memory (RAM)-based
devices to external stimuli, such as cosmic rays (resulting in single event effects), lightning, and
EMI, is generally greater than the devices that employ flash-based technology [13]. However,
disregarding the potential effects of these types of threats on flash-based memory could lead to
the same risks as the threats on RAM-based memory. For example, a multilevel safety net
implementation in RAM-based designs that incorporate periodic memory content verification
(scrubbing) to help ensure error-free operation in a flight-critical system may also incorporate
the use of a non-RAM-based monitoring circuit and/or the use of an external discrete monitoring
circuit. Since the safety net implementation would require the ability of both the primary and
monitoring circuits to work together to provide the overall integrity, the monitoring circuit
should be less susceptible to external threats as the primary circuit. A safety net implementation
using the same device in a low-criticality system, such as the lavatory example, may use only a
high-level monitor component, since system response time is of little concern.

Another example that continues to challenge the use of modern, highly integrated, complex
devices are the core voltage (rail voltage) of COTS microprocessors. As the core voltages
continue to decrease, it becomes more difficult to ensure that the devices are not susceptible to
supply voltage fluctuations, noise, and environmental effects. Current industry data show that,
as the size of the device decreases, the margin between the applied voltage and the parasitic
energy of the device leads to unpredictable and unstable conditions.

The safety net methodology assumes that a microprocessor will misbehave. The absence of a
properly implemented safety net reduces the ability to protect a system against the unexpected
behavior, damage, injury, or instability of a device during its service life. Architectural designs,
in general, are becoming a more complex, application-specific art form requiring the ability to
detect, resolve, and validate component failure in a run-time environment to the required levels
of availability and safety. The safety net methodology does not ensure determinism solely at the
device level. Rather, safety nets are intended to provide the ability to protect against unintended
or misleading behavior using a multilevel approach.

14

4.1 MICROPROCESSOR SELECTION AND SAFETY NET CONSIDERATIONS.

DO-254 does provide some guidance (see section 2) for the use of COTS products [8]. Further
guidance and clarifications to DO-254 are provided in FAA Order 8110.105 Change 1 [7]. The
safety net and system architecture should be designed concurrently, employing one or more of
the techniques previously discussed as well as taking into consideration first-time use,
availability, suitability, stability, and testability traits of the microprocessor.

Device selection continues to be a regulatory concern as microprocessor technology advances.
This section was developed in part from research, from DO-178B [14] and DO-254 [8], and
largely from existing issue papers and certification review items (CRI) that have been levied on a
project-by-project basis by the regulatory agencies. The specific CRI and issue papers are
considered to be confidential to the project for which they are levied against; therefore, the
information contained within this Handbook is presented from a generalized viewpoint.

It has been expressed by the regulatory authorities through CRI and issue papers and DO-254
that in using a microprocessor, the integrator is responsible for managing the device service life
through an electronic components management plan, taking into consideration the information
contained within the device selection safety net considerations. These device selection safety net
considerations are detailed in sections 4.1.1 through 4.15.

4.1.1 First-Time Use.

The first time a COTS microprocessor is selected for use in an aircraft system it should be
evaluated with great attention to detail. Consider the following relevant questions: How long
has the microprocessor been fielded? What has it been used for? Is there substantiated service
history that can be evaluated? Additional care should be considered in the evaluation of its
availability estimates (see section 4.1.2), stability evaluation (see section 4.1.3) and suitability
(see section 4.1.4). The length of time the microprocessor has been fielded, the number of
microprocessors currently in use, and the number of existing applications for that microprocessor
provide insight during the selection process.

4.1.2 Availability.

Availability focuses on the maturity of the device and includes libraries, tape-out iterations,
launch customer, and number of units currently fielded. The review attempts to discover
unknowns as related to the manufacturers’ intended use. The maturity of the manufacturers’
supporting libraries can provide insight to determine when a device could become suitable for
use and when variation is less likely to occur.

Tape-out maturity can provide an indication of where the manufacturer is within their
development cycles. Manufacturers typically plan on several tape-outs prior to production
release for the purpose of incrementally debugging the device operation and fabrication. Using a
device with fewer tape-outs, as measured against the manufacturer’s normal number of tape-
outs, can indicate the risk of the manufacturer making changes without notifying the customer.

15

Interviewing initial customers of a COTS microprocessor and assessing their applications
associated with the device can provide insight to the device maturity level as driven by the
in-service use. Initial in-service use has become a debugging tool employed by manufacturers.
In today’s rapidly changing environment coupled with demands by customers that are not in the
aerospace industry, manufacturers are generally given less time to extensively debug a product
compared to past years. Industry trends indicate that the first generation use of a newly released
device is less stable, thus requiring changes to be made by the manufacturer in most cases
without the requirement to inform the users.

4.1.3 Stability.

Assessment of the device life cycle history can provide insight into the microprocessor’s stability
based on publicly available data, such as application notes and errata sheets. Microprocessors
that are variations of an existing family may exhibit early operational stability versus a device
that is not based on an existing family of devices.

4.1.4 Suitability.

Suitability involves the review of the intended application against the manufacturer’s published
performance data. When using microprocessors, available useful performance (actual rates)
should be expected to be less than that implied by raw clock rates (published rates). Reasons for
the decreased available performance includes the following: cache miss rate, interference
between multiple execution units running simultaneously in parallel, and instructions that require
multiple clock cycles to complete. In addition, the microprocessor manufacturer’s fabrication
process uses proprietary libraries that are intentionally not disclosed to customers and are
accounted for in the overall performance and fabrication process.

Microprocessor startup times are an important aspect of suitability due to the stringent
availability requirements for commercial avionics. If the microprocessor must be restarted due
to error conditions during operation, the microprocessor startup time should be well understood
when selecting devices and constructing safety nets. The following restart conditions should be
considered for the safety net design:

 Time constraints for startup should cover all possible startup conditions based on the

system design, design assurance level, and required response.

 Time constraints for startup should include the microprocessor configuration
initialization time and any required initialization to satisfy system safety requirements.

Another important aspect of suitability involves the manufacturer changing device package sizes
without making any additional changes, other than possibly core voltage. For example,
experience has shown that a device that was manufactured in a 90-nanometer process and
migrated to a 60-nanometer process will likely demonstrate a change in characteristics. There is
no guarantee that simply changing package size will not cause a change in the application’s
performance and operation; and significant evidence shows that it can.

16

Another key area of suitability is the demonstration of an acceptable understanding of the
embedded features within the device and the intended use. For those features that are not
intended to be used, it has been expressed by the regulatory agencies that the integrator must
demonstrate an acceptable understanding of potential misbehavior caused by the activation of an
unused function. Additionally, the integrator must include the mitigation for disabling or
deactivating a given feature.

