
I 

.Il·'~ 
~~: ~~C' 

r.r.,'--~T-n~~I\\ 1 r~ 
DOT:r=(AlAR-95/125-1II,1 Digital Systems Validation 
Office of Aviation Research Handbook, Volume III Washington, D.C. 20591 

Formal Methods and Their Role in 
Digital Systems Validation for 
Airborne Systems, Chapter 1 

January 1997 

Final Report 

This document is available to the U.S. public through 
the National Technical Information Service, 
Springfield, Virginia 22161 

U.S. Department of Transportation 
DOT/FAA Federal Aviation Administration 
AR-95/125 
III, 1 
c. 2 



FAA Technical Center 

II~~\ 1I1~ 11111111111111111111111111111111111111 

*00016426* NOTICE 

This document is disseminated under the sponsorship of the U.S. Department of 
Transportation in the interest of information exchange. The United States 
Government assumes no liability for the contents or use thereof. The United States 
Government does not endorse products or manufacturers. Trade or manufacturer's 
names appear herein solely because they are considered essential to the objective of 
this report. 

Rushby. J. 
Digital systems validation 

handbook Volume III ••• 



1. Report No. 

DOTIFANAR-95/125-III, 1 
4. Title and Subtitle 

2. Government Accession No. 3. Recipient's Catalog No. 

5. Report Date 

DIGITAL SYSTEMS VALIDATION HANDBOOK VOLUME III, January 1997 
FORMAL METHODS AND THEIR ROLE IN DIGITAL SYSTEMS VALIDATION 
FOR AIRBORNE SYSTEMS, CHAPTER 1 

6. Perfonning Organization Code 

7. Author(s) 

J. Rushby, SRI International 
9. Perfonning Organization Name and Address 

SRI International 
Computer Science Laboratory 
Menlo Park, CA 94025 
12. Sponsoring Agency Name and Address 

U.S. Department of Transportation 
Federal Aviation Administration 
Office of Aviation Research 
Washington, DC 20591 

15. Supplementary Notes 

8. Perfonning Organization Report No. 

10. Work Unit No. (TRAtS) 

11. Contract or Grant No. 

DTFA03-89-C-00043 
13. Type of Report and Period Covered 

Tutorial 
Handbook Chapter 1 

14. Sponsoring Agency Code 

AAR-421 

Peter J. Saraceni, William J. Hughes Technical Center Program Manager, (609) 485-5577, Fax x-4005, saracenp@admin.tc.faa.gov 

16. Abstract 

The purpose of this Handbook Chapter is to explain the use of formal methods in the specification and verification of software and 
hardware requirements, designs, and implementations, to identify the benefits, weaknesses, and difficulties in applying these methods 
to digital systems used in airborne systems, and to suggest factors for consideration when formal methods are offered in support of 
certification. The presentation concentrates on the rationale for formal methods and on their contribution to assurance for airborne 
systems within the context provided by Requirements and Technical Concepts for Aviation's DO-178B. This chapter is intended as an 
introduction for those to whom these topics are new. A more technical discussion oHormal methods is provided in NASA Contractor 
Report 4551, "Formal Methods and Digital Systems Validation for Airborne Systems." 

17. KeyWords 18. Distribution Statement 

This document is available to the U. S. public through the 
National Technical Information Service, Springfield, Virginia 
22161. 

Formal methods, Formal specification, Correctness, Theorem 
proving, Proof checking, Abstraction, Design faults, Formal 
logic, Formal proof, Formal deduction, Formal validation, 
Formal verification, Certification 
19. Security Classif. (of this report) 

Unclassified 

20. SecurityClassif. (of this page) 

Unclassified 

21. No. of Pages 

52 

22. Price 

Technical Reoort DocumentatIon Pal e 

Form DOT F1700. 7 (8-72) ReproductIon of completed page authonzed 





TABLE OF CONTENTS
 

Section 

EXECUTNE SUMMARY 

1. INTRODUCTION 

2. THE RATIONALE FOR FORMAL METHODS 

2.1 The Problem with Software and Its Assurance 

2.1.1 Complexity and Design Faults 
2.1.2 The Discontinuous Behavior of Software Systems 

2.2 Formal Methods 

2.2.1 Analytic Formal Methods 
2.2.2 Descriptive Formal Methods 

3. ISSUES AND CHOICES IN FORMAL METHODS 

3.1 Selection and Abstraction in Applications of Formal Methods 

3.1.1 Levels of Formality 
3.1.2 Selected Components 
3.1.3 Selected Properties 
3.1.4 Life Cycle Stages 
3.1.5 Abstraction 

3.2 The Varieties of Formal Specifications 

3.2.1 Model-Oriented Specifications 
3.2.2 Property-Oriented Specifications 
3.2.3 Specifications for Concurrent Systems 

3.3 The Varieties of Formal Analysis 

3.3.1 Consistency Analysis and Typechecking 
3.3.2 Validating Formal Specifications 
3.3.3 Predicting Behavior and Verifying Refinement 

I-iii 

I-vii
 

1-1
 

1-1
 

1-1
 

1-1
 
1-5
 

1-7
 

1-7
 
1-10
 

1-11
 

1-12
 

1-13
 
1-17
 
1-18
 
1-18
 
1-19
 

1-20
 

1-21
 
1-22
 
1-23
 

1-23
 

1-23
 
1-24
 
1-26
 



4. FORMAL lVlETHODS AND CERTIFICATION 1-28
 

4.1 General Recommendations 1-28
 
4.2 Interpretation for RTCAlDO-178B 1-29
 

5. SOFTWARE VERIFICATION PROCESS 1-32
 

6. CONCLUSION 1-37
 

7. BffiLIOGRAPHY 1-38
 

8. GLOSSARY 1-42
 

1-iv 



FTA 

FMECA 

DOT 

FAA 

ASIC 

AACS 

CDS 

RTCA 

LIST OF ACRONYMS AND ABBREVIATIONS 

Fault-Tree Analysis 

Failure Modes, Effects, and Criticality Analysis 

Department of Transportation 

Federal Aviation Administration 

Application-Specific Integrated Circuit 

Attitude and Articulation Control System 

Command and Data Subsystem 

Requirements and Technical Concepts for Aviation, Inc. 

I-v/l-vi 





EXECUTIVE SUMMARY
 

The purpose of this handbook chapter is to explain the use of formal methods in the specification 
and verification of software and hardware requirements, designs, and implementations; to identify 
the benefits, weaknesses, and difficulties in applying these methods to digital systems used in 
airborne systems; and to suggest factors for consideration when formal methods are offered in 
support of certification. The presentation concentrates on the rationale for formal methods and on 
their contribution to assurance for airborne systems within the context provided by Requirements 
and Technical Concepts for Aviation's DO-178B. This chapter is intended as an introduction for 
those to whom these topics are new. A more technical discussion of formal methods is provided in 
NASA Contractor Report 4551, "Formal Methods and Digital Systems Validation for Airborne 
Systems." 
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1. INTRODUCTION.
 

The purpose of this chapter is to outline what is meant by "formal methods" and to explain their 
rationale and suggest techniques for their use in providing assurance for airborne systems in the 
context of RTCA/DO-178B (1992). This chapter is intended as an introduction for those to whom 
these topics are new and assumes no background beyond some exposure to software engineering 
and to safety-critical systems. A more technical examination of formal methods is provided in a 
companion report (Rushby 1993). 

The formal methods portion of this presentation is in three sections: section 2 outlines the general 
rationale for formal methods; section 3 considers the different kinds of formal methods, and some 
of the issues in their selection and application; and section 4 considers their contribution to 
assurance for airborne systems, paying special attention to the requirements of RTCA/DO-178B. 

2. THE RATIONALE FOR FORMAL METHODS. 

Formal methods are a very different approach to software development and assurance than 
traditional methods. In order to describe why formal methods can be worthwhile, it is necessary to 
explain why the assurance problem is so hard for software. 

2.1 THE PROBLEM WITH SOFTWARE AND ITS ASSURANCE. 

Software is notorious for being late, expensive, and wrong. Exasperated technical managers often 
ask "what is so different about software engineering; why can't we (or, less generously, you) do it 
right?" The unstated implication is that the traditional engineering disciplines in which technical 
managers usually received their training do things better. 

This unflattering comparison of software with other engineering endeavors is somewhat justified; in 
particular, the traditional disciplines are founded on science and mathematics and are able to model 
and predict the characteristics and properties of their designs quite accurately; whereas software 
engineering is more of a craft activity based on trial and error rather than calculation and prediction. 
However, the comparison is too glib in that it fails to acknowledge that in two important respects 
software is different. These respects are the complexity of behavior that is achieved by software 
and its lack of continuity. These are discussed in the next two sections. 

2.1.1 Complexity and Design Faults. 

Software provides much of the functionality of modern systems, and software therefore directly 
expresses the scale and complexity of these systems. Complexity is a source of design faults, which 
are faults in the intellectual construction of the system faults that will cause the system to do the 
wrong thing in some circumstances. Design faults can occur in any system independently of the 
technologies used in its construction (see, for example, Brazendale and Jeffs 1994) but, because 
design faults are often due to a failure to anticipate certain interactions among the components of 
the system or between the system and its environment, they become more likely as the number and 
complexity of possible behaviors and interactions increase. 
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Individual software components perform complex functions in modem systems, and collectively 
they provide the focus for interaction among all parts of the system and between the system and its 
environment and operators (i.e., pilots). Furthermore, software, because of its mutability, is also the 
target for most of the changes that are generated in requirements and constraints as the overall 
design for a system evolves. Thus, software carries the burden of overall system complexity and 
volatility, and it is to be expected that design faults will most commonly be expressed in software. 

2.1.1.1 The Need for Correctness. 

Because software is found in active control systems, it is usually infeasible to compensate for 
possible faults or uncertainties in its design by "overengineering" it to provide a "design margin" in 
the same way as physical systems. Whereas, a wing spar may be constructed to withstand loads far 
greater than any it should encounter in normal flight, the software in an autoland system, for 
example, has to do exactly the right thing. 

NOTE: A plausible counterpart to over-engineering in software may be defensive 
programming, whereby each software component explicitly checks for "impossible" 
conditions and tries to do something sensible if they arise. The problem is that if the 
impossible happens, then some failure of design must have already occurred, and 
there is no telling what impact an autonomous decision to do something locally 
"sensible" may have on overall system behavior. This is the central problem with 
complex, interacting systems: local actions can have highly nonlocal consequences. 

Another technique that does not extend from physical to design faults is simple modular 
redundancy. There is always the possibility that physical components may fail, so it is a good idea 
to have spares and backups to provide fault tolerance. A fault-tolerant system must be designed to 
avoid common mode failures in which all its redundant components are brought down by a single 
cause. An example of a common-mode failure is the loss of all hydraulic systems in the Sioux City 
DC-10 crash: the separate hydraulic systems were routed through a single space near the tail engine 
and all were severed when that engine disintegrated. 

Design faults are the quintessential source of common mode failures, so simple replication can 
provide no protection against them. It is possible to provide redundant components based on 
different designs, so-called multiple-version dissimilar (or diverse) software but this is not a fully 
satisfactory solution. A very brief summary why this is so is given in a note on page 1-3. The 
general topic of fault-tolerant software (that is, software that can tolerate faults in its own design) is 
covered in detail in (Hecht 1989). 

2.1.1.2 Evidence for Correctness and the Need to Consider All Behaviors. 

Although defensive programming and software diversity provide palliatives in some circumstances, 
for most critical software systems, there is no alternative to the daunting task of eliminating all 
design faults or at least those that could have serious consequences. It is also necessary to provide 
evidence that this has been done successfully. This evidence is usually in two parts: one, which is 
concerned with the process of design and construction, seeks to show through evidence of good 
practice that everything has been done to prevent serious design faults being introduced and 
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remaining undetected and uneradicated; and the second seeks to demonstrate directly, through 
examination of the system in operation and under test and through an analysis of its design and 
supporting rationale, that it is free of serious faults. The fIrst of these forms of evidence concerns 
quality control; the second provides quality assurance. 

Assurance for a safety-critical system must, at least in principle, consider all possible behaviors of 
the system under all the circumstances it might encounter. Since "all possible" behaviors may be 
too many to examine, two complementary approaches have evolved that attempt to reduce the 
number of behaviors that must be considered. One way tries to show that the system always does 
the right thing; the other tries to show that it never does a seriously wrong thing. 

NOTE: The topic of constructing systems that can tolerate faults in their own 
design using multiple-version software is controversial. The main questions are 
whether this approach provides any signifIcant additional assurance of safety and 
whether that assurance is quantifIable. Answers to these questions hinge on "how 
much" dissimilarity of design can be achieved in the different versions and on the 
extent to which any failures of dissimilar designs will be independent. 

