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EXECUTIVE SUMMARY 
 

This Handbook provides research information intended to help aerospace system developers and 
integrators and regulatory agency personnel in the selection and evaluation of commercial 
off-the-shelf (COTS) microprocessors for use in aircraft systems.  Airborne electronic hardware 
(AEH) includes modern state-of-the-art and highly integrated COTS microprocessors that 
(1) may not provide adequate visibility and debug features to reveal internal functionality, (2) are 
less predictable due to the interaction of advanced features, (3) have programmable 
configuration capabilities available to application software, and (4) share resources across 
multiple cores and devices.  These highly complex COTS microprocessors are becoming more 
challenging to test and to determine that they satisfy applicable functional and safety-related 
requirements. 
 
Resolutions to certification process challenges should offer the possibility of establishing and 
maintaining standards that support the continual change and growth of technologies and 
operations.  Such resolutions can include 
 
 establishing qualitative as well as quantitative methods to certify aircraft with embedded 

nondeterminate complex or critical applications. 
 
 establishing accepted standards of architectural patterns for critical, complex systems and 

methods for validation and design assurance. 
 
 establishing industrywide accepted methods for design assurance of COTS 

microprocessor and microprocessor-based systems. 
 
 streamlining the certification process. 
 
This Handbook is based on the cooperative research accomplished by contributing members of 
the aerospace industry and the Federal Aviation Administration (FAA) as part of the Aerospace 
Vehicle Systems Institute Microprocessor Evaluations Projects 1 through 5.  The research 
underlying this Handbook addressed the use of COTS microprocessors and systems-on-a-chip 
(SoC) in safety-critical avionics.  The project objectives were to (1) identify common risks of 
using SoCs and mitigation techniques to provide evidence that they satisfy regulatory 
requirements and (2) evaluate existing regulatory policy and guidelines against the emerging 
characteristics of complex, nondeterministic microprocessors, and SoCs to support the 
certification of aircraft and qualification of systems using these devices.   
 
Considering the growing complexity of microprocessors, the research revealed the increasing 
impracticality of providing safety assurance at the device level alone.  The combination of 
growing complexity of both software and hardware will drive the need to evaluate large complex 
systems at the system level.  The rate of change and growing complexity is accelerating, and the 
time between new generations of hardware and software is shrinking.  The complexity of most 
COTS components has grown and continues to grow beyond the capability to exhaustively test 
them.  The overlapping phases of development, certification, deployment, and life cycle 
maintenance together with COTS obsolescence accentuate the need for rapid and evolving 
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methodologies.  FAA policy, guidelines, and practices may need to be updated to accept these 
methodologies. 
 
Complex aircraft system development requires more robust consideration of system failure and 
anomaly detection, correction, and recovery.  The safety net approach identified in this 
Handbook also may provide a means to reduce the growing difficulties and costs of design 
assurance for highly integrated, complex, nondeterministic AEH and software within aircraft 
systems, and to reduce the labor burden for FAA regulation compliance and design assurance.   
 
A safety net is defined herein as the employment of mitigations and protections at the 
appropriate level of aircraft and system design to help ensure continuous safe flight and landing.  
The safety net methodology focuses on the assumption that a microprocessor will misbehave.  
The ability to protect against unexpected behavior, damage, injury, and instability over the 
service life outside, or at a level above the device itself, is necessary as appropriate for the design 
assurance level.   
 
The safety net approach is an alternative way to mitigate the risks associated with COTS 
microprocessors via both passive and active methods designed into aircraft systems.  If it is not 
feasible to show that complex aircraft systems are sufficiently free of anomalous behavior by 
evaluating system components, the safety net alternative can mitigate unforeseen or undesirable 
COTS microprocessor operation by detecting and recovering from anomalous behavior at the 
operational system level.  This approach requires the safety net to be designed as a function 
within the aircraft system.  The safety net can include passive monitoring functions, active fault 
avoidance functions, and control functions for recovery of system operations.  System 
architecture and control and recovery functions should be designed to facilitate effective system 
recovery from anomalous events.  Safety nets should show that systems are sufficiently 
impervious to anomalous behavior by ensuring continuous functional availability and reliability, 
satisfying applicable regulations, and meeting airworthiness requirements.  This includes 
verifying any disabled functionality from the COTS will remain inactive in the specific 
application. 
 
A multilevel safety net approach is required for complex and critical applications in systems that 
cannot be fully assured at the component level and is significantly linked to the assigned design 
assurance level required by regulation, contractual obligation, and the integrated complexity at 
the device level.  The design of safety nets, in general, is becoming a complex, application-
specific art form that will be required to detect, resolve, and validate recovery in a run-time 
environment to the required levels of availability and safety.  The safety net approach 
documented in this Handbook is consistent with current FAA policy and guidelines.   
 
The use of COTS microprocessors may be predominant in future aerospace systems.  The use of 
COTS microprocessors avoids the drastically increasing costs of custom microprocessor design.  
This Handbook does not address the use of custom device design. 
 



 

1.  INTRODUCTION. 

This Handbook is based on Aerospace Vehicle Systems Institute (AVSI) Microprocessor 
Evaluations Projects 1 through 5 [1-5].  Microprocessors and systems-on-a-chip (SoC) have 
become extremely complex and densely packaged.  Recent changes in commercial off-the-shelf 
(COTS) microprocessors can be characterized as both physical and functional changes.  
Physically, transistor density has continued its exponential increase, allowing for hundreds of 
millions to billions of transistors to be placed on a single device.  As of 2010, 65- and 45-nm 
devices are common in the COTS marketplace, and 32 nm and smaller devices are beginning to 
enter the marketplace or are on the near horizon.  In addition to decreased device size, the 
functional capability of COTS devices has expanded.  It is no longer necessary for different 
system components to be implemented as discrete devices.  Instead, a single COTS SoC may 
contain multiple microprocessor cores, input/output (I/O) devices, memory controllers, and other 
functionality.  As a result, deterministic performance is difficult or impossible to predict in some 
cases.  These devices require additional evaluation methods beyond that identified in current 
regulatory requirements to achieve the resilience required to meet safety and reliability 
requirements.  Aircraft systems that contain these COTS devices may require multilevel safety 
nets to be designed into them. 
 
This Handbook has been written for experienced system designers and regulatory personnel.  It 
is intentionally not prescriptive in nature.  It is intended to support the development of new 
approaches to the design assurance and safety evaluation leading to the approval of airborne 
systems.  The design of an airborne system, the selection of airborne electronic hardware (AEH) 
(e.g., microprocessor) devices within the system, and the architecture of the system will be 
unique for each application.  The potential sources of nondeterminism and the challenges of 
design assurance of AEH devices must be determined for each system.  This Handbook does not 
attempt to identify sources of microprocessor nondeterminism because they will be unique for 
each system and will proliferate in the future.  System designers have to evaluate the risks 
associated with the candidate microprocessors and design the system architecture and the safety 
nets to mitigate these risks.   
 
This Handbook does not constitute Federal Aviation Administration (FAA) policy or guidance; 
rather, it is the result of FAA- and industry-funded research and may contribute to future policy 
or guidance. 
 
The purpose of this Handbook is to 
 
 document common areas of concerns regarding the use of COTS microprocessors in 

complex and/or safety-critical systems. 
 
 provide approaches, information, and examples for mitigating the concerns through a 

safety net. 
 
 provide access to the research on which the content of this Handbook is based. 
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 provide example approaches to resilient systems through methods defined in this 
Handbook under the overarching term safety nets. 

 
 reveal how existing regulatory policy and guidance may be augmented to support the 

creation of resilient systems through safety net approaches safeguarding the use of 
microprocessor  technologies in complex and/or safety-critical systems. 

 
1.1  SCOPE. 

This Handbook can be used for the development and approval of aerospace systems containing 
embedded COTS microprocessors.    
 
Note:  Within this Handbook the term “microprocessors” shall be understood to include COTS 
microprocessors and SoCs unless otherwise specified.  The term SoCs will be used when the text 
refers to only SoCs.  The overloaded term microprocessor may tend to camouflage the 
differences between the two; therefore, it is highly recommended that users planning to use SoCs 
in aircraft systems fully understand the technical differences between microprocessors and SoCs. 
 
The intended users include system developers, integrators, and all personnel in both industry and 
the FAA responsible for aircraft certification and system qualification. 
 
As shown in figure 1, the Handbook relates current FAA policy and guidance (section 2) to both 
microprocessor and SoC risks and risk mitigation (section 3) and safety net assurance 
approaches (section 4).  As described in section 3, the device risks and risk mitigation 
considerations may be used by project personnel to consider in the use of COTS microprocessors 
in aircraft systems.  The safety net assurance approaches may be considered by project personnel 
as an approach to mitigating these risks.  The information in this Handbook is intended to 
provide system design and safety assurance approaches that facilitate the use of complex COTS 
microprocessors without incurring the difficulties associated with legacy methods of design 
assurance by test and analysis of components.  This Handbook is also intended to aid FAA 
personnel during aircraft certification and policy review.  The authors hope the use of COTS 
microprocessors and their associated safety net approaches in aircraft systems will lead to 
enhanced FAA policy and guidance over time. 
 
Both the FAA and aerospace industry members participated in the research on which this 
Handbook is based.  Use of the Handbook content should be coordinated between project and 
regulatory personnel. 
 
Acceptance of the safety net and the related assurance approaches documented in this Handbook 
are predicated upon the mutual development and acceptance of the project-unique design and 
assurance methodologies and their effectiveness in meeting safety and airworthiness 
requirements. 
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Note:  The yellow blocks identify the scope of the Handbook. 

Figure 1.  Scope of the Handbook 

1.2  DOCUMENT ORGANIZATION. 

 Section 1 identifies the purpose and scope of this Handbook and identifies the research 
on which it is based. 

 
 Section 2 provides an overview of the current regulatory considerations for using COTS 

microprocessors in airborne systems. 
 

 Section 3 provides an overview for using COTS microprocessors, and some of the risks 
of using microprocessor technologies are described.  These risks are described in terms of 
hardware and software considerations; tool use and limitations; development 
environments, information requirements and constraints, performance monitoring, fault 
insertion and analysis; simulation uses and constraints; and programmable characteristics 
(e.g., configuration control, excessive capabilities and disabling/enabling features, 
emerging technologies, and the resource-sharing effect on timing).   

 
 Section 4 introduces safety net approaches; related changes to design, development, and 

safety; integrated device characteristics; operational considerations of safety nets, 
error/anomaly detection, recovery, and validation mechanisms; and architectural 
requirements for safety nets.   
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 Section 5 summarizes the Handbook and the future research that can be based on its 
content.   

 
 Section 6 provides references. 

 
 Section 7 contains a glossary defining the terminology used in this Handbook. 

 
2.  REGULATORY CONSIDERATIONS FOR MICROPROCESSOR-BASED AIRBORNE 
APPLICATIONS. 

Current FAA policy and guidance does not directly address the use of COTS microprocessors 
and SoCs in aircraft systems.  However, the existing policy and guidance can be used as a basis 
from which this Handbook builds upon to help provide an applicant with an acceptable means of 
demonstrating that their system meets the applicable airworthiness requirements. 
 
FAA Advisory Circular AC 20-152 [6] notes that hardware life cycle data may not be available 
to satisfy the objectives of RTCA/DO-254, and therefore, alternative methods or processes are 
required to ensure that COTS microprocessors perform their intended functions and meet 
airworthiness requirements.  No other guidance regarding COTS microprocessors is provided. 
 
