
CT- 82-100-llOLR

'illlllaza -

FAA WJH Technical Center

11

00092663

FAA. TECHNICAL CENTER
LETTER REPORT

THE EQUIPMENT MONITOR_(EQM)

FOR THE REMOTE MAINTENANCE

MONITORING SYSTEM (RMMS)

by
John t. W i 1 ey

September 1982

U. S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION

TECHNICAL CENTER
Atlantic City Airport. N.J. 08405

• - J

INTRODUCTION

PURPOSE.

Task #9 of 9550-AAF-501-78-002 defines the subtask for the development of the
Remote Maintenance Monitoring System (RMMS) Equipment Monitor (EQM). This report
describes the EQM and the tests conducted to verify its performance.

BACKGROUND

The developmental version of the Equipment Monitor (EQM) has been completed at
the FAA Technical Center. The EQM consists of two main parts. The first of
these parts is the communication interface to the next higher level processor
in the system (e.g., the Remote Monitoring Subsystem Processor (RMSP), or the
Maintenance Processor Subsystem (MPS)). The second part is the interfacing
of the Test Functional Modules (TFM) to the EQM. This interface not only
collects data from the TFM but also allows the EQM to control the TFM's. At
the present time the TFM's are in the early developmental stage and therefore
this EQM to TFM interface can only be defined in bus hardware and basic soft­
ware philosophy. As the TFM's are developed, the interfacing EQM software can
also be developed. Figure 1 shows the block diagram of the EQM/TFM system
configuration.

DISCUSSION

GENERAL.

This section has been divided into four main topics. They are:

1. ~EQM:Bus Structure

2. Remote Monitoring Subsystem Processor Interface

3. Maintenance Processor Subsystem Interface

4. Test Functional Modules Interface

EQM BUS STRUCTURE. Under task #9, a goal is the standardization of the EQM and
the TFM. This standardization along with the approach taken, to physically locate
most of the TFM's in the EQM, led to the use of common data and control buses
between the two devices.

There are several requirements that the interconnecting bus structure should meet.
The first requirement is that the bus structure should be a standard throughout
the electronic industry. Second, it should have off-the-shelf availability for
some boards from various vendors, along with a second source. The last require­
ment is that a single board should be as small as possible. The reason for this
is that at some remote sites there is 1 imited space available for new equipment.
Therefore, it is desirable that a single board is no larger than one square foot
in size.

The field of bus structures was narrowed down to three, after examrnrng over
twenty different buses. The three were STD Bus, S-100 Bus, and Intel's Multibus
(See Appendix A for a bus comparison and for data on each bus). The STD card

has the smallest physical dimensions of the three buses ~pproximately 4.5 inches
by 6.5 inches). It meets all of the above bus requirements but has two drawbacks.
One is that it has only eight data I ines and sixteen address 1 ines, and the other
is that it does not allow multi-processing.

The second bus structure considered was the S-100 Bus. The physical dimensions
of the card are larger than STD Bus (approximately 10 inches by 5.0 inches).
This bus also meets all of the requirements and will handle both 8 and 16 bit
microprocessors, along with multi-processing, but S-100 has some problems with
standardization between manufacturers. The problem arises over the reserved
pins on the backplane connector. Some manufacturers use these. reserved pins
for one particular signal, where another may use the same pin for a different
signal.

The last bus structure to be considered in this report is Intel 1 s Multibus. The
Multibus card is the largest of the three, with dimensions of 12 inches by 6.75
inches. This bus not only meets all the requirements but also has multi-processing
capabilities and will support a sixteen bit microprocessor. The Multibus has
been proposed as an Institute of Electrical and Electronic Engineers (IEEE)
standard (number 796). Multibus also allows for an optional battery back-up
connector.

After looking at the above bus structures, along with many others, it was decided
for reasons of standardization rhat only one bus would be used between the EQM
and the TFM 1 s. The bus structure decided on for the developmental EQM was the
Multibus. Based on FAA Specification FAA-G-2100 (reference 1), the EQM will be
operating in Environment II facilities (temperature range: -10° C to+ soo C).
The components in the EQM built at the Technical Center are commercial grade
components (0° C to+ 70° C), and were used because of their availability and
lower cost. To meet the -lao C to+ 5a° C requirement two options are available.
One is to use industrial grade or CMOS components (range: -4a° C to+ 85u C). The
other is to use commercial grade components with a small electrical heating
element to keep to component temperature above 0° C. This latter technique
was used for more than lt years with microcomputer-based monitors installed
at the ILS facilities at the FAA Technical Center (Reference 2).

REMOTE MONITORING SUBSYSTEM PROCESSOR INTERFACE. The EQM is required to send
and receive serial data communications to/from the RMSP. At the time the EQM
was being developed, this communications link was character-oriented asynchronous
ASCII formatted. This format is described in the working paper 11 1nterim Communications
Protocol For the Remote Maintenance Monitoring System (RMMS} Program11 (reference 3).

The EQM must perform the following tasks through the EQM to RMSP interface:

1. Respond to periodic polls and return one of the following:

a. alarm data

b. message data

c. no alarm or message pending

2

2. Respond to selection polls and return one of the following:

a. alarm pending

b. message pending

c. ready to receive message

3. Respond to scheduled polls and return one of the following:

a. alarm data

b. message data

c. data requested

4. Perform error checking on all information received

5. Have the ability to change the baud rate of the EQM's end of the serial
data channel.

The software to handle the RMSP to EQM interface will be explained under the
heading of System Software.

MAINTENANCE PROCESSOR SUBSYSTEM INTERFACE. The EQM may be required to
directly interface with the MPS through a bit-oriented serial data channel.
The protocol used by this EQM channel is High Level Data Link Control (HDLC).
At the time of the developmental work, the MPS (at the Technical Center) did ·
not have a bit-oriented serial data channel. For this reason,.the development
of an MPS simulator with a HDLC channel was required. The simulator that was
developed is described in the letter report 11Use of the 8273 Communications
Protocol Controller in the Remote Maintenance Monitoring System11 (reference 4).

FAA Order 1830.2 (reference 5) requires the EQM to comply with the following:

1. At signalling rates below 1200 bits per second (bps) asynchronous trans­
mission shall be used.

2. At signalling rates above 1200 bits per second, synchronous transmission
shall be used.

3. At 1200 bits per second either mode may be implemented.

4. The electrical characteristics must be compatible with the Electronic
Industries Association (EIA) Standard RS-449 (reference 6). The requirements
for RS-422 (balanced) or RS-4~3 (unbalanced) is left to the applications
requirements.

