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EXECUTIVE SUMMARY 

It appears inevitable that the aerospace industry, as well as many other industries, will eventually 
incorporate probabilistic analysis methods to some degree. Probabilistic structural analysis 
methods, unlike traditional methods, provide a means to quantify the inherent risk of a design 
and to quantify the sensitivities of design variables. The degree to which these methods are 
successfully applied depends on addressing the issues and concerns discussed in this report. 
Certainly, one issue is to disseminate familiarity and basic understanding of this technology. 

This report is intended to introduce the subject of probabilistic analysis (also known as 
probabilistic design) to engineers in the aerospace industry as well as act as a reference to guide 
those applying this technology. The level of mathematical complexity is aimed at those with 
limited statistical training; numerous references are given throughout that point to more elaborate 
details of the methods. 

Section 1 of this report explains shortcomings of the current structural analysis approach and the 
potential for improvement via incorporation of probabilistic analysis methods. The evolution of 
probabilistic analysis is given in section 2, dating back to the 1940’s when A.G. Pugsley first 
proposed correlating loads and strengths with structural accident rates. The basic theory of 
probabilistic analysis is discussed and explained via examples in section 3, and the four major 
techniques (integration, simulation, response surface, and limit state approximation) for 
assessing structural reliability are introduced. 

Section 4 tells who has been using the probabilistic approach and lists specific design analysis 
applications. An in-depth look at one industry method (Northrop Grumman Commercial 
Aircraft Division) is given in section 5. A consensus on the benefits and limitations of the 
probabilistic approach from numerous authors who have published technical reports in the field 
is presented in sections 6 and 7, respectively. 
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1. INTRODUCTION. 

Knowing the inherent risk of failure in any design is becoming increasingly important to both the 
manufacturer and the customer. Designers and management must concern themselves with the 
ability to assess risk, identify parameters which drive risk, and minimize the risk given other 
program constraints. Analysis of aircraft structure using probabilistic methods provides a tool 
for meeting these needs. 

This section begins with an overview of the current structural analysis approach, expounding on 
its shortcomings and listing potential dilemmas in applying the approach to future aerospace 
designs. The general probabilistic analysis approach is then explained, with discussion on how 
it can address these problems. 

1.1 CURRENT DETERMINISTIC STRUCTURAL DESIGN APPROACH. 

At each location in the structure, a most severe state of stress occurs from some applied load 
condition. This stress is referred to as a limit stress, and the load causing it is a limit load. The 
“factor of uncertainty” (formerly known as the factor of safety) multiplies limit loads or stresses 
to obtain design loads or stresses and is used to account for the possibility that an actual load will 
exceed a predicted load or that the actual strength will be less than the expected strength. This 
factor, discussed in detail in section 2.2, has evolved from experience and operation of aerospace 
vehicles. 

The design criteria for a structure also specifies allowable strengths for the various materials 
used. Authorized mechanical properties of materials having a prescribed statistical basis are 
presented in MIL-HDBK-5 for metals and MIL-HDBK-17 for composites. The allowable 
structural strength is determined from test data, either from a representative structure or from 
tests on functionally similar structure. 

Analysis performed by applying ultimate load to the structure modeled with the allowable 
strengths yields “margins of safety” values at each location, which are usually optimized to 
positive values close to zero. A margin of safety of zero implies the ultimate load (1.5 x design 
limit load) creates a stress that is equal to the resistive strength of the component. Once the 
analysis shows these margins to be acceptable, the deterministic design analysis is labeled a 
success. Static and fatigue tests are normally performed on the full structure to verify the 
structure will not catastrophically fail under ultimate load and will endure a specified amount of 
time under repeated or cyclical loading. 

1.2 NEED FOR A DIFFERENT APPROACH. 

Current aerospace design analysis methods do not directly account for the random nature of most 
input parameters. The result of treating parameters such as material properties, geometry, 
environment, and loads as singly determined (deterministic) values is a design of unknown 
reliability, or conversely, unknown risk. 

Risk is defined as the chance of encountering harm or loss. Virtually all activities, including air 
travel, contain risk, but we are willing to accept the risk levels, given our life experience. When 
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we elect to participate in these activities, we accept the risk, either overtly or tacitly.  The 
minimization of risk of aircraft structural failure has been handled in the design phase by the 
application of factors of uncertainty and the use of judicious material properties. The number of 
aircraft accidents attributable to structural airframe component failure has been very low in the 
past 30 years. Yet a design process yielding unknown risk poses the following problems for 
future designs: 

•	 As designs grow more critical and competitive, there is a need to quantitatively assess 
and optimize reliability (or minimize risk), given other program constraints. Recent 
military guidelines are emphasizing the importance of reliability on par with performance 
and cost. With an ever-increasing emphasis on warranties, both commercial and military, 
quantified reliability is an essential feature. 

•	 New aircraft developments (e.g., reusable launch vehicle, high-speed civil transport) are 
departing dramatically from traditional environments. Application of historical 
uncertainty factors may not be sufficient to provide adequate safety. Conversely, the 
trend to design to all possible unfavorable events occurring simultaneously could produce 
an unacceptable weight. 

•	 The aerospace industry has seen a steady rise in the percentage of composite airframe 
structures. These materials have more intrinsic variables than metals due to their 
heterogeneity and are subjected to more manufacturing process sources of variation. To 
account for uncertainties, relatively large knockdown factors are employed, which reduce 
the material allowable. This results in a substantial weight increase without a 
quantifiable increase in structural reliability. 

1.3 PHILOSOPHY OF PROBABILISTIC ANALYSIS. 

All design parameters are treated as variables and the basic result from the analysis is a 
probability of failure, or risk1. The effect of realistic variability of the design input parameters 
can thus be obtained. Specifically, given the structural analysis methodology in conjunction with 
statistical characterization of applied loading, geometry, material behavior, and expected 
environment, the probabilistic structural analysis methodology is capable of producing: 

• Safety (risk) quantification 
• Design variable sensitivity analysis 
• Cost/weight reduction scenarios 
• Optimum inspection intervals 

1 In this handbook, no distinction is made between the terms “probability of failure” and “risk.” Actually, there is a 
difference, in that probability of failure is associated with the quantitative measure of reliability, whereas risk 
includes economic consequences of failure. Because these considerations will not be addressed in the handbook, the 
terms will be used interchangeably. 
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Obviously, statistical definition of the design parameters must be developed very carefully, as 
this is the crux of the analysis. There must be a thorough understanding of the range and 
variability of input values, particularly those which are risk sensitive, i.e., producing significant 
changes in risk. Statistical definition of these must be reviewed from the perspective of a wide 
range of technologies. 

Knowing each design parameter’s contribution to overall risk enables the engineer to know 
where to look to improve reliability.  Manufacturing process controls can be tailored to focus on 
parameters that have the most payoff in terms of overall reliability.  Of particular interest to 
aircraft manufacturers is the ability to optimize weight of components for a given risk level. 

1.4 GENERAL CONCEPT. 

The foundation of probabilistic design involves basing design criteria on reliability targets 
instead of deterministic criteria.  Design parameters such as applied loads, material strength, and 
operational parameters are researched and/or measured, then statistically defined. A 
probabilistic analysis model is developed for the entire system and solutions performed to yield 
failure probabilities. 

The solution includes a number of locations and failure modes. Each location requires 
corresponding applied stress and material strength distributions. The applied stress is usually 
obtained from finite element modeling, coupled with conventional structural mechanics 
approaches. Mathematically, the applied stress and material strength distributions are generally 
assumed to be independent. The general concept is to integrate the joint probability of applied 
stress and material strength over the region where stress exceeds strength. The result of this 
integration is the probability of structural failure. 

Sensitivity analysis and/or optimization can be performed once the probabilistic model has been 
established. The concept is that once design driver contributions are identified, the design can be 
optimized for the given constraints, while maintaining the overall failure probability at an 
acceptable level. Sensitivity analysis reveals the major contributors to risk; this allows the 
analyst to vary the design parameters to produce acceptable reliability at minimum weight, for 
example. 
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2. HISTORY OF PROBABILISTIC DESIGN. 

One author [1] suggests “the revolutionary concept separating modern times from the past is the 
mastery of risk: the notion that the future can be at the service of the present, and not a whim of 
the gods.” Serious study of risk began in the mid-1600s, when a French nobleman with a taste 
for both gambling and mathematics challenged famed mathematician Pascal to solve a puzzle: 
how to divide stakes of an unfinished game of chance (dice) when one player was ahead. Pascal 
turned to fellow mathematician Fermat and the outgrowth of their collaboration was the 
discovery of probability theory. For the first time, one could make decisions and forecast the 
future with the help of numbers. During the next 100 years, mathematicians such as Bernoulli 
and Gauss developed probability theory into a powerful instrument for organizing and applying 
information. 

Probability has always carried a double meaning, one looking into the future and the other 
interpreting the past; one concerned with our opinions and the other concerned with what we 
actually know. Oftentimes, what we think we know from the past is no longer applicable to the 
present. We are never certain, always ignorant to some degree, never knowing for sure how 
good our sample is. Given this, we must still strive to generate sample data in which we have 
high confidence and is an accurate indicator of future behavior. 

Today, the challenge to aircraft designers and analysts is to accurately define what data is 
obtainable, assess the degree of confidence to which these data apply to the current situation, 
statistically define the data, and predict performance. One must accept the notion that there is a 
finite (however small) probability of component failure. A scientist who developed the Saturn 5 
rocket put it this way: “You want a valve that doesn’t leak and try everything possible to develop 
one. But the real world provides you with a leaky valve. You must determine how much leaking 
you can tolerate.” Similarly, we must determine levels of aircraft component failure we can 
tolerate, in concert with manufacturing, economic, performance, etc., constraints. 

2.1 PROBABILISTIC METHODOLOGY DEVELOPMENT. 

The concept of probabilistic aircraft structural risk assessment has been around for quite some 
time. In 1942, A. G. Pugsley [2] (Great Britain) published “A Philosophy of Aeroplane Strength 
Factors” to propose correlating loads and strengths with recorded structural accident rates. He 
states “By adopting the principle that neither design loads nor safety factors and permissible 
stresses should be specified arbitrarily, it will be possible to not only eliminate inadequate 
design, but frequently to achieve considerable economy.” 

The following quotes are from Alfred Freudenthal (Civil Engineering professor) in his 1945 
paper [3] The Safety of Structures:  “The true character of the safety factor is disclosed by the 
introduction of a statistical concept of physical qualities, according to which the individual 
properties composing strain and resistance are represented by frequency distributions, instead of 
by individual values... By application of the theory of probability, the concept of safety can be 
rationalized.” Freudenthal’s paper sparked international interest in structural safety; structural 
reliability theory was discussed and formulations presented in papers [4] from British, French, 
Spanish, and Swedish authors during the early 1950s. The theory was fueled by Weibull’s 
success (1951) in developing robust statistical representations of material strength. 
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In 1954, Freudenthal [5] published “Safety and the Probability of Structural Failure” in which he 
expanded the discussion of failure probability.  He realized a problem which still may exist to a 
degree today: “...the concept of safety is deeply rooted in engineering design, whereas the notion 
of finite (no matter how small) probability of failure is repulsive to a majority of engineers.” In 
discussions at the end of reference 5, Jose Corso and Larry Lawrence, fellow civil engineers, 
carried the math one step further by simplifying the calculation of failure probability for the case 
of normally distributed stress and strength. This approach was the foundation of the First-Order 
Reliability Method yielding the Safety Index and will be further discussed in section 3. 

In 1956, the Task Committee on Factors of Safety, American Society of Chemical Engineers, 
supported by the Office of Naval Research, Air Force Materials Laboratory, and Advanced 
Research Projects Agency, was commissioned to (1) clearly define the term factor of safety; (2) 
survey the field as to currently used factors; and (3) recommend forms and values of these 
factors to be used in the future. At the end of 10 years, the final report [6] conveyed a sense of 
frustration: “although the committee has not been successful in its efforts to resolve the ‘factor 
of safety’ question, it is believed that the probability approach deserves considerably more study 
than it has received.” 

This final report defined the following needs of successful structural reliability analysis: 
(1) improve load sequence representation; (2) describe failure conditions more realistically; 
(3) define statistical variation of load and resistance (strength) with more confidence; and 
(4) define design criteria taking reliability concepts into account. Thus the exhortation was made 
to conduct more research. 

Although research continued during the 1960s, lack of acceptance seemed to be caused by the 
perceived lack of a problem with using conventional methods. The durability and damage 
tolerance approach was recognized in the 1960s and adopted in the mid-1970s, based on fatigue 
crack growth prediction laws; this seemed to allay safety concerns. Probabilistic methods were 
thought to require a mountain of data, and the payoff was not convincing.  One author stated 
“Employing statistics and probability theory seemed to carry an aura of mystery for many 
practicing engineers.” 

In 1967, C.A. Cornell [7] proposed a second-moment format for evaluation of structural 
reliability.  This approach generates a “safety index” calculated from the means and variances 
(the variance is the second moment of a distribution) of the parameter distributions. The safety 
index is considered to be a measure of reliability, and is an alternative to numerically integrating 
the joint probability density function to determine a probability of failure. In 1973, Lind [8] 
demonstrated that Cornell’s safety index could be used to derive safety factors on applied loads 
and resistance. This was a milestone; reliability analysis was at long last related to accepted 
(civil engineering) methods of design. Subsequent refinements were made by Hasofer and Lind 
[9], whose method (1974) is considered to be the foundation of probabilistic design theory. 

2.2 HISTORY OF THE SAFETY FACTOR [10]. 

As stated in section 1, the concept of the factor of safety is to provide a safe operating margin 
between an operational level and a design level of strength. Just how safe is unknown, however, 
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because of the uncertainty in structural loads, design analysis, materials, operation, and 
environment. 

By the early 1930s, a factor of safety philosophy had evolved but had not been formalized. 
Airplanes were flying at two-thirds of ultimate, it was agreed that permanent set was not 
desirable, and permissible limit loads were being pushed as high as possible. Introduction of the 
V-G (velocity-acceleration) diagram, which establishes a relationship among design load factor, 
maximum aerodynamic maneuver capability, and operational maneuver limits, helped rationalize 
criteria for utilizing the factor of safety. In March 1934, the 1.5 factor of safety became a formal 
requirement of the Air Corps. There was some thought that the 1.5 factor was derived from a 
ratio of aluminum ultimate to yield stress, but this is just a coincidence which tended to support 
the selection of 1.5. 

This factor did not evolve as the result of some concentrated effort to derive a useful factor. 
Rather, it evolved together with other design requirements as part of an overall desire to 
rationalize structural design criteria. Its use is accepted by most engineers without question. 
When problems have arisen or structural failures have occurred, changes were made to design 
specifications, load prediction techniques, manufacturing techniques, etc., but the factor of safety 
value has never been changed. 

The 1.5 factor is rational because it is based on what were considered to be representative ratios 
of design to operating maneuver load factors experienced during the 1920s and 1930s. Yet at the 
same time it is arbitrary because we do not know the exact design, manufacturing, and operating 
intricacies and variations it protects against or how to quantify them. Neither can the degree of 
inflight safety provided by the 1.5 factor be quantified; but its successful history cannot be 
lightly dismissed. 

Interest in replacing the factor of safety approach with probabilistic interpretations of structural 
safety initiated in the late 1950s. The continued application of the factor of safety approach is 
challenged by some engineers, but there is reluctance to undergo a major change in design 
philosophy, especially one which could encourage legal entanglements. The factor of safety still 
covers many unknown contingencies, and for this reason, some engineers believe there will 
always be a need for some such factor. 

Recently, the factor of safety was renamed to “factor of uncertainty.” A draft (June 1995) of the 
Joint Service Structures Specification Handbook states “The selection of the factor of 
uncertainty, formerly called the factor of safety, should be made by assessing the factors that 
have been used on similar air vehicles performing similar missions. The value for manned 
aircraft has been 1.5.... The selected value of the factor of uncertainty should be increased to 
account for above normal uncertainty in the design, analysis, and fabrication methods when the 
inspection methods have reduced accuracy or are limited by new materials and fabrication 
methods and where the usage of the air vehicle is significantly different.... The use of reduced 
factors of uncertainty needs to be carefully defined and justified.” 

If variability in design, manufacturing, and operating environments can be reduced, then a 
reduction of the 1.5 factor of uncertainty could be justified. If, however, the introduction of new 
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material systems (for example) actually increases the variability, then the 1.5 factor may be 
unconservative and have to be increased. In either case, probabilistic analysis can be used to 
quantify these effects, hence serving a useful purpose. It would not necessarily replace the factor 
of safety as a design criterion, but would help to establish the optimum factor of uncertainty 
level. 

2.3 HISTORICAL ASPECT OF ACCEPTABLE PROBABILITY OF FAILURE. 

A.G. Pugsley’s book “The Safety of Structures” (1966) refers to acceptable structural accident 
rate, developed from British military flight data during the late 1930s, as being in the region of 1 
per 107 flight hours. “Under war conditions,” he states, “this rate rose somewhat, primarily due 
to changes in loading and usage; by the time it reached 5 in 107 flight hours, pilots and crews 
began to regard the type as structurally dangerous, and wanted design changes.... Post-wartime 
civil airline experience has confirmed this tendency to react against structural failure very 
strongly, ...and has lead to the belief in airline operation that the structural accident rate should 
not exceed 1 in 107 hours.” 

In his 1954 paper [5], A.M. Freudenthal, concerning civil engineering structures, addressed the 
subject of acceptable probability of failure, stating “The choice of the specification of probability 
of failure depends on the importance and cost of the structure as well as on the consequences and 
cost of failure.”  Concerning aviation, he referred to “...the usually accepted design value (risk) 
of 2 in 107 flying hours.” 

Released in 1990, the United States Air Force general specification for aircraft structures (AFGS 
87221A) states that when probabilistic methods are used to design airframe structures, the 
maximum acceptable frequency of structural failure leading to the loss of the aircraft is 1 x 10-7 

occurrences per flight (or 1 occurrence in 107 flights). 

Table 2-1 shows accident rates from U.S. aviation in the period from 1983 to 1992, along with 
the 10-year average. Only one of these accidents is known to have resulted from structural 
failure. The rates for structural incidents are in need of further study at this time. Table 2-2 
gives a summary of the risk of different activities put in appropriate units: deaths per person, per 
hour of exposure. This shows the relative risk of aviation accidents compared to risks 
encountered in everyday life. These aviation accident rates were taken from 1985 to 1994 
data [11]. 

A study of U.S. major airline structural incidents during 1985-1994 was performed using data 
from the FAA Incident Database in the FAA Internet Website. Nearly 5,500 incidents were 
identified, representing approximately 108 flights. After individual review and subsequent 
screening, 62 of the 5,500 incidents resulted from structural failure. Of the 62 U.S. major airline 
structural incidents, one resulted in a fatal accident, namely the Aloha Airlines accident in 1988. 
Resulting rates are presented in table 2-3. 
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TABLE 2-1. U.S. AVIATION FATAL ACCIDENT RATES: 1983-1992


Fatal Accident Rates Per Million Flights 

1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 Avg. 
Scheduled 

Service ( )1 

0.57 0.17 0.66 0.29 0.41 0.27 0.69 0.38 0.40 0.26 0.41 

Nonscheduled 

Service ( )1 

0 0 8.40 3.65 0 0 5.32 0 0 0 1.74 

Commuter 

Carriers ( )2 

0.43 2.61 2.37 0.71 3.56 0.69 1.77 0.95 2.94 2.43 1.85 

On-Demand 

Taxis ( )3 

11.4 8.10 13.6 11.5 11.3 10.6 8.3 12.5 11.6 10.8 11.0 

General 

Aviation ( )4 

19.4 18.7 17.5 17.5 16.5 16.8 15.3 15.6 15.2 15.0 16.8 

Total Rate 15.1 14.4 13.7 12.8 12.2 12.1 11.4 11.5 11.2 11.0 12.5 

(1) Includes accidents involving deregulated all-cargo air carriers and commercial operators of large aircraft during 
scheduled 14 CFR 121 operations. 

(2) Includes accidents involving all-cargo air carriers during scheduled 14 CFR 135 operations. 
(3) Includes accidents involving all air carriers during scheduled 14 CFR 135 operations. Assumed 1 hr/flt 
(4) All operations other than those operating under 14 CFR 121 or 14 CFR 135. Assumed 1 hr/flt. 

TABLE 2-2. NORMALIZED RISK COMPARISON 

Cause Number of Deaths Death/(Person-Hour Exposure) 

Motor Vehicle Accident1 43,000 0.49 10-6 

Home Accident1 26,700 0.03 10-6 

Work Accident1 5,000 0.02 10-6 

Aviation Accident2 

- Major Airlines 
- Commuter Airlines 

169 
30 

0.21 10-6 

0.99 10-6 

1Based on 1994 data. National Safety Council “1995 Accident Facts” publication 
2Based on average from 1985-1994 data. FAA Statistical Handbooks of Aviation, 1985-1994 

TABLE 2-3. U.S. MAJOR AIRLINE STRUCTURAL FAILURES 
Incidents and Accidents per Flight 

Type Number (1985-1994) Incidents (Accidents) Per Flight 

Total Incidents 5,497 5.5 x 10-5 

Structural Incidents 62 6.2 x 10-7 

Structural Accidents 1 1 x 10-8 
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3. GENERAL THEORY AND APPROACH. 

This section will present the fundamental theory and concepts behind probabilistic methods and 
list the general steps involved in performing a probabilistic structural analysis. A list of six 
general steps is given, followed by a detailed discussion of each step in sections 3.3 to 3.8. In 
section 3.7, the four main approaches to probabilistic analysis (integration, Monte Carlo 
simulation, response surface approximation, and limit state approximation) are explained. 
Simple example problems are shown, starting with one variable, then two variables (integration) 
with normal/normal, lognormal/lognormal and lognormal/normal distributions. A three-variable 
case is presented, leading into discussion of Monte Carlo simulation, response surface, and limit 
state approximation methods; there are accompanying example problems illustrating these 
methods. 

3.1 BASIC APPROACH. 

The basic probabilistic approach can be summarized as the statistical definition of all input 
variables required for structural analysis methods, statistical definition of the resulting stress and 
strength of the structure associated with predicted failure modes, and evaluation of the resulting 
probability of structural failure. Figure 3-1 illustrates this process. The left-hand side shows the 
input data to determine the applied stress distribution, with each having a statistical distribution, 
while the right-hand side depicts the various capabilities of the structure.  The middle shows the 
output of the process, that being an applied stress and resistive component strength distribution, 
per failure mode, with an associated probability of failure. 
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Probability of Failure 
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Ultimate Buckling Fatigue 
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Fatigue 

Modulus 
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FIGURE 3-1.  PROBABILISTIC ANALYSIS CONCEPT 
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3.2 GENERAL STEPS TO PROBABILISTIC ANALYSIS. 

1.	 Potential failure modes of the structure under anticipated loading conditions are 
identified. 

2.	 An acceptable probability of failure (or minimum reliability) is established for each 
failure mode and/or location on the structure. 

3.	 Existing structural analysis methods are used to model the internal response (stresses) of 
the structure to applied loads and to model the stiffness of the structure. 

4. Random design variables affecting both stress and strength are statistically defined. 

5.	 Probabilistic analysis methods are applied to determine the probability of failure at 
predetermined locations. 

6.	 System probability of failure is modeled as a function of individual location failure 
probabilities and comparison is made to the acceptable probability of failure. 

3.3 STEP 1IDENTIFY POTENTIAL FAILURE MODES. 

The engineer must understand the general behavior of the structure being analyzed. The failure 
mode can change from location to location on the structure, with some areas being subject to 
more than one failure mode. This is where engineering know-how is essential. 

Causes of structural failure are usually grouped into two broad categories: static failure, which is 
usually breakage or buckling, and cyclic failure, characterized by fatigue and crack growth. 
Probabilistic methods have been developed to assess structural failure probability for both static 
and fatigue scenarios. Failure under static loading (steady or steadily increasing) can be caused 
by either overstress resulting from the applied load exceeding the load-bearing capacity of the 
structure or fracture resulting from a combination of applied load and an existing crack growing 
to critical length. 

Structures subjected to cyclic (repeated) loadings can be life-limited by many factors such as the 
presence of manufacturing defects (e.g., cracks, voids, and delaminations) or cyclic operating 
temperatures, pressures, and loads. Metallic structural cyclic failure is usually associated with 
the growth of cracks, whereas composite cyclic failure (although not fully understood) has been 
modeled assuming cyclic delamination growth and/or cracking of the matrix material. 

3.4 STEP 2DEFINE ACCEPTABLE PROBABILITY OF FAILURE. 

The acceptable probability of failure is the criterion to which the results of the probabilistic 
analysis will be compared to determine if the design is acceptable.  Specification of this 
acceptable, or target, probability of failure for the total structure is a complex issue that generally 
will not be decided upon by the engineer performing the probabilistic analysis. Legal, technical, 
and socioeconomic considerations are involved. The agency certifying the structure should be 
responsible for setting this overall specification for the structure. Proposed failure probability 
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values seen most often in literature range from 1 x 10-7 to 1 x 10-9 per flight, but this issue 
remains unresolved at the present time. 

If an engineer is performing a probabilistic analysis on only a portion of the structure, there 
exists the challenge to set a target probability of failure for that component, given the total 
system target level. Depending on the complexity (and dependency) of the structural 
components, this task could range from being straightforward (e.g., all components are equally 
critical and independent) to requiring use of fault tree analysis methods to account for redundant 
load paths. Modeling system probability is discussed further in this section. 

3.5 STEP 3DEVELOP MODELS FOR STRESS AND STRENGTH. 

It is important to note that traditional structural analysis and finite element theory are not being 
supplanted, but rather are an integral part of the probabilistic design process. The probabilistic 
structure must be built around the existing structural analysis process. Optimally, probabilistic 
analysis codes should be interfaced to these structural analysis programs and procedures so that 
the structural analysis output can be directly fed to the probabilistic program and vice-versa. 

3.6 STEP 4STATISTICALLY CHARACTERIZE DESIGN VARIABLES. 

In most probabilistic applications, the two desired probability density functions (PDFs) from 
which structural reliability is determined represent the maximum stress the structure will 
experience and the material strength of the structure to resist this maximum applied stress. 
Unfortunately, these PDFs are not directly available and must be generated from test data and/or 
analysis. 

A common procedure to accomplish this consists of a goodness-of-fit test between the theoretical 
distribution and the actual data. In some instances, a goodness-of-fit test will not reject several 
types of distributions, so the engineer must choose among them. The calculated probability of 
failure is sensitive to the underlying form of the distribution if the probability is sensitive to the 
tails of the distribution, which is usually the case for aircraft structural reliability.  Therefore 
choice of the appropriate distribution is very important. This section is intended to give 
considerations for identifying appropriate distributions of design variables. Two excellent 
references for identifying appropriate distributions are (1) a book entitled Statistical 
Distributions, by M. Evans [12] and (2) a technical paper entitled “Statistical Characterization of 
Life Drivers for a Probabilistic Design Analysis”, by E. Fox [13]. 

3.6.1 Random Variable Definition. 

The words “random variable,” in ordinary lay usage, connote that one does not know what value 
a variable will assume. However, for mathematicians this term has precise meaning:  though we 
do not know this variable’s value in any given case, we do know the values it can assume and the 
probabilities of these values. The result of a single trial associated with this random variable 
cannot be precisely predicted from these data, but we can reliably predict the result of a great 
number of trials. The more trials there are (larger sample), the more accurate the prediction. 
Thus, to define a random variable, we must indicate the values it can assume and the 
probabilities of these values. 
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Design variables exhibit differing variability according to the processes under which they are 
defined or the environment in which they are tested. Some variables have a large amount of 
data, such as those monitored by statistical process control (SPC), while other variables may 
have limited data available. Some variables are naturally skewed about a mean value, such as 
the maximum normal load factor at the aircraft center of gravity (nz), while others may be 
symmetric about a mean value, such as a geometric tolerance. 

The first delineation of random variables is whether the variable is continuous or discrete. 
A random variable is considered to be continuous if it can assume any value in a certain interval 
(a, b), whereas a random variable is called discrete if it can assume only a finite set of values in 
the interval. 

3.6.2 Continuous Random VariablesThe Probability Density Function (PDF) and Its 
Associated Cumulative Distribution Function (CDF). 

If a random variable is defined in the interval (a, b), there may be an infinite number of possible 
values the variable can assume from a to b. Therefore the probability that the variable equals a 
certain value, say x, in the interval has no physical meaning and is zero. Physically meaningful 
would be the probability that the variable falls into a subinterval x to x + ∆x.  The probability 
density function (PDF) describes the distribution of such probabilities as a function of x. 
Commonly encountered examples of such PDFs are the normal, lognormal, Weibull, beta, and 
uniform; each of these will be discussed below. (The cumulative distribution function (CDF), 
the integral of the PDF from -∞ to some finite value of the argument represents the probability 
that an arbitrarily selected value of the argument will be less than the value of the CDF for that 
argument.) 

Because some distributions are unbounded on at least one side, they often specify expected 
frequency information in an extreme region where there is no observed data. Yet this extreme 
region largely influences the probability of failure; therefore these distributions should be used 
only if there is a large amount of data available (enough to obtain extreme values) or where 
experience has shown the distribution to be of a certain form. Examples of variables with 
potentially large amounts of data include SPC variables for a manufacturing process and 
accelerometer data for aircraft structure. 

Continuous distributions which are bounded on both sides include beta and uniform 
distributions. The accuracy of these distributions depends primarily on determining the physical 
bounds. Smaller amounts of data are normally required because the data are used only to 
determine the most likely values between the bounds, i.e., there are no extreme values that need 
to be modeled in the tails of the distribution. 

If it is impossible to define one value as being more likely than another, the uniform distribution 
is used. If some values have a greater chance of occurring than others, the beta distribution can 
be used. In addition to uniform and beta, continuous distributions such as normal, lognormal, 
and Weibull can be truncated at upper and/or lower limit values. The limits are determined by 
engineering judgment or physical limitations associated with the variable. 
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 

3.6.2.1 Normal Distribution. 

The normal (Gaussian) distribution is the most widely known distribution. The equation shown 
in table 3-1 even appears on the German ten-mark bank beside the portrait of C.F. Gauss. The 
normal is a two-parameter distribution with mean and standard deviation, and as most engineers 
know, is symmetrical about its mean. Figure 3-2 shows the normal with the effect of different 
standard deviations. As σ decreases, the PDF gets squeezed toward the mean. The standard 
deviation is also the distance between the mean and the points of inflection of the PDF. 