FAA Order 8110.105 [7] limits the discussion of COTS components to COTS Intellectual 
Property (IP), which it defines as commercially available, functional logic blocks that are 
implemented within custom micro-coded components, such as programmable logic devices, 
field-programmable gate arrays (FPGA), or similar programmable components.  Although no 
specific policy or guidance is provided for COTS microprocessors, it does mention COTS 
processor cores.  Many of the concerns presented in FAA Order 8110.105, section 4-9.b also 
apply to COTS microprocessors: 
 

“(1) COTS components, including IP, are developed by a company other than the 
applicant and hardware developer.  Intended to provide specific functions or 
abilities in many different applications, COTS components may or may not have 
been developed using a rigorous design assurance method (such as RTCA/DO-
254).  Given this, we must ensure that the applicant and hardware developer show 
that using COTS IP complies with the applicable airworthiness requirements, 
regulations, policy and guidance for that project.” [7] 
 
“(2) Availability of COTS IP doesn’t automatically guarantee that it can be used 
in a manner that complies with airworthiness requirements, regulations, policy 
and guidance.  Depending on the complexity of the COTS IP and the availability 
of IP documentation, applicants and/or hardware developers may have significant 
work to show compliance for the system or equipment.” [7] 
 
“(3) Using a COTS IP in a simple electronic hardware/complex electronic 
hardware (SEH/CEH) device that is installed in airborne systems or equipment 
should satisfy applicable functional and safety-related requirements.  
RTCA/DO-254 Section 11.2 may not be sufficient for design assurance of a 
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COTS IP implemented in a SEH/CEH that supports level A and B aircraft, and 
other safety critical, functions.  As a result, applicants may need to develop or 
augment system architectural mitigation, component verification, testing, analysis 
and other life cycle data of a COTS IP.  All this is needed to demonstrate its 
intended function, show it is free from anomalous behavior, satisfies applicable 
regulations, and meets airworthiness requirements.” [7] 
 

Although FAA Order 8110.105 does not specifically address COTS microprocessors, many of 
the issues applicable to COTS IP also apply to COTS microprocessors and SoCs, and therefore, 
some of the guidance of section 4-9.b.(4) of the Order can be used as a basis for the techniques 
presented in sections 3 and 4 of this Handbook: 
 
 Paragraph (b) states that the applicant and system developer can use extensive testing and 

analysis to gain detailed information about the functionality, and how it operates during 
boundary and failure conditions.  This should include testing and analysis of any 
functionality that will not be used or activated in the specific application.  Section 3 of 
this Handbook presents some examples of activities that the system developer can 
perform to gain a better understanding of the system and, therefore, design mitigation 
techniques to avoid or contain an undesirable or catastrophic action by the 
microprocessor.   

 
 Paragraph (c) states that architectural mitigations at the device, board, line replaceable 

unit, or system level can be employed to detect and/or mitigate unforeseen or undesirable 
operation.  Sections 3 and 4 of this Handbook present some examples of mitigation 
techniques that the system developer can employ to eliminate or minimize the effect of 
an error that occurs as a result of an event either internal or external to the 
microprocessor. 

 
Note that it is not intended for the techniques in this Handbook to be applied to COTS IP soft 
processor cores, since it is expected that the developer will have the appropriate life cycle data 
available and DO-254 processes apply [8]. 
 
The techniques presented in this Handbook are intended to help developers provide additional 
layers of protection through the development of mitigations that are incorporated at the 
appropriate level of the design.  As microprocessor technologies continue to evolve, these 
techniques will become more critical in assuring the safe operation of the airborne systems in 
which they are employed.  However, it is important to note that these techniques, such as safety 
nets, are in addition to, and do not replace, current FAA-accepted methods for selecting a 
microprocessor and designing and testing the system in which it is used.  These methods include: 
 
 Testing operating system and hosted applications on the actual hardware to be approved. 

 
 Monitoring current errata sheets and technical notes so that developers are aware of 

known or newly discovered problems, undocumented features, and microprocessor 
limitations that may adversely affect system operation.  There should be a process in 
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place to determine if any actions are required as a result of changes to the errata sheets or 
technical notes. 

 
 Establishing and maintaining a configuration control plan for the microprocessor 

throughout the life cycle of the system.  There should be a process established for the 
microprocessor manufacturer to provide notification of any changes to the 
microprocessor, and for the design approval holder to review the changes and determine 
the effect on the operation of their system. 

 
 Microprocessors used in applications where failure could result in catastrophic or 

hazardous failure conditions should have appropriate service experience so that the 
applicant has confidence that the device is mature and design deficiencies are known. 

 
 The microprocessor should be operated within the environmental limits established by 

the microprocessor manufacturer.  If these limits are exceeded in the operational 
environment, the applicant should verify through testing that all production 
microprocessors will meet the system environmental requirements.   

 
As previously noted, the airborne market for these devices is insignificant when compared to 
other markets such as consumer electronics, automobiles, and telecommunications.  Applications 
in these other markets are less susceptible to anomalous behavior resulting from internal and 
external events.  Therefore, the aviation industry should learn how to cope with the increasing 
complexity and resulting vulnerabilities of these devices.  The authors of this Handbook hope 
that the techniques and guidance provided herein will be used by system developers to better 
understand and mitigate the vulnerabilities of their devices, and that certification authorities will 
embrace these techniques and continue to pursue relevant policy and guidance to the aviation 
community.   
 
3.  THE COTS MICROPROCESSOR COMMON RISKS AND RISK MITIGATION. 

This section provides an overview of using COTS microprocessors and the risks presented by 
their deployment in aerospace systems.   
 
It is important to distinguish between discrete COTS microprocessors and SoCs when discussing 
certain elements of risk and safety analysis.  The task of ascertaining safety considerations is 
more complicated for SoCs due to the broad variety in SoC designs.  Unlike the case of discrete 
COTS microprocessors, where the majority of features of interest are similar across most 
microprocessors, SoC components tend to vary significantly based on the product selected, 
making safety analysis more complicated.  Not only are the safety concerns due to the features of 
individual IP cores an issue, but interaction amongst them presents a verification challenge to 
system designers.  Additionally, certain systems using SoCs may not require particular on-chip 
cores and would require the disabling of those cores for safety reasons.   
 
Resources used by safety nets are expected to change as the underlying technology of the system 
it is protecting (or implemented within the safety net itself) evolves.  An example of this occurs 
when configuration register changes (the addition of new, removal of old, exposure of 
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hidden/reserved registers) are needed because separate, discrete microprocessors; system 
controllers; and other components are replaced with a single SoC.  The safety net design must be 
examined and perhaps adjusted when such technology changes are implemented or when the 
device must be approved within a new application.  The discussion above needs to be considered 
while formulating a safety net. 
 
After reviewing the designs of a variety of modern COTS microprocessors across a group of 
manufacturers, product families, and technology generations, three areas of common risk were 
identified for all these devices [4]: 

 Visibility and Debug—the inability to observe the internal operation of the device during 
system use and development (see section 3.1.). 

 
 Configuration-Related Issues—software accessibility to device configuration during 

system operation (see section 3.2). 
 

 Resource-Sharing Considerations—performance unpredictability due to multiple on-chip 
shared resources (see section 3.3). 

 
3.1  VISIBILITY AND DEBUG. 

During background research, a physical target computer environment and a simulated target 
computer environment were setup to perform experiments.  Setting up these environments 
exposed visibility and debug challenges that could arise during system development and 
analysis; some of these challenges are described in the remainder of this section.  The system 
developer should document the configuration of the test environment and identify any 
differences, limitations, and constraints of the simulated environment, if used, in relation to the 
physical environment.  Based on the visibility and debug challenges identified, system 
developers should consider the following items when setting up their evaluation environment.   
 
3.1.1  Target Computer Environment. 

A target, or physical, computer environment was established to perform experiments and provide 
evidence and insight, which led to the conclusions of the research.  The target computer 
environment included a development board for the SoC selected for evaluation, board support 
software, a COTS operating system, and COTS tools for development and debug.  (Details can 
be found in reference 5.)  The following software and hardware considerations were noted during 
the target computer environment evaluation. 
 
Software considerations: 
 
 Software integration—Operating systems, license agreements, and board support 

software are typically included with target development boards.  System developers 
should work closely with the integrated circuit device manufacturer when setting up the 
development environment to ensure compatibility of tools selected for the development 
environment. 
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 Debug capabilities—Tools provide visibility and debug capabilities to assist with system 
and application software development.  These tools should be evaluated to verify that 
they provide the capabilities needed for the system being developed. 
 

 Multicore support—Additional tool capabilities are required to effectively use, debug, 
and develop multicore SoC applications.  Beyond the typical compile and debug 
capabilities used in single-core development, individual and group control of the 
processing cores are important in testing multicore applications.  Also, some projects 
may require programming language support for multicore development, including 
multithreading capabilities and shared access to on-chip devices. 
 

 Integrated development environments (IDE) for safety-critical embedded systems—
Safety-critical embedded system designers may find that they are limited in the available 
choices for IDE compared to standard embedded system development.  Applicants 
should be aware of the IDE’s suitability with respect to their specific project 
requirements in addition to tool qualification issues. 

 
Hardware considerations: 
 
 Limited visibility into device internal operation—manufacturer documentation is 

intended to support the use of the device based on the capabilities described in the User’s 
Manual and device characteristics documented in the data or errata sheet.  The internal 
operation is frequently proprietary information.  For example, the User’s Manual may 
document how to configure the use of cache memory, but the cache algorithm being used 
internally by the device may be proprietary. 
 

 Performance monitoring—Hardware performance monitors may be provided by the 
manufacturer to provide insight into the internal operation of a microprocessor.  These 
monitors allow system designers to track various system activities and performance 
statistics during application development and execution.  Typical uses of hardware 
performance monitors include gathering level 1 and level 2 cache statistics and 
measuring cycle counts to estimate application execution times.  Performance monitors 
may also allow a system designer to observe the activity of functions resident on the 
microprocessor, including memory controllers, PCI-Express (PCIe) and Ethernet 
controllers, and direct memory access engines.  These performance monitors are uniquely 
designed for each COTS microprocessor, and access to the performance monitors 
typically requires custom software and is not fully supported by COTS operating 
systems.   
 

 Fault insertion—The ability to insert faults internal to the microprocessor may be limited 
or not achievable.  An applicant may not be able to demonstrate that faults are correctly 
detected if the faults cannot be injected.  The safety net methodology should mitigate 
these types of faults. 
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 Industry benchmarks—The use of industry benchmarks may help demonstrate timing 
characteristics and the potential effect of shared resources on timing.  The benchmarks 
that were investigated used memory to simulate the hardware I/O and did not exercise the 
microprocessor-shared hardware resources on the target computer.  The limitations of 
industry benchmarks to fully exercise microprocessor behavior should be understood and 
augmented with other tests. 

 
3.1.2  Simulated Computer Environment. 

A simulated computer environment was established to perform experiments and provide 
evidence and insight, which led to the conclusions of the research.  The environment included a 
host environment, a simulation of the microprocessor device selected for evaluation, COTS 
simulation support software, a COTS operating system, and COTS tools for development and 
debug.  The following software and hardware considerations were noted during the simulated 
computer environment evaluation. 
 
