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EXECUTIVE SUMMARY

Smallcracksdevelopingfrom rivet holesin lap joints of fuselagstructure have been an issue of
concernover the pastdecade. Stress-ntensity factor solutions requied b assesshe stuctural
integrity of sud configurdions ae lacking. To address this ned, thedoman integral method

was usel in this research to obtan themodel, normdized stress-intasity factor distributionsfor
cracksemanatingrom a centrallylocated countersunk rivet hole in a square plate subjected to
remote tension.Particular attention was focused short crackswith an elliptical shapethat
have not propaajed throudp the thickness. For these short cracks, the normedizstress-
intensity factor distribution dependecdon the shape and ®zof the crack. Analysis was also
conductedon long throudh-the-thickness cracks with a stiaigront for which the normalex
stress-intensityactors were uniform.

iX/Xx



1. INTRODUCTION.

During the last two decades, various methods, such as the finite elem@iad(with or without
singularity elementsiandthe boundaryintegal equation method, have been empbtbyo obtain
stress-ntensity factor distributons for surface cracks and corner crackplates, see, Bu and
Newman L] and Newman and Raj2]. Another well establisheandparticularlyusefulmethod
for evaluatingfracture parameters is the domain imggnethod in which theracktip integal is
recastas an integal over a finite domain surroundirtige crack tip. The calculation of the crack
tip paameters of inteest @an then becarried out in astraghtforward post proessingste in the
finite element method.The domain integ method has been empém/by Shih, Moran, and
Nakanura [3] to evalatk the energ release ra along a hree-dmensional crack frontin a
thermally stressed bodgnd has been used bikishkov and Atluri fi] to evaluatethe mixed-
mode stress-intensifactors alongn arbitrarythree-dimensional crack.

In this report, we emplothe domain inte@l method to obtaithe model stress-intensityactor
distributionsfor elliptical and straigt cracks emanatinfom a centrallylocated countersunk
rivet holein a square plate subjected to remote tensiParticular attention is focused on short
cracks] cracks that have not propatgd beynd the edg of the countersink.Relatedwork on
elliptical cracksemanatingat variouslocations from countersunk rivet holes has been recently
carriedout by Tan et al. §] usingthe finite element alternatingiethod. In the finite element
alternatingmethod, two solution procedures are required to obtain the stress-intewsoty
distributionfor a particularcrackgeometryin a finite body First, the stress distribution in the
uncracked solid is obtained liye finite element methodSecondthe analytical solutionfor an
embeddeaklliptical crack in an infinite solid is combined with the finite element solutidbhe
resultingnonzro tractions on @grnal surfaces and crack faces are then canceled in an iterative
manner usingsuitable polpomial inverse functions and finite element solutiams the
uncracked eometry.

Although fractureparameterganbe obtained veryaccuratelyusingthe domain inte@l method
for arbitrarythree-dimensionalepmetries, the method is pansivein termsof thetime required

to generate a mesh, in-core stoeagquirementdor large three-dimensionatalculations,and
solution time Mesh gneation is paticularly time consumingdueto thediffic ulties assodated
with constucting a mesh which accuragly captures he shgular natire of he stess feld in the
vicinity of the crackfront andnear stress concentration®n the other hand, the finite element
alternatingmethod is less time consumitgcause onlyhe uncracked epmetry needsto be
meshal. The present work will compae stress-intasity factor solutions for arivet hole
geometrywith solutions obtained byther techniques or ther finite element discreaions.

We define the gometry of the problem in section @nd presenta general three-dimensional
domainintegal formulation and associated finite element implementation in sectionTe
numerical results are presented in section 4, followeda lsummaryand someconcluding
remaks in se&tion 5.



