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PREFACE

This report presents results of a study aimed at improving procedures for
maintenance, inspection, repair, and retreading of aircraft tires. The study
was performed by the Lockheed California Company (Paul C. Durup, Principal
Investigator) under Contract DTRS-80-C-00190. Technical Monitors of the
contract were Richard M. Johnson (FAA Techniecal Center) and Stephen N. Bobo
(DOT/Transportation Systems Center). Under a subcontract, the Goodyear Tire and
Rubber Company, under the direction of Harold Saviers and Edward Demors,
provided valuable assistance in obtaining, inspecting, and retreading tires,
instrumenting test tires, analyzing tire failures, consulting on test methods,
and analyzing test results. Dynamometer testing was performed at the Flight
Dynamics Laboratory, Wright Patterson Air Force Base, under the supervision of
Igors Skriblis.

The report contains contributions by Stephen N. Bobo, and by Samuel K. Clark of

the University of Michigan, who provided experimental data obtained under
Contract 8U4-P-00607.
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EXECUTIVE SUMMARY

The FAA is responsible for insuring the continued airworthiness of aircraft
tires. Recent accidents prompted a review of rules and advisories related to
testing and maintenance of tires. Accordingly, a study was performed to examine
the validity of tire tests now called for under TSO C62-c and AC 145-4. Since
radials are being introduced into the fleet, the report will serve as a baseline
for examination of the standards relative to radial tires.

The study consisted initially of development of a tire heating model, since a
relationship was believed to exist between heating and tire failure. Then, a
series of dynamometer and flight tests were performed to validate the model.
Subsequently, attempts were made to relate tire failure to distance and load,
since both result in heating. These attempts were inconclusive, but there was
some evidence that time at temperature might be the dominant factor.
Consequently, an experimental study was undertaken, based on operational
profiles of tires in three classes of service on aircraft (short, intermediate,
and long haul), which demonstrated a dependence of ply adhesion on time at
temperature. The data obtained suggest a finite safe upper limit of service
life of tires depending on the class of service.
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INTRODUCTION

PURPOSE.

The FAA has the responsibility to insure the continued airworthiness of aircraft
tires. It does so by certifying that new tires meet certain performance
standards under TSO C62-c; by performing surveillance of repair stations under
FAR Part 139; and by reviewing process specifications and maintenance, repair,
and retreading procedures of repair stations licensed to carry out repairs of
aircraft tires. The document which addresses maintenance, repair and retreading
of aircraft tires is AC 145-4,

Recently, TSO C62-c and AC 145-4 were both upgraded to reflect the increased
demands imposed by widebody aircraft in the commercial fleet. 1In addition to
TSO C62-c and AC 145-U4 test requirements, airframe manufacturers, airline
operators, and aircraft tire manufacturers are devising different tests to
increase the assurance that tires will perform their function with a reduced
probability of failure. Some airlines rely on inspections to determine when a
tire should be removed from service and others have set up policy regarding the
arbitrary number of retreads permitted before the tire is removed from service
(some examples are none, five, and seven). The tests, inspections, and retread
policies, while in the direction of increasing tire safety, do not directly
provide a measure of the actual service life of a tire. The objective of this
work is to develop an appropriate procedure for assuring the continued
airworthiness of aircraft tires. To do so, it is necessary to determine the
type of service tires encounter over their life and the damage this service
imposes.

BACKGROUND.

The service life of tires is influenced by a number of environmental factors
such as loading, carcass temperature, roll distance, contained gas pressure,
foreign object damage, runway crown, and ground maneuvers. While foreign object
damage cannot be accounted for in an analysis of the fatigue life of a tire, but
rather is an inspectable item, the other listed factors can be represented in
estimating the service life of tires. One way to accomplish the representation
is to define the ground taxi history for airplanes having certain missions.

For instance, long range airplanes would be characterized by high loads during
takeoff taxi. The long flight will cool the tire very close to ambient; thus
the tire will be at an extremely low temperature at touchdown and carcass
temperature most likely will not be of concern during rollout, braking, and
subsequent taxi. On the other hand, airplanes that are used on short haul
flights (less than an hour) are usually on the ground for .very short periods of
time (about one half hour). The temperature of the tire carcass does not have
sufficient time to cool to ambient and will sequentially increase in temperature
as each flight is made, as illustrated in figure 1.
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In actuality, transport airplanes fall into three categories: short haul,
medium range, and long range. By defining a set of missions for each category
in much the same manner as used for developing an airframe structural fatigue
spectrum, a representative tire usage can be developed. These tire spectra, for
each of the categories, will provide a series of loadings and roll distances
which represent tire experience on a flight-by-flight basis. However, if the
spectra are applied as tests, the test calendar time will be prohibitive, the
predominant pacing function being the time to cool the tires in between
simulated flights. Accordingly, some method is needed to reduce the number of
test runs similar to that of the S-N curves used in some fatigue tests of metal
structures. To obtain such a curve, the relationship of the loading to the
number of cycles to failure is needed for tires.

However, since there is evidence that tire heat will alter the number of
flexural cycles that a tire can withstand, the problem of defining tire fatigue
for use in developing a practical tire test regime will have to account for
temperature as well as flexural cyclic loading. This project has developed a
method for obtaining tire fatigue curves using practical testing times and
loads, and taking into account the effects of temperature. The curves can then
be used for simulating actual operations.

Lateral loads, while occurring in only about 5 percent of a typical taxi
operation, impose increased forces on the tire which add to its rate of fatigue
degradation. The larger lateral loads are normally encountered in airplanes
equipped with multi-wheeled tandem-type landing gears because the wheels cannot
caster in a turn. The stresses imposed by lateral loads in tires have been
accounted for in this project in a manner similar to the process which has been
developed in metal fatigue studies; i.e., resulting stresses from combined loads
are resolved into equivalent stresses. During the testing, a system of
equivalent axial loads was developed which gives fatigue effects similar to a
given series of lateral loads.

In addition to the self-generated heat produced by tires, other potential heat
factors that can influence tire carcass temperatures are the heat developed by
rolling friction, brakes, ambient temperature and cooling developed by the
motion of air over the tire. Because rubber is a very poor conductor of heat,
the temperature of the tire will not immediately react thermally to external
sources of heating or cooling. Therefore, in developing an analytical model of
the tire heat experience, exposure time is important. The analytical model was
developed to support the production of the scenarios. The importance of brake
heat on carcass heat depends on the efficiency of the heat shield as well as the
amount and severity of the braking.

Tnasmuch as it is difficult to obtain carcass temperatures during actual service
operations, it has been necessary to obtain data through instrumented flight
testing simulating a typical service flight, through instrumented dynamometer
tests, and through contributions of measured data from previous flights and
dynamometer tests.



PROGRAM SCOPE.

Figure 2 is a flowchart depicting the interrelationships of tasks aimed first at
finding the rate of degradation of a tire with service, and then determining the
point at which airworthiness falls below an acceptable limit.

Initially, a typical operating profile was determined for each of three classes
of service: short, intermediate, and long haul. Next, a model was developed,
which accounts for the various means by which fatigue is introduced into a tire.
The two major degrading influences on tires are heating and the cyclic stress of
rolling through the contact patch. The model, therefore, accounts for the
number of cycles (revolutions) the tire experiences and the resultant heat
buildup from load, speed, lateral force, and other factors. Dynamic testing was
then used to confirm the ability of the model to predict the temperature rise at
various points in the tire, and in particular, the hottest point. Although the
testing program provided a direction for further work, it did not demonstrate an
ability, unaided, to determine the upper service life of a tire from assumptions
about known operating conditions. The data spread, as discussed in the upcoming
section on Service Tire Remaining Life, was too great to permit rigorous
prediction of tire life.

It was thus necessary to develop engineering data which could be used to predict
tire safe upper service limits based on some factor, such as temperature, which
is related to the severity of service the tire encounters.

Accordingly, an effort was directed at determining the long-term effects of
elevated temperature on tires. If a laboratory test could be devised to
quantify the degradation of some measurable parameter in a tire as a function of
time at temperature, then the data could be used to determine the upper service
limit on a tire based on measurement of that parameter. An excellent candidate
parameter which could provide the key to the amount of exposure to fatigue is
interply adhesion. This parameter is measured on all classes of aircraft tires
as a part of the quality assurance provisions of FAA advisories relating to tire
maintenance. AC 145-4 recommends adhesion tests of the buff line interface and
the outer ply layer of the tire carcass. Adhesion tests of tire samples exposed
to different temperature environments were conducted in order to determine the
relationship between adhesion and time-at-temperature.

In order to determine the impact of temperature on the service life of a tire,
it was necessary to establish the relationship between time-at-temperature (from
the adhesion experiment) and the time-in-service, during which a tire is above a
given temperature threshold from the operating profiles and test data. This
relationship was established and led to a rationale for predicting an upper
service limit.

TIRE OPERATING ENVIRONMENT

TIRE HEATING.

ANALYTICAL METHODS. Analytical predictions of tire heating are required for
this study in order to supply temperature data to the tire operation scenarios
developed later in this report. Tire heating is a highly complex phenomenon

4
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involving hysteretic losses in the cyclic stressing of the tire materials,
energy input from the tread/pavement contact region, conduction within the tire
structure, and convection and radiation to the surrounding air. In addition,
tire heating from braking involves a complex combination of radiation, con-
vection and conduction heat transfer mechanisms. While these problems have been
treated analytically, the more successful solutions have involved fairly complex
finite element models of the tire (references 1, 2) or the wheel/tire/brake
assembly (reference 3). For the current study a simpler approach is desirable,
in order to keep the scope of the tire-heating analysis development in proper
perspective to the total program effort.

Accordingly, lumped parameter thermal models are employed, in which the spatial
variation of temperature within the tire is ignored. This technique is
justified because, for the aircraft tires being considered, the critical region
of the tire is known by previous test and experience to be the apex region.
Unpublished comprehensive dynamometer test data for 50 x 20-20 tires clearly
indicate that the apex region attains the highest temperatures, averaging about
4OOF higher than the shoulder region. Therefore, a complete temperature profile
of the tire is not necessary; only a reasonably accurate prediction of the apex
temperature rise is required. Furthermore, the low thermal conductivity of tire
materials results in very little heat transfer in the direction of tread-
shoulder-sidewall-apex, at any given circumferential position. These
considerations lead to the tire apex heating model presented in the following
section.

Tire Apex Heating Model. Figure 3 illustrates the tire apex heating model.
The tire is shown broken into three sections i, jJ and k; any number of sections
can be used. Each section behaves independently of the others, since the heat
conduction between sections is essentially zero. For each section, there is an
integral heat generation term yu iFV, a convective heat transfer from the tire to
the surrounding air, and the time variation of the lumped thermal energy of the
tire section. (The periodic heat conduction to the pavement surface for
sections in contact with the pavement is not shown, since the focus of the
subsequent analysis is on the apex region where such conduction does not exist.)
These terms lead to the governing differential equation shown in figure 3. The
closed-form solution to this equation is also shown in figure 3; the
nomenclature is identified in table 1.