The software considerations were:  
 
 Applicants should be aware that the primary focus of the microprocessor simulation is on 

application software development.  Typically, hardware evaluation is a secondary 
concern, if addressed at all.   
 

 Modeling configuration and internal registers—The simulated computer environment 
typically models the minimum set of configuration and internal registers to support 
software execution.  The differences between the simulated computer environment and 
the target computer should be documented by the system developer as part of the test 
environment.  Evaluating the system response in a simulated environment requires 
accurate modeling of all configuration registers.   

 
The hardware considerations were: 
 
 Limited modeling of hardware—Hardware interfaces and modeling of microprocessor 

functions may be limited to those items required for application software development. 
 

 The timing and cycle accuracy of the simulated target computer should be assessed.  If 
the target computer model is not cycle accurate, functions which are timing sensitive 
should be verified in the target computer environment. 

 
 Modeling of device performance—Internal microprocessor performance monitors may 

not be modeled in the simulator. 
 

 Focus of microprocessor models is on the simulation of core central processing units, 
modeling of other microprocessor-resident functionality may be limited.   
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3.2  CONFIGURATION-RELATED ISSUES. 

Configuration register changes are a growing concern for avionic microprocessor applications 
since continued device integration has allowed an increasing proportion of the entire system to 
be configured through software.  If a microprocessor is not configured properly, erroneous 
behavior, including improper data processing, stack overflows, erroneous interrupts, machine 
checks, data loss, data corruption, or inadequate throughput, may occur. 
 
Over time, the number of configuration registers per microprocessor has grown significantly.  
For example, the Freescale™ MPC8572 SoC has more than 500 software-accessible 
configuration registers that control basic functionality of the processing cores and on-chip 
devices [9].  In addition to these configuration registers, various device functions may be set 
externally via pullup/pulldown pins, which are sampled shortly after a hardware reset or 
internally via software.  Incorrect settings or inadvertent changes are areas of concern that must 
be addressed.   
 
In general, the capabilities of most microprocessors exceed what is required by typical 
applications.  Care should be taken to provide assurance that unused capabilities are properly 
disabled.  In legacy avionics with many discrete system devices, this concern was addressed 
through physical disconnection of the unused devices to power sources and the rest of the 
system.  However, COTS SoCs have removed the physical separation between devices and 
processors and have given control of device configuration to software.  Therefore, the 
deactivation of unused features has become an additional consideration within the set of 
configuration-related issues.  In addition to proper deactivation of unused features and devices, 
system designers should assure that those features and devices cannot be reactivated through 
erroneous software or environmental effects.  Inadvertent activation of an unused device may 
cause unintended and undesirable operation, such as erroneous interrupts, data loss, data 
corruption, machine check cycles, and stack overflow, among others. 
 
As an example of how the deactivation of unused features has changed for modern COTS 
microprocessors, figure 2 shows the Freescale MPC8572 device disable register. 
 

 

Figure 2.  Freescale MPC8572 Device Disable Register [9] 

This register is used by the system to determine whether each of the major on-chip devices of the 
system should be enabled or disabled by setting particular fields of the register to 0 (enabled) or 
1 (disabled).  This configuration register contains 24 single-bit readable and writeable fields that 
are associated with the 24 on-chip devices of the SoC.  For example, bits 16 and 18 control the 
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two E500 processing cores [10], bits 2, 5, and 6 control the three PCIe controllers, and bits 24 
through 27 control the four triple-speed Ethernet controllers.  A single bit flip in this register can 
disable a critical on-chip device or one of the processors, and research has demonstrated that 
erroneous writes to this register can render the system inoperable [5].  Therefore, system 
designers should be aware of the risks of software erroneously modifying the system 
configuration space. 
 
Several microprocessor devices also offer the user the flexibility of locating the configuration 
registers in external memory space, which makes them more vulnerable to corruption.  This 
capability also makes the system susceptible to loss of all configuration data if the pointers to the 
external memory locations are corrupted. 
 
Configuration registers may change by software errors (inadvertent writes), by single event 
upsets (SEU), hardware defects, hardware faults (such as a noisy power supply core voltage, 
signal integrity issues, ground bounce, etc.), or electromagnetic interference (EMI).  Refer to 
appendix B for a description of power supply-related issues. 
 
In light of the risks identified with the current technology and trends and the criticality of proper 
microprocessor configuration register settings, the risks associated with incorrect configuration 
register settings should be understood.  Each register should be assessed for: 
 
 Intended setting for each register bit within the system being implemented and the reason 

for selected setting 
 

 Identification of each operational phase at which each register is being set (i.e., initial 
power up, power on reset, built-in test (BIT), and exception processing) 

 
 Identification of disabled functions 

 
 Impact to system if the state of the register bit is unintentionally changed 
 

- It is recommended that the impact of an inadvertent change to critical 
registers or registers of questionable impact, be verified through 
simulation, if possible. 

 
- The simulation environment should implement an algorithm that has the 

ability to randomly change configuration settings. 
 
 Timing and rate of impact to system of an unintentionally changed register bit. 

 
 Errata sheet information  
 
Once this analysis has been completed, safety net methodologies can be employed to mitigate the 
identified risks.  Refer to section 4 for information on safety net methodologies. 
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3.3  RESOURCE-SHARING CONSIDERATIONS. 

Modern microprocessors differ from previous technology in that many processing, memory, and 
I/O components reside within a single device, and many of these components are designed to be 
shared to optimize system performance.  The multiple processing components compete to initiate 
requests to their memory and I/O targets.  Additionally, the I/O components can initiate requests 
to memory targets through direct memory access.  Whether initiated by a processor or I/O 
controller, requests travel over shared on-chip interconnects, typically a single on-chip bus.  This 
Handbook defines shared resources as any on-chip or off-chip components that are accessible to 
multiple initiators.  Examples of shared resources include on-chip memory controllers, hardware 
accelerators, level 2 (L2) and/or level 3 caches, on-chip busses and, on-chip Ethernet controllers. 
 
Modern microprocessors feature a number of shared resources.  As shown in figure 3, the two 
e500 cores of the Freescale MPC8572 share a single L2 cache [9].  Additionally, the two 
processing cores share a single on-chip bus to access the other major components of the system, 
including the various I/O controllers and memory controllers.   
 
It is highly recommended that the system designer analyze the access protocol for these shared 
resources and the run-time behavior of all programs that share a given resource.  Based on this 
analysis, the designer should ensure that even with the sharing of resources, the system will 
continue to run in a predictable manner (continuous operation).  In some conditions, hard 
shutdowns can be an acceptable safety protection mechanism. 
 

 

Figure 3.  Freescale MPC8572 Block Diagram [9] 

Sharing resources is a major contributor towards nondeterminism and worst-case execution time 
(WCET) analysis challenges in modern COTS microprocessors.  Nondeterminism arises because 
the availability of a shared resource becomes largely dependent on the run-time behavior of other 
processes sharing the same resource.  In many cases, the run-time behavior of programs is data-
dependent and cannot be predicted offline.  WCET analysis depends on understanding all 
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conditions that lead to timing delays and then bounding for worst-case conditions.  Multiple 
shared resources on a single device complicate this analysis due to the great increase in the 
number of delay conditions. 
 
Pellizoni, et al. [11], describe the challenges in predicting the WCET in a multitasking system.  
They show that, due to the interference between cache-fetching activities and I/O peripheral 
transactions, tasks can suffer computation time variance of up to 46% in a typical embedded 
system.   
 
To further assess the timing delays and nondeterminism caused by resource sharing, additional 
experiments were performed using a simple matrix multiplication program on the Freescale 
MPC8572 platform considering the L2 cache as the shared resource [5].  Each processing core 
executed its own copy of a matrix multiplication program that required using the shared L2 
cache due to the program size.  The experiments showed that the execution time of the matrix 
multiplication program can increase by as much as 17% as L2 cache interference increases. 
 
Moscibroda, et al. [12], describe that in a multicore system, multiple programs running on 
different cores can interfere with each other’s memory access requests, thereby adversely 
affecting performance.  They show that a competing program running on one processing core 
can result in a denial of service (DoS) on the other processing core, due to the inherent 
unfairness in memory controller access policy.  The performance of a blocked application can be 
reduced by as much as 2.9 times in a typical dual-core system.  Moscibroda, et al., identify the 
memory access scheduling algorithm as the main source of inequality in memory access, 
allowing the DoS to occur.  Shared resource access policy and scheduling is addressed in 
section 4.3.1. 
 
Industry trends indicate that the ratio of processing cores to various shared resources in COTS 
SoCs will increase over time.  Instead of two processing cores sharing a common cache, memory 
controllers, and I/O devices, there will be four, eight, or more processing cores sharing these 
resources.  This will increase the competition for shared resources among processing cores, 
worsening potential unpredictability issues. 
 
4.  SAFETY NETS. 

A safety net in the context of this Handbook is defined as the employment of mitigations and 
protections at the appropriate level of aircraft and system design to help ensure continuous safe 
flight and landing. 
 
Assuring that the microprocessor is absent of uncertainty at the device level alone is no longer 
feasible; therefore, a multilevel safety net becomes essential.  A multilevel safety net concept 
considers the discrete devices, the circuits, individual components directly supporting the use of 
microprocessors, and higher-level system architectures.  The multilevel safety net can be viewed 
as an architectural approach.   
 
Multilevel safety net protection is significantly linked to the assigned design assurance level 
required by regulation and/or contractual obligation and the integrated complexity at the device 
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level.  Modern microprocessor technology necessitates the need for a multilevel safety net.  For 
example, failure of a flight control system may result in a catastrophic condition, whereas the 
failure effects of a lavatory system may be limited to passenger discomfort.  Therefore, a safety-
critical system using a particular microprocessor requires a higher level of safety than a 
nonessential system using the same microprocessor.  This demonstrates the need for a multilevel 
safety net approach where the safety net may respond differently in different levels of criticality.  
A failure in the flight control system will most likely require a high-priority response with 
limited recovery time, while a failure in the lavatory may only require a low-priority response 
with a longer recovery time.  Error detection and recovery from anomalous conditions may occur 
at different hierarchical levels within the system (e.g., chip level, board level, subsystem, or 
system). 
 
Since the criticality of the lavatory system is lower than the flight control system, fundamentals 
for a multilevel safety net should be established as an acceptable approach. 
  
Industry research has shown that the susceptibility of random access memory (RAM)-based 
devices to external stimuli, such as cosmic rays (resulting in single event effects), lightning, and 
EMI, is generally greater than the devices that employ flash-based technology [13].  However, 
disregarding the potential effects of these types of threats on flash-based memory could lead to 
the same risks as the threats on RAM-based memory.  For example, a multilevel safety net 
implementation in RAM-based designs that incorporate periodic memory content verification 
(scrubbing) to help ensure error-free operation in a flight-critical system may also incorporate 
the use of a non-RAM-based monitoring circuit and/or the use of an external discrete monitoring 
circuit.  Since the safety net implementation would require the ability of both the primary and 
monitoring circuits to work together to provide the overall integrity, the monitoring circuit 
should be less susceptible to external threats as the primary circuit.  A safety net implementation 
using the same device in a low-criticality system, such as the lavatory example, may use only a 
high-level monitor component, since system response time is of little concern. 
 