NAS-MD-790 (reference 7) requires the use of EIA Standard RS-422 (balanced).
Because of these requirements, it was decided to incorporate the RS-422 serial
data port into the EQM to MPS interface. The requirement for the EQM to use
RS-449 exposed a potential problem when interfacing with the MPS. The MPS
has been granted a waiver to use an EIA Standard RS-232-C serial data port
instead of the RS-449/422. This meant that an adapter would have to be used
to convert the RS-449/422 signals to RS-232-C signals and vice-versa. In order
to test an adapter, the MPS simulator was designed with an RS-232-C serial
data port also. The first tests were run using a commercially available

3

passive RS-449 to RS-232-C adapter. Letter report 11 1nvestigation of the Use of
Passive Adapters for RS-449/RS-232-C lnterfaces11 (reference 8),concluded that
there is a potential line length and noise problem with this adapter. Because
of these potential problems, the RMMS group at the Technical Center designed
and tested an active adapter for RS-449 to RS-232-C interfaces. The information
on this adapter and the tests conducted are in the letter report 11An Active
RS-449/RS-232-C Adapter for RMMS' 1 (reference 9). After writing both of the
above reports, and having worked with both RS-449 and RS-232-C, it is this
author's conclusion that serial data transmission between the EQM and any higher
level system processor should be RS-232-C. _Since tbe EQM will be operating at
low data rates (1200 bps or below) and will only have short cables running
between equipments (e.g. EQM to modem), RS-232-C can readily support this
interface. The main reason for using RS-232-C is for cost.savings. The RS-232-C
is standard on most commercially available equipment that uses a serial data
transmission mode, whereas RS~449 is usually an option at an added expense.
Also, the FAA has existing equipment (e.g. terminals, printers, etc,) that are
mostly RS-232-C, and to use this equipment with the RS-449 equipment would
require that adapters be purchased.

TEST FUNCTIONAL MODULES INTERFACE. The interface between the EQM and most TFM's
will be through the Multibus backplane (see section on bus structure). This
defines the interface to be a parallel digital interchange •. The EQM w·ill send
both data and control information to the TFM and will receive data from the TFM
over the backplane.

At the time of this report, the TFM's are still in the.parameter study stage and
have not been fully designed. For this reason the actual software for the EQM
to control the TFM's has not been written. The only work that could be done on
this interface was to work on the overall philosophy of the interface. The inter­
face software philosophy will be discussed under the heading of EQM System Soft­
ware.

EQM SYSTEM HARDWARE.

The EQM built at the Technical Center is a Z-80 microprocessor based system.
The EQM consists of a Monolithic Systems MSC-8007 board, MPS Communication
Interface board, and a Central Data Corporation chassis with power supply. Both
boards use the Intel Multibus bus structure. The system diagram is shown in
figure 2.

The MSC-8007 board contains a Zilog Z80A microprocessor, 32K bytes of random
access memory (RAM), and the capability to accommodate up to 16K bytes of
programmable read only memory (PROM). In addition, the board contains three serial
data channels, a parallel interface, a priority interrupt controller, and two
programmable interval timers. The three serial data channels and the one parallel
interface are all independent of the Multibus. The first of the serial data
channels is connected to the RMSP (port 3), the second is connected to the local
terminal (port 1), and the third is unused at the present time (port 2). The
parallel interface and/or the unused serial channel could be used to con~rol an
auto-answer, auto-dial modem in future work. All of the serial data channels on
the MSC-8007 board are RS-232-C compatible.

The MPS communication interface (MPSCI) board was designed and built at the Technical
Center. This board contains an Intel 8273 Programmable Protocol Controller, an
Intel 8253 Programmable Interval Timer, an Intel Multibus Interface, and one
serial data channel. The serial data channel is RS-449/422 compatible. See figure
3 for a block diagram of the MPSCI.

4

The local terminal used for the testing of the EQM was a Computer Devices Inc.
(CDI) terminal with an RS-232-C port. It was not critical for the terminal to
be a CDI, only that it be RS-232-C compatible. The terminal is not required for
the EQM to operate, but when use4 it provides additional capabilities to the
system (e.g. input messages, change baud rates, etc.).

The chassis used is a 81013 11 15-slot mother board11 and a C1000 cabinet with power
supply. This combination made up a complete 15-slot Multibus chassis that contains
thr.~e power supplies, a cooling fan, a front control panel and a rear panel. The
rear panel has pre-punched holes for connectors to be install~d. This chassis
was designed for stand alone applications and does not require rack mounting.
At the present time three slots of the chassis are required for the EQM, leaving
the other slots for TFM's. The MPSCI board required two slots because it is
built on a wire-wrap board.

EQM SYSTEM SOFTWARE.

The EQM software consists of an initialization program, a main program, and two
receiver interrupt programs. The local terminal program is included in the main
program. All the software was written in Z-80 microprocess"r assembly code and
will be run on the MSC-8007 CPU board. The software consists of about 6K bytes
of executable code and about 1K bytes of data storage. The executable code is
stored in EPROM, and the data is stored in RAM located on the MSC-8007 board.

System operation begins by depressing the reset button on the C1000 chassis. The
Z-80A immediately begins executing the initialization program. This program first
set~up the interrupt vector addresses and then clears all of the status registers.
The next routine is the Main routine. At the present time this program is called
11Monit 11

, and was used in the development of the two receive interrupt programs.
As mentioned earlier in this report, the actual software to control and collect
data from the TFM 1 s has not been written because th~ TFM development is still
in the early stages.

MONIT SOFTWARE. This report will first explain the program 11Monit 11 and then
the guide 1 ines that should be followed when writing the Main program for the
control and data collection from the TFM's. A simplified flowchart of 11Monit 11

is shown in figure 4. Program operation is as follows:

1. Serial Input and Output (1/0) Ports setup is entered. This routine sets up
the serial 1/0 ports of the MSC-8007 board. The routine sets the baud rate for
the local terminal and the RMSP data link. After the setup has been completed
the program control is passed to the Command Input Loop.

2. The Command Input Loop is where 11Monit 11 spends most of the execution time
waiting for an input from the local terminal. The only time it is not in ~his
loop is when a command is being processed or when an interrupt is being handled.
The Interrupt Handling Routine is a separate program and will be explained later
in this section of the report The Command Input Loop is divided into two sections,
the first is the input from the local terminal, and the second is the checking
of that input. When an input is received from the local terminal, the Command
Input Loop checks to see if the received data is a valid input. If it is valid,
the program transfers control to the requested routine. If it is not a valid

5

input, an error message is sent to the local terminal and program execution
stays in the Command Input Loop.