The input parameters y,., oi, Hi and my are all representative of the ith
section, and, therefore, their magnitudes depend upon how finely the tire is
broken down. However, from the equations in figure 3, the parameters T; and
ATgi involve ratios of the input data, so that the time history for ATj is
independent of the location of the ith section if Hozr O4 and Hy are all
proportional to mj (and ¢y is the same for all sections). 1In reality, however,
the Yj = Ug, - &§ T4y will vary with position along the meridian of the tire,
with sections undergoing greater strains having larger Uj. In other words,
areas of higher strain will have higher internal heat generation rates, and
these will lead to higher tire temperatures.
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TABLE 1. TERMINOLOGY FOR TIRE HEATING DUE TO ROLLING

Quantity Unit Description
c; .ELD_QJ.I.%.GS. Specific heat of ith tire section (material property)
i Pound-UF
C, - Velocity factor for 8
06 - - Tire deflection factor for K
F Pounds Total tire vertical load
H; _ —Fl@g';%ds Convective heat transfer coefficient for ith tire section
m; Pounds Weight of the ith tire section
t Sec Time
Ta Of Ambient air temperatura
ATi(t) O Time varying temperature of ith tire section, relative to the initial temperature T°i
aTg Of Final steady state temperature of ith tire section, relative to the initial
! temperature T°i
To‘ O Initial temperature of ith tire section
[}
\" Ft/sec Tire rotling velocity
T sec Time constant of ith section
H - Portion of total rolling friction coefficient yieiding internal heat generation in
section i
uoi - Value ofyiat Ti= 0°F
a. 1/9%F Slope of My vs Ti curve

All the input parameters in table 1 can be calculated in a straightforward
fashion except for Uj. This is a complex function of the tire construction,
materials, tire deflection (or vertical load and inflation pressure), and
rolling velocity. The following qualitative observations on the nature of 1y
can be made.

Y; depends upon the local strain and strain rate, with higher
strains and strain rates yielding higher 4.

Higher strains result from larger tire deflections.

Higher cyclic frequency of strain applications results from higher
velocities for a given 1load.

Y; decreases with temperature, which reflects the variation with
temperature of the loss factor of viscoelastic materials typical of
tire construction.



Hi is dependent on the mass of the ith section relative to the total
tire mass. This is true because the summation of all the Hj over the
tire is equal to the total rolling friction coefficient, UL.
Therefore, the more finely the tire is broken down into sections for
analysis, the lower the uj; for each section.

It is assumed that the above factors can be simulated analytically by employing
the empirical factors Cy and Cs in the equation for uy (figure 3). The
parameters o and o (dropping the subseript i, since the present study is
focusing only on the tire apex region), as well as Cy and C; are determined from
experimental tire test data. Figures 4 and 5 show the resufting curves for the
dimensionless factors Cy and CG' The experimentally determined values for i
and ¢ are:

Ho = 0.01432 (dimensionless)

32.58 x 10-6 1/9F

o3
]

The experimental data used to derive the empirical parameters, Uy, &, Cy and C6
consist of dynamometer tests of 50 x 20 - 20 tires performed at Wright-Patterson
Air Force Base and at Goodyear. The applicability of the parameters to other
tire sizes is unknown. The test results and correlation with analytiecal
results, using the model just described, are presented in an upcoming section.

Contained Air Heating Model. Figure 6 shows the lumped thermal model used
to calculate the time history of contained air temperature. Table 2 defines the
nomenclature used in figure 6. In this model the contained air is heated by
convection from the tire and cooled by convection to the wheel. The tire and
wheel temperatures are not treated as unknowns in the analysis. The tire apex
temperature from the analysis described in the preceeding section is used, and
the wheel temperature is assumed constant. The first assumption is acceptable
because only a tiny fraction (less than 0.2 percent) of the energy generated in
the tire apex is required to heat the contained air. Therefore, the cooling
effect on the tire apex of heat transfer to the contained air can be ignored.
Similarly, the assumption of constant wheel temperature (in the absence of
braking) is reasonable since the thermal inertia of the wheel is on the order of
33 times thermal inertia of the contained air. Also, the wheel can reject heat
to the atmosphere to balance the heat input from the contained air (and tire
apex via conduction). Although the contained air is heated by the entire inner
surface of the tire, the apex temperature is used as a characteristic
temperature of the whole tire. The model parameters are then determined
empirically to obtain the best fit with test data.

The same dynamometer test data used to determine the apex heating parame-
ters are used to determine one of the parameters in the contained air model.
The parameter Y, which is the ratio of the tire-to-air convective heat transfer
coefficient to the sum of the tire-to-air plus air-to-wheel coefficients, is
chosen to provide the best fit of the test data. The mass of contained air is
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TABLE 2. TERMINOLOGY FOR CONTAINED AIR HEATING

Quantity Unit Description
t -'t—'i:“‘“ﬁ‘:i Spacific hest of contained air, constant valume
ound-
H, F'?s""d’ Convective heat transfer costficient, tirs to contsined air
oc
Hy F":"s“.’::" ¢ ive heat transter coefficiont, ined aif to wheel
L Pounds Waeight of contained sir
aT, Fo Tima varying contsined air temperature, relative to initie) contained sir temperature
Teo % Initisl contained air tamperaturs
T, % initisl spex tempersture
AT O Final steady rtate spax mmperaturs, relstive to initial spex tsmperature T,
Tw O Constant wheel temperature
T Sec Time constant for tire spex section
T Sec Time constant for contained air

taken as 1/3 of the total air mass, to correspond to the assumption that the
tire apex region represents 1/3 of the total tire weight. This procedure yields
a Yof 0.43. The tire-to-air convective heat transfer coefficient, H,, is
estimated using conventional procedures, and the remaining parameters (mg, cj)
can be readily calculated. The degree of correlation between test and
analytical results is discussed in an upcoming section.

The closed-form solutions for the tire apex and contained air temperatures
require that the velocity be constant. For accelerated takeoffs or decelerated
landing rollouts, the continuous velocity variation can be represented by a
series of constant velocity steps. The calculated final temperature from one
step is used as the initial temperature for the following step. Alternatively,
numerical integration can be used to directly integrate the governing equations
of motion.

Brake Heating Model. The contribution of brake heating during the landing
rollout in negligible until after the airplace comes to a stop, since the
tire conduction is so low that the heat generated within the brakes takes a
long time to increase the tire temerature. This conveniently allows the
calculations of tire temperature rise during and after landing rollout to
be separated into two phases.

i
e Tire heating due to internally generated heat during the landing rollout
until the airplace stops, or braking ceases.

o Subsequent fire heating during the brake cool-down phase with the
airplace stopped or taxiing at low speed.

12 4.



The first effect is handled with the equations in figure 3, and the second
effect is handled with a separate analysis described in this section.

This phase of the analysis focuses on the transfer of heat from a brake at high
temperature to a tire which is either stopped or still rolling at low speed.
During this phase there is no energy input to the brakes, since brake
application has ceased, but there may be energy input to the tire if it is still
rolling. 7In its simplest form, this problem can be solved with the analytical
model shown in figure 7. This model employs only two lumped thermal masses,
representing the brake heat sink and the tire. 1In this case, the tire refers to
the tire apex section, since portions of the tire farther removed from the rim
will undergo lesser temperature rise due to transfer of brake heat. The brake
heat sink is initially at a much higher temperature than the tire, and during
brake cool-down heat is transferred to the tire via conduction and radiation to
the wheel and then conduction to the tire bead. Simultaneously, heat is
transferred from the brake to atmosphere and from the tire to the atmosphere by
convection. In addition, if the tire is rolling, internal heat is generated
within the tire. .

The governing differential equations for this system are:
mje; Ty + (K + Hy) Ty - KTp = H Ty
mpco fz - KT1 + (K + Ho +aFV) Ty = HpoTy + UFV

The closed-form solution to this system of equations is shown in table 3, while
table 4 defines the nomenclature. From Table 3 it can be seen that the form of
the equations for Ty and Tp is simple, involving a steady state temperature and
two decaying exponential transient terms for each mass. The time constants are
proportional to me/Hp, the thermal inertia divided by the total system heat
transfer coefficient. The steady state temperatures for both the masses are
Jjust the ambient temperature T, for the zero velocity case, and T, plus an
increment dependent on velocity for the rolling tire case.

TEST RESULTS AND CORRELATION WITH ANALYSIS. Dynamometer tests of 50 x 20-
20 tires, conducted both at Wright/Patterson (WPAFB) and Goodyear, were used to
determine the empirical constants in the tire apex and contained air heating
models. Table 5 summarizes the test conditions for the WPAFB tests; Table 6
presents the same data for the Goodyear tests. The WPAFB tests used 34 ply
rating tires with a rate load of 57,000 pounds, while the Goodyear tests were
performed with 32 ply rating tires having a rated load of 53,800 pounds. Both
sets of data were weighted equally in determining the empirical tire constants;
i.e., the 32 and 34 ply rating tires were assumed to be identical thermally.

13
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TABLE 3. EQUATIONS FOR TIRE HEATING DUE TO BRAKING

A . A
me = mc, + Moty ' = m,c,/mc
A A . A .
H = H1+H2' r = H1/H H2 = H2+a FV
A
HTé K+H a = K/HT

| 1/2
. Z+2al1 ~a)[(r-r') (r(1-r')-r')+ 01 -r)r'z] + (r-r')2 ] -a)z}
r'(1-r)

f

- a+r{l-ad+r'(2r- M- 1)

' {1-r')
Fart g =atrli-ol-r'y? By = B4F
e « By =G-F
o (4y-a’ T F'V
ATov= el la +r00-n(1-a) Hy
AT = la +r(1-a)] (Hy-a'T) 'V
Vo (1-a)la +rl1-0(1-a)] He

ATy =T,-Tig+ATyy
ATy = T,-Ty+ ATy

B, a1y v 4T, _ByaTy- 4T,

c C
1 2 e —
82781 BB

2me 1 2mc 1

Ty = ey  cossma S e— et

17 % @D 27 W Tge
_ -t/r.I 't/TZ

Tl(t) = Ta + ATW + C.Ie + Cze
_ — -:/r1 - -:/12

Tz(t) = Ta + ATZV + Blcle + BzCze
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TABLE 4. NOMENCLATURE FOR TIRE HEATING DUE TO BRAKING
Quantity Units Description
E, - Nondimensiona! constant
BZ - Nondimensional constant
¢, OF Constant for transient portion of T
Cy O . Constant for transient portion of T,
f - Nondimensional constant
F -~ Nondimensional constant
F’ Pounds Tire vertical load
(] - Nondimensional constant
G - Nondimensional constant
a m’:—"fﬂi Total system effective convective heat transfer coefficient
i F-sec
Hy Convective heet transfer coefficient for brakes
H, Convective heat transfer coefficient for tires
H 2’ Effective convective heat transfer coefficient for tire
HT Total system heat transfer coefficient (conduction + convection)
K . v Conductive heat transfer coefficient between brake and tire
mc ‘ ft-pound/°F Tota'l system thermal inertia (product of mass and specific heat)
"r'n1c1 ‘ ft-found/°F Thermal inertia of brake heat sink
Moty ft-pound/°F Thermal inertia of tire
r - Nondimensional constant
r - \ Nondimensional constant
T, OF Ambient temperature
T Of Time varying temperature of brake
T, Of Time varying temperature of tire
T10 oF Initial temperature of brake
Ta0 o¢ initial temperature of tire
Vv ft/sec. Rolling velocity
- Nondimensional constant
' 1/°F . Slope of 2 vs. T,. curve
AT, % Temperature change constant i
AT, O Temperature change constant
ATW ‘ Of Temperature change increment due to rolling, brake
ATZV ' o Temperature chaﬁge incrament due to rolling, tire
u - Portion of tothl rolling friction coefficient causing tire internal heat generation
Mg - Value of u 8t T, = 0°F
L_T1 2 seconds Time constants for transient temperature response
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TABLE 5. WRIGHT/PATTERSON DYNAMOMETER TEST CONDITIONS,

50 x 20-20 34 PR TIRES

Radiai Radial Velocity,
Load Ratio Load ~ Pounds M.P.H.