Another example that continues to challenge the use of modern, highly integrated, complex 
devices are the core voltage (rail voltage) of COTS microprocessors.  As the core voltages 
continue to decrease, it becomes more difficult to ensure that the devices are not susceptible to 
supply voltage fluctuations, noise, and environmental effects.  Current industry data show that, 
as the size of the device decreases, the margin between the applied voltage and the parasitic 
energy of the device leads to unpredictable and unstable conditions.   
 
The safety net methodology assumes that a microprocessor will misbehave.  The absence of a 
properly implemented safety net reduces the ability to protect a system against the unexpected 
behavior, damage, injury, or instability of a device during its service life.  Architectural designs, 
in general, are becoming a more complex, application-specific art form requiring the ability to 
detect, resolve, and validate component failure in a run-time environment to the required levels 
of availability and safety.  The safety net methodology does not ensure determinism solely at the 
device level.  Rather, safety nets are intended to provide the ability to protect against unintended 
or misleading behavior using a multilevel approach. 
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4.1  MICROPROCESSOR SELECTION AND SAFETY NET CONSIDERATIONS. 

DO-254 does provide some guidance (see section 2) for the use of COTS products [8].  Further 
guidance and clarifications to DO-254 are provided in FAA Order 8110.105 Change 1 [7].  The 
safety net and system architecture should be designed concurrently, employing one or more of 
the techniques previously discussed as well as taking into consideration first-time use, 
availability, suitability, stability, and testability traits of the microprocessor. 
 
Device selection continues to be a regulatory concern as microprocessor technology advances.  
This section was developed in part from research, from DO-178B [14] and DO-254 [8], and 
largely from existing issue papers and certification review items (CRI) that have been levied on a 
project-by-project basis by the regulatory agencies.  The specific CRI and issue papers are 
considered to be confidential to the project for which they are levied against; therefore, the 
information contained within this Handbook is presented from a generalized viewpoint. 
 
It has been expressed by the regulatory authorities through CRI and issue papers and DO-254 
that in using a microprocessor, the integrator is responsible for managing the device service life 
through an electronic components management plan, taking into consideration the information 
contained within the device selection safety net considerations.  These device selection safety net 
considerations are detailed in sections 4.1.1 through 4.15. 
 
4.1.1  First-Time Use. 

The first time a COTS microprocessor is selected for use in an aircraft system it should be 
evaluated with great attention to detail.  Consider the following relevant questions:  How long 
has the microprocessor been fielded?  What has it been used for?  Is there substantiated service 
history that can be evaluated?  Additional care should be considered in the evaluation of its 
availability estimates (see section 4.1.2), stability evaluation (see section 4.1.3) and suitability 
(see section 4.1.4).  The length of time the microprocessor has been fielded, the number of 
microprocessors currently in use, and the number of existing applications for that microprocessor 
provide insight during the selection process.   
 
4.1.2  Availability. 

Availability focuses on the maturity of the device and includes libraries, tape-out iterations, 
launch customer, and number of units currently fielded.  The review attempts to discover 
unknowns as related to the manufacturers’ intended use.  The maturity of the manufacturers’ 
supporting libraries can provide insight to determine when a device could become suitable for 
use and when variation is less likely to occur. 
 
Tape-out maturity can provide an indication of where the manufacturer is within their 
development cycles.  Manufacturers typically plan on several tape-outs prior to production 
release for the purpose of incrementally debugging the device operation and fabrication.  Using a 
device with fewer tape-outs, as measured against the manufacturer’s normal number of tape-
outs, can indicate the risk of the manufacturer making changes without notifying the customer. 
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Interviewing initial customers of a COTS microprocessor and assessing their applications 
associated with the device can provide insight to the device maturity level as driven by the 
in-service use.  Initial in-service use has become a debugging tool employed by manufacturers.  
In today’s rapidly changing environment coupled with demands by customers that are not in the 
aerospace industry, manufacturers are generally given less time to extensively debug a product 
compared to past years.  Industry trends indicate that the first generation use of a newly released 
device is less stable, thus requiring changes to be made by the manufacturer in most cases 
without the requirement to inform the users. 
 
4.1.3  Stability. 

Assessment of the device life cycle history can provide insight into the microprocessor’s stability 
based on publicly available data, such as application notes and errata sheets.  Microprocessors 
that are variations of an existing family may exhibit early operational stability versus a device 
that is not based on an existing family of devices. 
 
4.1.4  Suitability. 

Suitability involves the review of the intended application against the manufacturer’s published 
performance data.  When using microprocessors, available useful performance (actual rates) 
should be expected to be less than that implied by raw clock rates (published rates).  Reasons for 
the decreased available performance includes the following: cache miss rate, interference 
between multiple execution units running simultaneously in parallel, and instructions that require 
multiple clock cycles to complete.  In addition, the microprocessor manufacturer’s fabrication 
process uses proprietary libraries that are intentionally not disclosed to customers and are 
accounted for in the overall performance and fabrication process. 
 
Microprocessor startup times are an important aspect of suitability due to the stringent 
availability requirements for commercial avionics.  If the microprocessor must be restarted due 
to error conditions during operation, the microprocessor startup time should be well understood 
when selecting devices and constructing safety nets.  The following restart conditions should be 
considered for the safety net design: 
 
 Time constraints for startup should cover all possible startup conditions based on the 

system design, design assurance level, and required response. 
 

 Time constraints for startup should include the microprocessor configuration 
initialization time and any required initialization to satisfy system safety requirements. 

 
Another important aspect of suitability involves the manufacturer changing device package sizes 
without making any additional changes, other than possibly core voltage.  For example, 
experience has shown that a device that was manufactured in a 90-nanometer process and 
migrated to a 60-nanometer process will likely demonstrate a change in characteristics.  There is 
no guarantee that simply changing package size will not cause a change in the application’s 
performance and operation; and significant evidence shows that it can. 
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Another key area of suitability is the demonstration of an acceptable understanding of the 
embedded features within the device and the intended use.  For those features that are not 
intended to be used, it has been expressed by the regulatory agencies that the integrator must 
demonstrate an acceptable understanding of potential misbehavior caused by the activation of an 
unused function.  Additionally, the integrator must include the mitigation for disabling or 
deactivating a given feature. 
 
4.1.5  Testability. 

Tests to characterize device behavior and performance are typically performed at many levels, 
beginning with the manufacturer data.  Designers may use configurable cores within their system 
that may not provide full visibility into their behavior due to encryption or other intellectual 
property limitations.  The manufacturer’s intended testability approach may not provide enough 
insight, may not be consistent with the integrator’s testing approach, or may not be suitable for 
the intended application.  Industry experience has shown that an unexpected behavior can occur 
with a difference in testing approaches between the integrator’s expectation and the 
manufacturer’s intentions.  Some proven techniques for characterizing device behavior are: 
 
 Manufacturer’s intended testability approach 
 Error-correcting code  
 Built-in self test (BIST) 
 Automatic test pattern generation 
 
The multilevel safety net approach defined in section 4.2 encompasses safety compliance at 
various levels as appropriate to the associated safety risk.  Research conducted reveals the 
escalating future impracticality of ensuring safety at the device level alone when COTS 
microprocessors and equivalent airborne electronic hardware technology are used [4]. 
 
4.2  SAFETY NET MONITOR CONSIDERATIONS. 

The term safety net monitor is intended to convey technology approaches that could be 
employed through the use of hardware and/or software solutions.  The safety net methodology 
presumes the device will misbehave during its service life, and therefore, the safety net monitors 
would likely need to be architecturally integrated at a level above the device itself. 
 
It is the intent of this Handbook to help identify some safety net monitors that were discussed 
and/or physically tested through example design.  The responsibility for defining and using 
safety net monitors belongs to the integrator developing the application-specific architecture.   
 
4.2.1  Hardware Monitor Considerations. 

Hardware monitors focus on hardware-based technology solutions to indicate when unexpected 
changes in behavior or physical characteristics occur.  The list below identifies the types of 
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hardware monitors discussed during the research.  It is recognized that some of these 
considerations could also be implemented using software applications. 
 
 Memory (parity/error correction code/SEU monitors) 
 
 Internal buses (address and data parity) 

 
 External buses (protocol checks, parity, checksums, activity patterns, cyclic redundancy 

code) 
 

 Discrete digital signals (dualize I/O, BIT stimulation capability, wraparounds) 
 

 General signals (wraparounds analog/digital to digital/analog, range checks, rate checks, 
etc.) 

 
 Dissimilar hardware (address generic hardware fault coverage) 

 
 Configuration register monitors 
 
4.2.2  Software Monitor Considerations. 

Software monitors focus on software application solutions to indicate when unexpected changes 
in behavior or physical characteristics occur.  The list below identifies the types of software 
monitors discussed during the research.  To better support the safety net methodology, the 
application-specific architecture would need to consider the risk of the microprocessor 
misbehaving and having an adverse effect on the monitor’s ability to accurately report abnormal 
behavior.   
 
 Additional system-level and box-level built-in-test (SBIT:  Start-up BIT; IBIT:  Interface, 

initiated, interruptive, or intermittent BIT; PBIT:  Periodic BIT; MBIT:  Maintenance 
BIT) 

 
 Additional voting planes 
 
 Data integrity checks 
 
 Configuration register monitors 
 
4.2.3  External Monitor Considerations. 

External monitors are identified below where each microprocessor has its own custom dedicated 
watchdog monitor (WDM) for reporting abnormal behavior.   
 
 WDM power up failed and must be properly serviced to be declared valid. 
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 WDM should be serviced once per frame. 
 
 WDM has an independent clock source and voltage rail. 
 
 WDMs are designed with custom requirements to the processor, design configuration, 

criticality, and the utilization. 
 
 WDM failures are reported through cross-channel data links to the other channels and 

voting planes. 
 
The following are types of techniques discussed as potential solutions during the research, but 
this list is not exhaustive.   

 
 External monitoring of safety-related behavior 
 External redundancy 
 External watchdogs 
 External architecture that allows a level of autonomous run-time correction 
 
4.2.4  Internal Monitor Considerations. 

The research acknowledges the use of internal monitors from the aspect of those that can be 
embedded, such as BIST, at the transistor level as associated with a multicore device.  The level 
of research conducted with internal monitors was limited to the association of software monitors 
discussed in section 4.2.2.   
 
4.3  ARCHITECTURAL SAFETY NET EXAMPLES. 

The architectural safety net examples in sections 4.3.1 through 4.3.5 were identified by research 
as possible approaches and are discussed only briefly.  The details behind using these examples 
are understood to be the responsibility of the integrator, as applicable to the application-specific 
solutions.  These examples are not meant to be a complete list of approaches, as application-
specific solutions may differ greatly from these examples.  It is not the intent of the research or 
this Handbook to provide implementation details. 
 
4.3.1  Shared Resource Approach. 

A safety net design to mitigate shared resource effects depends on how access is granted to those 
shared resources.  This section details the different forms of shared resource access policy and 
provides an example of how that policy may affect safety. 
 
Access to any shared resource will be controlled by an arbiter.  An arbiter can be implemented in 
hardware or software, and it is possible that the arbiter can be configured through configuration 
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registers.  There are three arbiter properties that affect the behavior of the system when using 
shared resources: 
 
 Access fairness 
 Tenure fairness 
 Disconnection policy 
 
Access fairness provides a mechanism that allows agents to request permission to use a shared 
resource.  Access fairness does not enforce how long the “winning” requesting agent may use the 
resource (tenure) nor does it assure productive utilization versus nonproductive occupation.  
Basic types of mechanisms to implement access fairness include the following: 
 
 First-come, first-served—Initiators are granted access in order of the arrival of their 

requests at the arbiter.  This can lead to potential access starvation if an initiator 
constantly requests access. 

