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1.0 INTRODUCTION 

The extent and local flux rate of water droplet impingement on affected 

aircraft surfaces constitute the basic information needed for the design 
and analysis of various ice protection systems. 

The cause of aircraft ice accretion is mostly due to the presence of 

atmospheric clouds containing supercooled water droplets. The water 

drop 1 et content of c 1 oud s genera 11 y decreases with a 1t itude and beyond 

about 22,000 ft above sea level, called the icing altitude, clouds 

consist mainly of frozen particles and do not pose, in most 

circumstances, a significant icing hazard [ 1]. For a given condition 

within the icing envelope smaller supercooled droplets may freeze 

entirely upon impact with the aircraft surface (rime icing), whiic 

larger droplets, requiring larger amounts of latent heat removal, may 

freeze slowly with runback (glaze icing). 

As the supercooled droplets impact on the surface, the governing 

transport parameter is the local droplet mass flux rate at the surface, 

which is in turn related to the normalized local surface flux function, B 

(local impingement efficiency): 

~·Jcal droplet impingement intensity= B·V · LWC ~ unit weight ] 
oo Lunit area · unit time 

Total droplet imoingement intensity = Voo·LWCf SdS 
s 

where LWC = liqu1d water content at freestream 

S = total surface area of body 

[ 
uni~ we1ght J 
un1t t1me 

[ unit weiqht J L unit volume 

[unit area] 



The definition of 8 as the local droplet flux rate normalized to the 

freestream flux rate follows from the continuity of droplet mass flow 

applied to an infinitesimal droplet stream tube (Figure 1) of 

differential area vectors dA at freestream (dA is not // to 
00 00 

V in general) and dA at the surface of impact: 
00 

where 

I 

(LWC) V · dA = (LWC) V · dA (mass flow continuity) 
00 00 

I 

( LWC) V n · dA = ( LWC) (-V · n) dA 
00 00 00 

n- ·d"A 
<lO co 

6 = 

-

= 
( LWC) 1

·( -V·n) 

(LWC)V 
co 

= 
mass flux at dA 

mass flux at dA 

n unit normal vector at dA, 

n 
00 

unit vector // to V
00

, 

co 

V (V ) _ local droplet velocity vector at dA (dA ), 
00 00 

{LWC) 1 
_ liquid water content at dA. 

Voo-----

dA 
co 

Figure - Droplet Stream Tube 
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The ice protection systems currently in use or in development on various 

aircraft can typically be categorized into two kinds: 

System 

(a} anti-icing 

(b) de-icing 

Source 

hot air (bleed) 

pneumatic boot 

(pulsed air) 

electrothermal [2] 

electroimpulse [3] 

fluid (freezing 

point depressant) 

Typical Aircraft Application 

engine inlet, wing l.e.,ram 

air scoop, pitot tube 

wing l.e., rotor blade 

wing l.e., pitot tube, rotor 

blade, stabilizer 

wing l.e., rotor blade, 

strut, stabilizer 

wing l.e. [4] 

In an ant1-1c1ng system, heat is continuously supplied (during system 

operation) to the affected surface so that all of the impinging water 

can be evaporated or maintained above freezing. Thus, for the steady­

state heat transfer analysis of the system, the total as well as the 

local water impingement intensities must be known at the icir.g 

interface. 

As for the de-icing system, ice is allowed to accumulate to a certain 

level and heat or some form of mechanical energy is supolied in a 

transient manner to shed off the ice, thereby saving substantial energy 

expenditure (compared to the anti-icing system) at the expense of the 

aerodynamic pen a 1 ty due to ice accretion. For the performance ana 1 ys is 

of a de-icing system, the extent and shape of the ice accreted must be 

known as well as the to 1 erab 1 e 1 eve l of ice accretion in terms of the 

associated aerodynamic penalty. il.nalytical1y, this requires ice 

accretion modeling [5,6!, for which the :ocal wate"' ~mpingement 
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intensity is an input, and detailed flow analysis about the body with 

the prescribed ice shape [7,81. 

Thus the determination of local water droplet impingement efficiency (8) 

on aircraft surfaces is a fundamental task in quantifying the aircraft 

icing phenomena. 

Despite its importance in the design/analysis of ice protection systems 
for most of the present day engine inlets and wings which are highly 3-

dimensional, there has been very little analytical or experimental work 
to determine the water droplet impingement efficiencies on 3-dimensional 

configurations. 

The purpose of this research work is to develop a 3-dimensional particle 

trajectory analysis computer code to predict the local water droplet 
impingement efficiency (8) on a representative commercial turbofan type 

engine inlet. This work grew out of the need to develop analysis tools 
leading to improved engine anti-icing and sand separator systems at the 

Boeing Military Airplane Company (BMAC), Wichita. 
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2.0 PREVIOUS RELATED RESEARCH 

A detailed review of the relevant research literature is discussed in a 
recent report by Shaw [91. 

The bulk of the available literature in the area of B determination 

comes from the extensive NACA icing research efforts in the 1940-1950 
time period. The NACA research program concentrated mainly on the 
experiment a 1 determination of B on axisymmetric geometries [ 10, 11] and 
2-0 airfoils [12-161. 

One of the earlier analysis efforts is due to Langmuir and Blodgett [171 
who calculated water droplet trajectories to predict impingement 
efficiencies about circular cylinders using a differential analyzer. 

More recently, a number of researchers developed severa 1 water droplet 
trajectory codes to compute B [ 18-20 I as we 11 as to mode 1 ice ace ret ion 

[5,61 and to assess aerodynamic penalties [7,81 on 2-0 airfoils. Code 
development appl~cable for engine inlets was limited, partly due to the 
more complex flowfields involved and due to a complete lack of test data 
on these geometries. However, a code [21,22] was developed by BMAC and 
applied to various axisymmetric engine inlet anti-icing analysis 
problems. 

Trajectory code development for 3-dimensional impingement problems has 

been of 1 imited extent. Although two codes [ 23, 24] exist that are 
capable of analyzing 3-0 impingement problems, calculation of B was not 
reported. 

The 3-0 code developed by Norment [ 23] uses the Hess-Smith 
incompressible panel potential code [251 and a variable order Adams 
predictor-corrector integrator to solve the trajectory differential 
equation. To compute the fluid dynamic forces acting on the droplet at 
each trajectory position, it uses the direct approach of computing the 
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flow velocity at the required position by summing over all the panel 

source and vorticity contributions. Since each droplet trajectory 

involves computing hundreds of intermediate trajectory steps, the 

computing time will generally be high. As with other panel flow codes, 

the accuracy of computed flow velocities is ultimately limited by the 
panel density. For a trajectory segment near the panel surface, the 

intermediate trajectory steps will be crowded (compared to a segment far 

away from the surface) because of stronger flow gradients there. If the 

mean distance between these intermediate steps is small compared to the 

1 i near dimension of surf ace pane 1 s, the direct approach will resu 1 t in 
non-smooth flow velocities along the trajectory and lead to numerical 

problems in solving the trajectory equation of motion. Thus, the choice 
of the direct approach for the trajectory code seems questionable in 

view of the inherent danger and high computing times involved. This 
code currently uses the non-lifting version of the Hess-Smith panel 

code, and is not applicable for problems involving engine inlets. 

The recent 3-0 code developed by Stock [241 employs a finite volume 3-0 

Eu 1 er f 1 ow code [ 261 and a 4th order Runge-Kut ta scheme to so 1 ve the 
trajectory equation of motion. It was applied to the droplet 

impingement problem on a 3-0 engine intake, utilizing a body-fitted 

computational mesh (grid approach). Body-fitted mesh definition of 
computational flow domain is generally accepted as one of higher flow 

resolution than any other fixed orthogonal mesh systems, because of its 

grid adaptability near the boundaries [271. However, because of the 

finite volume approach employed, uniform flow velocity was assumed 

throughout the volume of each mesh cell, while at least five 
intermediate trajectory steps were computed in each mesh ce 11. This 

approach may be acceptable in the far field region, where the flowfield 
is approximate 1 y uniform. Near the boundary surface, the assumption of 

flow uniformity can be incorrect in predicting particle impact on the 
surface. The tangent impact points computed from this code indeed 

reveal erratic jumps between several pairs of adjacent tangent 

trajectories [241. 