04 22,800 50.
0.6 34,200 50
08 45,600 50
1.0 57,000 50.
12 68,400 50.
14 79,800 50
16 91,200 50.
1.8 102,600 50.
2.0 114,000 50.
1.0 57,000 10.
1.0 57,000 80.
1.0 57,000 130.

Rated Load = 57,000 pounds

TABLE 6. GOODYEAR DYNAMOMETER TEST CONDITIONS,

50 x 20-20 32 PR TIRES

Radial Radial Velocity,
Load Ratio Load ~ Pounds M.P.H.
10 53,800 15
1.0 53,800 25
1.0 53,800 35
1.0 53,800 45
1.0 53,800 60
0.84 45,300 35
0.84 45,300 35
1.00 53,800 35
1.30 69,940 35
1.60 86,080 35

Rated Load = 53,800 pounds
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The final values of the empirical constants were presented in the previous
section on Analytical Methods. Figures 8 through 13 show the degree of
correlation obtained between test and analysis for the WPAFB dynamometer tests.
These figures cover a radial load range from 34,200 pounds to 114,000 pounds,
representing 0.6 to 2.0 times the rated load. All these results are at a
constant velocity of 50 mph. Although the test data are used to quantify the
empirical constants, there are not enough constants to allow fine-tuning each
temperature time-history curve. The degree of correlation exhibited, therefore,
represents the ability of the simplified theory to model all the factors that
influence the apex and contained air temperatures. The load variations
represented by figures 8 through 13 are used to define Cg, the variation of W,
and with tire deflection. Overall, the degree of correlation is quite good,
considering the simplicity of the analytical model. 1In figures 10 and 12, the
test apex temperatures increase rapidly at the end. This is due to carcass
separation just prior to tire failure, which leads to a rapid build-up of
internal heat generation. The theory is not intended to model this rapid heat
build-up. The purpose of the theory is to yield temperature data for tire
operating scenarios, and normal operations involve neither carcass separation
nor tire temperatures above 350°F. Therefore, the divergence of test and
analytical data at such high temperatures is of no concern in the present
application.

Figures 14 through 19 compare the analytical results with the Goodyear
dynamometer gata. Since these data cover a range of velocities from 15 to 60
mph, they aré used to define Cy, the variation of uy and o with velocity. The
initial temperature for the apex and contained air is not known for the Goodyear
data. Both are assumed to be 100°F. For these cases the apex temperature
correlation is good, but the contained air temperatures do not correlate as
well. In particular, the rapid rise in contained air temperatures after 600
seconds in figure 15 is not matched by the theory. However, these test data are
inconsistent with the other results at different velocities, so the test data
may be suspect in that case. WPAFB data are also used to define Cy at the
velocity extremes of 10 and 130 mph.

b
The analytical model, employing the empirical constants developed from
dynamometer test data, was used to predict the apex temperature time-histories
or the 50 x 20-20 tires mounted on the L-1011 during'flight testing at Palmdale.
Figures 20 and 21 show the comparisons between test and analytical apex
temperatures for a takeoff roll and a landing rollout, respectively. In both
cases the theoretical predictions are substantially below the test data. The
rate of temperature increase agrees during the middle portion of each run, but
the initial test temperature build-up is much more rapid than that for the
theory. Despite the poor correlation event in figures 20 and 21, the peak
temperatures-in each case are predicted within 15°F.

The heating of the tire apex due to brake heating does not appear to be very
significant for brake temperatures resulting from normal landing rollouts.
Figures 22 and 23 show time histories of the tire apex and brake sensor
temperatures for two flight tests of the LL-1011. At the conclusion of Flight
1701, temperature readings were taken for 30 minutes after the airplane was
parked. From figure 22, it can be seen that the tire apex cools from 230 to
1629F during the "STATIC" phase from 11:16 to 11:50 AM. During this same time
the brake is cooling from 570 to 450°F, yet the heat rejected by the brake does
not appear to be heating the tire. It could be argued that the tire apex would
have cocled at an even faster rate, had the brakes not been hot. However,

18



160

140 |~
1120 -
7]
o0
& 100
=
g 80 |—
=
2 s
]
E
hkd
E i
'z' (]

STARTING TEMP. - 86°F
20
0 ! L I L ! l ! !
0 100 200 300 400 500 600 700 800 900

TIME — SECONDS

FIGURE 8. TIRE APEX TEMPERATURE RISE; VELOCITY 50 MPH, RADTAL LOAD 34,200 POUNDS

80

80

a0

INCREMENTAL TEMPERATURE RISE — F°

0

STARTING TEMP. ~ 86°F

0 100 200 300 400 500 600 700 800 900
TIME-SECONDS

FIGURE 9. CONTAINED AIR TEMPERATURE RISE; VELOCITY 50 MPH, RADIAL LOAD 34,200 POUNDS

19



400

200

INCREMENTAL TEMPERATURE RISE — °

STARTING TEMP. - 85°F

0 [ | 1 !
0 100 200 300 400

TIME — SECONDS

FIGURE 10. TIRE APEX TEMPERATURE RISE; VELOCITY 50 MPH,
RADIAL LOAD 79,800 POUNDS

120

100 —

g g
T T

INCREMENTAL TEMPERATURE — F°

-~
o
|

U

STARTING TEMP. ~ 80°F

0 100 200 300 400
TIME — SECONDS

FIGURE 11. CONTAINED AIR TEMPERATURE RISE; VELOCITY 50 MPH,
RADTAL LOAD 79,800 POUNDS

20



400

TEST

ANALYSIS

200 —

NCREMENTAL TEMPERATURE RISE — £~

100 P~ STARTING TEMP - B4°F

0 |
] 100 200

TIME -~ SECONDS

FIGURE 12. TIRE APEX TEMPERATURE RISE; VELOCITY 50 MPH,
RADIAL LOAD 114,000 POUNDS

80

ANALYSIS

60 [~ S~tes

'
Q
I

INCREMENTAL TEMPERATURE RISE — F°

20

STARTING TEMP - B5°F

0 1
0 100 200
TIME ~ SECONDS

FIGURE 13. CONTAINED AIR TEMPERATURE RISE; VELOCITY 50 MPH,
RADIAL LOAD 114,000 POUNDS

21



100

mmsns\

60—

40

INCREMENTAL TEMPERATURE RISE ~ F°

0

0 ! ! ] !
[ 100 200 300 400 500

TIME ~ SECONDS

FIGURE 14. TIRE APEX TEMPERATURE RISE; VELOCITY 15 MPH, RADIAL LOAD. 53,800 POUNDS

80

80 —

40r—

ol

INCREMENTAL TEMPERATURE RISE — F°

!
ol
0 100 200 300 400 500 600 700 800 900

TIME — SECONDS

FIGURE 15. CONTAINED AIR TEMPERATURE RISE; VELOCITY 15 MPH, RADIAL LOAD 53,800 POUNDS

22



240
20b
200
TEST
ol N\
w0 ANALYSIS
7]
o
@ 140
2
-
[- 4
g 20
=
<
S 100
=
-3
=
£ o
60—
awt
20 1=
o ! ! ! | 1
0 100 200 300 400 500 800
TIME ~ SECONDS

FIGURE 16. TIRE APEX TEMPERATURE RISE; VELOCITY 35 MPH,
... RADIAL LOAD 53,800 POUNDS

100

80

-]
(=]

o~
o

INCAEMENTAL TEMPERATYRE RISE - F°

20

0 100 200 300 400 500 600
TIME — SECONOS

FIGURE 17. CONTAINED AIR TEMPERATURE RISE; VELOCITY 35 MPH,
RADIAL LOAD 53,800 POUNDS

23



244

220 P~

TEST
200 —

180 —
ANALYSIS

160 =

140 —

120

INCREMENT AL TEMPERATURE RISE — F

80 —

40

20 p-

] | ]
0 100 200 300 400
TIME — SECONDS

FIGURE 18. TIRE APEX TEMPERATURE RISE; VELOCITY 60 MPH,

ANALYSIS

ar \rzsr

INCREMENTAL TEMPERATURE RISE — F°

20+

] ! |
0 100 200 300 400

TIME — SECONOS

FIGURE 19. CONTAINED AIR TEMPERATURE RISE; VELOCITY 60 MPH,
RADIAL LOAD 53,800 POUNDS



100
TEST 1648
FLT 1702

10 - 8:34:30

8
T

INCREMENTAL TEMPERATURE RISE — F°

20—

0 10 20 30 40 50 60
TIME — SECONDS

FIGURE 20. TIRE APEX TEMPERATURE RISE, TAKEOFF ROLL
‘ STARTING TEMPERATURE 114.8°F

60 —

FULE RADIAL LOAD
BRAKING STARY

SPIN UP

a0 ANALYSIS

20 TEST 1648
FLT 1702

to = 8:39:30

INCREMENTAL TEMPERATURE RISE — F°

0 10 20 30 40 50 60
TIME - SECONDS

FIGURE 21. TIRE APEX TEMPERATURE RISE, LANDING ROLL OouT,
STARTING TEMPERATURE 140°F

25



TIRE APEX TEMPERATURE —°F

BRAKE TEMPERATURE — °F

300

200 —

100 p—

| 3 N | | ] |

10:00 20 40 11:00 20 40 12:00
TIME — HOUR:MINUTE
| ax |} BT | Taxt |4 }—— sTATIc —] |
‘ 1.0. LAND  PUSH
ROLL  BACK |
500
400 r—- \/\\
\
\
N\
200 }— \
N
0 N SO (NN (NN NN NN SN NN N N |
10:00 20 40 11:00 20 40 12:00

FIGURE 22. TIRE AND BRAKE

TIME — HOUR:MINUTE
TEST 1646

TEMPERATURES, FLIGHT 1701, 5/29/81

26



TIRE APEX TEMPERATURE — °F

BRAKE TEMPERATURE — °F

300

200

100

0

600

400

200

S
— \
e
| ] ] 1 | ] ] ] | ]
8:28 8:30 8:40 8:50
TIME ~ HR:MIN
| f—Ta—] }—hT—] | ]| I ||
L 1.0. / L R *
TURN ROLL LANO. TURN TURN PUSH BACK
ROLL, R. TURN
r—
P—/_ -
N | | 1 ] L L ] i 1
8:30 8:40 8:50
TIME — HOUR:MINUTE
TEST 1648 FLT 1702
FIGURE 23. TIRE AND BRAKE TEMPERATURES, FLIGHT 1702, 5/29/81

27




analysis of statie cooldown, using the tire apex heating model which correlates
well with dynamometer test data, indicates that the apex cooling rate shown in
figure 22 is greater (not less) than the model would predict for zero airflow
over the tire. The convective heat transfer coefficient is strongly dependent
on the velocity of airflow over the tire. The apex cooldown rate shown in
figure 22 can be duplicated analytically by assuming an airflow of approximately
five miles per hour over the tire. Unfortunately, surface wind was not
monitored during the flight test, but a five miles per hour wind would not be
unusual.