The extent of dissimilarity depends on how much of the overall design is developed 
in multiple versions. Ifdissimilar design is limited to multiple versions of low-level 
modules, then no protection is provided against design faults above that level; in 
particular, the system is fully exposed to faults in the modules' requirements. 
Furthermore, the degree of design freedom, and hence the scope for diversity, is 
limited when small components are built to a common set of requirements, and 
there is some evidence that different designers or implementers do tend to make 
similar mistakes (Eckhardt et al. 1991, Knight and Leveson 1986). 

If dissimilarity is at the level of whole systems or subsystems (e.g., an independent 
backup to a digital flight control system), then there is the question whether the 
dissimilar system should have the full capability and assurance of the primary 
system: if it does, then development and maintenance costs will be at least doubled 
(and that money could have been spent improving the quality, or the assurance, of 
the primary system); if not, there is concern whether the secondary system can be 
relied on in an emergency (e.g., the control envelope of an analog backup system is 
often less than that of the primary flight control system). 

In all cases, there is the critical problem of designing and implementing redundancy 
management across the dissimilar versions: that is, how to decide when one version 
has failed and another should be given control (in the case of backup systems), or 
how to resolve voter disagreements in the case of parallel systems. (Dissimilar 
designs cannot be expected to produce bit-for-bit identical behavior, so threshold 
voting has to be used.) Like other problems involving synchronization and 
coordination of concurrently active distributed components, redundancy 
management whether of identical or dissimilar components is among the most 
diffIcult and fault-prone aspects of software design. Redundancy management does 
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not lend itself to diversity (e.g., one cannot vote the voters ad infinitum; ultimately a 
decision must be made and the algorithm by which that decision is accomplished 
represents a single design) and can be made more complex and fault prone by the 
need to manage diversity in other components. For example, on test flight 44, 
disagreements among the threshold voters in the AFTI-F16 digital flight control 
system caused each computer to declare the others failed. The analog backup was 
not selected because simultaneous failure of two or more digital channels had not 
been anticipated in design of the redundancy management system (Mackall 1988). 

For these and other reasons, the guidelines for certification of airborne software state 
that the degree of protection provided by software diversity "is not usually 
measurable" and dissimilar software versions do not provide a means for achieving 
safety-critical requirements; however, "are usually used as a means of providing 
additional protection after the software verification process objectives for the 
software level. ..have been met" (RTCAlDO-178B 1992). 

For the first approach, a combination of analysis and empirical testing to examine those behaviors 
that are considered most likely to harbor serious faults are used. For example, those that are close 
to boundary conditions or that represent "off nominal" conditions, such as those where some 
subsystems or redundant components have failed. Fault injection (an empirical method) and failure 
modes, effects and criticality analysis (FMECA), an analytical method, are some other examples. 

The general idea behind the second approach to quality assurance is to hypothesize that the system 
has done something bad and then to analyze all the circumstances that could cause this to come 
about and to show that the design prevents them from happening. This approach is inspired by 
hazard analysis, which is a central concept in safety-critical systems; one particular method for 
doing it that has been adapted to software is fault-tree analysis (FTA). 

The property that is common to the different assurance techniques is that they provide ways to 
group "essentially similar" behaviors together so that fewer cases need to be considered while still 
providing effectively complete coverage of all possible behaviors. These techniques are very 
effective with systems based on mechanical, hydraulic, electrical, and other physical components: 
these have relatively few "essentially different" behaviors, so that relatively straightforward analysis 
combined with a modest number of empirical tests is sufficient to cover all cases. These familiar 
techniques are far less effective, however, with complex systems that can exhibit extremely large 
numbers of essentially different behaviors. 

Because the complexity in modem systems is expressed in software, it follows that the software 
will exhibit a large number of different behaviors and that assurance will be difficult for this reason. 
In fact, this difficulty is compounded by another attribute of software that distinguishes it from 
physical systems. This attribute is considered next. 
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2.1.2 The Discontinuous Behavior of Software Systems. 

The reason that software is the focus for most of the design complexity in modern systems is its 
versatility: a software system can provide many different behaviors and can be programmed to 
respond appropriately to many different circumstances. The source of these different behaviors and 
responses is in the many discrete decisions that are made as software executes: each decision is 
discrete in that the subsequent course of execution switches from one path to another according to 
whether or not some condition is true. Because the relationship between the inputs and outputs of a 
piece of software is the cumulative effect of these many discrete decisions, it follows that the 
overall input/output relationship must itself be discretized or discontinuous: small changes in 
inputs can change the outcomes at certain decision points, resulting in radically changed execution 
paths and correspondingly large changes in output behavior. This discontinuous relationship 
between inputs and outputs is the second major respect in which software differs from the physical 
processes considered by other engineering disciplines. 

ill physical systems, there is usually a (piecewise) continuous relationship between inputs and 
outputs: smooth changes in the inputs produce correspondingly smooth changes in the outputs. 
This allows the complete behavior of a physical system to be extrapolated from a finite number of 
tests: the continuous character of the system ensures that responses to untested input configurations 
will be essentially similar to those of nearby cases that have been tested. Departures from 
continuity are usually catastrophic breakdowns in response to inputs beyond the operating range. 

However, with software, this method of inferring properties of the totality of possible behaviors 
from tests on a selected sample is much less secure: without continuity, it cannot be assumed that 
neighboring cases are essentially similar to one another, so there is little justification for 
extrapolating from tested to untested cases. Although less than exhaustive testing does not allow 
definitive statements to be made about complex software, it does permit statistical statements of its 
reliability and that such quantification of reliability is both necessary and sufficient for the 
certification of safety-critical systems. Sometimes this is countered by the argument that talk of 
reliability is meaningless when dealing with design faults. If design faults are present, they will 
cause the system to fail in specific circumstances, and the failure is certain whenever those 
circumstances arise. However, it must be recognized that occurrence of those circumstances is 
associated with a random process, namely, the sequence of inputs to the system (or, more generally, 
the sequence and timing of its interactions with its environment). Thus, the manifestations of 
design faults behave as stochastic processes and can be treated probabilistically. A piece of software 
having a failure rate of less than 10.9 per hour is to say that the probability of encountering a 
sequence of inputs that will cause a design fault to lead to failure is less than 10.9 per hour. 

NOTE: Although this chapter speaks only of software, exactly the same concerns 
apply to many hardware components, especially custom application-specific 
integrated circuits (ASICs). These share all the important properties of software, 
notably, design complexity and discontinuity of behavior and differ only in the 
technology of their implementation. Whereas software design is ultimately 
expressed in a programming language such as Ada and then compiled into code that 
is interpreted by a processor, ASIC designs are expressed in a hardware design 
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language such as VHDL or Verilog and then transformed into hardware structures or 
to gate-array configurations. The considerations for assurance described in 
standards and guidelines such as RTCA/DO-178B apply to ASICs as they do to 
software. Similarly, the techniques of fOlTIlal methods can be applied to ASICs and 
other complex hardware designs. 

The problem with the experimental statistical approach to assurance for complex software is that 
the smallest failure rates that can be determined in this way are typically several orders of 
magnitude greater than those required for safety-critical systems. This is explained in somewhat 
more detail in the next NOTE. 

The infeasibility of experimental quantification of reliability for safety-critical software means that 
its assurance must chiefly be provided by other means. Experimental evaluation is not the only 
means for providing assurance about the behaviors of physically engineered systems. The 
engineering field concerned nOlTIlally provides well-validated mathematical models that allow the 
properties and behavior of a given design to be predicted through calculation. For example, 
structural engineers can calculate the behavior of a wing spar before it is built. It is one of the 
distinctions between engineering and craft activities that engineering uses mathematical modeling 
to predict behavior; whereas crafts use trial and error. FOlTIlal methods, which are introduced in the 
next section, provide a way to move the construction and validation of software away from 
experiment and adjustment and toward prediction and calculation. 

NOTE: It is perfectly reasonable to state requirements for safety-critical systems in 
statistical telTIls. For example, catastrophic failure conditions in aircraft ("those 
which would prevent continued safe flight and landing") must be "extremely 
improbable." That is, "so unlikely that they are not anticipated to occur during the 
entire operational life of all airplanes of one type" (Advisory Circular 25. 1309-1A, 
paragraphs 6.h[3] and 9.e[3]). A little arithmetic suggests 10-7 hours as the 
operational lifetime of an aircraft fleet, and hazard analysis might typically reveal 
ten potentially catastrophic failure conditions in each of ten systems on-board the 
aircraft, so that the maximum allowable failure rate for each is about 10-9 per hour 
(Uoyd and Tye 1982). This is indeed the number suggested as an "aid to 
engineering judgment to help determine compliance" with the requirement for 
extremely improbable failure conditions (Advisory Circular 25.1309-1A, paragraph 
1O.b). The probability 10-9 is applied to complete (sub)system failure, not to any 
software the system may contain. Numerical estimates of reliability are not assigned 
to airborne software (RTCA/DO-178B 1992), but the figure gives an idea of the 
quality required. 

For a simple physical system where breakdown or wearout is the only potential 
cause for a catastrophic failure condition, experience with similar systems together 
with testing and analysis may yield data that can substantiate a claimed failure rate 
as low as 10-9

. 
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Software generally interacts with its environment in such a complex manner that 
prior experience of its behavior in similar applications may provide relatively little 
assurance in a new one. In flight tests of the X31, the control system "went into a 
reversionary mode four times in the first nine flights, usually due to disagreement 
between the two air-data sources. The air-data logic dates back to the mid-1960s 
and had a divide by zero that occurred briefly. This was not a problem in its 
previous application, but the X31 flight-control system would not tolerate it" 
(Dornheim 1991). Similarly, much of the software in the Therac 25 medical 
electron accelerator, which led to massive overdoses of radiation and the subsequent 
deaths of six patients, had been used in an earlier machine without accident 
(Leveson and Turner 1993). Furthermore, most software has significant elements of 
novelty from one application or version to another, so that experimental 
determination of software reliability must examine the actual software in the context 
of its actual application. Furthermore, the test scenarios used to derive reliability 
estimates must closely approximate in type and frequency the distribution of inputs 
that will be encountered in operation (this is called the operational profile). For 
required failure rates on the order of 10.9, this means that it will be necessary to 
construct many millions of the very rare scenarios that will each be encountered 
only one time in a billion. Catastrophic failures usually arise in situations 
compounded by several rare events (Hecht 1993). Divergence between the test and 
operational profiles in these remote regions can lead to inaccurate estimates of 
reliability and spurious assurance of safety. 

The difficulty in reproducing the operational profile for rare events and the time 
required to perform fault injections and to configure other elements of "all-up" test 
scenarios limit the feasible failure rates that can be determined empirically to 10-4 or 
10.5 (Butler and Finelli 1993) nowhere near the 10.9 that is required. 

2.2 FORMAL METHODS. 

The term formal methods refers to the use of mathematical modeling, calculation, and prediction in 
the specification, design, analysis, construction, and assurance of computer systems and software. 
The reason it is called "formal methods" rather than "mathematical modeling of software" is to 
highlight the character of the mathematics involved. 

2.2.1 Analytic Formal Methods. 

Each engineering discipline develops a body of mathematical techniques that are particularly 
appropriate for modeling and predicting the phenomena relevant to its field. In many cases, the 
relevant applied mathematics uses partial differential equations to model the variations in 
continuous physical quantities over time or space. For software, the familiar methods of calculus 
and differential equations are inapplicable because, as noted above, discrete, rather than 
continuous quantities, have to be modeled. Care must be taken here to distinguish the 
mathematics of the domain to which the software is applied (which may, as in the case of control 
applications, require the evaluation of expressions derived from differential equations) from the 
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mathematics that describes its own operation. Instead of differential equations, the properties 
and behaviors of concern are best described in terms of concepts from discrete mathematics: 
sets, graphs, partial orders, finite-state machines, and so on. Calculation in these finite domains 
is based on the methods of formal (or mathematical) logic rather than numerical computation. 
This is because the results of interest are logical properties, such as "this system can tolerate any 
single fault in any component," rather than numerical estimates for some parameter such as lift or 
drag. 

To deduce whether a certain logical property follows from descriptions of certain discrete 
mathematical structures, one has to start from the axioms describing those structures and 
manipulate their symbols according to certain rules of deduction. This process is more akin to 
proving theorems in Euclidean geometry than to ordinary numerical calculation, but it shares 
with calculation the characteristic that it is performed according to strict rules, so that one person 
can check the work of another and computers can be used to automate some of the steps. The 
process of manipulating symbols according to certain rules is called "formal deduction" because 
the legitimacy of the process depends only on the form of the symbolic expressions concerned 
and not on what they are supposed to mean. For example, the transformation of an expression of 
the form x2- y2 into one of the form (x + y) x (x - y) is legitimate whenever x and y are numbers, 
independently of whether they represent the mass of planets or the debts of nations. 