TABLE 3-1. PROBABILITY DISTRIBUTION DESCRIPTIONS 

Type Parameters Probability Density Function (PDF) 

Normal Mean: µ; Std. Dev: σ ( )f t  e t 
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Normal random variables are encountered in a wide variety of problems. From the central limit 
theorem we know that the sum of a large number of identical independent random variables is 
approximately normal. Actually this theorem even holds under much weaker conditionsthe 
variables do not have to be identical and independent. It is this theorem that explains why 
normal random variables are so often encountered in nature. When we have an aggregate effect 
of a large number of small random factors, the resulting random variable is normal. 

However, it must be recognized that everything is not normally distributed. The normal 
distribution, while oftentimes convenient to use in a probabilistic analysis with respect to 
complexity of calculations, is one of the least conservative distributions that can be used. This is 
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FIGURE 3-2. THE NORMAL DISTRIBUTION 

because the function values drop off very quickly away from the mean, compared to the skewed 
tail of the lognormal or Weibull. What this translates t is a much smaller likelihood of obtaining 
extreme values from the distribution, which in turn translates to lower probability of failure. 

3.6.2.2 Lognormal Distribution. 

A random variable is lognormally distributed if the natural logarithm of the random variable is 
normally distributed. It starts at t0 which is the location parameter (commonly set to zero).  As 
seen in figure 3-3, the lognormal distribution is skewed to the right. The degree of skewness 
increases as the standard deviation increases for a given mean value. For the same standard 
deviation, the skewness also increases as the mean increases, as seen in figure 3-3. The mean 
and standard deviation of the lognormal distribution in terms of standard units (nonlogarithmic) 
are 

2 +
Mean = e

µ + 1 
2 σ 

Standard Deviation = 




e 

2µ σ 2 
 


 
e σ

2 

−1






 

1 
2 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

N
or

m
al

 P
D

F 

Lo
gn

or
m

al
 P

D
F 

µ = 0 
σ = 1 

µ = 0.4 
σ = 1 

µ = 1 
σ = 1 

0.1 

0 

0 2 4 6 8 10 

t ➙ 

FIGURE 3-3. THE LOGNORMAL DISTRIBUTION 

3-6




3.6.2.3 Weibull Distribution. 

Waloddi Weibull delivered his now-famous paper [4] in 1951, claiming his distribution, or more 
specifically his family of distributions, applied to a wide range of problems. Initial reaction was 
mostly negative, but time has shown he was correct. Today it has many applications in different 
industries and in particular the aerospace industry. It can model unimodal distributions with 
shapes varying from highly skewed in either direction to symmetrical, as shown in figure 3-4. 
The Weibull distribution is widely used with brittle materials, such as carbon fibers and 
ceramics, as it is better able to cope with the large amount of scatter in the material properties of 
these types of materials [14, 15]. 
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FIGURE 3-4. THE WEIBULL DISTRIBUTION 

For the shape parameter (β) equal to 1, it becomes the two-parameter exponential distribution, 
while for β > 1, the function assumes the shapes shown in figure 3-4. For β values near 3, its 
coefficient of skewness approaches zero and the function is capable of approximating a normal 
distribution. A change in scale parameter (θ) has the same effect on the distribution as a change 
of the scale of the abscissa. If θ is increased while keeping the other two parameters constant, 
the distribution gets stretched out to the right and its height decreases. The area under the PDF 
from the location parameter ( t0 ) up to the scale parameter (θ) is 0.632. As its name implies, t0 

locates the distribution along the abscissa. When t0 is zero, the distribution starts at the origin. 

3.6.2.4 Beta Distribution. 

This distribution is defined in a finite interval 0 to 1. As seen in figure 3-5, the distribution is 
capable of assuming a symmetric or skewed form. It is unclear why this is not seen often in 
examples of probabilistic methods; perhaps because of the unavailability of goodness-of-fit tests 
that apply to this distribution. Statistical capabilities in common computer software are rapidly 
enabling such goodness-of-fit tests (via optimization). Perhaps another reason for not using this 
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is the fact that its domain is bounded, and there may be concerns of being unconservative by 
choosing physical bounds. 
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3.6.2.5 Uniform Distribution. 

As previously stated, the uniform distribution is used when no weight can be given to a specific 
value or interval within the bounded interval a to b. In figure 3-6, any value between 0 and 10 
would have an equal chance of occurring. 
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3.6.3 Discrete Random Variables and Poisson Distribution. 

A discrete random variable can be defined by a table of (xi, pi) values, where xi are the possible 
values of the variable and pi the corresponding probabilities. The values xi can be arbitrary, but 
the associated probabilities must be nonnegative and sum to 1. The table of probabilities may be 
predefined by the engineer or calculated from a discrete distribution such as the Poisson. 

The Poisson distribution can be used to model the total number of occurrences of some 
phenomenon during a fixed time period or within a fixed region of space. The Northrop 
Grumman methodology (section 5) uses it to model the number of manufacturing defects in a 
structural component. The Poisson distribution may be obtained from the identity: 

− x + xe x e = 1 

This can also be written as: 

2 nx 
e− x (1 + 

x 
+ 

x 
+ ........ + + ......) = 1 

1! 2! n! 
then 

− x 2 − x n − xx e x e  x e  
e− x + + + ........ + + ...... = 1 

1 2 n! 

The interpretation of this distribution is as follows. Each term represents a probability. If x is 
defined as the expected, or average, number of occurrences of an event, then 

− xe =  the probability that the event will not occur. 
− xx e  =  the probability that the event will occur exactly once. 

2 − xx e  
= the probability that the event will occur exactly twice, and so on 

2! 

Let the manufacturing defect rate for a certain defect, based on defects per square foot, be 
defined as λ. Then for a structural component of area Α, the number of expected defects would 

λbe x = ⋅  A . The defect rate λ is always assumed to be constant. A Poisson PDF is shown in 
figure 3-7, with a mean or expected number (denoted x) of 2. 
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3.6.4 Considerations for Composite Material Properties and Sample Size for Material Testing. 

The amount of scatter observed in composite material testing tends to be high relative to metals. 
Variability in composite material property data results from a number of sources, including 
variability in laying up the material, batch-to-batch variability of raw materials, and material 
testing methods. In addition, composite properties show higher (compared to metals) 
degradation due to environmental effects, which creates the need for testing at different 
temperatures and moisture absorption levels. 

Because of the batch-to-batch variability, the data should not be indiscriminately pooled over 
batches, as pooling batches involves the implicit assumption that this (batch-to-batch) source of 
variability is negligible. Material property data should also be tested for outliers (values that 
statistically do not belong to the other data). Should one be identified, MIL-HDBK-17 suggests 
the physical cause for the suspicious value be investigated (e.g., testing or calibration error). If a 
cause cannot be found, the value should be kept. 

The Weibull distribution has been shown to effectively model the behavior of brittle materials, 
including composites. MIL-HDBK-17 recommends the Weibull distribution be used, as a first 
choice, to model composite material failure behavior. As previously stated, one advantage of the 
Weibull is its ability to take on varying forms, from symmetric (approximately normal) to highly 
nonsymmetric distributions. 

The purpose of taking a sample is to find out something about the population. The larger the 
sample, the less is the risk of distortion by extreme values, and the closer is the approximation 
between sample and population mean and standard deviation. For practical purposes, the sample 
standard deviation is sufficiently close to the population standard deviation when the sample size 
is at least 30. 

3-10




At present, there is no criterion for determining the optimum sample size in material testing for 
application to probabilistic design. Obviously, the larger the sample sizes become, the narrower 
the confidence intervals of the estimates of the distribution parameters. One method has been 
suggested [16] to relate sample size to material cost as well as anticipated probability of failure. 
In this approach, the smaller the specified failure probability becomes, the larger the value of 
optimum sample size. The authors also relate optimum sample size to the type of distribution 
shown. 

With composite materials, it is advantageous from a cost and schedule standpoint to test as few 
specimens as possible; therefore small sample sizes (usually considered to be less than 30) are 
often used to generate material strength values for design parameters. Another factor driving this 
is the many different required tests at different temperatures and moisture absorption levels, as 
mentioned above. For example, to qualify a composite material for a commercial application, 
the FAA requires property values for tension, compression, and shear tests subjected to the 
environmental conditions: hot-wet, cold-dry, and room temperature for three separate batches of 
material. 

It has been suggested [17] that sample size is not an important issue with probabilistic design, 
because an initial estimate of the distribution parameters can be made with limited data, then 
probabilistic analysis runs made to determine the sensitivity of the material property in question. 
If the probability of failure is sensitive to the material property, then more testing would be 
prudent, and if not, additional testing would be a waste of time and money.  This point is debated 
in section 7. 

3.7 STEP 5STRUCTURAL RELIABILITY ASSESSMENT. 

This section begins with the basic mathematical formulation of the problem, along with simple 
examples for assessing structural reliability.  Then more complex (real world) problems are 
formulated and four major solution approaches are described that have been developed by 
industry and academia. Sections 3.7.2 through 3.7.5 will give an example of each of the four 
solution approaches. 

The basic problem for probabilistic analysis remains to formulate expressions defining the load 
(or stress) on the structure and the resistance to applied load (or strength) of the structure. For a 
typical design condition, both stress and strength can be plotted in the same horizontal axis as 
shown in figure 3-8. The mean strength, obviously, is greater than the mean applied stress. 
However, the overlap of PDFs suggests that it is possible for strength to be less than applied 
stress, which is the condition for failure. This illustration conveys the essence of probabilistic 
structural analysis: there is a possibility of failure, and it is defined in the small region of overlap 
between the PDFs. 
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FIGURE 3-8.  IMPLIFIED (2-DIMENSIONAL) FORMULATION

A technically accurate description of the stress-strength curve overlap is shown in figure 3-9,
showing the stress and strength along the horizontal and vertical axes, respectively.  The line
drawn represents the scenarios where stress = strength, or g(R,S) = R - S = 0.  This is
often referred to as the “limit state” that separates the failure region (g < 0) from the safe region
(g > 0).  e function g(R,S) is commonly referred to as the performance function.  The
probability of failure is defined as the volume under the surface shown in the failure region
where g < 0.
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FIGURE 3-9.  THREE-DIMENSIONAL REPRESENTATION OF PROBLEM

The probability of failure is defined as PF= P[g(R,S) ≤ 0].  Aside from applied stress and
material strength, there are numerous other R,S variates, listed in table 3-2, for which
probabilistic analyses can be performed.
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TABLE 3-2. LIMIT STATE FORMULATIONS USED IN AEROSPACE

STRUCTURE DESIGN


Failure Occurs if ≤ S 
Clearance ≤  Maximum displacement 
Fracture toughness ≤  Stress intensity factor 
Critical crack size ≤  Growing crack size 
Critical material thickness ≤  Corrosion depth 
Tolerable noise level ≤  Service noise level 

R 

The statistical variation of R and S are described by the probability density functions fR(r) and 
fS(s), respectively.  The overlap region (volume) is quantitatively obtained from the following 
expression: 

P f =∫∫ fR,S 
( r ,s )drds 

Ω 

where fR,S(r,s) is the joint density function and Ω is the failure set, i.e., the set of all values of R 
and S such that g(R,S) ≤ 0. If the variables R and S are statistically independent (changing one 
has no effect on the other; they share no common variables), then the joint density function is 
expressed as the product of individual density functions as follows: 

fR,S ( r ,s )= fR( r ) fS ( s ) and thus P f =∫∫ fR
( r ) f

S 
( s )drds 

Ω 

We will now consider 3 scenarios producing different expressions for determining probability of 
failure: (1) one variable where probability of failure can be found using a statistics textbook and 
calculator; (2) two variables where probability can be found using standard numerical integration 
routines; and (3) more than two variables where alternative means must be used to determine the 
probability. 

The example consists of a steel bar, with cross-sectional area A, subjected to uniaxial tensile load 
(denoted P), as shown in figure 3-10. The failure mode is yielding, i.e., the bar fails if the 
applied load exceeds the bar’s yield strength (denoted Fy). 

P P 

FIGURE 3-10. 17-7PH STEEL BAR LOADED IN TENSION 

The three different cases will all use this example configuration, but each case will have a 
different number of parameters that will be considered random variables. The performance 
function for this example is written as g = Fy × A - P, such that g < 0 indicates failure. 
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3.7.1 Single-Variable Failure Probability Determination. 

The steel bar is being laboratory tested in a tensile machine.  The load will be applied up to a 
certain level P, which is considered to be exactly (or very close to) known because the machine 
is calibrated. The dimensions of the bar were measured beforehand using high precision 
instruments, and its area was calculated to be 0.80 square inch. Thus the variation of parameters 
P and A is considered to be zero and the only probabilistic variable is yield strength. All 
parameters are assumed to be independent. This means that cross-sectional area and yield 
strength are both assumed to be unaffected by the applied loading. 

The results from 17-7PH steel coupon testing were analyzed using a goodness-of-fit test, wherein 
it was determined that the data most closely fit a normal distribution with the following 
parameters: 

Fy:  Mean = 140,000 psi 
Standard deviation = 10,000 psi 

Problem: What is the probability of failure if the bar is subjected to a 100,000 lb. load? 

Solution: The performance function is thus g = Fy × 0.80 - 100,000. Failure occurs when g ≤ 0, 
which translates to Fy ≤ 125,000 psi as our definition of failure. Therefore we need to calculate 
the probability of a material with a published mean yield strength of 140,000 psi and standard 
deviation of 10,000 psi having been manufactured such that its yield strength is below 125,000 
psi. This is depicted in figure 3-11. 
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100 110 120 130 140 150 160 170 180 

Material Strength Distribution 

Normal: mean=140, std dev=10 

125 ksi applied stress 

Area = Probability 
of Failure 

Yield Strength 

FIGURE 3-11. FAILURE PROBABILITY DETERMINATION: ONE VARIABLE 

This probability can be found using a calculator and elementary statistics textbook. We first 
transform the stress values into a normal random variable z with a mean of zero and a standard 
deviation of 1. The distribution of a random variable with a mean of zero and a standard 
deviation of 1 is called a standard normal distribution, and a table of areas under this curve (or 
probabilities) is found in most statistics textbooks. 
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Value − µ
The transformation is accomplished by the following: z =

σ 

The value 125,000 psi transforms into: z = 
125,000 psi − 140,000 psi 

= −15. 
10,000 psi 

Looking in a standard normal distribution table, we see that the area under the normal curve 
up to z = -1.5 is 0.0668. Therefore the probability of having a material strength less than 
125,000 psi, knowing the material exhibits a mean value of 140,000 psi and a standard deviation 
of 10,000 psi, is approximately 0.067. Thus the probability of failure of the bar (region shown in 
figure 3-11) is 0.067. 

3.7.2 Two-Variable Probability of Failure Determination. 

In most cases, the probability of failure is determined via numerical integration when two PDFs 
are involved. This section begins by showing how to adjust the parameters of a PDF to account 
for an additional factor, which frequently arises in two-variable cases. An explanation is given 
next for normal-normal and lognormal-lognormal situations, circumventing the need to perform 
numerical integration. The section concludes with examples of normal-normal and lognormal-
lognormal scenarios and an example (lognormal-normal) where numerical integration is 
required. 

3.7.2.1 Adjustment of PDF Parameters. 

Shifting (adding a factor) and scaling (multiplying by a factor) of design variables expressed in 
the performance function are commonly needed and are accomplished by changing the 
parameters of the PDFs. Very seldom will the performance function be of the form g = x - y, for 
the two-variable case. The more common case would be g = C1x - C2y + C3. Yet the data which 
has been fit to a distribution are normally x and y.  Therefore we need a PDF for the quantity 
[C1x] and a PDF for the quantity [C2y - C3]. The procedures for adjusting the parameters of the 
x, y PDFs to account for multiplicative and additive constants are shown in table 3-3. 

For example, assume measurements were taken to define the yield strength variable, Fy. Assume 
a normal distribution was found to give the best fit, with mean (µ) of 100,000 psi and standard 
deviation (σ) of 10,000 psi. If the performance function is g = 0.8 Fy - P, then we are interested 
in using the mean and standard deviation of the quantity 0.8 × Fy. 

So the new parameters (per table 3-3) are: 

Mean: 0.8 × 100,000 = 80,000 and 
Standard deviation: 0.8 ×  10,000 = 8,000 
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TABLE 3-3. PROBABILITY DISTRIBUTION TRANSFORMATIONS


Distribution Parameters Transformation New Parameters 
Normal µ , σ Shift by C3 µ  + C3 , σ 

Lognormal µ ,σ , t0 Shift by C3 µ ,σ , t0 + C3 

Weibull θ , β , t0 Shift by C3 θ , β , t0 + C3 

Normal µ , σ Scale by C2 0> C2 µ , C2 σ 
Lognormal µ ,σ , t0 Scale by C2 0> µ +ln C2 ,σ , C2 t0 

Weibull θ , β , t0 Scale by C2 0> C2 θ , β , C2 t0 

These adjusted parameters would then be used to assess the probability of failure. 

3.7.2.2 First-Order Reliability Method. 

Assuming the variables x and y are statistically independent and normally distributed, the 
variable (performance function) g = x - y or g = x + y is also normally distributed. That is, it can 
be shown [3-7] that the variable g, being a linear function of two Gaussian variables, is also 
Gaussian. Table 3-4 lists the mean and standard deviation associated with addition and 
subtraction of normal PDFs. 

TABLE 3-4. COMBINING NORMAL DISTRIBUTIONS 

Operation Mean Standard Deviation 
g x  y= +  µ µ µg x y = + σ σ σg x y = +( ) /2 2 1 2  

g x  y= −  µ µ µg x y = − σ σ σg x y = +( ) /2 2 1 2  

If, for example, the performance function is g = x - y, then the mean and variance of g is 
determined by 

2 1 2µ g = µ x − µ y and σ g = (σ 2 
x + σ y )

/

The event of failure is g < 0. The probability of failure is now given in terms of g: 
2 

1  g −µ g  

P( g < 0 ) =∫ 
− 

0 

∞ σ 
1

2π 
e 

− 
2  σ g 

 dg 
g 

If we let z = (g - µg) / σg,, then σg dz = dg. When g = 0, the upper limit of z is given by 

0 − µ g µ g = − 
µx − µyz = = ,

σ g σ g σ x 
2 + σ y 

2 

and when g → - ∞, the lower limit of z → - ∞. 
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  

µx − µy− 

The transformed integral becomes probability of failure = 
2π 
1 

2 σx +
2 σ y

∫ e− z2 / 2dz 
−∞ 

The random variable z is the standard normal variable! Therefore the probability of failure can 
be found by looking in the standard normal table for the area under the curve from -∞ to 

µx − µ
yz = −  

x + σ 2 
yσ 2 

. This approach was developed by Cornell [7] and is a part of the First-Order 

Reliability Method (FORM) [19]. He named the ratio the “safety index” and denoted it as β. 
µg 

µx − µ
yThat is β = 

σ σ + g x 
2 σ y 

2 
= and Pf = Φ{-β} where Φ is the cumulative distribution function for 

a standard normal variable (look-up tables are in most statistics textbooks). This equation makes 
calculation of probability of failure for the normal-normal case extremely simple and fast. 

3.7.2.3 Lognormal-Lognormal Case. 

The parameters µ and σ in the PDF equation shown in table 3-1 are the mean and standard 
deviation of the natural logarithms of the data. That is, if all the test data were converted to 
natural logarithms and then a mean and standard deviation of that data was calculated, those 
values would be µ and σ. As explained in section 3.6.2.2, the mean and standard deviation, in 
non-logarithmic units, are calculated by the following equation: 

2 +
Mean = e

µ + 1 
2 σ 

Standard Deviation = 




e 

2µ σ 2 
 


 
e σ

2 

−1






 

1 
2 

The equation used to calculate the probability of failure is identical to that used in the normal-
normal case, but again, remember the above definition of µ and σ. The safety index is again 

µg 
µx − µ

ydefined as β = 
σ σ + g x 

2 σ y 
2 

= and Pf = Φ{-β} where Φ is the cumulative distribution function 

for a standard normal variable (look-up tables are in most statistics textbooks). This makes 
calculation for the lognormal-lognormal case extremely simple and fast. 

3.7.2.4 Other Two-Variable Cases. 

Table 3-5 lists the expressions developed for the nine different combinations of normal, 
lognormal, and Weibull PDFs. For the combinations involving only lognormal and/or Weibull 
distributions, it is assumed that the starting point (s0) of the stress distribution is less than the 
starting point (t0) of the strength distribution. They can be solved with commercially available 
math software routines or a computer program can be written employing numerical integration 
techniques. 
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  

  

  

TABLE 3-5. PROBABILITY OF FAILURE EXPRESSIONS FOR PDF COMBINATIONS


Stress-Strength 
Distributions Probability of Failure Expression 

Normal - Normal 
(µs, σs) (µt, σt) 1 

2 

1 

2 

2 

π 

σ µ µ 
σ−∞ 

∞ 
−∫ 

+ − 
 
 

 
 
 

exp{ }z s s t 

t 

zΦ dz 

Normal - Lognormal 
(µs, σs) (µt, σt, t0) 

1 

2 

1 

2 
2 0 

0 πµ 
σ 

σ µ µ 
σt 

s s t 

t 
s 

s 

z 
z t 

− 
∞ 

−∫ 
+ − − 


 

 


exp 

ln( )
{ } Φ dz 

Normal - Weibull 
(µs, σs) (θt, βt, t0) 1 

2 

1 

2 
2 0 

0 
1

πµ 
σ 

σ µ 
θ 

β 
t 

s s 

t 

t 
s 

s 

z 
z t 

− 
∞ 

−∫ − − 
+ − 


 

 
 
 

 

 

 
 
 

 
 
 

exp exp{ } dz 

Lognormal - Normal 
(µs, σs, s0) (µt,σt) 

1 

2 

1 

2 
2 0 

π 

σ µ µ 
σ−∞ 

∞ 
−∫ 

+ + − 


 

 


exp 

exp( )
{ }z s s t 

t 

z s
Φ dz 

Lognormal - Lognormal 
(µs, σs, s0) (µt, σt, t0) 1 

2 

1 

2 
2 

0 0 

0 0 πµ 
σ 

σ µ µ 

σln( ) ) exp 
ln[exp( ) ] 

{ }t s 

s s 

t 
s 

s 

z 
z s t t 

− − 
∞ 

−∫ 
+ + − − 

 
 

 
 
 

Φ dz 

Lognormal - Weibull 
(µs, σs, s0) (θt, βt, t0) 1 

2 

1 

2 
2 0 0 

0 0 
1 

πµ 
σ 

σ µ 
θ 

β 
ln( ) exp exp 

exp( )
{ }t S 

s s 

t 
s 

s 

z 
z s t t 

− − 
∞ 

−∫ − − 
+ + − 


 

 
 
 

 

 

 

 
 
 

 

 
 
 

dz 

Weibull  - Normal 
(θs, βs, s0) (µt, σt) 

0 

1 

0∞ 
−∫ 

+ −
 

 

 
 
 

 

 

 
 
 

exp( )z s 
z ss 

t 

t 

Φ 
θ µ 

σ 

β 

dz 

Weibull  - Lognormal 
(θs, βs, s0) (µt, σt, t0) 

( ) 
exp( ) 

ln( ) 

t s  

s 

s 

t 

s 

s 

z 
s t 

t 
z 

0 0 

1 

0 0 

− 


 

 


 

∞

∫ − 
+ − − 

 

 
 
 

 

 

 
 
θ 

β 

β 

θ µ 

σ
Φ dz 

Weibull  - Weibull 
(θs, βs, s0) (θt, βt, t0) 

( ) 
exp ( ) expt s 

s 
s 

t 
s 

s z 
z s t 

t 

0 0 
1 

1 

0 0 
− 

 
 

 

 
 

∞

∫ − − − 
+ − 

 

 
 

 

 

 
 

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

 

 

 
 
θ 

β 

β 
θ 

θ 

β 

dz 

3.7.2.5 Two-Variable Example Problems. 

Consider the example of the steel bar in tension. The bar is put into service. It has been 
dimensionally checked beforehand, so the area (A) is a known constant. The bar is used as a link 
between two fittings and designed to fail in the interior region of the bar (as opposed to failing at 
the attachment). The applied loading, modeled as uniaxial tension, was measured on a similar 
application, wherein 50 applied load measurements were taken. Three cases will be discussed: 
(1) normal-normal; (2) lognormal-lognormal; and (3) lognormal-normal. 
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3.7.2.5.1 Scenario 1 (Normal-Normal Case). 

The 50 measurements were statistically analyzed and it was determined through goodness-of-fit 
testing that the data best fit a normal distribution, with the following parameters: 

P: 	 Mean = 100,000 lb. 
Standard deviation = 10,000 lb. 

The results from the 17-7PH steel coupon testing were analyzed using a goodness-of-fit test as 
well, wherein it was determined that the data most closely fit a normal distribution with the 
following parameters: 

Fy: 	 Mean = 140,000 psi 
Standard deviation = 10,000 psi 

The bar’s cross-sectional area was measured to be 0.80 square inch. 

Problem: What is the probability of failure of the 17-7PH steel bar with a cross-sectional area of 
0.80 in2 in service? 

Solution: The performance function becomes g = Fy × 0.80 - P.  We calculate the safety index as 
follows (remembering we must adjust the parameters µFy and σFy by the scale factor 0.8) 

. 
β =

σ σ + g Fy P 0 82 2 . σ2 

µg = 
0 8µFy − µ

P 
12,000 lb. 

= 0.937= 
12,806 lb. 

We know that Pf = Φ{-β} = Φ{-0.937} =  0.1745 from the standard normal probability table. 

3.7.2.5.2 Scenario 2 (Lognormal-Lognormal Case). 

The 50 load measurements appeared to be non-normal, being skewed to the right. These data 
were statistically analyzed and it was determined through goodness-of-fit testing that the data 
best fit a 2-parameter lognormal distribution with the following parameters: 

P: µ = 11.508 
σ = 0.10 

The results from the 17-7PH steel yield strength coupon testing were analyzed using a goodness-
of-fit test as well, wherein it was determined that the data most closely fit a 2-parameter 
lognormal distribution with the following parameters: 

Fy:	 µ = 11.847 
σ = 0.0713 

The bar’s cross-sectional area was measured to be 0.80 square inch. 
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Note: 	Values of µ and σ were chosen because they correspond (using the equations previously 
stated) to the means and standard deviations used in the previous normal-normal 
example. The corresponding means and standard deviations (for general information 
onlynot used in the probability of failure calculation) of design variables Fy and P are: 

Fy: 	 Mean = 140,000 psi and P: Mean = 100,000 lb. 
Standard deviation = 10,000 psi Standard deviation = 10,000 lb. 

Problem: What is the probability of failure of the 17-7PH steel bar with a cross-sectional area of 
0.80 in2 in service? 

Solution: The performance function is g = Fy × 0.80 - P. The parameter µ for the Fy distribution 
must be adjusted because the distribution that we must now deal with is 0.80 × Fy. Per table 3-3, 
only the lognormal parameter µ is affected (σ remains the same) by the scale factor 0.8. The 
adjusted parameter µ is 

µ = 11.847 + ln(0.8) = 11.624. σ = 0.0713 (unchanged). 

Now, the safety index can be determined by 

µg 11.624 − 11.508
β = 

σ + g 0713 1002 . 2 .
= = 0.945 

We know that Pf = Φ{-β} = Φ{-0.945} = 0.1724 from the standard normal probability table. 

3.7.2.5.3 Scenario 3 (Lognormal-Normal Case). 

The 50 load measurements appeared to be non-normal, being skewed to the right. These data 
were statistically analyzed and it was determined through goodness-of-fit testing that the data 
best fit a 2-parameter lognormal distribution with the following parameters: 

P: 	 µs = 11.508 
σs = 0.1000 

The results from the 17-7PH steel yield strength coupon testing were analyzed using a goodness-
of-fit test as well, wherein it was determined that the data most closely fit a normal distribution 
with the following parameters: 

Fy: µ  = 140,000 psi 
σ = 10,000 psi 

The bar’s cross-sectional area was measured to be 0.80 square inch. 
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  

Problem: What is the probability of failure of the 17-7PH steel bar with a cross-sectional area of 
0.80 in2 in service? 

Solution: The performance function becomes g = Fy × 0.80 - P. Remember that the parameter µ 
for the Fy distribution must be adjusted because the distribution that we must now deal with is 
0.80 ×  Fy. Per table 3-3, both the mean and standard deviation of the normal distribution are 
scaled (multiplied) by 0.8. The adjusted parameters are: 

µt = 140,000 psi × 0.8 = 112,000 
σt = 10,000 psi × 0.8 = 8,000 

A computer program (FORTRAN) was written to solve the lognormal-normal integration 
equation given in table 3-5: 

Pf = 
∞

∫ 
1 

exp(− 
1

2 
z 2 )Φ 


 

exp(σ s z+µ
s )+s0 − µ

t  
 dz

−∞ 2π  σ t  
or 

Pf = 
∞

∫ 
1 

exp(− 
1

2 
z 2 )Φ 

 
exp( 0.1z+11.508 ) − 112,000 

 
dz 

−∞ 2π 8,000 

The result from executing the program was 0.1734. 

3.7.2.5.4 Two-Variable Example Problem Summary. 

The same physical problem was used, with three different scenarios, showing the normal-normal, 
lognormal-lognormal solutions via the safety index shortcut method, then a lognormal-normal 
solution was obtained via numerical integration. The results are summarized in table 3-6. 

TABLE 3-6. TWO-VARIABLE EXAMPLE SUMMARY (SIGNIFICANT OVERLAP) 

Case Stress Distribution Strength Distribution 
Probability of 

Failure 
1 Normal 

µ = 100,000; σ = 10,000 
Normal 

µ = 112,000; σ = 8,000 
0.1745 

2 Lognormal 
µ = 11.508; σ = 0.1; S0 = 0 

Lognormal 
µ = 11.624; σ = 0.713; S0 = 0 

0.1724 

3 Lognormal 
µ = 11.508; σ = 0.1; S0 = 0 

Normal 
µ = 112,000; σ = 8,000 

0.1734 

One can conclude from this that the choice of distribution has negligible effect on the resulting 
probability of failure. While this is certainly the case for this set of scenarios wherein the 
distributions are close together and having a significant overlap, this cannot be extrapolated to 
cases where the distributions are far apart. To illustrate, consider the mean of the yield strength 
to be 200,000 psi, instead of 140,000 psi. This clearly will separate the distributions 
significantly.  The resulting probabilities of failure are shown in table 3-7. 