2. PROBLEM FORMULATION.

We consider the problem of a square plate with a centtaltpted countersunkivet hole
subjected to uniform tensile loadiag shown in figre 1. The dimensions of the plate are

W/H=1.0
W/R =9.6

and theremoteapplied stress is t&en to beunity o, = 1 MPa A cross-setiond view illustrating

the characteristic dimensions of the rivet hole is shown urdi®. We choosea Cartesian
coordinate sstem such that the load acts in thdigection as shown.The countersinkande @
andthe ratios h/t and R/t are taken to be that of a standard rivet waiifom ¢ = 5¢, h/t = 0.2,

R/t = 1.954). These dimensions are also consistent with the dimensions of the sem®agie a
recentexperimental study by FadragsandFine[6]. The phte neterial is assured to be Ineary
elasticandisotropic. The elastic constants of the plate are taken to be that of Alclad 2024-T3
aluminum with a Young modulus of 73 GPa and Poisson’s ratie 0.3.
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FIGURE 1. SPECMEN GEOMETRY (WH=1.0, WR=9.6,00 =1 MPa)
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FIGURE 2. SPECMEN GEOMETRY (h/t=0.2¢p=50°, R/t=1.954)

In the present andysis, aacks with dliptical crack fronts of various shaes and lengths were
assumedo initiate at the intersectiorbetween the countersunk and strdighank portion of the
rivet hole as shown in figure 3. We ddinethree crack growth regionsas|, I, and Il respectively
as shown in the figre. The exent of the crackrpwth regons is defined as follows:

Regionl O<a<h
Regionll h<a<d
Region lll d<a

where a is the mgor or minor &is of the dliptical crack measured from the origin of the
coordinate sstem in figire 2, d is the dimension from the amnigo the endbf the countersink,
and h is the helg of the knee in the countersinRhe crackfront is assumedo be elliptical in

regons| andll with various shapes defined kye ratio a/c. The crack front is assumed to be
straight in region Il

FIGURE 3. THE THREE CRACK GROWH REGIONSI, II, AND IlI



3. DOMAIN INTEGRAL METHOD.

In this setion we outline the formulaion and finite dement implementaion of the doman
integal method. Consider a curved crack frontirig in the %' - X3 plane as shown in fige 4.
We denote bys and v(s) a point igg on the crack fronandthe in-planeunit outwardnormal
vector at s, respectivelylhe pointwise eneygrelease rate(d) is gven by

J(S)= v, (s) rlm_[r@[wdk =0 jU;, Jm;dr 1)

where Wis the stain energ densty, o; and y are the Cartesian components of the stress and
displacenent and m are the components of the unit outward normal to the dulyeng in the

X1'- X2 planewhich passeghrouc point s as shown in fige 5. The eneryg released when a
finite segment, L., of the crack front advances an amalal(s) is gven by

JNa= AaJ’LC ISV (9l (9)dS 2)

where k(s) are the components of an arbitranyt vector at s Iyg in the plane of the crack.

«
X3

V(s)

v

!

X1
FIGURE 4. A POINT s LYING ON A CURVED CRACK FRONT
By substitutingequation 1 into ejuaion 2, weobtdn thefollowing expression forJ:

wherel'; is a tubular surface surrounditige crack sagent L.
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FIGURE 5. THE DOMAIN V ENCLOSED By THE TUBULAR SURFACES SAND I

In order to obtain a domain intad, we introduce another tubular surfégevhich surrounds

as shown in two dimensioms figure 5. In thefigure,we denoteby n the unit outwad normato

the surface Sand define V © be he voume encbsed bythe surfaces§:, S, and theupperand

lower crack surface8” and C alongthe crack sagent. In the absence of bodgrces, thermal
strains, and crack face tractions, the bracketed quantaéguations Jand 3 is divergencefree.