The particular importance of formal methods to safety-critical systems is that they, though subject 
to caveats discussed shortly, permit analysis of all the behaviors of a software system. This total 
exploration is the only way to provide assurance that catastrophic failure does not lie hidden among 
the vast number of possible behaviors. How is total exploration possible? It has already been seen 
that in the absence of continuity there is no basis for extrapolating from tested to untested cases, so 
how is it that a finite procedure based on formal methods can provide assurance for all the (possibly 
infinite) behaviors of a software system? 

Part of the explanation is that formal methods provide powerful tools for identifying and grouping 
essentially similar pieces of behavior together so that all members of a group can be dealt with at a 
single shot. In empirical testing, only the external manifestations of the system are examined, and 
the ability to assign these to groups that are essentially similar is very limited because of their 
discontinuous nature. However, in formal methods the internal design of the system is examined, 
where the sources of discontinuity are visible, and little pieces of behavior can be grouped together 
(all those that result from following a certain path through a certain part of the design, for example). 
The properties of those pieces can be characterized by mathematical expressions (i.e., formal 
specifications) and can deduce the properties of larger pieces of behavior by applying formal 
deduction to the expressions describing their component pieces. By composing small pieces of 
behavior together to yield larger and larger parts of the complete behavior, all possible end-to-end 
behaviors are eventually covered without having to enumerate them explicitly. 

Another way of saying this is that formal methods allow the calculation of the reasons why a 
software design does its job. Software is a designed artifact consciously constructed to achieve a 
goal: if the goal can be written down, and how the design accomplishes it, then an argument could 
be constructed that explains why the software does its job. Formal methods allow this argument to 
be reduced to the certainty of calculation. 
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The certainty of calculation needs qualification: for example, the rules of arithmetic reduce 
addition to the certainty of calculation, but it is easy to make mistakes when adding a long column 
of figures. The calculations underlying formal methods are similarly tedious and error prone when 
done by hand, so it is often desirable to automate them. Unfortunately, these kinds of calculations 
are not so easily mechanized as numerical ones. Whereas the steps of a numerical calculation can 
be programmed as a deterministic algorithm, selection of the steps in a formal deduction requires 
either insight, or a heuristically guided trial-and-error search. Theorem provers are computer 
programs that attempt to automate formal deductions through a combination of heuristics and brute
force search; proof checkers are programs that leave selection of the steps to an insightful human 
and simply check that each one is carried out correctly. The most effective automated reasoning 
tools for formal methods generally combine elements from both theorem provers and proof 
checkers. For simplicity, the term "theorem prover" is generally used in the following sections to 
cover all forms of automated deduction. 

NOTE: Mathematical logic provides ways to reason about the properties of large or 
infinite collections of related things in a finite manner: instead of reasoning about 
the behavior of a system when given the input 1, or the input 2, or... , logic provides 
methods to reason about its behavior on the symbolic input (n) thereby collapsing all 
the separate cases into one. One method allows conclusions to be drawn for all 
values of a given variable by reasoning about a single representative symbolic 
constant (this process is called Solemnization). Another method allows the 
deducing of properties for all values of some ordered domain (e.g., the natural 
numbers, 0, 1, 2... ) by showing (a) that the property is true for the least element(s) 
of the domain (e.g., 0) and (b) that when it is true for all members up to some point 
(e.g., n) then it is also true for the next point (e.g., n + 1) (this process is called 
mathematical induction). Formal deduction allows properties of a complete system 
to be deduced by combining basic steps such as these: steps that are required to 
follow certain rules and can therefore be checked by others or by machine. 

Earlier, it was stated that the ability to represent values symbolically, and hence to group related 
behaviors together, is part of the reason why formal methods allow the consideration of all the vast 
numbers of behaviors of a complex software system, and it was also stated that this claim is subject 
to certain caveats. Both points concern the fact that formal methods are a modeling activity: 
formal methods do not deal with actual software running on electronic computers interacting with 
the real environment but with mathematical models of these artifacts. This is exactly similar to the 
mathematical methods used in other engineering disciplines: a finite-element calculation does not 
calculate the stress in wing spar; it calculates a representation of the stress in a mathematical model 
of a wing spar. 

Modeling is a source of both weakness and strength. Because a model is not the same as reality, 
predictions made with its aid may be incorrect. This can be because the model is insufficiently 
detailed, or because it is wrong. It is necessary to guard against these potential weaknesses by 
carefully validating models before trusting their predictions. The fear of imprecision or inaccuracy 
sometimes leads to the development of complicated, highly detailed models, but this can vitiate the 
main purpose for developing a model in the first place: its ability to support tractable analysis. The 
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great opportunity offered by modeling is the freedom to select and simplify the aspects of reality 
that are to be considered; Newtonian mechanics achieves its effectiveness because it selects for 
attention just a few properties of bodies and their motions: the mass of a body is considered, but 
not its volume or its color. In the same way, formal methods can achieve great effectiveness by 
focusing on just certain parts of a complex system (e.g., those that give the most difficulty, such as 
redundancy management) and by excluding details that are judged irrelevant (e.g., the algorithms 
for redundancy management may be focused on, and the details of their execution as programs 
could be ignored). It requires great skill and judgment to perform the abstraction necessary to 
create formal models that are simple enough to be computationally tractable, yet realistic enough to 
provide accurate predictions and credible assurance. 

2.2.2 Descriptive Formal Methods. 

In the previous discussion, formal methods were introduced by analogy with engineering 
mathematics, and it was stated that the purpose of formal methods is to make predictions about the 
properties and behavior of software based on calculations performed on a mathematical model of its 
design. However, engineering mathematics is not used only for calculation and analysis, it also 
provides a vocabulary for describing and documenting designs and a framework for thinking about 
them. Thus, aeronautical engineers may speak of drag divergence or flow separation as concepts 
independently of particular sets of equations. Formal methods can serve a similar descriptive 
function for software. Concepts such as relations, functions, finite-state machines, and universal 
quantification can supplement or replace the English prose, pseudocode, and various kinds of 
diagrams that are traditionally used in documenting requirements, specifications, and designs for 
software systems. Two benefits can follow from this use of mathematical notation: it can improve 
the quality of documentation and lead to better communication among those working on the 
system, and it can supply better ways of thinking about software. 

There are two aspects to a software system: control and data. Control is concerned with the 
selection, timing, and sequencing of the operations performed in a software system. Data is 
concerned with how information is represented within the computer system and manipulated by its 
software. The problem with traditional ways of documenting and thinking about both aspects of 
software is that they are almost entirely operational: software is understood by mentally executing 
it; similarly specifications all too often describe how the software works rather than what goals it is 
to accomplish. 

For the control aspect, traditional operational methods can be quite effective for systems composed 
of a single sequential program: with practice and determination, it is often possible to think through 
the consequences of each alternative at a branch point, and the behavior of loops can largely be 
understood by mentally considering the cases where each is executed zero, one, and many times. 
For large or reactive or parallel systems, however, these methods become very unreliable. It is hard 
to comprehend all the possibilities when external events can have an impact at almost any point and 
scenarios such as "what happens if a timer interrupt occurs here, and suppose the other processor is 
in fault-recovery mode, so that it could post a 'need-service' flag at just the instant that. .." have to 
be considered. The note on page 1-11 describes an example of the difficulties caused when one of 
the possible scenarios is overlooked. 
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As with control, the traditional way of documenting and thinking about the data aspect of software 
is largely in terms of its concrete representations. Thus, much software documentation is composed 
of pictures or programming-like notation describing how certain information is recorded in the bits 
of a computer word, how collections of similar items are represented in arrays of computer words, 
and how more complex structures are represented by pointers linking records together. More 
modern notations derived from programming languages like Ada and ideas from object-oriented 
design (Rumbaugh et al. 1991), have significantly raised the level of abstraction and improved the 
organization of data descriptions, but the orientation is still that of implementation. 

In contrast to these operational ways of describing and understanding software systems, formal 
methods provide ways to document and think about data and control that depend less on mentally 
tracing execution paths and more on identifying properties that are to be assumed, established, or 
preserved. In addition, the mathematical concepts employed in formal methods assist in the 
construction of more abstract descriptions that state more clearly what is to be accomplished 
without becoming caught up in premature details of how it is to be done. 

Although the main purpose of descriptive formal methods is to improve communications among 
those working on a software project and to facilitate informal quality control activities such as 
reviews and inspections, these methods are not antithetic to the analytical purposes described 
earlier. Rather, there is a continuum of formal methods ranging from those that are primarily 
intended to support mechanically checked analysis to those that are primarily intended for 
documentation. 

3. ISSUES AND CHOICES IN FORMAL METHODS. 

A sketch has been given of the rationale for using formal methods in software development and 
assurance. In this section, some of the different varieties of formal methods are described together 
with some considerations for their selection and use. 

NOTE: While in orbit around Venus, the Magellan spacecraft broke contact with 
Earth and entered "sating" modes preempting its scientific mission on a number of 
occasions. Extensive efforts were undertaken to find the source of the problem, and 
after eight months, the most likely cause was identified (Kasuda and Packard 1993). 
Two flags determine whether a background task should be run in the otherwise 
unused time after the end of all the foreground tasks in the current frame and before 
the end-of-frame interrupt. The scheduled flag determines whether a particular task 
should be run as the background task, and the active flag indicates whether this task 
is an uncompleted activity that should be resumed at an address stored on the stack 
or a new one that should start at its entry point. On very rare occasions, the end-of
frame timer interrupt would occur in the instant after one flag had been set to a new 
value but before the other had been. In particular, a sequence that was invoked 
when a background task completed could be interrupted after the scheduled flag had 
been turned off but before the active flag could be turned off also. Next time this 
task was scheduled, the background task manager would mistakenly think it was 

1-11
 



active and would pop the stack to obtain the address at which to continue its 
execution. Since the task had completed, there was no restart address on the stack, 
so the value that was popped and used was some random piece of data. This 
random address sent the processor to a piece of code where it sat in a tight loop that 
continually reset the watchdog timer, thereby disabling the very mechanism that was 
intended to thwart such runaways (Cooper 1993). Fortunately, Magellan had 
multiple levels of redundancy, and although these were intended to cope with 
hardware, not design problems, they saved the spacecraft. Specifically, the design 
fault described above was in the software of the attitude and articulation control 
system (AACS) computer and although the runaway execution reset the watchdog 
timer it did not modulate the heartbeat pattern that is placed in memory shared with 
the command and data subsystem (CDS) computer. When the CDS computer saw 
the AACS heartbeat cease, it reconfigured the AACS systems, eventually leading to 
a reboot of the errant AACS computer. 

Computer scientists are thoroughly familiar with the dangers of being interrupted 
while adjusting critical data structures and will normally arrange for such actions to 
take place inside a critical section that cannot be interrupted. These incur overhead, 
however, and the Magellan designers thought that in their particular circumstance it 
was safe to do without this protection. Cooper's book, cited above, aptly conveys 
the monumental task of trying to diagnose a very rare but devastating misbehavior in 
a reactive, real-time, parallel software system operating in the presence of faults 
when the only way to understand the system is to mentally (or actually) simulate its 
execution under as many circumstances as possible. 

3.1 SELECTION AND ABSTRACTION IN APPLICATIONS OF FORMAL METHODS. 

Expertise in formal methods is not widespread and can be costly to acquire. Furthermore, the 
resources available for any project are limited, so that effort expended on formal methods may 
reduce that available for other methods of analysis and assurance. For these reasons, formal 
methods need to be applied selectively. There are several dimensions in the use of formal methods 
that permit selective or partial application. Five of the most important are listed below: 

a. The amount of formality can vary between occasional use of ideas and notation 
from discrete mathematics in a pencil and paper manner to fully formal treatments that are checked 
with a mechanical theorem prover. 

b. Formal methods can be applied to all or only to selected components of the system. 

c. Formal methods can be applied to selected properties of the system (e.g., absence of 
deadlock) rather than to its full functionality. 

d. Formal methods can be applied to all or merely to some of the stages of the 
development life cycle. If the latter, a choice should be made of whether to favor the earlier or the 
later stages of the life cycle. 
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e. In all cases it is possible to include more or less detail and to choose the level of 
abstraction at which the formal treatment is conducted. 

Each of these is examined in more detail below. 

3.1.1 Levels of Formality. 

The very notion formal can have different interpretations, and methods differ in the amount of 
formality they employ. For example, suppose a program is produced that will compute the 

mexponential n where n and m are integers and m is nonnegative. One way to do this is by repeated 
multiplication; it is not a very efficient method but will serve the purpose at hand. The following 

mprogram, written in a generic high-level language, computes the value n and leaves it in the 
variable r: 

r: =1; 
i: =m;
 
while i:;c 0 do
 

r: =r *n; 
i: =i-I
 

endwhile
 

The following proof justifies the claim that the program satisfies its specification. 

a. Each time in the while loop, at the point just before the i :;C 0 test, the following 
relationship is true among the variables: 

To prove this, consider two cases: 

1. First time into the loop. The following have been initialized: r to 1 and i to 
m, so r x ni is 1 x nm and the desired relationship is true. 