4.1.5 Testability.

Tests to characterize device behavior and performance are typically performed at many levels,
beginning with the manufacturer data. Designers may use configurable cores within their system
that may not provide full visibility into their behavior due to encryption or other intellectual
property limitations. The manufacturer’s intended testability approach may not provide enough
insight, may not be consistent with the integrator’s testing approach, or may not be suitable for
the intended application. Industry experience has shown that an unexpected behavior can occur
with a difference in testing approaches between the integrator’s expectation and the
manufacturer’s intentions. Some proven techniques for characterizing device behavior are:

 Manufacturer’s intended testability approach
 Error-correcting code
 Built-in self test (BIST)
 Automatic test pattern generation

The multilevel safety net approach defined in section 4.2 encompasses safety compliance at
various levels as appropriate to the associated safety risk. Research conducted reveals the
escalating future impracticality of ensuring safety at the device level alone when COTS
microprocessors and equivalent airborne electronic hardware technology are used [4].

4.2 SAFETY NET MONITOR CONSIDERATIONS.

The term safety net monitor is intended to convey technology approaches that could be
employed through the use of hardware and/or software solutions. The safety net methodology
presumes the device will misbehave during its service life, and therefore, the safety net monitors
would likely need to be architecturally integrated at a level above the device itself.

It is the intent of this Handbook to help identify some safety net monitors that were discussed
and/or physically tested through example design. The responsibility for defining and using
safety net monitors belongs to the integrator developing the application-specific architecture.

4.2.1 Hardware Monitor Considerations.

Hardware monitors focus on hardware-based technology solutions to indicate when unexpected
changes in behavior or physical characteristics occur. The list below identifies the types of

17

hardware monitors discussed during the research. It is recognized that some of these
considerations could also be implemented using software applications.

 Memory (parity/error correction code/SEU monitors)

 Internal buses (address and data parity)

 External buses (protocol checks, parity, checksums, activity patterns, cyclic redundancy

code)

 Discrete digital signals (dualize I/O, BIT stimulation capability, wraparounds)

 General signals (wraparounds analog/digital to digital/analog, range checks, rate checks,
etc.)

 Dissimilar hardware (address generic hardware fault coverage)

 Configuration register monitors

4.2.2 Software Monitor Considerations.

Software monitors focus on software application solutions to indicate when unexpected changes
in behavior or physical characteristics occur. The list below identifies the types of software
monitors discussed during the research. To better support the safety net methodology, the
application-specific architecture would need to consider the risk of the microprocessor
misbehaving and having an adverse effect on the monitor’s ability to accurately report abnormal
behavior.

 Additional system-level and box-level built-in-test (SBIT: Start-up BIT; IBIT: Interface,

initiated, interruptive, or intermittent BIT; PBIT: Periodic BIT; MBIT: Maintenance
BIT)

 Additional voting planes

 Data integrity checks

 Configuration register monitors

4.2.3 External Monitor Considerations.

External monitors are identified below where each microprocessor has its own custom dedicated
watchdog monitor (WDM) for reporting abnormal behavior.

 WDM power up failed and must be properly serviced to be declared valid.

18

 WDM should be serviced once per frame.

 WDM has an independent clock source and voltage rail.

 WDMs are designed with custom requirements to the processor, design configuration,

criticality, and the utilization.

 WDM failures are reported through cross-channel data links to the other channels and

voting planes.

The following are types of techniques discussed as potential solutions during the research, but
this list is not exhaustive.

 External monitoring of safety-related behavior
 External redundancy
 External watchdogs
 External architecture that allows a level of autonomous run-time correction

4.2.4 Internal Monitor Considerations.

The research acknowledges the use of internal monitors from the aspect of those that can be
embedded, such as BIST, at the transistor level as associated with a multicore device. The level
of research conducted with internal monitors was limited to the association of software monitors
discussed in section 4.2.2.

4.3 ARCHITECTURAL SAFETY NET EXAMPLES.

The architectural safety net examples in sections 4.3.1 through 4.3.5 were identified by research
as possible approaches and are discussed only briefly. The details behind using these examples
are understood to be the responsibility of the integrator, as applicable to the application-specific
solutions. These examples are not meant to be a complete list of approaches, as application-
specific solutions may differ greatly from these examples. It is not the intent of the research or
this Handbook to provide implementation details.

4.3.1 Shared Resource Approach.

A safety net design to mitigate shared resource effects depends on how access is granted to those
shared resources. This section details the different forms of shared resource access policy and
provides an example of how that policy may affect safety.

Access to any shared resource will be controlled by an arbiter. An arbiter can be implemented in
hardware or software, and it is possible that the arbiter can be configured through configuration

19

registers. There are three arbiter properties that affect the behavior of the system when using
shared resources:

 Access fairness
 Tenure fairness
 Disconnection policy

Access fairness provides a mechanism that allows agents to request permission to use a shared
resource. Access fairness does not enforce how long the “winning” requesting agent may use the
resource (tenure) nor does it assure productive utilization versus nonproductive occupation.
Basic types of mechanisms to implement access fairness include the following:

 First-come, first-served—Initiators are granted access in order of the arrival of their

requests at the arbiter. This can lead to potential access starvation if an initiator
constantly requests access.

 Round robin—Initiators are granted access in a prearranged, fixed sequence, bypassing

initiators that do not request access.

 Priority—Initiators are granted access according to a weighted priority system, with

“higher”-priority requests being granted access before “lower”-priority requests.

 Weighted round robin—Initiators are allocated multiple access opportunities, either

sequentially or nonsequentially, from a fixed number of possible opportunities.

 Multilevel (round robin with priorities)—This is a derivative of round robin where

initiators on an higher-priority level are granted access in sequence, along with a
reservation for a single initiator at a lower-priority level. After all the initiators at the
higher-priority level have been granted an access opportunity, the reservation is offered
to the first of the initiators at the lower-priority level. The process repeats with all the
higher-priority level initiators again given access opportunity, followed by the
reservation offered to the next initiator in the lower-priority level sequence.

Shared resource tenure fairness (utilization allocation) enforces how long the requesting initiator
may use the shared resource once it has acquired access to it. It is possible that an arbiter does
not implement tenure fairness, and an initiator is allowed indefinite access to a shared resource.
The two most common mechanisms for enforcing maximum access duration are the following:

 Timers—Enforce tenure by number of clock cycles
 Counters—Enforce tenure by number of events

Disconnection policy can also affect the timing behavior of a COTS microprocessor. The arbiter
can either forcibly disconnect an initiator or signal the initiator to disconnect. Signaling the
initiator to disconnect is less temporally rigid than forcing disconnection, but this allows the
initiator to gracefully terminate its transaction.

20

For example, standard memory controllers implement a priority-based access fairness policy
based on the request address to maximize bandwidth. There is no notion of tenure fairness or
disconnection policy in memory controllers because a typical access has a very short duration,
and memory controllers only consider the request address, not the initiator, in scheduling
memory requests. Therefore, a memory controller can starve other processing cores of access if
it can ensure that its requests always receive the highest priority. A safety net should account for
this shared resource access policy.

Another safety net example for shared resources is register access control. The memory
management unit (MMU) can be used to manage register access by only allowing a limited
subset of the software to access these registers, regardless of assigned criticalities. This has the
potential of minimizing the possibility of corruptions. This technique has also been found to be
effective when used for other memory-addressable, microprocessor-shared resources. Through
MMU enforcement, only privileged software that is intended to use a given resource is allowed
to do so.