3-21




TABLE 3-7. TWO-VARIABLE SUMMARY ILLUSTRATING TAIL SENSITIVITY


Case Stress Distribution Strength Distribution 
Probability of 

Failure 
1 Normal 

µ = 100,000; σ = 10,000 
Normal 

µ = 160,000; σ = 8,000 
1.4 x 10-6 

2 Lognormal 
µ = 11.508; σ = 0.1; S0 = 0 

Lognormal 
µ = 11.982; σ = 0.05; S0 = 0 

1.1 x 10-5 

3 Lognormal 
µ = 11.508; σ = 0.1; S0 = 0 

Normal 
µ = 160,000; σ = 8,000 

1.4 x 10-5 

The results from table 3-7 exemplify the tail sensitivity frequently mentioned in probabilistic 
literature. This issue is discussed further in section 7. 

3.7.2.6 Probability of Failure With More Than Two Variables. 

In many real world design and analysis situations, particularly with aerospace structures, the 
performance function is not even a definable entity.  Even if it is, there will most likely be more 
than two random variables involved, and the resulting multiple integral is in general very 
difficult to evaluate. This section will discuss methods that have been developed to 
accommodate these situations. 

The Monte Carlo simulation technique, in its simplest form, is presented first. Refinements to 
the technique to speed up the simulation will be briefly mentioned. This will be followed by a 
detailed discussion of the response surface method and finally a high-level explanation of limit 
state approximation methods which have been the focus of most of the published probabilistic 
methods research in the past 15 years. 

3.7.3 Monte Carlo Simulation. 

The general idea of this method is to solve mathematical problems by the simulation of random 
variables. In 1949, an article [20] entitled “The Monte Carlo Method” appeared. The name 
“Monte Carlo” is derived from that city in the Principality of Monaco famous for its casinos. 
One of the simplest mechanical devices for generating random variables is the roulette wheel, 
thus the association. The theoretical foundation of this method had been known long before this 
1949 article was published, and certain problems were solved by means of random sampling 
[21]. However, because simulation of random variables by hand is a laborious process, use of 
the Monte Carlo method as a universal numerical technique became practical only with the 
advent of computers. 

To understand what kinds of problems are solvable by this method, it is important to note that the 
method enables simulation of any process whose development is influenced by random factors. 
Monte Carlo simulation is a widely used technique for probabilistic structural analysis, serving 
two main purposes: (1) validating analytical methods and (2) solving large, complex systems 
when analytical approximations are not feasible. 
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The second case results when the performance function [g(X)] is a function of many variables or 
when it cannot be expressed in terms of the random variables Xi. In this case, g(X) can only be 
evaluated numerically through a structural analysis such as the finite element method for sets of 
input variables. That is, Monte Carlo simulation can provide input to perform multiple finite 
element analyses of the system (one analysis/result per unique set of input variables) and then 
calculate the number of times failure and success are predicted. 

In order to evaluate the failure probability corresponding to a known performance function, g(X), 
the Monte Carlo simulation method would consist of the following steps: 

1.	 Given the predefined PDFs of the random variables in the performance function, generate 
a single value of each variable. 

2. Assess the performance function: if g(X) < 0 ⇒ system failure. 

3. Repeat steps 1 and 2 N times. 

4. Estimate the probability of failure by Pf = Nf / N, where Nf is the number of failures. 

In order to evaluate the failure probability corresponding to an unknown performance function, 
the Monte Carlo simulation method would consist of the following steps: 

1.	 Given the predefined PDFs of the random variables involved in the deterministic 
structural analysis (e.g., FEM), generate a single value of each random variable. 

2. Perform the deterministic analysis, and record if failure is predicted. 

3. Repeat steps 1 and 2 N times. 

4. Estimate the probability of failure by Pf  = Nf / N, where Nf is the number of failures. 

3.7.3.1 Accuracy and Number of Required Trials. 

Remember that this Pf value is an estimate of the true Pf. Actually it is a mean value of the 
failure probability.  The accuracy of this estimate depends on the sample size, i.e., number of 
simulations. As N approaches infinity, the estimated Pf will stabilize (if the random number 
generator is good) to the true value.  Of course, the true value itself is an estimate of the actual Pf 

due to the inaccuracies in the PDFs, analysis models, etc. One key issue to resolve is 
determination of the number of simulations required. 

The error of calculations is, as a rule, proportional to the square root of the quantity (1/N), where 
N is the number of trials. Hence it is clear that to decrease the error by a factor of 10, it is 
necessary to increase N by a factor of 100 [21]. To address the question of how many 
simulations are required for an estimated probability of failure, Shooman [22] derived the 
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f x  f x  

following formula relating the number of simulations N and the percentage error: 

% error = 200 
P

N P

f 

f 

− 1 
. This equation was developed using a 95% confidence level. Therefore, 

there is a 95% chance that the error in the estimated probability will be less than the error 
generated by this equation. For example, if 10,000 simulations were performed and the 
estimated probability was 0.01, then this equation yields 20% error. That is, we are 95% sure the 
actual probability of failure will lie between 0.01 ± 0.002. 

3.7.3.2 Generating Random Numbers From PDFs. 

Values of each input variable should be chosen such that the total group chosen is representative 
of the probability characteristics of that variable. The basic building block is the ability to 
generate random numbers from a uniform distribution between zero and 1, denoted U(0,1). 
Every value in the interval has equal likelihood of being chosen. Random number generators are 
common features of computer software. Once a random number is picked from U(0,1), it is used 
to generate a random value of the PDF of interest. If the CDF of the random variable X is 
denoted FX(x) and u is the random number generated, then the corresponding value of the 
variable (X) is x F  − 

X 
1(u) . The procedure is illustrated in figure 3-12.= 

F U (u ) ,  F X (x ) 

1 .  0 
F U ( u  ) 

F X ( x  ) 

4 5  o 

u x 

FIGURE 3-12. TRANSFORMING A U(0,1) PICK TO RANDOM VARIABLE 

This shows the CDF of the random variable X on the right side and the CDF of U on the left 
side. Since U is a pick from a uniform (0,1) distribution, the CDF value at U is also U!  That is, 

−1 x a  
the uniform PDF is X ( )  =

− 
, and its CDF is X ( )  =

− 
. Since a = 0 and 

b a  b a  
b = 1 for the U(0,1) distribution, we see that the CDF value of U is indeed U. 

Now, per figure 3-12, we take the CDF value (U) and find the value of the random variable X 
that has that particular cumulative probability.  This cumulative probability can be found by 
commercially available statistical computer software as well as most spreadsheet software. That 
is, the value U is passed in, and knowing the variable’s distribution parameters, a cumulative 
probability is returned. 
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3.7.3.3 Correlated Random Variables. 

If some or all variables are correlated (a change in one has an effect on another), then it is 
erroneous to sample from each PDF as if they were independent. In general, it is difficult to 
generate correlated variables. There are procedures [23, 24] for transforming correlated 
variables into uncorrelated variables, but the explanation and associated mathematics are beyond 
the scope of this document. 

3.7.3.4 Simulation Efficiency Improvement Approaches. 

A straightforward Monte Carlo method, while very useful for a number of applications, becomes 
extremely time-consuming to be practical for large finite element models. Each finite element 
run may take several hours, and with the probability of structural failure (hopefully) being very 
small, direct Monte Carlo analysis is often unfeasible. To overcome this, research efforts have 
addressed ways to increase simulation efficiency. The main techniques will be briefly explained; 
details will be left to the interested reader. 

Importance Sampling [23]: This technique concentrates sampling points in the region which 
mainly contributes to the failure probability, instead of spreading them out evenly across the 
whole range of possible values of each random variable. Instead of generating a huge amount of 
successful (in the sense that the performance function g(X) > 0) simulations, this technique seeks 
to generate only a few simulations, most of which lead to failure. This is done by modifying 
each variable’s PDF to generate these important samples; the modifications are taken into 
account while computing failure probability.  Recently, adaptive importance sampling techniques 
have been developed [25], which also focus sampling in the probability-critical regions to 
increase efficiency. 

Stratified Sampling [23]: After the number of simulations (N) is calculated, based on the 
expected failure probability, the domain of the random variables (assumed independent) is 
divided into regions of equal probability, such that the sum of regions adds up to N. Then one 
random sample is generated from each region, and the g-function is evaluated for each sample, 
from which failure probability is estimated from the ratio of the number of failures to the total 
number of simulations. A similar approach is called Latin Hypercube Sampling. Both of these 
methods are useful in representing the structural behavior accurately over a large domain, which 
is quite different from importance sampling techniques. Representing structural behavior over a 
large domain becomes important when utilizing response surface techniques, which will be 
described in section 3.7.4. 

3.7.3.5 Summary and General Discussion. 

Monte Carlo simulation has a major advantage over all other methods because it does not restrict 
the way in which the analysis must be structured. Monte Carlo is generally the baseline against 
which other methods are compared. In fact, in many papers, the result of the particular approach 
is stated as percentage error from the Monte Carlo result. The reason for this is that, given 
sufficient simulations, the Monte Carlo answer will always converge to the same result. As 
discussed before, this resulting probability of failure, although it has converged, is still an 
estimate of the true failure probability. 
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3.7.3.6 Monte Carlo Example Problem. 

This example consists of a 17-7PH steel bar, with cross-sectional area A and yield strength Fy, 
subjected to uniaxial tensile load P, as shown in figure 3-13. For like-manufactured bars, the 
yield strength Fy is normally distributed with mean 140,000 psi and standard deviation 10,000 
psi, while the area A is uniformly distributed between 0.7 and 0.9 square inch. The applied load 
P follows a lognormal distribution with location parameter µ = 11.508 and shape parameter 
σ = 0.1, meaning that log(P) follows a normal distribution with mean 11.508 and standard 
deviation 0.1. (The mean of this lognormal distribution is approximately 100,000 psi and the 
standard deviation is about 10,000 psi.) 

P P


FIGURE 3-13. 17-7PH STEEL BAR LOADED IN TENSION 

Problem: What is the probability of failure, i.e., the probability that the applied load will exceed 
the yield capability of the bar? 

Solution: The performance function for this example is written as g = Fy × A - P, where Fy, A, 
and P are the random variables described above, and failure is defined as any combination of Fy, 
A, and P values which produce g < 0. Although the probability distribution for each random 
variable is known, the resulting distribution for g is difficult to quantify (a lognormal subtracted 
from a product of a normal and uniform distribution). Could the distribution of g be quantified, 
then the probability of failure would simply be the cumulative distribution function value at 0. 
However, in this example the Monte Carlo method is used to determine the probability of failure. 

During each Monte Carlo trial, a value from each probability distribution is randomly sampled 
(independently of the other two), and the resulting performance function value g is calculated. 
Numerous trials are repeated and the resulting proportion of trials in which g is less than zero is 
an estimate of the probability of failure. As the number of trials approaches infinity, this 
estimate naturally approaches the true probability of failure. Figure 3-14 shows the spreadsheet 
used to perform the Monte Carlo simulation for 100 trials. Table 3-8 summarizes the estimated 
probability of failure for various number of simulations. 

TABLE 3-8. MONTE CARLO SIMULATION RESULTS 

Number of Simulations Probability of Failure 
100 0.240 

1,000 0.226 
5,000 0.208 
10,000 0.214 
50,000 0.218 
100,000 0.217 
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Monte Random Yield Strength: Fy Random Area: A Random Applied Load: P g function Failure 

Carlo draw ~ Norm al draw ~ Uniform draw ~ Lognorm al g = Fy*A −  P f  g<0 

trial from Parameters from Parameters from Parameters 
U (0,1) 140000 U (0,1) 0.700 U (0,1) 11.508 1: failure 

10000 0.900 0.100 0: no failure 
1 0.1673 130352 0.5884 0.818 0.8242 109225 -2639 1 
2 0.1583 129984 0.5636 0.813 0.7764 107367 -1725 1 
3 0.1737 130602 0.6644 0.833 0.4411 98044 10732 0 
4 0.7903 148076 0.0431 0.709 0.9024 113268 -8338 1 
5 0.3319 135654 0.0604 0.712 0.0507 84472 12123 0 
6 0.0402 122512 0.6516 0.830 0.4092 97250 4474 0 
7 0.0514 123682 0.5770 0.815 0.9050 113443 -12593 1 
8 0.1729 130571 0.8982 0.880 0.7669 107031 7825 0 
9 0.1604 130070 0.1046 0.721 0.2749 93731 39 0 
10 0.7289 146094 0.4067 0.781 0.5544 100880 13270 0 
11 0.2377 132863 0.8092 0.862 0.2791 93851 20656 0 
12 0.7407 146456 0.0777 0.716 0.5247 100127 4669 0 
13 0.3369 135792 0.3491 0.770 0.6915 104611 -76 1 
14 0.2182 132216 0.9454 0.889 0.5013 99540 18009 0 
15 0.1175 128124 0.0799 0.716 0.9078 113632 -21898 1 
16 0.5821 142073 0.3171 0.763 0.9144 114101 -5638 1 
17 0.6285 143279 0.8526 0.871 0.9008 113164 11564 0 
18 0.6181 143005 0.6654 0.833 0.8335 109622 9512 0 
19 0.6119 142844 0.1382 0.728 0.9327 115570 -11630 1 
20 0.4098 137718 0.4418 0.788 0.8182 108973 -402 1 
21 0.8848 151992 0.5364 0.807 0.4462 98172 24529 0 
22 0.3195 135309 0.9708 0.894 0.1178 88379 32608 0 
23 0.9307 154812 0.9041 0.881 0.8298 109464 26899 0 
24 0.0743 125554 0.7019 0.840 0.7970 108131 -2618 1 
25 0.7281 146070 0.4832 0.797 0.9841 123330 -6964 1 
26 0.7697 147379 0.7000 0.840 0.9042 113391 10407 0 
27 0.6047 142656 0.2667 0.753 0.5445 100626 6843 0 
28 0.3753 136822 0.3023 0.760 0.0876 86891 17157 0 
29 0.1061 127526 0.4658 0.793 0.4974 99443 1705 0 
30 0.8455 150172 0.6893 0.838 0.8010 108284 17540 0 
31 0.5341 140855 0.3613 0.772 0.8793 111875 -3098 1 
32 0.6344 143436 0.7464 0.849 0.8213 109101 12717 0 
33 0.1156 128026 0.1835 0.737 0.9303 115357 -21041 1 
34 0.4341 138341 0.6903 0.838 0.5804 101549 14389 0 
35 0.5151 140379 0.1641 0.733 0.6301 102870 2 0 
36 0.6410 143611 0.2850 0.757 0.9751 121080 -12367 1 
37 0.8980 152703 0.5414 0.808 0.8387 109852 13573 0 
38 0.6133 142880 0.8088 0.862 0.7822 107578 15552 0 
39 0.2792 134147 0.1016 0.720 0.2107 91822 4807 0 
40 0.8259 149379 0.9852 0.897 0.6452 103284 30714 0 
41 0.7839 147855 0.2084 0.742 0.8482 110291 -629 1 
42 0.3570 136335 0.4005 0.780 0.4802 99016 7339 0 
43 0.2996 134744 0.5774 0.815 0.6223 102659 7222 0 
44 0.2301 132616 0.4992 0.800 0.6081 102276 3795 0 
45 0.0396 122444 0.9131 0.883 0.4850 99136 8935 0 
46 0.7764 147602 0.4700 0.794 0.5627 101092 16105 0 
47 0.8402 149955 0.2263 0.745 0.1144 88224 23532 0 
48 0.3512 136180 0.5749 0.815 0.0817 86563 24420 0 
49 0.6167 142968 0.7085 0.842 0.8223 109144 11193 0 
50 0.1848 131026 0.6635 0.833 0.4522 98321 10784 0 
51 0.3489 136118 0.1588 0.732 0.6828 104356 -4750 1 
52 0.1943 131379 0.5613 0.812 0.3124 94760 11953 0 
53 0.5086 140216 0.4789 0.796 0.9411 116358 -4775 1 
54 0.9342 155080 0.1502 0.730 0.6314 102904 10311 0 
55 0.0412 122631 0.8799 0.876 0.1703 90463 16961 0 
56 0.4812 139530 0.5067 0.801 0.0725 86014 25796 0 
57 0.3082 134992 0.4570 0.791 0.6580 103641 3192 0 
58 0.1067 127556 0.7957 0.859 0.1227 88596 20993 0 
59 0.2991 134730 0.5478 0.810 0.8221 109136 -65 1 
60 0.2231 132383 0.3520 0.770 0.1262 88746 13242 0 
61 0.2779 134108 0.2283 0.746 0.6922 104631 -4631 1 
62 0.8310 149581 0.3778 0.776 0.4773 98943 17065 0 
63 0.5940 142378 0.6433 0.829 0.6977 104797 13184 0 
64 0.4524 138805 0.5261 0.805 0.1538 89858 21911 0 
65 0.0220 119852 0.9286 0.886 0.7698 107133 -978 1 
66 0.7485 146698 0.3370 0.767 0.1377 89228 23349 0 
67 0.9856 161874 0.2055 0.741 0.1186 88413 31550 0 
68 0.6115 142833 0.0523 0.710 0.4077 97212 4264 0 

i

FIGURE 3-14. MONTE CARLO SIMULATION FOR EXAMPLE PROBLEM 
(Trials 1 through 68) 
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Monte Random Yield Strength: Fy Random Area: A Random Applied Load: P g function Failure 

Carlo draw ~ Normal draw ~ Uniform draw ~ Lognormal g = Fy*A −  P f  g<0 

trial from Parameters from Parameters from Parameters 
U (0,1) 140000 U (0,1) 0.700 U (0,1) 11.508 1: failure 

10000 0.900 0.100 0: no failure 
69 0.0745 125568 0.7070 0.841 0.0213 81246 24408 0 
70 0.3818 136992 0.8046 0.861 0.2752 93740 24199 0 
71 0.9369 155293 0.5073 0.801 0.1885 91094 33366 0 
72 0.1647 130246 0.5647 0.813 0.1826 90893 14989 0 
73 0.2412 132975 0.9907 0.898 0.4728 98832 20598 0 
74 0.4743 139355 0.1364 0.727 0.1667 90335 11016 0 
75 0.7135 145638 0.9253 0.885 0.7997 108234 20664 0 
76 0.0200 119458 0.4036 0.781 0.1314 88968 4295 0 
77 0.0411 122621 0.0169 0.703 0.9044 113400 -27151 1 
78 0.8623 150905 0.5004 0.800 0.9966 130406 -9668 1 
79 0.5768 141938 0.3233 0.765 0.2240 92239 16295 0 
80 0.5703 141771 0.0950 0.719 0.0965 87364 14569 0 
81 0.1694 130434 0.6188 0.824 0.1430 89438 18007 0 
82 0.5735 141853 0.7247 0.845 0.8992 113065 6794 0 
83 0.5482 141212 0.4820 0.796 0.7923 107951 4510 0 
84 0.0759 125671 0.0539 0.711 0.0298 82424 6902 0 
85 0.9043 153064 0.2909 0.758 0.8226 109157 6892 0 
86 0.3335 135698 0.8957 0.879 0.2138 91918 27381 0 
87 0.5158 140397 0.1215 0.724 0.6837 104381 -2691 1 
88 0.8147 148954 0.5718 0.814 0.6572 103620 17682 0 
89 0.6217 143099 0.7544 0.851 0.8227 109162 12597 0 
90 0.3105 135055 0.3717 0.774 0.6447 103269 1309 0 
91 0.4650 139121 0.7581 0.852 0.6772 104192 14287 0 
92 0.0693 125193 0.2231 0.745 0.2154 91969 1252 0 
93 0.4847 139616 0.2294 0.746 0.5198 100003 4134 0 
94 0.8902 152276 0.9535 0.891 0.9425 116493 19141 0 
95 0.1851 131039 0.0424 0.708 0.2077 91725 1112 0 
96 0.8552 150591 0.4652 0.793 0.0103 78940 40485 0 
97 0.2762 134058 0.6126 0.823 0.1796 90790 19474 0 
98 0.8945 152510 0.3946 0.779 0.2104 91810 26982 0 
99 0.0757 125653 0.4947 0.799 0.8442 110105 -9715 1 

100 0.1145 127969 0.4198 0.784 0.0707 85897 14425 0 
No. of Failures= 24 
Estimate of PF= 0.24 

i

FIGURE 3-14. MONTE CARLO SIMULATION FOR EXAMPLE PROBLEM 
(Trials 69 through 100) (Continued) 

3.7.4 Response Surface Approximation Method. 

For complex structures, the performance function is not available as an explicit function of the 
random design variables. The performance (or response) of the structure can only be evaluated 
numerically at the end of a (often time-consuming) structural analysis procedure such as the 
finite element method. The goal of the response surface methodology (RSM) is to find a 
predictive equation relating a response such as stress or deflection to a number of input variables. 
Once we accomplish this, the equation can be used to determine the response, given values of 
input variables, instead of having to repeatedly run the time-consuming deterministic structural 
analysis. 

The response surface thus represents the result (or output) of the structural analysis 
encompassing (in theory) every reasonable combination of all input variables. From this, we can 
create (via simulation) thousands of combinations of all design variables, and perform a pseudo 
structural analysis for each variable set, by simply looking up (via interpolation) the 
corresponding surface value. Each approximation of structural analysis output is thus generated 
in a matter of milliseconds. The end result is the creation of a stress or strength PDF.  This is the 
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bottom line. Once the stress and strength PDFs are defined, other methods (numerical 
integration, Monte Carlo, limit state approximation) can be used to determine the probability of 
failure. The general steps, shown graphically in figure 3-15, to use the RSM are as follows: 

1. 	 Perform the deterministic analysis (e.g., FEM) at strategically predetermined values of 
the random variables. 

2. 	 Using the results of step 1, construct an approximate closed-form expression for the 
response variable (could be stress or strength) in terms of the design variables, using 
regression techniques. 

3. 	 Create a response (e.g., applied stress) PDF from simulation of the design variables using 
the regression equation. 

4.	 Find the probability of failure from the response PDFs using numerical integration, 
Monte Carlo simulation (section 3.7.3), or approximation methods (section 3.7.5). 

3.7.4.1 Step 1Analyze Structure at Chosen Values. 

The challenge is to define representative combinations of the design variables to produce a 
representative output (response). Statistical design-of-experiments techniques can be used to 
select these representative combinations and systematically simulate the structural analysis. This 
is analogous to Monte Carlo simulation, but by using experimental design methods, strategic 
combinations of design variable values are employed to attempt to create an envelope containing 
all possible (within engineering reason) output values. 

There are several experimental design plans commonly used (not necessarily for probabilistic 
analyses), including full and partial factorial.  References for further study are in references 26-
28. One approach mentioned in literature with a proven application (section 4.9) is the Box-
Behnken method [29]. Box-Behnken designs require that all design variables be run at three 
levels (as depicted in figure 3-15): low, nominal, and high. If there are three design variables, 
then a total of 13 tests (runs of the structural finite element model) are required. Specifically the 
13 tests would be performed as shown in table 3-9. 

Monte Carlo Simulation 

Define High (+1), Fit to Probability 

Nominal (0), and Distribution 
Low (-1) values 

Experimental Design 
Test Matrix 

Run x1  x2  ... n 

1 -1  -1  ... -1 
2 -1 0 ...  -1 
.  .  .  ... . 
.  .  .  ... . 
N  +1 0 ... +1 

Run structural 
analysis code 

(e.g., FEM, Thermal, 
Laminate Analysis) 

Analysis 
Output: 

(e.g., stress) 
y1 ...... N 

Distribution of stress 
(or strength): 

y 

Design Variable Data 
x0, x1, ........xn 

xi Distributions: 

.... 
xi  ........ xn 

Regression Equation: 
Y = f(x1, x2, ...., xn) x

y

FIGURE 3-15. RSM PROCEDURE USING THREE LEVELS OF DESIGN VARIABLES
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TABLE 3-9. BOX-BEHNKEN EXPERIMENTAL DESIGN MATRIX


Test Run No. Variable 1 Variable 2 Variable 3 
1 Low Low Nominal 
2 Low High Nominal 
3 High Low Nominal 
4 High High Nominal 
5 Low Nominal Low 
6 Low Nominal High 
7 High Nominal Low 
8 High Nominal High 
9 Nominal Low Low 
10 Nominal Low High 
11 Nominal High Low 
12 Nominal High High 
13 Nominal Nominal Nominal 

3.7.4.2 Step 2Develop Regression Equation. 

Once all 13 structural FEM runs have been executed, a linear regression equation relating the 
design variable, Y, to the variables x1....xn can be obtained. The Box-Behnken design was 
developed for fitting second-order response surfaces, and the regression equation that can be 
estimated is of the form 

N N N 

Y = β0 + ∑β x 2 
i i  +∑βii xi +∑βij xij 

i =1 i =1 ii < j 

It is assumed that the regression equation will produce accurate estimates for the variable Y as 
long as the values for all the design variables are somewhere between their low and high values. 
That is, the regression model should not be extrapolated. One goal in regression analysis is to 
not have excessive terms in the equation, as the model is being forced to twist and turn through 
too many data points, thereby misrepresenting the nature of the response surface. To obtain the 
best small model, the first step is to eliminate those terms which do not make physical sense. 
That is, there may be physically meaningless combinations of variables (interactions). Next a 
stepwise regression procedure can be employed to ensure all variables (and combinations 
thereof) are contributing significantly to the model. Reference 30 provides a good discussion of 
regression theory. 

3.7.4.3 Step 3Develop Response Variable PDF. 

Once the regression equation using all the design variables is developed, Monte Carlo simulation 
is used to generate a distribution for the response variable. A random draw is made from each 
design variable probability distribution, as shown in figure 3-15, and then a single response value 
associated with the set of chosen design variable values is calculated via interpolation. The 
result is a series of response values which can then be fit to a probability distribution or used to 
create a discrete distribution if a continuous distribution does not provide an adequate fit. 
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3.7.4.4 Step 4Evaluate Probability of Failure. 

Assuming (1) RSM generates both stress and strength distributions or (2) if only one is 
generated, the other is obtained by some other means, then the probability of failure can be 
calculated by integration, Monte Carlo methods, or limit state approximation methods. 

Several important notes regarding the response surface methodology: 

• Probability distributions for the input variables must be accurate. 

•	 Regression equations must fit analysis results well and since they are only quadratic in 
nature, should only be used in situations where there are no abrupt changes in the 
response for moderate changes of input variables. 

•	 Monte Carlo simulation must be run enough times to get an accurate depiction of the 
response variable’s probability distribution. 

3.7.4.5 Response Surface Method Example Problem. 

An example of the response surface method is taken from reference 31. The hoop stress 
(response variable) in a gas turbine disk is influenced by the following six life drivers (input 
variables): radial temperature, modulus of elasticity, rotor speed, radial load, density, and 
coefficient of thermal expansion. Probability distributions for these input variables are given in 
table 3-10. FEM is used to determine hoop stress for combinations of these six input variables. 

TABLE 3-10. PROBABILITY DISTRIBUTION DEFINITION FOR HOOP STRESS 
DETERMINATION 

Design Variable Probability Distribution 
1. Temperature (°F) Uniform (80, 220) 
2. Modulus of Elasticity 

(psi, a function of temperature) 
Uniform (-2σ, +2σ), where -2σ and +2σ represent the 
lower and upper bounds of the modulus versus 
temperature curves. 

3. Rotor Speed (rpm) Normal (Base, 1.5% Base) 
4. Radial Load (lb) Normal (2.9 x 106 lb, 0.145 x 106 lb) 
5. Density (lbm/in) Normal (0.286, 0.0015) 
6. Coefficient of Thermal 

Expansion (in/in/°F, a 
function of temperature) 

Uniform (-2σ, +2σ), where -2σ and +2σ represent the 
lower and upper bounds, respectively, of the CTA versus 
temperature curves. 

Problem: What is the probability distribution for hoop stress in the gas turbine disk? 

Solution: The input variables and their levels (coded as -1, 0, and +1 for low, nominal, and high, 
respectively) are given in table 3-11. In this methodology, low and high levels are selected to 
represent moderately extreme values. Rather than conduct a finite element analysis for each of 
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TABLE 3-11. LOW, NOMINAL, AND HIGH DEFINITIONS FOR VARIABLES


Input Variable -1 0 1 
F1: Temperature (°F) 80 150 220 
F2: Modulus of Elasticity (psi) -2σ Nominal curve +2σ 
F3: Rotor Speed (rpm) Base - 3% Base Base +3% 
F4: Radial Load (lb) 2,610,000 2,900,000 3,190,000 
F5: Density (lbm/in.) 0.283 0.286 0.289 
F6: CTA (in/in/°F) -2σ curve Nominal curve +2σ curve 

the 729 combinations of the six input variable levels, the Box-Behnken method is implemented. 
Table 3-12 shows which combinations of input variables are analyzed. 

TABLE 3-12. THREE-LEVEL BOX-BEHNKEN DESIGN TEST MATRIX 

F1 F2 F3 F4 F5 F6 

±1 ±1 0 ±1 0 0 
0 ±1 ±1 0 ±1 0 
0 0 ±1 ±1 0 ±1 

±1 0 0 ±1 ±1 0 
0 ±1 0 0 ±1 ±1 

±1 0 ±1 0 0 ±1 
0 0 0 0 0 0 

Since the designation ±1 represents two levels of the corresponding input variable, each of the 
first six rows corresponds to eight FEM runs. With the final row pertaining to the FEM run 
where all input variables are at nominal level, there are a total of 49 FEM runs required for this 
matrix. Results of these runs are shown in table 3-13. 

TABLE 3-13. RESULTS OF FEM FOR GIVEN INPUT VARIABLE LEVELS 

Run No. F1 F2 F3 F4 F5 F6 Response 
1 -1 -1 0 -1 0 0 138.80 
2 -1 -1 0 +1 0 0 147.00 
• • • • • • • • 
• • • • • • • • 
• • • • • • • • 

49 0 0 0 0 0 0 151.90 

Stepwise regression is used to determine an equation which expresses the response, σhoop, in 
terms of the six input variables: 

σ hoop = 151.8 + 8.77F1 + 0.41F2 + 8.1F3 + 4.14F4 + 0.97F5 + 0.79F6 + 0.11F3
2 + 0.2F F1 2  + 

0.37F F + 0.25F F1 5  3 4 
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This equation is then used to predict (very quickly) the hoop stress for different values of the 
input variables. To determine the hoop stress probability distribution, Monte Carlo simulation is 
used to generate values of the input variables from their respective distributions, and the 
regression equation is used to calculate the hoop stress value. The result of numerous 
simulations is a probability distribution for hoop stress. 