2. Other times around the loop. Assume the previous iteration left r x n i =nm
; 

after going round the loop once more, r has been replaced by r x n and i by i-I, so it needs to be 
i 1 mproved that (r x n) x n - = n . By arithmetic, the left side equals r x n i and the result follows. 

b. The while loop is exited when i = O. Since it is known that r x n i = nm at this point, 
mit follows by arithmetic that ni is 1, and so r =n as required. 

c. To see that the program always terminates, note that i is initialized to m, which is a 
nonnegative integer. The value of i is reduced by one each time around the loop, so eventually it 
will reach zero and the loop will exit. 
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Although a proof was used here, the process was not particularly formal, the argument was 
presented in fairly ordinary English, and relied on intuitive understanding of how the program 
executes. 

A more formal approach would use logical axioms to describe the behavior of the program without 
requiring one to mentally execute it. The following example uses a method that manipulates Hoare 
sentences, which are constructs of the form {P }S{Q}' where P and Q are expressions describing 
the relationships among the program variables, and S is a piece of program text. The interpretation 
is that if the relationship P is true before execution of S, and if S terminates, then the relationship Q 
will be true afterward. 

The behavior of a while loop is specified by the following axiom. (In this formula, the symbol A 

means "and," and ..., means "not".) 

{PARIS{P}
 
{P }while B do S endwhile {P A..., B}
 

This shows if the Hoare sentence above the line is true then the Hoare sentence below the line will 
i mbe true also. If i ::j:. 0 is substituted for B, r: = r * n; i: = i-I for S, and r X n = n for P, then the 

following is obtained: 

i m i m{ r X n = n A i ::j:. 0I r := r * n; i := i-I {r X n = n } 
i m i m{r X n = n } while i ::j:. 0 do r := r * n; i := i-I endwhile {r X n = n A i = O} 

Now the expression r X ni = n m Ai = 0 at the bottom right gives r = n m, so the next step is to prove 
the Hoare sentence above the line, which involves the sequential composition of two assignment 
statements. 

The axiom for sequential composition is 

{PISI {QlA{ QIStiKl,
 
{P lSI; S2{R}
 

i m iand r X n = n A i::j:. 0 for P, r : = r * n for SI, r X n = n X n m needs to be substituted for 
iQ, i : = i-I for S2, and r xn = n m for R. This gives 

i m i m
{ r xn = n A i ::j:. O} r := r * n {r X n = n X n } 

m 
A {rxni=nxnm

} i :=i-lfrxni = n }
 
i m i m
{r X n = n A i ::j:. O} r := r * n; i := i-I {r X n = n } 

Glossing over some details, the axioms that specify assignment statements allow one to prove the 
two Hoare sentences above the line. To complete the proof of this program, it needs to be 
established that the initialization statements establish the relationship assumed at the start of the 
while loop, that is 
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This follows from the axioms for sequential composition and assignment in a manner similar to that 
of the previous step. 

The second way to analyze this program was much more formal than the fIrst; instead of appealing 
to intuition about how a program executes, axioms and substituted program text and mathematical 
expressions were used. Although insight and intuition were used to decide which axioms to use 
and what to substitute into them, the subsequent manipulations were quite mechanical and it should 
be clear that each of the steps that were performed could have been checked by computer. 

There are advantages and disadvantages to the different levels of formality employed in these two 
treatments of the example program. In discussing them, it is useful to have a simple scale for 
identifying levels of formality. 

Level I formal methods use ideas and notation from discrete mathematics and logic but within a 
loose framework where mathematics, English, diagrams, and other notations are used together. 
Proofs are careful arguments that are evaluated by whether they persuade reviewers. This is how 
mathematics is accomplished. The fIrst treatment of the exponentiation program was an example of 
Level 1 formalism. 

Level 2 formal methods employ a fIxed specifIcation language for documenting requirements and 
designs. A specifIcation language generally blends concepts from logic, discrete mathematics, and 
programming into a single notation. Often, the language is supported by tools that check 
specifIcations for certain types of errors and that provide useful functions such as cross-referencing 
or typesetting. Analyses and proofs are performed by hand and recorded with pencil and paper but 
make use of explicit axioms and proof rules that describe the semantics of the languages and 
methods used. The second treatment of the exponentiation program was an example of Level 2 
formalism. 

Level 3 formal methods stress mechanized analysis. Their specifIcation languages are generally 
closer to standard logic than those of type 2 formal methods and are supported by tools that include 
proof checkers, theorem provers, or model checkers. A Level 3 program verifIcation system could 
mechanize either the fIrst or the second of the approaches presented earlier for the exponentiation 
program. Most current systems use an approach closer to the fIrst than the second. Typically, a 
program verifIcation system would require that the program is annotated with assertions and loop 
invariants as follows: 
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entry assertion m ~ 0 
r:= 1; 
i := m; 
while i ,*0 do 

loop invariant r x n i = nm 

r:= r * n; 
i := i-I 

endwhile 
mexit assertion r = n 

Using the method of inductive assertions, the verification system would then generate the following 
three verification conditions, which correspond to the paths in the program from the entry assertion 
to the loop invariant, from the loop invariant around the loop and back to the invariant, and from 
the loop invariant to the exit assertion, respectively. The symbol :J in these formulas means 
"implies." Also, a prime indicates the value of a variable in the new state following execution of a 
path, and an unprimed name indicates the value in the old state at the beginning of the path. 

a. VC1:m ~O/\r=I/\i=m:Jrxni=nm. 
i m	 i mb.	 VC2: m ~ 0 /\ r x n = n /\ i '* 0 /\ r' = r X n /\ i' = i-I :J r' x n , = n . 
i m m c. VC3: m ~ 0 /\ r x n = n /\ i = 0 :J r = n . 

These verification conditions are expressions in ordinary logic (plus arithmetic) and can be proved 
quite easily by the theorem provers of most verification systems. 

The advantage of Level 1 formal methods is the flexibility that is available: notations and 
techniques can be selected, or invented, to suit the particular problem at hand. These methods can 
be very effective when used by individuals or small teams possessing skill and judgment, but the 
lack of standardized notation and methods can make communication and training difficult across 
larger groups. 

Level 2 formal methods address the problems of communication and training by providing fixed 
specification notations (Z (Spivey 1993) and VDM (Jones 1990) are well-known examples) and, 
usually, a methodology for using them. Individual Level 2 methods are well suited to some types of 
applications (e.g., data processing) and less well suited to others (e.g., concurrent systems); users 
must be careful not to stretch their chosen method beyond its limits. 

In general, the Level 2 notations are optimized for descriptive, rather than analytic, purposes. If the 
goal is to use formal methods to calculate properties of a design for the purpose of analysis, then a 
Level 3 method equipped with appropriate tools will probably be more suitable. It generally 
requires considerable skill and experience to use Level 3 tools effectively, but they can provide a 
very high degree of assurance. 
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3.1.2 Selected Components. 

Formal methods are generally advocated because it is felt that they can improve quality control and 
assurance for software. If this is so, then the greatest benefits will be seen when formal methods are 
applied to the most critical components and to those for which traditional methods have been found 
least effective. 

Subsection 2.2.2 of RTCAlDO-178B identifies software criticality levels A through E according to 
the severity of their potential failure conditions (i.e., Level A is software whose malfunction could 
contribute to a catastrophic failure condition). Software criticality level determines the amount of 
effort and evidence required to show compliance with certification requirements. It provides a 
natural criterion for selecting components for which formal methods should be considered. 

Another criterion that should be considered is the likely effectiveness of formal methods versus 
traditional methods for quality control and assurance. It is to be expected, and there is some 
evidence to support the expectation (Lutz 1993), that the intrinsically hard design problems tend to 
be the most prone to faults and the most resistant to traditional means of assurance. These 
intrinsically hard problems generally involve complex interactions, such as the coordination of 
distributed, concurrent, or real-time computations and redundancy management. It requires great 
skill to address these problems using formal methods, but the number and size of these problems 
may not be large. Hence, as noted here, the greatest return on formal methods may be obtained 
when relatively few, very highly skilled people apply formal methods to the hardest and most 
critical problems. 

NOTE: Readers who found their eyes glazing over at the formulas used to verify 
the trivial exponentiation program may wonder whether these formal techniques 
really are practical and might ask "How am I going to get my engineers to use this 
stuff?" Privately, they may also wonder "if this stuff is so good, why isn't it used 
more?" 

The practicality and costlbenefit of formal methods are heavily dependent on the 
type of applications considered. Program verification of the kind illustrated in the 
examples considered here is undeniably tedious and expensive (Guiho and 
Hennebert 1990) and must compete with traditional methods that are quite effective. 
It seems that the greatest benefits are likely to be found when formal methods are 
applied to the hardest and most difficult problems where traditional methods are 
ineffective or unavailable. Examples of hard problems are those involving 
distributed and concurrent execution and, especially, redundancy management 
(Owre et al. 1995). These problems can be considered practical because, though 
hard, they are not large and can be undertaken by a few highly skilled people. It is 
not necessary to train every programmer to get valuable returns from formal 
methods. Another opportunity lies in problems where formal methods can be 
massively automated. Examples include certain kinds of protocols (Har'EI and 
Kurshan 1990, Clarke et al. 1993) and hardware designs (Miller and Srivas 1995). 
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Before the slow industrial take-up of formal methods is attributed to ineffectiveness, 
the comparative youth of the field should be remembered, and the history of other 
engineering subjects should be recalled (Vincenti 1990). Most of the disciplines 
now regarded as engineering started as crafts, practiced by experimentalists who 
learned what would work and what would not by trial and error, and who passed 
their lore on to their successors by on the job example. Gradually, methods based 
on science and mathematics started to appear, but they did not immediately displace 
the traditional methods. Among the reasons for the slow acceptance of 
mathematical techniques were the conservatism of the traditional practitioners, the 
arcane difficulty of the new methods (to those lacking the necessary training), and 
their initially narrow range of application. For example, Tesla quit Edison's 
laboratory after less than a year complaining of Edison's preference for empirical 
methods "knowing that a little theory and calculation would have saved him 90% of 
his labor" (Bums 1993). 

The new methods displaced the old as concrete evidence of their supenonty 
accumulated, as good textbooks became available, and as new generations of 
engineers, trained in the mathematical methods, joined the field. For example, when 
Donald Douglas, then recently graduated from MIT, started work for the Martin 
company in 1914, he found Glenn Martin bouncing up and down inside a seaplane 
supported on wooden trestles "to see if it was strong enough." Douglas noted that 
"this didn't represent any load that the plane bore in flight." Aided by proper 
engineering analysis, his first design (the Model S) had almost twice the range and 
payload of Martin's previous products (Biddle 1991). 

It is inconceivable today that an aeronautical engineer could be ignorant of 
aerodynamics and argue that such mathematical modeling is irrelevant to the 
practical business of designing airfoils. Formal methods can be expected to playa 
similar role in software engineering. 

3.1.3 Selected Properties. 

Just as some components of a system may be more suitable for formal methods than others, so 
different properties of those components may be more suited than others to formal treatment. As 
with components, suitability may be determined by criticality or by the effectiveness of formal 
methods compared with other methods. For example, the important property of a particular 
component may not be that it does its job (there may be backups to accomplish that), but that it is 
free of "specific anomalous behaviors" (RTCAlDO-178B 1992). Negative properties such as these 
(i.e., properties that state what must not happen) are particularly difficult to test and can be good 
candidates for formal analysis. 

3.1.4 Life Cycle Stages. 

The example shown earlier involving the exponentiation program illustrated the use of formal 
methods in the late life cycle. That example was one of program verification, where an executable 
program is proved to satisfy its detailed requirements. Other applications of formal methods focus 

1-18
 



on activities of the early life cycle, such as the documentation and analysis of requirements, and on 
those of the intermediate life cycle stages such as the documentation of interfaces and the 
systematic refinement of requirements into designs, or designs into implementations. 

Late-life cycle applications of formal methods such as program verification were among the earliest 
to be developed and are now widely known and well understood. Precisely because this part of the 
life cycle is well understood, informal methods and engineering practice have achieved a 
considerable degree of practical effectiveness: sequential programming and gate-level design are 
not major sources of difficulty or faults today. For example, Lutz (1993) reports on 197 significant 
software faults detected during integration and system testing of the Voyager and Galileo 
spacecraft. Only three of these faults were programming errors; the vast majority were 
requirements problems. Similarly, Keutzer (1991) reports that fully half of all ASICs are faulty on 
first fabrication and that these faults are invariably due to errors in requirements or high-level 
design. No errors are reported in implementation below the register-transfer level. 