Hence, letting

Hi = 05U =W 4)
it follows tha

Hii=0 inv 5)
We now define a vector-valued test functiqn @ follows:

Oy

=D ond (6)

Assumingq is sufficiently smooth to justifythe following manipulaions, wetake the inng
product of g with the left-hand side of equation 5 to obtain

fyHiiadV =0 (7)

Next, we employthe divergnce theorem and the definition of the test function (equébdo
obtain

Irt HqlnjdA :IVHkiQk,idV (8)



Noting tha n; = -m on I}, we obtain an exession for] in terms of the volume integj
J = [y Higay i dV )

Findly, if we assumetha J(s) is ®nstant ove the crack segment L., Js) can be takenutside
the integal in (2) and we obtain a simplep®ssion for (k) in terms ofJ

J

J(S) = -
IL |V, ds (10)

In order to illustrate the numerical evaluation of equation 10, we conaidarhematic
discretiation of the volume V surroundirthe crack segent into 32 eigt-node brickelements
asshownin figures6 and 7 (more refined meshes are used in the actual calculat®tspss
secton of he scheraic finite element mesh perpendiular to the crack plane passng through

node M on the crack surface is illustrated irufg 6. A view of the meshcrosssectionlying in

the plane of the crack and passthgoudh M is shown in figire 7. Consistentwith a standard
isoparametric finite element implementation, we define the test fungtiofitigin an dement in

V usingthetrilinear finite dement shae fundions, i.e,

8

Oy = aglNana (11)

S .
X1
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FIGURE 6. CROSS SECODN OF A FNITE ELEMENT MESH PERPENDZULAR TO
THE CRACK R_LANE PASSING THROUGH NODE M



FIGURE 7. CROSS SECTON OF A FNITE ELEMENT MESH PARALLEL TO
THE CRACK RLANE AND PASSING THROUGH NODE M

In equation 11, (3 are the discrete nodal values of the test functiorthe presentanalysis we
have chosen the nodal values such that

0% = %/k“” if x,® = 0 and|x,% < b andlx,'¥| <a

D  otherwise (12)

In other words, the nodal value®Qs ddined to beequd to the in-plane unit normé vector

vi™ at node M if the node lies in the plane perpendicular to the crack plane which passés throug
nodeM and does not lie on the boundanfyV. In the present implementation, we have defined
the volume V to be rectantar with heidnt b and width a as shown in dige 6.

Thedisaete form of theintegral (9) is the written as

M = 5 {Jo, Hii0k, 92 (13)
edVv

where
8 a
g, = ZlN 2i Qk (14)
a:

In the present analg, the integation (13) was carried out usi@yg2x2 Gaussian quadrature.



In order to evaluate the inted in the denominator aéquation10, we assumehat the enery
release rais consant over he crack segentlL. and define the vectdy alongthe cracksegnent
as follows:

v _ B, atnodem

|
“ atall othernodeson crackfront (15)

By taking Ik to vary linearly betweenthe nodesM - 1, M, and M + 1 as shown in fige 7, we
obtain the pointwise engrgelease rate at node M

o 23"
L, +L,

(16)

where L and L, are the lentips of the element edg containinghodes M - 1, M, and M + 1.

A typical finite element mesh usedn the nunerical cakulations s shown n figure 8. Dueto
symmetry, only one quarter of the plate was arxalg. The mesh shown in the fige is made up
of 5312 eidpt-node brick elements (with 6,497 nodes and 19,49tedsegffreedom)andwas
employed to obtan thestress-intensity factor distribution éongan dliptical crack front located in
regon I. A magification of the mesh in the vicinityf the edg of the countersinkis shownin
figure 9. In orderto construct the finite element domains necess$arythe present domain
integral approach,a two-dimensional recangilar mesh conposed of 51 emens was swept
around the elliptical crack front to create the three-dimensional mesh as showmerifig

\ |
|

/S /

FIGURE 8. THE FINITE ELEMENT MESH FOR THE CASE OF AN HUPTICAL
CRACK LOCATED IN REGION |



FIGURE 9. A MAGNIFICATION OF THE ME& NEAR THE NTERSECTION BETWEEN
THE COUNTER®NK AND STRAIGHT SHANK PORTION OF THE RVET
HOLE

FIGURE 10. THE FINITE ELEMENT DOMAINS ALONG AN ELLIPTICAL CRACK
FRONT

Before performingthe numericalcalculations, benchmark comparisons were carried out in order
to vdidate the present three-dimensiond doman integral implementation and to determine the



necessarymesh refinement. Stress-intensityfactor distributions werebtainedfor both an
embeddal dliptical crack and aquater dliptical corneg crack in arectangular plate. As reported
in Goszand Moran [7], excelent ageenent was observed b&ten he finite elementdomain
integral solutions ad thebenchmak solutions from thditerature

The meshes empleg in the present calculations hbetween18,000and 21,000degeesof
freedom, and the calculations were performed aosilicon Graphics R4000 workstation
equipped with 192 mebytes of random access mem¢RAM).