Since it is the fluid dynamic forces acting on the droplet that 

determine the droplet trajectory, accurate flowfield definition is a 
prerequisite for accurate droplet trajectory computation. For the grid 

approach, the additional requirement of accurate flow velocity 

interpolation along the trajectory must be met. Also, an accurate 

surface geometry definition of the body is needed in order to locate the 

impingement points precisely. This is not a trivial task for 3-

dimensional geometries such as engine inlets. 8 is a local surface flux 

function and its accuracy is very sensitive to the local surface 
geometry. Flat panel surface definition, as is done in panel potential 
flow analyses, will not be adequate unless sufficient panel density is 

used. 

For the present investigation, the grid approach is adapted based on th~ 

consideration of computational efficiency. Flow velocities were 

computed using a 3-0 compressible full potential flow code [28,29] on a 
cylindrical mesh system. Linear and least-square interpolation 

techniques are employed for flow interpolation along trajectories to 

ensure smooth and accurate resolution of the flowfield. State-of-the­

art bi-cubic parametric surface modeling techniques [301 are utilized to 

obtain an analytical definition of the 3-0 engine inlet surface studied 
as well as to compute the impingement points accurately. Variable step 

fourth order Runge-Kutta and Adams predictor-corrector integration 
schemes were used to so 1 ve the trajectory equation, together with an 

automatic stepsize control scheme to maintain the desired integration 
accuracy in the numerical solution of the trajectory differential 

equation. 
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3.0 TRAJECTORY MODEL 

The general motion of droplets moving through turbulent air flow regimes 
is not considered in this study. A rather simplistic approach, taken by 

researchers as early as 1940's [171, is to describe the quasi-steady 
motion of small spherical droplets moving in the steady flow of air, 

while the motion of droplets does not disturb the air flow. The 
predominant force acting on a droplet is then the fluid dynamic drag 
arising from the relative (slip) velocity of air with respect to the 
droplet. This is a valid approach in view of the fact that for the 
typical icing design conditions of intermittent and continuous maximum 
[11, the maximum concentration and mean volumetric diameter (MVO} of 

droplets are: 

intermittent maximum 

3 LWC MAX = 3.0 gm/m 

MVO MAX = 50 ).lm 

continuous maximum 

LWC MAX = 0.8 gm;m3 

MVO MAX = 40 ).lm 

For the concentrations and sizes of droplets within the icing envelope, 

the assumption of undisturbed airflow and spherical shape {due to 
surface tension) of droplets are quite valid. 

3.1 Model Assumptions 

(1) Single phase (air) flow about the body - particle phase does not 
disturb the flowfield of the gas phase. 

(2) Quasi-steady-state approximation - at each instant and position, 
the steady-state drag and other forces act on the particle. 

(3) Compressible or incompressible potential flowfield of the gas phase 
about the body. 
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(4) Spherical shape of particles. 

Additionally, viscous flow effects such as thick boundary layer 

formation and flow separation are not considered because particle 

impingement usually occurs in the forward part of the body. 

3.2 Trajectory Differential Equation 

Under the model assumptions, the forces acting on the particle are the 

fluid drag, buoyancy, and gravity. By applying Newton's second law and 

non-dimensionalizing (Appendix B), the particle equations of motion 

reduce to the following: 

( 3-l) 

where 

p o* V d 2 /(l8~C) = inertia oarameter of droplet. 
co 

t time (dimensionless with C/V ), 
co 

a o/o* = density ratio of air to particle, 

characteristic dimension of body, 

relative Reynolds number of droplet, 

particle velocity (dimensionless with V ), 
co 

potential flow velocity (dimensioness with V ). 
co 

Because of the way the slip velocity, V IT, appears in the slip 

Reynolds number (Rv), equation (3-l) must be solved numerically in 

general: in some ideJ.1 cases, when Vis a simple function of position 

and R,J can be expressed in a special form, equation (3-l) can be solved 

analytically [31,32\. 
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3.2.1 Meaning of P (inertia parameter) 

For a particle injected into the uniform flow, V = V~, and obeying the 

Stokes• law of drag (C0 = 24/Rv): 

dU/dt = (V -U) /P ( 3-2) 
Q) 

(neglecting (1-cr)gC/V~2 << 1.) 

Equation (3-2) can be written as 

d(U-v )/dt = -(U-v )/P 
Q) ~ 

(since V is constant) 
~ 

which integrates to 

U = v - (U - v) exp(-t/P); (U = U(t=o)) (3-3) 
~ a ~ a 

From equation (3-3), U + V as t • ~ monotonically, i.e., velocity of 
~ 

the particle relaxes to the flow velocity after a long time. Thus P is 

the non-dimensional equivalent of the velocity relaxation time (T ) v 
characteristic of the particle: 

p = T (V /C) v ~ 

= * 2 o d /(l8u) [unit time I (3-4) 

Equation (3-4) implies that the larger, heavier particles wi 11 take 

longer time to relax to the flow velocity than the smaller, lighter 

particles. [n the general case of arbitrary flow and c0 -F c0 (Stokes), 

the velocity relaxation time concept is st i 11 useful in that a rough 

order of magnitude estimate of the particle motion in a given flow can 

be obtained. 
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3.2.2 Scaling of the Trajectory Problem 

As was done in the previous section, the trajectory equation (3-1) can 

be simplified for the case of Stokes' drag law: 

{3-5) 

Equation (3-5) implies that, neglecting terms due to gravity and 

buoyancy, the particle trajectory for a specified starting condition is 

completely determined by the inertia parameter P for all dynamically 

similar flows. The only trajectory similarity parameter required is P, 

in addition to the usual flow similarity parameter such as the Reynolds 

and/or Mach number (depending on the degree of flow compressibility). As 

long as the Stokes' law of drag holds along the trajectory, matching of 

P guarantees the trajectory similarity for the same set of initial 

conditions for all dynamically similar flows. This similarity concept 

for constant P breaks down at the 1 imit of the Stokes' law of drag 

because K(Rv) is non-linear in Rv; its deviation from unity at a point 

in the trajectory is a measure of the extent to which the drag 

coefficient differs from the Stokes' law value. Consequently, the 

trajectory prob 1 em cannot be sea 1 ed in general due to the trajectory 

dependent Stokes' parameter, K(R ). v 

3.3 Drag Coefficient for Spherical Particles (C0) 

The particular form of the drag coefficient used in this study 

incorporates an anal yt i ca 1 form for the standard drag curve and the 

Cunningham drag correction for molecular slip and compressibility 

effects: 

(3-6) 

where 

C inc. 
0 - incompressible sphere drag coefficient 
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Cunningham drag correction factor 

3.3.1 Incompressible Sphere Drag Coefficient (c0inc.) 

There exist some experimental drag data [33,341 on water droplets in 

sizes well above the millimeter range where the droplets tend to deviate 

from sphericity. The effects of droplet instability/break-up are 

pertinent for larger droplets and hence are not considered here. 

The deviation of water droplet drag data from that of the standard drag 

was found to be significant only for droplets of diameters larger than 
about 1 mm and for Reynolds numbers greater than about 1000. This 

observation was mainly due to the flattened shape of droplets in the 
size and Reynolds number range studied in the still air settling speed 

measurement [331. In fact, a recent investigation [351 reported that, 

in both the Navier-Stokes flow analysis and settling speed measurement 
results, no significant differences in drag larger than the measurement 

errors were found between the solid and liquid spheres. 