It is now generally recognized that faults introduced in the early life cycle are among the most 
difficult and expensive to detect and eradicate later. Furthermore, the most serious failures are 
often traced to undetected faults that were introduced early in the life cycle. One explanation for 
the intractability and persistence of faults introduced in the early stages of development is that there 
are few good methods for validating the products of these stages: requirements and early design 
descriptions do not lend themselves to execution and tests. Formal methods can help overcome this 
difficulty by allowing early specifications to be challenged and explored through theorem proving: 
a challenge of the form "if this specification says what it should, then the following ought to 
follow" can be formulated as a putative theorem that should be provable from the specification. 
Rapid prototyping can serve some of the same ends, but it is not always straightforward to 
distinguish those properties that are truly entailed by the requirements or design descriptions being 
validated from those that are accidental to the prototype. Unlike a prototype, a formal requirements 
specification can be validated experimentally without necessarily being executable. 

3.1.5 Abstraction. 

Abstraction is one of the most powerful tools for gaining intellectual mastery of complex systems: 
it allows one to ignore the irrelevant and simplify the relevant so that the essential matter of concern 
is exposed to scrutiny in its clearest and most tractable form. Abstraction is also a crucial factor in 
controlling the size of a formal development and the effort required for its analysis. 

One example of abstraction considers the algorithms that underlie a design rather than their 
expression as programs. For example, the repeated multiplication that underlies the 
exponentiation program considered earlier can be abstracted to an algorithm represented by the 
following recursive function. This specification is generally taken as the axiomatic definition of 

.. d . d bl' h 1 hId ml m2 ml m2 d th exponentIatIOn an IS use to esta IS emmas suc as n = nann + = n x n an e 
correctness of more efficient algorithms. 

m m n
def

= if m =0 then 1 else n x n . 
j endif 
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This specification can be analyzed using ordinary logic (i.e., without the special machinery for 
program verification, such as Hoare sentences) and it is comparatively easy to establish its 
properties, even when using Level 3 formal methods and mechanized theorem proving. The 
transition from this abstract algorithm to the concrete program can be justified either informally, or 
using formal methods of any of the three levels. 

When formal methods are applied to algorithms, there is further scope for abstraction in the choice 
of how much detail to include. For example, one of the important algorithms in fault-tolerant 
systems is for distributing sensor samples consistently in the presence of faults (Lamport, Shostak 
and Pease 1982). This is a distributed algorithm, and if issues of the timing and transfer of the 
messages that are communicated in the algorithm are of concern, then it is necessary to model these 
mechanisms in some detail, and the analysis will be correspondingly detailed and lengthy (Lamport 
and Merz 1994). However, if the main concern is with the fault masking properties of the 
algorithm, then the mechanisms of distributed computation and communication can be ignored and 
the algorithm can be modeled as a recursive function, in which form its analysis is quite 
straightforward. Certain details of behavior, and therefore the opportunity to detect some potential 
faults, are missing in the more abstracted representation. On the other hand, the economy provided 
by ignoring details of communication can allow one to increase detail elsewhere, and this may be a 
useful tradeoff. In this particular example, it is possible to increase the number of different types of 
faults that are considered in the most abstracted representation, and this allows the fault tolerance of 
the algorithm to be analyzed in greater detail (and reveals a bug in a published algorithm) (Lincoln 
and Rushby 1993). 

As this example makes clear, abstraction is closely related to the modeling activity that is inherent 
in formal methods. The whole basis of formal methods is to create mathematical models of certain 
physical and computational phenomena and to make predictions about these phenomena through 
analysis of the models. Abstraction is concerned with how much, and what, detail to include in the 
model, and how to represent it. Validity of the predictions made through use of formal methods 
requires that the abstraction retains all salient details and that their formal representation is faithful 
to reality. Tractability of formal analysis, on the other hand, requires that the abstraction is ruthless 
in expelling all irrelevant detail. Ability to resolve this tension between too much and too little 
abstraction is the most important, and rarest, of the skills required to make effective use of formal 
methods. 

3.2 THE VARIETIES OF FORMAL SPECIFICATIONS. 

Formal methods embrace a variety of approaches that differ considerably in techniques, goals, 
claims, and philosophy. The previous section discussed some of the important differences, such as 
whether formal methods are used primarily for descriptive or for analytic purposes, the level of 
formality employed, and the stage(s) of the software development life cycle to which formal 
methods are applied. The different approaches to formal methods tend to be associated with 
different kinds of specification languages. Conversely, it is important to recognize that different 
specification languages are often intended for very different purposes and therefore cannot be 
compared directly to one another. Failure to appreciate this point is a source of much 
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misunderstanding. In the following sections some of the main varieties of specification languages 
are briefly introduced and their applications indicated. 

3.2.1 Model-Oriented Specifications. 

If specification or annotation of programs is the goal, then the formal notation employed should 
generally be close to, though more abstract than, that of programming, with operations changing 
values stored in an implicit system "state," with data structures described fairly concretely, and with 
control described in operational terms. Formal notations with these characteristics are often 
described as model oriented, meaning that desired properties or behaviors are specified by giving a 
mathematical model that has those properties. For data structures, these models are often 
constructed from the notions of set theory using sets, functions, relations, etc. A pushdown stack, 
for example, can be modeled by a pair consisting of a natural number (the pointer) and a function 
(the stack) from natural numbers to the type of value being stacked. (This can be thought of as an 
array with the contents of the pushdown stack occupying positions 1...pointer; the empty stack is 
indicated by pointer =0.) The "top" of the stack is the value of the function at the argument 
indicated by the pointer; the stack is "popped" by decrementing the pointer, and a value x is 
"pushed" on to the stack by incrementing the pointer and modifying the function so that it takes the 
value x at the argument indicated by the pointer. 

NOTE: Representative notation for a model-oriented specification of a pushdown 
stack is the following, where a prime indicates the value of a variable in the new 
state following the operation and an unprimed name indicates the value in the old 
state prior to the operation. The EEl operator indicates function modification (also 
called "overriding"). 

top IS stack (pointer), provided pointer> 0 
pop is pointer' =pointer - 1; provided pointer> 0 
push is pointer' = pointer + 1A stack' = stack EEl {pointer' H X 

To describe control, model-oriented notations for sequential programs generally provide sequential 
composition and if-then-else selection. Explicit loop constructs are not needed since their effects 
can usually be specified more abstractly using quantification. For example, in programming where 
a loop would be used to search for the least value stored in a pushdown stack, it can be formally 
specified that this value as the t such that (a) for all ('vi) natural numbers up to the pointer, the value 
of the stack at that point is no less than t, and (b) there exists (3) a natural number less than or equal 
to the pointer such that the value of the stack at that point equals 1. Typical notation for specifying 
this is the following: 

('vip: 1 ~ p ~ pointer. stack (p) ~ 1) A (3p: 1~ p ~ pointer. stack (P) =1). 

A disadvantage of model-oriented specifications is that they can be overly prescriptive: suggesting 
how something is to be implemented, rather than just the properties it is required to have. For 
example, even though the specification of the least function does not prescribe an algorithm, it is 
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stated in tenns of the pointer and array model, and so it would be fairly difficult to use this 
specification to establish correctness of an implementation that used linked lists instead. 

3.2.2 Property-Oriented Specifications. 

Preferred for program-level descriptions, specifications of early-life cycle products, such as 
requirements, commonly use property-oriented notations. These notations use an axiomatic style to 
state properties and relationships that are required to hold of the component being described, 
without suggesting how it is to be achieved. To specify a pushdown stack, for example, a property
oriented notation would state the relationships that are required to hold among the operations top, 
pop, and push: namely, that a push followed by a pop leaves the stack unchanged, and a top 
following a push returns the value that was pushed onto the stack. 

Sequential control in property-oriented specifications is generally modeled by functional 
composition. For example, a push followed by a pop is specified by pop (push [s; xl) rather than 
by the more operational push (x); pop (where the semicolon indicates sequential composition and 
the state of the stack is implicit in the operational specification). Iteration is generally modeled 
by quantification or recursion. For example, the least element in a stack can be specified by the 
following recursive function: 

least(s) =if empty (s) then 00 else min(top(s), least(pop (s))) endif. 

The treatment here of the empty stack (setting its least value to infinity) is a little suspect, though 
it can be made rigorous. Also, it has not been explained how the empty predicate is defined. 
Taking care of these difficulties in a fully satisfactory manner would require more space than is 
reasonable here, but they give a hint of the technical details that must be dealt with in a fonnal 
specification notation. 

NOTE: Representative notation for a property-oriented specification of a pushdown 
stack is the following. Note that the value of the stack is supplied as an explicit 
argument (here s) to the operations, rather than being the implicit value of a program 
state. 

axiom pop-push is pop (push (s; x)) = s
 
axiom top-push is top (push (s; x)) = x
 

Notice that although the stack operations are specified in a property-oriented style, this specification 
of the least function has an algorithmic flavor; the presentation in the previous section used a 
model-oriented specification for the data structure, but the specification of the least function was 
property-oriented (relative to the model of the data structure) rather than algorithmic. These mixed 
modes of expression are not uncommon. 

An advantage of property-oriented over model-oriented specifications is the possibility to merely 
constrain certain relationships or values, without having to define them exactly. On the other hand, 
it is very easy to write conflicting constraints that cause the specification to become inconsistent. 
Inconsistent specifications are unimplementable, and are very dangerous because they can be used 
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to prove anything. Some Level 3 specification languages provide ways to ensure or demonstrate 
that property-oriented specifications are consistent. 

3.2.3 Specifications for Concurrent Systems. 

Concurrent and distributed systems can be specified in a variety of styles. One style takes some 
form of communication as primitive and has programming-like features for sending and receiving 
values. This style has a model-oriented flavor and is often referred to as process algebra. Another 
style takes shared variables as the primitive means of communication and often uses temporal logic 
to allow specification that a property should hold henceforth or eventually on some or all execution 
paths. This style has a property-oriented flavor. Methods associated with a kind of analysis known 
as model checking use one method (a kind of state machine) to specify the system concerned and 
another (a kind of temporal logic) to specify the properties required of it. 

Further distinctions concern whether concurrent activities are considered to occur simultaneously 
(true concurrency) or alternately (interleaving concurrency), and whether consideration of time is 
restricted to the order in which events happen, or whether duration is considered (real-time logics). 

3.3 THE VARIETlES OF FORMAL ANALYSIS. 

Earlier, it was observed that one of the most significant differences among formal methods 
concerns whether their primary purpose is description or analysis. In fact, this distinction is too 
coarse: the kind of analysis must be known. The strongest kind of analysis is one that takes a 
formal description and predicts the behavior of a system satisfying that description. This is the 
kind of analysis that most closely corresponds to the use of applied mathematics and calculation 
in traditional engineering fields. If this is the goal desired of formal methods, then the modeling 
and notational techniques employed should favor efficient deduction, whereas more weight 
should be given to the readability of the notation when descriptive purposes are paramount. In an 
ideal world, one technique would serve both ends but, in the present state of the art, those 
notations that are considered most readable are much less tractable for automated reasoning than 
notations designed for that purpose. Conversely, notations designed for automated reasoning 
tend to have a rather austere and forbidding appearance. (The influence of notation can be 
illustrated by comparing Arabic with Roman numerals: for small numbers, at least, Roman 
numerals are more readable (for example, ill is more suggestive of the concept three than is 3), 
but they are much less effective for calculation than are Arabic numerals.) 

In between the purely descriptive uses of formal specifications and those that use automated 
deduction to make general predictions of behavior, there are many intermediate kinds of analysis 
that perform formal calculations to establish limited properties of a specification. 

3.3.1 Consistency Analysis and Typechecking. 

One kind of analysis does not attempt to deduce specific properties of the system described by a 
formal specification; instead it attempts to deduce whether such a system could exist. In other 
words, it checks whether the specification is sufficiently well formed to be a description of 
something. One very important well-formedness property is consistency: if a specification states 
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two contradictory things, then it cannot describe a real system and is therefore useless as a 
specification. Certain types of specifications lend themselves to systematic checks for consistency 
but, as always, there are tradeoffs involved. For example, specifications that allow new concepts to 
be introduced only by definition in terms of existing concepts can easily be checked for consistency; 
however, such specifications are purely constructive (i.e., strongly model oriented) and are 
unattractive for some purposes. In particular, constructive definitions are an unnatural way to state 
assumptions about the environment in which a system is to operate; axioms are more natural for 
this purpose, since the goal is to describe the environment, not to implement it. Consistency for 
axiomatic specifications can be established by showing that the axioms are true of some 
constructively defined implementation. This implementation need not be efficient or realistic, it 
just has to exist. 

It is shockingly easy to write formal specifications that are inconsistent; consequently, any 
specifications offered in support of certification for safety-critical systems should be furnished with 
evidence for their consistency. 