The following routines are called by the Command Input Loop and all but two
return program execution to the Command Input Loop when finished. The two
that do not return to the Command Input Loop are the 11 G0 11 routine and the
11 JUMP 11 routine. These two routines execute a program that has been previously
stored in RAM and therefore go to where the stored program requires.

1. Request Data Routine is called when a 11Q11 is received from the local terminal.
This routine allows the person at the terminal to request data, through the RMSP,
from any other EQM site. First the routine asks the address of the requesting
site and then the address of the site requested to be entered on the local terminal.
The program execution is then transferred to the formatting subroutine. This
subroutine formats the data for the RMSP and then returns program execution
to the Request Data Routine. The Request Data Routine then sets the output
flaq, so the data will be sent on the next poll from the RMSP.

2. Test Alarm Routine is entered when an 11A11 is received from the local terminal.
This routine sets up a 11canned11 alar'm message that is to be sent to the RMSP.
This canned alarm message is stored in memory and is only used for test purposes
to simulate an alarm from an EOM. The routine also sets the output flag so the
alarm data will be sent on the next poll from the RMSP.

3. Message Routine is called when an 11M11 is received from the local terminal.
The Message Routine is used to send messages from the local terminal to other
devices in the system (Note: All EQM to EQM messages are routed through the
associated RMSP.) The routine first inputs the message from the local terminal
and the cal'ls the formatting subroutine to format the message for the RMSP. Once
the message has been formatted, the message routine sets the output flag so the
message will be sent on the next poll from the RMSP.

4. Baud Rate Routine is requested by the local terminal (when a 11B11 is entered)
to change the baud rate of one of the three serial ports on the MSC-8007 board.
The routine asks which port is to be changed and what the new baud rate will be.
The change is then made to the specified port. This change is only made to the
port on the EQM and not on both ends of the line, therefore the port on the other
piece of equipment will also have to be changed to match the baud rate on the EQM
port.

The following routines can also be called by the Command Input Loop routine.- These
routines were used in the development of the EQM software and can be used to debug
the EQM to TFM interface software.

1. Go Routine is called when a 11G11 is received from the local terminal. This routine
will run the stored program that starts at the current address. Remember that
this routine does not return to the Command Input Loop but does what the stored
program requires. In order to get back to 11Monit 11 a hardware reset is required.

2. Set Memory Routine will set a single memory location with the data that is
received from the local terminal. The letter 11 511 is used to invoke this routine.
After the new data has been received, it is stored in the RAM memory.

6

3. Fill Memory Routine will fill a block of memory with a value received from
the local terminal. This routine is invoked by entering the letter 11F11 on the
local terminal. The routine asks what block of memory is to be filled and what
value is to be inserted. This routine can be used to clear a block of memory
or to test a block of memory in the EQt1.

4. Jump Routine is called when a 11J 11 is entered on the local terminal. The
routine first asks for the address of the program to be run and then jumps to
that address. Once it has reached this address, it transfers the program
execution to the Go Routine. Remember that the Jump Routine and the Go Routine
do not return program execution to the Command Input Loop routine.

5. Display Register Routine is called when a 11R11 is received from the terminal.
This routine displays the contents of the microprocessor•s registers that were
stored in the RAM memory by 11Monit 11

• This routine allows the contents of any
register or pair of registers to be displayed. The register values stored in
RAM can be changed by the operator at the local terminal but not the actual
microprocessor•s registers.

6. Display Memory Routine is used to display a block of memory on the local
terminal. The routine is called wheri a 11011 is received from the terminal.
This routine is used to examine raw data stored in memory or to examine a status
register that is stored in memory.

EQM/TFM SOFTWARE PHILOSOPHY. The EQM 1 s Main program, that will handle the TFM 1 s,
will have many of the routines that are now found in 11Monit 11

• The basic philosophy
of the Main Program is to use subroutines to handle the TFM 1 s. This means that
for a particular type of TFM there would be a subroutine to handle the control and
data collecting in the EQM, with the subroutine being called by the Main program,
when the EQM wants to control or get data from that particular TFM. Thus, the EQM
could handle a number of TFM 1 s by having the associated TFM subroutines stored
in system memory, and the addresses of these subroutines known by the Main program.
This will require the main program for each EQM site to have adaptation data
for the site. The main program would have to know the types of TFM 1 s in a
particular EQM/TFM card cage and the facility configuration." There are several
options available to support these requirements. This report will discuss four
ways to implement these requirements but it should be noted that there are other
ways to perform this function.

The first option is to have a set of memory addresses assigned to the EQM that
is equal to the number of TFM card slots in the EQM/TFM card cage. When a TFM
is installed in the card cage, one of these memory addresses must be set on the
TFM. This address could be set by the use of jumper wires or dip switches. This
address would point to a status register on the TFM that contained the type of
TFM that had been entered. Additional status registers on the TFM, could give
information on unused ports and parts of the TFM, etc. During start-up, if the
EQM does not get a response from a particular assigned address, (i.e; card slot),
it assumes the address is unused and goes in to the next address. The EQM would
only read these addresses during start-up, and then would store the status and
type of TFM in a memory look-up table. The EQM 1 s Main Program would use this
table to get the types of TFM 1 s in the system and their addresses. There are
a few drawbacks to this option, the first being that, if a TFM has a wrong

7

address strapped on the board, the EQM would not know that this TFM is in the
card cage. The second problem with this option is that the EQM may address an
unused address and read in noise from the bus and interpret the noise as a TFM
location. The last drawback is the possibility that two TFM 1 s could, through
error, have the same address. This would make the EQM try to access both TFM 1 s
at the same time with resulting system problems. If any error occurred during
the startup of the_fQM, the error would be stored in the look up table and this
bad data would be used until another restart occurred.

The second option is to assign memory addresses to each type of TFM and have
all these addresses stored in the EQM. The EQM would then go through each assigned
address to see if there was a TFM of that type in the system. In order to cut down
the time of the search, the EQM would only check for multiples· of a particular TFM
when that particular TFM had already been found in the system. After all the
assigned addresses had been checked, the EQM would again make a lookup table of the
addresses of the TFM's used in that EQM/TFM card cage configuration. When the TFM
was addressed it would give the status of the TFM and could use extra status reg­
isters to provide more information to the EQM. Again, there are drawbacks to this
option. The first is that there is still the need for jumper wires or dip switches
on the TFM's to store ~he addresses of the TFM. The reason these are still needed
is to allow for more than one particular type of TFM to be used in the system.
This is still subject to the error of entering the wrong address. There is still
the possibility of reading in noise from the bus when the EQM outputs the address
of a TFM that is not in the system. The last problem with this option is the
time and memory required to search and store an address table of all possible
TFM 1 s.