Equation used is the integrable form of Putnam [361, 

C inc.(R ) = C Stokes(R ) . (1 + l R 2/3) 
0 v 0 v 6 v (3-7) 

which agrees to within about 5% of the standard drag curve in the range, 

0 < R <1000. Comparison of this equation with several other available - v-
forms is listed in Appendix C; equation (3-7) is listed as c0 (Putnam). 

3.3.2 Cunningham Drag Correction (G(M/Rv)) 

For small droplets less than about 5 IJm diameter, reduction in drag can 

occur because of the molecular slip of air. Whenever the size of the 

particle becomes comparable to the mean free path of air molecules, this 

non-continuum effect can be significant. The first attempt to correct 
for this was made by Millikan in his oil drop experiment. He used the 
following correction formula to the Stokes' viscous drag for oil 

droplets: 

12 



-C d/1.. 
C - C Stoke~ [1 + (1../d} • (C + C e 3 )J- 1 

0 - 0 1 2 

where /... is the mean free path of air, 

d is the particle diameter, 

c1, c2 and c3 are empirical constants. 

(3-8) 

The factor 1../d is also known as the Knudsen number (Kn) which can be 
shown to be proportional to M/R from the kinetic theory of gases [37]: 

v 

where M : Mach no. of gas flow relative to the particle. 

The form of the correction adapted in this study is due to Calson and 
Hoglund [38], who proposed the following empirical fit to available 

experimental data for the ranges M<2.0 and R <1000: v-

G(M/Rv) = A/8 (3-9) 

where 

A_ 1 + (M/Rv) [3.82 + 1.28 exp (-1.25Rv/M}], 

B: 1 + exp (-.427M- 4· 63 -3R -· 88 ). 
v 

(3-10) 

( 3-11) 

The numerator in equation (3-9), A, has the same form used by Millikan 

and only the numerical constants have been modified. This term 
reoresents the drag reduction factor to the incompressible drag due to 

the molecular slip or rarefaction effects. 

The denominator, B, in equation (3-9) is the additional correction to 

account for the Mach number dependence of the particle drag 

(compressibility) in continuum flow. 
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It must be noted that the Cunningham correction, expressed as in 
equations {3-9), {3-10) and (3-11), must be evaluated at every 
trajectory step in the f 1 owf i e 1 d. The re 1 at i ve Mach number, M, can be 
evaluated from the compressible Bernoulli equation applied to the 

potential flow velocity: 

where a 

Thus, 

= 

M = 

lyR\, 

cl [1 
2yR 

IV-U! · V /lyRT 
co s 

Substitution of (3-13) into (3-14) gives 
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4.0 COMPUTATIONAL METHOD 

Analytical determination of water droplet impingement efficiency 

involves calculation of the flowfield about the body and calculation of 
individual particle trajectories that lead to impingment on the body. 

The local impingement efficiency (8) is obtained by computing the 
impinging surface droplet flux relative to freestream flux as a function 

of body surface coordinates. 

4.1 COMPUTATIONAL PROCEDURE 

Droplet impingement analysis on the 3-D engine inlet involved the 
following major steps: 

(1) Bi-cubic parametric description of the inlet surface. 

(2) Potential flow analysis about the inlet. 

{3) Numerical integration of the trajectory equation. 

(4) Calculation of the limiting envelope of trajectories. 

(5) Calculation of 8 from the intermediate trajectories within the 
limiting envelope. 

The steps involved in the procedure are illustrated in Figure 2. 

4.2 BI-CUBIC SURFACE PARAMETRIZATION 

Any point on a 3-dimensional surface element (patch) can be analytically 
defined in terms of a set of patch corner boundary conditions through 

bi-cubic surface parametrization (See Appendix A). Parametrization is 
complete when all the patch corner boundary conditions (patch boundary 
matrices) are obtained for the particular system of patches making up 

the composite patch surface of the inlet. This procedure involves cubic 

15 
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parametric splining of the two sets of curves defining the composite 

path surface, using the accumulated chord length parametrization and 

Hermite interpolation schemes [39], to compute the required end point 

tangent and twist vectors for each curve segment. 

The purpose of parametric surface description is two-fold: 

(1) It provides accurate surface normal velocity boundary conditions 

required for the full potential flow code input. 

(2) Accurate trajectory-surface intersections (impingement points) can 

be obtained through such parametrization (Appendix A). 

A wiremesh diagram of the inlet derived from the bi-cubic patch 

parametrization is shown later in Figure 15. In the figure, the 

straight line edges of the wiremesh patches are for illustration only. 

These do not represent the actua 1 patches whose edges are curved. For 

the inlet investigated in this study (737-300 prototype inlet), about 

600 patches were used to define the surface. 

4.3 POTENTIAL FLOW ANALYSIS 

Flow velocities are computed by the 3-0 full potential code [291 on 

cylindrical mesh grids (69 x meshes, 49 r meshes, and 16 e meshes). The 

flow code solves the full partial differential equations of compressible 

transonic potential flow by a finit~ difference scheme. The convergence 

acceleration is achieved by the successive line over-relaxation (SLOR) 

and multigrid techniques [40,411. The multigrid scheme utilizes four 

levels of coarse and fine grids about the original mesh chosen such that 

during iteration cycles flow solutions are passed from one level to 

another to achieve the extremely fast convergence of flow solutions. 

For an average engine inlet flow problem involving 50,000 mesh points, 

the CRAY-lS computing time is only about one minute. 

A typical adaptive mesh grid used for engine inlet flow analyses is 

shown later in Figure 08, Appendix D. 
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4.3.1 Flow Accuracy (3-D full potential code) 

This particular CFD (Computational Fluid Dynamics) computer code used 

for this investigation is an example of a time-tested code. Since its 

initial production version developed in the early 1970s, many validation 

comparisons with experimental data are available, including the NASA 

wing-pylon-nacelle model (Figure D1, Appendix D). Practically all of 

the Boeing commercial engine inlets were designed using this code and 

later correlated with wind tunnel data. However, most of these 

validations are Boeing proprietary data and cannot be included here. 

Figures D2 through D7 (NASA wing-pylon-nacelle model} and Figures D9 

through 011 (full scale commercial turbofan-engine type inlet) are from 

NASA CR3514 and these show good agreement with the measured surface Mach 

number data. 

4.3.2 Flow Velocity Interpolation at Trajectory Steps 

Two different interpolation schemes are employed: 

(1) Volume weighted linear interpolation in field cells. 

(2) Least-square interpolation in surface cells. 

Example of the two types of mesh cells are illustrated in Figure 3 

showing a typical coarse mesh definition of the flow domain about an 

engine inlet. 

4.3.2.1 Linear Interpolation Formula 

Figure 4 depicts a cylindrical field cell with the mesh node origin at 

(i,j,k); i, j and k are the x, rand e mesh indices of the node. The 

flow velocity, V(x,r,e}, at an interior point, (x,r,e}, is 

18 
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V(x,r,9} = (Vol}- 1· {V(i,j,k}·w(i+1,j+1,k+1) + V(i,j,k+1)·w(i+1,j+1,k} 

where 

+ V(i+1,j,k+1)·w(i,j+1,k} + V(i+1,j,k}·w(i,j+1,k+1) 

+ V(i,j+1,k}·w(i+1,j,k+l) + V(i,j+1,k+1)·w(i+l,j,k} 

+ V(i+1,j+l,k+1)·w(i,j,k} + V(i+1,j+1,k}·w(i,j,k+1)} 

x
1
• < x < x. 1, r. < r < r. 1, 9k < 9 < 9 k 1, - - 1+ J - - J+ - - + 

V(i,j,k}= Flow velocity at the node (i,j,k}, 

=total volume of the cell, 

w(i,j,k}= volume of the sub-cell whose two corners are 
(x,r,9} and (xi,rj,9k}. 