Some specification languages allow "types" to be given for entities appearing in specifications. 
Types are familiar from programming languages such as Ada or Pascal, where variables can be 
declared as integer or boolean and the compiler will generate an error message if an attempt is made 
to multiply an integer by a boolean. The types in a specification language can be more 
sophisticated (since they do not have to have a direct implementation), and the checks that are 
performed can be more elaborate. A computer program that checks specifications to ensure that 
entities are always used in ways compatible with their types is called a typechecker; it can be seen 
as a tool that performs a specialized kind of formal deduction (it attempts to prove the theorem "this 
specification is type-correct"). If the typechecker is allowed to use general-purpose theorem 
proving, rather than just perform algorithmic checks like a programming-language compiler, then 
the type system can become very sophisticated, and typechecking becomes a very powerful way to 
detect errors in a specification. Notably, higher-order logic has to use types to keep the logic 
consistent; types are technically optional for other kinds of logics (where they are sometimes called 
sorts). Ordinary set theory is untyped; when types are added (as in Z, for example), the result is a 
little awkward in that either some of the conveniences of set theory (e.g., nonhomogeneous sets) 
must be given up, or typechecking must be rather weak. Within these constraints, selection of a 
typed or an untyped specification language is often considered a matter of personal preference: 
some people value the early error detection of typechecking, others find the restrictions imposed by 
types to be irksome. However, those who prefer to forsake types should be expected to provide 
other, equally strong, evidence for the properties that would be established by typechecking. 

Strong typechecking (the stronger the better) should always be required for formal specifications 
offered in support of certification for safety-critical systems. 

3.3.2 Validating Formal Specifications. 

Predictions are based on a mathematical model of the system; if the model is inaccurate, the 
predictions may not be true of the real system. It is therefore necessary to validate the accuracy of 
the model very carefully. Formal methods are no different in this regard than the mathematical 
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methods used in any other engineering field. Consistency analysis and typechecking provide 
evidence that a formal specification means something, but additional evidence is required to 
establish that it means what is intended. Reviews are one way to develop this evidence, but formal 
specifications can also support more analytical methods. 

3.3.2.1 Animation. 

One way to gain confidence in a formal specification is to test it on a few small examples. This 
kind of examination of a specification is sometimes called animation. Some kinds of formal 
specification can be executed using highly efficient forms of deduction, so that test cases can be run 
directly against the specification. Model-oriented specifications tend to lend themselves more 
naturally to direct execution than do property-oriented specifications. Note that executability may 
be at odds with other desirable properties of a specification (such as abstractness and 
nonprescriptiveness) (Hayes and Jones 1989). For specifications that cannot be executed directly, it 
may be desirable to construct a simulator or rapid prototype for testing purposes. 

3.3.2.2 Formal Challenges. 

Formal specifications can also be explored by posing and proving putative theorems called 
challenges: "if this specification says what it should, then the following ought to follow." For 
example, suppose the operation of sorting a sequence had been specified; it might be asked whether 
sorting an already sorted sequence leaves the sequence unchanged (i.e., whether sorting is 
idempotent). That is, it might be asked whether: 

sort(sort(x)) =sort(x) 

is a theorem of the specification (assuming "sort" is a function that takes a sequence as argument 
and returns the sorted sequence as its value). Gerhart and Yelowitz (1976) describe how early 
formal specifications of sorting were deficient in that they required the output of the operation to be 
ordered but neglected to stipulate that it should also be a permutation of the input. An attempt to 
prove the theorem above would reveal such inadequacies. 

Animation could examine the putative theorem for a few representative values of the input x, but a 
formal challenge would force consideration of all inputs. For some specifications of sorting, this 
could lead to the discovery that the putative theorem is unprovable; further examination might then 
lead to the notion of a stable sort (one that does not reorder elements of the sequence that are 
equivalent with respect to the ordering criterion, but distinguishable in other ways). It could then be 
decided whether stability was important to the application and, if so, could adjoin it as an additional 
requirement of the sorting specification. 

Notice how this process of subjecting specifications to formal challenges probes the completeness 
as well as the correctness of specifications. Data from the Jet Propulsion Laboratory indicate that 
two-thirds of the defects in requirements specifications are omissions (Kelly, Sherif, and Hops 
1992), so that systematic methods of exploring completeness are highly desirable. 
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Challenges can be undertaken at any level of formality, but it is beneficial for all those who write or 
review formal specifications to have experience in challenging specifications at Level 3 using a 
mechanized proof checker or theorem prover. Those who learn a formal specification language 
from textbooks or training courses, but who do not experiment with mechanically checked 
challenges, are in a position similar to that of learning a programming language without the 
opportunity to execute programs. In fact, their position is worse because experience with other 
programming languages is likely to help them learn a new one; whereas many of those learning a 
formal specification language are receiving their first exposure to formal methods, as well as to 
abstract and axiomatic forms of expression. Just as the failure of an obviously correct program 
teaches one that programming is difficult, so the discovery through dialog with a theorem prover 
that an expected property is not entailed by an obviously correct formal specification teaches one 
that specification is no easier than programming. This has to be learned individually, as only the 
personal shock of discovering egregious errors in personal specifications teaches one the requisite 
humility. 

3.3.3 Predicting Behavior and Verifying Refinement. 

Formal challenges probe a formal specification by asking whether it entails certain expected 
properties. Generally, these properties are special cases or fragments of the overall requirements. 
Once a specification has been sufficiently validated in this way, it is possible to examine it for the 
properties of real interest and to verify some steps in its refinement toward implementation. 

The behavior of a system generally has many aspects and formal methods are usually not used to 
examine every aspect, but only those that are important to a particular analysis. For example, it 
may want to be known whether a system can deadlock or whether it can survive any single fault or 
whether a response is always delivered within a certain time. Some formal methods are especially 
well suited to the calculations necessary to predict certain kinds of properties; others are well suited 
to certain kinds of systems. 

3.3.3.1 State Exploration. 

Certain kinds of formal methods allow automatic, brute force exploration of all possible behaviors, 
provided there are not too many of them (the maximum number depends on many factors and 
increases as technology improves, but the typical range is from tens of thousands to tens of 
millions). Hardware and distributed algorithms such as protocols are particularly suitable for this 
kind of examination through exhaustive state exploration (Dill et al. 1992). Related technologies 
are known as model checking (Clarke, Grumberg, and Long 1994) and language inclusion (Har'EI 
and Kurshan 1990). 

A specification may admit too many behaviors for state exploration to succeed, but it may be 
possible to develop a downscaled version that can be examined in this way. For example, a 
communications protocol may be designed to move arbitrary data reliably over a faulty channel 
using sequence numbers that cycle through the range 0 ...255. For state exploration, the protocol 
can be downscaled to consider just one or two different data values and with sequence numbers 
restricted to 0 and 1. Experience indicates that examining all behaviors of a downscaled design is 
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often a more potent validation and assurance technique than examining some of the behaviors of 
the full design. 

3.3.3.2 Verifying Desired Properties. 

Formal methods provide the most searching examination and the strongest assurance when proofs 
are used to verify significant application properties. The process is essentially similar to that used 
in challenging specifications, except that the properties verified are of external significance, and the 
proofs are usually more difficult and longer. The basic idea is a formal specification of the 
requirement, design, or algorithm concerned, and also a formal statement of the property it is 
desired to satisfy is constructed, and then try to prove that the one implies the other. In practice, the 
first proof attempt seldom succeeds; instead it usually reveals the need for adjustments to the 
specification or to the statement of the desired property or the assumptions under which it is 
expected to hold. Generally, this process of adjustment is iterated several times as renewed proof 
attempts reveal additional subtleties. Experience shows that the process is always very 
enlightening, particularly when conducted with the full rigor of Level 3 formal methods, and leads 
to greatly enhanced understanding of the specifications and properties under examination. 

If all goes well, the adjustments will converge and a satisfactory proof will finally be obtained. 
Subject to caveats on the fidelity of the modeling employed (these were mentioned at the end of 
section 2.2.1 and must be ensured by reviews and by validation as explained in the previous 
section) and on the proof being performed without error (this is where mechanized proof checking 
is valuable, but the mechanization is intended to enhance, not replace, human judgment and 
responsibility) the proof provides strong assurance that the specified artifact indeed satisfies the 
desired property. In addition, the process of formal modeling and proof generally provides other, 
incidental benefits: the discovery and correction of faults, complete enumeration of assumptions, 
sharpened statements of properties assumed or satisfied, streamlined arguments, and an enhanced 
understanding tha~ can lead to improvements in design or assurance. Furthermore, formal 
specifications and proofs are a reusable intellectual resource that can be particularly valuable 
potentially, a corporate asset when design changes on the larger scale require modifications to the 
component under consideration: highly automated Level 3 verifications, in particular, can often 
verify slightly modified designs or properties with very little extra effort, and with the same degree 
of rigor as the original case-something that is very difficult to achieve with reviews. 

3.3.3.3 Verifying Design Refinement. 

Verification of requirements, designs, and algorithms against desired properties is typically an 
activity of the early life cycle. In the later life cycle, the task of verification is generally to 
demonstrate that the specification of a design at one level is implemented correctly by another at a 
more detailed level. Generally an abstraction function is used to translate the terms of the lower
level specification into those of the upper-level and the task is then to prove that this function has 
the properties of a homomorphism. The task becomes more complicated when the two levels 
operate at different granularities of time and especially when the timing relationship between them 
is variable (as, for example, in a pipelined microprocessor, where the implementation may take a 
variable number of cycles to complete an instruction, depending on whether the pipeline stalls and 
other details that are hidden at the upper level). 
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NOTE: The effectiveness of mechanized proof checkers and theorem provers for 
formal methods is advancing very rapidly. For example, mechanized verification of 
the microcode for a simple processor called "Tamarack" represented a significant 
challenge just five years ago (Joyce 1989), whereas it can now be done completely 
automatically in about five minutes (Cyrluk et al. 1994). Progress is uneven 
however, and the amount of human time and effort required to undertake a Level 3 
analysis can vary by two orders of magnitude or more from one verification system 
to another. Potential users should be skeptical of the developer's own assessments 
of where their verification system stands in the power rankings, and of impressions 
gained from small examples; instead, they should evaluate candidate systems on 
full-size examples representative of the intended application. 

Design refinement can be verified using any level of formality, but once the specifications get 
reasonably large, it is difficult to construct all the proof obligations to establish the homomorphism 
without mechanized assistance. On the other hand, the required proofs can be rather repetitive, so 
that investment in automation is often very worthwhile. 

4. FORMAL METHODS AND CERTIFICATION. 

This section is concerned with the use of formal methods in support of certification for airborne 
systems. First, the author's general recommendations are presented. These are followed by more 
specific recommendations in the context of an examination of the paragraphs concerning formal 
methods in RTCAJDO-178B. 

4.1 GENERAL RECOMMENDATIONS. 

Formal methods should be part of the education of every computer scientist and software engineer, 
just as the appropriate branch of applied mathematics is a necessary part of the education of all 
other engineers. Formal methods provide the intellectual underpinnings of this field; they can 
shape thinking habits and help direct approaches to problems along productive paths; they provide 
notations for documenting requirements and designs, and for communicating thoughts to others in a 
precise and perspicuous manner; and they provide one with analytical tools for calculating the 
properties and consequences of the requirements and designs that are documented. 

However, it will be many years before even a small proportion of those working in industry have 
been exposed to a thorough grounding in formal methods, and it is simply impractical to demand 
large scale application of formal methods in airborne software and unnecessary too, since 
industry seems to be doing a mostly satisfactory job using nonformal methods. (The appalling 
safety record of the Airbus A320 aircraft [Boeing Commercial Airplane Group 1994] seems 
attributable to poor human factors rather than to specific software faults [Mellor 1994]). 

Nonetheless, the author recommends that industry should be strongly encouraged to develop and 
apply formal methods that will permit more complete analysis and exploration of those aspects of 
design that are least well covered by present techniques. These arise in redundancy management, 
partitioning, and the synchronization and coordination of distributed components and primarily 
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concern fault tolerance, timing, concurrency, and nondeterminism. Scrupulous informal reviews, 
massive simulation, near-complete unit testing of components, and extensive all-up testing do not 
provide the same level of assurance in these cases as they do for sequential programs because the 
properties of interest are not manifest in individual components and because distributed execution 
is susceptible to subtle variations in timing and fault status that are virtually impossible to set up 
and cover in tests. 

These formal analyses should be additional to those presently undertaken and can increase 
assurance without necessarily being totally comprehensive: the value of formal methods lies not in 
eliminating doubt but in circumscribing it. For example, in addition to all the other assurance 
techniques that may be applied, it will be valuable to prove that mode-switching logic does not 
contain states with no escape and that sensor data are distributed consistently, despite the presence 
of faults. These are not the only properties required of mode switching and sensor distribution, but 
they are among the most crucial and the most difficult to assure using traditional methods. To deal 
with such problems using current technology for formal methods it will often be necessary to 
abstract away irrelevant detail and possibly to simplify even relevant detail. Doing so while 
continuing to model the issues of real concern in a faithful way requires considerable talent and 
training. On the other hand, since only relatively small, albeit crucial, elements of the system will 
be subjected to analysis, the number of people required to possess that talent and training in formal 
methods will be small. 