4. NUMERICAL RESJLTS.

In al of the nunerical cakulations, he pontwise energ releaserates J(S) alongthe crack front
were obtained byhe domain integl method as described in the previous sectibhe model
stress-intansity factors K (s) at eachpoint along the crack frontwere obained using the phne
stran relation
nex9 '?
> U

Ki(®=0—>%
Ll-v° O

(17)

where E is Young modulus andv is Poisson’s ratio. Although we recogize that the
asymptotic field hasa lower order singjarity than 1/ Jr near ntersectons of he crack front

andfree surfaces, the tent of the boundarlayer is known to be small and thus equation 1 was
used througout for the computation oK.

The mode bktress-intensitfactor at a point alonthe crackront canbe expressedn termsof the
remoteapplied stress o, and a boundargorrection factorF as

K,(s) =F(a/c,alf p ,eQ (18)

wherethe parameteq is thesquare of the complete elliptical intagof the second kindln this
report, Q was appraxated bythe formula gven byRaju and Newmari],

.65
Q=1+ 1464%@1 %<1 (19)
C

Boundarycorrection factors For elliptical cracks located in rean | are plottedversusphysical
ande 0 in figures 11-13.In figure 11, théboundarycorrectionfactorsareplottedalongthe crack
front for a/c = 0.4 for three different ratios of c/h (c/h = 0.4, 0.6, and 0.Rpte thatc is the
characteristic dimension of thedlipse as shown in figire 3, and h is thehdght of the straght
shankportionof therivet hole. Theboundarycorrection factors for the case where a/c = 0.8 and
a/c= 1.0areplotted versus ptsjcal ange for four different ratios of c¢/h (c/h = 0.2, 0.4, 0.6, and
0.8)in figures 12 and 13, respectivelyAs shown in the figres, the boundargorrection factor
distributons depend hedyi on he rato at, butthe dstributons for eachrato of a/c do not
significantly differ for different values of c/h.

10
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FIGURE 11. BOUNDARY CORRECTON FACTORS F VERSUS PHYSAL ANGLE 0
FOR ELLIPTICAL CRACKS LOCATED IN REGION | (a/c = 0.4, c/h = 0.4,
0.6, AND 0.8)

4.0 L T—1 7 T 1T T l T T I T 1 1 T 1 T L
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—o—¢/h=04 b
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F 35
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0] 20 40 60 80 100 120 140
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FIGURE 12. BOUNDARY CORRECTON FACTORS F VERSUS PHYSAL ANGLE 6

FOR ELLIPTICAL CRACKS LOCATED IN REGION I (a/c = 0.8, c/h = 0.2,
0.4, 0.6, AND 0.8)
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FIGURE 13. BOUNDARY CORRECTON FACTORS F VERSUS PHYSAL ANGLE 0
FOR ELLIPTICAL CRACKS LOCATED IN REGION | (a/c = 1.0, ¢/h = 0.2,
0.4, 0.6, AND 0.8)

The boundarycorrection factors for elliptical cracks located inicggll are plotted versus
physicalande in figures14 and15. In figure 14, the boundargorrection factors are plotted for
five different ratios of a/t (a/t = 0.16, 0.32, 0.5, 0.7, and 0.9) for the aspect rati®.d/cThe
distributions for a/c = 0.8 and a/t = 0.32, 0.5, 0.7, and&@®showrin figure 15. As shownin
figure 14, the valuesof F tendto be relativelyconstant alonghe crack front until thegrop off
near the free edge where the crack front intersects the countersunk surfacds shown in
figure 15, the values of Bre hidnest at the intersection of the crack front withllb&omsurface
of the plate. We note that the boundarycorrection factors are sigicantly higher for smaller
values of a/t within ragn Il for both ratios of a/considered.