Exolicitly, w's are: 

w(i,j,k} 2 2 = (x-x;)·(r -rj)·(9-9k)/2 

w(i+1,j,k) 2 2 = (x. 1-x)·(r -r.)·(9-9k}/2 1+ J 

w(i,j+1,k) 2 2 = (x-x;)·(rj+1-r )·{6-9k)/2 

w(i,j,k+1) 2 2 = (x-x.)·(r -r.)·(9k 1-9)/2 1 J + 

w ( i 'j+ 1, k+ 1) 2 2 
= (x-x;)·(rj+1-r )·(9k+1-9)/2 

w(i+1,j+1,k) 

w(i+1,j,k+1) 

w( i+1,j+l,k+1) 

= (xi+ 1 -x)·(r~+l-r2 )·{8-9k}/2 

= (x. 1 -x)·(r2 -r~)·(8k 1-e)/2 1+ J + 

= (x. 1 -x)·(r~ 1-r2)·(ek 1-e)/2 
1+ J+ .+ 

20 

( 4-1) 



r 

I 

I 
I 
I 
I 

(i+l ,j.!~ .. ----- .. 

(i ,j ,k+l) 

FIGURE 4- Cylindrical Field Mesh Cell 

4.3.2.2 Least-Square Interpolation Formula 

When a mesh cell intersects the surface, as in the surface cell shown in 

Figure 5, interpolation becomes difficult. For example, a straight 

forward application of the Taylor series formula would require 

evaluation of the flow gradients with respect to the coordinate 

variables which depends on the particular way the surface intersects the 

ITlesh cell. This is a time consuming process since all the possible 

cases of surface intersecting cell geometries have to be accounted for. 

~ different approach is employed in this study, whereby the flow 

ve1ocity at a desired point is assumed to be a function of the space 

coordinates and the unknown set of coefficients are to be determined 

from the least-square fitting of this function at the exterior and mesh­

surface intersection points (Figure 5) associated with the surface cell: 
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- - -
V(x 1,x

2
,x

3
) = a1 + a

2
x1 + a3x2 + a4x3 + a5x1x2 + a6x2x3 + a7x1x3 (4-2) 

This is equivalent to the lowest second order Taylor expansion about the 

point (x~,x~,x~) in a vector form: 

+ 0(2;higher order) + 0{3) (4-3) 

where (0) and subscript o are taken to mean the quantities evaluated at 

some arbitrary origin (x~,x~,x~) in the neighborhood of the surface 
ce 11 . 

Thus the least-square model, equation (4-2), reduces to the lowest 
second order Taylor expansion of the flow velocity if the following 
equalities are made: 

- = iJ(O) a, 

- av 2,3,4 a. = (3X.)o = 
1 

1 

- l/2 a2v ) as = ax 1ax2 o 

- l/2 ( a2v 
a6 = ) 

ax2ax3 0 

- 1/2 ( a2v ) a? = ax 1ax 3 o 

22 



Equation (4-2) can be put in the matrix form 

where 

[t;;l E:z ;3 ;4 E:s ;6 ;71 al = [V{xl'x2,x3)1 

a2 

a3 

a4 

as 

a6 

a7 

{4-4) 

;1 = 1• E:z = x1, E:3 = x2, f:4 = x3, f:s = xlx2' ;6 = x2x3 and ~7 = x1x3. 

For a total of n (n~)) boundary points (exterior mesh and surface-mesh 

intersection points) defining the surface cell, the successive 

application of equation (4-4) to the n boundary points results in: 

r 
~1.1 ;1,2 

sz,1 C:z,2 

c:3,1 .. 

t:1,6 t:1,7l 

.. £:2,6 £:2,7 

;n,1 · · · · · · · · · · · ~n,6 ;n,7 

V( 1) 

V{2) 

(4-5) 

= 

-
d6 

a 7 V{n-1) 

V( n) 

This is an over-determined system with 7 unknowns (a's) and n equations. 

V(k) is the known flow velocity at the kth boundary point. The matrix 

[t:(I,J)I (I=l,2, •.. ,n; J=l,2, .. ,7) contains the terms involving only the 

coordinate positions of then boundary points defining the surface cell. 

Equation (4-5) is solved for a's using Householder's least-square 

minimization procedure for over-determined system of equations [421: 
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1 = 1,2,·····,n 

m = 1,2,·····,7 

[V] [V1 V • • • • · · V 1 v ] T. - 2 n- n 
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In some special situations when n < 7, extra mesh or surface-mesh points 
(and associated flow velocities) adjacent to the surface cell are used 

to meet the matrix dimensional requirement, n > 7, in solving for the 

least-square coefficients Cai}. 

To achieve computational efficiency, all of the surface intersecting 

mesh cells were identified and the least-square coefficients determined 
and stored in a file prior to the running of the 3-0 trajectory code. 
Each mesh cell is identified, as shown in Figure 5, with the set of mesh 
node indices, (i,j,k), and the associated set of 21 least-square 
coefficients, {a~(i,j,k)}, 1=1,2,3; m=1,2, •.. ,7 (l is the coordinate 
component index for computing V 1). As long as a trajectory pas it ion 

(x,r,e) is inside the surface cell (i,j,k), the coefficients {a~(i,j,k)} 
are used in equation (4-2) to compute the interpolated flow velocity at 
that position (x=x 1, r=x 2, 9=x 3). 

~ : i 
---.-..,~.{] --<(- - - -9- --

£= mesh surface 

intersection 
point 

0= interior mesh 
node 

•= exterior mesh 
node 

FIGURE 5-2-Dimensional Illustration of a Surface 

Cell Associated with an Exterior Mesh Node (i,j,k) 

For the surface cell (Figure 5) associated with the node (i,j,k), the 
least square coefficients (am(i,j,k)} can be obtained from the positions 

and flow velocities at B, C, and the node (i,j,k}. 

The least-square interpolation formula, equation (4-2), resolves the 
potential flow velocity near the surface very accurately and smoothly. 

This is shown in Figure 6 where the comparison is made bet'<'leen the 

interpolated and the CFD cutout velocities at the mesh-surface 
intersections on the lower cowl surface of the ::'37-300 protot;pe engine 
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inlet. It should be noted that the interpolated curves are obtained not 
by fitting the CFD output flow velocities at the surface (solid symbols 

in Figure 6) but from the least-square coefficients of the surface cells 
involved, by using equation (4-2) continuously along the cowl surface. 

4.4 Numerical Integration of the Trajectory Differential Equation 

Substituting the drag coefficient, expressed as in equations (3-6), 

(3-7), (3-9), (3-10) and (3-11), into the trajectory equation (3-l) 

where 

dUi/dt = CStokes(R )·R ·(1 + lR 213 )·(V.-U.)·[24P·G{M/R )]-l (4-6) 
0 v v 6 v 1 1 v 

G{M/R) 

M = 

R = v 

v = 

-2 - (1-cr)g Co. 2v 
1 CD 

= 
1 + (M/R )[3.82+1.28exp(-1.25R /M)] 

1 + exp[-.427M-4· 63 - 3R-· 88 ] 
v 

M(V,U) as shown in equation (3-15) 

Rv(V,U) as defined below equation (3-1) 

v(x) 

From the above functional relationships, the R.H.S. of equation (4-6) 

depends only on the particle position and velocity: 

dU/dt = f(x,U) 

Together with the definition of D as the time derivative of x, we arrive 
at the following two coupled first order differential equations in time: 

dx/dt = IT, (4-7) 

dU/dt f(x,D). (1-8) 
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The above represents an initial value problem and thus requires a self­
starting type procedure in the numerical integration. The Runge-Kutta 

method is a self-starting type with high degree of accuracy. One 

disadvantage is that a large number of function evaluations is involved. 

Compared to the same order Runge-Kutta integrator, the Adams predictor­
corrector requires one-half the number of function evaluations with 
comparable accuracy, but is not self-starting. 