The benefit provided by these formal analyses is a complete exploration of a model of possible 
behaviors. Subject to the fidelity of the modeling employed (which must be established by 
extensive challenge and review) it will be assured that certain kinds of faults are not present at the 
level of description and stage of the life cycle considered. One source of doubt will have been 
eliminated and others posed more sharply. Admittedly, this does not guarantee that the 
implementation will not reintroduce the very faults that have been excluded by the formal analysis, 
but current practices seem effective at tracing implementations. As resources and capability permit, 
it will be worth seeing if formal methods can increase assurance for these aspects also, but initially 
cases where current practice seems weakest should be focused on, not where it seems effective. By 
that measure, other promising applications for formal methods are in the general area of 
requirements specification and analysis where current processes, though fairly effective, are ad-hoc 
and unstructured. 

4.2 INTERPRETATION FOR RTCAlDO-178B. 

The Requirements and Technical Concepts for Aviation, Inc. (RTCA) document known in the USA 
as RTCAlDO-178B and in Europe as EUROCAE ED-12B provides industry-accepted guidelines 
for meeting certification requirements for software used in airborne systems and equipment and is 
incorporated by reference into European and United States regulatory and advisory documents. 
RTCAlDO-178B provides guidelines and does not lay down specific certification requirements: 
those are based on existing regulations or special conditions decided by the certification authority in 
consultation with the applicant. 
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Formal methods are not specifically endorsed by RTCAlDO-178B (in contrast to certain other 
guidelines and standards that do recommend or require their use such as Interim Defence Standard 
00-55: The Procurement of Safety Critical Software in Defence Equipment 1991) but are included 
among the alternative methods discussed in section 12.3 of RTCAlDO-178B. 

Section 12.3 of RTCAlDO-178B on Alternative Methods states: 

Some methods were not discussed in the previous sections of this document because 
of inadequate maturity at the time this document was written or because of limited 
applicability for airborne software. It is not the intention of this document to restrict 
the implementation of any current or future methods. Any single alternative method 
discussed in this subsection is not considered an alternative to the set of methods 
recommended by this document but may be used in satisfying one or more of the 
objectives of this document. 

Also, section 12.3.1 on formal methods continues: 

Formal methods involve the use of formal logic, discrete mathematics, and 
computer-readable languages to improve the specification and verification of 
software. These methods could produce an implementation whose operational 
behavior is known with confidence to be within a defined domain. In their most 
thorough application, formal methods could be equivalent to exhaustive analysis of 
a system with respect to its requirements. Such analysis could provide: 

•	 Evidence that the system is complete and correct with respect to its 
requirements. 

•	 Determination of which code, software requirements, or software 
architecture satisfy the next higher level of software requirements. 

The goal of applying formal methods is to prevent and eliminate requirements, 
design, and code errors throughout the software development processes. Thus, 
formal methods are complementary to testing. Testing shows that functional 
requirements are satisfied and errors are detected, and formal methods could be 
used to increase confidence that anomalous behavior will not occur (for inputs 
that are out ofrange) or is unlikely to occur. 

(Testing provides assurance that the normal behavior of the software is satisfactory; formal 
methods can extend that assurance by considering all possible behaviors, including those induced 
by rare or anomalous combinations of inputs and other circumstances.) 

Section 12.3.1 of RTCAlDO-178B recognizes different levels of formality and rigor in applications 
of formal methods. (These levels do not quite correspond to those introduced earlier as Levels 1, 2, 
and 3. However, the exact demarcation of levels is unimportant; the main point is that formal 
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methods can be applied at many levels of rigor, and it is important to consciously select one that is 
appropriate for the intended application). 

Formal methods include these increasingly rigorous levels: 

• Formal specification with no proofs 
• Formal specifications with manual proofs 
• Formal specifications with automatically checked or generated proofs 

The use of formal specifications alone forces requirements to be unambiguous. Manual proof is a 
well-understood process that can be used when there is little detail. Automatically checked or 
generated proofs can aid the human proof process and offer a higher degree of dependability, 
especially for more complicated proofs. 

Section 12.3 of RTCAJDO-178B provides guidance in using an alternative method. It states: 

An alternative method cannot be considered in isolation from the suite of software 
development processes. The effort for obtaining certification credit of an alternative 
method is dependent on the software level and the impact of the alternative method 
on the software life cycle processes. Guidance for using an alternative method 
includes: 

a. An alternative method should be shown to satisfy the objectives of 
this document. 

b. The applicant should specify in the Plan for Software Aspects of 
Certification and obtain agreement from the certification authority for 

1. the impact of the proposed method on the software 
development processes. (Software development processes, discussed in section 5 
of RTCAJDO-178B, include software requirements analysis, design, coding, and 
integration.) 

2. the impact of the proposed method on the software life 
cycle data. (Software life cycle data, which are discussed in section 11 of 
RTCAJDO-178B, are produced "to plan, direct, explain, define, record, and 
provide evidence of activities throughout the software life cycle".) 

3. the rationale for use of the alternative method that shows 
that the system safety objectives are satisfied. The rationale should be 
substantiated by software plans, processes, expected results, and evidence of the 
use of the method. 

The effort required to satisfy these guidance items will depend on the extent to which formal 
methods replace, rather than merely supplement, traditional life cycle processes and data. Note, 
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however, that even if fonnal methods are truly supplementary to the traditional processes, there will 
still be some impact on the life cycle processes and data that the applicant should discuss and 
explain. For example, if descriptive fonnal methods are used to supplement traditional 
documentation, then the questions have to be asked: which is the primary description, how is 
consistency established between them (and maintained through changes), and which is the target of 
the reviews and analyses perfonned for verification? 

The guidance for alternative methods in section 12.3 of RTCNDO-178B does not explicitly call for 
an assessment of the impact of the proposed method on verification activities. However, this is 
implicit in the requirement (quoted in paragraph 12.3.b[2]) to consider the impact of the method on 
life cycle data since these data record the results of verification activities. Verification is one of 
what RTCA/DO-178B calls the integral processes, which supports the development processes by 
ensuring the correctness and quality of all processes and the delivered software. 

The integral processes comprise software verification, software configuration management, 
software quality assurance, and certification liaison. They are discussed in sections 6 through 9 
of RTCAJDO-178B; in particular, technical guidance on verification is found in section 6. (The 
guidance on software quality assurance found in section 8 is chiefly concerned with monitoring 
and recording the processes recommended in the other sections.) 

5. SOFTWARE VERIFICATION PROCESS. 

RTCAJDO-178B states: 

Verification is not simply testing. Testing, in general, cannot show the absence of 
errors. As a result, the following subsections use the term verify instead of test 
when the software verification objectives being discussed are typically a 
combination of reviews, analyses, and tests. 

A distinction between reviews and analyses is pertinent when considering fonnal methods. On the 
topic of Software Reviews and Analyses RTCNDO-178B states: 

Reviews and analyses are applied to the results of the software development 
processes and software verification process. One distinction between reviews and 
analyses is that analyses provide repeatable evidence of correctness and reviews 
provide a qualitative assessment of correctness. 

(A draft version ofRTCNDO-178B said "The primary distinction between reviews and analyses is 
that analyses provide repeatable evidence, and reviews provide a group consensus of correctness.") 

The significant attribute of fonnal methods is that they allow certain questions to be settled by 
calculation, that is by analysis, which informal methods must resolve by means of reviews. 

An applicant who offers descriptive fonnal methods might argue that formal analysis is not his goal 
and that reviews provide an adequate means of verification for his purpose. This could be 
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acceptable if formal methods are offered only as a supplement to traditional documentation and if 
the traditional verification processes are applied to that documentation (though it would then be 
natural to question the purpose of offering formal methods); it could also be acceptable if formal 
methods are used for limited purposes, such as describing data structures. One should be skeptical, 
however, of the reliability of reviews when they are applied to substantial formal specifications 
involving, for example, significant numbers of axioms or operations specified by complex pre- and 
post-conditions or constructions with subtle semantics (e.g., schemas in the language Z). The 
problem is that it is difficult to provide objective evidence that the authors of a specification can 
reliably express themselves in such forms and that its reviewers can interpret them correctly. The 
problem is compounded by the fact that such specifications often contain technical errors (the 
equivalent of coding bugs) that can render them inconsistent or meaningless. 

It is the author's opinion that an essential step in ensuring an effective review process for formal 
specifications is to require that they are subjected to stringent (and preferably mechanized) analysis 
before they are submitted to reviews. The purpose of the analysis is to eliminate as large a class of 
potential faults as possible by purely formal means (i.e., by calculational processes), so that the 
review process may concentrate on the intellectual substance of the specification. Some specific 
forms of analysis that should be considered (in ascending order of stringency) are 

•	 parsing. 

•	 typechecking (there are many degrees of stringency possible here; the most stringent 
generally require use of theorem proving). 

•	 well-formedness checking for definitions (i.e., assurance of conservative extension). 

•	 demonstration of consistency for axiomatic specifications (i.e., exhibition of models). 

•	 animation (i.e., construction of an executable prototype from the formal specification so that 
it can be subjected to experiment). This form of analysis has a rather different character 
than the others listed here and should be used for specific purposes that are defined 
beforehand otherwise it can degenerate into hacking. 

•	 state exploration (i.e., exploring all the behaviors of a possibly downscaled version of the 
specification). 

•	 formal challenges (i.e., posing and proving putative theorems that should be entailed by the 
specification). 

Mechanically supported analyses of the kinds suggested above are potent forms of fault detection 
for formal specifications. In many projects it will also be worthwhile to develop additional forms 
of mechanized analysis to check for specific classes of faults. By these means, it can be ensured 
that the formal specifications submitted for review are free of gross defects and the reviewers can 
focus on deeper issues. 
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The question remains: how much confidence can one have in reviews of formal specifications by 
personnel who may not be experts in formal methods? Trust in the integrity of the review process 
seems the best way to settle this. Currently, reviews are conducted using checklists with items such 
as "do you consider the requirements are complete?" , and it will be necessary to add items such as 
"do you consider that you have been able to fully comprehend the formal specification?" The 
assurance that participants do fully comprehend a formal specification may be enhanced if the 
suggestions of Pamas and Weiss (1985) are followed. For example, someone other than the author 
of a specification should be expected to explain it during the review, and the author should pose 
questions to the reviewers (rather than vice versa). 

The rationale submitted to satisfy section 12.3.b(3) of RTCAJDO-178B should clearly state the 
analyses that are required to be completed prior to reviews and should describe the class of faults 
that are detected by means of these analyses and whether the detection is certain or merely likely. 
The number and stringency of the analyses performed may be determined by the criticality and 
sophistication of the formal specifications considered. The rationale should also provide evidence 
that the applicant's process for reviewing formal specifications is effective. 

Although descriptive formal methods have value, it is when formal methods exploit the power of 
calculational, and especially automated, forms of analysis that their singular potential is best 
realized. For example, section 6.3.1 (Reviews and Analyses of High-Level Requirements), 
RTCAJDO-178B, requires: 

Accuracy and Consistency: The objective is to ensure that each high-level 
requirement is accurate, unambiguous, and sufficiently detailed and that the 
requirements do not conflict with each other. (Similar considerations apply to 
lower-level requirements described in section 6.3.2 of RTCAJDO-178B). 

Some aspects of consistency and nonconflict can be established mechanically for 
formal specifications by strong typechecking and related analyses. 

At a more detailed level, the verification objectives stated in section 6.3.1 of 
RTCAJDO-178B include: 

Algorithm Aspects - The objective is to ensure the accuracy and behavior of 
the proposed algorithms, especially in the area of discontinuities. 

Suitable verification objectives for analytic formal methods would be to 
demonstrate that certain fundamental algorithms and architectural mechanisms 
involving complex behavior (i.e., behavior with large numbers of discontinuities) 
satisfy their corresponding high-level requirements. Other suitable verification 
objectives for strong kinds of formal analyses may be to discharge the requirements 
of RTCAJDO-178B, section 6.2.d, which states: 

When it is not possible to verify specific software requirements by 
exercising the software in a realistic test environment, other means 
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should be provided and their justification for satisfying the software 
verification process objectives should be defined in the Software 
Verification Plan. 

Circumstances, "when it is not possible to verify specific software requirements by exercising the 
software in a realistic test environment," are likely to include those where complex interactions 
produce very large numbers of possible behaviors (e.g., in coordination of real-time or concurrent 
processes and in redundancy management), and analytic formal methods may be the most effective 
other means of verification in these cases. RTCAlDO-178B seems to agree that formal methods are 
well suited to such complex behaviors, and in section 12.3.1 states 

...that formal methods may be applied to software requirements that: 

Are safety-related. 

Can be defined by discrete mathematics. 

Involve complex behavior, such as concurrency, distributed processing, 
redundancy management, and synchronization. 