 
 Round robin—Initiators are granted access in a prearranged, fixed sequence, bypassing 

initiators that do not request access. 
 
 Priority—Initiators are granted access according to a weighted priority system, with 

“higher”-priority requests being granted access before “lower”-priority requests. 
 
 Weighted round robin—Initiators are allocated multiple access opportunities, either 

sequentially or nonsequentially, from a fixed number of possible opportunities. 
 
 Multilevel (round robin with priorities)—This is a derivative of round robin where 

initiators on an higher-priority level are granted access in sequence, along with a 
reservation for a single initiator at a lower-priority level.  After all the initiators at the 
higher-priority level have been granted an access opportunity, the reservation is offered 
to the first of the initiators at the lower-priority level.  The process repeats with all the 
higher-priority level initiators again given access opportunity, followed by the 
reservation offered to the next initiator in the lower-priority level sequence.   

 
Shared resource tenure fairness (utilization allocation) enforces how long the requesting initiator 
may use the shared resource once it has acquired access to it.  It is possible that an arbiter does 
not implement tenure fairness, and an initiator is allowed indefinite access to a shared resource.  
The two most common mechanisms for enforcing maximum access duration are the following: 
 
 Timers—Enforce tenure by number of clock cycles 
 Counters—Enforce tenure by number of events 
 
Disconnection policy can also affect the timing behavior of a COTS microprocessor.  The arbiter 
can either forcibly disconnect an initiator or signal the initiator to disconnect.  Signaling the 
initiator to disconnect is less temporally rigid than forcing disconnection, but this allows the 
initiator to gracefully terminate its transaction.   
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For example, standard memory controllers implement a priority-based access fairness policy 
based on the request address to maximize bandwidth.  There is no notion of tenure fairness or 
disconnection policy in memory controllers because a typical access has a very short duration, 
and memory controllers only consider the request address, not the initiator, in scheduling 
memory requests.  Therefore, a memory controller can starve other processing cores of access if 
it can ensure that its requests always receive the highest priority.  A safety net should account for 
this shared resource access policy. 
 
Another safety net example for shared resources is register access control.  The memory 
management unit (MMU) can be used to manage register access by only allowing a limited 
subset of the software to access these registers, regardless of assigned criticalities.  This has the 
potential of minimizing the possibility of corruptions.  This technique has also been found to be 
effective when used for other memory-addressable, microprocessor-shared resources.  Through 
MMU enforcement, only privileged software that is intended to use a given resource is allowed 
to do so.   
 
4.3.2  Lock-Step Approach. 

The research recognizes that the lock-step approach has proven to be a successful approach for 
ensuring safety.  However, the research also acknowledges that the ability to ensure the same 
level of safety as previously shown is becoming more difficult as the technology advances 
toward the SoC and multicore microprocessor.  This is believed to be inherently due to the 
embedded management between the cores.  Thus, the integrator has less insight into the SoC, 
which challenges its ability to tightly synchronize multicores.  No detailed research was 
performed on this approach. 
 
4.3.3  Frame-Lock Approach. 

Like the lock-step approach, the frame-lock approach has proven to be successful for assuring 
safety.  Unlike the lock-step approach, the comparison of the independent execution results are 
performed at the I/O boundaries rather than at the instruction level, and synchronization occurs 
at the completion of a predefined frame.  The data from each processor is compared at the end of 
this frame.  Because frame-lock compares the results at a higher level of granularity than lock-
step, challenges involving WCET variation during comparison can be avoided since the results 
must be available by the end of the frame.  However, erroneous microprocessor behavior may go 
undetected for longer periods of time compared to lock-step.  This concern is accentuated in light 
of research that shows it is increasingly difficult to provide safety assurance at the device level.  
For example, unintended configuration register changes may result in significant variations in 
processor operation, and this erroneous behavior may occur for an unacceptable period of time.  
No detailed research was performed on this approach, but safety net methodologies should 
account for this type of behavior. 
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4.3.4  Dissimilar Architectures. 

It is recognized that using dissimilar architectures has proven to be a successful approach for 
providing safety assurance.  Unlike lock-step where technology challenges determine the 
feasibility of that approach, the feasibility in using dissimilar architectures is driven by the 
significant increase in the level of effort.  This increase in effort is indirectly caused by the 
increase in microprocessor technology challenges, essentially requiring the integrator to develop 
a dual system to perform an identical operation across dissimilar architectures.  Each dissimilar 
architecture used may include its own unique risks, and therefore, different risk mitigations and 
safety nets should be designed for each architecture.  No detailed research was performed on this 
approach. 
 
4.3.5  Aircraft-Level Safety Assurance. 

It has been proven that aircraft-level architectural approaches are successful for providing safety 
assurance and are successfully handled through project-specific special conditions.  No detailed 
research was performed on this approach. 
 
4.4  SAFETY NET CONCLUSION. 

The multilevel, safety net approach encompasses acceptable safety compliance at various levels 
as the safety risk increases.  This research supports the future impracticality of ensuring safety at 
the device level alone when microprocessors and equivalent AEH technology is used [4]. 
 
5.  RESULTS AND FUTURE WORK. 

5.1  RESULTS. 

This Handbook has identified common risk areas for COTS microprocessors (section 3) and 
recommends approaches to reduce/mitigate these risks (sections 3 and 4). 
 
The research has justified the need for a multilevel safety net approach (section 4) to handle 
anomalous behavior from complex COTS microprocessors used in aircraft systems.  
Additionally, this Handbook relates the existing FAA guidance and policy to the provided safety 
net approach and identifies the path to include safety nets in future policy and guidance (sections 
2 and 4). 
 
The safety net approach described in section 4.1 is a potential solution for increasingly 
challenging components that will be tested and validated by detecting and recovering from 
anomalous microprocessor behavior during system operation. 
 
The safety net approach should be implemented on a project-by-project basis.  It is highly 
recommended to design the safety net concurrently with the system architecture.  This can lead 
to standards for preferred architectural patterns for resilient systems with future COTS 
microprocessors and other complex AEH and their emerging technologies, features, and 
functionality. 
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5.2  FUTURE WORK. 

The FAA has suggested a follow-on AVSI project to evaluate other AEH beyond COTS 
microprocessors and an update to this Handbook to reflect the results of the follow-on project.  
AEH considered in the follow-on project is expected to include FPGA-based SoCs. 
 
Additionally, the follow-on project proposes to guide one or more pilot projects in the use of 
safety nets for microprocessor-based aircraft systems.  Pilot projects in the continuing 
development, application, and refinement of the safety net approach could provide additional 
content and definition to this Handbook in the form of examples and real-world analyses of the 
effectiveness of safety net approaches. 
 
It is the intention of the FAA to assess the use of safety nets in future microprocessor-based 
aircraft systems.  Using the safety net approach, resulting in certification of aircraft containing 
systems with safety nets, can lead to enhancements in FAA policy and guidance to formally 
accept, implement, and provide guidance for the continued use of safety nets. 
 
Additional research should 
 
 investigate additional functionality that can be accomplished within safety nets. 
 
 investigate new trends in microprocessor design that may aid or hinder the 

implementation of safety nets. 
 
 investigate architectural and functional requirements for the safety net monitoring itself. 
 
 investigate the implementation of the architectural safety net examples identified in 

section 4.3. 
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7.  GLOSSARY. 

Arbiter—A device that controls access to a shared resource. 
 
Architecture—The configuration of any equipment or interconnected system or subsystems of 
equipment that is used in the automatic acquisition, storage, manipulation, management, 
movement, control, display, switching, interchange, transmission, or reception of data or 
information, which includes computers, ancillary equipment, and services, including support 
services and related resources. 
 

24 



 

Availability—That proportion of time that a system is in a functioning condition.  Timely, 
reliable access to functionality and data for authorized users.   
 
Certification—“Legal recognition by the certification authority that a product, service, 
organization or person complies with the requirements.  Such certification comprises the activity 
of technically checking the product, service, organization or person and the formal recognition of 
compliance with the applicable requirements by issue of a certificate, license, approval or other 
documents as are required by national laws and procedures.  In particular, certification of a 
product involves:   
 
a. The process of assessing the design of a produce to ensure that it complies with a set of 

standards applicable to that type of product so as to demonstrate an acceptable level of 
safety. 

 
b. The process of assessing an individual product to ensure that it conforms with the 

certified type design. 
 
c. The issuance of a certificate required by national laws to declare that compliance or 

conformity has been found with standards in accordance with the above two items”  
RTCA/DO-254, April 19, 2000. 

 
Initiator—A system component that requests a service from another system component. 
 
Launch customer—The first delivery of a microprocessor to a customer. 
 
Lockstep—A fault-tolerant mode of operation in which redundant systems perform the same 
activity at the same time in parallel. This allows the output of these activities to be compared so 
that any differences in output can be identified and resolved. 
 
Softcore IP cores—A reusable processor or peripheral core purchased or licensed from a third 
party.  This core is provided as a configurable piece of software code that can be used to 
generate a hardware design.  These IP cores may provide full design visibility to the user, or it 
may be encrypted by the vendor due to intellectual property concerns.  These IP cores are 
typically used in FPGA-based designs, but may be used in Application-Specific Integrated 
Circuit designs. 
 
System-on-Chip (SoC)—A single integrated circuit that includes processing cores, cache 
memory, memory and interface controllers, timing and power management circuits, and other 
functionality. SoCs have replaced many discrete system components with a single device. 
 
Tape Out—The final step in the design cycle for hardware.  The design’s photomask is sent to 
the device fabricator for production. 
Walking one pattern—The sequential setting and resetting of each bit in a configuration register.  
Setting a bit assigns the value 1 to that bit, and resetting a bit returns its value to 0.  Essentially, 
the value 1 “walks” the configuration register one bit at a time.  The purpose of a walking one 
pattern test is to verify the functionality of a system during the individual modification of each 
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bit in a set of configuration registers.  The following example is a typical walking one pattern for 
a three bit input:  000, 100, 010, 001.  Variations to the walking one pattern test exist.  This 
includes the walking XOR pattern where each bit is flipped and then returned to its original 
value sequentially, as in the experiment described in appendix A, section A.3. 
 



 

APPENDIX A—RESEARCH EXPERIMENTS 

This appendix describes experiments on the Freescale™ MPC8572DS platform.  These 
experiments were performed to evaluate the severity of the common risk areas identified in 
section 3 of the main report.  Figure A-1 shows the complete system diagram of the experimental 
platform. 
 

 
 

Figure A-1.  Freescale MPC8572DS System Diagram (Section 3, of reference A-1) 
 

A.1  TEST DESCRIPTION. 
 
This experiment was designed to test the effects of bit changes in configuration registers.  In this 
experiment, register bits in the universal asynchronous receiver/transmitter (UART) 
configuration space were changed.  The Configuration Control and Status Base Address Register 
(CCSRBAR) holds the base address of all the memory-mapped configuration registers on the 
MPC8572E.  The UART configuration registers are located at an offset of 0x4500 from 
CCSRBAR.  Table A-1 shows all the configuration registers for UART0.  The registers for 
UART1 are similarly located, starting at 0x4600.  Figure A-2 shows the details of UART0 
registers. 
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Figure A-2.  MPC8572 UART Configuration Registers (Section 13.2.2 of reference A-2) 
 
A.2  TEST SETUP. 
 