The third option to be discussed, is one that uses status ports on the EQM board.
These status ports would be jumper wires or dip switches that would tell the EQM
what TFM's are in the system and their addresses. The EQM would first read these
status ports and then create a lookup table of the TFM types and address. The
EQM would then output the address of each TFM and then read in the status and
offset values of each TFM. The values received from the TFM status ports would
only be read during startup and then stored in memory for future use. This
system still has the problem of a wrong address bei.ng set on the jumpers on the
EQM. The use of these status ports will eliminate the potential of false readings
when there is no TFM in a particular slot, because the EQM will know exactly what
TFM 1 s are in the system and their addresses. This option also does not require the
memory or time to check through a large table of all the possible TFM 1 s that could
be in the system.

The last option for addressing the TFM 1 s is functionally the same as the third
option but instead of the status being entered on jumper wires or dip switches,
it would be stored in memory. This memory would be a custom package made up
for each EQM system. This would allow the EQM to read the addresses and types
of TFM 1 s directly from the memory and would eliminate the potential of someone
accidently changing the address of a TFM. If a single PROM was used to store
the status information, there would still be enoug~ extr~ memory in this PROM
to store other information about the particular EQM. This PROM could be programed
at the same time the main program and subroutines were being burned into PROM.
After the system is running, if a new TFM was to be added or an old TFM removed,
only a new status PROM would have to be made. (Assuming the subroutine to handle
the new TFM is already resident in the EQM. If not, then the PROM with the main

8

program and the subroutines would also have to be changed.) Of the four options
considered, this one is recommended for EQM/TFM use.

In all of
have some
another.
more than
software.

the options mentioned above, the main program and subroutines could
extra routines that would not be used by one EQM but may be used in
This would allow the same main program and subroutines to be used in
one EQM, therefore, allowing for some standardization between systems

INTERRUPT ROUTINES. The main routine was laid out to control only the EQM to TFM
interface. The EQM to RMSP (or MPS) interfaces will be interrupt driven. The
need to use interrupts for these interfaces is to allow the communication, between
the EQM and RMSP or MPS, to have priority over other routines. The interrupt
software that was written at the Technical Center, for the RMSP and MPS, was
written in two parts. One of these parts will support the communication between
the EQM and the RMSP, the other part will handle the interface between the EQM
and the MPS. It was assumed, early in the development of this software, that
the EQM would interface with one of the two devices and not both devices at the
same time. Therefore, the two interrupt routines are not stored in the same
memory and were not written to run at the same time on one EQM. At a later
date, if the need does arise for the two interrupt routines to run together,
this could be done with little modification.

EQM/RMSP INTERFACE. The interrupt software to interface the EQM to the RMSP
has been named 11 Recint11

• A simplified flowchart of 11Recint11 is shown in figure 5.
11Recint 11 operates as follows:

1. FLGCHK is called. This routine determines if a complete valid poll has been
received. If it is not a complete poll, it clears all the flags that were set
and returns from interrupt. If it is a valid poll, FLGCHK determines the type
of the poll and then transfers the receive poll from the receive buffer to one
of the general buffers. The general buffer is marked as to type of poll that
is stored in it, e.g. continuous poll, selection poll, or scheduled poll. After
the transfer of the poll has taken place program control moves on to handle the
stored po 11.

2. GENPOL is called to respond to a continuous poll. This routine first checks
to see if there is an alarm pending. If there is, it then transmits the alarm
buffer to the RMSP. The alarm buffer was formatted by 11Monit11 (see earlier
decussion of 11Monit 11 software). If there is no alarm pending, GENPOL checks
to see if there is a message pending. If so, it transmits the message to the
RMSP. Again the message was formatted by the 11Monit 11 software. The last check
that GENPOL does is to see if a data request from the RMSP is waiting to be
transmitted. If there is, the data is then sent. After all of these checks have
been made and there is no information waiting, the routine sends an 11End of Trans­
mission11 {EOT) and clears the general buffer and returns from interrupt. The
EOT is used to tell the RMSP that the communication link is working when there
is no other information to be sent. The protocol used in this interface is
explained in the working paper 11 lnterim Communications Protocol for the Remote
Maintenance Monitoring System {RMMS) Program11 (r.eference 3).

9

3. SPOL is called to respond to a selection poll. This poll handles messages
from the RMSP to the EQM. The routine first checks to see if an alarm or an
outgoing message is pending, if so, the RMSP is told not to transmit the message.
If nothing is pending, SPOL tells the RMSP to send the message. The inc6ming
message can be up to four data blocks long and is stored in the general buffers.
After the entire message has been received, the general buffers are changed
to terminal buffers. The "PRINT" routine is then used to output the terminal
buffers to the local terminal. There are two important things that the "PRINT"
routine does while sending the message to the terminal. First it allows interrupts
to be serviced. This means the EQM can still receive polls from the RMSP. Secondly,
once a terminal buffer is dumped, it is cleared and returned to a general buffer.

4. RPOL is used when a scheduled poll is received. This routine handles a request
for data from the RMSP. The routine first checks to see if there is an alarm or
message pending and if so, it jumps to GENPOL. If neither are pending, RPOL then
sends the EQM's address and the requested data. The actual transmitting of the
data is done through a part of the GENPOL routine. The data that was requested
is formatted by the "Monit" routine. After the data has been transmitted the
routine clears all the buffers and flags used by RPOL. The routine then returns
from interrupt.

The return from interrupt will normally return program execution to the "Monit"
routine. There is one case where the program execution may be returned to another
interrupt routine. This can occur when a long message has been received from the
RMSP and is still being printed on the terminal when another poll occurs. In this
special case, printing of the message to the terminal is stopped and the poll is
handled. Once the poll response is completed, the program execution returns to
the PRINT routine and the message is once again sent to the terminal.