The crack fronts are assumed to be straight in region Il as depicted in figure 3. The mode |
stress-intasity factors normézed with respect to the remote gpplied stress and the length

a = a+ R are plotted versus a normadzlengh x/t for five values of a/t (a/t = 1.1, 1.2,4,1.6,
and2.0)in figure 16. As shown in the figre, for the largst value of a/t considered (a/t = 2.0),
the normdized stress-intensity factors ae relatively constant throudn the thickness of theplate
exceptnear he ntersectons of he crack frontwith the bp and bdabm surfaces oftte phte.

12
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FIGURE 14. BOUNDARY CORRECTON FACTORS F VERSUS PHYSAL ANGLE 6
FOR ELLIPTICAL CRACKS LOCATED IN REGION II (a/c = 0.4, a/t = 0.186,
0.32, 0.5, 0.7, AND 0.9)
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FIGURE 15. BOUNDARY CORRECTON FACTORS F VERSUS PHYSAL ANGLE 6
FOR ELLIPTICAL CRACKS LOCATED IN REGION Il (a/c = 0.8, a/t = 0.32,
0.5, 0.7, AND 0.9)
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To compare the present three-dimensional results correspondingwo-dimensionalresults
obtaned from the literature we have dso plottel in figure 16 the plane stran/stress vdue

obtainedby Fuhring[8] for a two-dimensionaplate of width Whavinga centrallylocated hole
of radius R for the lamst value ofa consdered (shown afhé dashed-ddinein thefigure). It

is interesting to note tha the three-dimensiona results obtaned for the case where alt =2.0

when the crack front is sigficantly beyond the edg of the countersink are hgrthanthe two-

dimensional value (approxately12 percent higer).

1.2
1.15
—
N
S
S 1.1
N’
i i
o 1.05 —
b 4
-~ 4
V2 ]
0.95 .
- — - - plane stress a/W=0.21 [8]
0.9 TR RS U A [N R R WU T R R R
-0.8 -0.6 -0.4 -0.2 0 0.2

FIGURE 16. NORMALZED MODE | STRESSINTENSITY FACTORS ALONG
STRAIGHT CRACK FRONTSIN REGION Il (at=1.1, 1.2, 1.4, 1.6,
AND 2.0)

The numerical data for the plots shown irufigs 11 to 16 areen in tables 1 to 6.

14



TABLE 1. TABULATED VALUES OF THE BOUNDARY CORRECTDN FACTORSF
VERSUS PHYSICAL ANGLE 6 FOR ELLIPTICAL CRACKS LOCATED IN
REGION I (a/c = 0.4, c/h = 0.4, 0.6, AND 0.8)

c/h=0.4 c/h=0.6 c/h=0.8

0 F ) F : 0 F
2.4198 2.2710 2.4198 2.2303 2.4198 22753
4.8853 2.3030 4.8853 2.2596 4.8853 2.2872
7.4453 2.3813 7.4453 2.3336 7.4453 2.3510
10.155 2.4819 10.155 2.4362 10.155 2.4547
13.082 2.5947 13.082 2.5585 13.082 2.5835
16.309 2.7140 16.309 2.6933 16.309 2.7209
19.946 2.8347 19.946 2.8333 19.946 2.8545
24.137 2.9515 . 24.137 2.9713 24.137 2.9769
29.082 3.0595 29.082 3.0994 29.082 3.0955
35.049 3.1541 35.049 3.2106 38.299 3.2070
42.393 3.2300 42.393 3.3008 49.457 3.3158
51.532 3.2819 51.532 3.3681 62.605 3.3988
62.834 3.3058 62.834 3.4040 77.057 3.4330
76.300 3.2983 76.300 3.3963 91.402 3.3978
91.154 3.2500 91.154 3.3332 104.23 3.2933
105.88 3.1434 105.88 3.1999 114.86 3.1139
119.04 2.8852 119.04 2.9057 123.33 2.7863
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TABLE 2. TABULATED VALUES OF THE BOUNDARY CORRECTDN FACTORSF
VERSUS PHYSICAL ANGLE 6 FOR ELLIPTICAL CRACKS LOCATED IN
REGION I (a/c = 0.8, c/h = 0.2, 0.4, 0.6, AND 0.8)