In this study, a combination of the 4th order Runge-Kutta and Adams 

predictor-corrector schemes with an automatic stepsize control is used 
to solve the trajectory equation (4-6). A flow chart of the numerical 

integration scheme is shown in Figure 7. 

4.4.1 Runge-Kutta Scheme (4th order) 

The 4th order scheme, accurate to 5th order in Taylor expansion, is used 
to start or restart the integration process from the initial condition 

or when the stepsize is changed due to the error co~trol process at the 

end of an Adams predictor-corrector step. 

The coupled first order equations (4-7) and (4-8) take the following 

Runge-Kutta forms 

IT ( n+ 1) = IT(n) + h·[A + 28 + 2C + Dl/6 (4-9) 

x( n+ 1) = x(n) + h·[a + 2E" + zc ~ Ji/6 (4-10) 

where 

h = t n+l - t IT ( n) - IT ( tn), X(n) = x(t ) n' , n 

- U(n), A f[x(t ) ,IT(t ) I a ::: = n n 

b = a + h · A/2. 8 = f[x(t )+h·a/2,E"I n 
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c =a+ h·(A+B)/4, c = flx(t )+h·(A+b)/4, cl n 

d" = c + h • C/2, IT= f[x(t )+h·(A+b+2c)/4, d] n 

4.4.2 Adams predictor-corrector scheme (4th order) 

This scheme predicts and corrects the next time step (tn+4) from the 

three previous Runge-Kutta time steps (tn+l' tn+2' tn+3): 

[

u (n+4) 

Predicted _P 

xp(n+4) 

[

u {n+4) 
Corrected _c 

xc(n+4) 

where 

F(n) 

= U(n+3) + h·[-9F(n) + 37F(n+l)-59F(n+2)+55F(n+3) ]/24 

= x(n+3) + h·[-9U(n) + 37'IT(n+l)-59U(n+2)+55U{n+3)l/24 

= U(n+3) + h·[F(n+l)-5F(n+2)+19F(n+3)+9F{x (n+4),U (n+4)} ]/24 p p 

= x(n+3) + h·[U(n+l)-5'IT(n+2)+19U(n+3)+9U (n+4) l/24 
p 

F[x(n) ,IT(n) ]. 

This procedure is recursive, i.e .• as long as the agreement between the 

;Jredicted and corrected values are within the specified error margin 

integration proceeds in a step by step manner. 

4.4.3 Automatic Stepsize Control 

Af:er each predictor-corrector computation, the integration error (s) is 

checked to determine whether to accept the corrected values and proceed 

or to reject the step and restart the integration using the Runge-Kutta 
procedure. The integration error at a particular step is not the 

truncation error occurred at that step corresponding to the particular 
choice of numerical scheme, but is the global ~rror of the numerical 

solution from the true solution at that step. The approach of 

controlling the truncation errr:Jr at every st~p usual1y involves 

additional number of function evaluations comparable to those required 
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( 1) 

(2) 

to integrate the equation, and still does not guarantee satisfactory 

control of the global numerical error. 

The approach adapted here is to use the discrepancy between the 

predicted and corrected values as a measure of the integration error, 

e: = e:(Uc, UP). The two types of error indicating the discrepancy 

between Up and Uc are the absolute, e: 1 {U~-U~). and the relative 

i ; 
e: 2{UP/Uc)• errors: 

Type of 

Situation Error Preferred Min. Error smin) Max. Error Emax) 

!Uc I, !UP I large relative {e: 2) ? 0.01(1%) 

? oV(flowfield error) 

The error bound on e:
1 

must be tied to oV, since the R.H.S. of the 

differential equation (4-6) depends on (il-U); if lVI is accurate tc oV, 

then the absolute error of U should be of the same order of magnitude. 

However, if e:
1 

is within the flowfield accuracy, e: 2 may be unacceptably 

large; 

I U~ I .I U~ I may be small (comparable to cV) but 

I (Ui-Ui)/Ui I or I 1-IUPi;uci II may be large. c p c 

Thus, the flowfield accuracy (oV) plays an important role in the error 

control process. 6V for the 3-0 inlet flowfield was about 0.001 based 

on the flow velocities normalized to the Mach number at freestream 

(M = .267). 
CD 

Based on the above physical considerations, the following integration 

error estimate/control scheme is devised: 

31 



(1) s 1, s 2, e1(i) and e2(i) initialized to zero (i=l,2,3) 

(2) I U; I < ov el ( i) = lUi - u i I 
c - c p ( 4-11) 

I U; I > ov e2(i) = MAX {I (U~-U~)/U~ I, 11-1 U~/U~ I I } c (4-12) 

(i=1,2,3) 

E1 = MAX ( e: 1 • MAX !e1 (1) ,e 1 (2) ,e 1 (3)]) 

s2 = MAX (s2' MAX !e2(1) ,e2(2) ,e2(3) ]) 

(3) case 1 (e:1 < 2 oV); -

smin < E = s2 ~ e:max -+ successful predictor-corrector step -

E = s2 < smin .... rejected, hi = h·A 1 (increase stepsize) 

E = e: 2 > smax • rejected, hi = h/A 2 (decrease stepsize) 

case 2 (e:1 > 2 oV) ... rejected, hi = hn. 2 (decrease stepsize) 

Thus, the error contrpl scheme first checks to see if the maximum 

absolute error (e: 1) of (ITc, UP) components is within the flow 
resolution. [f it is (case 1), then it checks whether the maximum 

relative error (e: 2) is within the set relative error margin 
(smin, e:max). Otherwise (case 2), the step is rejected, and stepsize 
decreased to restart the integration process using the Runge-Kutta 
procedure. 
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For the 3-0 inlet trajectory analysis, the following error control 

parameters are used: 

ov = 0.001 

Emi n = 0.001 Emax 0.01 

= 1.5 = 1.87 

Integral or integer fractional relationship between A1 and A2 is to be 

avoided because of the danger of repetitive stepsize changes. 

4.5 Calculation of the Limiting Envelope of Trajectories 

The limiting envelope of droplet trajectories is the surface traced out 
by the inner and outer tangent trajectories (Figure 8). For droplets 

starting at freestream constant-x plane with the same initial velocity 
as V, the bounding radial starting positions, (r

0
min(e ), r max(e )), 

co 0 0 0 
are searched for each selected value of 9

0 
which results in a pair of 

tangent trajectories. Repeating this process by sweeping e
0 

with 

selected increments, the freestream impingement bound, r(r
0

min(9
0

), 

r max(e )), is determined. r represents the cross-section of the 
0 0 

impinging envelope of trajectories at the freestream constant-x plane. 

A tangent trajectory is determined via a trial and error process. Along 
a radial line (e

0 
ray) on the constant-x freestream plane, a pair of 

radial starting positions r01 and r02 are searched that result in 
impinging and non-impinging trajectories, respectively, to the engine 

cowl surface. Once r01 and r02 are found, an iterative bi-section 
procedure is applied until a set tolerance is met: 

(2) r
0 

= (r01 + r 02 )!2 (new guess) 

( 3) I r - r 11 < TOL? [- '!.. ~ ~ - {.ta~g~n!_ ~r~j~c!_o;:y f£U~dl ~ 
o o - NO--{~) 
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(4) compute trajectory 

(5) 

until particle ---(2) 

[ 

impinges: set r 01 = r 0 
reaches-computational- -­
boundary without impinging --·~( 5) 

r = r 2 --{2) 
0 0 

If r 02 had the trajectory end point radial position (at the fan face, 

the downstream computational boundary) within the fan radius, 

Steps (1) thru (5) are performed for a
0

(n) = a
0

(n-1) + A8, 

n = 1,2,···,nmax; nmax = 30, 8
0

(0) = 0° and Ae = 180°/nmax. 