EQM/MPS iNTER~AGE· The last interrupt software to be discussed is the interface
software to handle to EQM to MPS interface. The data protocol for this interface
had not been written for the MPS at the time of the development of the EQM. There­
fore there was need for aMPS simulator to be developed and built at the Technical
Center. This simulator wa~ built using the Intel 8273 Programmable HDLC/SDLC
Protocol Controller. The simulator is described in the letter report "Use of
the 8273 Communications Protocol Controller in the Remote Maintenance Monitoring
System {RMMS)". The EQM interface to the MPS also uses the Intel 8273. The EQM
software {EQM73) not only performs the control and initialization of the 8273,
but also contains a shortened version of "Monit". This routine was designed to
run without any support software. A simplifed flowchart is shown in figure 6.
The operation is as· follows:

1. START routine initializes the MSC-8007 board and the 8273 prototype board.
This routine initializes the following on the MSC-8007 board:

a. Sets the terminal baud rate to 300 baud

b. Sets the interrupt addresses

c. Clears the receiver memory

EQM73 also initializes the following on the 8273 prototype board:

a. Sets synchronous baud rate to 1200 baud

b. Sets asynchronous baud rate to 300 baud FAA WJH Technical Center

11

00092663

1 0

c. Sets clock type to asynchronous

d. Sets mode for HDLC and continuous flags

After the initialization has been completed, the program execution goes to the
LOOP routine.

2. LOOP is a small version of the Manit routine. Most of the program execution
time of EQM73 is spent in LOOP, checking for a terminal entry and waiting for
interrupts. When an input is received from the terminal, the routine checks to
see if it is a valid input. If it is, the routine then jumps to the routine to
handle the input. If it is not a valid input, an error messag_e is sent to the
terminal. In either case when the input has been serviced, the program execution
returns to the LOOP routine.

3. HELP routine is called when an 11H11 is entered on the terminal. This routine
prints out the list of commands that can be used by the terminal to control the
EQM to MPS interface. Figure 7 shows the output of the HELP command as seen on
the terminal. Program execution returns to the LOOP routine after the command
list has been sent to the terminal.

4. BAUD routine is used is change the baud rate of the EQM to the terminal or
the MPS. There are two baud rates associated with the EQM to MPS interface. One
is for the synchronous transmission and the other is for the asynchronous trans­
mission. Figure 8 shows the BAUD command format as displayed on the terminal.
After the baud rate of a port has been changed, the program execution returns
to the LOOP routine.

5. CLKTYP is called to change the EQM to MPS interface communications from
asynchronous to synchronous or vice-versa. The format of the terminal input is
shown in figure 9. Program execution returns to the LOOP routine.

6. ENTER routine allows a message to be entered on the terminal that is to be
sent to the MPS. The message is entered on the terminal in the format shown in
figure 10. Any time this routine is used, it erases the old message stored in
memory and replaces it with the new message. Program execution returns to the
LOOP routine after the new message has been stored in memory.

7. LIST routine outputs the most recent received message or transmitted message
that is stored in the RAM memory to the terminal. The format of the command is
shown in figure 11. After the message has been sent to the terminal, the program
execution returns to the LOOP routine.

8. TXCMD routine transmits the message stored in the transmit message buffer
to the MPS. This message was stored in memory by the ENTER routine. After
the message has been transmitted to the MPS, the 8273 returns a status report
to the terminal. The three status messages are: Clear to Send error, Data
Underrun error, and Transmit Frame Complete. The Clear to Send error occurs
when the Clear to Send signal is lost from the MPS. The Data Underrun error
means that the data was either stopped in the middle of a transmission by the
MPS or lost due to a data I ink problem. TXCMD is invoked by typing the letter
11T11 on the terminal. The routine returns to the LOOP routine after the message

11

has been set up and transmission has begun. The transmission of the message is
completed by the interrupt routine TXDATA. This routine hands the next part of
the message to the 8273, then the 8273 asks for more data. When the 8273 has
completed the entire message, it then interrupts to allow the status to be read.
TXINT is the interrupt routine that reads in the status and sends it to the terminal.

There are two more interrupt routines that are in EQM73, The first is the RXDATA
routine, which inputs the data to memory that is received by the 8273 from the MPS.
The second routine, RXINT, is called after the total message has been received
and stored in memory. This routine reads the status port of the 8273 to see if
the message that was received has any errors. This receive status is then sent
to the terminal. A 1 ist of the possible status messages are ~hown and explained
in table 1. After either interrupt has been handled, the program execution returns
to the LOOP routine.

EQM PROTOTYPE TESTING.

To verify that the 1/0 side of the EQM operates as designed, the following tests
were conducted. The first set of tests were run on the EQM to a bit-oriented
MPS simulator interface. The test configuration is shown in figure 12. The
following tests were performed on this interface:

1. The EQM and the simulator were run continuously for over 24 hours.

2. Messages were generated and sent by both EQM and the MPS simulator.

3. Messages were received and displayed by both the EQM and the MPS simulator.

4. Communication line problems were simulated in the link between the EQ~ and
the simulator.

5. Equipment problems were simulated at both the EQM and the simulator.

In all tests, the EQM to MSP simulator interface performed as expected.

The second set of tests were run on the interface between the EQM and the RMSP.
The test configuration is shown in figure 13. The following tests were performed:

1. The EQM and the RMSP were run continuously for over 24 hours.

2. Messages were sent 'from the EQM's terminal to the terminals of remote sites
through the RMSP.

3. Messages were received from remote site terminals by the EQM after the message
had passed through the RMSP.

4. Simulated alarms were sent to the RMSP by the EQM (see note 1).

5. Data requests were sent by the EQM that requested data from the remote site
simulators.

6. Data requests were received and answered by the EQM.

12

7. Communication line problems were simulated in the 1 ink between the EQM and
the RMSP.

NOTE 1. The EQM was made to resemble a VOR site by preloading the alarm and
data buffers with canned VOR data. This was done for test purposes only and
this data will normally come from the TFM interface.

In all tests, the EQM performed as expected.

FUTURE MODIFICATIONS.

The designs discussed in this report meet the basic requirements of the RMMS
Equipment Manito<. However, the TFM interface is discussed on the basis of
the planned approach and has not been tested. There are several modifications
that should be added to the EQM in the future. Some of these may require that
more tests be run on the EQM. The following list of modifications should be
added to the EQM:

1. Change of the protocol to be ICD-1 compatable for asynchronous low speed
(1200 baud or below) communication for both the interface to the RMSP and the
MPS. It should be noted that at the time the EQM was being developed, the
ICD-1 protocol was not resident in either the RMSP or the MPS.

2. Add the required software to the EQM to have a Real-Time Clock in the EQM.
At the present time, the real-time clock in ~e system is only located in the
RMSP. This new software could be added to 11 Monit 11 or written as part of the
Main program. It should be added when the TFM interface software is added to
the EQM. ,

3. Add an auto-dial and auto-answer capability to the EQM. This would make it
possible for the EQM to call or receive calls over the public telephone network
from the RMSP or the MPS. This I ink could be used as the main communication
I ink or as a backup 1 ink or both. In order to incorporate this option in the
EQM, both software and modems would be needed.