¢/h=0.2

0 F
2.3831 3.2484
5.2493 3.2098
8.7088 3.1726
12.908 3.1464
18.047 3.1329
24.414 3.1341
32.435 3.1519
42.756 3.1885
56.320 3.2431
71.669 3.3020
86.316 3.3446
99.665 3.3640
111.39 3.3656
121.45 3.3180

c/h=0.4 c/h=0.6 c/h=0.8

0 F ) F 6 F
2.3831 3.3017 1.5479 3.3861 1.5479 3.6473
5.2493 3.2717 3.5622 3.3609 3.5622 3.5778
8.7088 3.2281 6.1887 3.2955 6.1887 3.4623
12.908 3.1890 9.6257 3.2187 9.6257 3.3471
18.047 3.1651 14.153 3.1486 14.153 3.2503
24.414 3.1651 20.183 3.1037 20.183 3.1779
32.435 3.1915 28.366 3.0985 28.366 3.1393
42.756 3.2389 39.792 3.1469 39.792 3.1657
56.320 3.2959 56.320 3.2521 56.320 3.2548
67.951 3.3490 72.985 3.3582 72.985 3.3379
78.982 3.3890 87.113 3.4194 87.113 3.4145
89.171 3.4249 98.536 3.4433 98.536 3.4936
98.363 3.4560 107.52 3.4644 107.52 3.5525
106.51 3.4733 114.50 3.4873 114.50 3.5873
113.65 3.4724 119.92 3.4947 119.92 3.5823
119.88 3.4508 124.13 3.4681 124.13 3.5396
125.29 3.3554 127.42 3.3443 127.42 3.4093
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TABLE 3. TABULATED VALUES OF THE BOUNDARY CORRECTDN FACTORSF
VERSUS PHYSICAL ANGLE 6 FOR ELLIPTICAL CRACKS LOCATED IN
REGION I (a/c = 1.0, c/h =0.2, 0.4, 0.6, AND 0.8)

¢/h=0.2
0 F

2.0303 3.6581
4.6697 3.6342
8.1009 3.5887
12.561 3.5378
18.360 3.4837
25.899 3.4295
35.698 3.3804
48.438 3.3430
65.000 3.3348
81.522 3.3642
94.244 3.4192
104.04 3.4804
111.58 3.5420
117.39 3.6012
121.86 3.6561
125.31 3.7042
127.96 3.7299

c/h=0.4 c/h=0.6 c/h=0.8

0 F ) F 9 F
2.0303 3.7680 2.0303 3.9051 2.0303 4.2155
4.6697 3.7519 4.6697 3.8541 4.6697 4.0924
8.1009 3.6925 8.1009 3.7450 8.1009 3.9201
12.561 3.6166 12.561 3.6215 12.561 3.7531
18.360 3.5345 18.360 3.5032 18.360 3.5984
25.899 3.4559 25.899 3.3970 25.899 3.4601
35.698 3.3880 35.698 3.3042 35.698 3.3456
48.438 3.3326 48.438 3.2436 48.438 3.2638
65.000 3.3145 65.000 3.2560 65.000 3.2326
81.522 3.3665 81.522 3.3155 81.522 33011
94.244 3.4616 94.244 3.3915 94.244 3.4032
104.04 3.5521 104.04 3.4884 104.04 3.5057
111.58 3.6372 111.58 3.6149 111.58 3.6246
117.39 3.7218 117.39 3.7462 117.39 3.7475
121.86 3.7999 121.86 3.8675 121.86 3.8752
125.31 3.8594 125.31 3.9670 125.31 3.9953
127.96 3.8744 127.96 4.0070 127.96 4.0634
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TABLE 4. TABULATED VALUES OF THE BOUNDARY CORRECTDN FACTORSF
VERSUS PHYSICAL ANGLE 6 FOR ELLIPTICAL CRACKS LOCATED IN
REGION Il (a/c = 0.8, a/t = 0.16, 0.32, 0.5, 0.7, AND 0.9)