4.3.2 Lock-Step Approach.

The research recognizes that the lock-step approach has proven to be a successful approach for
ensuring safety. However, the research also acknowledges that the ability to ensure the same
level of safety as previously shown is becoming more difficult as the technology advances
toward the SoC and multicore microprocessor. This is believed to be inherently due to the
embedded management between the cores. Thus, the integrator has less insight into the SoC,
which challenges its ability to tightly synchronize multicores. No detailed research was
performed on this approach.

4.3.3 Frame-Lock Approach.

Like the lock-step approach, the frame-lock approach has proven to be successful for assuring
safety. Unlike the lock-step approach, the comparison of the independent execution results are
performed at the I/O boundaries rather than at the instruction level, and synchronization occurs
at the completion of a predefined frame. The data from each processor is compared at the end of
this frame. Because frame-lock compares the results at a higher level of granularity than lock-
step, challenges involving WCET variation during comparison can be avoided since the results
must be available by the end of the frame. However, erroneous microprocessor behavior may go
undetected for longer periods of time compared to lock-step. This concern is accentuated in light
of research that shows it is increasingly difficult to provide safety assurance at the device level.
For example, unintended configuration register changes may result in significant variations in
processor operation, and this erroneous behavior may occur for an unacceptable period of time.
No detailed research was performed on this approach, but safety net methodologies should
account for this type of behavior.

21

4.3.4 Dissimilar Architectures.

It is recognized that using dissimilar architectures has proven to be a successful approach for
providing safety assurance. Unlike lock-step where technology challenges determine the
feasibility of that approach, the feasibility in using dissimilar architectures is driven by the
significant increase in the level of effort. This increase in effort is indirectly caused by the
increase in microprocessor technology challenges, essentially requiring the integrator to develop
a dual system to perform an identical operation across dissimilar architectures. Each dissimilar
architecture used may include its own unique risks, and therefore, different risk mitigations and
safety nets should be designed for each architecture. No detailed research was performed on this
approach.

4.3.5 Aircraft-Level Safety Assurance.

It has been proven that aircraft-level architectural approaches are successful for providing safety
assurance and are successfully handled through project-specific special conditions. No detailed
research was performed on this approach.

4.4 SAFETY NET CONCLUSION.

The multilevel, safety net approach encompasses acceptable safety compliance at various levels
as the safety risk increases. This research supports the future impracticality of ensuring safety at
the device level alone when microprocessors and equivalent AEH technology is used [4].

5. RESULTS AND FUTURE WORK.

5.1 RESULTS.

This Handbook has identified common risk areas for COTS microprocessors (section 3) and
recommends approaches to reduce/mitigate these risks (sections 3 and 4).

The research has justified the need for a multilevel safety net approach (section 4) to handle
anomalous behavior from complex COTS microprocessors used in aircraft systems.
Additionally, this Handbook relates the existing FAA guidance and policy to the provided safety
net approach and identifies the path to include safety nets in future policy and guidance (sections
2 and 4).

The safety net approach described in section 4.1 is a potential solution for increasingly
challenging components that will be tested and validated by detecting and recovering from
anomalous microprocessor behavior during system operation.

The safety net approach should be implemented on a project-by-project basis. It is highly
recommended to design the safety net concurrently with the system architecture. This can lead
to standards for preferred architectural patterns for resilient systems with future COTS
microprocessors and other complex AEH and their emerging technologies, features, and
functionality.

22

5.2 FUTURE WORK.

The FAA has suggested a follow-on AVSI project to evaluate other AEH beyond COTS
microprocessors and an update to this Handbook to reflect the results of the follow-on project.
AEH considered in the follow-on project is expected to include FPGA-based SoCs.

Additionally, the follow-on project proposes to guide one or more pilot projects in the use of
safety nets for microprocessor-based aircraft systems. Pilot projects in the continuing
development, application, and refinement of the safety net approach could provide additional
content and definition to this Handbook in the form of examples and real-world analyses of the
effectiveness of safety net approaches.

It is the intention of the FAA to assess the use of safety nets in future microprocessor-based
aircraft systems. Using the safety net approach, resulting in certification of aircraft containing
systems with safety nets, can lead to enhancements in FAA policy and guidance to formally
accept, implement, and provide guidance for the continued use of safety nets.

Additional research should

 investigate additional functionality that can be accomplished within safety nets.

 investigate new trends in microprocessor design that may aid or hinder the

implementation of safety nets.

 investigate architectural and functional requirements for the safety net monitoring itself.

 investigate the implementation of the architectural safety net examples identified in

section 4.3.

6. REFERENCES.

1. Mahapatra, R.N. and Ahmed, S., “Microprocessor Evaluations for Safety-Critical, Real-
Time Applications: Authority for Expenditure No. 43 Phase 1 Report,” FAA report
DOT/FAA/AR-06/34, December 2006.

2. Mahapatra, R.N., Bhojwani, P.S., and Lee, J.D., “Microprocessor Evaluations for Safety-

Critical, Real-Time Applications: Authority for Expenditure No. 43 Phase 2 Report,”
FAA report DOT/FAA/AR-08/14, June 2008.

3. Mahapatra, R.N., Bhojwani, P.S., and Lee, J.D., “Microprocessor Evaluations for Safety-

Critical, Real-Time Applications: Authority for Expenditure No. 43 Phase 3 Report,”
FAA report DOT/FAA/AR-08/55, February 2009.

4. Mahapatra, R.N., Lee, J.D., Gupta, N., and Manners, B., “Microprocessor Evaluations for

Safety-Critical, Real-Time Applications: Authority for Expenditure No. 43 Phase 4
Report,” FAA report DOT/FAA/AR-10/21, September 2010.

23

5. Mahapatra, R.N., Lee, J.D., Gupta, N., and Manners, B., “Microprocessor Evaluations for

Safety-Critical, Real-Time Applications: Authority for Expenditure No. 43 Phase 5
Report,” FAA report DOT/FAA/AR-11/5, to be published.

6. Advisory Circular 20-152, “RTCA, Inc., Document RTCA/DO-254, Design Assurance

Guidance for Airborne Electronic Hardware,” Federal Aviation Administration, AIR-100,
2005.

7. FAA Order 8110.105, “Simple and Complex Electronic Hardware Approval Guidance,”

Federal Aviation Administration, AIR-100, 2008.

8. DO-254, “Design Assurance Guidance for Airborne Electronic Hardware,” RTCA, Inc.,

2000.

9. “MPC8572E PowerQUICC III Integrated Host Processor Family Reference Manual,”

Freescale Semiconductor, Rev. 2, May 2008.

10. “PowerPC e500 Core Family Reference Manual,” Freescale Semiconductor, Rev. 1,

2005.

11. Pellizoni, R. and Caccamo, M., “Impact of Peripheral-Processor Interference on WCET

Analysis of Real-Time Embedded Systems,” IEEE Transactions on Computers, Vol. 59,
Issue 3, pp. 400-415.

12. Moscibroda, T. and Multu, O., “Memory Performance Attacks: Denial of Memory

Service in Multi-Core Systems,” Proceedings of the 16th USENIX Security Symposium,
2007, pp. 257-274.