4. Develop the EQM software to support the TFM interfaces, as required. The
development of the TFM's must be completed before this software can be written.

13

REFERENCES

1. Electronic Equipment, General Requirements. FAA Specification
FAA-G-2100/lb. July 10, 1970.

2. Evaluation of a Remote Tone Signaling Control/Monitor System As Lightning/
Transient Protection for Solid State Instrument Landing Systems. FAA-RD-78-149.
James R. Branstetter, January 1979.

3. Interim Communications Protocol for the Remote Maintenance Monitoring System
(RMMS) Program. David Wainland, April 1981.

4. Use of the 8273 Communications Protocol Controller in the Remote Maintenance
Monitoring System. CT-81-100-15LR. John Wiley, Adam Magoss, September 1981.

5. Pol icy for use of Telecommunications Data Transfer Standards. FAA Order
1830.2. February 17, 1978

6. General Purpose 27-Position and 9-Position Interface for Data Terminal
Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data
Interchange. Electronic Industries Association Standard RS-449 November 1977.

7. Interface Control Document for the Remote Maintenance Monitoring System (RMMS),
ICD-1. National Airspace System Configuration Management Document. NAS-MD-790.
April 17, 1981.

8. Investigation of the use of Passive Adapters for RS-449/RD-232-C Interfaces.
CT-82-100-13LR. John Wiley, December 1981.

9. An Active RS-449/RS-232-C Adapter for RMMS. CT-82•100-33LR. John L. Wiley,
Harry L. Brown, April 1982.

14

TABLE 1. THE RECEIVER ERROR MESSAGES GENERATED BY THE 11 EQM73 11 PROGRAM

"EQM73" RECEI'-/ER ERROR MESSAGE

lERMINA~ MESSAGES

r\b or t D~ tee ted

Idl.: Detected

t- OP D e t ;? c t e d

Data Over,.un

Memory Buffer Overflow

Garri.e"!"' Failure

Interruot Overrun

EXPLANATION OF MESSAGE

The received frame was in the
correct -Format, however, the received
Cyclic Redund~ncy Checkword <CRC>
did not match thE internally
generated CRC.

An abort has been received from
the sending d~vice in the middle of
the received message.

An idle is detected whenever 15
consecutive ls are received.

If the End-Of-Poll CEOP) bit has
been set in the Operating Mode reg­
ister. the EOP message will be sent
whenever an EOP is received.

The number of bits in the received
frame, between the -Flags, is .Pewer
than 32 bits. The number o-F bits in
a valid frame must be 32 bits or
greater.

The data is not all extracted .Prom
the 8273 before the next received byte
is ready for transfer.

The number of received bits is
greater than ~he number stored in the
receiver buffer length counter.

The Carrier Detect <CD> pin has
gone inactive during reception of
the frame.

The system's interrupt response
and service time is not sufficient
for the data rat~s being attempted.

Not~: I-:: :~n1~ of these messa·~es are generated by the 8273,
than the received m~ssage is discarded.

15

Remote

TFM
I I

Communications I
Links

I I
Remote

0" I TFM

TFM/EQM Card Cage

Test

Functional

Modules

(TFM's)

Equipment

Monitor

(EQM)

Local

Terminal

for EQM

Communication
Link

Communication
Link

FIGURE 1. BLOCK DIAGRAM OF THE EQM/TFM SYSTEM CONFIGURATION

· ..

Remote

Monitoring

Subsystem

Processor

(RMSP)

Maintenance

Processor

Subsystem

(MPS)

-...J

Test Functional
Module'!? (TFM's)

Slots MSC-8007
CPU MPSCl *

Board Board

Power

Supplies

*NOTE: The Maintenance Processor Subsystem Communication Interface (MPSCI) is built on a wire-wrap card and
requires two slots.

FIGURE 2. EQM BOARD LAYOUT IN THE EQM/TFM CARD CAGE

co

RS-.449/422

Interface Logic
~-----------------,

Unused

Prototyping

8273 Protocol Controller Area

With Interface Logic

Multibus Interface Logic

I

~--------------------------

. Multibus Connector {Pl) r I Multibus Connector {P2)

FIGURE 3. BLOCK DIAGRAM OF MAINTENANCE PROCESSOR SUBSYSTEM
COMMUNICATION INTERFACE {MPSCI)

RIIQUi!$1

DATA
Rou"171>ic

les-t
AlARm

Rouii'Nc.

Go
Rouiio~c

S.-r
Mt!tftOt''/

P.ou...,.,I'Jt:

F,'/1

me,..,.orv

Ro~Tii.Je

O,"splA't'

Re~,.s"te r
Rou/7Ne

Oi$plA'I

me. rnor.­
Rou""tiNe.

F;;,. ,.,.'1"Tj;., 5

ScJb ro~o~-r.llle.

Fo ,.,.,.,. Tf",;..,:J
S..,broui.'Nc

CJ. .. AI~C
8~t~.~J Rtit'e.

Rou"ti~Jc.

S'Tore

Ch'""'5e
,.,., m ,."

Se.'T

fne.sU'I::JC
O,;t"p..,l t:"l,.

FIGURE 4. SIMPLIFIED FLOWCHART OF 11MONIT11 PROGRAM

19

FLGCH 1<

Error

Roulitvc.

RPOL

FIGURE 5. SIMPLIFIED FLOWCHART OF 11 RECINT11 INTERRUPT PROGRAM

20

START
Rout"i.,c

HELP

1----1·

L1s1' /r ... s,.,.,"T
Mus .. 3c

---~~=-r·:___j
I

L os1" Rcccoo/f.

mcs~AJC
R o..,-r.-,..u:.

_J
i

I
E"RROR I I
Rou7T.ve r

FIGURE 6. SIMPLIFIED FLOWCHART OF "EQM73" INTERRUPT PROGRAM

21

8273 COMMUNICATIONS CONTROLLER
********~****~***************~

HE~? CGMMANDS ARE:

'B' BAUD RATE
'C' CLOCK TYPE
'E' ENTER MESSAGE
'L' LIST MESSAGE
'T' TRANSMIT MESSAGE

*NOTE+ T~a letters that are anclosed between the quote marks are
the l~tters to be ente~ed on the EGM's local terminal.