What the test data seem to indicate is that the tire cooling rate is on the
order of what would be expected with no heat input from the brake. Furthermore,
the apex temperature rise during taxiing and takeoff for Flight 1701 can be
duplicated within about +5 degrees with the apex heating analytical model. The
tire apex temperature variations in figure 23 Flight 1702 are also about what
would be predicted due to tire rolling, without any heat input from the brakes.

Figure 24 shows additional detail of temperature variations during the landing
rollout, taxi and cooldown phases of Flight 1701. It is interesting to note
that there is a significant difference between the temperatures of the inner and
outer sides of the wheel. The brake is within the inner side of the wheel,
which therefore gets considerably hotter than does the outer side of the wheel
due to heat transfer from the brake. The inner side of the tire apex
temperature is also higher than the outer side apex temperature; however, the
difference that existed prior to touchdown remains virtually constant during
rollout, taxi and static cooldown.

It seems clear that a considerably more elaborate analytical model than the two-
mass system shown in figure 7 would be required to accurately simulate the type

of behavior evident in figure 24. However, since the effect of brake heating on
tire apex temperature seems to be minor compared to tire heating due to rolling,
no attempt was made to develop a more sophisticated brake heating model.

The L-1011 incorporates a heat shield between the brakes and the wheel, to
reduce the amount of heat transfer between the brake stack and the inner side of
the wheel. An airplane without such a shield may exhibit significant tire
heating due to braking. For the L-1011 however, only a rejected takeoff at high

gross weight would heat the brakes enough to provide a significant heat input to
the tires.

SCENARIO APPLICATION FORMAT. Appendix A provides a step-by-step procedure
for the application of the tire apex and gas heating equations to tire operation
scenarios.

TIRE OPERATION SCENARIOS.

Scenarios are a prerequisite for developing tire qualification test spectra
for the long range, medium range and short haul transport airplanes. The
scenarios presented are developed using typical mission mixes for operations
from a representative airport which is a composite of several airports.
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CHARACTERISTICS OF A REPRESENTATIVE AIRPORT. Table 7 presents most of the
salient airport ground operations characteristics {see reference U4) affecting
the tires during ground operations and is used in developing the scenarios.
Runway crown, which influences the load distribution on multi-wheeled landing
gears, is accounted for as a discrete input to tire loads where appropriate.

The average taxi distances for takeoffs and landings and the average turns
encountered during these operations are used in the scenarios.. A thirty-five
foot radius turn is added at the end of the landing sequence to account for
tight turns that may occur during close towing maneuvers.

TABLE 7. REPRESENTATIVE ATRPORT GROUND OPERATIONS CHARACTERISTICS

Takeoff Landing
No. of Turns No. of Turns
Radius — Feet Radius — Feet
Airport Taxi Distance Feet 65 { 90 150 Taxi Distance Feet 65 90 150

San Francisco fnternational 10,220 1 2 3 8,540 1 1 3
John F. Kennedy International 15,520 2 1 2 14,840 1 1 3
Dulles International 13,850 2 1 0 11,720 1 1 1
0’Hare {nternational 15820 2 1 2 11,060 2 1 2
Honolulu International 13,080 1 1 2 12,600 2 1 2
Los Angeles International 12,300 1 2 3 9,160 1 1 4
Average All Airports 13,500 2 2 2 11,300 1 1 2

ATRPLANE MISSION MIXES. The mission mixes are a composite of predicted
flights by potential operators condensed to provide a means by which
representative loadings can be established for the life of the airplane. Tables
8, 9 and 10 provide the mission mixes for the long range, medium range and short
haul transport category of airplanes. Training flights are represented by only
a small number of flights and have been combined with missions closest in weight
to reduce the number of scenarios.

The short haul flights are sequential with no refueling in between flights and a
stopover time for off load and on load of passengers of approximately thirty
minutes.
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TABLE 8. MISSION MIX, LONG RANGE

Non-Dimensional Weight
Takeoff Landing Percent of Flights Flight Time Hours
0.940 0.611 5.2 94
0.846 0.616 174 6.8
0818 0.680 12.2 36
0.736 0.615 122 3.6
0.729 0.690 265 1.0
0.652 0.615 265 1.0

TABLE 9. MISSION MIX, MEDIUM RANGE

Non-Dimensional Weight
Takeoff Landing Percent of Flights Flight Time Hours
0.958 0.711 152 5.6
0900 0.808 109 18
0.847 0.808 30.2 0.6
0.787 0.704 10.4 1.9
0.745 0.708 333 0.6

TABLE 10. MISSION MIX, SHORT HAUL

Non-Dimensional Weight
Takeoff Landing Percent of Flights Flight Time Minutes
0916 0.871 20 60
0.865 0.834 20 45
0.820 0.798 20 45
0.792 0.747 20 60
0.741 0.711 20 45
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TAXI SCENARIOS. The data for the representative alrport were used to
establish distances traveled, number of tire revolutions, and time for takeoff
and landing taxi operations for each of the categories of airplanes. The taxi
speeds used are best estimates and vary depending upon the pilot. Tire loads
are calculated using the weight of the airplane from the mission mixes and an
algorithm which provides wheel loads during ground maneuvers including runway
crown effects. Tire apex temperature includes tire generated and brake heat.
Tire pressure is a function of the contained gas, temperature which is
influenced by the tire apex temperature and time. Temperatures are adjusted for
landing depending upon the flight time.

Figures 25 through 30 present the scenarios for the long-range transport and
figures 31 through 35 show the scenarios for the medium-range transport. It is
assumed that the time on the ground between flights is sufficient to allow the
tire apex and gas temperature to reach ambient, which is taken conservatively to
be 1000F. Allowance is made for the landing gear being extended during the
landing approach for ten minutes, which either makes the tire apex temperature
greater or less than the tire gas temperature, depending on the length of the
flight. The apex temperature always leads the gas temperature when exposed to
changes in the immediate environmental temperature.

Figures 36 through 40 illustrate the scenarios for the short-haul transport.

The ramp times are given along with corresponding changes in the tire apex and
gas temperatures. Again the ambient temperature is assumed to be 100°F. 1In the
case of the short-haul airplane, the landing gear extended time is assumed to be
five minutes.

TIRE FATIGUE LIFE
INTRODUCTION.

Several different types of tests were performed to obtain data for development
of and correlation with analytical methods. 1In addition, data were obtained
from industry tests and from flight tests performed in support of other
programs. Part of the data obtained under this program was from three types o~
dynamometer tests, namely: rate of temperature build-up, cycling tests to a
given tire temperature and constant temperature tests. Limited flight testing
provided the remaining portion of the data obtained in the program.

The rate of temperature build-up on new tires provided data by which temperature
rise could be observed for straight roll and for yawed roll under different
combinations of radial and lateral loading conditions. The data thus obtained
were used to obtain equivalent radial loads for given combinations of radial and
lateral loads.

Cycling tests, performed on service tires, were designed to provide a means of
comparing, relatively, the life remaining for the tires as a function of the
flights made. New tire cycling and constant temperature tests were designed to
provide data reflecting the heat and load effects on the 1ife of tires. The
data were then used to establish tire fatigue curves for various cycling
temperatures. Since it is desired that a tire be able to withstand a rejected
takeoff (RTO) at the end of its service life, each tire subjected to these tests
was exposed to a run representing a taxi to takeoff, takeoff, and a rejected
takeoff.
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SERVICE TIRES REMAINING STRENGTH.

There has been past evidence that tire materials, namely the fabric, deteriorate
in strength when exposed to load and heat. Review of retreading techniques
indicates that the deterioration from the process will cause minimal to no
damage. However, under service operations tire apex temperatures can be
expected to reach 220 to 2809F, depending on taxi distances. Burst tests
performed by a tire manufacturer best illustrate the loss in strength
encountered during service,

Hydrostatic burst tests were performed on two different size tires, 50 x 20-20
and 49 x 17, with each tire for a given size, having the same number of
retreads. The results of the tests are given in tables 11 and 12.

The data indicate that the burst pressure of a 50 x 20-20 tire with five
retreads can range from 57.0 to 79.0 percent of that of a new tire, and for a 49
x 17 tire with seven retreads, it can range from 50.4 to 85.7 percent. The
average for the 50 x 20-20 tire is about 68.6 percent, and for the 49 x 17 is
about 61.0. The 68.6 percent burst pressure is approximately the burst pressure
of a new tire if it were at a temperature of about 250°F. All the burst test
failures occurred in the crown or shoulder area of the tire.

The burst pressure test data scatter for a new 50 x 20-20 tire is about 45
percent, and for a new 49 x 17 tire is about +4 percent. The burst pressure
test data scatter for the 50 x 20-20 and 49 x 17 service tires are 110 and 135
percent, respectively. If the one 49 x 17 tire that performed far better than
the others is eliminated from the group, the average scatter is +1U4 percent.

Figure 41 shows the variation of number of tire retreads with the ratio of burst
pressure to rated pressure. The ratio of the average burst pressure to rated
pressure for the 50 x 20-20 service tires is 3.6 at ambient temperature. Again,
if the 49 x 17 service tire data point of 790 psi is eliminated, the ratio of
the average burst pressure to the rated pressure at ambient temperature is shown
as being 3.0. These points are significant in that they show that the strength
of tires deteriorates with use. The ratio is further reduced if the pressure
increase due to service operations is considered. For instance, at an apex
temperature of 2600F, which is common, the tire internal pressure can reach 233
psi. The ratio for the tires with five retreads is reduced from 3.6 to 3.2 and
for the tires with seven retreads, from 3.0 to 2.6. Considering that the
foregoing operations are average and that longer taxi distances are encountered
at some airports, tires with more than seven retreads would have even less
strength capability. This situation is not only from the increase in tire
pressure due to heat, but also from a reduction in burst strength due to
temperature, as shown in figure 42.