The 2(nmax+l) tangent trajectories found this way represent the limiting 
envelope of trajectories, whose impingement points on the cowl surface 

now represent the limiting impact points. Any trajectories which start 

at (x ,r min<r <r max,e) will impinge on the surface region enclosed by o o - o- o o 
the boundary curves defined by the inner and outer limiting impact 

paints. 

4.6 Calculation of the Local Droplet Impingement Efficiency (8) 

One can now run a number of trajectories starting at an array of points 

within the region, r(r
0
min(e

0
), r

0
max(9

0
)), in an orderly fashion to 

obtain the array of impingement points on the cowl surface (Figure 9). 

Let x
0
(I,J) and xm(I,J) denote the array of starting points from 

f(r
0
min(8

0
), r

0
max(e

0
)) and the corresponding impingement point array 

on the surface, respectively. 

35 



w 
a> 
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We can define the associated area elements; 

where 

area of the element formed by the four corner points, 

{x
0
(I,J), x

0
(I,J+1), x

0
(I+1,J), x

0
(I+1,J+1)} 

at the freestream constant-x plane, 

area of the element formed by the four corner points, 
{xm(I,J), xm(I,J+l), xm(I+l,J), xm(I+l,J+l)} 

at the surface, 

I= 1,2, •.• , IMAX (IMAX = nmax) 

J = 1,2, ... , JMAX (JMAX = nmax/2) 

= 1,2, •.• , IMAX-1 

j = 1,2, ... , JMAX-1 

The 1ocal impingement efficiency (8), as in equation (1.0), can be 
approximated by 

where 

,, 

n ·ia (i,J.) 
:: <XI 0 

centroid location of a (i ,j). m 

The unit direction vector, n , of V for the general 
<XI <Xl 

attitude having a set of pitch (a), roll (cp) and yaw (IV) 

(4-13) 

engine inlet 

angles with 
respect to the space coordinate axes can be obtai ned from the Eu 1 er 
rotation matrix applied to the unit vector obtained when the engine 
inlet body axes and the space axes coincide: 
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T [n (1) n (2) n (3)] 
CD CD CD 

cosacos~ sinasin¢cos~-cos¢sin~ sinacos¢cos~+sin¢sin~ l 

= cosasin~ sir.asin¢sin~+cos¢cos~ sinacos¢sin~-sin¢cos~ 0 

-sina casas in¢ cosacos¢ 0 

cosacos~ 

= casas in~ (4-14) 

-sina 

Substituting (4-14) into (4-13), 

(4-15) 

Equation (4-15) means that for a general orientation of the body with 

respect to the space coordinate system, we can choose the constant-x 

plane at the freestream as the plane of trajectory starting positions to 
compute the flux ratios. The projection of the freestream flux along 

the direction of VCD is accounted for by the factor (cosacos~) involving 
the pitch and yaw angles only. 

Thus the grid of 8 values can be computed numerically, using equation 
(4-15), at the centroids of the impingement point grid, xm(I,J). Unless 

the grids are dense, i.e., large IMAX and JMAX, the B distribution on 

the surface defined at xc(i,j)'s will not be smooth. 
are not particularly useful in organizing and 

A 1 so. X ( i • j) I s c 
presenting the 

comouted B distribution on the surface because of its point 

function definition of B on 3-0 surfaces. 
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In order to obtain a more accurate 8 distribution and to express it 

as a function of the surface arc length(s) along a set of constant-e 
cowl contours, the following had to be done: 

(1) Select a desired e (constant-e cowl contour along which 8 is 

to be determined) 

(2) From the coarse impingement centroid grid, xc(i ,j), and the 
corresponding x

0
(I,J) grid computed, find the I1 and I2 (8-ray 

indices) that result in the condition 

(4) Find tangent trajectories for the rays, 

e 
0 

( K) = e ( I 1) + K : K = 1, 2, ... , KMAX -1 

(5) Compute a
0

(k,j), am(k,j), 8(xc(k,j}); k = 1,2, ... , KMAX-2 
j = 1,2, ... , JMAX-1 

Steps (1) thru (5) are repeated for all other e's desired. 

Thus a much finer grid definition of 8 is obtained that encloses a 
particular constant-e cowl contour desired. By parametric cubic 
splining of the contour curve, the arc length (s) of a point on the 
curve can be computed with respect to the cowl hi-lite position: 

(s = 0 is the hi-lite; s+: outside; s- : inside}. 

Moving the points along the cowl contour with selected ~s. 8 at a point 
along the contour can be interpolated from the surface grid cell corner 

values {B(xc(k,j)), 8(xc(k,j-i-1)), B(xc(k+l,j)), S(xc(k+1,j+l))} of the 
centroid grid that encloses the point in question (Figure 10). 
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4.7 Method for Solid Particles 

Most of the assumptions involved in the trajectory model are valid also 
for analyzing solid particles such as sand grains. One exception is the 

assumption of spherical shape - sand particles come in all shapes 

(irregular). If sand particles are characterized in terms of mass, 

however, one can still consider the shape to be spherical with an 

effective diameter characterized by their settling behavior in still air 

such as the terminal velocity and range. StokeS 1 diameter, for example, 

is the effective diameter of an equivalent spherical particle having the 

same mass and terminal velocity, based on the Stokes 1 drag, as the 
actual particle. Available data on sand particles of varying shapes 
[43,441 indicate that, as long as the size is not too large (<lmm), the 
settling behavior is about the same for particles having similar masses. 

The other consideration is the impact behavior - solid particles will 

bounce off the surface of impact. Shape of the particle will affect the 

bounce kinematics in a complicated way. Detailed analysis of such 
behavior is not worth pursuing, except to say that it will involve 

analyses of statistical nature. Some experimental data (45] are 

available that characterize the average behavior of solid particle 

kinematics at metallic surfaces of impact. 

The controlling kinematic parameter is the resiliency coefficients, r 
n 

and rt, relating the normal (ITn2) and tangential (ITt 2) particle 
velocities after the impact to those before impact, unl and ut1: 

un2 = -r IT 1 n n (4-16) 

rrt2 = rtutl 

The normal and tangential components of ul are 

unl = n(IT1·n) (4-17) 

rru = n x (Ul X n) 
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where n unit normal vector at the impact point (pointing outward 

from the surface) 

Combining (4-16) and (4-17), 

un2 = -r nn(U1·n) 

ut2 = rtn x (Ul X n) 

u2 = un2 + ut2 = rtn x (ITl x n) - r nn(IT1· n) (4-18) 

With known values of the resiliency coefficients, the particle velocity 

immediately after impact (U2) can be determined from equation (4-18). In 

the numerical integration of the trajectory equation, incorporation of the 

particle bounce mechanism amounts to restarting the integration process 

with the renewed initial condition, (xm, U2), at the point of impact, 

(xm). 

The impact point position (xm) and the unit normal (n) are computed as 

described in the trajectory-bi-cubic patch intersection algorithm 

(Appendix A). 

Some available experimental data [451 indicate that the resiliency 

coefficients are functions of the impact incident angle, 'Ym' as well as 
the incident particle velocity magnitude, 1IT

1
1; 

= 

= 

More research work in the measurement of these parameters are required in 

order to obtain an adequate empirical kinematic model for sand particles. 
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5.0 RESULTS AND DISCUSSIONS 

The basic numerical integration scheme of solving 3-0 particle 
trajectories in potential flow of air was first checked by analyzing the 
water droplet impingement problem on a spherical body. This task was 
performed for a number of reasons: 

(1) Availability of the well documented NACA wind tunnel impingement 

data ( 111. 

(2) Well known incompressible potential flow solution in anaiytical 
form suitable for speedy code implementation. 

(3) Trajectory-surface intersection is easy to compute on the body. 

(4) B computation on the body is simple due to its axisymmetry. 