3.7.5 Limit State Approximation. 

These approximation methods have been the main thrust of probabilistic research over the past 
15 years, and thus are the subject (either development or application) of numerous probabilistic 
analysis technical papers and reports. The premise is that the probability of failure as defined by 
the equation: 

PF = ∫ ..D.. ∫ f(x1, ....., xn) dx1....dxn 

cannot be evaluated in closed form except for a limited set of design driver distributions. Monte 
Carlo simulation for complex structural analysis codes is impractical from an execution time 
standpoint, especially for low failure probabilities. Applying a technique such as the response 
surface method or importance sampling, to reduce the amount of structural analyses (e.g., FEM) 
required, is one way of approaching the problem. Another approach to solving the multivariable 
integral is to employ limit state approximation methods. These are also referred to as point 
expansion methods in the literature and can be divided into two groups: (1) mean value and 
(2) most probable point. 

The first group, consisting of the Mean Value First Order (MVFO) and Mean Value First-Order 
Second-Moment methods, while being fairly easy to implement, have been shown to be 
potentially inaccurate for high reliability (low probability of failure ∼ 10-5 or below) calculations, 
as well as for highly nonlinear performance functions [17]. Since this document is dealing with 
aerostructures, we are definitely in the high-reliability region, and thus these approaches will not 
be addressed. 

3.7.5.1 Most Probable Point Methods. 

There are several methods in this group, the main ones being First-Order Reliability Method 
(FORM) and Second-Order Reliability Method (SORM). These methods are the most complex, 
both mathematically and conceptually, among all probabilistic analysis methods and will 
therefore not be described in excruciating detail here. The main steps to performing these 
analyses will be given and references given for the interested reader. 

In the first- and second-order reliability methods (FORM/SORM), the approach is to transform 
the integral above to an approximately equal integral that can be efficiently evaluated. This is 
done by the following steps: 

1.	 Transform the design variable distributions into standard normal distributions. That is, 
transform g(x) = 0 into g(u) = 0 where u is a vector of standardized, independent 
Gaussian variables (see figure 3-16). 
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2.	 Identify the most probable point (MPP), or design point. For a given limit state function, 
the main contribution to failure probability comes from the region where g is closest to 
the origin in the transformed design variable space (u-space). The MPP is defined as the 
closest point to the origin in the transformed space. 

3.	 Develop a polynomial approximation to the performance function (g-function) around the 
MPP. Thus the g-function is approximated by a simply defined (quadratic) surface 
through that point (MPP). Compute probability of failure using the newly defined g-
function and the transformed variables. 

This technique is graphically depicted in figure 3-16. Note that this is a three-dimensional 
depiction of the problem. For n-dimensional problems, there is a hypersurface g(u) = 0, which is 
the boundary between failure and success, known as the limit state surface. 

x2 

f x1,x2 

Pf 

x2 

g(x)=0 

g(x) < 0 

x1 

x1 

Transformation: 
x  u 

MPP 

u1 

u2 
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g(u) = 0 

g(u) = 0 

MPP 

u1 

u2 

Distance = β 

4σσσσ 
3σσσσ 

2σσσσ 
1σσσσ 

First order g(u) 
approximation 

FIGURE 3-16. TRANSFORMATION TO STANDARD NORMAL SPACE 

3.7.5.1.1 Step 1Transform Variables. 

FORM and SORM reliability approximations are carried out in the space of a set of standard, 
uncorrelated normal variates Y, obtained by transforming the basic variables. This 
transformation is dependent on the form of the probability distribution of each variable. The 
advantage of doing this probability transformation is to be able to exploit the superior properties 
of standard normal space. Specifically, the probability density in this space is symmetric (see 
figure 3-16) and it decays exponentially with the square of the distance from the origin. The 
transformation can be made in several ways. The most accepted method is the Nataf model 
[32] to transform a set of correlated, non-normal variables X = (X1, ......, Xn) to the space of 
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uncorrelated standard normal variables U = U1,..., Un). A paper [33] by E. Nikolaidis et al. 
compares two commonly used methods. 

Other attempts to improve on the fit between the transformed normal and original distribution are 
in the probabilistic literature [17, 23]. The well-known the Numerical Evaluation of Stochastic 
Structures Under Stress (NESSUS) probabilistic software uses a 3-parameter normal distribution, 
with the third parameter adjusting the distribution to better fit in the tail region, which influences 
the probability of failure [34]. 

The specific details of the different methods for transformation are mathematically complex and 
lengthy and will not be given here. References 17 and 23 give exhaustive details on this 
transformation. 

3.7.5.1.2 Step 2Identify Most Probable Point. 

The MPP is the point on the limit state with the highest joint density, as can be seen in figure 
3-16. That is, the point is most probable because it has the maximum joint probability density or 
largest contribution to failure. The MPP can be found by using an optimization algorithm or 
other iteration algorithms [23]. The optimization begins by guessing that the MPP lies at the set 
of mean values of each variable involved. Then the distance from the origin to the limit state 
surface (or hypersurface) is minimized subject to the constraint that the point (MPP) lies on the 
limit state. 

The details of the optimization procedures are beyond the scope of this report; further details can 
be found in references 17 and 23. Determining the MPP is at the heart of these approximate 
reliability methods, and many issues are involved such as dealing with correlated variables, the 
type of search methods used in the optimization routines, and convergence criteria. 

3.7.5.1.3 Step 3Develop g-Function and Determine Failure Probability. 

The function g(u) is approximated by a polynomial in the vicinity of the MPP. The first-order 
reliability method (FORM) estimate is 

Pf = P( g ≤ 0) ≈ Φ(−β ) 

where β represents the minimum distance to the limit state.  Gradients of the polynomial function 
are used to find the minimum distance. 

Several second-order (SORM) approximations are available to improve accuracy. These higher-
order approaches take into account the curvature of the limit state around the minimum distance 
point. The simplest of the SORM approximations, based on a paraboloid fitting, is from 
Breitung [35]: 

n−1 
/Pf = P( g ≤ 0) ≈ Φ(−β)∏ (1 + β ki ) 

−1 2  

i =1 

where ki denotes the ith main curvature of the limit state at the minimum distance point. For 
practical problems which usually have a large β value, the quadratic form of the limit state 
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equation is a very good approximation of the actual probability.  There have been many 
derivatives of the second-order approach to improve upon the accuracy of the approximation as 
well as decrease the number of evaluation of the failure function. These can be found in 
reference 23. 

3.7.6 General Discussion of Limit State Approximation Methods. 

The FORM approach is not accurate for limit state functions with large curvature at the MPP. 
SORM approaches are more accurate than FORM, but are more complex mathematically and 
require more failure function calculations, which may be costly. The accuracy of these methods 
depends on how well the approximate g-function represents the exact g-function. Perhaps the 
most important feature of these methods is they can be used to perform sensitivity calculations. 
Sensitivity factors can be calculated for each variable to determine the dominant variables, with 
respect to probability of failure. 

Only a high-level overview of these methods was given in this section. The mathematical details 
of these methods are, in general, very difficult for most industry engineers to comprehend. There 
are three published documents that contain highly detailed explanations of these methods along 
with other facets of probabilistic analysis. 

• Integration of Probabilistic Methods into the Design Process (SAE) [17] 
• Modern Structural Reliability Methods (NASA) [23] 
• Engineering Probabilistic Methods (SAE) [36] 

3.7.7 Limit State Approximation Example Problem. 

The stress applied to the bar depicted in figure 3-17 is denoted by S and is determined by 
dividing the load P by the cross-sectional area, A (considered to be constant). The resistive 
strength is denoted by R. 

Statistics of the design variables are as follows: 

• R ∼ Normal: µ = 60; σ = 6 
• P ∼ Normal: µ = 100; σ = 10 
• A = 2.5 (deterministic) 

Note that normal distributions for R and Q are assumed. These distributions may actually be 
Gaussian or may result from a non-normal distribution being transformed to a normal via the 
approaches discussed in section 3.7.5.1.1. The transformation of the original distribution to an 
equivalent normal is a critical step in the limit state approximation approach. 

The stress (load/area) distribution is formulated as 

• Mean: 100/2.5 = 40 
• Standard Dev: 10/2.5 = 4 
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FIGURE 3-17. ORIGINAL PARAMETER SPACE WITH VARIABLES R AND S 

The limit state is formulated as 

z = R - S = 0. 

The reduced variables are defined as 

R−µ R S −µ S 
r= s= 

σ R σ S 

Substituting for R and S in these limit state equation yields 

z = rσR + µR - (sσS + µS) = 0, 

or 

z = σR r - σS s + (µR - µS) = 0. 
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This limit state equation can be seen in figure 3-18. There is a theorem that states 
The distance between the line L: Ax + By + C = 0 and the origin is given by 

d (0, L) = 
2 2 BA

C 

+ 
. Applying this theorem to the limit state equation yields the following 

value for the distance: d = 
| 

2 2 
S R σ σ + 

µ R − µ S| 
= β. We have thus derived the formula for the 

distance from the origin to MPP (for linear limit state equation) in the reduced coordinate space, 
shown in figure 3-18. 
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r*

FIGURE 3-18. REDUCED COORDINATES PARAMETER SPACE WITH 
VARIABLES R AND S 

Plugging in the values for the example, the limit state equation is z = 6 r - 4 s + (60 - 40) = 0. 
The distance from the origin to this limit state is thus d = 20 / (62 + 42) = 2.77 = β. 

The design point, as shown in figure 3-19, is thus 

s* = 4 (20)/(62 + 42) = 1.54 
r* = -6 (20)/(62 + 42) = -2.31 

The design point in the original parameter space is 

R* = 60 - (2.31)(6) = 46.14 
P* = 100 + (1.54)(10) = 115.40 
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The resulting probability of failure is then estimated as P = Φ(-β) = Φ(-2.77) = 0.0028. The 
accuracy of this estimate is a function of how well the normal distributions model stress and 
strength behavior. 

System Failure 

OR 

AND 

Mode1 Mode 3 
State 1 

Mode 2 
Mode 3 
State n 

Mode 3 
State 2 

. . . . . 

Priority 
(Sequential) 

FIGURE 3-19. PROBABILISTIC FAULT TREE ANALYSIS METHODOLOGY 

3.8 STEP 6DETERMINE SYSTEM PROBABILITY OF FAILURE. 

Once failure probabilities of individual locations have been calculated, the last step is to 
determine an overall probability of failure for the structural component or entire air vehicle. If 
all the N locations are independent, then the system probability of failure is calculated as 

N 

, 1Pf system = − ∏ (1 − Pf , i ) 
i=1 

In general, two structural locations are independent if the stress (or strength) of one has no 
influence on (and cannot be used to predict) the stress (or strength) of the other. This is 
somewhat intuitive for material strength. If, for example, a shear bay has a given material 
strength, it says nothing about the material strength of the adjacent shear bay.  Only the material 
variability determined through testing could be used to sample the strength. So while the same 
strength distribution might apply to each shear bay, the random sampling is what makes the 
actual strength of one independent of the other. Actually, the shear strength of each is 
deterministica single valuebut is unknown, so we use statistics to address the uncertainty in 
our prediction. 
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If an aircraft structure were subjected to only one load condition and the stresses throughout 
determined through analysis or testing, then the stresses would be totally dependent. In fact, the 
stress at one location could be used to predict the stress at any and all other locations. However, 
we know that aircraft structure is subjected to a variety of load conditions. Assuming these 
conditions are not simple linear multipliers of each other, the relationship between stress at any 
two locations is not correlated over the totality of load cases. In fact, they are so varied, that 
from a statistical standpoint they can be considered completely uncorrelated. This is how one 
can justify the independence of locations from a stress standpoint. 

For example, within a shear bay, the stresses are correlated (that is, regardless of load condition, 
if we know the stress at one point, we know it everywhere in the bay), hence dependent. 
Between shear bays, however, knowing the stresses in one is of no help in predicting the stresses 
in the other, hence they are independent. 

Fault tree analysis provides an organized means of identifying sources of structural system 
failure and their interactions which lead to one of more failure paths. Fault tree analysis theory 
will not be addressed here; further information can be found in reference 37. When dependency 
exists, the probability of a fault tree becomes very difficult to calculate by analytical approaches, 
and simulation approaches are more suitable. But simulation may require excessive time. 

To address this need for efficient means for performing fault tree analysis with dependence, 
probabilistic fault tree methods were developed in the early 1990s. One methodology [38] has 
been integrated into the Southwest Research Institute’s NESSUS software. The basic steps 
involved are: 

• Develop a fault tree to represent the structural system. 

•	 Construct an approximate performance function for each failure event based on most 
probable point (section 3.7.5). 

• Determine sampling sequence. 

•	 Calculate systems reliability using efficient Monte Carlo simulation (adaptive importance 
sampling). 

Figure 3-19 shows how failure modes and sequential failure can be modeled using a fault tree. 
Sequential failures can be modeled using the PRIORITY AND gate. A sequence of limit state 
functions corresponding to a sequence of updated structural configurations with load 
redistribution must be generated during the analysis. 

One advantage to using this approach is the ability of the analysis to provide a probabilistic 
ranking of the failure modes as well as problem variables. 

3-40




4. SUMMARY OF INDUSTRY EFFORTS: 1980 THROUGH 1996. 

Tables 4-1 and 4-2 list academia, industry, and government efforts in developing and applying 
the probabilistic methodology.  Table 4-1 shows universities that have published research 
pertaining to probabilistic methods. 

TABLE 4-1. PROBABILISTIC METHODS PUBLICATIONSACADEMIA 

University Subjects Applicable to Aerospace 
University of Arizona Probabilistic/Statistical Methods Development 
Cleveland State University Probabilistic Composite Mechanics 
Massachusetts Institute of 
Technology 

Probabilistic Calculation of Laminate Properties 

State University of New York Probabilistic Composite Mechanics 
Tennessee State University Probabilistic Methods Curriculum 
University of Osaka Composites Design Optimization 
University of Texas at San Antonio Probabilistic Material Strength Degradation 
University of California, Berkeley Probabilistic Finite Element Method 
University of California, Los 
Angeles 

Reliability-Based Structural Optimization 

Vanderbilt University Probabilistic/Statistical Methods Development 
Virginia Polytechnic Institute and 
State University 

Reliability-Based Structural Optimization 

Wright State University Reliability-Based Structural Optimization 

Table 4-2 shows industry and government efforts, listing the approximate year the effort was 
started along with the subjects addressed and aircraft or aerospace components on which the 
method was applied. The approximate year started column is the year of the earliest publication 
found. This information was obtained from literature searches and subsequent research into 
nearly 100 published technical papers and reports on the subject. 

4.1 DISCUSSION AND EXPLANATION OF INDUSTRY EFFORTS. 

Fifteen industry efforts into probabilistic analysis development and application will be 
summarized in the following sections. Each summary will include the type of problem being 
solved and the basic theory of the probabilistic method. In addition, references will be provided 
for further study. 

4.2 AIR FORCE. 

One of the first, if not the first, efforts employing probabilistic methods in the aerospace 
industry, by J.W. Lincoln [39, 40], was to assess the risk of structural failure due to unstable 
cracking in older aircraft. One risk assessment addressed cracking due to static overload on the 
F-16 aircraft, while another assessed risk on the T-38 aircraft from fatigue cracking due to 
repeated loads. Probability of failure is determined from numerically integrating the applied 
stress and component strength PDFs. 
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TABLE 4-2. AEROSPACE COMPANIES WITH PUBLISHED PROBABILISTIC METHODS ARTICLES


4-2


Company 
Approximate 
Year Started Aerospace Subjects Addressed Published Aerospace Applications Material 

Air Force 1980 Probabilistic/Statistical Methods Development 
Acceptable Risk Levels 
Aging Aircraft Risk Assessment 

Risk Analysis: F-16 Wing, 
T-38 Wing 

Metallic 

NASA Lewis 1984 Probabilistic/Statistical Methods Development 
Probabilistic Composite Mechanics 
Probabilistic Design for Composites 
Probabilistic Fracture Mechanics 
Defect/Damage Modeling 
Probabilistic Thermal-Mechanical Fatigue 
Probabilistic Fault Tree Analysis 

Space Propulsion Components 
Space Cantilevered Truss 
Generic Composite Laminate Panel 
Stiffened Composite Cylindrical 
Shell 
Generic Composite wing 

Metallic 
Composite 

Southwest 
Research 
Institute (SwRI) 

1984 Probabilistic/Statistical Methods Development 
Probabilistic Finite Element Modeling 
Probabilistic Fracture Mechanics 
Probabilistic Fault Tree Analysis 
Reliability-Based Optimization 

Space Propulsion Components 
Generic Truss Structure 

Metallic 

Jet Propulsion 
Laboratory 

1985 Probabilistic Certification 
Probabilistic Fracture Mechanics 

Space Propulsion Components Metallic 

Rockwell 1987 Probabilistic/Statistical Methods Development 
Probabilistic Finite Element Modeling 

Space Propulsion Components 
Orbiter Docking Frame Structure 

NYMA (formerly 
Sverdrup Co.) 

1988 Probabilistic/Statistical Methods Development 
Probabilistic Composite Mechanics 
Probabilistic Design for Composites 
Probabilistic Fault Tree Analysis 
Probabilistic Thermal-Mechanical Fatigue 

Space Propulsion Components 
Generic Composite Laminate Panel 
Stiffed Composite Cylindrical Shell 
Generic Composite Wing 

Metallic 
Composite 

Northrop 
Grumman 

1988 Probabilistic Design for Composites 
Defect/Damage Modeling 

Risk Analysis: B-2 Wing Section, 
A-6 Wing, AV-8b Wing, 
Lear Fan Wing 

Composite 



TABLE 4-2. AEROSPACE COMPANIES WITH PUBLISHED PROBABILISTIC METHODS ARTICLES (Continued) 

Company 
Approximate 
Year Started Aerospace Subjects Addressed Published Aerospace Applications Material 

Aerospatiale 
(France) 

1989 Inspection Interval Determination 
Probabilistic Certification 
Damage Modeling 

ATR72, Airbus 330, 340 Metallic 
Composite 

Pratt & Whitney 1989 Probabilistic Fracture Mechanics Turbofan Engine Components Metallic 
General Electric 1990 Acceptable Risk levels 

Probabilistic Fracture Mechanics 
Turbofan Engine Components Metallic 

NASA Marshall 1991 Probabilistic/Statistical Methods Development 
Probabilistic Structural Dynamic Analysis 

Generic Beam Structure 

Thiokol 
Corporation 

1991 Probabilistic Design for Composites Solid Rocket Motor Composite 

NASA Langley 
Research Center 

1992 Reliability-Based Structural Optimization 
Probabilistic Fatigue Analysis 

Generic Truss Structure 

TsAGI (Russia) 1993 Probabilistic Design for Composites 
Defect/Damage Modeling 

Lear Fan Risk Analysis Composite 

Grumman 
Aerospace 

1993 Probabilistic Design for Composites Validation Test of IPACS 
Composite Material Analysis 
Program 

Composite 

Nanchang 
Aircraft 
Company (China) 

1994 Probabilistic/Statistical Methods Development Generic Wing Structure 

Alpha STAR 
Corporation 

1996 Probabilistic Design for Composites Unknown Composite 
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Lincoln defines cumulative probability of failure as P(X > x), which is different than the typical 
statistics textbook definition, P(X < x). Given an expected number of exceedances for a given 
stress level during one flight hour, E, the probability that stress is exceeded during a single-flight 
hour is calculated by: 

E ≥ 1 ⇒ P = 1 
E < 1 ⇒ P = E 

Essentially, the method equates expectation with probability, which significantly loses accuracy 
for expectations greater than ∼ 0.1. For example, just because 20 ksi is exceeded on average 1 
time per flight hour (FH) does not mean that it will be exceeded every FH. However, the 
approximation is good for E → 0, which is the critical part in his probabilistic analysis. 

Extrapolation of the stress exceedance curve is critical to the calculation of failure probability. A 
fit of this probability function was done using Weibull plotting techniques [41], whereby the 
shape and scale parameters were found. The function was then extrapolated beyond measured 
data. The total wing probability of failure takes all locations into account statistically by 
assuming independence and uses a series reliability calculation. This failure probability is time 
dependent since the crack length is time dependent; therefore, the analysis must be rerun to 
assess the single-flight failure probability after different accumulated flight times. 

Lincoln’s method has a “restoration” feature, wherein repair of a crack is simulated. The 
strength of the component can be restored to its original strength. Probability of crack detection 
(called wing inspection reliability) is used in the analysis, hence inspection intervals can be 
studied and optimized. This method thus provides a means to assess the impact of different 
inspection intervals on failure probability. 

4.2.1 F-16 Risk Assessment. 

In this assessment, the risk due to cracking from static overload was analyzed. The method uses 
numerical integration to determine the joint probability of an applied stress and material strength 
distribution. The general procedure was as follows: 

1. Establish an allowable failure rate. 

2. Determine PDF for applied stress from load exceedance as described above. 

3.	 Determine PDF for material strength from wing skin measurements, yield strength test 
measurements, and MIL-HDBK-5 mechanical property data. 

4. Calculate failure probability using numerical integration. 

This analysis provided a measure of single-flight probability of failure for the most severe load 
profile. This was a static strength analysis, focusing on finite stresses rather than crack-like 
singularities. No crack growth was modeled. 
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4.2.2 T-38 Risk Assessment. 

T-38 service flight loads data showed that a mission change made the load environment 
considerably more severe than used in its initial damage tolerance assessment. A subsequent 
deterministic assessment showed that the inspection frequency should be increased by a factor 
of 3. A risk assessment was performed to determine if this increased inspection was essential to 
safety. Unlike the F-16 analysis, the risk T-38 analysis was based on crack growth models. 
Probability of failure of a particular location on the wing was based on the joint probability of 
exceeding a given stress level and attaining a critical crack length. Also factored into the method 
is the probability of crack detection. The general procedure was as follows: 

1.	 Determine the PDF for applied loads based on flight loads exceedance functions 
normalized using expected exceedances per flight, then fit using a 2-parameter Weibull 
distribution. This is the same procedure used in the F-16 analysis. 

2.	 Define the crack population based on tear-down data from 19 aircraft. Normalize the 
data to an average flight time using traditional fracture analysis (some cracks were 
artificially grown while others on high-time aircraft had to be decreased). 

3. Fit a cumulative distribution function to the crack data at the average flight time. 

4.	 From structural analysis methods, determine critical crack length versus applied stress at 
the analysis locations. 

5.	 Using fracture mechanics theory, develop crack growth curves (crack length versus flight 
hours) at the analysis locations. 

6. Develop a crack length versus probability of detection curve. 

7.	 Calculate failure probability using numerical integration to determine the joint probability 
of exceeding an applied stress and attaining a critical crack length. 

4.3 NASA LEWIS. 

C. Chamis, of NASA Lewis, has been instrumental in the development of probabilistic design 
methods and analysis, particularly for space propulsion (turbine engine) components and more 
recently for composite structure. The early work, begun in the mid-1980s, was funded via the 
Probabilistic Structural Analysis Methods (PSAM) project. This was in response to a need for 
quantifying component reliability on the space shuttle program, in light of the Challenger 
accident. Southwest Research Institute was NASA Lewis’ primary contractor for development 
of probabilistic structural analysis methods. 

The PSAM project’s goals were to develop a comprehensive structural analysis system capable 
of modeling uncertainty in loading, geometry, material behavior, and boundary conditions. The 
target application was space propulsion components. From this came the Numerical Evaluation 
of Stochastic Structures Under Stress (NESSUS) probabilistic finite element computer program. 
NYMA Inc. participated in applying the NESSUS program and in subsequent development 
efforts in composite probabilistic methods. 
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The analytical procedures used in NESSUS are discussed in section 3.7.5. The development and 
description of the probabilistic finite element software NESSUS will be discussed in the section 
describing the work done at Southwest Research Institute. Discussion of applications of the 
NESSUS software will appear in several subsequent sections, as several aerospace companies 
have NESSUS applications. 

4.3.1 Integrate Probabilistic Analysis of Composite Structures (IPACS). 

Chamis led the NASA Lewis effort to develop a probabilistic design methodology for 
composites. NYMA Inc. was subcontracted to perform most of the development work, the result 
being the IPACS methodology [42, 43] which combines composite micromechanics theory, 
structural mechanics, system concepts, and manufacturing considerations. Figure 4-1 shows a 
schematic of the program. The methodology starts with fiber mechanical and physical 
properties, resin properties and fiber placement techniques, and then applies a micromechanics 
approach to produce a laminate theory. This is followed by a probabilistic finite element 
analysis utilizing the structural analysis. IPACS does not require extensive specimen testing 
which is cited by many as adding to the cost of composite applications. 

PICAN, structural response simulator, and FPI (an extension of the first- and second-order limit 
state approximation method) have been integrated into the computer code IPACS for 
a comprehensive probabilistic assessment of composite structural response. As depicted in 
figure 4-1, IPACS consists of two computer modules: (1) PICAN, for simulating probabilistic 
composite mechanics and (2) NESSUS, for simulating probabilistic structural responses using 
the information obtained from PICAN. These two modules can simulate uncertainties, from 
constituent materials to the composite structure including its boundary loading conditions, and 
environmental effects [44]. 

IPACS 

NESSUS 

PFTA AIS FPI 

PICAN 

FPI ICAN 

MFIE PVM BLASIM 

FIGURE 4-1. INTEGRATED PROBABILISTIC ANALYSIS OF COMPOSITE 
STRUCTURES (IPACS) 

Figure 4-2 shows the physics which forms the basis for the IPACS code. The assessment starts 
with the identification of primitive variables at the micro and macro composite scales including 
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the fabrication process. These variables are selectively perturbed several times in order to create 
a database for the determination of the relationships between the desired material behavior and 
structural response and primitive variables. Composite micromechanics is used to carry over the 
scatter in primitive variables to the ply and laminate scales (steps A and B in figure 4-2). 

Laminate theory (via ICAN) is then used to determine the scatter in the material behavior at the 
laminate scale (step C). This leads to the perturbed resultant force, moment-strain, and curvature 
relationships used in the structural analysis. Next, the finite element analysis is performed to 
determine the perturbed structural responses corresponding to the selectively perturbed primitive 
variables (step D). This completes the description of the hierarchical composite material and 
structure synthesis shown on the left side of figure 4-2. 
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Analysis of 
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Loads, Geometry, 
Boundary Conditions 

Finite Element 

Analysis of 
Structure 

Properties of Laminates 

Theory of Laminates 

Theory of Micromechanics 
of Composite Materials 

Properties of 
Constituents 

Responses of Plies 
Properties of Plies 

FIGURE 4-2. NASA LEWIS COMPOSITES PROBABILISTIC ANALYSIS 

Steps E through G show the progressive decomposition of the structural response to the laminate 
(E), ply (F), and fiber and matrix (G) constituent scales. After the decomposition, the perturbed 
fiber, matrix, and ply stresses can be determined. Fast probability integration (FPI) [25] is used 
to determine the functional relationship between the response (e.g., compressive strength) and 
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primitive variables. The CDF of the response is then calculated using this functional 
relationship. 

4.3.2 Integrated Composite Analyzer (ICAN). 

ICAN simulates composite material behavior starting from the lowest composite scale (fiber and 
matrix constituents) to higher scale (ply, laminate). Micromechanics and laminate analysis based 
on linear elastic theory are used to compute constituent, ply, and laminate level properties 
required for the global structural analysis. ICAN also decomposes the global structural response 
to laminate, ply, and constituent response levels (stress and strains) which helps the user to 
evaluate failure, as shown in figure 4-2. Failure analysis is performed based on different failure 
criteria such as first-ply failure criteria, fiber break criteria, modified distortion energy criterion, 
and Hoffman’s criteria [45]. 

4.3.3 Probabilistic Integrated Composite Analyzer (PICAN). 

ICAN has been integrated with FPI, leading to PICAN for the probabilistic assessment of 
composite mechanics. PICAN starts with defining uncertainties in material properties and 
fabrication variables at the most fundamental scale. Then the uncertainties are progressively 
propagated to higher scales. Probability density and cumulative distribution functions can be 
obtained at the various composite scales for all material properties and fabrication variables. 
Sensitivity of various design variables to composite material properties is also obtained [46]. 

4.3.4 Adaptive Importance Sampling (AIS). 

AIS is different from traditional Monte Carlo importance sampling methods for its ability to 
automatically adjust, and thereby minimize, the sampling space. AIS is embedded in NESSUS. 
There are two features of this method: (1) the sampling region is focused on the most important 
region where it has the highest possibility of failure, and (2) the sampling region is gradually 
increased by deforming the sampling boundary until the sampling region covers the failure 
region sufficiently.  More details can be found in references 17 and 23. 

4.3.5 Probabilistic Fault Tree Analysis (PFTA). 

With traditional Fault Tree Analysis, probabilities for basic events are determined which are 
assumed to be independent. However, when dependency exists between basic events, Monte 
Carlo simulation is one method that can offer accuracy. PFTA, which is embedded into the 
NESSUS software, can also address this dependency as well as calculate system reliability. 
PFTA can also deal with a structural system having multiple failure paths due to multiple 
components or multidesign criteria. More details can be found in section 3.8 of this document 
and references 23 and 35. 

4.3.6 Multifactor Interaction Equation (MFIE or TMFIE). 

To account for the degradation or aging of material properties due to cyclic loads, the MFIE 
model was developed at NASA Lewis. MFIE has been used to simulate long-term behavior of 
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polymer matrix composites and is planned for application to the high-speed civil transport 
(HSCT) design. 

MFIE evaluates the magnitude of degradation and properties of constituent materials at every 
time step, which in turn is used for micromechanics and laminate analysis at each step. 
Sensitivity evaluations of response variables to the random variables at every time step are also 
performed to compute the respective scatter in response variables. More details can be found in 
references 47 and 48. 

4.3.7 Parallel Virtual Machine (PVM). 

The PVM is an integrated framework for heterogeneous network computing, allowing scientists 
to exploit a series of networked machines when carrying out complex scientific computations. 
With the use of a message sent over the network, multiple tasks of an application can be 
incorporated to solve a problem in parallel. 