The program was run through the Freescale Semiconductor, Inc. CodeWarrior™ integrated 
development environment (IDE) by loading it into memory.  The program used to change the 
register bits was also used to test the UART functioning.  This was done by printing the register 
and bit number each time a register bit was changed. 
 
A.3  EXPERIMENTS. 
 
The register bits were changed by using an XOR (exclusive OR device) function with a mask in 
a walking one pattern (see section 7 of the main report).  After printing the register and bit 
numbers, the bit was reset to its original value before changing the next bit. 
 
A.4  RESULTS. 
 
Table A-1 shows the results of the experiment.  The table only shows the bit and register 
numbers for which there was a deviation from the normal execution. 
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Table A-1.  Results of Experiment 
 

Serial 
No. 

Register 
No. 

Bit 
No. 

Register 
Name 

Bit 
Description Effects 

1 0 3 UTHR0 Data Newline character(s) deleted 

2 0 5 UTHR0 Data Extraneous space character 
inserted 

3 0 6 UTHR0 Data Extraneous at character 
inserted 

4 2 1 UFCR0 Receiver trigger level Extra character repeated 

5 2 2 UFCR0 Reserved Extra character repeated 

6 2 7 UFCR0 First-in, first-out enable Extra non-ASCII characters 
on reset 

7 3 1 ULCR0 Set break Some characters get 
translated to non-ACSII 
characters 

8 3 6 ULCR0 Word length Test hangs 

9 3 7 ULCR0 Word length Test hangs 

 
It should be noted that, in each case, the program returned to the normal mode of operation after 
resetting the changed bit.  The results can be classified based on their degree of criticality: 
 
 Change in output data:  The data output on the console was different from normal output.  

(For example, serial numbers 1-7 in table A-1) 
 
 Change in program execution (serial numbers 8 and 9) 
 
 Crash:  None in this experiment. 
 
A.5  INTERPRETATION OF RESULTS. 
 
For serial numbers 8 and 9 in table A-1, a special diagnosis is due since the program did not 
execute normally.  Through Codewarrior debugger it was observed that the execution could not 
come out of the function MPCDUARTReadPool() for result 8.  The program did not exactly stop 
executing, but it seemed to be stuck in the function.  The set break forced logic 0 to be on the 
serial out line and did not affect the UART buffers.  In such a situation, the UART buffers get 
filled up, and hence, the call to printf() in the test program does not return. 
 
A.6  TEST DESCRIPTION. 
 
In this experiment, a safety net design was tested for the configuration-related issues.  In an 
earlier test, it was observed that some of the UART configuration registers can lead to unwanted 
effects when their values are changed.  It was also observed that the correct values of these 
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registers are known for a particular use case.  In this experiment, the UART configuration 
registers were periodically overwritten with their correct values.  The researchers observed 
whether the unwanted effects still existed when overwriting with correct values.  The period at 
which the system was able to perform correctly even when the register values change was also 
observed. 
 
A.7  TEST SETUP. 
 
The test was performed inside the CodeWarrior debug environment.  The UART0 Line Control 
Register was used to corrupt and repair.  The register was corrupted by changing its lowest bit, 
which changes the data to be transmitted on the UART.  Through OPTP1, it was observed that 
this data translation led to the output of non-ASCII characters on the serial port.  To repair the 
corrupted register, the default correct value of 0x03 was written on to the register.  To detect 
errors, the value of the register was checked for 0x03.  The corruption, repair and usage were all 
run within a single thread on one core. 
 
A.8  TIMER SETUP. 
 
The decrementer (DEC) counter was used in the e500 cores to set up a 1-ms timer.  The DEC 
counter is decremented every 8 Core Complex Bus (CCB) clocks.  In the default setup, the CCB 
runs at a 600-MHz frequency, so the DEC was loaded with a value of 750,000.  The interrupt 
handler for the timer calls the timerInt function, where the register corruption, repair, and usage 
were performed.  The pseudo code for the timerInt function is shown in figure A-3. 
 

time++ 

if (time % usage_period == 0) 

if(register value incorrect) 

  repairs++ 
if (time % repair_period == 0) 

  repair register() 

if (time == next_error_time) 

  corrupt register() 

 update next error time

 
Figure A-3. The timerInt Function 

 
A.9  EXPERIMENTS. 
 
Three different periods were used for corrupting and repairing the register value.  The usage 
period and corruption period are an estimate on how frequently the register is expected to be 
used and corrupted, respectively.  Different values of repair period were used and a number of 
errors were observed.  For each repair period, a 10-second test was run. 
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A.10  TEST RESULTS. 
 
This section discusses the results from the experiments performed for this test plan.  Figures A-4 
through A-6 show the number of results for different values of repair period, usage period, and 
corruption period.  In all three results, no errors were detected if the repair period was less than 
5 ms.  At the same time, for certain values of the repair period, there was a spike in the number 
of errors.  This happened because the interleaving of usage, repair, and corruption periods 
allowed the register to be used just after it was corrupted for the given corruption period.  The 
usage period was kept constant at 15 ms. 
 

 
 

Figure A-4.  Corruption Period = 100 ms 
 

 
 

Figure A-5.  Corruption Period = 200 ms 
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Figure A-6.  Corruption Period = 300 ms 
 

A.11  CONCLUSION. 
 
Through these experiments, it was concluded that the number of detected errors depends greatly 
on the usage, corruption, and repair periods.  However, if the configuration register is repaired at 
a sufficiently high rate, the system can run error-free.   
 
A.12  RESOURCE SHARING EFFECT ON TIMING. 
 
A.12.1  TEST DESCRIPTION. 
 
In this experiment, the timing delays, which were due to the contention by cores on level 2 (L2) 
cache, were determined.  First, a simple matrix multiplication program was used to determine its 
execution time by running it on only one core.  This execution time was the baseline timing 
requirement.  To test the effect of contention, the other core was activated and run on another 
matrix multiplication program, which stressed the shared L2 cache.  The delays incurred by this 
contention on the execution time of the matrix multiplication program were observed and 
measured. 
 
A.12.2  TEST SETUP. 
 
The test was performed inside the Linux operating system environment from the board support 
package for the MPC8572 System.  The taskset utility from the DENX ELDK software package 
was used to restrict the programs to run on a single core.  The execution time of the programs 
was obtained by reading the real-time clock device set to a frequency of 8 MHz.  The specific 
details about reading the real-time clock and running the programs can be obtained from the 
documentation in the code package for the one page test plan (Resource-Sharing-Effect-on-
Timing One Page Test Plan).  Two versions of the matrix multiplication program were 
implemented.  The first one, matmult_timer, prints out the execution time whenever it is run.  
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The second one, matmult, is used for L2 cache-stressing purposes and does not print out the 
execution time.  Figures A-7 through A-10 give a description of how the source code was used 
and the general content of the scripts. 
 
Source Code 
============ 
matmult.c - untimed matrix multiplication code (see figure A-8) 
matmult - matrix multiplication executable(run on MPC8572Ds platform and see cannot be 
viewed) 
 
matmult_timer.c - timed matric multiplication code (see figure A-9) 
matmult_timer - timed matrix multiplication executable (run on MPC8572DS platform and 
cannot be viewed) 
 
rtctest.c - reference code for Real Time Clock manipulation (see figure A-10) 
 
Scripts 
======= 
For each of the figures A-7 to A-12 in the handbook, this package contains two 
scripts. One to record the baseline execution times (named base-exec-time.sh) 
and the other to record the execution time in the presence of contention 
(named contention-exec-time.sh). These scripts utilize the matmult and 
matmul_timer executables to produce the data displayed in the handbook 
results. 

 
Figure A-7.  Readme.txt 

 
\#include <stdio.h> 
#include <stdlib.h> 
#include <linux/rtc.h> 
#include <sys/ioctl.h> 
#include <sys/time.h> 
#include <sys/types.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <errno.h> 
 
/* This program reads the dimensions of two matrices from command line.  
 * The matrix contents are filled with random numbers and the result of 
 * matrix is printed out. 
 */ 
 
 
main(int argc, char **argv) 
{ 
 int i, j, k, dim1, dim2, dim3, temp1, temp2, temp3, sum; 
 int **mat1, **mat2, **matR; 
   
 

Figure A-8.  The matmult.c Source Code 
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 /* Check command line arguments sanity 
  */ 
 if(argc != 4){ 
  printf("Usage: ./a.out dim1 dim2 dim3\n"); 
  exit(1); 
 } 
 
  
 /* Read the matrix dimensions from command line  
  */ 
 
 dim1 = atoi(argv[1]); 
 dim2 = atoi(argv[2]); 
 dim3 = atoi(argv[3]); 
 

 
 srand(dim1); 
 //printf("dim1 = %d, dim2 = %d, dim3 = %d\n", dim1, dim2, dim3); 
 
 /* Dynamically allocate the arrays and initialize the contents with 
  *  random numbers 
  */ 
 
 
 mat1 = (int **) malloc(dim1 * sizeof (int *)); 
 mat2 = (int **) malloc(dim2 * sizeof (int *)); 
 matR = (int **) malloc(dim1 * sizeof (int *)); 
 
 for (temp1 = 0; temp1 < dim1; temp1++){ 
  mat1[temp1] = (int *) malloc(dim2 * sizeof(int)); 
  for (temp2 = 0; temp2 < dim2; temp2++){ 
   mat1[temp1][temp2] = rand(); 
  } 
 } 
 
 for (temp1 = 0; temp1 < dim2; temp1++){ 
  mat2[temp1] = (int *) malloc(dim3 * sizeof(int)); 
  for (temp2 = 0; temp2 < dim3; temp2++){ 
   mat2[temp1][temp2] = rand(); 
  } 
 } 
 
 for (temp1 = 0; temp1 < dim1; temp1++){ 
  matR[temp1] = (int *) malloc(dim3 * sizeof(int)); 
 } 
 
 for(temp1 = 0; temp1 < dim1; temp1++){ 
  for (temp2 = 0; temp2 < dim3; temp2++){ 
   sum = 0; 
   for(temp3 = 0; temp3 < dim2; temp3 ++){ 
    sum += mat1[temp1][temp3] * mat2[temp3][temp2]; 
   } 
   matR[temp1][temp2] = sum; 
  } 
 } 
 

Figure A-8.  The matmult.c Source Code (Continued) 
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 /* 
 printf("Matrix1:\n"); 
 printMat(mat1, dim1, dim2); 
 printf("Matrix2:\n"); 
 printMat(mat2, dim2, dim3); 
 printf("Matrix Result:\n"); 
 printMat(matR, dim1, dim3); 
 */ 
 
} 
 
printMat(int **mat, int dim1, int dim2) 
{ 
 int i, j; 
 for(i = 0; i < dim1; i++){ 
  for(j = 0; j < dim2; j++){ 
   printf("%d ",mat[i][j]); 
  } 
  printf("\n"); 
 } 
} 

Figure A-8.  The matmult.c Source Code (Continued) 
 
 
#include <stdio.h> 
#include <stdlib.h> 
#include <linux/rtc.h> 
#include <sys/ioctl.h> 
#include <sys/time.h> 
#include <sys/types.h> 
#include <fcntl.h> 
#include <unistd.h> 
#include <stdlib.h> 
#include <errno.h> 
#include <time.h> 
 