The data scatter from the burst tests increases with the number of retreads as
shown in figure 43. The scatter in the new tires of 4 to 5 percent can be
attributed to manufacturing differences, while the scatter above U4 to 5 percent
can be attributed to operational use. Considering the scatter, the ratio of
burst to rated pressure for the tires with five retreads is further reduced to
2.9, and for the tires with seven retreads to 2.2. This potential loss in
strength indicates that retreading tires more than five times increases the risk
of service failure considerably. 1In addition, a margin is needed to provide
strength for an overload due to a failure of a tire on the same axle.
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TABLE 11. BURST TESTS 50 x 20-20, 34 PR TIRES
NUMBER OF RETREADS: 5

Tire Serial Number Number of Landings Burst Press. — PSI Percent of New Tire Burst Press.**
01150140 904* 41 65.6 ~ 72.6
01340261 853* 644 57.0 - 63.1
83050294 901* 753 66.6 - 73.8
91200348 899 806 71.3-79.0
Average 889 736 65.1-72.1

*Incomplete records. Estimated by finding the average number of Iandings per retread for the known history between
retreads and using this value for unknown cases.
**The new tire burst pressure from tests is 1075 +55 psi. 1130 psi is used for the lower percentage vaiue and 1020 psi
is used for the higher value.

TABLE 12. BURST TESTS 49 x 17, 28 PR TIRES
NUMBER OF RETREADS: 7

Burst Pressure, PSI Percent of New Tire Burst Pressure*
620 62.1-67.2
513 514 -55.6
790 79.2 - 85.7
503 504 —54.6
563 564 -61.1
520 52.1 — 564
Average 585 58.6 - 634

*The new tire burst pressure from tests is 960 +38 psi. 998 psi is used for the
lower percentage vaiue and 922 psi is used for the higher value.
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DYNAMOMETER TESTS.

Several different groups of dynamometer tests were made using two different size
tires (50 x 20-20, 34 PR and 40 x 14, 24 PR). For one 50 x 20-20 size tire,
both new and service tires were used. One group of tests was made to determine
the rate of heat build-up and the equivalent radial load needed to represent

combined radial and lateral loads. A second group of tests was made to compare
the life remaining on service tires exposed to various numbers of flights. A
third group of tests provided data from which tire carcass fatigue curves were
developed.

TEST PROCEDURE.

Test Measurements. All tire tests were performed on the 120-inch diameter,
350 miles per hour, dynamometer located in Building 31 at the Wright/Patterson
Air Force Base. Table 13 is a list of the measurements made during the
dynamometer tests. Figure U4 shows the location of the thermocouples in the
apex of the tire. All measurements were made at 5-second intervals.

TABLE 13. MEASUREMENTS MADE DURING DYNAMOMETER TESTS

Contained Air Load
Test Tire Size Apex Temp* | Temp Press ] Radial | Lateral | Number of Revolutions | Time

Temp Rate 50x20-20 2 X X X X X X

40x 14 - X X X X X X
Equivalent Rad. Load | 50 x 20 - 20 2 X X X - X X
Service Tire Remain 50x20-20 18/S X X X - X X
Life
Carcass Fatigue 50x20-2 18/8 X X X - X X

*1 = Apex temperature on one side of tire, 2 = apex temperature on both sides of tire
S/S = Thermocoupie focated on serial number side of tire.

Tire Preparation. All new tires were pressure-soaked for 24 hours at rated
pressure. The flat plate deflection at rated load was determined. With the
tire on the drum at rated load, the pressure was adjusted to provide the same
deflection as that obtained on the flat plate at rated load. The tire was then
broken in by rolling at 40 miles per hour for 1,000 revolutions and then letting
the tire cool to below 150 ©F.

To impose the damage on each tire caused by a rejected takeoff (RTO), a
simulated RTO was performed as follows:

1. The tire was rolled at 50 miles per hour on the drum at rated load until
the apex temperature reached 210°F, to simulate pre-takeoff taxi.

2. The drum was then immediately accelerated to 170 miles per hour at rated
load to simulate a takeoff run.
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3.

After the 170 miles per hour was attained, the radial load was increased
to 1.6 times the rated load to simulate a tire failure on the same axle.
(The value of 1.6 times rated load of the tire was selected, rather than 1.9
to 2.0, because it more normally represents the tire loading encountered in

service. Items like the 1.07 factor given in TSO 62C and the fact that
airframe manufacturers generally select a rated pressuré higher than the

minimum in the FAA requirements were also taken into account. The drum was
slowed from 170 to O miles per hour to simulate the braking phase of the RTO.

Test Methods. Three different test procedures were used to obtain the

types of measurements delineated in table 13,

1.

Rate of Temperature Rise and Equivalent Radial Load. - The tires were

rolled at 50 miles per hour until tire failure occurred. Various
combinations of radial and lateral loads were used. The matrix of loads used
in the tests are shown in figure U5.

Service Tire Remaining Life. - The tires were rolled at 50 miles per hour
at a radial load of 1.2 times the rated load until an apex temperature of
3500F was attained. The tires were then cooled to less than 150°F and the
process repeated until tire failure.

Carcass Fatigue. - Each new tire used in the test was rolled at 50 miles
per hour, at a given radial load (1.2 to 1.6 times rated) to a given
temperature (310 to 350°F) and then cooled to less than 150°F. The process
was repeated until tire failure. See table 14 for details.

TABLE 14. CARCASS FATIGUE TESTS

Max. Temp. °F Ratio of Radial Load to Rated Load
310 1.2
330 ' 12
350 12
310 . 14
330 14
350 14
310 1.6
330 16
350 1.6
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Radial
Load
Lateral
Load 04 0.6 0.8 1.0 1.2 14 1.6 1.8 2.0
0.0 - - 22N®® 1N 15N 30N 13N 10N 28N
CROWN WO sw | sw | sw | sw | sw
0.1 23N 16N 8N 12N 18N 19N N 6N 5N
CROWN CROWN S/W SW SW SW S/W SW S/W
0.2 - 11N 9N 4N 25N 14N 21N 26N -
CROWN Sw SW Sw s/w Sw Sw
0.3 - - 2N 20N 20N 3N - - -
ABORTED S/W SW S/wW
a. 50 x 20-20 Tire, 34 Ply Rating, Rated Load 57,000 Pounds
Radial
Load
Lateral
Load 04 0.6 0.8 1.0 1.2 14 1.6 1.7 20
0.0 - - N 5N 8N IN 10N 128 | 4N
SHOULDE SwW SwW S/wW S/wW S/W Sw
0.1 15N 3N 6N 26N 2N 9N 1IN 17N 14N
ABORTED | CROWN SHOULDER S/W SwW SwW S/W SW S/W
0.2 - 22N 19N 29N 21N 24N 27N 25N -
CROWN S/wW SwW SwW S/wW S/wW SwW
0.3 - - 16N 20N 23N 28N - -
S/wW S/w S/wW SwW
b. 40 x 40 Tire, 24 Ply Rating, Rated Load 27,700 Pounds
NOTES
@ XX N Tire Code Number
(@ Failure occurred in tire crown
() Failure occurred in tire sidewall (S/W)
@) Failure occurred in tire shoulder
@ Run was stopped excessive smoke from friction

FIGURE 45. TEST MATRIX FOR 50 x 20-20 AND 40 x 14 TIRES
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TEST RESULTS.

Rate of Temperature Rise. Appendix B presents a summary of the dynamometer
test results for the 50 x 20-20 and U0-14 tires.

Figure 46 shows the incremental temperature rise as a function of number of
revolutions for the 50 x 20-20 tire at different radial loads. As would be
expected, the temperature rise is quite dramatic at the higher radial loads
where the tire deflections are greater. The contained gas pressure rise which
occurs from the gas heating in response to the rise in carcass temperature is
shown for the corresponding radial loads in figure 47. The data in figures 46
and 47 are from the same dynamometer runs made at 50 miles per hour. However,
the relationship between the contained gas pressure and apex temperature will
change if a different roll speed is employed.

The incremental apex temperature rise for different dynamometer roll velocity
and load combinations are shown in figures U8, 49 and 50. Given that a tire is
rolled the same distance but at different velocities, the effect on apex
temperature rise of a change in velocity of 100 miles per hour is about 37
percent. A 40 percent increase in radial load will result in about a 50 percent
change in apex temperature rise. Figures 51, 52 53 and 54 show the incremental
contained gas pressure rise for different combinations of dynamometer roll
velocities and loads. On the basis of time there is a substantial difference in
temperature when comparing the different roll velocities. However, if the
number of revolutions are compared, the difference between roll velocities is
substantially reduced for each of the three loading conditions.

Equivalent Radial Load. Testing using combined lateral and vertical loads
on dynamometers is difficult. The test equipment has to have a sensor servo
system to assure the lateral load remains constant because the tread rubber
deposited on the drum changes the interface friction. In addition, it is not
practical to simulate taxi operations on a one-for-one basis because of the
relatively small amount of time spent on each turn. Accordingly, a number of
turn conditions are normally lumped together. However, this technique can cause
excessive tread heat which is not encountered in service. Thus, if an equiva-
lent radial load can be used in place of the combined lateral and radial road
encountered in turns, the dynamometer testing can be made simpler.

In the development of an equivalent radial load, the assumption is made that a
given radial load can be substituted for a combined radial and lateral loading
if the number of revolutions to failure for the combined load is the same as
that of the radial load. Accordingly, by plotting the radial load as a function
of revolutions to failure for various combinations of lateral and radial loads
in a convenient form (shown in figure 55), a graph to obtain equivalent loads
can be developed (see figure 56).

It is not known whether these relationships will hold for other size tires.
Figures 57 and 58 show the ratio of tire radial load to rated load as a function
of number of revolutions to failure for a 50 x 20-20 and 40 x 14 tires,
respectively. A cursory comparison indicates that, while there are differences
between the two figures, there is also a general trend to similarity.
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Service Tire Remaining Life.

presented in table 15.
as a function of cycles to failure is shown in figure 59.

The

A summary of the cycles to failure tests is

number of flights accumulated on the service tires

The figure

illustrates the large data scatter encountered when cycling to 350°F. However,
the trend to lesser numbers of cycles as the cycling load is increased, is

demonstrated.
TABLE 15. CYCLES TO FAILURE TEST RESULTS SUMMARY
Number of Cycles Number of Revolutions
Tire Number Retread Number | Number of Flights Test Load* to Failure to Failure
48N New 0 1.2 18 36,650
34N New 0 1.2 20 45,1175
30R3 2 413 1.2 16 28,232
21R4 3 670 12 27 45,185
19R4 3 527 1.2 1 28,388
7RS5 4 652 1.2 15 29,425
27R2 1 383 1.2 n 224217
32R5 5 806 1.2 18 35,643
31R3 2 428 1.2 26 44,793
25R2 1 257 1.2 21 42,606
2R5 4 738 1.2 6 17,857
9R3 4 775 14 9 14,856
14R4 3 548 1.4 3 4,858
28R2 1 263 14 2 2,806
1R3 2 412 14 10 13,338
23R6 4 734 16 1 1,227
22R2 1 256 16 6 4,598
33N New 0 1.6 3 3,782
10R5 4 775 18 1 919
20R4 3 558 18 4 3,581
13R3 1 251 18 2 1,023
39N New 0 1.8 7 4,490

*Ratio of Radial Load to Rated Load
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There are several potential reasons for the data scatter. Among them are: (1)
the actual point at which failure occurred may not in fact be the point at which
failure started; (2) a large difference in service experience although the
number of landings were comparable; (3) the cycling test temperature of 350°F,
while providing a margin of 75 percent of burst pressure, may have been too
high; (4) manufacturing difference between tires; and (5) combinations of (1
through (4). The following comments are made regarding these potential causes
for the data scatter:

1. Onset of Tire Failure - One evidence of the onset of tire failure is a
change in the rate of temperature rise in successive cycles. An indication
of the rise can be obtained by dividing the incremental increase in apex
temperature by the number of revolutions in a cycle. Figures 60 and 61 show
a distinet increase in the temperature rise per cycle. This rise occurs at
12 ecycles in each case. Figure 62 shows the number of cycles to failure for
a radial load of 1.2 times rated. The catastrophic failures
are shown as crosses and the points at which the temperature rise occurred
are denoted by circles (the number adjacent to each symbol indicates the
test number). Except for test 21, the data show a much improved agreement.
Using an exponential curve fitting technique, a curve is drawn as indicated
in figure 62 for the points delineated as cycles to failure onset. The
curve is based on all data except for test number 21, which was omitted
because the number of cycles for both failure onset and catastrqphic failure
indicated an exceptional tire or a test condition deficiency.