PVM is conducted within the IPACS software. Information needed for individual perturbation 
finite element analysis is sent to an available workstation by PVM message passing routines. 
Individual finite element analysis is then carried out at each workstation. Once perturbation 
analysis is complete, structural responses are sent back to the control workstation. After all 
results are returned to the control station, limit state approximation methods to compute 
probability of failure are performed. More details can be found in reference 49. 

4.3.8 Blade Assessment for Ice Impact (BLASIM). 

BLASIM is a specialized code for turbofan engine compressor blades subjected to ice impact, 
simulating local and far-field damage in many different blade-type structures. Capabilities 
include static, dynamic, resonance margin, and supersonic flutter simulation. Various types of 
loading including pressure, temperature, and centrifugal can be applied. A coarse finite element 
mesh consisting of triangular plate finite elements can be generated with minimal execution time 
[50]. 

4.3.9 Recent Work by NASA Lewis. 

A technical paper [51] was published in 1996 describing computational methods to 
probabilistically simulate fracture in bolted composite structures. An approach that is 
independent of stress intensity factors and fracture toughness was used to simulate progressive 
fracture. A fast probability integrator assessed the scatter in the composite structure response 
before and after damage. These methods were demonstrated for a bolted joint of a polymer 
matrix composite panel under edge loads. 

4.4 SOUTHWEST RESEARCH INSTITUTE (SwRI). 

Nearly 40 technical papers on probabilistic analysis from SwRI authors have been presented 
since 1986. The work was funded from the NASA Probabilistic Structural Analysis Methods 
(PSAM) project, which was (what ended up to be) a 12-year research and development program, 
which SwRI was the prime contractor. Rockwell Corporation and several universities were 
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subcontractors for this effort. The project was funded in 2 phases: (1) probabilistic structural 
response analyses of the space shuttle main engine components (1984-1989) and (2) structural 
system risk assessment, qualification, certification, and health monitoring (1990-1995). The 
objective of the program was to develop probabilistic structural analysis methods for critical 
space shuttle main engine (SSME) metallic components such as turbine blades, transfer ducts, 
piping systems, and liquid oxygen posts. 

A major accomplishment of the PSAM program was the development of the NESSUS computer 
program, which integrates limit state approximation and efficient Monte Carlo methods with 
general structural analysis capabilities. This can be classified as a probabilistic finite element 
tool. Rockwell Corporation has applied NESSUS to critical SSME components; this is discussed 
in section 4.6.1. The NESSUS program has also been used in geomechanics, nuclear waste, and 
rotordynamics research [52-54]. 

NESSUS numerically simulates structural mechanics and design variable uncertainties using 
limit state approximation methods integrated with finite element and boundary element methods. 
The output provides (1) probability of failure calculations and probability distribution analysis 
(e.g., generating a stress distribution) and (2) probabilistic sensitivity analysis to identify critical 
failure modes and random variables. Figure 4-3 show NESSUS capabilities. It appears to be a 
very impressive probabilistic analysis tool. 
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FIGURE 4-3. NESSUS FEATURES AND CAPABILITIES


4-10




4.4.1 Probabilistic Methods in NESSUS. 

Figure 4-3 lists Fast Probability Analysis under the heading Probabilistic Methods. This method, 
developed by teams headed by Y.-T. Wu of SwRI, contains first- and second-order reliability 
methods (FORM/SORM), convolution, advanced first order, conventional Monte Carlo, and 
Monte Carlo with efficient sampling.  Wu led pioneering efforts in extending FORM/SORM 
techniques to develop the Advanced Mean Value First-Order (denoted AMV+) method to better 
account for nonlinear performance functions. 

In addition, he led development of a fast convolution method, which used the convolution 
theorem and the fast Fourier transform (FFT) technique to compute the probability of failure 
when the approximate linear or quadratic g-functions involve independent, non-normal random 
variables. This fast convolution method can calculate the exact probability of failure for a 
linearized performance function. Therefore, once the function is linearized, this procedure can be 
applied to compute accurate probability of failure results. 

From 1990 to 1994, much of the method development focused on Adaptive Importance 
Sampling (AIS) Monte Carlo to compute reliability and design parameter sensitivities. In this 
approach, sampling is focused around the failure domain, thereby minimizing over-sampling in 
the safe region. Significant efficiency can be gained relative to conventional Monte Carlo 
simulation. This is discussed in section 3.7.3.4. 

4.4.2 Performance Functions in NESSUS. 

In addition to stress, strain, and displacement analyses, the scope of the code was expanded in 
1992 to include probabilistic life and fatigue prediction of structures. In 1994, NESSUS could 
handle problems governed by linear elastic fracture mechanics where the crack path, weight 
function, Green’s function, i.e., or influence function, was known. The stress intensity factors 
are determined using the stress along the crack path of the uncracked body.  The stress along the 
crack is determined by finite element analysis of the uncracked structure. Figure 4-4 depicts the 
NESSUS probabilistic fatigue crack growth algorithm. 

What dictates failure in real structures will usually be a sequence or interaction of individual 
failure modes. To address this, a probabilistic fault tree analysis methodology was embedded 
into NESSUS. As discussed in section 3.8, a fault tree provides a systematic way to deal with 
multiple failure paths composed of multiple components and/or multiple failure modes. 

In traditional fault tree analysis, probabilities are assigned to the bottom events, and propagated 
through gates (AND, OR, etc.).  For typical structural reliability analysis problems, however, the 
failure events will often times be correlated due to sharing common variables. To account for 
this dependency, it is necessary that the limit state functions, rather than simply the probabilities, 
be used to define the bottom events. 
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FIGURE 4-4. NESSUS PROBABILISTIC FATIGUE CRACK GROWTH ALGORITHM 

4.4.3 Recent Work. 

SwRI is involved in (as of 1997) development of a damage tolerance design code to augment the 
safe-life approach. The goals are to produce a probabilistic design code capable of being 
interfaced with external finite element and fracture mechanics codes, providing risk sensitivities 
that identify the relative importance of input parameters. The project targeted engine rotor 
design and analysis [55]. 
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4.5 JET PROPULSION LABORATORY (JPL). 

In 1985, the JPL Engine Certification Project was initiated to develop an improved methodology 
for quantitatively evaluating and establishing flight readiness (certification). The program was 
entitled Probabilistic Failure Analysis (PFA).  The Challenger accident (1986) impacted the 
development of this technology in several ways. First, Professor Richard Feynman, during the 
failure investigation, determined that design engineers believed the risk of engine failure to be 
about 1 in 200; higher management understood the risk to be 1 in 100,000 [56]. Somewhere 
between design and certification, the real information was being lost. NASA began to examine 
different approaches for identifying risk, perhaps at the design level. Risk could then be elevated 
to certification in a quantitative procedure, rather than qualitatively implied from the safety 
factor. 

The second influence of the Challenger accident was that a significant amount of money was 
appropriated for the advancement of safety and risk technology. In addition to the JPL Engine 
Certification project, the Probabilistic Structural Analysis Methodology (PSAM), described in 
section 4.3, received large sums of funding. 

In 1988, an effort was initiated with the Marshall Space Flight Center to begin technology 
transfer of the JPL probabilistic methods. From 1988 through 1990, little progress was made. 
The PFA technology (described below) as defined, documented, and presented was extremely 
difficult for the reviewers to penetrate and understand. Because of this, coupled with the fact 
that it was not being applied, the PFA program was cancelled by the Shuttle Program Office. 
Later, it was reinstated with limited funding through 1992, during which time a new Marshall 
team was formed, and together with JPL members, were tasked to (1) gain a thorough 
understanding of the PFA method, (2) assess the utility of the method along with supporting 
software tools, and (3) develop a plan for the technology transfer of the method to NASA 
Marshall. 

4.5.1 PFA Methodology [57]. 

Figure 4-5 depicts the PFA methodology. For each critical failure mode, information comes 
from two sources: operating experience and engineering analyses. Operating experience may 
consist of success/failure data, development testing, flight operations, and certification testing, 
etc. Engineering analyses characterize the conditions under which specific failure mode may 
occur, such as pressure, accumulated time in service, etc. Within the engineering analyses, 
parameter uncertainties and failure mode models are merged with the quantitative model of the 
failure phenomenon. 

PFA utilizes a FEM to develop a response surface equation, which is based on a design of 
experiments approach (described in section 3.7.4). After a closed-form relationship is defined 
between the input and output parameters, direct Monte Carlo simulation is applied to establish 
the failure model. After finishing the engineering analyses, the prior failure probability, which is 
called prior distribution, can be estimated. Then, a Bayesian statistical algorithm is used to 
update this prior distribution to reflect available success/failure data. The system failure risk 
estimate for service life is performed with one or more relevant failure modes using their 
probability distributions from the Bayesian analysis to arrive at the probability of a failure 
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FIGURE 4-5. PROBABILISTIC FAILURE ASSESSMENT METHODOLOGY 

occurring during a mission or set of missions. By conducting sensitivity analyses, the 
responsible drivers can be identified and subsequent corrective action can be taken. 

The PFA methodology has been applied to high-cycle [58] and low-cycle fatigue [59] failure 
analysis, as well as flaw propagation [60]. 

4.5.2 NASA Marshall Conclusions and Recommendations [56]. 

After evaluating the PFA method and software for 18 months, the MSFC task group said that 
while recognizing the ground breaking efforts of the JPL team, that succeeded in introducing and 
advancing the probabilistic approach within NASA, the PFA approach could not be easily 
understood and practically applied and therefore should not be adopted for probabilistic 
structural analysis at NASA. The team also reviewed the NESSUS procedures and methods and 
said it had potential to become a standard design tool for probabilistic analysis in NASA 
applications. The specific criticism of the JPL approach stemmed from the reports documenting 
the approach being difficult to comprehend, the Bayesian updating concept appeared 
unnecessary (and complex), and the methodology was very application specific (software must 
be restructured for different applications). 
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4.6 ROCKWELL INTERNATIONAL CORPORATION. 

The Rocketdyne Division of Rockwell International, having design and manufacturing 
responsibility of the space shuttle’s main engine, was obviously an integral part of the 
development and application of NASA Lewis’ Probabilistic Structural Analysis Methods 
program. One particular application of the NESSUS code was the high-pressure fuel turbopump 
(HPFTP) turbine blade on the main engine. 

4.6.1 SSME Turbopump Blade Application. 

This example became well known and was the subject of numerous technical papers [61 through 
64] and presentations at technical conferences. The example describes a method of obtaining 
probabilistic (dependent) pressure, temperature, and centrifugal steady-state load descriptions of 
the second-stage turbine blade from the top of the airfoil to the intersection with the “fir tree” 
(the fir tree-shaped attachment region at the inner end of the blade). 

Rocketdyne applied NESSUS to determine the structural response of the turbopump blade shown 
in figure 4-6. The finite element model shown has about 6,000 degrees of freedom. Random 
design variables for the blade consisted of nine manufacturing variables and nine loading 
variables. Manufacturing variables include three rigid-body orientations of the airfoil (associated 
with the process of machining used on the blade root), three orientations of the cubic single 
crystal being evaluated, and three material properties for the single crystal. The nine loading 
variables concerned operating conditions for the turbopump, each of which had some predictable 
effect on rotor speed, blade temperature, and pressure loading conditions for steady-state 
operation. 

Location B 

Location A 

FIGURE 4-6. SSME HPFTP SECOND STAGE TURBINE BLADE FE MODEL 

Engine simulation was used to define the effect of each design (operating condition) variable on 
the three loading conditions. Results of the NESSUS analysis are plotted in figure 4-7. The two 
parts of the figure correspond to the two limiting locations identified on the finite element model. 
The plots depict the CDF of effective stress at both locations. Of most importance in the design 
study were the probabilistic sensitivity or importance factors shown. At location A, the 
dominant factor was hot-gas seal leakage, resulting in the highest blade stress. At location B, 
two single crystal orientations were among the most dominant factors. 
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4.6.2 Probabilistic Analysis Methodology Development Efforts. 

Around 1990, a multiyear research project began at Rockwell to develop a finite element-based 
first-order reliability analysis method. The objective was to develop probabilistic methods and 
algorithms that could be integrated with finite element structural analysis. The result was a 
computer program named Finite Element-Based Reliability (FEBREL). The probabilistic 
methods in FEBREL provide a means of modeling uncertainties, computing probabilities, and 
performing sensitivity analyses [66]. 

M. R. Khalessi led development of a Most Probable Point Locus (MPPL) procedure, which is 
incorporated into FEBREL.  This procedure applies to limit state approximation methods. The 
procedure examines the performance (g) function along a most probable point locus in search of 
the most probable point(s) on the limit state surface and identifies unusual conditions, such as 
multiple most probable points. This addressed a published criticism that limit state 
approximation methods may not converge or there may exist multiple minimum points (values of 
beta). 

An interface program was developed to enable data transfer between FEBREL and MacNeil-
Schwendler Corporation’s MSC/NASTRAN finite element software. Demonstration examples 
of both static and dynamic problems are given in reference 67. Figure 4-8 shows the FEBREL-
MSC/NASTRAN structure. FEBREL was also interfaced to the LS DYNA-3D finite element 
package and applied to perform a probabilistic transient dynamic impact analysis of a horizontal 
7-ft free fall of a U.S. Army munitions container onto a rigid surface [68]. 
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4.7 NYMA, INC. 

Formerly called Sverdrup Technology, NYMA has been a subcontractor to NASA Lewis 
Research Center, primarily in development of probabilistic analysis methods associated with 
composites. NYMA led the development of the Integrated Probabilistic Assessment of 
Composite Structures (IPACS) software which is described in section 4.3. 

For long term behavior prediction of composites, the ICAN computer code was modified to 
implement time dependent multifactor interaction equations (MFIE) and perform sensitivity 
evaluation for random variables [47, 48]. A discussion of MFIE can be found in section 4.3.6. 
MFIE was expanded to include time-dependent degradation effects of composite material 
behavior due to environmental, fabrication and load effects. The result was a module to 
NESSUS called TMFIE. 

A methodology to compute probabilistic fatigue life of polymeric laminated composites was the 
subject of a 1995 technical paper. Matrix degradation effects due to long term environmental 
exposure and mechanical and thermal cyclic loads are accounted for via simulation. Several test 
cases were run using graphite/epoxy laminates. 

In addition, NYMA led the effort to incorporate a parallel processing capability into the IPACS 
software. This capability (denoted PVM) is discussed in section 4.3.7. Recent work includes 
probabilistic simulation of progressive fracture in composite laminated bolted joints [69]. 

4.8 AEROSPATIALE. 

The work of Rouchon et al. in composite probabilistic analysis [70] primarily deals with 
probabilistic inspection. This issue is related to damage tolerance in connection with accidental 
service induced damage. Accidental damage is addressed through a scheduled inspection 
program based on the proportion of flight time variable. The proportion of flight time is defined 
as follows: 
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Proportion of flight time = probability of failure per flight hour × avg. time in failed condition, 
where the average time in failed condition is assumed to equal 50% of the interval of time 
between inspections. 

The methodology requires a comprehensive database on the probability of impact damage on 
structures, allowing for the components involved, aircraft operating conditions, damage location, 
etc. 

Probabilistic analysis was used to determine inspection intervals such that the probability of 
failure was no greater than 1.0 × 10-9/flight hour. The expression for PF is 

PF = ∫ P(at) Pr(at) [1-Pd(at)] d(at) 

where 

P(at) is the probability of occurrence of damage size “at,”

Pr(at) is the probability of load exceeding the residual strength for damage size “at,” and

Pd(at) is the probability of detecting damage of size “at.”


It is not stated if these functions are PDFs or CDFs, but P(at) should be a PDF, while Pr(at) and 
Pd(at) should be CDFs. The integration is over possible damage sizes “at.” For a specific “at,” 
they multiply its incremental probability [P(at all)] by (1) the probability that the load is greater 
than r(at), which is the residual strength at the value “at” (note that as “at” increases, this 
probability approaches 1, thus is a cumulative probability) and (2) 1 minus the probability that 
the defect “at” is detected (note also that as “at” increases, this probability approaches 1, thus is a 
cumulative probability also). Then the integration over all values of “at” of this three-factor 
product yields the PF. 

This methodology makes the following assumptions about requirements on probabilistic and 
conditional probabilistic measures: 

• Acceptable probability of structural failure is < 1 × 10-9 per flight hour. 
• Probability of occurrence of a defined damage size is < 1 × 10-5 per flight hour. 
• Probability of experiencing limit load and gust is < 2 × 10-5 per flight hour. 
• Probability of experiencing ultimate load is < 1 × 10-8 per flight hour. 

Relationships between various impact energies and damage sizes due to events such as tool drops 
are used to define P(at). The paper does not show the function Pr(at). A mean and standard 
deviation for the probability of occurrence of a given load level per flight is obtained from the 
probability of exceeding limit load and exceeding ultimate load per flight hour due to gust. 

There is no description of the residual strength vs. damage size relationship, only that it can be 
defined. The paper does not show the function Pd(at), but it does give a mean value and “A” 
value for indentation damage size for three inspection methods: visual, external detailed visual, 
and internal detailed visual. 

4-18




Rouchon recommended that the inspection program require a probabilistic approach for its 
determination [71]. The probabilistic inspection concept is a new approach to certification which 
allows for inclusion of the maintenance philosophy at the design stage. The concept depends on 
a random sample size of aircraft to be chosen from the fleet for inspection. The next inspection 
time is defined based on findings from current inspection. Total probability of failure includes 
not only the probability of structural failure but also the probability of failure due to structural 
damage which was undetected by the inspection program. Optimum definition of time between 
inspections and optimum life-cycle cost may be achieved by using this approach. 

Rouchon illustrated the approach on inspection scheduling for the ATR72 aircraft [72]. The 
inspection interval is determined such that larger impact damage, where residual strength after 
impact is between limit and ultimate, corresponds to a calculation of the stress-strength failure 
probability which is less than 10-9 per flight hour. Low-level impact damage, which does not 
reduce strength below ultimate, is covered by demonstration of no growth for the life of the 
aircraft. Figure 4-9 shows all inspection decisions as a function of residual strength after impact 
damage, length of inspection interval, and the corresponding probability of failure. 
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FIGURE 4-9. INSPECTION CRITERIA AND PROBABILITY LEVELS 

4.9 PRATT & WHITNEY. 

Pratt & Whitney is developing a general Probabilistic Design System (PDS) for gas turbine disks 
under a 5-year contract of the sponsorship of the Air Force Material Command-Wright 
Laboratory [73]. The Air Force sponsored program is comprised of six phases: 

Phase I Data Acquisition Phase IV Application 
Phase II Method Development Phase V Application Test 
Phase III Validation Test Phase VI Method Extension 
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Phases I and II were completed in early 1994. Comparison of the design system to field 
experience and subscale disk testing was conducted in Phase III. The benefits of the statistical 
approach to rotor design will be evaluated in Phase IV. The turbine rotor, to be designed by 
probabilistic methods, will be tested in Phase V. Suggestions for modifying the United States 
Air Force Engine Structural Integrity Program (ENSIP) by using probabilistic design will be 
made in Phase VI. 

The goal of the PDS program is to reduce engine component weight by integrating deterministic 
design methods and tools with probabilistic design methods. A key to achieving this goal is to 
develop a probabilistic analysis system that would be used by designers in the mainstream design 
process. To accomplish this, there are four criteria addressed in reference 74: (1) probabilistic 
design must be based on existing tools used in deterministic design; (2) probabilistic design must 
require only a small amount of additional time over that required for current deterministic 
design; (3) results must be quantifiably accurate; and (4) the software and method must be user-
friendly. 

Anticipated payoffs from using probabilistic methods in gas turbine engine design include rotor 
weight reduction, increased design life and rotor speed, risk quantification, and availability. 

4.9.1 Methodology. 

In the referenced papers [74, 75], the term design variable (e.g., stress, LCF life, plastic growth) 
refers to what is normally called a response or output variable, and life driver (e.g., temperature, 
modulus) refers to an input variable. The method entails selecting representative combinations 
of the input variables to produce representative values of the response variable. The philosophy 
is that achieving an extreme response is more likely due to all input variables being at 
moderately extreme values than due to one being at an extreme value while the others are near 
nominal. The approach is depicted in figure 4-10 and the general steps taken are: 

1.	 Find the driver factors and distributions associated with these factors. To obtain these 
distributions for the design variables, it is necessary to describe the basic life drivers with 
appropriate statistical probability distributions. A Box-Behnken experimental design is 
utilized to select representative combinations of life drivers. More details can be found in 
references 25 and 27. 

2.	 Create statistical distributions of the output variables due to uncertainties which were 
specified for the input variables. Take the results from the Box-Behnken matrix and fit a 
second-order response surface regression equation using stepwise regression. 

3.	 Evaluate the response surface equation. Two steps to achieve this are (1) to run a 
stepwise regression model which will select the variables from a large list of candidate 
variables which do the best job at explaining the variability in the response variables of 
interest and (2) to determine whether this resulting response surface model adequately 
approximates the design code. Additional details about assessing goodness of response 
surface in this methodology can be found in reference 76. 
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4.	 Calculate the probability of failure. Use Monte Carlo simulation to obtain the 
distributions of output variables, since it is very easy to evaluate a response surface 
equation by simulation. 

Box-Behnken Matrix 
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FIGURE 4-10. STRUCTURE OF PRATT & WHITNEY PROBABILISTIC DESIGN SYSTEM 

4.9.2 Box-Behnken Experimental Design Procedure. 

The following is an explanation for the case of three input variables in the Box-Behnken 
approach. Imagine a cube whose volume represents all possible combinations of three 
continuous input variables. The center of this cube would correspond to the input variables at 
their nominal values. The corner points represent the eight possible combinations of the three 
input variables at their extreme values: (Low, Low, Low), (Low, Low, High),… (High, High, 
High). 

The Box-Behnken Matrix method does not evaluate the response variable for the eight corner 
points of this cube. Instead, it considers those 12 points where two of the input variables are at 
extreme values and the other is at nominal, corresponding to the midpoints of the 12 edges 
comprising the cube. It also considers the center point of the cube, thus bringing the total 
number of deterministic evaluations to 13. 
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The regression equation consisting of an intercept term, linear terms, and quadratic terms 
(including interaction terms) is then fit to the 13 data points: (x1,x2,x3,y)i , i=1 to 13. For the 
three input variable case, the equation consists of 10 parameters (bi): 

y = b0 + b1x1 +b2x2 + b3x3 + b4x1
2 + b5x2

2 + b6x3
2 + b7x1x2 + b8x2x3 +b9x1x3 

where y is the response and x1, x2, and x3 are the input variables. 

The number of parameters in the regression ( = ½[n+2][n+1], where n is the number of input 
variables) and the number of Box and Behnken evaluations are shown in table 4-3. Monte Carlo 
simulation is used to sample from the input variables’ PDFs, and the response is calculated using 
the regression equation. The response PDF is then formed from the numerous responses 
generated. 

TABLE 4-3. BOX-BEHNKIN DESIGN OF EXPERIMENTS PARAMETERS 

n Parameters Number of B&B Evaluations 
3 10 13 
4 15 25 
5 21 41 
6 28 49 

4.9.3 Summary and Discussion of Pratt & Whitney Method. 

Two things must happen if this method is to work: (1) the input variable PDFs must be accurate, 
and of greater concern (2) the regression routine must be reasonable. For example, in the three 
input variable case, only 13 points are used to determine a best fit equation with 10 parameters! 
However smart the regression routine is in eliminating terms of little significance, the user 
should note what terms are left and see if they make sense, especially the interaction terms xixj. 

The authors claim that the regression equation should do an excellent job of predicting the 
response, as long as low values and high values for the input variables are selected in the 
moderately extreme region. For the example given in the paper, it did just that. There were six 
input variables, thus 49 deterministic evaluations. The regression routine managed to do a best 
fit with 11 parameters out of the possible 28, through elimination of insignificant terms. 
Examples were given of how small deviation existed between the regression equation’s 
predictive value and the actual value.  Naturally, this comparison could only be made at the 49 
points deterministically evaluated. Hopefully, the true response and the regression-predicted 
response at points away from the 49 are in agreement (i.e., there are no cliffs in the response 
within the moderately extreme values of the input variables). 

Sensitivities can be determined in two ways: (1) plot the data obtained from the Box-Behnken 
matrix by selecting one output and one input variable and (2) use the response surface equation 
and differentiate the response surface variable with respect to the input variable for which a 
sensitivity is desired. 
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In summary, Pratt & Whitney does a thorough and believable job in defining the stress PDF, but 
does not address the strength PDF.  The response surface approach can be a good alternative to 
Monte Carlo simulation, taking significantly less computer run time. As a word of caution, the 
author notes that response surface methods sometimes lose accuracy when the g-function is 
highly nonlinear. 

4.10 GENERAL ELECTRIC (GE). 

GE’s development of a probabilistic design tool is a part of the Air Force’s drive to meet the 
Integrated High Performance Turbine Engine Technology (IHPTET) goal to develop and 
demonstrate technologies by the turn of the century that will double the 1985 level of 
turbopropulsion capability [77]. To point out the over-conservatism of the present deterministic 
design approach, it is noted that certain engine components had been retired at the end of their 
deterministically calculated lives, but then reissued if found to be fit for reissue (typically 95% of 
turbine engine disks). Probabilistic analysis of an existing design showed that failure rates were 
0.71 in 1000. With a target failure rate of 1 in 1000, weight savings (18 lb. per disk) could be 
achieved while at the same time increasing the calculated PF to this value. 

GE’s system involves the direct integration approach, along with fast probability integration (this 
term is not defined). There is discussion of carefully seeding test specimens and model disks 
with known imperfections to verify the life and failure mode as predicted by the PDS, but not 
enough detail is given to determine its validity. 

Another technical paper [78] describes the use of a Taguchi Experimental Matrix to investigate 
the effect of [modulus x proportion limit], thermal coefficient of expansion, Poisson’s ratio, and 
creep parameter on two response variables. These four parameters are the major drivers for 
mechanical fatigue life.  The stochastic nature of the four effects is what justifies the use of 
probabilistic analysis. Thus, response variable sensitivity can be studied. 

4.11 NASA MARSHALL FLIGHT CENTER (MSFC). 

The role of NASA Marshall has been primarily to educate the industry on the subject of 
probabilistic methods. As discussed in section 4.5, a MSFC task force was formed in 1991 to 
review the JPL method. This led to an evaluation of the state of the art in probabilistic methods. 
Their dissemination of knowledge gained was impressive, as the MSFC task force produced a 
well-written 60-page technical report in 1993 [56] containing a thorough review of the JPL 
method, as well as an explanation and review of other probabilistic approaches for application in 
aerospace structural design. 

4.11.1 Probabilistic Methods Documentation. 

In 1994, NASA Marshall published a comprehensive 200-page report entitled “Modern 
Structural Reliability Methods” [23], which details the approaches involved. This is an excellent 
source for detailed mathematics involved with Monte Carlo, response surface, and limit state 
approximation methods. Much of the information in section 3 of this document was obtained 
from this reference. 
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Among the recommendations of the MSFC task force was to suggest the goal should be to 
supplement current safety factor deterministic approaches with probabilistic methods. To this 
end, several technical papers were written by V. Verderaime [79 through 81], explaining the 
First-Order Reliability Method (FORM) and relating it to the safety factor approach. There was 
a twist, however, as the explanation of the First-Order Reliability Method was not the same as it 
appeared in other literature. 

4.11.2 Proposed First-Order Method. 

In the papers by Verderaime, the normal distribution was exclusively used in all parameter 
modeling, in conjunction with normal distribution combining techniques (see section 3.7.2.2), to 
combine multiple normal distributions into a single normal distribution for both the applied 
stress and component strength. 

The reasoning behind this is quoted [79]: “Normal distributions are overwhelmingly observed in 
structural data and are justified by the central limit theorem. The normal distribution assumption 
allows the statistical characterization of random variables to be completely and expediently 
determined by the mean and standard deviation. Normal distribution techniques are the best 
developed and easiest to learn and apply.  To employ other distributions for small sample sizes is 
to prematurely consider unnecessary and burdensome statistical information. Note that only the 
worst-case sides of the two distributions are involved in the failure concept. Hence, when a 
phenomenon is known to be non-normal, the distribution may be split, with the mode (peak 
frequency point) representing the mean.... This normalization of skewed distributions amounts 
to trading a little eloquence for reduced labor and lead time.” 

This method assumes a closed form solution to the problem exists, which for aerospace 
structures is usually not the case (e.g., finite element methods are normally used for defining 
stress PDF). As Fox [13] points out in his 1992 paper entitled Statistical Characterization of 
Life Drivers for a Probabilistic Design Analysis, “Everything in the world is not normally 
distributed.... It should be noted that the normal distribution is perhaps one of the least 
conservative distributions that can be used.” So while all-normal approach may be a good 
academic exercise to get engineers up the learning curve, its practicality is highly questionable. 

4.11.3 Recent Work at NASA Marshall. 

In 1995, a paper [82] was published addressing probabilistic dynamic synthesis. This is 
described as a new methodology for performing analysis of structures composed of substructures 
whose dynamic characteristics can be statistically identified. The method uses the substructure 
eigenvalues, eigenvectors, and residual flexibility as random vectors for determining the 
response value by combining new probabilistic analysis techniques with the residual flexibility 
method of component mode synthesis. Future work was proposed and a test case performed on a 
spring-mass system model. 

4.12 THIOKOL CORPORATION. 

A probabilistic design approach [83] was developed in 1991 by Thiokol entitled Statistical 
Approach for Engineering Reliability (SAFER). It is believed only one paper was published on 
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this, but it appears as though significant effort was put forth. Probabilistic analysis was applied 
to a new solid rocket motor case design. The analysis ultimately determines the probability that 
stress exceeds strength. More specifically, the hoop stress PDF is referred to as the performance 
distribution, while the hoop strength PDF is called the capability distribution. 

The general process of SAFER is as follows: 

•	 Identify initial system and component requirements. These are usually obtained from the 
system loading and environmental conditions defined in the mission profile. 

• Given the preliminary design, identify the driving failure mode(s). 

•	 Perform structural reliability analysis. Experimental design methods are used along with 
a regression equation to model stress in terms of design variables that are input to 
classical laminated plate theory. Stress and strength equations are generated by randomly 
varying design variables over their naturally occurring range using Monte Carlo 
simulation. This is basically the same as the response surface method as explained in 
section 3.7.4. Probability of failure is calculated by combining distributions of stress and 
strength via stress-strength integration methods. 