/* This program reads the dimensions of two matrices from command line.  
 * The matrix contents are filled with random numbers and the result of 
 * matrix is printed out. 
 */ 
 
 
main(int argc, char **argv) 
{ 
 int i, j, k, dim1, dim2, dim3, temp1, temp2, temp3, sum; 
 int **mat1, **mat2, **matR; 
 unsigned long long a, b; 
 const char *rtc = "/dev/rtc0"; 
 unsigned long tmp, data; 
 int fd, retval, timerFreq; 
 double time; 
 
 fd = open(rtc, O_RDONLY); 
  
 if (fd ==  -1) { 
 

Figure A-9.  The matmult_timer.c Source Code 
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  perror(rtc); 
  exit(errno); 
 } 
 
 /* Read periodic IRQ rate */ 
 retval = ioctl(fd, RTC_IRQP_READ, &tmp); 
 if (retval == -1) { 
  /* not all RTCs support periodic IRQs */ 
  if (errno == ENOTTY) { 
   fprintf(stderr, "\nNo periodic IRQ support\n"); 
   exit(1); 
  } 
  perror("RTC_IRQP_READ ioctl"); 
  exit(errno); 
 } 
 //fprintf(stderr, "\nPeriodic IRQ rate is %ldHz.\n", tmp); 
 
 timerFreq = 8192; 
 retval = ioctl(fd, RTC_IRQP_SET, timerFreq); 
 if (retval == -1) { 
  /* not all RTCs can change their periodic IRQ rate */ 
  if (errno == ENOTTY) { 
   fprintf(stderr, 
    "\n...Periodic IRQ rate is fixed\n"); 
   exit(1); 
  } 
  perror("RTC_IRQP_SET ioctl"); 
  exit(errno); 
 } 
 //fprintf(stderr, "periodic frequency set to %ldHz:\n", tmp); 
 fflush(stderr); 
 
 /* Enable periodic interrupts */ 
 retval = ioctl(fd, RTC_PIE_ON, 0); 
 if (retval == -1) { 
  perror("RTC_PIE_ON ioctl"); 
  exit(errno); 
 } 
 
 /* This blocks */ 
 retval = read(fd, &data, sizeof(unsigned long)); 
 if (retval == -1) { 
  perror("read"); 
  exit(errno); 
 } 
 a = data >> 8; 
 
 /* Check command line arguments sanity 
  */ 
 if(argc != 4){ 
  printf("Usage: ./a.out dim1 dim2 dim3\n"); 
  exit(1); 
 } 
 
  
 /* Read the matrix dimensions from command line  
  */ 
 

Figure A-9.  The matmult_timer.c Source Code (Continued) 
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 dim1 = atoi(argv[1]); 
 dim2 = atoi(argv[2]); 
 dim3 = atoi(argv[3]); 
 
 srand(dim1); 
 
 //printf("dim1 = %d, dim2 = %d, dim3 = %d\n", dim1, dim2, dim3); 
 
 /* Dynamically allocate the arrays and00 initialize the contents with 
  *  random numbers 
  */ 
 
 mat1 = (int **) malloc(dim1 * sizeof (int *)); 
 mat2 = (int **) malloc(dim2 * sizeof (int *)); 
 matR = (int **) malloc(dim1 * sizeof (int *)); 
 
 for (temp1 = 0; temp1 < dim1; temp1++){ 
  mat1[temp1] = (int *) malloc(dim2 * sizeof(int)); 
  for (temp2 = 0; temp2 < dim2; temp2++){ 
   mat1[temp1][temp2] = rand(); 
  } 
 } 
 
 for (temp1 = 0; temp1 < dim2; temp1++){ 
  mat2[temp1] = (int *) malloc(dim3 * sizeof(int)); 
  for (temp2 = 0; temp2 < dim3; temp2++){ 
   mat2[temp1][temp2] = rand(); 
  } 
 } 
 
 for (temp1 = 0; temp1 < dim1; temp1++){ 
  matR[temp1] = (int *) malloc(dim3 * sizeof(int)); 
 } 
 
 for(temp1 = 0; temp1 < dim1; temp1++){ 
  for (temp2 = 0; temp2 < dim3; temp2++){ 
   sum = 0; 
   for(temp3 = 0; temp3 < dim2; temp3 ++){ 
    sum += mat1[temp1][temp3] * mat2[temp3][temp2]; 
   } 
   matR[temp1][temp2] = sum; 
  } 
 } 
 
 /* This blocks */ 
 retval = read(fd, &data, sizeof(unsigned long)); 
 if (retval == -1) { 
  perror("read"); 
  exit(errno); 
 } 
 b = data >> 8; 
 
 time = (b-(double)a)/timerFreq; 
 printf("execution time = %f\n", time); 
 /* 
 printf("Matrix1:\n"); 
 printMat(mat1, dim1, dim2); 
 

Figure A-9.  The matmult_timer.c Source Code (Continued) 
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 printf("Matrix2:\n"); 
 printMat(mat2, dim2, dim3); 
 printf("Matrix Result:\n"); 
 printMat(matR, dim1, dim3); 
 */ 
 
 /* Disable periodic interrupts */ 
 retval = ioctl(fd, RTC_PIE_OFF, 0); 
 if (retval == -1) { 
  perror("RTC_PIE_OFF ioctl"); 
  exit(errno); 
 } 
} 
 
printMat(int **mat, int dim1, int dim2) 
{ 
 int i, j; 
 for(i = 0; i < dim1; i++){ 
  for(j = 0; j < dim2; j++){ 
   printf("%d ",mat[i][j]); 
  } 
  printf("\n"); 
 } 
} 

 
Figure A-9.  The matmult_timer.c Source Code (Continued) 

 
/* 
  *      Real Time Clock Driver Test/Example Program 
  * 
  *      Compile with: 
  *       gcc -s -Wall -Wstrict-prototypes rtctest.c -o rtctest 
  * 
  *      Copyright (C) 1996, Paul Gortmaker. 
  * 
  *      Released under the GNU General Public License, version 2, 
  *      included herein by reference. 
  * 
  */ 
  
 #include <stdio.h> 
 #include <linux/rtc.h> 
 #include <sys/ioctl.h> 
 #include <sys/time.h> 
 #include <sys/types.h> 
 #include <fcntl.h> 
 #include <unistd.h> 
 #include <stdlib.h> 
 #include <errno.h> 
  
  
 /* 

 
Figure A-10.  The rtctest.c Source Code 
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  * This expects the new RTC class driver framework, working with 
  * clocks that will often not be clones of what the PC-AT had. 
  * Use the command line to specify another RTC if you need one. 
  */ 
 static const char default_rtc[] = "/dev/rtc0"; 
  
  
 int main(int argc, char **argv) 
 { 
  int i, fd, retval, irqcount = 0; 
  unsigned long tmp, data; 
  struct rtc_time rtc_tm; 
  const char *rtc = default_rtc; 
  
  printf("%d\n",sizeof(unsigned long)); 
  switch(argc) 
  { 
  case 1: 
   break; 
  default: 
   fprintf(stderr, "usage:  rtctest [rtcdev]\n"); 
   return 1; 
  } 
  
  fd = open(rtc, O_RDONLY); 
  
  if (fd ==  -1) { 
   perror(rtc); 
   exit(errno); 
  } 
  
  fprintf(stderr, "\n\t\t\tRTC Driver Test Example.\n\n"); 
  
  /* Turn on update interrupts (one per second) */ 
  retval = ioctl(fd, RTC_UIE_ON, 0); 
  if (retval == -1) { 
   if (errno == ENOTTY) { 
    fprintf(stderr, 
     "\n...Update IRQs not supported.\n"); 
    goto test_READ; 
   } 
   perror("RTC_UIE_ON ioctl"); 
   exit(errno); 
  } 
  
  fprintf(stderr, "Counting 5 update (1/sec) interrupts from reading %s:", 
    rtc); 
  fflush(stderr); 
  for (i=1; i<6; i++) { 
   /* This read will block */ 
   retval = read(fd, &data, sizeof(unsigned long)); 
   if (retval == -1) { 
    perror("read"); 
    exit(errno); 
   } 
   fprintf(stderr, " %d",i); 
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   fflush(stderr); 
   irqcount++; 
  } 
  
  fprintf(stderr, "\nAgain, from using select(2) on /dev/rtc:"); 
  fflush(stderr); 
  for (i=1; i<6; i++) { 
   struct timeval tv = {5, 0};     /* 5 second timeout on select */ 
   fd_set readfds; 
  
   FD_ZERO(&readfds); 
   FD_SET(fd, &readfds); 
   /* The select will wait until an RTC interrupt happens. */ 
   retval = select(fd+1, &readfds, NULL, NULL, &tv); 
   if (retval == -1) { 
           perror("select"); 
           exit(errno); 
   } 
   /* This read won't block unlike the select-less case above. */ 
   retval = read(fd, &data, sizeof(unsigned long)); 
   if (retval == -1) { 
           perror("read"); 
           exit(errno); 
   } 
   fprintf(stderr, " %d",i); 
   fflush(stderr); 
   irqcount++; 
  } 
  
  /* Turn off update interrupts */ 
  retval = ioctl(fd, RTC_UIE_OFF, 0); 
  if (retval == -1) { 
   perror("RTC_UIE_OFF ioctl"); 
   exit(errno); 
  } 
  
 test_READ: 
  /* Read the RTC time/date */ 
  retval = ioctl(fd, RTC_RD_TIME, &rtc_tm); 
  if (retval == -1) { 
   perror("RTC_RD_TIME ioctl"); 
   exit(errno); 
  } 
  
  fprintf(stderr, "\n\nCurrent RTC date/time is %d-%d-%d, 
%02d:%02d:%02d.\n", 
   rtc_tm.tm_mday, rtc_tm.tm_mon + 1, rtc_tm.tm_year + 1900, 
   rtc_tm.tm_hour, rtc_tm.tm_min, rtc_tm.tm_sec); 
  
  /* Set the alarm to 5 sec in the future, and check for rollover */ 
  rtc_tm.tm_sec += 5; 
  if (rtc_tm.tm_sec >= 60) { 
   rtc_tm.tm_sec %= 60; 
   rtc_tm.tm_min++; 
  } 
  if (rtc_tm.tm_min == 60) { 
   rtc_tm.tm_min = 0; 
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   rtc_tm.tm_hour++; 
  } 
  if (rtc_tm.tm_hour == 24) 
   rtc_tm.tm_hour = 0; 
  
  retval = ioctl(fd, RTC_ALM_SET, &rtc_tm); 
  if (retval == -1) { 
   if (errno == ENOTTY) { 
    fprintf(stderr, 
     "\n...Alarm IRQs not supported.\n"); 
    goto test_PIE; 
   } 
   perror("RTC_ALM_SET ioctl"); 
   exit(errno); 
  } 
  
  /* Read the current alarm settings */ 
  retval = ioctl(fd, RTC_ALM_READ, &rtc_tm); 
  if (retval == -1) { 
   perror("RTC_ALM_READ ioctl"); 
   exit(errno); 
 
  } 
  
  fprintf(stderr, "Alarm time now set to %02d:%02d:%02d.\n", 
   rtc_tm.tm_hour, rtc_tm.tm_min, rtc_tm.tm_sec); 
  