13. Agosteo, S., et al., “First Evaluation of Neutron Induced Single Event Effects on the

CMS Barrel Muon Electronics,” Proceedings of the 6th Workshop on Electronics for
LHC Experiments, 2000, pp. 240-244.

14. DO-178B, “Software Considerations in Airborne Systems and Equipment Certification,”

RTCA, Inc., 1992.

7. GLOSSARY.

Arbiter—A device that controls access to a shared resource.

Architecture—The configuration of any equipment or interconnected system or subsystems of
equipment that is used in the automatic acquisition, storage, manipulation, management,
movement, control, display, switching, interchange, transmission, or reception of data or
information, which includes computers, ancillary equipment, and services, including support
services and related resources.

24

Availability—That proportion of time that a system is in a functioning condition. Timely,
reliable access to functionality and data for authorized users.

Certification—“Legal recognition by the certification authority that a product, service,
organization or person complies with the requirements. Such certification comprises the activity
of technically checking the product, service, organization or person and the formal recognition of
compliance with the applicable requirements by issue of a certificate, license, approval or other
documents as are required by national laws and procedures. In particular, certification of a
product involves:

a. The process of assessing the design of a produce to ensure that it complies with a set of

standards applicable to that type of product so as to demonstrate an acceptable level of
safety.

b. The process of assessing an individual product to ensure that it conforms with the

certified type design.

c. The issuance of a certificate required by national laws to declare that compliance or

conformity has been found with standards in accordance with the above two items”
RTCA/DO-254, April 19, 2000.

Initiator—A system component that requests a service from another system component.

Launch customer—The first delivery of a microprocessor to a customer.

Lockstep—A fault-tolerant mode of operation in which redundant systems perform the same
activity at the same time in parallel. This allows the output of these activities to be compared so
that any differences in output can be identified and resolved.

Softcore IP cores—A reusable processor or peripheral core purchased or licensed from a third
party. This core is provided as a configurable piece of software code that can be used to
generate a hardware design. These IP cores may provide full design visibility to the user, or it
may be encrypted by the vendor due to intellectual property concerns. These IP cores are
typically used in FPGA-based designs, but may be used in Application-Specific Integrated
Circuit designs.

System-on-Chip (SoC)—A single integrated circuit that includes processing cores, cache
memory, memory and interface controllers, timing and power management circuits, and other
functionality. SoCs have replaced many discrete system components with a single device.

Tape Out—The final step in the design cycle for hardware. The design’s photomask is sent to
the device fabricator for production.
Walking one pattern—The sequential setting and resetting of each bit in a configuration register.
Setting a bit assigns the value 1 to that bit, and resetting a bit returns its value to 0. Essentially,
the value 1 “walks” the configuration register one bit at a time. The purpose of a walking one
pattern test is to verify the functionality of a system during the individual modification of each

25

26

bit in a set of configuration registers. The following example is a typical walking one pattern for
a three bit input: 000, 100, 010, 001. Variations to the walking one pattern test exist. This
includes the walking XOR pattern where each bit is flipped and then returned to its original
value sequentially, as in the experiment described in appendix A, section A.3.

APPENDIX A—RESEARCH EXPERIMENTS

This appendix describes experiments on the Freescale™ MPC8572DS platform. These
experiments were performed to evaluate the severity of the common risk areas identified in
section 3 of the main report. Figure A-1 shows the complete system diagram of the experimental
platform.

Figure A-1. Freescale MPC8572DS System Diagram (Section 3, of reference A-1)

A.1 TEST DESCRIPTION.

This experiment was designed to test the effects of bit changes in configuration registers. In this
experiment, register bits in the universal asynchronous receiver/transmitter (UART)
configuration space were changed. The Configuration Control and Status Base Address Register
(CCSRBAR) holds the base address of all the memory-mapped configuration registers on the
MPC8572E. The UART configuration registers are located at an offset of 0x4500 from
CCSRBAR. Table A-1 shows all the configuration registers for UART0. The registers for
UART1 are similarly located, starting at 0x4600. Figure A-2 shows the details of UART0
registers.

A-1

Figure A-2. MPC8572 UART Configuration Registers (Section 13.2.2 of reference A-2)

A.2 TEST SETUP.

The program was run through the Freescale Semiconductor, Inc. CodeWarrior™ integrated
development environment (IDE) by loading it into memory. The program used to change the
register bits was also used to test the UART functioning. This was done by printing the register
and bit number each time a register bit was changed.

A.3 EXPERIMENTS.

The register bits were changed by using an XOR (exclusive OR device) function with a mask in
a walking one pattern (see section 7 of the main report). After printing the register and bit
numbers, the bit was reset to its original value before changing the next bit.

A.4 RESULTS.

Table A-1 shows the results of the experiment. The table only shows the bit and register
numbers for which there was a deviation from the normal execution.

A-2

Table A-1. Results of Experiment

Serial
No.

Register
No.

Bit
No.

Register
Name

Bit
Description Effects

1 0 3 UTHR0 Data Newline character(s) deleted

2 0 5 UTHR0 Data Extraneous space character
inserted

3 0 6 UTHR0 Data Extraneous at character
inserted

4 2 1 UFCR0 Receiver trigger level Extra character repeated

5 2 2 UFCR0 Reserved Extra character repeated

6 2 7 UFCR0 First-in, first-out enable Extra non-ASCII characters
on reset

7 3 1 ULCR0 Set break Some characters get
translated to non-ACSII
characters

8 3 6 ULCR0 Word length Test hangs

9 3 7 ULCR0 Word length Test hangs

It should be noted that, in each case, the program returned to the normal mode of operation after
resetting the changed bit. The results can be classified based on their degree of criticality:

 Change in output data: The data output on the console was different from normal output.

(For example, serial numbers 1-7 in table A-1)

 Change in program execution (serial numbers 8 and 9)

 Crash: None in this experiment.

A.5 INTERPRETATION OF RESULTS.

For serial numbers 8 and 9 in table A-1, a special diagnosis is due since the program did not
execute normally. Through Codewarrior debugger it was observed that the execution could not
come out of the function MPCDUARTReadPool() for result 8. The program did not exactly stop
executing, but it seemed to be stuck in the function. The set break forced logic 0 to be on the
serial out line and did not affect the UART buffers. In such a situation, the UART buffers get
filled up, and hence, the call to printf() in the test program does not return.

A.6 TEST DESCRIPTION.

In this experiment, a safety net design was tested for the configuration-related issues. In an
earlier test, it was observed that some of the UART configuration registers can lead to unwanted
effects when their values are changed. It was also observed that the correct values of these

A-3

registers are known for a particular use case. In this experiment, the UART configuration
registers were periodically overwritten with their correct values. The researchers observed
whether the unwanted effects still existed when overwriting with correct values. The period at
which the system was able to perform correctly even when the register values change was also
observed.

A.7 TEST SETUP.

The test was performed inside the CodeWarrior debug environment. The UART0 Line Control
Register was used to corrupt and repair. The register was corrupted by changing its lowest bit,
which changes the data to be transmitted on the UART. Through OPTP1, it was observed that
this data translation led to the output of non-ASCII characters on the serial port. To repair the
corrupted register, the default correct value of 0x03 was written on to the register. To detect
errors, the value of the register was checked for 0x03. The corruption, repair and usage were all
run within a single thread on one core.