Having gained confidence from the axisymmetric analysis, the numerical 
scheme for a full-fledged 3-0 impingement analysis was worked out, 
incorporating much of the code developed for the axisymmetric problem. 

5.1 ANALYSIS OF DROPLET IMPINGEMENT ON A SPHERE 

The potential flow velocity, V, can be expressed in terms of the 
Cartesian coordinates, (x,y,z): 

V(x,y,z) [ 1 + !r-3(1-3x 2r- 2), 3 -5 ~xzr- 5 1 = -2xyr ( 5-l) 

where / 2 2 2 
- X +y +Z , 

(x,y,z) (X,Y,Z)/R = non-dimensional field point -

R = radius of sphere located at (0,0,0) 
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The intersection between a trajectory segment, T(w}, and the surface of 
sphere, x2+y2+z2 = 1, is obtained by solving 

3 2 T(w) = p + ~Lw ] l: (p. + ~. Lw) = 1 => 1 1 

i=1 

1 = x2+y2+/ 

(5-2) 

which is quadratic in w (w,L,p and ~ are defined as in equation (A-34), 

Appendix A). 

Calculation of the limiting envelope of trajectories follows the same 

procedure described in Section 4.5, except that the scan for e rays is 
not required due to the axisymmetry of the problem. However, several 

trajectories having different e starting values were checked to verify 
the axisymmetry in computed trajectories. 

The local impingement efficiency (B) takes the following simple analytic 

form (Figure 11): 

B(w) = 

where = 

w = 

dr 
o r 

(5-3) 

x~ + y~ + z~; freestream startlng radia·l position 
of an impinging trajectory (dimensionless with R), 

s/R; angle subtended by the impingement point at the 

origin (center of sphere). 

FIGURE 11 - Illustration of 8 
for an Axisymmetric Geometry 
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Using the definition, w = s/R, equation (5-3) is expressed in terms of 

the dimensionless arc length, s/R: 

B(s/R) = -d[r;/2]/d[cos(s/R)] (5-4) 

For a number of impinging droplet trajectories (i=1,2, ••• ,n) equation 

(5-4) can be evaluated by a cubic spline of {(r;/2)i} as a function 

of {cos(s/R);}· The cubic spline derivatives thus obtained determine 

B(s/R). 

5.1.1 Langmuir-D Tunnel Droplet Size Distribution 

The numerical procedure was carried out utilizing the accepted tunnel 

droplet size distribution due to Langmuir [17]. This distribution is a 

discretized plot of the cumulative LWC fraction versus the seven droplet 

sizes normalized to the mean volumetric diameter (MVD), as shown in 

Figure 12. 

For a tunnel cloud condition of a particular MVD, calculation of B 
involves weighting according to the multi-droplet size distribution: 

B(s/R) = 
7 

I 
i=l 

c.e.(s/R) 
1 1 

(5-5) 

·,.;h::r-e s. is the local impingement efficiency due to the droplets of 
1 

diameter group di, ci is the fraction of the total LWC contributed by 

droplets in the diameter group di. 

5.1.2 Results 

The following tunnel condition w~s used in the computation in order to 

compare with the NACA test results: 
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R (sphere radius) = 9 inches 

v = 157 kts 
CD 

p sc:o = 28 in.Hg 

T sc:o = 50°F 

MVD = 11.5 and 14.7 J.lm 

A plot of a typical water droplet trajectory is 

14.7 J.lm diameter droplet. 

shown in Figure 13 for a 

Also shown are the two potential flow 

streamlines (freestream starting position of the droplet trajectory was 
identical to that of the upper streamline). The droplet trajectory 
exhibits the inertial behavior through its departure from the high 
curvature portions of the upper streamline. 

Figure 14 shows a comparison of computed and test data of B vs. s/R for 

the two MVO tunnel clouds. Computed results are in good agreement with 

the experimental data, well within the reported experimental errors of 

10% in LWC and 6% in MVD for the tunnel clouds measured. 

The significance of the Cunningham drag correction is indicated by the 

closer agreement, near the flow stagnation region, between the computed 

and test 6 values. This observed trend is understood in terms of the 
increased droplet impingement·by the smaller droplet size population of 
the Langmuir-0 droplet spectra, resulting from the appreciable 
Cunningham drag reduction for these droplets. The impinging droplet 

flux due to smaller droplets is more 1ocalized near the stagnation 

region than in the case of larger droplets because of the differences in 

their inertia. 

5.2 ANALYSIS OF DROPLET IMPINGEMENT ON A 3-0 ENGINE INLET 

Impingement analysis on the 737-300 prototype inlet was performed for 

the following flight conditions: 
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Cl ::: 0° and 25° 

v = 175 kts 
co 

T sec 
::: 50°F 

p 
sec = 28.2 in. Hg 

MCF ::: .625 (compressor face Mach no.) 

d ::: 30J.Im 

The a = 25° condition, close to the inlet design separation envelope, 

was selected as the 'worst' test case to thoroughly check the trajectory 

analysis code. These conditions represent a realistic full-power­

takeoff flight situation, but are not representative of a typical icing 

condition. However, as to be seen from the computed results, these 

represent a severe flowfield situation in terms of the droplet 

trajectory computation, because of the high engine suction flow as well 

as the extreme angle of attack involved. 

The computational boundaries for the 3-0 full potential as well as the 

3-0 trajectory code were 

IX 
co - XCF I ::: lOrCF 

r max ::: lOrCF 

where X = freestream x-boundary of cylindrical comoutationa1 
co 

domain 

XCF = compressor face x-boundary 

rCF = inlet fan radius 

r = radial boundary for cylindrical computational max dcmain. 
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The computing time for each angle of attack case impingement analysis 

was about 5 min. on the CRAY-1S. 

5.2.1 Limiting Impingement Points 

The tangent impact points (*) are shown in Figures 15 and 16. The 

extent of droplet impingement is indicated by the portion of cow~ 

surface bounded by these points. The 3-d imens ion a 1 character of the 

flowfield and geometry causes the azimuthal variation of the tangent 

impact positions. It should be noted that no such variation in e is 

possible for an axisymmetric inlet at zero angle of attack, although 
a-variation of a different kind will result at non-zero angles of 

attack for axisymmetric inlets (non-axisymmetric flowfield). 

The following features are noted from Figures 15 and 16. 

(1) Wider extent of droplet impingement near e = 135° ( 1 squashed 1 

region) for both ~ = 0° and ~ = 25° cases. 

(2) For~ = 0° case, all of the inner tangent impact points lie on the 

inner cowl surface; for ~ = 25°, a switch-over occurs at e = 110° 
beyond which the inner tangent impact points 1ie completely on the 

outer cowl surface. 

These observations can be understood in terms of (1) the increased 

exposure area to droplet impingement near the 'squashed 1 region due to 

the thickening of cowl cross-section near e = 135° and (2) the effect of 
high angle of attack causing the droplet impingement to occur more on 

0 the outer cowl surface for e > 90 . 

5.2.2 Droplet Trajectories on the Inlet Symmetry Plane 

The impinging droplet trajectories on the inlet symmetry plane are shown 

in Figures 17 thru 22. 
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The deta i1 s of these near the upper ( e = 0°) and 1 ower ( e = 180°) cow 1 s 
are depicted in Figures 18 and 19 (~ = 0°) and in Figures 21 and 22 

(~ = 25°). 

The main feature noted in these figures is that the trajectories exhibit 
strong inward curvature as they approach the lip region. This is caused 

by the strong inlet suction flow typical of the full-power-takeoff 

setting. The combined effect of the high suction and high angle of 
attack is even more pronounced in Figures 20 and 22, where some extreme 
trajectory turn-arounds are seen near the lower cowl lip. 

5.2.3 Computed Local Impingement Efficiency Distributions 

Plots of computed 8 as a function of cowl contour arc length (s) 
at e = 0°, 45°, 90°, 135° and 180° are shown in Figure 23 for both 

angles of attack. Arc length (s) is the surface contour distance 
measured from the origin at the hi-lite, along a particular constant-e 

cowl contour curve. 