In the application, the performance equation (for hoop stress) is a function of eight performance 
variables, six of which are described by normal PDFs and two of which are described by uniform 
PDFs. The capability equation (for hoop strength) is a function of three capability variables, two 
of which are described by normal PDFs and the other by a uniform PDF.  Monte Carlo 
simulation is used to sample from the performance and capability variables, then regression 
equations are used to determine the value of hoopstress and hoop strength. (It is stated that this 
regression equation was developed from experimental design methods and classical laminated 
plate theory, but no more details are given.) After numerous MC trials, the mean and standard 
deviation of hoop stress and strength are applied to normal distributions and the probability of 
failure is calculated. 

The validity of this analysis rides on the regression fit for hoop stress; it is unknown if extreme 
or moderately extreme values of the performance variables were considered. It is also unknown 
how many sets of performance variable values were used in developing the regression fit. 

4.13 NASA LANGLEY. 

In a paper published in 1992 [84], two examples are given for the reliability of graphite/epoxy 
stiffened panels: 

•	 Effect of bow-type initial imperfection on reliability. Three PDFs for bow size are 
initially considered: maximum extreme value, normal, and minimum extreme value, each 
with a mean of zero and standard deviation of 0.02 inch. Reliability versus fraction of 
(deterministic) design load is plotted. Then assuming quality control procedures would 
eliminate panels with bow sizes larger than 0.04 inch, the three PDFs were truncated at 
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±0.04 in., and the analysis was repeated. Results were then compared to the original 
analysis. 

•	 Effect of allowable strains on reliability. Two random variables considered in this 
analysis are the percentage of failed plies (PFP) and the coefficient of variation (COV) of 
the allowable strains. Fixing  COV=5%, reliability versus applied load was plotted for 
various PFP values. Then fixing PFP = 20%, reliability versus applied load was plotted 
for various COV values. Although very clearly written, this paper describes an 
oversimplified model. It does, however, convey very simply what probabilistic analysis 
is all about. Also, it addresses the impact of having a good quality control program in 
place. Optimized structural design should include the costs and benefits of various levels 
of quality control. It concludes with the obvious requirement of having an excellent math 
model and low variability of important parameters in predicting the failure load for a 
structure. 

The first studies the effect of an overall bow in the panel (stress) and the second studies the effect 
of allowable strain (strength). Each problem studies the effect of only one random variable at a 
time. 

Reference 85 contains an interesting approach to comparing deterministic and probabilistic 
designs. A 10-bar truss is evaluated in terms of dynamic performance and is not destroyed if 
failure occurs. Failure is defined as a damping ratio for any of several vibration modes being 
below a specified value.  A deterministically optimized design is defined as one in which the 
margin against failure is maximized under the constraints that utilized resources do not exceed 
allocated resources. This is not the same as the typical deterministic design approach used for 
aircraft structure, where the constraint is margin of safety ≥ 0 at ultimate load, while the 
objective function to be minimized is weight, cost, etc. A probabilistically optimized design is 
one in which the probability of failure is minimized under these constraints. 

The following issues for reliability-based design are offered: 

•	 Modeling uncertainties associated with the assumptions and simplifications in the 
analysis is a key task. 

•	 A tail sensitivity problem exists, i.e., determining the shape of the stress PDF’s right tail 
and the strength PDF’s left tail. 

•	 The calculated probability of failure, as a result of the aforementioned issues, should be 
used only as a subjective measure of safety, making important the question of whether 
the resulting designs are still better than their deterministic counterparts. 

The extended interior penalty function technique incorporated in the code NEWSUMT-A was 
used for performing optimization in both cases. The end result was that the probabilistic 
optimum was considerably safer than the deterministic optimum. The reasons given for this 
were (1) the probabilistic approach accounted for the uncertainties in a rational way, and (2) the 
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probabilistic approach accounted for the sensitivity of the cost and performance of the system 
with respect to the uncertainties. 

4.14 GRUMMAN AEROSPACE. 

As part of a contract with NASA Lewis under the Advanced Composites Technology (ACT) 
program, Grumman was involved in applying and assessing the Integrated Probabilistic 
Assessment of Composite Structures (IPACS) computer program, developed by NYMA Inc. 
under contract with NASA Lewis and described in section 4.3.1. Since IPACS was in an 
evolving state at the time, many suggestions were documented [86]. A comparison was made 
between IPACS’ predicted material response distributions and Grumman’s test results for the 
unnotched specimens. Specifically, IPACS was used to predict tensile modulus and strength 
distributions for longitudinally loaded test specimens tested at room temperature. 

Strength predictions were obtained from two failure criteria, one based on Chamis’ combined 
stress criterion and the other on the maximum uniaxial stress criterion. Analyses were performed 
using three NESSUS analysis options: (1) FORM (a limit state approximation method), 
(2) SORM, and (3) Monte Carlo simulation. 

Good correlation was found in a comparison of predicted and measured longitudinal modulus 
distributions for the unnotched unidirectional, cross-ply, and quasi-isotropic laminates. 
Correlation of strength distributions for the unnotched laminates were judged good for the 
unidirectional laminate and fair for the cross-ply laminate. Strength correlation for the quasi-
isotropic laminate was not good because IPACS (at the time) did not have a progressive failure 
capability.  For the cross-ply and quasi-isotropic laminates, the linear response surface (FORM 
analysis) was accurate for the prediction of modulus distributions but inaccurate for the 
prediction of tension strength distributions because of nonlinearity with the random variables. 

4.15 THE CENTRAL AERO-HYDRODYNAMIC INSTITUTE (TsAGI). 

The Central Aero-Hydrodynamic Institute (TsAGI), from the Russian Federation, developed a 
methodology for probabilistic analysis of composite aircraft structure named Probabilistic 
Design of Damage Tolerant Composite Aircraft Structures (ProDeCompoS) [87]. It includes 
databases and a library of application programs. The analysis uses a large amount of 
information: 

• Mechanical characteristics of composite materials 
• Manufacturing processes 
• Results of nondestructive inspection during manufacture, testing, and service. 
• Data from experimental investigations 

4.15.1 General Input Requirements to the Software. 

The following inputs are depicted in figure 4-11: 

• Types of manufacturing flaws and their statistical distribution with respect to dimensions 
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• Types of in-service damage and their statistical distribution with respect to dimensions

• Dimensions of damages which occur after typical mechanical impacts

• Estimates of effects of manufacturing flaws and damages on the residual strength and
endurance

• Parameters of statistical distribution functions for the residual strength and endurance

• Design conditions, values of applied loads, environmental factors, and their statistical
characteristics

• Inspection and repair schedules

• Failure probability estimation methods

FIGURE 4-11.  TsAGI PROBABILISTIC METHODOLOGY

4.15.2  y.

The ProDeCompoS methodology is formulated as flight-by-flight numerical simulation of the
combined stress-strain state of the structure, taking into account diverse random sources of loads.
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In each time instant (interval), the stress state is compared to the strength state, which is 
simulated depending on the initial strength state and its random variation during operation. The 
structural loads should be modeled in a probabilistic manner to allow determination of the 
maximum expected value of load for any time of operation. The comparison of stress level vs. 
strength level determines local structural failure. When N load histories and residual strength 
histories are simulated and M failures are observed, the probability of failure is evaluated as 
β = M/N. The total structural failure probability for time “t” from the beginning of operation is 
calculated by 

N 

β = − ∏(1− β i)1 
i=1 

where βi is the failure probability of a piece of structure for the ith loading case.  The time chosen 
is usually the service life, and therefore it gives the probability that component failure will occur 
during the aircraft lifetime. Attempting to back out a single-flight probability of failure (which is 
done in application examples) from this is not intuitive. 

This method calculates probability of failure differently for the scenario of damaged vs. 
undamaged structure. That is, if during the simulation of an aircraft lifetime no damage occurs 
to the structure, the component strength is not degraded and the probability of failure is 
calculated from the well-known formula 

∞ 

xβ = ∫ fl max
i
( ) Fp

i
( x ) dx 

0 

where Fpi(x) is the cumulative distribution function for the load-bearing capacity of the structural 
location for the ith design case, and flmaxi is the probability density function of maximum load for 
time t. The expected number of defects during the aircraft’s service life is modeled via Poisson 
distribution. If the expected number of damages exceeds one, Monte Carlo simulation is used to 
determine probability of failure for that location. If the expected number of damages during the 
service life is less than one, an approximate composite method is applied, which is an equation 
for conditional probability of failure. Applications include Lear Fan 2100 and SU-29 wing 
analyses. 

4.16 NANCHANG AIRCRAFT MANUFACTURING GROUP. 

One technical paper was found from this company dealing with the development of a new 
Sequential Response Surface Method together with Monte Carlo Importance Sampling. This 
technique is based on Bucher’s g-function approximation method [88] together with FEM 
methods to calculate response parameters and approximation techniques of structural 
optimization. The goal is to develop a response surface. This method was tested using a 3-bar 
truss structure and a multiweb wing structure model. The sequential response surface method 
was shown to be efficient and accurate. Results of both cases were compared to the probabilistic 
analyses obtained using a probabilistic finite element method (program named PFEM1no 
reference given) and Monte Carlo simulation. More development efforts were identified and 
recommended. 
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4.17 ALPHA STAR CORPORATION. 

Under sponsorship from NASA, Alpha STAR developed the computational structural and 
material analysis and design tool GENOA [89]. This software is dedicated to parallel and high-
speed analysis to perform probabilistic evaluation of high-temperature composite response of 
aerospace systems. The technique is specifically designed to exploit the availability of 
processors to perform computationally intense probabilistic analysis to assess uncertainties in 
structural analysis and composite micromechanics. 

The objectives achieved were (1) utilization of the power of parallel processing and static and 
dynamic balancing optimization to make the complex simulation of structure, material, and 
processing of high temperature composites affordable and (2) computational integration of 
probabilistic mathematics, structural mechanics, and parallel computing. 
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5. NORTHROP GRUMMAN METHODOLOGY THEORY. 

This section gives a detailed explanation of one industry method. The Northrop Grumman 
Commercial Aircraft Division (NGCAD) methodology uses numerical integration (discussed in 
section 3.7.2) along with Monte Carlo simulation (section 3.7.3) to determine probability of 
failure. 

Section 5.1 gives a historical overview of development of the NGCAD probabilistic design 
methodology.  A high-level overview of the procedure in flow chart form and description of the 
main components is given in section 5.2. Section 5.3 shows a detailed flowchart of the process; 
each subcomponent of the procedure is then described in detail. Section 5.4 shows additional 
probability calculations, and section 5.5 describes the program output. An example problem 
illustrating the method is given in section 5.6. 

5.1 HISTORICAL OVERVIEW. 

Development of the NGCAD probabilistic design methodology for composites began in 1988 as 
a study to determine the degree of conservatism in composite design allowables. It was later 
expanded to perform a risk assessment of the USAF B-2 bomber. In 1989, the risk analysis was 
refined and development of a probabilistic design process was funded as Independent Research 
and Development. The methodology was subsequently used to analyze structural risk 
(probability of structural failure) on several different aircraft wings. Up through 1997, the 
program was funded under contract from the FAA. A PC-based program has been developed 
and is available from the FAA. 

5.2 NGCAD PROBABILISTIC DESIGN METHODOLOGY OVERVIEW. 

The Northrop Grumman probabilistic design methodology employs numerical integration with 
Monte Carlo simulation to determine probability of failure of a structural component and/or 
system of structural components. The approach is to perform detailed probabilistic analyses at 
representative locations yielding individual probabilities of failure which are then statistically 
combined to produce a system probability of failure. 

The maximum operating stress (σmax) per flight probability density function (PDF) is determined 
from the maximum vertical load factor (nzmax) per flight PDF (a program input) and the linear 
relationship between nz and stress (also based upon program inputs). The baseline material 
strength PDF is a program input as well. The program accommodates normal, lognormal, and 
Weibull PDF types. The equations for these PDF types are shown and explained in section 3.3. 

( )  ( )The equation for probability of failure is PF = ∫ f s  G s ds , where f(s) is the σmax per flight 
Ω f 

PDF, G(s) is the material strength cumulative distribution function (CDF), and Ω f is the domain 

of f(s). (The CDF is known for any of three PDF types and contains the same parameters.) The 
sole purpose of Monte Carlo simulation is to position the σmax per flight and material strength 
PDFs relative to each other accounting for gust, environment, and defects. In each Monte Carlo 
trial, the PDFs are modified to account for these effects through use of shift values and scale 
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factors. Shifting the PDF means incrementing its domain values by a constant, C1, thus the 
cumulative probability once associated with s becomes associated with s+C1. Scaling involves 
multiplying the domain values by a scalar, C2 > 0, thus the cumulative probability once 
associated with s becomes associated with sC2. Note that shifting preserves the standard 
deviation of the distribution, while scaling preserves the coefficient of variation (ratio of standard 
deviation to mean). 

Shifting and scaling are accomplished by changing the parameters of the PDF (described in 
table 3-1), as described in table 5-1. Once the PDFs are positioned by various shift values and 
scale factors, a single numerical integration is performed to determine the PF for that Monte 
Carlo trial. Results from numerous Monte Carlo trials are averaged arithmetically to determine 
the component PF. 

TABLE 5-1. PROBABILITY DISTRIBUTION TRANSFORMATIONS 

Distribution Parameters Transformation New Parameters 
Normal µ , σ Shift by C1 µ  + C1 , σ 
Lognormal µ ,σ , t0 Shift by C1 µ ,σ , t0 + C1 

Weibull θ , β , t0 Shift by C1 θ , β , t0 + C1 

Normal µ , σ Scale by C2 0> C2 µ , C2 σ 
Lognormal µ ,σ , t0 

Scale by C2 0> µ +ln C2 ,σ , C2 t0 

Weibull θ , β , t0 Scale by C2 0> C2 θ , β , C2 t0 

Figure 5-1 gives a high-level depiction of the methodology with the design process, material 
production, manufacturing process, and operations comprising the model. For each Monte Carlo 
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trial, the result of the design process is to yield a maximum operating stress distribution, while 
the other three components work together to yield a material strength distribution. As explained 
above, numerical integration of the product of the maximum operating stress PDF and the 
material strength CDF determines PF for each Monte Carlo trial. PF is determined by averaging 
the results from Monte Carlo trials. 

5.2.1 Design Process. 

The NGCAD probabilistic design model is directly related to the structural analysis of the 
component, performed external to the probabilistic model. Applied loads, part geometry, and 
material properties are input to a finite element model to yield nodal deflections and internal 
loads. From this, failure criteria are applied and margins of safety generated from deterministic 
composite structural analysis methods. Normally, this procedure is repeated until the structure is 
optimized within the usual design constraints. 

Margins of safety are a key input to the probabilistic analysis. They are used to determine the 
design limit stress level at each analysis location. Predicted maximum load distributions are 
established from load factor nZ exceedance data; this defines the shape of the maximum 
operating stress PDF through scaling of the Maximum nZ per flight PDF. Knowing the nZ level 
corresponding to design limit load, a scale factor (nZ → stress) is used to convert the maximum 
nZ per flight PDF to engineering units consistent with those of the material strength PDF. 

5.2.2 Material Production. 

Material strength distributions are established from mechanical property tests performed on the 
specific material(s) used in the component(s). These are normally available from material 
qualification tasks performed early in the development program. Often, valuable data are also 
available from material acceptance testing as the program matures. 

A key assumption in the probabilistic model is that component failure is directly related to a 
basic mechanical property for which ample data have been developed to accurately describe its 
statistical distribution. This is particularly important in the tails of the distributions since the 
structural failure probability is typically very small (< 10-8). 

5.2.3 Manufacturing Process and Operations. 

This portion of the model simulates activity encountered during production of parts that affects 
material strength. This is defined as manufacturing defects. A manufacturing defect has some 
quantifiable impact on basic material strength. The nature, severity, and frequency of defects 
must be investigated and defined. This is somewhat arbitrary because it is the purpose of the 
quality control process to identify and screen out defects. That is, it is the defect that escapes 
detection that is important to structural risk. 

In operational use, the part geometry, location on the aircraft, failure data from similar aircraft, 
and the predicted environment are analyzed to determine the expected frequency of operational 
damage. The source of this damage is low energy impact, either from foreign objects (runway 
debris, hail) or maintenance. Damage size and severity data are analyzed and a single material 
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strength scale factor representing the distribution of strength reductions is chosen. The material 
strength is reduced according to the expected frequency, average effect on strength, and location 
on aircraft. 

5.3 DETAILED DESCRIPTION OF NGCAD METHODOLOGY. 

For a given location subject to a potential failure mode, the Monte Carlo simulation does the 
following: 

• Adjusts stress and strength PDFs due to randomly selected effects 
• Calculates probability of failure via Romberg integration 
• Calculates an average probability of failure from all trials 

Figure 5-2 shows a detailed flowchart of the NGCAD methodology, with each significant 
flowchart element assigned a number. Each box will be discussed in this section. Note that 
figure 5-1 is a high-level depiction of this flowchart. 

Box 1Load Requirements. The design service life and design usage are based on usage 
requirements, typically stipulated in terms of: 

• Total flight hours 

• Total number of flights 

• Total number and type of landings 

• Total service years 

•	 Mission profiles (divided into segments [taxi, ascent, cruise, etc.] with associated 
duration, altitude, speed and weight) 

• Mission mix or number of flights of each mission 

Box 2Exceedance Data. The load spectrum for each mission segment is characterized by a 
table of occurrences of a load parameter. The normal load factor at the aircraft center of gravity, 
nZ, is commonly used. A table of occurrences is made by summing the occurrences per mission 
segment. These are plotted to form an exceedance graph. An example for positive maneuver 
loads is shown in figure 5-3(a). This shows the number of times in which specified values are 
exceeded during a specific time period. The time period is picked such that if measurements 
were taken again during an equal number of flight hours, the exceedance spectrum would 
theoretically be the same. Once the service life summary, mission profiles, and load factor 
spectra are defined, the load spectrum can be generated at specific locations on the aircraft using 
transfer functions based on load paths, material properties, and geometry. 
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FIGURE 5-2. NGCAD PROBABILISTIC DESIGN MODEL FLOWCHART
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Box 3Max nZ per Flight PDF Parameters. Once the load factor spectrum is defined, it is 
converted to a probability distribution function (PDF) of the maximum nZ per flight. The 
Poisson distribution is used for this. This PDF represents the distribution of the probability of 
achieving maximum load factor levels during a single flight and is shown in figure 5-3(b). One 
procedure to obtain this PDF from the exceedance curve (figure 5-3(a)) is illustrated by the 
following example. The Microsoft EXCEL spreadsheet analysis for the Lear Fan 2100 aircraft is 
shown in table 5-2. 

Columns A and B are a table of exceedances provided as input data. Column C is the CDF 
obtained to calculate the probability of a given load level being the maximum during a single 
flight by using the Poisson distribution. That is, the parameter λ is defined as the expected 
number of times the load factor nZi will be exceeded during a single flight. 

TABLE 5-2. LEAR FAN 2100 CURVE FITTING OPTIMIZATION 

A B C D E F G 

nZ 

No. of Exceedances 
per 1000 Flights 

Poisson 
CDF 

Optimized No. of Exceedances 
CDF per 1000 Flights 

Error 
Term PDF 

1.00 Infinity 0.00000 0 Infinity 0 
1.15 5626.69 0.00360 0.06087 2799.04 0.00654 1.49622 
1.25 3515.89 0.02972 0.27563 1288.69 0.01511 2.48931 
1.35 2126.35 0.11927 0.51235 668.74 0.02279 2.12247 
1.45 1237.13 0.29022 0.69117 369.37 0.02882 1.45814 
1.55 696.11 0.49852 0.80867 212.36 0.03290 0.92312 
1.65 379.17 0.68443 0.88184 125.75 0.03455 0.56712 
1.75 199.23 0.81936 0.92659 76.25 0.03291 0.34593 
1.85 88.90 0.91494 0.95391 47.19 0.01992 0.21179 
1.95 38.38 0.96235 0.97070 29.74 0.00489 0.13084 
2.05 18.94 0.98124 0.98113 19.05 0.00000 0.08177 
2.15 11.16 0.98890 0.98768 12.39 0.00188 0.05175 
2.25 7.27 0.99276 0.99186 8.18 0.00350 0.03318 
2.35 4.70 0.99531 0.99455 5.47 0.00950 0.02155 
2.45 3.39 0.99662 0.99631 3.70 0.00511 0.01417 
2.55 2.39 0.99761 0.99747 2.53 0.00444 0.00943 
2.65 1.63 0.99837 0.99825 1.75 0.02231 0.00635 
2.75 1.22 0.99878 0.99877 1.23 0.00067 0.00432 
2.85 0.87 0.99913 0.99913 0.87 0.00108 0.00297 
2.95 0.65 0.99935 0.99938 0.62 0.01445 0.00206 

Error Sum 0.26139 
Parameters µ = -1.0664 

σ =  0.5368 

Therefore the values in column B are divided by 1000 to get the Poisson expectation in terms of 
per flight. Mathematically, Column C value = e (-0.001 × column B value). 
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Based on the discussion of the Poisson distribution in section 3.6.3, for each load level i, e-λi thus 
represents the probability that nZi will not be exceeded, hence the probability that the maximum 
nZ lies between 1.0 g and nZi during the flight. Therefore e-λi is the value of nZmax per flight 
cumulative distribution function (CDF) at nZi, or equivalently, the area under the nZmax per flight 
PDF between 1.0 g and nZi. This process is repeated for as many nZi values as necessary to 
adequately define the CDF. 

To choose the best distributional fit of the CDF, the distribution parameters are optimized via 
built-in Microsoft EXCEL (Solver) routines, minimizing the objective function denoted Error 
Term in column F. (Note in the lognormal case shown, the third parameter is nZ = 1, so only µ 
and σ are given). This error term is defined as 

Column F value = [LN(column B) - LN(column E)]/LN(column B), 

where column E values are the fitted exceedances per 1000 flight values generated by using the 
optimized lognormal parameters shown at the top of the figure, and are calculated by 

Column E value = 1000 × LN(Column D value) 

Column D values are generated by the equation for the CDF of a lognormal distribution with 
optimized parameters mean and sigma. The EXCEL spreadsheet has an internal function named 
LOGNORMDIST to generate the CDF in column D, given parameters µ and σ. If the fit were 
perfect, the values of column D would match exactly those in column C and the error sum, being 
minimized, would be zero. 

In this example, the optimized parameters were µ = -1.0664 and σ = 0.5368, while as mentioned 
above, the third parameter was set to 1.0. The resulting PDF, using these three parameters, is 
graphically shown in figure 5-3(b). This goodness-of-fit test is performed with normal, 
lognormal, and Weibull PDFs, the one with the least error sum is used. The third parameter of 
the Weibull and lognormal distributions is nZ = 1, i.e., the maximum load factor experienced 
during any time interval will always exceed nZ = 1 (level flight). 

Box 4Gust Loading. Gust loading is implemented as an event that occurs a portion of the 
flight time. From the input of probability of a gust occurring (e.g., 10%), a uniform distribution 
is defined to delineate between a gust and no-gust situation. Similarly, a probability level is 
given for the percentage of up vs. down gust, represented by another uniform distribution. That 
is, given that a gust occurs, there will be a percentage breakdown defined between up and down 
gusts. 

To illustrate, suppose the probability of a gust occurring is 10%, and the probability of a down 
gust (given a gust has occurred) is 20%. In the Monte Carlo simulation, a random draw is made 
from a uniform [0,1] distribution: if the value lies between 0 and 0.1, the effect of gust will be 
implemented in the Monte Carlo trial. Then, another draw is made (uniform [0,1] distribution) to 
decide whether it is an up or down gust. Should that value lie between 0 and 0.2, the event will 
be modeled as a down gust. 

Box 5Distribution Shift Due to Gust. A random draw from a normal, Weibull, lognormal, or 
uniform gust load PDF is used to model the effect of gust. The effect of the gust load is to shift 
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the load factor distribution either in a positive or negative direction by an amount equal to the 
random draw. 

In the NGCAD simulation, gust occurrence is superimposed on the maximum nz during the 
flight. It would be unrealistic and too conservative to superimpose severe gust loads (up to 2 g’s 
for the Lear Fan) on the maximum nz during the flight. Instead, the gust magnitude PDF is 
defined as a uniform distribution from 0.1 g to 0.3 g, since the mean of the gust spectrum is 
about ~0.2 g and three is only a small deviation about this mean (0.1 g). Certainly, the user 
could input a nzmax per flight PDF which corresponds to the gust exceedance spectrum, but to add 
this to the maneuver nzmax per flight PDF would be unrealistically severe. 

Box 6Load Truncation. This box represents an option to truncate the load factor distribution. 
If unbounded, the load factor extends beyond that which is physically possible for the aircraft to 
achieve. If selected, truncation should be based upon performance attributes of the aircraft 
coupled with engineering judgment. Assessment of the Lear Fan 2100 wing was performed with 
the maximum load factor distribution truncated at ultimate load, which corresponded to 
approximately 5 g’s at the aircraft center of gravity (c.g.). It may be of interest to the user to 
generate PF versus truncation level. 

Box 6AConversion to Stress. This step represents the conversion from aircraft performance 
parameter to stress at the point under consideration. It is assumed to be a linear scale factor 
developed from deterministic structural analysis. 

Box 7Material Allowables. Development of material allowables is an important component of 
the NGCAD probabilistic methodology.  A number of issues must be addressed when generating 
allowables, including number of batches and specimens per batch. In addition, because of the 
anisotropic characteristic of composites, difficulty in testing (in particular, compression), and the 
presence of more manufacturing process variables, there is often significant batch-to-batch 
variation. Material data developed at the coupon level often require adjustments, such as finite 
width correction. 

Boxes 8 and 9Design Process and Finite Element Model (FEM). The finite element model 
used to determine the response of the structure (deflections and internal loads) to externally 
applied loads requires (1) design geometry to establish a grid of nodal elements and primary load 
paths, (2) constraints to specify boundary conditions and symmetry, (3) externally applied loads 
as input to the model, and (4) material properties and thickness to define structural flexibility. 

The FEM step is actually the result of detailed structural analyses which normally use the finite 
element models for primary inputs. Structural analysis identifies the predicted failure modes and 
quantifies the margin between applied loads and stresses and allowable loads and stresses. The 
margin of safety from this step establishes the relationship between stress and aircraft 
performance parameters such as nZ. The FEM is also useful to determine the state of stress 
throughout the component, thus guiding the selection of critical points for probabilistic analysis. 

Box 10Deterministic Baseline Parameters. The FEM is iterated until optimized (outside the 
probabilistic program), given design and manufacturing constraints. The resulting thickness and 
margin of safety (defined as [Allowable Strength/Ultimate Stress-1]) for the critical failure 
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modes at each node are designated as baseline thickness and baseline margin of safety for the 
subsequent probabilistic analysis. 

Box 11Design Limit Stress (DLS) Calculation. From the material allowable and margin of 
safety at each probabilistic analysis point (both inputs to the program), the design limit stress 
(DLS) is established. This is derived from the formula for margin of safety described above 
(Box 10), along with the definition of ultimate stress = 1.5 times the design limit stress. This is a 
very important part of the probabilistic analysis, as the DLS value is used in conjunction with the 
nZ value corresponding to the design limit condition. For example, the Lear Fan design limit 
load corresponds to 3.5 g. 

The maximum nZ per flight PDF is thus converted to maximum stress per flight PDF (σmax) by 
way of a scale factor (denoted DLS on the flowchart), calculated as 

nZ max → σmax scale factor = [DLS]/[nZ level associated with DLS] 

This effectively changes the units on the horizontal axis without changing the form of the PDF. 
The parameters of the original load factor PDF are thus modified to reflect the linear 
correspondence between nZ and stress, as well as ensure the area under the PDF remains at 1. 

Box 12Thermal Stress. A provision is made to account for thermal stress at the component 
location. Calculation of thermal stress levels and their effect is done outside the program. 
During Monte Carlo simulation, a single temperature is randomly selected from the flight 
temperature profile (Box 25) distribution. If this temperature causes a thermal stress in addition 
to mechanical stress, it is represented by a factor (denoted TS on the flowchart) which adjusts 
(scales) the σmax per flight distribution. A table of temperature vs. thermal stress factor must be 
input to the program. 

Box 13Operating Stress PDF. The σmax per flight PDF is fully defined at this point, and is in 
the same units as the material strength PDF to enable integration. The distribution thus starts out 
as an nZmax per flight PDF and is translated should a gust condition be encountered, truncated 
should the nZmax limit option be chosen, and scaled to the same units as the material strength 
PDF. 

Box 14Material Production. For each distinct failure mode, sufficient test data should be 
obtained to define pertinent material property statistical distributions. MIL-HDBK-17 prescribes 
that 30 data points is a sufficient sample size to determine a stable mean, standard deviation, and 
a B-basis material allowable.  Obviously, the larger the sample size, the greater the certainty in 
the statistical distribution assigned to the material property. This is discussed further in section 3 
of this report. 

Once the data has been obtained, it is screened for outliers and a goodness-of-fit test performed 
to find which distribution is most appropriate. The test is called the Anderson-Darling goodness-
of-fit test and is recommended by MIL-HDBK-17 for use in generating design allowables. 
Spreadsheet optimization routines, such as those in Microsoft EXCEL, can also be used to 
evaluate goodness-of-fit and distribution parameters. 
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One difficulty in using a 3-parameter lognormal or Weibull distribution is in defining the third 
parameter, which is where the distribution begins. That is, there is zero probability that the 
strength, for the particular failure mode, will ever fall below that value.  This is usually a difficult 
decision, thus the caution. Of course, one conservative option involves setting the third 
parameter (the starting point) to zero; this is what is recommended in MIL-HDBK-17. 

Box 15Spatial Distribution of Material Strength. In-plane shear, tension, and compression 
failure modes are modeled by sample data from coupon testing.  There is no coupon test directly 
applicable to buckling strength, but since the equation for flat plate buckling strength (used to 
approximate the panel) contains a linear expression for the compression modulus, Ec, test data 
from these coupon level tests are used. Because critical buckling strength is also proportional to 
the square of part thickness, the factor t2 is also used, so that buckling strength is modeled by an 
expression Et2. Thus, the buckling strength is proportional to the compression modulus E and to 
the square of the thickness Fcr ∼  Ec  t2. This distribution can then be scaled and shifted as 
necessary to account for manufacturing and operational defects, as well as temperature and 
moisture effects. 