A.8 TIMER SETUP.

The decrementer (DEC) counter was used in the e500 cores to set up a 1-ms timer. The DEC
counter is decremented every 8 Core Complex Bus (CCB) clocks. In the default setup, the CCB
runs at a 600-MHz frequency, so the DEC was loaded with a value of 750,000. The interrupt
handler for the timer calls the timerInt function, where the register corruption, repair, and usage
were performed. The pseudo code for the timerInt function is shown in figure A-3.

time++

if (time % usage_period == 0)

if(register value incorrect)

 repairs++
if (time % repair_period == 0)

 repair register()

if (time == next_error_time)

 corrupt register()

 update next error time

Figure A-3. The timerInt Function

A.9 EXPERIMENTS.

Three different periods were used for corrupting and repairing the register value. The usage
period and corruption period are an estimate on how frequently the register is expected to be
used and corrupted, respectively. Different values of repair period were used and a number of
errors were observed. For each repair period, a 10-second test was run.

A-4

A.10 TEST RESULTS.

This section discusses the results from the experiments performed for this test plan. Figures A-4
through A-6 show the number of results for different values of repair period, usage period, and
corruption period. In all three results, no errors were detected if the repair period was less than
5 ms. At the same time, for certain values of the repair period, there was a spike in the number
of errors. This happened because the interleaving of usage, repair, and corruption periods
allowed the register to be used just after it was corrupted for the given corruption period. The
usage period was kept constant at 15 ms.

Figure A-4. Corruption Period = 100 ms

Figure A-5. Corruption Period = 200 ms

A-5

Figure A-6. Corruption Period = 300 ms

A.11 CONCLUSION.

Through these experiments, it was concluded that the number of detected errors depends greatly
on the usage, corruption, and repair periods. However, if the configuration register is repaired at
a sufficiently high rate, the system can run error-free.

A.12 RESOURCE SHARING EFFECT ON TIMING.

A.12.1 TEST DESCRIPTION.

In this experiment, the timing delays, which were due to the contention by cores on level 2 (L2)
cache, were determined. First, a simple matrix multiplication program was used to determine its
execution time by running it on only one core. This execution time was the baseline timing
requirement. To test the effect of contention, the other core was activated and run on another
matrix multiplication program, which stressed the shared L2 cache. The delays incurred by this
contention on the execution time of the matrix multiplication program were observed and
measured.

A.12.2 TEST SETUP.

The test was performed inside the Linux operating system environment from the board support
package for the MPC8572 System. The taskset utility from the DENX ELDK software package
was used to restrict the programs to run on a single core. The execution time of the programs
was obtained by reading the real-time clock device set to a frequency of 8 MHz. The specific
details about reading the real-time clock and running the programs can be obtained from the
documentation in the code package for the one page test plan (Resource-Sharing-Effect-on-
Timing One Page Test Plan). Two versions of the matrix multiplication program were
implemented. The first one, matmult_timer, prints out the execution time whenever it is run.

A-6

The second one, matmult, is used for L2 cache-stressing purposes and does not print out the
execution time. Figures A-7 through A-10 give a description of how the source code was used
and the general content of the scripts.

Source Code
============
matmult.c - untimed matrix multiplication code (see figure A-8)
matmult - matrix multiplication executable(run on MPC8572Ds platform and see cannot be
viewed)

matmult_timer.c - timed matric multiplication code (see figure A-9)
matmult_timer - timed matrix multiplication executable (run on MPC8572DS platform and
cannot be viewed)

rtctest.c - reference code for Real Time Clock manipulation (see figure A-10)

Scripts
=======
For each of the figures A-7 to A-12 in the handbook, this package contains two
scripts. One to record the baseline execution times (named base-exec-time.sh)
and the other to record the execution time in the presence of contention
(named contention-exec-time.sh). These scripts utilize the matmult and
matmul_timer executables to produce the data displayed in the handbook
results.

Figure A-7. Readme.txt

\#include <stdio.h>
#include <stdlib.h>
#include <linux/rtc.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>

/* This program reads the dimensions of two matrices from command line.
 * The matrix contents are filled with random numbers and the result of
 * matrix is printed out.
 */

main(int argc, char **argv)
{
 int i, j, k, dim1, dim2, dim3, temp1, temp2, temp3, sum;
 int **mat1, **mat2, **matR;

Figure A-8. The matmult.c Source Code

A-7

 /* Check command line arguments sanity
 */
 if(argc != 4){
 printf("Usage: ./a.out dim1 dim2 dim3\n");
 exit(1);
 }

 /* Read the matrix dimensions from command line
 */

 dim1 = atoi(argv[1]);
 dim2 = atoi(argv[2]);
 dim3 = atoi(argv[3]);

 srand(dim1);
 //printf("dim1 = %d, dim2 = %d, dim3 = %d\n", dim1, dim2, dim3);

 /* Dynamically allocate the arrays and initialize the contents with
 * random numbers
 */

 mat1 = (int **) malloc(dim1 * sizeof (int *));
 mat2 = (int **) malloc(dim2 * sizeof (int *));
 matR = (int **) malloc(dim1 * sizeof (int *));

 for (temp1 = 0; temp1 < dim1; temp1++){
 mat1[temp1] = (int *) malloc(dim2 * sizeof(int));
 for (temp2 = 0; temp2 < dim2; temp2++){
 mat1[temp1][temp2] = rand();
 }
 }

 for (temp1 = 0; temp1 < dim2; temp1++){
 mat2[temp1] = (int *) malloc(dim3 * sizeof(int));
 for (temp2 = 0; temp2 < dim3; temp2++){
 mat2[temp1][temp2] = rand();
 }
 }

 for (temp1 = 0; temp1 < dim1; temp1++){
 matR[temp1] = (int *) malloc(dim3 * sizeof(int));
 }

 for(temp1 = 0; temp1 < dim1; temp1++){
 for (temp2 = 0; temp2 < dim3; temp2++){
 sum = 0;
 for(temp3 = 0; temp3 < dim2; temp3 ++){
 sum += mat1[temp1][temp3] * mat2[temp3][temp2];
 }
 matR[temp1][temp2] = sum;
 }
 }

Figure A-8. The matmult.c Source Code (Continued)

A-8

 /*
 printf("Matrix1:\n");
 printMat(mat1, dim1, dim2);
 printf("Matrix2:\n");
 printMat(mat2, dim2, dim3);
 printf("Matrix Result:\n");
 printMat(matR, dim1, dim3);
 */

}

printMat(int **mat, int dim1, int dim2)
{
 int i, j;
 for(i = 0; i < dim1; i++){
 for(j = 0; j < dim2; j++){
 printf("%d ",mat[i][j]);
 }
 printf("\n");
 }
}

Figure A-8. The matmult.c Source Code (Continued)

#include <stdio.h>
#include <stdlib.h>
#include <linux/rtc.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <time.h>