2. Service Experience - There is indication that service experience with tires
can vary, as can be seen in table 11. Although the number of landings
varied only i1'8 percent, the variation in burst strength was +9.5 percent.

3. Cycle Test Temperature - The 350°F temperature used in the cycling tests was
based on providing a test that would involve a reasonable number of cycles
to failure in order to evaluate the life remaining in the service tires. An
examination of figure 42 indicates that at 350C°F the margin in average burst
pressure is 75 percent; however, if scatter is included, this value is
reduced to 48 percent. Taking into account that the tires were tested under
a radial load of 1.2 times rated load, the margin at the 350°F level may
have been too low for obtaining consistent results.

4, Manufacturing Differences - Burst pressure consistency is about the only
measure of strength performance differences between tires of the same size.
Examination of tables 11 and 12 indicates that, for 50 x 20-20 and 49 x 17
tires, the scatter in burst strength of new tires is +5 and +4 percent,
respectively, which accounts for very little of the scatter encountered.

5. Combination of (1) through (4) - The combination of service experience and
manufacturing differences is to be expected. Combining the variation of
each and removing the variation attributed to the number of landings gives
for the 50 x 20-20 tires a variation of about 13 percent. If the hypothesis
that the increase in the rate of temperature rise can be considered as the
onset of failure, the variation is about 19 percent. This indicates that
there is about 8 percent variation that could be attributed to the cycling
temperature used in the tests.
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Because of the scatter encountered during the cycling endurance tests, another
method of testing to obtain consistent tire endurance data was tried. The
method used requires that the tire apex temperature be kept constant at a
certain value by varying the roll velocity. These tests are performed for
various combinations of radial and apex temperatures until failure occurs.

Prior to the failure of the test mandrel, the three data points given in table
16 were obtained. Using the temperature at which the tire will burst from the
increase in tire pressure and the degradation of the carcass burst strength with
temperature (see figure Y42) as that temperature at which the tire will fail
without rolling, the following exponential equation is developed:

4841.5
Ta
Ng = 0.000491e
TABLE 16. DATA FROM CONSTANT APEX TEMPERATURE ROLL TESTS
STABILIZED APEX TEMPERATURE
LOAD - SPEED - MPH DEGREES FAHRENHEIT REVOLUTIONS

NUMBER KIPS MIN MAX MIN MAX AVG AT TEMPERATURE
44-R-1 79.8 44 37.0 303 338 317 1,214
47-R-1 79.8 1.9 15.9 285 300 295 7,628
40-R-1 798 - 8.8 15.0 281 294 290 11,374

where
Ngp = Number of revolutions and Ty = Tire apex temperature - op

The correlation coefficient for the equation is 0.977, which is a satisfactory
curve fit.

Carcass Fatigue. Using the exponential equation obtained from the constant
apex temperature roll tests, a fatigue curve for the 1.4 times rated load is
estimated, as shown in figure 63. 1In order to illustrate the method for
developing the fatigue life, other curves have been arbitrarily drawn to
represent other loading conditions.

To 1llustrate the procedure for developing the fatigue life, only the takeoff
portion of the long range scenarios (see figures 25 through 30) will be used.
The average tire apex temperature, the incremental tire revolutions, and the
percent of flights are arranged as shown in table 17. The number of revolutions
per flight is obtained by multiplying the percent of flights by the number of
revolutions for takeoff for each of the missions. If the manufacturer desires
the tire carcass to perform for 2,000 flights, the revolutions per flight are
multiplied by 2,000. The damage that the tire will incur is obtained by
dividing the number of revolutions under a given combination of temperature and
load by the allowable revolutions for that condition using figure 63. The first
point on table 17 is used as an illustration in figure 63.
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To obtain the total damage the tire will incur during all takeoffs made with the
carcass, add the damages in table 17. The value for this illustration is 0.116,
The same procedure is followed for all the other events which constitute a
flight in the scenarios. When all the damages are added, they should not exceed
a value of 1.0. If a value of 1.0 is exceeded, the tire can be expected to
fail. Since tire failures can result in costly repairs to the airplane, some
margin of safety needs to be established. Some airframe manufacturers try to
demonstrate by tests that their product has twice the planned 1life. If this
value is applied to the tire, it would mean that the life of the tire will be
exceeded when the damage reaches 0.5.

FLIGHT TESTS.

Flight tests were performed with instrumented 50 x 20-20 34 ply rating tires
simulating a flight which included taxi to takeoff, takeoff, landing, taxi after
landing and parking at the ramp.

TEST PROCEDURE.

Test Measurements. The test measurements included the following:

1. Tire apex temperature (see figure 44) on the inside and outside of the
inboard and outboard rear tires of the left main landing gear.

2, Tire shoulder temperature (see figure 44) the inside and outside of the
inboard and outboard rear tires of the left main landing gear.

3. Tire pressure for the inboard and outboard rear tires of the left main
landing gear.

b, Left main landing gear vertical, lateral and drag loads.

5. Brake pressure and temperature of the inboard and outboard rear wheels of
the left main landing gear.

6. Ground speed.

Test Method. Because it was not practical to take measurements
continuously, records were made at significant events such as turns, takeoff and
landings. In the case of each event, measurements on a time history basis were
taken for the entire length of the event.

TEST RESULTS. Table 18 presents a summary of data for various taxi events
for Test 1648. The start and ending times are given for each event, along with
the corresponding measurements. Plotting the tire apex and shoulder
temperatures on a time history basis, such as shown in figure 64, indicates that
the greatest increase in temperature was experienced during the takeoff and
landing runs. The periods from 8:29:20 to 8:34:36 and 8:46:05 to 8:49:30 show a
decline in apex temperature which, since the airplane was being taxied, is
opposite to what would be expected. One explanation may be that during this
period the airplane, having been taxied, stood still, allowing the temperature
to drop sufficiently to overcome the increase from taxiing during these periods.
The shoulder temperature is much lower, which is consistent with extensive
dynamometer tests performed by a tire manufacturer prior to this program.
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TABLE 17. SAMPLE SPECTRUM DEVELOPMENT

AVERAGE TAKEOFF ROLL

TAKEOFF INCREMENTAL ALLOWABLE

SEGMENT REVOLUTIONS PERCENT REVOLU- REVOLU- LOAD REVOLUTIONS DAMAGE

APEX TEMP. PER TAKEOFF OF TIONS FOR TIONS FOR RADIAL (FROM ACT. REVS

OF SEGMENT FLIGHTS ONE FLIGHT 2000 FLIGHTS RATED FIGURE 3-20) ALLOW. REVS
226 53 5.2 2.8 5,600 1.01 1.1E8 0
236 133 6.9 13,800 2.0E7 0.001
255 194 10.1 20,200 2.0€6 0.010
274 161 8.4 16,800 2.0E5 0.084
216 53 114 9.2 18,400 0.91 oo 0
227 133 231 46,200 J.0E8 0
246 194 33.8 67,600 1.5E7 0.005
261 18 13.6 21,200 2.0E6 0.014
206 46 12.2 5.6 11,200 0.818 oo 0
214 116 14.2 28,400 o 0
230 168 20.5 41,000 1.5E8 0
246 140 1.1 34,200 1.5€7 0.002
184 36 12.2 .44 8,800 0.736 o 0
190 9 na 22,200 o 0
202 132 16.1 32,200 had 0
214 110 134 26,800 oo 0
183 36 26.5 9.5 19,000 0.729 il 0
189 9N 241 48,200 had 0
200 132 35.0 10,000 had 0
12 10 29.2 58,400 had 0
170 30 26.5 8.0 16,000 0.652 had 0
174 14 19.6 39,200 had 0
182 108 28.6 51,200 had 0
191 90 239 41,800 had 0




TABLE 18. SUMMARY OF TAXI TESTS 50 x 20-20 TIRE, FLIGHT 1702, 6/3/81, TEST 1648

(24

TIRE TEMPERATURE - °F
LEFT TIRE BRAKE
MAIN GEAR APEX SHOULDER PRESS — TEMP —
LOADS - KIPS PSI of GROUND
Dl ® SPEED -
TIME | VERT. | LAT. | DRAG | 1R | 01R |12R [02R | 11R | 01R 2R |o02r | 1m [2r ] 1R | 2r | KknoOTS EVENT
8:28:50 | 190 0 30 |18aliga} - | - =~ 11058 | 968 |116.6 | 190 {194 | 113.0 | 113.0 15.5 ILEFTTURN
8:29:20 | 200 0 30 |1202 1202 - | - — |1058 | 96.8 | 1184 | 190 |194 | 127.4 | 1382 155 |}
8:34:36 | 200 0 30 | 166 |118a| - | - ~ |104.0 |108.0 |111.2 | 194 {201 | 190.4 | 185.0 0 |
. TAKEOFF RUN
8:35:21 0 0 0 176.0 | 1850 - | - - |1328 1238|1760 | - | - |1904 |1832 | 1643 ||
8:39:43 0 0 0 1418 | 1364 | - | - - | 986 |1004 |1058 197 |205 | 1418 {1202 | 1584 ||
LANDING RUN
8:40:29 | 200 0 - 1994 |2066 | - | - — |1202 |1130 {1386 - | — |266.0 2462 525 ||
8:40:30 | 200 0 - 199.4 |2066 | - | - - 11202 | 130 |13a6| - | - |266.0 |246.2 525 ||
RIGHT TURN
8:41:00 { 210 0 30 }1940 J1980) - | - — |66 [111.2 1131.0 | 207 |219 | 379.4 | 352.4 1l
8:41:18 | 198 0 - 1904 1904 - | - — {148 {1112 {131.0 | 207 [220 | 4154 |428.0 8.9 )
LEFT TURN
8:41:48 | 205 0 - 1904 {1904 | - | - — |nas |[111.2 1131.0 {207 |222 | 453.2 | 4370 178 |}
8:45:35 | 195 0 - 2102 }2084) - | - — |1220 [1202 {131.0 | 213 [232 | 496.4 | 498.2 83 |}
RIGHT TURN
8:46:05 | 203 0 - {2102 {2102} - | - — 11220 |1238 |136.4 (215 {233 | 503.6 |510.8 63 ||
8:49:30 | 195 0 | 150 |1976 |1958) - | - -~ |1328 |1436 |1454 | 216 |233 | 5405 | 53956 04 )sMALL RADIUS
8:50:00 | 193 26 | 200 {1976 {1922 - | - — 1328 {1436 |147.2 [ 223 |234 |536.0 |536.0 0 |PU5” BACK TURN

@ INSIDE OF TIRE, OUTBOARD REAR WHEEL
@ OUTSIDE OF TIRE, OUTBOARD REAR WHEEL
@ INSIDE OF TIRE, INBOARD REAR WHEEL

@ OUTSIDE OF TIRE, INBOARD REAR WHEEL
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ADHESION TESTS.