a/t=0.16 a/t=0.32

) F 0 F
37.092 3.4958 60.863 2.8917
38.746 3.4429 63.101 29136
40.843 3.4164 65.649 29163
43.532 3.3985 68.550 2.9195
47.029 3.3885 71.854 2.9231
51.650 3.3873 75.611 2.9281
57.853 3.3941 79.867 2.9348
66.278 3.4052 84.658 2.9422
77.662 34111 90.000 2.9492
94.614 3.3897 97.692 2.9519
109.39 3.2904 105.16 2.9374
121.09 2.9949 112.21 2.8862
118.73 2.7689

124.66 2.4829

a/t=0.5 a/t=0.7 a/t=0.9

) F 0 F 0 F
69.678 2.5243 76.268 2.3297 79.491 2.2005
70.832 2.5635 77.804 2.3681 80.857 2.2372
72.235 2.5759 79.666 2.3759 82.508 2.2426
73.943 2.5867 81.926 2.3822 84.503 2.2445
76.025 2.5959 84.664 2.3850 86.912 2.2445
78.564 2.6042 87.977 2.3836 89.814 2.2430
81.662 2.6120 91.966 2.3817 93.296 2.2381
85.433 2.6193 96.728 2.3805 97.446 2.2288
90.000 2.6252 102.34 2.3758 102.34 22132
93.632 2.6295 108.44 2.3626 108.44 2.1883
98.314 2.6299 113.65 2.3305 113.65 2.1489
104.26 2.6210 118.07 2.2686 118.07 2.0948
111.60 2.5860 121.81 2.1749 121.81 2.0138
120.29 2.4103 124.99 2.0342 124.99 1.8794
127.69 1.7791 127.69 1.6325
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TABLE 5. TABULATED VALUES OF THE BOUNDARY CORRECTDN FACTORSF
VERSUS PHYSICAL ANGLE 6 FOR ELLIPTICAL CRACKS LOCATED IN
REGION Il (a/c = 0.8, a/t = 0.32, 0.5, 0.7, AND 0.9)

a/t=0.32 a/t=0.5

0 F 0 F
57.705 3.9931 70.001 3.3344
59.911 3.7430 71.912 3.2227
62.486 3.6313 74.224 3.1616
65.492 3.5400 77.022 3.1101
69.007 3.4701 80.409 3.0697
73.116 3.4194 84.504 3.0423
77.917 3.3859 89.444 3.0287
83.513 3.3673 95.373 3.0278
90.000 3.3615 102.43 3.0392
98.706 3.3747 108.42 3.0593
106.00 3.4031 113.41 3.0784
112.06 3.4298 117.56 3.0930
117.09 3.4472 121.01 3.0982
121.26 3.4475 123.89 3.0858
124.72 3.4153 126.30 3.0417
127.60 3.2911 128.31 2.9107

a/t=0.7 a/t=0.9

0 F 0 I F ‘
76.042 3.0215 79.387 2.8432
77.622 2.9441 80.776 2.7791
79.526 2.8887 82.447 2.7243
81.822 2.8437 84.459 2.6773
84.589 2.8100 86.879 2.6422
87.921 2.7848 89.788 2.6167
91.926 2.7687 93.279 2.5995
96.721 2.7621 97.456 2.5908
102.43 2.7638 102.43 2.5840
108.42 2.7727 108.42 2.5737
113.41 2.7865 113.41 2.5716
117.56 2.8004 117.56 2.5740
121.01 2.8066 121.01 2.5712
123.89 2.7968 123.89 2.5575
126.30 2.7608 126.30 2.5294
128.31 2.6466 128.31 2.4373
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TABLE 6. TABULATED VALUES OF THE NORMAIZED STRESSANTENSITY
FACTORSALONG STRAIGHT CRACK FRONTSLOCATED IN REGION
n(alt=1.1,1.2,1.4, 1.6, AND 2.0)THE VALUES WERE OBTAINED
FOR A REMOTE ARPLIED STRESS OF UNITY.