FIGURE 7. THE 11HELP 11 COMMAND FOR THE EQM WHEN
INTERFACED TO THE MPS SIMULATOR

22

8273 COMMUNICATIONS CONTROLLER
******************~**********~

BAUD RATE: "H"
HELP FOR BAUD RATE COMMANDS

'T' TERMINAL BAUD RATE
'A' ASYNCHRONOUS BAUD RATE
'S' SYNCHRONOUS BAUD RATE

BAUD RATE: "T"

TERMINAL BAUD RATE NUMBER IS:
(75 BAUD= #0, 110 BAUD= #1, 150 BAUD= #2, 300 BAUD= #3, 1200 BAUD=
#5, 2400 BAUD= #6)

BAUD RATE: "A"

ASYNCH~ONOUS BAUD RATE NUMBER IS:
\75 BAUD= #0, 110 BAUD= #1, 150 BAUD= #2, 300 BAUD= #3, 600 BAUD=
~4, 1200 BAUD= #5)

SYNCHRGNOUS BAUD RATE NUMBER IS:
(300 BAUD= #0, 1200 BAUD= #1, 1800 BAUD= #2, 2400 BAUD= #3, 3600 BAUD=
#4, ~800 BAUD= #5, 9600 BAUD= #6, 19200 BAVO= #7i

FIGURE 8. THE 11BAUD11 COMMAND FOR THE EQM WHEN
INTERFACED TO THE MPS SIMULATOR

23

:J.• :J
'J

8273 COMMUNICATIONS CONTROLLER
******~********************~~*

GL·.Js;;; TYPES ARE:

'A' FOR ASYNCHRONOUS
'S' FOR SYNCHRONOUS

(See not~ on Figure 7.

- "En

FIGURE 9. THE 11 CLKTYP 11 COMMAND FOR THE EQM WHEN INTERFACED
TO THE MPS SIMULATOR

8273 COMMUNICATIONS CONTROLLER

ENTER MESSAGE
"Thi:; is ·3 test message entered on the EGM's local terminal.
mes:;age can be up to 248 characters long. "

<S::e note on Figure 7. >

FIGURE 10. THE 11 ENTER 11 COMMAND FOR THE EQM WHEN
INTERFACED TO THE MPS SIMULATOR

24

This

= "LT"

8273 COMMUNIC~TIONS CONTROL

LIST TRANSMIT MESSAGE
This L; the message that was last stored by the "ENTER" command.

= "LD"

LIST RECEIVE MESSAGE
This is the last message received by the EGM.·

(Se~ note on Figure 7.)

FIGURE 11. THE 11 LIST11 COMMAND FOR THE EQM WHEN
INTERFACED TO THE MPS SIMULATOR

25

N
0"

-Equipment -
Monitor · RS-449/422 Active

RS-2~?-r

Adapter

-L--

RS-232-C

Local

Terminal

for EQM

FIGURE 12. TEST CONFIGURATION FOR EQM TO MPS SIMULATOR INTERFACE

Maintenance

Processor

Subsystem

Simulator

RS-232-C ·
'

Local

Terminal

for MPS

N

--·

Equipment

Monitor

(EQM)

RS-232-C

Local

Terminal

for EQM
J

Remote

Monitoring

RS-232-C Subsystem

Processor

(RMSP)

.

RS-232-C

.
Local

Terminal

for RMSP

FIGURE 13. TEST CONFIGUREATION FOR EQM TO RMSP INTERFACE

I
Remote

S-232-C
pimulator

#1

• • •
Remote

RS-232-C Simulator

#5

APPENDIX A

This appe~di~ will first c~mpare the three bus structures
~~G~jJer•a ~a~ the EGM and second will show the edye connectors
J:~ numb~r:; ~ith a signal description.

D·i:lT::·.3 Lines

'·J:;> of' Pi.~:; Or"

E.:lg~ ·~onnectcr

BUS COMPARISON

STD BUS

4. 5" Wide x
6. 5" Long

16

8

56

NO

S-100 BUS

10. 0" Wid~ x
5. 0" Long

20

16

100

YES

MULTIBUS

6. 75" Wide x
12. 0" Long

20

16

86-Pl 60-P2

YES

Priorit'~ Chain
or Vectored

Priority Chain
or Vectored

Priority Chain
or Vectored

'./.:J l 'td9 es
~· i: quire d
Gp ·1·. ion a 1

From AC
Batt~T''d

::!:.5 VDC

i_12 VDC
NONE

f1anufac t:.Jrers
Group

+8

::!:.5

A-1

VDC & ::!:.16

VDC & +24
NONE

Proposed
IEEE-696

VDC +5 VDC & ::!:.12 VDC

VDC -5 VDC & ::!:,15 VDC
-5 VDC & -12 VDC

Proposed
IEEE-796

1
3
5
7
9

1. 1
13
15
17
19
21
;;>3
25

;_:>9

:.:n
33
35
''17 . _,'
39
i.ll

STD BUS FDGE CONNECTOR PIN-CUT

Signal Desc~iption

+5 VDC
Digital Ground

-5 VDC
D3 Data Bus
D2 Data Bus
D1 Data Bus
DO Data Bus \LSB)
A7 Add-res'3 Bu:3
A6 Address Bus
A5 Address Bus
A4 Address Bus
A3 Address Bus
A2 Address Bus
Al Address Bus
AO Address Bus
Write To Memory
I/0 Address Select
I/0 Expansion
Ret1resh Timing
CP!J Status 1
Bus Acknowledge
Interrupt Ack.
Wait Request
System Reset
Clock -From CPU
Priority Chain Out
AUX Ground
AVX +IZ VDC

A-2

Pin No.

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
~6

: Signal Description

+5 VDC
Digital Ground

-5 VDC
07 Data Bus <MSB>
06 Data Bus
0:5 Data Bus
D4 Data Bus
A15 Address Bus<MSB>
Al4 Address Bus
Al3 Address Bus
Al2 Address Bus
All Address Bus
AlO Address Bus

A9 Address Bus
AS Address Bus

Read From Memory
Memory Address Select
Memory Expansion
CPU Cycle Sync .
CPU Status 0
Bus Request
Interrupt Request
Non-Maskable Int.
Push Button Reset
AUX Timing
Priority Chain In
AUX Ground
AI..'X -12 VDC