In an attempt to set appropriate minimum adhesion values for rulemaking, a study
was undertaken. Adhesion values were obtained from an extensive sample of the
tires in service from the national population of large U.S. aircraft. The study
(reference 5) concluded that the adhesion values followed a normal distribution;
hence, small samples taken from the production of a single manufacturer could be
used to determine whether the process was in control.

The study determined that the national mean values for the outer ply adhesion of
a tire is 39.8 1b/inch. The three sigma point, based on a sample having normal
distribution, is about 20 1b/inch. These values form the basis for the
algorithm used in determining the lower threshold limits used in AC 145-4.

The study did not permit reliable correlation of adhesion values with retread
level. Figure 65 shows data taken from a sample of about one hundred and fifty
tires, consisting of seven sizes from three different manufacturers (reference
6). The difficulty in concluding that the adhesion degrades with time comes
from the fact that the sample is small with respect to the number of variables,
and the measurement data spread is very great.

Also, while existing data provides an indication that some degradation occurs in
an aircraft tire with use, no conclusive proof was found to indicate when
unairworthy tires needed to be removed from service. Therefore, another study
was undertaken, which provided sufficient data to estimate, from an engineering
analysis basis, the point at which tires may fall below an airworthiness limit.

In this study, an experiment was conducted to correlate adhesion values in tires
with time at temperature (reference 7). The two primary causes of degradation
were found to be cyclic stress from rolling through the contact patch, and heat
from internal friction within the tire body due to flexing. Of the two factors
- stress and temperature - temperature is the more important, since under proper
conditions, tires can operate over distances and times far in excess of those
required in service.

TEST PROCEDURE. The test procedure consisted of taking sample coupons 1 inch by
about 4 inches from the shoulder of a tire retreaded once; exposing them to
different periods of aging in an oven at elevated temperature; slitting the end
between the outermost ply and the next outermost; and conducting tensile tests
of the samples. Two sets of test specimens were aged, one in air, and the other
in nitrogen. The test is further described in AC 145-4, and in reference 4.

TEST RESULTS. Figure 65 shows the results of the experiment. It seems clear
that adhesion 1is related to time at temperature. 1In particular, tires exposed
to temperatures of as low as 220°F encounter reduced adhesion values.

To determine the impact of temperature on the service life of a tire, the
relationship between time-at-temperature and the time-in-service (during which a
tire is above a given temperature threshold) was established as follows:

Retread operations occur at roughly fixed intervals during the service life of a
tire, which varies with aircraft type, load, and the severity of the service
environment. A reasonable industry average is about 225 landings between
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retreads. From scenario data included herein, it can be determined that tires
on long and intermediate haul aircraft above 85 percent gross takeoff weight
spend about 40 minutes above 2200F during each takeoff-landing cycle. From
figure 66, an approximately 50 percent loss of adhesion in nitrogen for a sample
exposed to 200°F for about 1000 hours can be seen. Thus, it will require about
1500 landings, or, at 225 landings per retread, 6.7 retreads for the average
tire in severe service, to reach its lower adhesion threshold of 50 percent.

CONCLUSIONS
GENERAL.

It is clear that, given the diversity of performance parameters, there are no
hard-and-fast rules for establishing the fatigue life of tires. Indeed, tires
having been retreaded ten times are not uncommon; particularly on nosewheels or
under light load conditions. Similarly, particularly severe service conditions
can necessitate limitations of as little as one or two retreads. Using a more
rigorous application of the principles described here, it may be possible to
predict the life of a tire for a given service environment. The data in this
report suggest a finite safe upper service limit for tires used in service
having some threshold level of severity.

SPECIFIC.

1. A correlation exists between the tire heating model developed in this work
and dynamometer experiments.

2. Although no rigorous correlation was obtained, a close relationship was
established between the temperature performance of tires during flight
testing and dynamometer testing.

3. A relationship exists between the time above a given temperature of a tire
and its rubber-ply adhesion values. Adhesion varies inversely with
exposure to time at temperature.

4, It is possible to rigorously determine the fatigue state of a tire if
sufficient information is known about its service history.

5. Tire burst pressure is lower at increasing R-levels.
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APPENDIX A

SCENARIO APPLICATION FORMAT FOR TIRE APEX
AND GAS TEMPERATURE RISE

The following procedure presents a step-by-step method for application of
the apex and contained air heating equations to operational scenarios.

1. NONRECURRING DATA FOR A GIVEN TIRE (See Table A-1 for data of selected

tires)
8o = Tire stiffness no load intercept - in.
w = tire width - in.
do = Tire undeflected diameter - in.
Pr = Tire rated pressure - psi

§ 100 = Maximum tire deflection-in.

R = Tire stiffness factor
A = 1/3 tire exposed area - sq. in.
m = 1/3 tire weight - pounds

Vol = Total tire contained gas volume - cub. in.

\Y

Ratio of convective heat transfer coefficients

Ta

Ambient temperature - °OF

2. TIRE DEFLECTION EQUATION - PERCENT

. 7.5FY o
TZ
éloo(Pa1 + 0.24PR){w - 0.7(6O + RFZ)}
.
N 100(/O + RFZ) . 16.67FX
. 2 1
) . /.
%100 5100(1’a1 + APR){dO(éo + RFZ)} 2
Pa°(459 + Tal)
P B —— e e
al

4
(459 + Tao)
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TABLE A-1. TIRE DATA
Tire 8y w d, PR 3100 R m Vol. v A

in. - in. psi in. Ibs. cu. in. 5q.1n.
52 x 20.5 - 20 0.8 20.05 51.27 200 14.4 0.000128¢'0-00416P) 110 45,210 0.43 1501
36 PR
50 x 20 - 20 0.75 19.7 49.13 205 12.69 0.000134¢!0-00420P,) 100 39,194 0.43 1414
34 PR
50 x 20 - 20 0.60 19.49 49.60 175 12.61 0.000141¢-0-00398P,) 90 39,194 0.43 1414
30 PR
40x14 0.70 13.87 39.37 200 10.06 0.000174¢-0-00384P5) a1 11,592 0.49 729
28 PR
a0x 14 050 | 13.79 39.54 170 10.5 0.000206¢ -0-00488P, ) a6 11,592 0.49 729
24 PR




e Recurring Data

Tire radial load -~ pounds

T3
[y
1]

Tire lateral load - pounds

5]
-
L1}

Fy + Tire drag load - pounds
P, = Tire pressure - psi
INCREMENTAL TIRE APEX TEMPERATURE -~ ©OF

-t
=

AT = ATf(l - e )

where +
uo FZ \Y H TA

AT, = -7
H+aF,V °©

338.43m
H + « FZ \

-

TN
s

2
t T 1v [do -3, RFZ)]

=
]

0.01432C C
v ¢

jov}
il

0.0003A(5 + O.614VA)

a = (32.58E - 6)C C
v §

® Recurring Data

T, = Starting apex temperature - °F
V = Airplace velocity - fps

Vo = Air Velocity over wheel - fps
Ng = Number of Revolutions



4, INCREMENTAL TIRE CONTAINED GAS TEMPERATURE - OF

Sequence
1.

2.

10.

11.

_x _t
B 1a T _
ATA = Me + Ne + Taf Tdo'
M= Tao - Taf - N
N=vR ATf
Taf = \)(TO + ATf - Tw) + Tw
T
B = T -1

= 0.01095 Vol v

Recurring Data

Tao Starting contained gas temperature - OF

Ty

Wheel temperature - OF

Solve for GTZRATED by inputting rated load and pressure.

Solve for &g for initial conditions.

Determine CG fromtSTZ/dTZRATED versus C6 curve (see figure 5).
Determine Cy from C, versus V curve (see figure U4).

Enter recurring data: Fg, Fy, Fx, Py, Tog» V, Vp, N3, Tags Ty-
Solve for AT

To1 = AT + Tq

Solve for ATy

Tao1 = ATa + Tao

Solve for P431; Pa1 = Pyo for next iteration.

Enter recurring data for next step: Fgzi1, Fy1, Fx1, P31, To1s Va1,
Ns1s Taot1s Twis Cg1s Cyi



(Usually Ty1 = Taot1 and V3 = Vaq if no outside wind velocity. Direction of
=V o+ Vy)

wind relative to taxi direction determines value of Vp1 =

Process repeats for each step in taxi. Changing velocity such as takeoff
and landing is performed in increments of velocity (around 20 fps