/* This program reads the dimensions of two matrices from command line.
 * The matrix contents are filled with random numbers and the result of
 * matrix is printed out.
 */

main(int argc, char **argv)
{
 int i, j, k, dim1, dim2, dim3, temp1, temp2, temp3, sum;
 int **mat1, **mat2, **matR;
 unsigned long long a, b;
 const char *rtc = "/dev/rtc0";
 unsigned long tmp, data;
 int fd, retval, timerFreq;
 double time;

 fd = open(rtc, O_RDONLY);

 if (fd == -1) {

Figure A-9. The matmult_timer.c Source Code

A-9

 perror(rtc);
 exit(errno);
 }

 /* Read periodic IRQ rate */
 retval = ioctl(fd, RTC_IRQP_READ, &tmp);
 if (retval == -1) {
 /* not all RTCs support periodic IRQs */
 if (errno == ENOTTY) {
 fprintf(stderr, "\nNo periodic IRQ support\n");
 exit(1);
 }
 perror("RTC_IRQP_READ ioctl");
 exit(errno);
 }
 //fprintf(stderr, "\nPeriodic IRQ rate is %ldHz.\n", tmp);

 timerFreq = 8192;
 retval = ioctl(fd, RTC_IRQP_SET, timerFreq);
 if (retval == -1) {
 /* not all RTCs can change their periodic IRQ rate */
 if (errno == ENOTTY) {
 fprintf(stderr,
 "\n...Periodic IRQ rate is fixed\n");
 exit(1);
 }
 perror("RTC_IRQP_SET ioctl");
 exit(errno);
 }
 //fprintf(stderr, "periodic frequency set to %ldHz:\n", tmp);
 fflush(stderr);

 /* Enable periodic interrupts */
 retval = ioctl(fd, RTC_PIE_ON, 0);
 if (retval == -1) {
 perror("RTC_PIE_ON ioctl");
 exit(errno);
 }

 /* This blocks */
 retval = read(fd, &data, sizeof(unsigned long));
 if (retval == -1) {
 perror("read");
 exit(errno);
 }
 a = data >> 8;

 /* Check command line arguments sanity
 */
 if(argc != 4){
 printf("Usage: ./a.out dim1 dim2 dim3\n");
 exit(1);
 }

 /* Read the matrix dimensions from command line
 */

Figure A-9. The matmult_timer.c Source Code (Continued)

A-10

 dim1 = atoi(argv[1]);
 dim2 = atoi(argv[2]);
 dim3 = atoi(argv[3]);

 srand(dim1);

 //printf("dim1 = %d, dim2 = %d, dim3 = %d\n", dim1, dim2, dim3);

 /* Dynamically allocate the arrays and00 initialize the contents with
 * random numbers
 */

 mat1 = (int **) malloc(dim1 * sizeof (int *));
 mat2 = (int **) malloc(dim2 * sizeof (int *));
 matR = (int **) malloc(dim1 * sizeof (int *));

 for (temp1 = 0; temp1 < dim1; temp1++){
 mat1[temp1] = (int *) malloc(dim2 * sizeof(int));
 for (temp2 = 0; temp2 < dim2; temp2++){
 mat1[temp1][temp2] = rand();
 }
 }

 for (temp1 = 0; temp1 < dim2; temp1++){
 mat2[temp1] = (int *) malloc(dim3 * sizeof(int));
 for (temp2 = 0; temp2 < dim3; temp2++){
 mat2[temp1][temp2] = rand();
 }
 }

 for (temp1 = 0; temp1 < dim1; temp1++){
 matR[temp1] = (int *) malloc(dim3 * sizeof(int));
 }

 for(temp1 = 0; temp1 < dim1; temp1++){
 for (temp2 = 0; temp2 < dim3; temp2++){
 sum = 0;
 for(temp3 = 0; temp3 < dim2; temp3 ++){
 sum += mat1[temp1][temp3] * mat2[temp3][temp2];
 }
 matR[temp1][temp2] = sum;
 }
 }

 /* This blocks */
 retval = read(fd, &data, sizeof(unsigned long));
 if (retval == -1) {
 perror("read");
 exit(errno);
 }
 b = data >> 8;

 time = (b-(double)a)/timerFreq;
 printf("execution time = %f\n", time);
 /*
 printf("Matrix1:\n");
 printMat(mat1, dim1, dim2);

Figure A-9. The matmult_timer.c Source Code (Continued)

A-11

 printf("Matrix2:\n");
 printMat(mat2, dim2, dim3);
 printf("Matrix Result:\n");
 printMat(matR, dim1, dim3);
 */

 /* Disable periodic interrupts */
 retval = ioctl(fd, RTC_PIE_OFF, 0);
 if (retval == -1) {
 perror("RTC_PIE_OFF ioctl");
 exit(errno);
 }
}

printMat(int **mat, int dim1, int dim2)
{
 int i, j;
 for(i = 0; i < dim1; i++){
 for(j = 0; j < dim2; j++){
 printf("%d ",mat[i][j]);
 }
 printf("\n");
 }
}

Figure A-9. The matmult_timer.c Source Code (Continued)

/*
 * Real Time Clock Driver Test/Example Program
 *
 * Compile with:
 * gcc -s -Wall -Wstrict-prototypes rtctest.c -o rtctest
 *
 * Copyright (C) 1996, Paul Gortmaker.
 *
 * Released under the GNU General Public License, version 2,
 * included herein by reference.
 *
 */

 #include <stdio.h>
 #include <linux/rtc.h>
 #include <sys/ioctl.h>
 #include <sys/time.h>
 #include <sys/types.h>
 #include <fcntl.h>
 #include <unistd.h>
 #include <stdlib.h>
 #include <errno.h>

 /*

Figure A-10. The rtctest.c Source Code

A-12

 * This expects the new RTC class driver framework, working with
 * clocks that will often not be clones of what the PC-AT had.
 * Use the command line to specify another RTC if you need one.
 */
 static const char default_rtc[] = "/dev/rtc0";

 int main(int argc, char **argv)
 {
 int i, fd, retval, irqcount = 0;
 unsigned long tmp, data;
 struct rtc_time rtc_tm;
 const char *rtc = default_rtc;

 printf("%d\n",sizeof(unsigned long));
 switch(argc)
 {
 case 1:
 break;
 default:
 fprintf(stderr, "usage: rtctest [rtcdev]\n");
 return 1;
 }

 fd = open(rtc, O_RDONLY);

 if (fd == -1) {
 perror(rtc);
 exit(errno);
 }

 fprintf(stderr, "\n\t\t\tRTC Driver Test Example.\n\n");

 /* Turn on update interrupts (one per second) */
 retval = ioctl(fd, RTC_UIE_ON, 0);
 if (retval == -1) {
 if (errno == ENOTTY) {
 fprintf(stderr,
 "\n...Update IRQs not supported.\n");
 goto test_READ;
 }
 perror("RTC_UIE_ON ioctl");
 exit(errno);
 }

 fprintf(stderr, "Counting 5 update (1/sec) interrupts from reading %s:",
 rtc);
 fflush(stderr);
 for (i=1; i<6; i++) {
 /* This read will block */
 retval = read(fd, &data, sizeof(unsigned long));
 if (retval == -1) {
 perror("read");
 exit(errno);
 }
 fprintf(stderr, " %d",i);