  /* Enable alarm interrupts */ 
  retval = ioctl(fd, RTC_AIE_ON, 0); 
  if (retval == -1) { 
   perror("RTC_AIE_ON ioctl"); 
   exit(errno); 
  } 
  
  fprintf(stderr, "Waiting 5 seconds for alarm..."); 
  fflush(stderr); 
  /* This blocks until the alarm ring causes an interrupt */ 
  retval = read(fd, &data, sizeof(unsigned long)); 
  if (retval == -1) { 
   perror("read"); 
   exit(errno); 
  } 
  irqcount++; 
  fprintf(stderr, " okay. Alarm rang.\n"); 
  
  /* Disable alarm interrupts */ 
  retval = ioctl(fd, RTC_AIE_OFF, 0); 
  if (retval == -1) { 
   perror("RTC_AIE_OFF ioctl"); 
   exit(errno); 
  } 
  
 test_PIE: 
  /* Read periodic IRQ rate */ 
  retval = ioctl(fd, RTC_IRQP_READ, &tmp); 
  if (retval == -1) { 
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   /* not all RTCs support periodic IRQs */ 
   if (errno == ENOTTY) { 
 
    fprintf(stderr, "\nNo periodic IRQ support\n"); 
    goto done; 
   } 
   perror("RTC_IRQP_READ ioctl"); 
   exit(errno); 
  } 
  fprintf(stderr, "\nPeriodic IRQ rate is %ldHz.\n", tmp); 
  
  fprintf(stderr, "Counting 20 interrupts at:"); 
  fflush(stderr); 
  
  /* The frequencies 128Hz, 256Hz, ... 8192Hz are only allowed for root. */ 
  for (tmp=2; tmp<=8192; tmp*=2) { 
  
   retval = ioctl(fd, RTC_IRQP_SET, tmp); 
   if (retval == -1) { 
    /* not all RTCs can change their periodic IRQ rate */ 
    if (errno == ENOTTY) { 
     fprintf(stderr, 
      "\n...Periodic IRQ rate is fixed\n"); 
     goto done; 
    } 
    perror("RTC_IRQP_SET ioctl"); 
    exit(errno); 
   } 
  
   fprintf(stderr, "\n%ldHz:\t", tmp); 
   fflush(stderr); 
 
   /* Enable periodic interrupts */ 
   retval = ioctl(fd, RTC_PIE_ON, 0); 
   if (retval == -1) { 
    perror("RTC_PIE_ON ioctl"); 
    exit(errno); 
   } 
  
   for (i=1; i<21; i++) { 
    /* This blocks */ 
    retval = read(fd, &data, sizeof(unsigned long)); 
    if (retval == -1) { 
     perror("read"); 
     exit(errno); 
    } 
    sleep(i); 
    fprintf(stderr, " [%d,%lx]",i,data); 
    fflush(stderr); 
    irqcount++; 
   } 
  
   /* Disable periodic interrupts */ 
   retval = ioctl(fd, RTC_PIE_OFF, 0); 
   if (retval == -1) { 
    perror("RTC_PIE_OFF ioctl"); 
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    exit(errno); 
   } 
  } 
  
 done: 
  fprintf(stderr, "\n\n\t\t\t *** Test complete ***\n"); 
  
  close(fd); 
  
  return 0; 
 } 

 
Figure A-10.  The rtctest.c Source Code (Continued) 

 
A.12.3  EXPERIMENTS. 
 
In the following description, the timed and untimed versions of the matrix multiplication 
program are referred to as base matrix and contention matrix, respectively.  Two different 
experiments were performed to test the results of contention.  In the first experiment, the 
contention matrix size was kept constant at 10,000, while the base matrix size was varied from 
20 to 700.  In the second set of experiments, the base matrix size was kept constant, while the 
contention matrix sizes were varied. 
 
A.12.4  TEST RESULTS. 
 
Figure A-11 shows the execution times for the first experiment, where the base matrix size was 
varied.  It is clearly shown that the execution times in presence of contention are greater than 
those without contention.  However, the trend of the execution times was unexpected.  As shown 
in figure A-11, spikes trend at matrix sizes 510, 590, and 670.  The cause(s) of these spikes are 
probably the dynamic management of cache by the Linux operating system (OS) and needs 
additional investigation.  See figures A-12 and A-13 for the applicable scripts. 
 

 
 

Figure A-11.  Effect of Contention on Execution Time 
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#!/bin/bash 
 
for (( i=20; i<=2000 ; i=$i+20 )) 
do 
../tools/taskset 0x01 ./matmult $i $i $i & 
../tools/taskset 0x02 ./matmult_timer 600 600 600 ; pkill -9 matmult 
done 

 
Figure A-12.  The base-exec-time.sh Script 

 
#!/bin/bash 
 
for (( i=20; i<=700 ; i=$i+20 )) 
do 
../tools/taskset 0x01 ./matmult 10000 10000 10000 & 
../tools/taskset 0x02 ./matmult_timer $i $i $i ; pkill -9 matmult 
done 

 
Figure A-13.  The contention.exec-time.sh Script 

 
Figures A-14 through A-28 show the execution times, base-contention time scripts, and 
contention exec_time scripts for the second experiment, where the base matrix sizes were kept 
constant.  Five different base matrix sizes, from 200 to 600, were used for this experiment.  In 
each case, the contention matrix size was varied from a low number (around 20) to a size 
roughly equal to double the size of the base matrix.  The reason for choosing this range was that 
a low contention matrix size would put very little stress on the L2 cache, and the execution time 
with contention would be roughly the same as without contention.  This is clearly visible in the 
results.  A contention matrix size of double the base matrix size ensures there is some contention 
on the L2 cache.  As the contention matrix size is gradually increased beyond a certain value, the 
execution time with contention may suffer a significant increase, which is shown in figures A-8 
through A-12.  But as the contention matrix size is increased even more, the execution time does 
not continue to increase.  This again might be a result of the Linux OS doing some intelligent 
reconfiguration of the cache that masks the effect of an increase in the contention matrix. 
 

 
 

Figure A-14.  Base Matrix Size = 200 
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#!/bin/bash 
 
../tools/taskset 0x01 ./matmult_timer 200 200 200 

 
Figure A-15.  The base-exec-time.sh Script 

 
#!/bin/bash 
 
for (( i=20; i<=400 ; i=$i+20 )) 
do 
../tools/taskset 0x01 ./matmult $i $i $i & 
../tools/taskset 0x02 ./matmult_timer 200 200 200 ; pkill -9 matmult 
done 

 
Figure A-16.  The contention-exec-time.sh Script 

 

 
 

Figure A-17.  Base Matrix Size = 300 
 
#!/bin/bash 
 
../tools/taskset 0x01 ./matmult_timer 300 300 300 

 
Figure A-18.  The base-exec-time.sh Script 

 
#!/bin/bash 
 
for (( i=20; i<=600 ; i=$i+20 )) 
do 
../tools/taskset 0x01 ./matmult $i $i $i & 
../tools/taskset 0x02 ./matmult_timer 300 300 300 ; pkill -9 matmult 
done 

 
Figure A-19.  The contention-exec-time.sh Script 
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Figure A-20.  Base Matrix Size = 400 
 

#!/bin/bash 
 
../tools/taskset 0x01 ./matmult_timer 400 400 400 

 
Figure A-21.  The base-exec-time.sh Script 

 
#!/bin/bash 
 
for (( i=20; i<=600 ; i=$i+20 )) 
do 
../tools/taskset 0x01 ./matmult $i $i $i & 
../tools/taskset 0x02 ./matmult_timer 400 400 400 ; pkill -9 matmult 
done 

 
Figure A-22.  The contention-exec-time.sh Script 

 

 
 

Figure A-23.  Base Matrix Size = 500 
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#!/bin/bash 
 
../tools/taskset 0x01 ./matmult_timer 500 500 500 

 
Figure A-24.  The base-exec-time.sh Script 

 
#!/bin/bash 
 
for (( i=20; i<=1000 ; i=$i+20 )) 
do 
../tools/taskset 0x01 ./matmult $i $i $i & 
../tools/taskset 0x02 ./matmult_timer 500 500 500 ; pkill -9 matmult 
done 

 
Figure A-25.  The contention-exec-time.sh Script 

 

 
 

Figure A-26.  Base Matrix Size = 600 
 

#!/bin/bash 
 
../tools/taskset 0x01 ./matmult_timer 600 600 600 

 
Figure A-27.  The base-exec-time.sh Script 

 
#!/bin/bash 
 
for (( i=20; i<=2000 ; i=$i+20 )) 
do 
../tools/taskset 0x01 ./matmult $i $i $i & 
../tools/taskset 0x02 ./matmult_timer 600 600 600 ; pkill -9 matmult 
done 

 
Figure A-28.  The contention-exec-time.sh Script 
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A.13  CONCLUSION. 
 
Through these experiments, it was shown that the effects of contention might be masked by the 
Linux operating system (OS) management of the cache.  Further, it was shown that even with the 
Linux OS management, the execution times can vary significantly, depending on the amount of 
contention present in the system.  To assess the effects of contention in the absence of Linux OS 
management, the application should be run directly on the hardware, which would give a much 
clearer picture of the effects of contention on shared resources. 
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APPENDIX B—CONFIGURATION-RELATED ISSUES BACKUP INFORMATION 

The following information, concerning the risks associated with power supply designs, is 
provided for safety net designers.  Safety nets may also be required to monitor power supplies 
and characteristics to accomplish error detection and recovery. 
 
System-on-a-chip (SoC) power supply design is challenging because of high power supply 
output currents and low core voltages.  Higher numbers of gate transitions per unit time and high 
clock frequencies reduce the noise margin and raise the noise floor of the processor.  The SoC 
power supplies need to be properly sequenced often to provide assurance that the processor boots 
up correctly. 
 
If noise margins are low, then the SoC will be more susceptible to electromagnetic interference 
(EMI).  EMI may be radiated or conducted.   
 
Generally, the SoC mechanical package has a lot of connections in a small area, which makes it 
challenging to place the decoupling caps close to the pins.  The lead inductance of the pin and 
the printed circuit board trace may cause ringing with the decoupling capacitor.  This ringing 
will reduce the noise margin.  In general, the power demand of the core voltages require that 
switch mode power supplies be used for SoC core voltages.   
 
Noise margin in electrical engineering is defined as the amount by which a signal exceeds the 
minimum amount for proper operation.  It is commonly used in at least two contexts: 
 
 In communications system engineering, noise margin is the ratio by which the signal 

exceeds the minimum acceptable amount.  It is normally measured in decibels.   
 
 In a digital circuit, the noise margin is the amount by which the signal exceeds the 

threshold for a proper 0 or 1.  For example, a digital circuit might be designed to swing 
between 0.0 and 1.2 volts, with anything below 0.2 volt considered a 0, and anything 
above 1.0 volt considered a 1.  Then the noise margin for a 0 would be the amount that a 
signal is below 0.2 volt, and the noise margin for a 1 would be the amount by which a 
signal exceeds 1.0 volt.  In this case, noise margins are measured as an absolute voltage, 
not a ratio.  Noise margins are generally defined so that positive values ensure proper 
operation, and negative margins result in compromised operation, or perhaps outright 
failure. 

 
Noise floor, in signal theory, is the measure of the signal created from the sum of all the noise 
sources and unwanted signals within a measurement system. 
 
In radio communication and electronics, this may include thermal noise, blackbody, and any 
other interfering signals.  The noise floor limits the smallest measurement that can be taken with 
certainty, since any measured amplitude can, on average, be no less than the noise floor. 
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