increments).
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APPENDIX B

SUMMARY OF RADIAL AND LATERAL
DYNAMOMETER LOADS

Tables B-1 and B-2 present a summary of the dynamometer test results for the
50 x 20-20 and 40 x 14 tires, respectively. Tables B-3 and B-U4 give a
synopsis of the tire failure modes for the 50 x 20-20 and 40 x 14 tires,
respectively. The test conditions can be obtained from table 12 in the text
by use of the tire code numbers. Twenty-two out of 27 50 x 20-20 tires and
22 out of 27 40 x 14 tires failed in the lower sidewall. Of the tires that
did not fail in the lower sidewall, four of each size failed under the same
test conditions and failed in the crown or shoulder areas. Of the lower
sidewall failures, all but two occurred on the nonserial number side of the
tire. In the case of the 50 x 20-20 tires, 9 failures occurred, with the
thermocouples being in the failure areas. Of these cases, 6 were failures
that went 360 degrees around the sidewall of the tire, thus casting some
doubt as to the thermocouple being the point of origin of some of these
failures.
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TABLE B-1. SUMMARY OF 50 x 20-20 TIRE DYNAMOMETER TEST RESULTS
Load Temperature OF Contained
Radial Lateral Apex Contained Gas Gas Press
- Loaded
Radial Latera] st
Kips Rated Kips Radial Inside Outside Number of
Number Req. Act Req Act Req | Act Req Act Start | Failure} Start Failure | Start Failure | Start | Fail Revolutions
22N 456 4571 0.80 | 0.80 0 019] 0 0 63 415 65 415 65 270 244 324 21,786
1-N 51.0 558 1.00 | 0.98 0 028) 0 0 89 - 89 460 80 158 245 307 8,030
15-N 68.4 69.6} 1.20 | 1.22 0 029 0 0 66 436 13 425 - - 249 300 3,181
30-N 79.8 790] 140 | 1.39 0 019] O 0 85 417 89 - 90 196 251 299 2,176
13-N 91.2 89.7 | 1.60 | 157 0 027¢ 0 0 84 - 83 -~ 93 183 254 296 1,498
10-N 102.6 995|180 | 1.75 0 016 0 0 80 419 83 - 88 166 257 292 1,142
28-N 114.0 11321200 | 199 0 036 0 0 84 454 84 - 85 152 260 293 880
23-N 228 218 040 | 038 2.28 256]0.10 | 0.12 19 264 18 198 85 220 240 281 35,265
16-N 34.2 3371060 | 0.58 342 372(010 | 0.1 70 388 12 266 19 240 241 297 28,693
8-N 456 453 1080 | 0.79 4.56 4971010 | 0.1 65 - 55 290 - 241 - 294 11,500
12-N 57.0 57511.00 ; 1.01 5.70 5.78 1 0.10 | 0.10 95 - - - 87 206 248 300 4,176
18-N 684 678120 | 1.19 6.84 739010 | 0.1 12 359 13 242 82 174 248 289 2,126
19-N 719.8 79.21140 | 1.39 7198 8690.10 | 0.11 63 400 65 254 17 156 250 287 1,341
1N 91.2 90.2 | 1.60 | 1.58 9.12 | 1001 0.10 | 0.1 14 400 14 255 92 155 254 284 929
6-N 102.6 1008 | 180 | 1.77 1026 | 11171010 | 0.1 63 426 65 224 10 122 257 282 664
5-N 114.0 1105 1 2.00 | 1.94 1140 | 1247 {010 | 0.1 88 444 94 2170 99 134 260 283 546
11-N 34.2 33.0 | 0.60 { 0.56 6.84 7111020 | 0.22 86 415 88 214 90 233 241 295 15,530
g-N 456 448 1080 | 0.79 9.12 956 1020 | 0.21 84 468 82 179 93 196 | 244 2817 4,943
4-N 57.0 57.5 11.00 | 1.01 1140 | 1156 {020 |} 0.20 82 - 83 - 81 161 246 284 2,253
25-N 68.4 66.6 | 1.20 | 1.17 1368 | 14.20 | 0.20 | 0.25 81 399 82 179 101 161 248 276 1,328
14-N 198 78.2 {140 | 1.37 1596 | 16.69 | 0.20 | 0.21 12 402 15 172 89 142 251 217 889
21-N 91.2 89.6 |1.60 | 1.57 18.24 | 19.19 | 0.20 | 0.21 n 435 n 166 80 278 254 278 688
26-N 102.6 1015 {180 | 1.78 | 20.52 | 21.64 {0.20 | 0.21 85 400 84 185 98 129 257 2717 449
2N 0.8 0.30 Aborted
20-N 57.0 56.7 [1.00 | 0.99 17.10 | 16.50 {030 | 0.29 90 380 90 120 83 147 - - 1,744
27N 68.4 68.7 {1.20 | 1.21 2052 | 21401030 | 0.31 89 407 88 135 96 142 249 274 947
3N 79.8 803 {140 | 1.4 2394 | 2490 {030 | 0.31 67 41 67 122 80 127 251 217 144
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TABLE B-2.

SUMMARY OF 40 x 14 TIRE DYNAMOMETER TEST RESULTS

Load Contained Gas
Lateral
Radial Lateral Press Loaded
Kips Rated Kips Radial Temperature °F — P§} Number of
Number Req Act Req Act Req Act Req Act Start | Failure Start Fail Revolutions

1N 22.2 21.7 0.80 0.78 0.00 0.20 0.00 0.01 70 2817 196 270 39,574
5N 217 278 1.00 1.00 0.00 0.14 0.00 0.00 66 266 198 2n 12,015
8-N 33.2 321 1.20 1.18 0.00 043 0.00 0.01 12 2417 199 264 5,638
1-N 388 388 140 140 0.00 0.21 0.00 0.01 81 210 197 254 2,517
10-N 443 449 1.60 1.62 0.00 0.15 0.00 0.00 80 179 206 245 1.446
12-N 499 50.0 1.80 1.81 0.00 0.14 0.00 0.00 90 148 209 237 996
4-N 55.4 54.9 2.00 198 0.00 0.17 0.00 0.08 91 151 212 236 762
15-N 0.40 0.10 Aborted

3-N 166 15.6 0.60 0.56 1.66 1.84 0.10 0.12 92 254 197 250 33,663
6-N 222 20.6 0.80 0.74 2.22 2.4 0.10 0.12 86 257 196 254 12,859
26-N 27.7 27.8 1.00- 1.00 2.77 3.00 0.10 0.11 77 220 197 248 4,186
2-N 33.2 33.2 1.20 1.20 3.32 3.66 0.10 0.1 88 179 199 236 1912
9-N 388 39.2 140 1.4 388 4.16 0.10 0.1 70 148 203 235 1127
11-N 4.3 443 1.60 1.60 443 476 0.10 0.1 82 141 206 229 765
17-N 499 496 1.80 1.79 499 5.40 0.10 0.11 85 133 208 228 577
14-N 55.4 55.8 2.00 2.01 5.54 6.06 0.10 on 85 126 212 231 427
22-N 16.6 17.1 060 0.62 332 33 0.20 0.22 15 257 195 254 35,615
19-N 22.2 22.2 0.80 0.80 444 4.64 0.20 021 106 208 197 235 10,725
29-N 27.7 21.7 1.00 1.00 5.54 5.78 0.20 0.21 79 1.88 198 242 2,666
21-N 33.2 339 1.20 1.22 6.64 6.88 0.20 0.20 16 144 200 225 1,131
24-N 38.8 38.7 1.40 140 7.76 8.20 0.20 0.21 85 138 202 224 157
27N 443 429 1.60 1.55 8.86 9.29 0.20 0.22 86 134 205 226 608
25N 49.9 498 1.80 1.80 998 | 1042 0.20 021 88 128 209 229 422
16-N 22.2 22.3 0.80 0.80 6.66 6.70 0.30 0.30 15 191 196 240 3,591
20-N 21.1 269 1.00 097 8.3 8.53 0.30 0.32 18 159 197 230 1,696
23-N 33.2 333 1.20 1.20 996 | 1040 0.30 0.31 86 139 200 223 823
28-N 388 39.2 1.40 142 164 | 1213 0.30 0.31 68 118 203 221 603




TABLE B-3.

50 x 20-20 TIRE FAILURE ANALYSIS

Tire Code Number Serial Number Failure Origin
IN 83180035 S/S @ Lower Sidewall, NSS @ Sidewal| Separation 180° from T/C @
2N 03260054 Test Aborted Before Failure Excessive Tread Wear
3N 03260055 NSS Lower Sidewall for 360°
4N 93030065 NSS Lower Sidewall 180° from T/C
5N 93030067 NSS Lower Sidewall for 180° at 45° from T/C
6N 03230083 NSS Lower Sidewall for 180° with T/C at one end
N 03150086 NSS Lower Sidewall 180° from T/C, Heat in S/S shoulder
8N 33310087 NSS Lower Sidewall for 3600; Heat in Both Shoulders, Excessive on NSS Shoulder
9N 03250121 NSS Lower Sidewall for 366°, Tread Worn
10N 03250122 NSS Lower Sidewall 180° from T/C
11N 03250123 Crown Blowout toward NSS
12N 03250124 NSS Lower Sidewall 360, Separation on NSS
13N 03170181 NSS Lower Sidewall 30°, NSS Sidewall Separation with T/C at One End
14N 03220182 NSS Lower Sidewatl 180° from T/C ‘
15N 03240188 NSS Lower Sidewall for 180° with T/C in the Middie,
S/S Lower Sidewall Separation
16N 03240187 Crown Blowout 180° from T/C
18N 00100194 NSS Lower Sidewall 180° from T/C
19N 03220211 NSS Lower Sidewall for 80° at 60° from T/C
20N 03250251 NSS Lower Sidewall 180° from T/C, Heat in Tread
21N 03250252 NSS Lower Sidewall for 360° ’
22N 03250253 Crown Break in Tread Area Toward S/S
23N 03250254 Crown Centerline Blowout, Both Sidewalls 0K
25N 03240283 NSS Lower Sidewall 90° from T/C
26N 03160284 NSS Lower Sidewall for 350°
2IN 03150306 NSS Lower Sidewall 180° from T/C
28N 03260323 S/S Loweer Sidewall for 150° at 150° from T/C
30N 93000488 NSS Lower Sidewall 180° from T/C
NOTES:

(@ Serial Number Side of Tire
@ Non-serial Number Side of Tire

® Thermocouple
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TABLE B-4.

40 x 14 TIRE FAILURE ANALYSIS

Tire Code Number Serial Number Failure Origin
N 03040142 Nss © Lower sidewal @
2N 03040144 NSS Lower Sidewall, S/S Sidewall Separation
3N 03040146 Crown — Excessive Heat
4N 03040147 NSS Lower Sidewall, S/S Lower Sidewal] Separation
5N 03040166 NSS Lower Sidewail, Heat in Both Shoulders
6N 03040168 NSS Shoulder
N 03040169 s/s @ shoulder — Heat
an 03040171 NSS Lower Sidewall, Heat in Both Beads, Heat in Both Shoulders
9N 03040172 NSS Lower Sidewall
10N 03020202 NSS Lower Sidewall
11N 03020203 NSS Lower Sidewall, Heat in Both Shouiders
12N 63050221 NSS Lower Sidewali
14N 03050229 NSS Lower Sidewall, Slight Tread Abrasion
15N 03050230 Test Aborted Before Failure
16N 03050231 NSS Lower Sidewall, Severe Tread Abrasion
17N 03050241 NSS Lower Sidewall, Heat in S/S Shoulder
19N 03050243 NSS Lower Sidewall, Heat in Crown
20N 03050244 NSS Lower Sidewall, NSS Sidewall Separation
21N 03050245 NSS Lower Sidewall, Heat in Crown
22N 03050247 NSS L ower Sidewall, Heat in Crown, S/S Lower Sidewali Separation
23N 03050248 NSS Lower Sidewal!
24N 03030249 NSS Lower Sidewall, Heat in NSS Shoulder, Stight Tread Abrasion
25N 03050249 NSS Lower Sidewalt
26N 03050251 NSS Lower Sidewall, NSS Shoulder Separation, S/S Sidewall Separation
27N 03030262 NSS Lower Sidewall, Slight Tread Abrasion
28N 03030264 NSS Lower Sidewall, Slight Tread Abrasion
29N 03030230 NSS Sidewall, Slight Tread Abrasion
NOTES:

(@ Non-serial Number Side of Tire
@ See Figure44 for Location on Tire
@ Serial Number Side of Tire
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APPENDIX C
MISCELLANEQUS TIRE INFORMATION
During the progress of the program, the following data were obtained that were
not directly pertinent to the program, but may be of interest.

EFFECT OF CENTRIFUGAL FORCE

The carcass of a rolling tire experiences centrifugal forces. When the tread

area contacts the ground, or-in the case of the dynamometer contacts the drum,
the effective portion of the tread and crown rubber will partially support the
radial load imposed on the tire. Figure C-1 illustrates this point by showing
reduction in tire deflection as the tire roll velocity increases.
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