The specific benefit provided by formal methods is that they allow complex behaviors to be 
analyzed (by means of proofs or state exploration), rather than reviewed and analyzed in their 
totality and sampled as by testing or simulation. Thus, the benefit derives from formal analysis, not 
from formal specification alone. Formally specifying the individual state machines at either end of 
a protocol, for example, adds little to the understanding that is needed to calculate the combined 
behavior to ensure that they accomplish the desired goal. 

The author's recommendation is that those aspects of design that involve complex behavior should 
be provided with at least the level of formal description and analysis that would be found in a 
refereed computer science journal. That is, for the mechanisms of redundancy management, a 
specification of the relevant algorithms should be provided together with the fault assumptions, the 
fault masking or recovery objectives, and a proof that the algorithms satisfy the objectives subject to 
the assumptions. This level of rigor of presentation is what was earlier called a Level 1 formal 
method; it is less rigorous than any of the levels of formality mentioned in section 12.3.1 of 
RTCAlDO-178B. Nonetheless, this level of rigor would be a distinct improvement on current 
practice. 

Beyond this modest step, the extent to which quality control and assurance might be further 
enhanced by increasing the level of formal rigor employed or increasing the number of stages of the 
life cycle subjected to formal analysis should be considered. 

When the concern is to establish that certain tricky or crucial aspects of design are correctly handled 
by the algorithms and architectural mechanisms employed, there is little advantage to Level 2 
formal methods over Levell: it is the proofs that matter, and both levels employ the traditional 
kind (presented and checked informally by hand); all that Level 2 would add is a fixed syntax for 
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the specification language and possibly some built-in models of computation and concurrency. 
These last may be a mixed blessing: useful if they match the needs of the problems considered, 
otherwise an obstacle to be overcome. 

However, if Level 2 formal methods add very little in this domain, Level 3 may add a great deal. 
The focus will be on difficult problems, where a large number of potential behaviors must be 
considered. This is why the applicant has decided to use formal methods and the proofs may be 
expected to be replete with boundary conditions and case analyses. These are precisely the kinds of 
arguments where informal reasoning may be expected to go astray. For example, the published 
proof for one synchronization algorithm (Lamport and Melliar-Smith 1985) has flaws in its main 
theorem and in four of its five lemmas (Rushby and von Henke 1993). The flaws in this example 
were discovered while undertaking formal analysis at Level 3 and suggest the benefits that may be 
derived from this level of rigor. 

The value of undertaking mechanically checked proofs is that the dialog with a proof checker 
forces examination of all cases to the argument. On its own, a mechanically checked proof is not 
a means of compliance with a certification basis and concern that "the theorem prover has not 
itself been proved correct" is not an obstacle to deriving great benefit and additional assurance by 
applying Level 3 formal methods in this domain. The analysis produced through dialog with any 
adequately validated proof-checker will be considerably more complete and reliable (and 
repeatable) than one produced without such aid. It is the ultimate walk-through but the 
certificate that comes from a mechanized proof checker should not be accepted as unsupported 
evidence of fitness any more than should other computer-assisted calculations, such as those of 
aerodynamic properties or of mechanical stress. In the author's opinion, the analysis developed 
with the aid of a theorem prover should also be rendered into a clear and compelling semiformal 
(i.e., Levell) argument that is subjected to intense human review, and it is the combination of 
stringent mechanical and human scrutiny (and other evidence, such as tests) that should be 
considered in certification. (For this reason, the author does not endorse the requirement in UK 
Interim Defence Standard 00-55: The Procurement of Safety Critical Software in Defence 
Equipment (1991), paragraph 32.2.3 that a second mechanically checked proof using a "diverse 
tool" should be required. The resources required would be better expended on diverse analysis 
and on human scrutiny of the argument and modeling employed.) 

The construction of a mechanically checked proof that certain algorithms and architectural 
mechanisms accomplish certain goals subject to certain assumptions addresses only part of the 
problem. It is also necessary to validate the modeling employed. That is, the applicant needs to 
provide evidence that the model of computation employed, and the statements of the assumptions 
made and of the goals to be achieved, are all true in the intended interpretation. It is also necessary 
to provide evidence that the algorithm and architectural mechanisms considered in the proof are 
correctly implemented. There is a tension between these concerns: it is generally easier to validate 
models that make a few broad and abstract assertions (e.g., it is possible for a nonfaulty processor to 
read the clock of another nonfaulty processor with at most a small error E) than those that make 
many detailed ones (e.g., that talk about specific mechanisms for reading clocks and the behavior of 
particular interface registers), but the gap between the verified specification and its implementation 
will be greater in the former case. 
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Since the assurance objective of this analysis is to ensure that there are no conceptual flaws in the 
basic algorithms and mechanisms, the author's opinion is that credibility of validation should take 
precedence over proximity to implementation. This argues for performing the analysis early in the 
life cycle and using abstract modeling (i.e., suppressing all detail judged irrelevant). Validation 
should be accomplished by peer review supported by analyses that demonstrate, for example, that 
axiomatic specifications are consistent (i.e., have a model), that intended models are not excluded 
(e.g., that clocks that keep perfect time satisfy the axioms for a good clock), that definitions are well 
formed, and that expected properties (i.e., challenges) can be proven to follow from the 
specification. Concern that implementations are faithful to their verified specifications is a separate 
problem and can be handled using either formal methods or traditional techniques for verification 
and validation. In the author's opinion traditional techniques are likely to be adequate. The 
evidence seems to be that it is the basic mechanisms and algorithms that have been flawed, not their 
implementations. 

6. CONCLUSION. 

The recommendations presented above may seem modest to those who believe that formal methods 
should be used more extensively (for example, in the manner required by UK Interim Defence 
Standard 00-55). They may also seem a retreat from the traditional goals of formal verification: 
there would be no claim of proving correctness and no ambition to apply formal methods from top 
to bottom (i.e., from requirements down to code or gates). Rather, the goal would be to establish 
that certain properties hold, and certain conceptual faults are absent, in formal models of some of 
the basic mechanisms necessary to safe operation of the system. These may seem small claims, but 
they are the claims that the author considers are least well supported by current practice and that 
cause the most concern, since they are the most fundamental. 

Those who argue that more should be required, that formal methods should be carried down to code 
or gates, or that formal specifications should be used as part of the software engineering process 
need to provide evidence that this will increase assurance in an industry that has an excellent record 
of accomplishment using traditional methods. They also need to provide evidence that resources 
expended on formal methods would not be better spent on other forms of assurance. 

On the other hand, these recommendations may seem excessive to some readers: it is proposed that 
the most stringent kinds of formal methods should be applied to the hardest problems of design. 
These pose tough challenges, to be sure, but how could anything less challenging be expected to 
improve a process that is already very effective? Furthermore, notice that although these challenges 
are tough, they are relatively few in number and small in scale, and can therefore be undertaken by a 
small (though highly skilled) team of people. The tools that are currently available to support these 
ambitious applications of formal methods are not ideal but are adequate to the task. 
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8. GLOSSARY. 

These explanations are provided to help the nonspecialist. They are intended to reflect the 
technical uses of the terms considered but do not attempt to incorporate subtleties that concern 
the specialist. 

ABSTRACTION. The process of simplifying certain details of a system description or model so 
that the main issues are exposed. Abstraction is the key to gaining intellectual mastery of any 
complex system and a prerequisite to effective use of formal methods. It requires great skill and 
experience to use abstraction to its best effect. 

In formal methods, abstraction is part of the process of developing a mathematical model that is a 
simplification or approximation of reality but that retain the properties of interest. In physics, for 
example, it is customary to model a moving object as a point mass and to ignore its shape. 
Similarly in the case of a flight-control system, one can analyze properties of the clock 
synchronization algorithm or the redundancy management mechanisms by abstracting these away 
form the larger and more complex system in which they are embedded. 

CORRECTNESS. The property that a system does what it is expected and required to do. 
Formal methods cannot establish correctness in this most general sense because they deal with 
formal models of the system that may be inaccurate or incomplete and with formal statements of 
requirements that may not capture all expectations. The difference between the real and modeled 
worlds is a potential source of error that attends all uses of mathematical modeling in engineering 
(e.g., in numerical aerodynamics or stress calculations) and that must be controlled by validating 
the models concerned. The difference between expectations and documented requirements is 
another problem that attends all engineering activities. Formal methods provide ways to make 
the specifications of assumptions and requirements precise; formal validation (q.v.) can then be 
used to ensure that the specifications are adequately complete and correct. 

Correctness does not ensure safety of other critical properties, since the system requirements and 
expectations may not address these issues (correctly or completely). System requirements 
usually describe functional properties (i.e., what the system is to do); it is necessary to establish 
nonfunctional properties such as safety and security (which often describe what the system is not 
to do) by separate scrutiny (based, e.g., on hazard analysis or threat analysis). Formal methods 
can be used in these processes. 

DESIGN FAULTS. Mistakes in the design of the system or in the understanding of its 
requirements and assumptions that cause it to do the wrong thing or fail in certain circumstances. 
Also called generic faults. Modular redundancy provides no protection against these faults. 

FORMAL LOGIC. Symbolic notation equipped with rules for constructing formal proofs (q.v.). 
Formal logic consists of a language for writing statements and syntactic rules of inference for 
constructing proofs using these statements. Formal logic supports a form of reasoning that does 
not rely on the subjective interpretation of the symbols used. For example, "All Os are #; this 0 
is a 0; therefore, this 0 is #" is sound reasoning, no matter what the symbols mean. Because 
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they do not depend on intuition, formal proofs can be developed or checked by computer (see 
theorem proving). 

There are many formal logics; they differ in what concepts they can express, and in how difficult 
it is to discover or check proofs. Propositional logic, first-order logic, higher-order logic, the 
simple theory of types, and temporal logic are all examples of formal logics that find applications 
in formal methods. These logics are generally augmented with certain theories defined within 
them that provide definitions or axiomatizations for useful mathematical concepts such as sets, 
numbers, state machines, etc. 

FORMAL PROOF AND FORMAL DEDUCTION. Formal deduction is the process of deriving 
a sentence expressed in a formal logic form other through application of one or more rules of 
inference. In the example above, formal deduction allows one to derive the sentence "this 0 is 
#" from the two sentences "AlIOs are #" and "this 0 is a 0." 

A formal proof is a demonstration that a given sentence (the theorem) follows by formal 
deduction from given (i.e., assumed) sentences called premises. 

FORMAL METHODS. Methods that use ideas and techniques from mathematical or formal 
logic (q.v.) to specify and reason about computational systems (both hardware and software). 

FORMAL SPECIFICATION. A description of some computational system expresses in a 
notation based on formal logic. Generally, the specification states certain assumptions about the 
context in which the system is to operate (e.g., laws of physics, properties of subsystems and of 
systems with which the given system is to interact) and certain properties required of the system. 
A requirements specification need specify no more than this; a design specification will specify 
some elements of how the desired properties are to be achieved (e.g., algorithms and 
decomposition into subsystems). 

FORMAL VALIDATION. A process for gaining confidence that top-level formal specifications 
of requirements and assumptions are correct. Formal verification (q.v.) cannot be applied at 
these levels because there are no higher-level requirements or more basic assumptions against 
which to verify them: processes of review and examination must be used instead. Formal 
validation consists of challenging the formal specifications by proposing and attempting to prove 
theorems that ought to follow from them (i.e., "if I've got this right, then this ought to follow"). 

FORMAL VERIFICATION. The process of showing, by means of formal deduction, that a 
formal design specification satisfies its formal requirements specification. The formal 
description of a design and its assumptions supply the premises, and the requirements supply the 
theorem to be proved. In hierarchical developments, assumptions and designs at one level 
become requirements at another, so the formal verification process can be repeated through many 
levels of design and abstraction. At the topmost level, validation (q.v.) must be employed. 

THEOREM PROVING AND PROOF CHECKING. Given a putative theorem and its premises, 
a theorem prover attempts to discover a proof that the theorem follows from the premises; on the 
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other hand, a proof checker simply checks that a proof is valid according to the rules of deduction 
for the logic concerned. Both these processes can be automated. A theorem prover is a computer 
program that uses search, heuristics, and user-supplied hints to guide its attempt to discover a 
proof. A proof checker is a computer program that is used interactively: a human user proposes 
proof steps and the proof checker checks they are valid and carries them out. The most effective 
automated assistance for formal methods is generally obtained by a hybrid combination of these 
approaches: the user proposes fairly big steps and the proof checker uses theorem proving 
techniques to fill in the gaps and take care of the details. Examples of theorem provers include 
Otter, Nqthm, PTTP, RRL, and TPS. Examples of proof checkers include Automath, Coq, HaL, 
Isabelle, and Nuprl. Hybrids include Eves, IMPS, PC-Nqthm, and PVS. Other forms of 
automated analysis that can be applied to formal specifications include model checking, language 
inclusion, and state exploration; examples of systems that perform these analysis are SMV, 
COSPAN, and Mur0. 
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