Figure A-10. The rtctest.c Source Code (Continued)

A-13

 fflush(stderr);
 irqcount++;
 }

 fprintf(stderr, "\nAgain, from using select(2) on /dev/rtc:");
 fflush(stderr);
 for (i=1; i<6; i++) {
 struct timeval tv = {5, 0}; /* 5 second timeout on select */
 fd_set readfds;

 FD_ZERO(&readfds);
 FD_SET(fd, &readfds);
 /* The select will wait until an RTC interrupt happens. */
 retval = select(fd+1, &readfds, NULL, NULL, &tv);
 if (retval == -1) {
 perror("select");
 exit(errno);
 }
 /* This read won't block unlike the select-less case above. */
 retval = read(fd, &data, sizeof(unsigned long));
 if (retval == -1) {
 perror("read");
 exit(errno);
 }
 fprintf(stderr, " %d",i);
 fflush(stderr);
 irqcount++;
 }

 /* Turn off update interrupts */
 retval = ioctl(fd, RTC_UIE_OFF, 0);
 if (retval == -1) {
 perror("RTC_UIE_OFF ioctl");
 exit(errno);
 }

 test_READ:
 /* Read the RTC time/date */
 retval = ioctl(fd, RTC_RD_TIME, &rtc_tm);
 if (retval == -1) {
 perror("RTC_RD_TIME ioctl");
 exit(errno);
 }

 fprintf(stderr, "\n\nCurrent RTC date/time is %d-%d-%d,
%02d:%02d:%02d.\n",
 rtc_tm.tm_mday, rtc_tm.tm_mon + 1, rtc_tm.tm_year + 1900,
 rtc_tm.tm_hour, rtc_tm.tm_min, rtc_tm.tm_sec);

 /* Set the alarm to 5 sec in the future, and check for rollover */
 rtc_tm.tm_sec += 5;
 if (rtc_tm.tm_sec >= 60) {
 rtc_tm.tm_sec %= 60;
 rtc_tm.tm_min++;
 }
 if (rtc_tm.tm_min == 60) {
 rtc_tm.tm_min = 0;

Figure A-10. The rtctest.c Source Code (Continued)

A-14

 rtc_tm.tm_hour++;
 }
 if (rtc_tm.tm_hour == 24)
 rtc_tm.tm_hour = 0;

 retval = ioctl(fd, RTC_ALM_SET, &rtc_tm);
 if (retval == -1) {
 if (errno == ENOTTY) {
 fprintf(stderr,
 "\n...Alarm IRQs not supported.\n");
 goto test_PIE;
 }
 perror("RTC_ALM_SET ioctl");
 exit(errno);
 }

 /* Read the current alarm settings */
 retval = ioctl(fd, RTC_ALM_READ, &rtc_tm);
 if (retval == -1) {
 perror("RTC_ALM_READ ioctl");
 exit(errno);

 }

 fprintf(stderr, "Alarm time now set to %02d:%02d:%02d.\n",
 rtc_tm.tm_hour, rtc_tm.tm_min, rtc_tm.tm_sec);

 /* Enable alarm interrupts */
 retval = ioctl(fd, RTC_AIE_ON, 0);
 if (retval == -1) {
 perror("RTC_AIE_ON ioctl");
 exit(errno);
 }

 fprintf(stderr, "Waiting 5 seconds for alarm...");
 fflush(stderr);
 /* This blocks until the alarm ring causes an interrupt */
 retval = read(fd, &data, sizeof(unsigned long));
 if (retval == -1) {
 perror("read");
 exit(errno);
 }
 irqcount++;
 fprintf(stderr, " okay. Alarm rang.\n");

 /* Disable alarm interrupts */
 retval = ioctl(fd, RTC_AIE_OFF, 0);
 if (retval == -1) {
 perror("RTC_AIE_OFF ioctl");
 exit(errno);
 }

 test_PIE:
 /* Read periodic IRQ rate */
 retval = ioctl(fd, RTC_IRQP_READ, &tmp);
 if (retval == -1) {

Figure A-10. The rtctest.c Source Code (Continued)

A-15

 /* not all RTCs support periodic IRQs */
 if (errno == ENOTTY) {

 fprintf(stderr, "\nNo periodic IRQ support\n");
 goto done;
 }
 perror("RTC_IRQP_READ ioctl");
 exit(errno);
 }
 fprintf(stderr, "\nPeriodic IRQ rate is %ldHz.\n", tmp);

 fprintf(stderr, "Counting 20 interrupts at:");
 fflush(stderr);

 /* The frequencies 128Hz, 256Hz, ... 8192Hz are only allowed for root. */
 for (tmp=2; tmp<=8192; tmp*=2) {

 retval = ioctl(fd, RTC_IRQP_SET, tmp);
 if (retval == -1) {
 /* not all RTCs can change their periodic IRQ rate */
 if (errno == ENOTTY) {
 fprintf(stderr,
 "\n...Periodic IRQ rate is fixed\n");
 goto done;
 }
 perror("RTC_IRQP_SET ioctl");
 exit(errno);
 }

 fprintf(stderr, "\n%ldHz:\t", tmp);
 fflush(stderr);

 /* Enable periodic interrupts */
 retval = ioctl(fd, RTC_PIE_ON, 0);
 if (retval == -1) {
 perror("RTC_PIE_ON ioctl");
 exit(errno);
 }

 for (i=1; i<21; i++) {
 /* This blocks */
 retval = read(fd, &data, sizeof(unsigned long));
 if (retval == -1) {
 perror("read");
 exit(errno);
 }
 sleep(i);
 fprintf(stderr, " [%d,%lx]",i,data);
 fflush(stderr);
 irqcount++;
 }

 /* Disable periodic interrupts */
 retval = ioctl(fd, RTC_PIE_OFF, 0);
 if (retval == -1) {
 perror("RTC_PIE_OFF ioctl");

Figure A-10. The rtctest.c Source Code (Continued)

A-16

 exit(errno);
 }
 }

 done:
 fprintf(stderr, "\n\n\t\t\t *** Test complete ***\n");

 close(fd);

 return 0;
 }

Figure A-10. The rtctest.c Source Code (Continued)

A.12.3 EXPERIMENTS.

In the following description, the timed and untimed versions of the matrix multiplication
program are referred to as base matrix and contention matrix, respectively. Two different
experiments were performed to test the results of contention. In the first experiment, the
contention matrix size was kept constant at 10,000, while the base matrix size was varied from
20 to 700. In the second set of experiments, the base matrix size was kept constant, while the
contention matrix sizes were varied.

A.12.4 TEST RESULTS.

Figure A-11 shows the execution times for the first experiment, where the base matrix size was
varied. It is clearly shown that the execution times in presence of contention are greater than
those without contention. However, the trend of the execution times was unexpected. As shown
in figure A-11, spikes trend at matrix sizes 510, 590, and 670. The cause(s) of these spikes are
probably the dynamic management of cache by the Linux operating system (OS) and needs
additional investigation. See figures A-12 and A-13 for the applicable scripts.