Box 16Bearing Bypass Adjustment. If there are analysis locations which have significant 
bearing stress and there is sufficient test data to calculate a material strength reduction factor, the 
material strength PDF can be adjusted (scaled) accordingly.  As an example, a probabilistic 
analysis was performed on a wing structure where there was a 35% tension strength reduction at 
a fastener hole location with significant bearing stress. 

The program assumes the effect will be predetermined (i.e., done outside the program) from test 
data of failure stress vs. bearing stress. That is, a series of locations defined by x and y 
coordinates are entered and, given a bearing stress at a particular location, the knockdown (scale) 
factor is determined by interpolation between the input x and y coordinates. This scale factor is 
denoted BBA in the flowchart. 

Boxes 17 and 18Manufacturing Defect Simulation. Types of manufacturing defects must be 
chosen which affect the material strength for the failure modes being analyzed. Occurrence rates 
for each type of manufacturing defect are generated outside the program and used with Monte 
Carlo simulation to account for the presence of undetected manufacturing defects. Defect 
size/severity data are analyzed and a single material strength scale factor representing the 
distribution of strength reductions is chosen. The material strength is adjusted (reduced) 
according to the expected frequency, average effect on strength, and location on the aircraft. 
These rates, based on the manufacturer’s data, are input to the program, per defect type, as the 
expected number of defects per square foot of material. 

Coupled with location area, probabilities of having a defect can be determined via use of the 
Poisson distribution. That is, using Poisson theory, the probability that one or more defects will 
occur is the quantity one minus the probability of having no defects. Mathematically, 

P(1 or more defects) = 1 - P(no defects) 

where P(no defects) = e(- defect rate × location area) 
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For example, if the manufacturing defect rate for waviness is input as 0.02 defects per square 
foot, and the area of the location of interest is 2 ft2, then the probability of having a defect 
(calculated inside program) would be P(1 or more defects) = 1 - e-0.02 × 2 = 0.0392. During Monte 
Carlo simulation, numbers are generated from zero to one. A number between zero and 0.0392 
would indicate a waviness defect at that location, and the material strength would be reduced 
(scaled) in accordance with table 5-1. 

Boxes 19 and 20Operational Damage Simulation. Occurrence rates for each type of 
operational damage are generated outside the program and used with Monte Carlo simulation to 
account for operational damage. These rates, usually based on data from similar aircraft, should 
be researched thoroughly, as operational damages typically lead to severe strength reductions 
and can produce relatively high probabilities of failure. Damage size and severity data is 
analyzed and a single material strength scale factor representing the distribution of strength 
reductions is chosen. The material strength is reduced according to the expected frequency, 
average effect on strength, and location on the aircraft. These rates are input, per defect type, as 
the expected number of defects per square foot of material per flight hour of operation. From 
Phase I of the Northrop Grumman Probabilistic Design project, funded by the FAA, the data 
shown in table 5-3 was obtained from two major commercial aircraft carriers. Portions of these 
data were used to develop program inputs for operational damage rates. 

TABLE 5-3. OPERATIONAL DAMAGE; SOURCE: TWO U.S. AIRLINES (1993) 

Carrier A Carrier B Total 
No. Flight Hours 2,005,896 1,691,775 3,697,671 
No. Maintenance Induced Damages 585 491 1076 
No. Lightning Strikes 60 51 111 
No. Bird Strikes 4 3 7 
No. Hail Storms 5 1 6 

These data were used to generate rates in terms of number of occurrences per FH. Then, 
approximate dimensions (surface areas that would see the different types of damage) of a typical 
aircraft flown by these carriers were used to develop rates in terms of number of occurrences per 
FH per ft2. With these rates, along with location area and analysis time (e.g., 15,000 FH), 
probabilities of having damage can be determined via use of the Poisson distribution, similar to 
the handling of manufacturing defects. The probability that one or more defects will occur is the 
quantity one minus the probability of having no defects. Mathematically, 

P(1 or more defects) = 1 - P(no defects) 

where P(no defects) = e(- defect rate × location area × analysis time) 

For example, if the operational defect rate for hail damage is input as 1x10-8 defects per square 
foot per flight hour, the location area is 2 ft2, and the analysis time is 20,000 FH, then the 
probability of having a defect (calculated inside the program) would be 

P(1 or more defects) = 1.0 - e-1E-8 × 2 × 20,000 = 0.0004 
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During Monte Carlo simulation, a number chosen between zero and 0.0004 would indicate hail 
damage at that location, and the material strength would be reduced (scaled) in accordance with 
table 5-1. 

Box 21Material Strength Reduction Factors. It is possible that two types of manufacturing 
defects can occur at a location within the same Monte Carlo trial; logic is written into the 
program to choose the more severe reduction of the various defect types. Similar program logic 
is written for operational damage. It is further possible that a manufacturing defect as well as 
operational damage can occur at a location within the same Monte Carlo trial. Rather than 
superimpose the manufacturing and operational reduction factors, the program will choose the 
defect with the most severe strength reduction. The strength reduction scale factor, representing 
manufacturing defects and operational damage, is denoted MFGOP in the flowchart. 

The program output lists, for each major structural component (consisting of several locations), 
the number of each type of manufacturing and operations damage defect that was modeled. 
Also listed via a table is the numbers of times each defect type was overridden by a more severe 
defect type, as described above. This enables verification that the program is modeling defects 
accurately. 

Box 22Aircraft Age. This probabilistic analysis can be run for any aircraft age, from zero 
flight hours to an analysis at the end of its life to find the single-flight probability of failure. The 
difference between a single-flight probability of failure for a new aircraft versus an aircraft at the 
end of its life is due to moisture absorption (into resin) and operational damage found to be a 
function of aircraft age. There is currently no provision to automatically run the analysis at 
different analysis times (aircraft ages), therefore the analysis time must be input and program 
rerun for each unique age. 

The basic material strength is assumed to be independent of aircraft age; fatigue is not a failure 
mode considered. There has been much research into mathematical modeling of delamination 
growth as a function of age, similar to the modeling of fatigue in metals. While laboratory 
testing may validate certain growth models, actual aircraft historical usage has not (to date) 
borne out the steady cycle-by-cycle growth of delaminations to some critical size whereupon 
component failure results. 

Box 23Operating Environment. It is well known that organic matrix composites are 
susceptible to temperature and moisture, causing significant degradation of some of their 
mechanical properties. For carbon/epoxy, the moisture absorbed is contained in the resin matrix. 
External surfaces in direct contact with the environment absorb or desorb moisture almost 
immediately, while moisture flow into or out of the laminate interior occurs relatively slowly. 
The moisture diffusion rate is many orders of magnitude slower than the heat flow associated 
with thermal diffusion, but even relatively thick structure can become saturated within a few 
years. 

The rate of moisture absorption is controlled by the material property called moisture diffusivity, 
which is primarily a function of temperature.  Figure 5-4 illustrates this temperature dependence, 
showing a family of moisture gain curves obtained at several different temperatures. The percent 
moisture content in a given laminate is a function of relative humidity to which it is exposed. 
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The maximum moisture content is a little over 1%; this is typical for most organic matrix 
composites, given enough time to reach moisture equilibrium from realistic service exposure. 
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Degradation of mechanical properties is primarily due to the reduction of matrix mechanical 
properties and interface bonding strength between fibers and matrix. The carbon fibers 
themselves are insensitive to hygrothermal effects. Moisture in the organic matrix lowers the 
temperature at which the matrix starts to soften. Therefore matrix-dominated mechanical 
properties (compression) tend to significantly decrease with increasing moisture content and 
increasing temperature (figure 5-5). 
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Box 24Flight Temperature Distribution. Altitudes and times of individual segments of each 
mission can be utilized, when available, to obtain the time distribution of structural temperature 
in flight. Then either a discrete or continuous distribution can be used to represent the expected 
flight temperature frequency during a single flight. Of course, a continuous distribution should 
be truncated on both ends, but this is not a limitation. 

By creating a probability distribution from the mission profile data, temperature is modeled 
independently of the time into the mission. That is, temperature is randomly chosen from the 
probability distribution within each Monte Carlo trial; these trials do not conform to any time 
sequence of any particular mission. The randomly chosen temperature is that which exists 
during the maximum maneuver, nZmax. The temperature distribution is based on pooled mission 
profile time-at-altitude data, coupled with assigning average temperature-at-altitude values, thus 
all possible temperatures are accounted for. It is assumed that nZmax could occur at any of these 
temperatures, so Monte Carlo simulation considers them all and calculates an average probability 
of failure over all values of temperature. 

The temperature chosen in each simulation is input to calculate thermal stress changes (described 
in Box 12) and to adjust material strength for hygrothermal laminate effects. 

Box 25Storage Environment. Laminate moisture absorption will occur throughout the 
aircraft’s life cycle. If the laminate is exposed to the sun or other heat sources, there can be a 
significant increase in structural temperature. A relationship between ambient temperature and 
structural surface temperature is used to determine the structure temperature profile. It is 
therefore desirable to obtain ambient temperature and relative humidity profiles (hourly data for 
a year period is preferable) for the primary base location, calculate the structural temperature 
profile, and compute the percent moisture absorbed as a function of time. This ambient 
temperature and relative humidity data can be obtained from Surface Airways Hourly data [91], 
available from the U.S. Department of Commerce, via the National Climatic Data Center. 

A computer program was used incorporating the mass diffusion theory following Fick’s Law, 
which is a moisture analog to thermal diffusion. The program uses the Surface Airways Hourly 
data as input, as well as laminate thickness and boundary conditions. This program is not a part 
of the Probabilistic Design computer program. 

Box 26Moisture Absorption Model Output. The result of the moisture absorption program 
runs is to generate a family of moisture absorption vs. time curves, each corresponding to a 
laminate thickness. Obviously, the lower curves represent thicker laminates. The probabilistic 
design program is run at a certain time, in years, representing aircraft age.  As seen in the 
flowchart, the laminate thickness, for this given age, will have an average percent moisture 
absorbed value. This number is actually percent weight gain of the laminate. Should the actual 
part thickness lie between two thickness curves, linear interpolation is performed to establish the 
percent moisture absorbed. 

Box 27Strength Reduction due to Environment. The temperature chosen from Monte Carlo 
sampling of the flight temperature distribution identifies the point along the abscissa of the 
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material strength scalar vs. temperature graph. A triflex distribution is defined, anchored at the 
dry (set to 0%, or 0.0) and wet (set to 100%, or 1.0) curves. 

The triflex distribution, developed at Northrop Grumman, is a modified triangular distribution, 
defined by four parameters: (1) minimum value (0 representing the dry curve), (2) maximum 
value (1.0 representing the wet curve), (3) the mode (highest point), and (4) shape factor. The 
percent moisture absorbed, given aircraft age and laminate thickness, is defined (done 
automatically) to be the mode of this triflex distribution. The shape factor is defined by the user 
to adjust the shape (steep, shallow) around the mode; its role is similar to how a beta distribution 
uses a shape parameter to adjust the variance. 

Monte Carlo simulation is used to randomly pick from this distribution; the value chosen 
represents the actual moisture content, which determines the material strength scalar. This value 
is therefore a function of base temperature and relative humidity, flight temperature, laminate 
thickness, and aircraft age. This process accounts for the hygrothermal effects on the laminate. 
Denoted MSR in the flowchart, it scales the material strength distribution in accordance with 
table 5-1. 

Box 28Adjusted Material Strength Distribution. The material strength distributions originate 
from material coupon test data and are subsequently scaled by the (1) bearing by-pass factor 
(2) temperature or moisture factor, and (3) manufacturing or operations factor. The 
mathematical procedures of scaling the distributions are shown in table 5-1. 

Box 29Component Failure Probability (per Monte Carlo Trial). The computer program 
presently has the capability to integrate combinations of normal, lognormal, and Weibull 
probability distributions. The integrations are carried out using Romberg integration techniques 
and are described in reference 90. For each unique combination of stress and strength 
distribution, the double integration formula for probability of failure is transformed to a single 
integral. 

Truncation of distributions is accounted for in the integration limits. That is, truncating the 
applied stress distribution at a particular load level is modeled by a change to the upper limit (as 
opposed to infinity or the integration limits computed by computational limitations). Doing this, 
however, requires a correction to the calculated probability of failure value. This correction is 
accomplished by changing the upper bound of the numerical integration by dividing the 
probability of failure by the area under the stress PDF curve up to the stress truncation level. In 
most cases, this area is very close to 1. 

The exact forms of the integration formulae will not be given here for all combinations of stress 
and strength PDF; only the case of a lognormal stress PDF combined with a normal strength PDF 
will be considered. For this choice, the PDFs of the two distributions are 

2
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After a change of variables, the resulting equation for probability of failure is 

B 

PF  = ∫ 2 2 π σ t 

− 
 

 
 

 exp Ζ Φ  1  1 2   s0 + eσ s Z + µs − µt 

 dZ , 

A 

where 

Z = 
ln(s s0 ) − µs− 

σ 
, 

s 

and where the integration limits are 

A = - ] )(2[ 2 0 Pln π− and B = + ] ) (2[ 2 0 Pln π− , 

in which P0 is normalizing factor which is set to 1× 10−40  to insure that the integration is 
performed over a region which includes all values of the integrand ≥1 10−40 .× 

The total number of integrations performed is determined as follows: 

Total no. of integrations = [no. of M.C. trials] × [no. of locations] × [no. of failure modes] × 
[no. of thickness sensitivity values] 

A case with either a small number of locations or Monte Carlo trials can be run to assess the 
average time taken for each integration. Then the approximate total amount of time required to 
perform larger-scale analyses can be assessed. 

Box 30Component Failure Probability (per Location). For each location, the number of 
Monte Carlo simulations usually produces a corresponding number of unique probabilities of 
failure. Since the objective is to get one answer per location, an arithmetic average is used to 
determine an average probability of failure for each location. 

Box 31Total Structure Failure Probability. To get a probability of failure for a group of 
locations, or for an entire structure, the structural locations are considered to be in series; that is, 
failure of any one location will lead to structural failure of the whole assembly. That is, no load 
path redundancy or redistribution is assumed. This is usually a conservative approach. 

As an example, take a system comprised of two independent elements in series, each having a 
probability of failure of 1%. To find the probability of failure of the system, we calculate 1 
minus the probability that both elements will survive (i.e., the product of the probabilities of the 
survival of each of the two elements), as follows: 

PFTOT = 1 - (1 - 0.01) × (1 - 0.01) = 1 - (0.99)(0.99) = 0.0199 

Box 32Failure Probability vs. Aircraft Age. Because of the time dependence of environmental 
conditioning of the composite structure and of undetected operational damage, the single-flight 
probability of failure could change over time. To create a curve of SFPF vs. time, the program 
must be rerun with the different analysis times as input. 
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5.4 ADDITIONAL PROBABILITY CALCULATIONS. 

The result from the NGCAD probabilistic methodology is the single-flight probability of failure 
(PSF). Given PSF, the following equation is used to determine the probability of failure (PS) for a 
single aircraft during its design lifetime: 

K 

PS = 1 - ∏(1 − PSFi 
) , 

i=1 

where K is the total number of flights during a design lifetime. If PSFi 
is constant (independent of 

time), this becomes 

K 

PS = 1 - (1 − PSFi 
) 

5.5 DESCRIPTION OF PROGRAM OUTPUT. 

Tables 5-4 through 5-6 show examples of program output: table 5-4 is a probability of failure 
summary by location and major structural component; while tables 5-5 and 5-6 summarize the 
number of defects chosen via simulation for each major component. 

5.5.1 Failure Probability Summary (Table 5-4). 

The probability of failure for each major component is obtained by assuming all locations are 
independent no load path redundancy.  The component probability of failure is obtained using a 
series calculation described above in Box 31, using the failure probabilities of all failure modes 
within the components. Similarly, the probability of failure for the total structure is a series 
calculation using the failure probabilities of the components. In table 5-4, locations are grouped 
into high- and low-strain points (from deterministic stress analysis) on the upper and lower skins, 
denoted USH and LSH, respectively. 

TABLE 5-4. EXAMPLE PROBABILITY OF FAILURE LISTING 

Loc 
Failure Modes 

Compression Strength Tensile Strength Total 
Tot 0.471E-09 0.508E-10 0.519E-09 
USH 
LSH 

0.468E-09 
0.508E-10 

0.468E-09 
0.508E-10 

USH Compression Strength Tensile Strength Total 
1 
2 
3 
4 
5 

0.411E-09 
0.135E-12 
0.109E-10 
0.466E-10 
0.517E-13 

0.411E-09 
0.135E-12 
0.109E-10 
0.466E-10 
0.517E-13 

LSH Compression Strength Tensile Strength Total 
6 
7 
8 
9 

10 

0.236E-10 
0.447E-11 
0.923E-11 
0.736E-11 
0.606E-11 

0.236E-10 
0.447E-11 
0.923E-11 
0.736E-11 
0.606E-11 
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The columns contain failure probabilities per failure mode, and the Total column is a series 
calculation of the individual failure mode failure probabilities. That is, we assume each failure 
mode to be independent from one another. At the top of this output file, the total failure 
probability for each failure mode is given. This enables assessment of the relative contribution 
of each failure mode to the total failure probability. 

5.5.2 Defect Summaries. 

The top part of the table 5-5 gives a summary of the total number of defects from all locations, 
per failure mode, for each type of defect used. The Occurred column represents the total number 
of occurrences of that defect type from the Poisson distribution model within the Monte Carlo 
simulation, while the Used column represents those defects that were actually used to scale the 
strength distribution. The difference in these two values comes from the fact that if several 
defect types are chosen within the Monte Carlo trial at a specific location, the effects will not be 
compounded; the defect with the most severe effect will be chosen, and the less severe defect 
types are ignored. 

TABLE 5-5. MANUFACTURING DEFECT SUMMARY 

Total Defects 
Compression Strength Tensile Strength 
Occurred Used Occurred Used 

All Locations 9718 9651 7895 7833 1823 1818 
Hole 3476 3469 2517 2511  959  958 
Laminate 3497 3313 3229 3190  125  123 
Impact  548  548  399  399  149  149 
Waviness 1450 1406 1059 1058  349  348 
Tolerance  932  915  691  675  241  240 

Upper Skin High Strain 7895 7833 7895 7833 
Hole 2517 2511 2517 2511 
Laminate 3229 3190 3229 3190 
Impact  399  399  399  399 
Waviness 1059 1058 1059 1058 
Tolerance  691  675  691  675 

Lower Skin High Strain 1823 1818 1823 1818 
Hole  959  958  959  958 
Laminate  125  123  125  123 
Impact  149  149  149  149 
Waviness  349  348  349  348 
Tolerance  241  240  241  240 

The number of defects, per failure mode, are summed from all locations within each major 
structural component. The Total column represents the arithmetic sum of defects from the 
failure mode columns. Note that since the impact defect has the most severe effect, it will be 
used every time, as can be seen in the defect numbers. 

Similar output shows the operational defects chosen from the simulation. The layout is similar to 
the manufacturing defect summary, where the total number of defects chosen from the Monte 
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Carlo simulation are summarized taking into account all locations that define each major 
structural component. 

Blank entries indicate that the defect type was not specified for that failure mode, while zeroes 
(not shown) would indicate that the number of Monte Carlo trials was not enough for the defect 
to occur. From Poisson distribution rates, it is possible (and very important) to determine how 
many trials will be needed to ensure each defect (and its effect) is accurately represented in the 
simulation. 

5.6 EXAMPLE PROBLEM. 

The following example problem illustrates the methods used in the NGCAD probabilistic 
approach. Monte Carlo simulation is used to model the effects of gust on the applied stress 
distribution and manufacturing defects on the component strength distribution, then numerical 
integration is used to calculate the probability of failure for each simulation. 

The maximum stress during a single flight for a given aircraft structural component is a random 
quantity which follows a normal distribution with a mean of 2000 psi and a standard deviation of 
500 psi. The strength of the component is also a random quantity and follows a normal 
distribution with a mean of 4000 psi and a standard deviation of 1000 psi. There is a 50% 
chance that a positive gust will occur during the maximum stress excursion and cause the stress 
to increase by 200 psi. The expected number of undetected manufacturing defects for this 
component is 1. Note that this is a mathematical expectation, not a probability, thus there could 
be 0, 1, 2, 3, etc., manufacturing defects. It is surmised that if at least one defect exists, the basic 
strength of the component will be reduced by 20%. 

What is the single-flight probability of failure, if failure is defined as the component’s maximum 
stress exceeding its strength? 

5.6.1 Theoretical Background. 

As discussed earlier in this section, the single-flight probability of failure is the product of the 
maximum stress per flight probability density, f(s), and the material strength cumulative 
probability, G(s), integrated over the region in which f(s) is defined: 

SFPF = ∫ f(s) G(s) ds 
Ω f 

Figure 5-6 shows the PDFs for the applied stress and component strength in units of ksi. Figure 
5-7 shows the applied stress PDF and the component strength CDF.  The CDF is the probability 
that the strength is less than the given value, i.e., the area under the PDF from negative infinity to 
the given value (hence the term cumulative). It follows that the CDF is asymptotic to 0 and 1 in 
the negative and positive directions, respectively. 

Figure 5-8 shows the product of the stress PDF and the strength CDF; the area under this curve is 
the probability of failure, thus the product is referred to as the integrand. 
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For the case where both the maximum stress per flight and material strength are independently 
and normally distributed, the SFPF is straightforward and can be found in any reliability 
textbook which addresses the load-strength interference problem: 

SFPF = Φ[(µs - µt)/(σs
2 + σt

2)½] (5-1) 

where 

Φ ≡ standard normal cumulative distribution function 
µs, σs ≡ mean, standard deviation of the stress PDF 
µt, σt ≡ mean, standard deviation of the strength PDF 

Since a similar derivation of an equation for SFPF is not straightforward for all combinations of 
probability distributions, an alternate mathematical derivation is demonstrated for the normal-
normal case, which is representative of the derivation used for the other distribution 
combinations. 

2 

( )1 / 2σ s 

exp



− 

2 
 

σ s   
f (s) = 

1  1  s − µs 
 


 

2π 

G(s) = Φ
 s − µt  

 σ t 
 

Then 
∞ 

1  1  s − µs 
2  s − µt  

SFPF ≡ ∫ f(s) G(s) ds  = ( )1/ 2σ ∫ exp 

− 

2 
 

σs  

 Φ


 

σt  
ds

Ω f
2π s −∞  

Substituting variables, let Z = (s-µs)/σs ⇒ s = σsZ + µs ⇒ ds = σsdZ ⇒ dZ = ds/σs 

New integration limits: s → −∞ ⇒ Z → −∞ 
s → +∞ ⇒ Z → +∞ 

The transformed expression for SFPF is thus: 

ZSFPF = 1 
1 

∞

∫exp 
− 1 Z 2  • Φ



σ sZ + µs − µt 


 

dZ = 
∞

∫ φ( )• Φ
σ sZ + µs − µt 

dZ (5-2)
2π( )  2 

−∞  2   σ t  −∞  σ t  

where φ ≡ standard normal probability density function. 

This formula is used in the NGCAD program to calculate SFPF, where the stress and strength 
are normally distributed. Formulas for combinations of normal, lognormal, and Weibull stress 
and strength distributions are similarly derived and used; the resulting equations are listed in 
table 3-5. 
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In this example, equations 5-1 and 5-2 will be employed separately to attain the identical solution 
for SFPF. A Microsoft EXCEL spreadsheet will also be included to demonstrate trapezoidal 
integration and verify the Romberg integration of equation 5-2. 

5.6.2 Solution. 

In this example, for each Monte Carlo simulation, there are four possible outcomes of the 2 
independent events (gust and manufacturing defect) which must be considered in determining the 
SFPF: 

• No gust, no manufacturing defect 
• Gust, no manufacturing defect 
• No gust, manufacturing defect 
• Gust, manufacturing defect 

Each outcome’s probability of occurrence is the product of the probabilities of the independent 
events that define the outcome. The probability of the event gust is 0.5, hence the probability of 
the event no gust is also 0.5. For manufacturing defects, more explanation is required. Recall 
the expected number of defects is 1. Assuming the occurrence of defects can be modeled as a 
Poisson process, the probability of no manufacturing defect is exp(-1) ≈ 0.368, hence the 
probability of manufacturing defect (actually 1 or more defects) is 1 - exp(-1) ≈ 0.632. (Recall 
that for this problem, existence of any number of defects reduces the material strength by 20%, 
regardless of how many.) 

Thus, the outcome probabilities (Pri, i=1 to 4) are: 

• No gust, no manufacturing defect: 0.5 × 0.368 = 0.184 = Pr1 

• Gust, no manufacturing defect: 0.5 × 0.368 = 0.184 = Pr2 

• No gust, manufacturing defect: 0.5 × 0.632 = 0.316 = Pr3 

• Gust, manufacturing defect: 0.5 × 0.632 = 0.316 = Pr4 

Note that these probabilities sum to 1, as they encompass all possible outcomes. After 
calculating each outcome’s SFPF and weighing it by its probability of occurrence, the sum 
constitutes the solution to the problem. Mathematically, 

SFPF = Pr1×SFPF1 + Pr2×SFPF2 + Pr3×SFPF3 + Pr4×SFPF4 

We know the Pri probabilities for each scenario; the SFPF can be calculated by using equations 1 
or 2. The use of equation 2 will be demonstrated by running the NGCAD probabilistic analysis 
program. 

Solution via equation 1: SFPFi = Φ[(µs - µt)/(σt
2 + σs

2)½] 

SFPF = ∑(Pri × SFPFi ) = 0.0945 
+∞ 
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+∞ 

Solution via equation 2: SFPF i = ∫φ( )• Φ[(σ 2Z + µs − µt )/σ t ]dZZ 
−∞ 

Table 5-6 shows the resultant failure probabilities associated with each of the four outcomes. 

TABLE 5-6. FAILURE PROBABILITIES ASSOCIATED WITH OUTCOMES 

Outcome (i) µs σs µt σt Pri SFPFi 

1 2000 500 4000 1000 0.184 0.0368 
2 2200 500 4000 1000 0.184 0.0537 
3 2000 500 3200 800 0.316 0.1017 
4 2200 500 3200 800 0.316 0.1446 

The NGCAD program was run to demonstrate the Monte Carlo simulation integration of 
equation 2. An input file was set up to create basic stress and strength PDFs identical to 
Outcome no. 1 above (no gust, no defects ⇒ µs=2000, σs =500, µt = 4000, σt = 1000). 

To understand the following steps to create this applied stress input, the reader needs to fully 
understand the steps in defining the applied stress distribution, as shown in figure 5-2. A normal 
distribution was input for the nzmax per flight PDF with the mean = 2 and the standard deviation = 
0.5. Then, a stress/nz scale factor of 1000 was forced by setting Design Factor (DF) = 1.5, 
Allowable = 9000, Margin of Safety (MS) = 1.0, and the nz corresponding to 100% Design Limit 
Stress (nzDLS) = 3.0, as per the relation 

Stress/nz = Allowable/[DF(1+MS)]/nzDLS = 9000/1.5[1+1]/3 = 1000 

This produces the desired parameters (µs=2000, σs =500) for basic maximum stress per flight 
PDF and is verified in the program output (at the end of this example). The component strength 
PDF is input directly. 

To include the effects of gust, the input included (1) probability of gust occurring (0.5), 
(2) probability of down gust given that gust occurs (0.0, hence ensuring up gust only), and (3) the 
probability distribution for the shift in the input nzmax PDF when gust occurs (Uniform[0.2,0.2]). 
Based on these inputs and the stress/nz scale factor of 1000, a positive shift of 200 in the stress 
PDF will occur when gust is sampled during Monte Carlo simulation (during approximately half 
the trials). To include the effects of undetected manufacturing defects, a manufacturing defect 
rate of 1.0 and a strength reduction factor of 0.8 were input. As described above, there is 
~63.2% chance during a given Monte Carlo trial that at least one defect will occur and the basic 
material strength PDF will be scaled by 0.8. 

Initially, the program was run with only 10 Monte Carlo trials. With the random number seed 
selected, this was enough to demonstrate the numerical integration results for the four possible 
outcomes. Results are summarized in table 5-7. 
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TABLE 5-7. RESULTS CORRESPONDING TO THE FOUR OUTCOMES


Outcome (i) MC Trial No. Fraction of Trials (Fri) SFPFi 

1 5 0.1 0.0368 
2 1,4 0.2 0.0537 
3 2 0.1 0.1017 
4 3,6-10 0.6 0.1446 

SFPF = Σ(Fri×SFPFi) = 0.1113 

Two points are evident from these results. First, there is excellent agreement between the SFPFi 

values here and the those for equation 1, demonstrating the accuracy of Romberg integration 
applied to equation 2. Second, the number of Monte Carlo trials (10) is obviously insufficient to 
accurately simulate the individual outcome probabilities. (Compare Fri values in this table to Pri 

values in the previous table.) More trials are necessary to converge to the “exact” solution 
achieved with equation 1. In fact, convergence becomes evident at approximately 1000 trials as 
shown in table 5-8. 

TABLE 5-8. FAILURE PROBABILITIES ASSOCIATED WITH M.C. TRIALS 

MC Trials SFPF 
10 0.111335 
100 0.104170 
1000 0.094854 

10,000 0.094032 
100,000 0.094316 
“Exact” 0.094483 

Figure 5-9 shows the PDFs describing the maximum stress per flight for the “gust” and “no gust” 
cases and the component strength PDFs for the “manufacturing defect” and “no manufacturing 
defects” cases. Figure 5-10 is the integrand per equation 2 for the outcome where neither gust 
nor manufacturing defect occur. Table 5-9 shows a spreadsheet application (using Microsoft 
EXCEL software) of the trapezoidal rule to estimate the area under the SFPF integrand curve for 
comparison with Romberg integration results from the NGCAD program. Recall that Romberg 
integration is an extended version of the trapezoidal rule. 