a/t=1.1 a/t=1.2
x/t K, INma X/t K,/ Vma

0.184 1.065 0.184 1.071

0.164 1.101 0.162 1.107

0.138 1.118 0.135 1.125

0.104 1.126 0.099 1.138

0.061 1.133 0.053 1.149

0.004 1.141 -0.006 1.154

-0.069 1.144 -0.083 1.151

-0.165 1.138 -0.185 1.147

-0.295 1.125 -0.322 1.141

-0.408 1.107 -0.431 1.128

-0.500 1.090 -0.520 1.110

-0.576 1.071 -0.591 1.091

-0.637 1.048 -0.649 1.075

-0.686 1.023 -0.695 1.062

-0.725 0.996 -0.731 1.047

-0.756 0.963 -0.760 1.026

-0.781 0.918 -0.782 0.988

alt=1.4 a/t=1.6 a/t=2.0
X/t K[ / ,\/E X/t K[ /‘\/7[;7 x/t K[ /W

0.184 1.074 0.162 1.113 0.164 1.117
0.164 1.112 0.121 1.144 0.125 1.146
0.138 1.131 0.076 1.156 0.083 1.156
0.104 1.141 0.026 1.160 0.036 1.161
0.060 1.147 -0.029 1.163 -0.016 1.162
0.003 1.154 -0.089 1.169 -0.073 1.162
-0.072 1.162 -0.155 1.176 -0.135 1.168
-0.169 1.170 » -0.229 1.181 -0.204 1.176
-0.298 1.169 -0.311 1.183 -0.281 1.181
-0.415 1.160 -0.391 1.179 -0.368 1.186
-0.509 1.150 -0.463 1.174 -0.445 1.182
-0.584 1.142 -0.528 1.172 -0.515 1.175
-0.644 1.133 -0.586 1.169 -0.577 1.171
-0.692 1.119 -0.638 1.159 -0.632 1.168
-0.730 1.102 -0.686 1.148 -0.681 1.165
-0.759 1.081 -0.728 1.137 -0.726 1.160
-0.782 1.042 -0.766 1.104 -0.765 1.134
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5. SUMMARY AND CONCLUDING REMARKS

Mode | stress-intensity factors dong three-dimensiond elliptical and straght aack fronts are
obtained for the problem of a plate with a centrédlyated countersunk rivet hole subjected to
uniformtensileloading. Attentionis foausel on short, symdrically located cracks initiating at

the intersection between the countersunk and &traltank portion of thavet hole. The stress-
intensity factorsfor cracksof variousshapes and letigs are obtained bthe domain integl
method.

For cracksthat have not propagted beynd the edg of the countersink (short cracks), we
assume thecrack fronts to bedliptica and obtaned stress-intensity factor distributionsalong
crack frons for a varety of shapes andzas. Forthe shorest cracksconsdered(cracksthatdid
not exend beynd the straigt shank portion of the countersink), it was found thatooundary
correction factors depend significantly on the shae of the dliptica front but do not deend
heavily on the size of the crack-or elliptical crack frontdeyond the straiht shankportion of
the countersinkbut not et throudh cracks, it was found that the dependence of the boundary
correcton facbrs on bat crack ste and shape wasggiificant For the case of shight crack
fronts in region lll, the nomalized stress-intengty factors were relatively uniform through the
thickness of the plate for the loggg cracks considered (i.e., once the crackskizhdedoeyond
the influence of the countersunk rivet hole) and the values weardicagtly higher than two-
dimensional results for correspondig@metryobtained from the literature.
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