7
9

I 1
.! -

1.-, _,_,

.. ~). 1 _

39
·~ 1
43
45
47
l19
~1

S9
~~1

63
65
/.>7
b9
'/1
'73
75

r.:,.=.
·.~-~ ,.,..., ·-·:
t·.,.,

.·

·~;'7

S-100 BUS EDGE CONNECTOR PIN-OUT

+8 'Jolts DC
External Read•.,J
Vectored Interrupt #1
Vec~ared Interrupt #3
Vectored Interrupt #5
Vectored Interrupt #7
Reserved
Reserved
Reserved
Command Control Disable
Single Step
Data Out Disable
Phase 1 Clock
Wait
Address Line #5
Address Line #3
Address Line #12
Data Output Line #1
Address Line #10
Data Output Line #5
Data In Line #2
Data In Line #7
Out
Memory Read Data
2 !'1H z C 1 o c k
+8 Volts DC
Sense Switch Disable
Chassis Ground
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Protect Status
Run
Interrupt Request
Reset
Write
Address Line #0
Address Line #2
.4ddr·ess Line #7
Address Line #13
Addr-ess Line #11
Data Out Line #3
Data In Line #4
D.:~ta In Line #6
Data In Line #0
Write/Output Indicator
P :.:nuer-on C 1 ear

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90
92
94
96
98

100

: Signal Description

+ 16 1.Jo 1 t s DC
Vectored Interrupt #0
Vectored Interrupt #2
vectored Interrupt #4
Vectored Interrupt #6
Reserved
Reserved
Reserved
Status Disable
~emory Unprotect
.~ddress Disable
Phase 2 Clock
Hold Acknowledge
Interrupt Enable
Address Line #4
Address Line #15
Address Line #9
Data Output Line #0
Data Output Line #4
Data Output·Line #6
D:3ta In Line #3
Ml
Inp
Acknowledge Halt
Ground
-16 Volts DC
External Clear
Reserved
Reserved
Reserved
Reserved
Reserved
Reserved
Memory Write
Memory Protect
Ready
Hold
Sync <Machine Cycle)
Data Bus In
.~d dress Line #1
Address Line #6
,6, d d r e s s L i n e #8
Address Line #14
Data Out Line #2
Data Out Line #7
Data In Line #5
Data In Line #1
Ack. Interrupt Req.
Stack Address Indicator
/,;T"ound

4NGTE R~s~rved pins will be usad for additional address lines
:in d •.1 a ta 1 in e s.

A-3

..

PIN

1
3

POWER 5
SUPPLIES 7

9
11

13
15

BUS 17
CONTROLS 19

21
23

BUS 25
CONTROLS 27
AND 29
ADDRESS 31

33

35
37

INTERRUPTS 39
41

43
45
47

ADDRESS 49
51
53
55
57

59
61
63
65

DATA 67
69
71
73

75
77

POWER 79
SUi"?UES 81

a3
es

MULTIBUS EDG~ CONNFCTOR PIN-OUT
FOR P-1

(COMPONENT SIDE) (CIRCUIT SIDE)
MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION

GND Signal GND 2 GND S;:;Jnal GND

+5V + 5Vdc 4 +5V +:\Ide
+5V + 5Vdc 6 +5V + 5Vdc
+12V +12Vdc 8 +12V +12Vdc
-5V - 5Vdc 10 -5v - 5Vdc
GND Signal GND 12 GND Signal GNO

BCLK/ Bu~Ciock 14 INIT/ Initialize
BPRN/ Bus Pri. In 16 BPRO/ Bus Pri. Out
BUSY/ Bus Busy 18 BREQ/ Bus Request
MROC/ Mem ReadCmd 20 MWTC/ Mem Write Cmd
IORC/ 1/0 ReadCmd 22 IOWC/ 1/0 Write Cmd
XACK/ XFER Acknowledge 24 INH1/ Inhibit 1 disable RAM

Reserved 26 INH2/ lnhibit2 disable ?ROM or ROM
BHEN/ Byte High Enable 28 A010/
CBRQ/ Common Sus Request 30 AD11/ Address
CCLK/ Constant Clk 32 AD12/ Bus
INTA/ lntr Acknowledge 34 AD13/

·.,

INT6/ Parallel 36 INT7/ Parallel
INT4/ Interrupt 38 INT5/ Interrupt
INT2/ Requests 40 INT3/ Requests
INTO/ 42 INT11

ADRE/ 44 ADRF/
ADRC/ 46 ADRD/
ADA A/ Address 48 ADRB/ Address
ADRS/ Bus 50 AOR9/ Bus
ADR6/ 52 ADA7/
ADA4/ 54 AOR5/
ADA2/ 56 AOR3/
ADRO/ 58 ADR1/

DATE/ 60 OATF/
DATC/ 62 DATO/
DATA/ Data 64 DATB/ Data
OATS/ Sus 66 DAT9/ Bus
OATS/ 68 DAT7/
DAT4/ 70 OATS/
DAT2/ 72 DAT3/
DATO/ 74 DAT1/

GND Si(;~al GND 76 GND Sig:-:a! GNO
Reserved 78 Rese•ved

-i2V -12Vdc 80 -12V -12Vdc
+5V .,. SVdc 82 +SV + 5Vdc
..-sv "'"5Vdc 84 +SV + 5Vdc
GND Si~:;-.al Gtm 86 GND Si;r.al GND

A-4

MULT!GUS EDGE CONNECTOR PIN-OUT
FOR P-2

(COMPONENT SIDE) (CIRCUIT SIDE)
PIN MNEMONIC DESCRIPTION PIN MNEMONIC DESCRIPTION

1 GND Signal GND 2 GND SignaiGND
3 5V8 + SV Battery 4 GVB + SV Battery
5 Reserved 6 VCCPP + SV Puised Power
7 -SVB - SV Battery 8 -SVB - SV Battery
9 Reserved 10 Reserved ,, 12VB +12V Battery 12 12VB +12V Battery

13 PFSR/ Power Fai! Sense Reset 14 Reserved
15 -12VB -12V Battery 16 -12VB -12V Battery
17 PFSN/ Power Fail Sense 18 ACLO - AGLow
19 PFIN/ Power Fail Interrupt 20 MPRO/ Memory Protect
21 GNO SignaiGND 22 GND Signal GND
23 +15V +15V 24 +15V +15V
25 -15V -15V 26 -15V -15V
27 PAA1/ Parity 1 28 HALT/ Bus Master HALT
29 PAR2/ Parity 2 30 WAIT/ Bus Master WAIT STATE
31

l
32 ALE Bus Master ALE

33 34 Reserved
35 36 Reserved
37 38 AUX RESET/ Reset switch
39 40

t 41 - Reserved 42
43 - 44
45 46 Reserved
47 48
49 50
51 52
53 54. ····- r- - -

55 56
!!iT• 58
59 60

Notes:
1. PFIN, on slave modules, if possible, should have the option of connecting to INTO/ on Pl.
2. All undefined pir.s are reserved for future use.

A-5