Appendix A shows the NGCAD program output (including an echo of the input data), with the 
number of Monte Carlo trials set to 10. 
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TABLE 5-9. TRAPEZOIDAL RULE CALCULATION (NO GUST, NO DEFECT)


PF integrand for Normal-Normal Case 

Stress (s) Strength (t) 
P1= 2000 4000 
P2= 500 1000 Trapezoidal 

Z f(Z) Area 
-3.0 1.03117E-06 
-2.8 2.66736E-06 3.69853E-07 
-2.6 6.56713E-06 9.23448E-07 
-2.4 1.53896E-05 2.19567E-06 
-2.2 3.43277E-05 4.97173E-06 
-2.0 7.2886E-05 1.07214E-05 
-1.8 0.000147312 2.20198E-05 
-1.6 0.000283424 4.30735E-05 
-1.4 0.000519109 8.02532E-05 
-1.2 0.000905144 0.000142425 
-1.0 0.001502561 0.000240771 
-0.8 0.002374755 0.000387732 
-0.6 0.003573528 0.000594828 
-0.4 0.005120207 0.000869373 
-0.2 0.006985726 0.001210593 
0.0 0.009075962 0.001606169 
0.2 0.011229375 0.002030534 
0.4 0.013232044 0.002446142 
0.6 0.014850298 0.002808234 
0.8 0.015874891 0.003072519 
1.0 0.016165394 0.003204028 
1.2 0.015681827 0.003184722 
1.4 0.014493701 0.003017553 
1.6 0.012763631 0.002725733 
1.8 0.01071086 0.002347449 
2.0 0.008565951 0.001927681 
2.2 0.006529457 0.001509541 
2.4 0.004744401 0.001127386 
2.6 0.003286584 0.000803098 
2.8 0.002170837 0.000545742 
3.0 0.001367392 0.000353823 
3.2 0.000821505 0.00021889 
3.4 0.000470817 0.000129232 
3.6 0.000257452 7.28269E-05 
3.8 0.000134346 3.91798E-05 
4.0 6.69151E-05 2.01261E-05 
4.2 3.18191E-05 9.87342E-06 
4.4 1.44482E-05 4.62673E-06 
4.6 6.26615E-06 2.07143E-06 
4.8 2.59632E-06 8.86247E-07 
5.0 1.02801E-06 3.62433E-07 

sum (~SFPF) = 0.036819 
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6. BENEFITS OF PROBABILISTIC ANALYSIS. 

Uncertainties in the definition of loads, geometry, assembly procedures, manufacturing 
processes, engineering models, material properties, and maintenance or operational environments 
as well as uncertainties in testing lead to uncertainty in structural design and ultimately safety. 
There have been many probabilistic analysis tools developed, but in general they are difficult for 
nonstatistical experts to understand and implement and have not been universally accepted by the 
engineering community. This does not mean that probabilistic analysis methods are without 
merit. There is ongoing effort to refine the methods and improve the user-friendliness and 
flexibility of associated computer programs. 

A list of benefits was obtained by reviewing nearly 100 technical reports on probabilistic 
methods published through 1996; these were written by both developers and application 
engineers. The following list is the authors’ consensus of perceived benefits: 

a.	 Enables quantification of the design risk or reliability.  The classical deterministic 
analysis approach accounts for design uncertainties via an uncertainty factor multiplying 
the maximum expected stress. Probabilistic analysis, on the other hand, models most or 
all design parameters as being variable and combined with established structural analysis, 
yields a quantitative measure of reliability.  This is obviously advantageous if reliability 
is specified as a basic contractual requirement. NASA design requirements for future 
space vehicles and structures are expected to be specified in reliability terms [93]. 

There have been structural reliability requirements imposed on military aircraft in the 
past, but the reliability values generated from such analyses are generally based on 
historical data from field maintenance data on aircraft with similar design features. A 
simplified, constant failure rate math model is usually employed, similar to established 
reliability analysis methods for avionics and electrical components. The techniques used 
to assess structural reliability are typically not tied to structural analysis methods. 
Employing probabilistic methods will aid reliability engineers in improving their 
analyses. 

b.	 Identifies regions of high risk in a design. The total structural risk is typically a function 
of a series of reliability values at specific locations within the structure. Should a 
particular region be shown to drive the overall risk, measures can be taken to reduce that 
risk via design change, and/or manufacturing inspection procedures can be implemented 
to minimize the occurrence of defects in critical zones. 

c.	 Allows determination of design variable importance to reliability.  The reports were 
unanimous in identifying this benefit of probabilistic analysis. A powerful attribute of 
probabilistic analysis is the information gained in understanding the interactions, effects, 
and sensitivities of design variables. This information can be used to optimize testing for 
various purposes and can highlight the need to tighten (or relax) design or manufacturing 
tolerances. For instance, if it was shown that minor variation in stringer thickness had a 
major effect on resultant stress, tightening tolerances may be advantageous. Most 
probabilistic analysis software provides an output of design parameter sensitivity. 
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d.	 Provides a means to compare competing designs. In addition to comparing overall 
reliability values of competing designs, the probabilistic analysis can point out specific 
features or locations in which the reliability significantly differs among designs. This can 
increase the understanding of the structure’s behavior and lead to design improvements. 

e.	 Provides a metric for design optimization. Aerospace structures are operated in harsh 
and uncertain environments and yet must meet minimum weight, high performance, and 
stringent reliability requirements. Safety must be maintained at a high level. Reduced 
weight tends to reduce reliability and therefore must be implemented judiciously. 
Probabilistic analysis provides the measure of structural reliability, which can then be 
optimized by changing certain design variables. That is, design parameters are varied to 
minimize weight, but the overall reliability must meet a specified level. 

f.	 Can reduce unnecessary conservatism. This is particularly true with composite aircraft 
structure design, which is governed by compounded conservatism illustrated by the 
following criteria: 

• Worst case temperature and moisture 
• Worst case damage, undetected 
• Reduced design allowables 

This approach translates to a design philosophy that assumes the structure will 
simultaneously experience the worst case temperature, moisture, and damage conditions 
and will be composed of low-strength material. These worst case assumptions often lead 
to an excessively conservative design. The probabilistic analysis approach accounts for 
the expected occurrence of such events and combines them statistically. 

g.	 Provides a means to establish optimum inspection intervals. The worldwide trend of 
operating military and commercial aircraft beyond their original design life has 
introduced new structural integrity concerns arising from aging.  This calls for extensive 
inspection. The main motivation for inspection is uncertainty arising from load 
predictions, analysis models, and material parameters. Probabilistic analysis treats 
uncertainties in a consistent manner, modeling parameters such as initial flaw size, load 
spectrum variation, crack growth model parameters and crack detection probability, and 
can be used to optimize the time interval for crack detection in metals. 

Note: Establishing inspection intervals for composite material designs is driven by 
different phenomena than crack growth. Various approaches have been applied to model 
delamination growth as a function of time (cycles). Delamination growth is a very 
complex failure mechanism and is highly dependent on the structural geometry, making 
these theories difficult to apply. 

h.	 Provides a means to establish warranties and spare parts policy.  Probabilistic analysis 
provides a means to estimate the frequency of failures and thus can provide valuable 
input to the warranting of parts. Associated with this is the estimate of the number of 
spares needed. 
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Incorporating probabilistic methods eventually leads to a better design approach in that the 
engineer develops a more comprehensive understanding of the problem encompassing many 
disciplines. The probabilistic evaluation gives the designer an idea of the inherent risk, but just 
as important, provides a means of evaluating design parameter sensitivities. In general, 
probabilistic methods require more detailed analysis, which can ultimately lead to an improved, 
more efficient design. 
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7. GROUND RULES, CONSIDERATIONS, AND LIMITATIONS. 

The goal of a probabilistic engineering analysis applied to an aerospace structure is to define 
accurately the reliability of the design, expressed in terms of a per flight or per lifetime basis. 
Such knowledge would be invaluable to the designer, producers, operators, and certifying 
agencies of aerospace structures. This goal is often very difficult to achieve because of the 
number of potential variables involved in the calculations. 

Some of the reasons for this difficulty are discussed in this section. These discussions are not 
meant to discount the potential value of probabilistic methods, nor to discourage the continued 
development of these tools, but to be realistic about the expectations and identify opportunities 
for continued effort. 

A list of ground rules, considerations and limitations for the application of probabilistic analysis 
was obtained by reviewing nearly 100 technical papers on probabilistic methods published 
through 1996; these were written by both developers and application engineers.  The following 
list, in no particular order, is the authors’ consensus of ground rules, considerations, and 
limitations: 

a.	 Knowledge of engineering and statistical theory required.  Currently, to use probabilistic 
methods, a fundamental knowledge of probability theory and statistics is required on the 
part of the application engineer. More advanced statistical knowledge is highly desirable 
because the underlying probability theory of many of these methods is complex.  Of 
equal or greater importance than statistical knowledge is that application engineers fully 
understand structural design concepts. The optimal application engineer is an 
experienced structural analyst/design engineer with a good understanding of statistics. 

An alternate, though less desirable approach is to form a team consisting of structural and 
statistics experts. Crucial aspects of each field would be discussed by the team and 
potential design implications researched. 

b.	 Lack of sufficient statistical data. Probabilistic analysis typically uses interpolations, 
extrapolations, small data samples, and therefore has inherent error. This can lead to an 
analysis full of assumptions about the nature of design variables and subsequently 
impacts analysis accuracy. 

Some authors assert that small amounts of data can be used to perform the probabilistic 
analysis. Should the analysis show a design parameter to be a driver, it is contended that 
additional testing can be specified to better characterize the variable. This is idealistic; in 
the real world, external factors force compressed development schedules, and cost is 
always an issue. Thus additional testing must be justified by the increased benefits 
obtained. A method to help quantify uncertainties of probabilistic analysis and to 
rationally assess the risk of accepting the results is to establish confidence bounds for the 
reliability values generated. 

c.	 Legal issues.  Legal implications of probabilistic methods are unclear at this time. The 
risk level associated with deterministic design has never been quantified, even though it 
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exists. As such the establishment of a threshold value for a socially acceptable risk level 
has been avoided. Probabilistically designed products require establishment of 
reliability/failure criterion and thus the acknowledgment of the existence of some finite 
failure probability, which could have a myriad of associated legal ramifications. 
Governmental certifying agencies along with producers will be required to establish 
minimum design reliability values. 

d.	 Additional time and resources required. Significant time is needed to build the 
probabilistic models, especially if integrated with existing structural analyses, which 
themselves are very time consuming.  Depending on the type of analysis method used 
(described in section 3), running the probabilistic analysis may require significant 
computer resources. 

e.	 Design certification.  Ideally, reliability analysis values should be verified by hardware 
demonstrations. Currently, there is no commonly accepted method established to certify 
an aerospace structure, given it has been designed to a certain reliability level. How does 
one demonstrate a structural probability of failure of 1 x 10-9? Most authors agree that 
this issue is a major roadblock to incorporation of the probabilistic methodology.  This is 
why many suggest the best use for probabilistic analysis is as a tool for identifying design 
parameter sensitivities and contribution to reliability for proposed or existing designs. 

f.	 Accounting for the unknowns. Because an uncertainty factor may not be used in 
probabilistic analysis, the application engineer must be certain he has accounted for all 
scenarios, variables, and interaction of failure modes. The purpose of the uncertainty 
factor associated with deterministic methods is to account for an under-strength airframe 
as well as inadvertent overloads caused by load and strength variation as well as non-
structural factors (to a certain extent) such as pilot error or a freak maintenance accident. 
Currently no known probabilistic structural analysis methods inherently take into account 
nonstructural contributions to failure. An analogous approach should be developed for 
probabilistic methods. Chamis [94] wrote a paper addressing the human factor in 
structural reliability. 

In addition, significant weight growth typically occurs over the lifetime of an aircraft due 
to design modifications and avionics upgrades. This issue requires attention when 
designing a structure initially to a target reliability level. That is, it may be prudent to 
anticipate weight growth and design to a value greater than the target reliability value to 
account for expected reliability degradation due to weight growth. 

g.	 Tail Sensitivity.  When predictions of structural behavior are required in the high 
reliability range (approx. 0.99999 or greater), it is necessary to use parametric modeling 
methods since sufficiently large data sets are usually not available. This involves fitting 
parametric functions to the data and choosing the one with the best fit. These parametric 
functions permit extrapolation from available data to ranges outside the data, but if the 
probability of failure is extremely small, this extrapolation will be substantial. Slight 
deviation from the assumed model in tail regions can have a dramatic effect on high 
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reliability estimates [95]. The estimated reliability therefore depends strongly on the 
parametric function. 

With respect to the use of parametric models, one well known statistician [96] wrote “all 
models are wrong, but some are useful,” meaning that no parametric statistical model 
should be accepted uncritically. Breiman [97] writes “the probability of failure Pf = 1 x 
10-6 has an Alice in Wonderland flavor and should be banned from nonfiction literature.” 
Obviously this is a well-known issue in probabilistic analysis. It should be the obligation 
of the analyst to investigate consequences of departures from the parametric model 
employed. 

h.	 Different approaches available.  As expounded in section 3, there are competing 
techniques for performing probabilistic structural analyses, and due to technique or model 
assumptions, they often yield different results. Each approach has its advantages as well 
as shortcomings as far as accuracy, run time, and ease of implementation. Reference 98 
provides an excellent discussion of these issues associated with the commonly used 
probabilistic methods. Obviously, accuracy should be the primary goal and compromised 
only if run time and implementation hardships are encountered. Many problems with 
computational speed have been dealt with due to enormous increases available with 
parallel processing on workstations, enabling Monte Carlo simulation methods to become 
more feasible. 

i.	 Existing failure mode model must exist.  The first step in probabilistic analysis is to 
identify all the modes of failure, ways in which the structure might fail to fulfill its 
intended purpose. Since probabilistic methods do not provide this identification, an 
existing method to model the failure mode must be used. For instance, modeling 
fracture, fatigue, flaw growth, etc., can be accomplished using existing structural models 
and building a probabilistic framework around them. Probabilistic analysis, therefore, 
does not introduce any new structural analysis techniques but depends heavily on using 
state-of-the-art methods; they are at the heart of the analysis. 

j.	 Modeling the system. Component reliability in its simplest form addresses individual, 
independent failure modes. In reality, multiple failure modes or sites as well as multiple 
interacting failure modes most likely are involved in structural failure. Furthermore, 
structural redundancy and damage progression may also be important. These issues bring 
in the need to model system reliability, especially if dependence exists. Several research 
papers [99 through 101] have focused on probabilistic methods to model system 
reliability, simulating a sequence or interaction of individual component failure modes. 

In summary, probabilistic analysis methods, to be useful, must be embraced by the design and 
analysis engineering community. They cannot remain in a research team project with an 
associated aura of statistical mystique, with the rest of the engineering department left to be 
impressed with the complex math and promises, yet uninterested because there is nothing they 
can experiment with. A user-friendly and flexible application tool must be provided to 
engineers, i.e., something they can experiment with on a limited scale, for probabilistic methods 
to advance outside the research arena. 
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In addition, recognition of the value of probabilistic methods by academia and inclusion of 
engineering curriculum based on fundamental statistical and probabilistic principles would help 
facilitate long-term growth of this discipline. It will be of great help if future aerospace 
engineers entering the work force are familiar with fundamental statistical and probabilistic 
principles. Also of help would be the establishment of documented, standardized probabilistic 
analysis procedures to uniformly guide engineers. 
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APPENDIX ANGCAD PROGRAM OUTPUT 

See discussion in section 5. 

Northrop Grumman Proprietary

Probabilistic Design - Monte - Version: 16-JUL-1997 at 11:00

Run date: 16-SEP-1997 14:57:34

*** MONTE OUTPUT FILE ***


Echoing Input Data:

J.D. Narciso

Example Problem #1 - Normal/Normal, Gust and Manufacturing defects

9/16/97


========+=========+=========+=========+=========+=========+=========+========

01 Main counters

-------+---------+---------+---------+---------+---------+---------+--------


1 Number of locations

1 Number of thickness sensitivities


1 1 Beginning and Ending Thickness sensitivities

6 Number of failure modes


10 Number of Monte Carlo iterations


========+=========+=========+=========+=========+=========+=========+========

02 Flight and Lifetime Information

-------+---------+---------+---------+---------+---------+---------+--------

30.000000 Analysis: Start time (in years)

30.000000 Analysis: End time (in years)

1000.000 Average number of flight hours per year


1.000 Average number of hours per flight


========+=========+=========+=========+=========+=========+=========+========

03 Output Generation Control Flags

-------+---------+---------+---------+---------+---------+---------+--------

Detailed Output Specifications:

Y Output details for each PF computed

Y Output details for each AVEPF computed


Graphics Output Indicator Flags:

0 Count of specification lines


Location Sets: Count = 1

All: Count of range specification lines = 1


LOC: 1--> 1


========+=========+=========+=========+=========+=========+=========+========

04 Miscellaneous Information

-------+---------+---------+---------+---------+---------+---------+--------

PROG_VER = NEW

1234567 Random number generator seed


N Truncation is NOT being used

1.0000 Averaging class value (for AVEPF computations)

1.5000 Design Factor


1 Major Aircraft Components

ALL_LOC Name of Major Aircraft Component 1


.10000000E+03 Weight of Major Aircraft Component 1

001 001 Location range
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 =======+=========+=========+=========+=========+=========+=========+=======

05 Location Information

-------+---------+---------+---------+---------+---------+---------+-------


Baseline Thickness for each Location: Baseline Thickness = .100000 :

Locations ( 1 to 1)

Area for each Location:

Area = 1.000000 : Locations ( 1 to 1)


========+=========+=========+=========+=========+=========+=========+========

06 Thickness Sensitivity Information

-------+---------+---------+---------+---------+---------+---------+--------

100.00


========+=========+=========+=========+=========+=========+=========+========

07 Failure Mode Information

-------+---------+---------+---------+---------+---------+---------+--------

Count of Failure Mode Usage Definition Blocks = 1

Block 1 : Usage flags = N N N N N Y

Range: Loc = ( 1 to 1)

Failure Mode Type Codes:

Failure Mode 1: CM

Failure Mode 2: SM

Failure Mode 3: TM

Failure Mode 4: CS

Failure Mode 5: SS

Failure Mode 6: TS


=========+=========+=========+=========+=========+=========+========+========

08 Margins of Safety

--------+---------+---------+---------+---------+---------+--------+--------

Baseline MOS = 1.000000: Loc ( 1 to 1) FM 1-6( 0 0 0 0 0 1)

Alternate Margins of Safety:

None are used


=========+=========+=========+=========+=========+=========+=========+=======

09 Material Strength Allowables

--------+---------+---------+---------+---------+---------+---------+-------

Material Strength Allowables:

Allowable = 9000.000000 : Loc ( 1 to 1) FM 1-6( 0 0 0 0 0 1)


=========+=========+=========+=========+=========+=========+=========+=======

10 Operation STRESS Distribution Information

--------+---------+---------+---------+---------+---------+---------+-------

Count of Operation Distribution Definition Blocks = 1

Block 1 : Maximum-Nz PDF and related data

NORMAL : Mean = 2.00000 Sigma = .50000


3.0000 Number of Gs equal to 100% DLS

Count of range specification lines = 1

Range: Locations ( 1 to 1) Failure Modes 1-6( 0 0 0 0 0 1)


=========+=========+=========+=========+=========+=========+=========+=======

11 Material STRENGTH Distribution Information

--------+---------+---------+---------+---------+---------+---------+-------

Count of Material Strength Distribution Definition Blocks = 1

Block 1

NORMAL : Mean = 4000.00000 Sigma = 1000.00000

Count of range specification lines = 1
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 Range: Locations ( 1 to 1) Failure Modes 1-6( 0 0 0 0 0 1)

Material Strength Knock-down Factors:

Strength Knockdown Factor = 1.000000 : Loc ( 1 to 1) FM 1-6( 0 0


0 0 0 1)


=========+=========+=========+=========+=========+=========+=========+=======

14 Gust Effects Information

--------+---------+---------+---------+---------+---------+---------+-------

"Gust" Usage Flag : Y

Probability of Gust Occurring : .50000

Probability of Down vs Up Gust: .00000

UNIFORM : [ .200000, .200000]

UNIFORM : [ .200000, .200000]


=========+=========+=========+=========+=========+=========+=========+=======

15 Manufacturing Defects Information

--------+---------+---------+---------+---------+---------+---------+-------

Manufacturing Defects Usage Flag: Y

Count of Manufacturing Defect Types = 1

Type 1: Delam

Generic Manufacturing Defect Rates:

Loc 1 to 1: Rates = 1.00000

Manufacturing Defect Reduction Factors:

Failure Mode 1(CM) : .000000

Failure Mode 2(SM) : .000000

Failure Mode 3(TM) : .000000

Failure Mode 4(CS) : .000000

Failure Mode 5(SS) : .000000

Failure Mode 6(TS) : .800000


========+=========+=========+=========+=========+=========+=========+========

18 OTHER Mandatory Distributions

-------+---------+---------+---------+---------+---------+---------+--------

Count of Skin/Temp Distribution Definition Blocks = 1

Block 1

DISCRETE : Beg Index = 1 End Index = 2 Interpolation =0


1) -65.000000 .500000 CumVal: .50000

2) 160.000000 .500000 CumVal: 1.00000


Count of range specification lines = 1

Range: Locations ( 1 to 1)

Average Moisture Content % Distribution:

Assumed distribution type = TRIFLEX

Min, Max, Rho: 0.000000000000000E+000 1.000000000000000

1.000000000000000E-001


=========+=========+=========+=========+=========+=========+=========+=======

19 Risk Driver Analysis

--------+---------+---------+---------+---------+---------+---------+-------

PERFORM-RISK-ANALYSIS 0

PRINT-ALL 0

PRINT-RATIO 0

GUST 0

TEMPERATURE/MOISTURE 0

MFG-DEFECTS 0

OPR-DEFECTS 0

END
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=========+=========+=========+=========+=========+=========+=========+=======

20 Declaration of Effects Used

--------+---------+---------+---------+---------+---------+---------+-------

GUST 1

TEMPERATURE/MOISTURE 0

MFG-DEFECTS 1

OPR-DEFECTS 0

END


=========+=========+=========+=========+=========+=========+=========+=======

00 END OF FILE

--------+---------+---------+---------+---------+---------+---------+-------


Data from Input File Successfully Retrieved:

No Errors Detected

Gust is on (per input data)

Temperature/Moisture is off (per input data)

Mfg Defects are on (per input data)

Opr Defects are off (per input data)

### No graphics data will be saved ###


Pre-Computing for Locations ...


Sensitivity( 1) = 100.0% Location( 1) [Thk= .1000] Failure Mode(6) =

TS

MOS(K,J) for output reporting only = 1.00000000

>>> THICKNESS 1 LOCATION 1 FAILURE MODE 6"TS" MCI 1

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000

DN-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

UP-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

Iteration 1): Time = 360.0 Temp = -65.0

Event type = GUST : SHIFT = 200.00000

STRESS : NORMAL : 2200.00000 500.00000 .00000 .00000

Mfg Defect Scale Factor = 1.000000000000000


Event type = DEFECT: SCALE = 1.00000

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

Integration Limits : ILA = -.14915625E+02 ILB = .13504404E+02

Iteration 1) : PF = .5370230737E-01


>>> THICKNESS 1 LOCATION 1 FAILURE MODE 6"TS" MCI 2

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000

DN-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

UP-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

Iteration 2): Time = 360.0 Temp = 160.0

Event type = GUST : SHIFT = .00000

STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000

Mfg Defect Scale Factor = 8.000000000000000E-001


Event type = DEFECT: SCALE = .80000

STRENGTH: NORMAL : 3200.00000 800.00000 .00000 .00000

Integration Limits : ILA = -.12412500E+02 ILB = .13504404E+02

Iteration 2) : PF = .1016870095E+00


>>> THICKNESS 1 LOCATION 1 FAILURE MODE 6"TS" 

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000


MCI 3
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 STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000

DN-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

UP-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

Iteration 3): Time = 360.0 Temp = -65.0

Event type = GUST : SHIFT = 200.00000

STRESS : NORMAL : 2200.00000 500.00000 .00000 .00000

Mfg Defect Scale Factor = 8.000000000000000E-001


Event type = DEFECT: SCALE = .80000

STRENGTH: NORMAL : 3200.00000 800.00000 .00000 .00000

Integration Limits : ILA = -.12812500E+02 ILB = .13504404E+02

Iteration 3) : PF = .1445727829E+00


>>> THICKNESS 1 LOCATION 1 FAILURE MODE 6"TS" MCI 4

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000

DN-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

UP-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

Iteration 4): Time = 360.0 Temp = 160.0

Event type = GUST : SHIFT = 200.00000

STRESS : NORMAL : 2200.00000 500.00000 .00000 .00000

Mfg Defect Scale Factor = 1.000000000000000


Event type = DEFECT: SCALE = 1.00000

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

Integration Limits : ILA = -.14915625E+02 ILB = .13504404E+02

Iteration 4) : PF = .5370230737E-01


>>> THICKNESS 1 LOCATION 1 FAILURE MODE 6"TS" MCI 5

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000

DN-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

UP-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

Iteration 5): Time = 360.0 Temp = -65.0

Event type = GUST : SHIFT = .00000

STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000

Mfg Defect Scale Factor = 1.000000000000000


Event type = DEFECT: SCALE = 1.00000

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

Integration Limits : ILA = -.14515625E+02 ILB = .13504404E+02

Iteration 5) : PF = .3681912260E-01


>>> THICKNESS 1 LOCATION 1 FAILURE MODE 6"TS" MCI 6

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000

DN-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

UP-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

Iteration 6): Time = 360.0 Temp = 160.0

Event type = GUST : SHIFT = 200.00000

STRESS : NORMAL : 2200.00000 500.00000 .00000 .00000

Mfg Defect Scale Factor = 8.000000000000000E-001


Event type = DEFECT: SCALE = .80000

STRENGTH: NORMAL : 3200.00000 800.00000 .00000 .00000

Integration Limits : ILA = -.12812500E+02 ILB = .13504404E+02

Iteration 6) : PF = .1445727829E+00


>>> THICKNESS 1 LOCATION 1 

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000


FAILURE MODE 6"TS" MCI 7
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 DN-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

UP-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

Iteration 7): Time = 360.0 Temp = -65.0

Event type = GUST : SHIFT = 200.00000

STRESS : NORMAL : 2200.00000 500.00000 .00000 .00000

Mfg Defect Scale Factor = 8.000000000000000E-001


Event type = DEFECT: SCALE = .80000

STRENGTH: NORMAL : 3200.00000 800.00000 .00000 .00000

Integration Limits : ILA = -.12812500E+02 ILB = .13504404E+02

Iteration 7) : PF = .1445727829E+00


>>> THICKNESS 1 LOCATION 1 FAILURE MODE 6"TS" MCI 8

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000

DN-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

UP-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

Iteration 8): Time = 360.0 Temp = -65.0

Event type = GUST : SHIFT = 200.00000

STRESS : NORMAL : 2200.00000 500.00000 .00000 .00000

Mfg Defect Scale Factor = 8.000000000000000E-001


Event type = DEFECT: SCALE = .80000

STRENGTH: NORMAL : 3200.00000 800.00000 .00000 .00000

Integration Limits : ILA = -.12812500E+02 ILB = .13504404E+02

Iteration 8) : PF = .1445727829E+00


>>> THICKNESS 1 LOCATION 1 FAILURE MODE 6"TS" MCI 9

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000

DN-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

UP-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

Iteration 9): Time = 360.0 Temp = 160.0

Event type = GUST : SHIFT = 200.00000

STRESS : NORMAL : 2200.00000 500.00000 .00000 .00000

Mfg Defect Scale Factor = 8.000000000000000E-001


Event type = DEFECT: SCALE = .80000

STRENGTH: NORMAL : 3200.00000 800.00000 .00000 .00000

Integration Limits : ILA = -.12812500E+02 ILB = .13504404E+02

Iteration 9) : PF = .1445727829E+00


>>> THICKNESS 1 LOCATION 1 FAILURE MODE 6"TS" MCI 10

STRENGTH: NORMAL : 4000.00000 1000.00000 .00000 .00000

STRESS : NORMAL : 2000.00000 500.00000 .00000 .00000

DN-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

UP-GUST: UNIFORM : 200.0000000 200.0000000 .0000000 .0000000

Iteration 10): Time = 360.0 Temp = 160.0

Event type = GUST : SHIFT = 200.00000

STRESS : NORMAL : 2200.00000 500.00000 .00000 .00000

Mfg Defect Scale Factor = 8.000000000000000E-001


Event type = DEFECT: SCALE = .80000

STRENGTH: NORMAL : 3200.00000 800.00000 .00000 .00000

Integration Limits : ILA = -.12812500E+02 ILB = .13504404E+02

Iteration 10) : PF = .1445727829E+00


Statistics Summary for Monte Carlo Iterations -

Averages --> : Time = 360.0 Temp = 47.5 PF = .1113347444E+00

Std Devs --> : Time = .0 Temp = 118.6 PF = .4584667141E-01
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-------- ------------------ ---------  --------  --------  --------  

-------- ------------------ ---------  --------  --------  --------  

-------- --------- --------- ------------------  --------  --------  

-------- ------------------ ---------  --------  --------  --------  

Probability of Failure:


Thickness Adjustment 1 = 100.0 Percent


| Failure Modes

Loc | CM SM TM CS SS TS Total

--- | 

Tot .000000E+00 .000000E+00 .000000E+00 .000000E+00 .000000E+00


.111335E+00 .111335E+00

--- | 

All | .111335E+00 .111335E+00

--- | 

All | CM SM TM CS SS TS Total

--- | 


1 | .11335E+00 .111335E+00


Summary of Manufacturing Defects for Thickness Adjustment 1: 100.0 Percent


(Occurred & Used)


| Total | CM | SM | TM | CS | SS | TS

-----------|---------|--------|--------|---------|--------|--------|--------


-

ALL LOCs | 7 7 | | | | | | 7 7


Delam | 7 7 | | | | | | 7 7

-----------|---------|--------|--------|---------|--------|--------|--------


-

All | 7 7 | | | | | | 7 7


Delam | 7 7 | | | | | | 7 7

-----------|---------|--------|--------|---------|--------|--------|--------


Count of integrations = 10

_


============================================================================

Failure Mode "TS" Thickness = .1000000 Location = 1

The number of Monte Carlo loop iterations = 10

The average time = 360.0000

The average temperature = 47.5000

The average probability of failure = .11133474444779E+00

Manufacturing Defects:


Defect Type R-factor Occurred Used

1) Delam .800 7 7

Operational Defects:


Defect Type R-factor Occurred Used


*** MONTE OUTPUT: END-OF-FILE ***

Elapsed time for this run is .0 minutes.

Grand total elapsed time for this run is .0 minutes.
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