Figure A-11. Effect of Contention on Execution Time

A-17

#!/bin/bash

for ((i=20; i<=2000 ; i=$i+20))
do
../tools/taskset 0x01 ./matmult $i $i $i &
../tools/taskset 0x02 ./matmult_timer 600 600 600 ; pkill -9 matmult
done

Figure A-12. The base-exec-time.sh Script

#!/bin/bash

for ((i=20; i<=700 ; i=$i+20))
do
../tools/taskset 0x01 ./matmult 10000 10000 10000 &
../tools/taskset 0x02 ./matmult_timer $i $i $i ; pkill -9 matmult
done

Figure A-13. The contention.exec-time.sh Script

Figures A-14 through A-28 show the execution times, base-contention time scripts, and
contention exec_time scripts for the second experiment, where the base matrix sizes were kept
constant. Five different base matrix sizes, from 200 to 600, were used for this experiment. In
each case, the contention matrix size was varied from a low number (around 20) to a size
roughly equal to double the size of the base matrix. The reason for choosing this range was that
a low contention matrix size would put very little stress on the L2 cache, and the execution time
with contention would be roughly the same as without contention. This is clearly visible in the
results. A contention matrix size of double the base matrix size ensures there is some contention
on the L2 cache. As the contention matrix size is gradually increased beyond a certain value, the
execution time with contention may suffer a significant increase, which is shown in figures A-8
through A-12. But as the contention matrix size is increased even more, the execution time does
not continue to increase. This again might be a result of the Linux OS doing some intelligent
reconfiguration of the cache that masks the effect of an increase in the contention matrix.

Figure A-14. Base Matrix Size = 200

A-18

#!/bin/bash

../tools/taskset 0x01 ./matmult_timer 200 200 200

Figure A-15. The base-exec-time.sh Script

#!/bin/bash

for ((i=20; i<=400 ; i=$i+20))
do
../tools/taskset 0x01 ./matmult $i $i $i &
../tools/taskset 0x02 ./matmult_timer 200 200 200 ; pkill -9 matmult
done

Figure A-16. The contention-exec-time.sh Script

Figure A-17. Base Matrix Size = 300

#!/bin/bash

../tools/taskset 0x01 ./matmult_timer 300 300 300

Figure A-18. The base-exec-time.sh Script

#!/bin/bash

for ((i=20; i<=600 ; i=$i+20))
do
../tools/taskset 0x01 ./matmult $i $i $i &
../tools/taskset 0x02 ./matmult_timer 300 300 300 ; pkill -9 matmult
done

Figure A-19. The contention-exec-time.sh Script

A-19

Figure A-20. Base Matrix Size = 400

#!/bin/bash

../tools/taskset 0x01 ./matmult_timer 400 400 400

Figure A-21. The base-exec-time.sh Script

#!/bin/bash

for ((i=20; i<=600 ; i=$i+20))
do
../tools/taskset 0x01 ./matmult $i $i $i &
../tools/taskset 0x02 ./matmult_timer 400 400 400 ; pkill -9 matmult
done

Figure A-22. The contention-exec-time.sh Script

Figure A-23. Base Matrix Size = 500

A-20

#!/bin/bash

../tools/taskset 0x01 ./matmult_timer 500 500 500

Figure A-24. The base-exec-time.sh Script

#!/bin/bash

for ((i=20; i<=1000 ; i=$i+20))
do
../tools/taskset 0x01 ./matmult $i $i $i &
../tools/taskset 0x02 ./matmult_timer 500 500 500 ; pkill -9 matmult
done

Figure A-25. The contention-exec-time.sh Script

Figure A-26. Base Matrix Size = 600

#!/bin/bash

../tools/taskset 0x01 ./matmult_timer 600 600 600

Figure A-27. The base-exec-time.sh Script

#!/bin/bash

for ((i=20; i<=2000 ; i=$i+20))
do
../tools/taskset 0x01 ./matmult $i $i $i &
../tools/taskset 0x02 ./matmult_timer 600 600 600 ; pkill -9 matmult
done

Figure A-28. The contention-exec-time.sh Script

A-21

A-22

A.13 CONCLUSION.

Through these experiments, it was shown that the effects of contention might be masked by the
Linux operating system (OS) management of the cache. Further, it was shown that even with the
Linux OS management, the execution times can vary significantly, depending on the amount of
contention present in the system. To assess the effects of contention in the absence of Linux OS
management, the application should be run directly on the hardware, which would give a much
clearer picture of the effects of contention on shared resources.

A.14 REFERENCES.

A-1. “MPC8572 Development System User’s Guide,” Freescale Semiconductor, Inc., Rev.1,

Austin, Texas, January 2009.

A-2. “MPC8572E PowerQUICC III Integrated Host Processor Family Reference Manual,”

Freescale Semiconductor, Inc., Rev. 2, Austin, Texas, May 2008.

APPENDIX B—CONFIGURATION-RELATED ISSUES BACKUP INFORMATION

The following information, concerning the risks associated with power supply designs, is
provided for safety net designers. Safety nets may also be required to monitor power supplies
and characteristics to accomplish error detection and recovery.

System-on-a-chip (SoC) power supply design is challenging because of high power supply
output currents and low core voltages. Higher numbers of gate transitions per unit time and high
clock frequencies reduce the noise margin and raise the noise floor of the processor. The SoC
power supplies need to be properly sequenced often to provide assurance that the processor boots
up correctly.

If noise margins are low, then the SoC will be more susceptible to electromagnetic interference
(EMI). EMI may be radiated or conducted.

Generally, the SoC mechanical package has a lot of connections in a small area, which makes it
challenging to place the decoupling caps close to the pins. The lead inductance of the pin and
the printed circuit board trace may cause ringing with the decoupling capacitor. This ringing
will reduce the noise margin. In general, the power demand of the core voltages require that
switch mode power supplies be used for SoC core voltages.

Noise margin in electrical engineering is defined as the amount by which a signal exceeds the
minimum amount for proper operation. It is commonly used in at least two contexts:

 In communications system engineering, noise margin is the ratio by which the signal

exceeds the minimum acceptable amount. It is normally measured in decibels.

 In a digital circuit, the noise margin is the amount by which the signal exceeds the

threshold for a proper 0 or 1. For example, a digital circuit might be designed to swing
between 0.0 and 1.2 volts, with anything below 0.2 volt considered a 0, and anything
above 1.0 volt considered a 1. Then the noise margin for a 0 would be the amount that a
signal is below 0.2 volt, and the noise margin for a 1 would be the amount by which a
signal exceeds 1.0 volt. In this case, noise margins are measured as an absolute voltage,
not a ratio. Noise margins are generally defined so that positive values ensure proper
operation, and negative margins result in compromised operation, or perhaps outright
failure.

Noise floor, in signal theory, is the measure of the signal created from the sum of all the noise
sources and unwanted signals within a measurement system.

In radio communication and electronics, this may include thermal noise, blackbody, and any
other interfering signals. The noise floor limits the smallest measurement that can be taken with
certainty, since any measured amplitude can, on average, be no less than the noise floor.

B-1/B-2

http://en.wikipedia.org/wiki/Communications_system_engineering
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Digital_circuit
http://en.wikipedia.org/wiki/Volt

	Abstract
	Key Words
	Table of Contents
	List of Figures