The following features are noted from the computed 8 curves; 

(l) 8 peaks broaden and decrease monotically from e = 0° to e = 135° 

for both angles of attack. 

(2) Zero angle of attack cases exhibit more rapid rise to the peak B 

values compared to ~ = 25° cases, with the exception of curves for 
0 e = 1ao . 

(3) Double B peaks are observed for e = 180° (~ = 25°), with a sharp 

maximum of 8 = .84 and a weak secondary peak of B = .25. 

Observation (1) can be explained in terms of the geometric character of 
the inlet; the progressive thickening of the cowl cross-sections 
from e = 0° toe= 135°, thus resulting in successively lower local 
droplet flux while increasing the extent of exposure to droplet 

impingement. 
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The second feature can be explained in that the distribution of 
impinging trajectories is more asymmetric about cowl hi-lites in a= 0° 
cases than a = 25°, as seen in Figures 18 and 21 for example. The 
strong inward curvature of trajectories adjacent to the inner tangent 
trajectory causes the location of the near normal impaction to be closer 

to the inner tangent impact point. For a = 25° cases the effect of high 
angle of attack partially offsets this trend, resulting in a more 

symmetric distribution. 

The presence of strong turn-arounds in trajectories (Figure 22) is 
responsible for the sharp primary B peak in observation (3), causing a 
localized region of high droplet flux. The weak secondary peak in B 
occurs near the location of near normal impaction; local maxima in B is 
expected to occur whenever the impact velocity of droplet is nearly 
aligned with the surface normal vector, as shown in equation (1.0). 
Similar observations were also reported in 2-0 cases, involving an 
airfoil with a leading edge ram air scoop [221 and ice-accreted airfoils 
(461, where the trajectories undergo strong turn-arounds due to the 
abrupt and strong flow gradients present near the leading edge. 

The tails of the S curves are not plotted because these will require 

extrapolation of B in the present numerical scheme (see Figure 10); 

although the B values must go to zero at the tangent impact points (zero 
droplet flux since IT·n = o there), the edge of the centroid 
grid {xc(i,j)} is reached before getting to the edge of the impingement 

point grid {xm(I,J)}. 

Experimental impingement data for the 3-0 inlet analyzed are not 
presently available for comparison with the computed results. However, 
there is an on-going research program (Joint BMAC-Wichita State 
University) to obtain impingement data for the inlet analyzed as well as 
for several other geometries during the time period 1985-1986. Project 
director for this research program is Or. G.W. Zumwalt and the 

mixture spraying 
Tests will be 

under joint FAA 

experimenta 1 6 measurement i nvo 1 ves a dye-water 
technique as well as laser reflectance spectroscopy. 
conducted at the NASA-Lewis Icing Research Tunnel (IRT) 
and NASA sponsorship. 
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0 
Figure 15 - Limiting Impingement Points; ct = 0 , 737-300 Prototype Inlet 
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figure 16 -Limiting Impingement ?oints; a= 25°, 737-300 Prototype Inlet 
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5.3 TRAJECTORY SIMULATION FOR A SOLID PARTICLE 

A sample trajectory simulation of a solid particle was performed using 

the flowfield about the 737-300 prototype inlet at 25° angle of attack. 

A simplistic bounce kinematic model assuming 50% momentum loss along the 

normal and no loss along the tangential direction (rn = 0.5, rt = 1.0 in 

equation (4-18)) was used to compute the particle velocity immediately 

after the impact. 

The particle was injected into the flowfield at about two fan radii 

ahead of the inlet with the initial velocity (cylindrical) of 

[U ,U ,u
9

] = [0, -2V , V ]. The ricochet trajectory of the particle is x r oo oo 

depicted in Figure 24. 

The sand separator efficiency of an engine inlet can be determined by 

tracing many such trajectories to compute the normalized freestream flux 

(or the flux through the surface of initial trajectory positions) of 

particles thdt correspond to the particle flux at the sand separator 

(scavenge) chdnnel of the engine inlet. 
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6.0 CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 

Based on the results, findings and the physical assumptions of the 

present analysis method, the following conclusions can be made: 

(1) This investigation represents the first attempt in the analytical 
determination of the detailed water droplet impingement efficiency 

distribution on a 3-0 engine inlet surface. 

(2) Accurate surface definition of the 3-D surface is essential in the 

3-D droplet trajectory/impingement analyses. 

(3) For the grid (mesh) definition of the flowfield, the flowfield 

accuracy as well as an accurate means of flow velocity 
interpolation are essential in computing accurate droplet 

trajectories. 

(4) Integration error control in the numerical integration of the 

trajectory equation is an important consideration in that it 

governs the computational efficiency as well as the accuracy of the 

computed trajectories with respect to the flowfield accuracy. 

(5) This analysis tool can easily be extended for problems involving 

solid particles, such as sand ingestion analyses. 

(6) Although experimental data is not yet available to directly verify 

the analysis results for the engine inlet analyzed, good agreement 

is obtained between the published test and computed results for an 
axisymmetric problem investigated. 

(7) Present analysis tool will not be appropriate for 

involving large concentration of water droplets (LWC ~ 

or large droplets (d ~ 1000 J.Jm). 
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Some recommendations for further work are: 

(1) Particle heat transfer equations should be incorporated in order to 

extend the present method to transonic/supersonic flows or flows in 

the engine compressor and turbine stages. 

(2) Reliable experimental drag data for large, non-spherical droplets 
is needed to extend the droplet size range of the method. 

(3) Effect of thick boundary layers on droplet trajectory should be 
studied for internal flow applications. 

(4) Improved trajectory computation can be achieved by using a body­
fitted mesh definition of the flowfield and solving the trajectory 

equation in the transformed Cartesian mesh obtained through the 

metric of transformation for the particular body-fitted mesh 

chosen. 
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APPENDIX A 

Parametric Description of Curves and Surfaces 

A.l.O Parametric Curve Description 

A 3-dimensional curve segment can be represented parametrically by a 
polynomial expansion of the parameter variable u 

nmax 

r(u) I - n [ 0' 1] (A-1) = anu u e: 
n= 0 

n = 0,1,2, .•. , nmax 

-where r - position vector along the curve, 

an - nth order vector coefficient. 

The vectors corresponding to the parameter values of u=O and u=1, i.e., 
r(O) and r(l), are the end point positions of the curve segment. 

The maximum power (nmax) of the parametric variable retained in the 

expansion determines the order of parametrization. Thus nmax=3 (or 
nmax=S) represents a cubic (or quintic) parametrization. The cubic and 

quintic representations are currently two of the most commonly used 
forms of analytic curve/surface construction techniques [39]. 

It will be shown later that these curve parametrization equations lead 
to surface parametric equations. 
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A.1.1 Parametric Cubic Curve Representation 

From equation (A-1}, the parametric cubic curve is 

- -- -2-3 r(u) = a
0 

+ a1 u + a2 u + a3 u (A-2) 

Equation (A-2) can be written in matrix form, 

r(u) = u I [ A IT 

where u - 1 u u2 u3 I 
(A-3} 

[A I - - - - I - ao a1 a2 a3 

Differentiating equation (A-3) with respect to u, 

(A-4) 

The end point (u = 0, u = 1) quantities of equations (A-2) and (A-3) are 

r(o) = 1 0 0 0 [AIT 

r( 1) = 1 1 1 1 [AIT 

ru(O) = 0 1 0 0 [AIT 

These can be expressed in matrix form, 

where 
[NI 

1 0 0 0 

1 1 1 1 

0 1 0 0 

0 1 2 3 
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The L.H.S. of equation (A-5) is just the vector array of the four curve 
end point conditions (positions and tangents) required to determine the 
four vector coefficients of the cubic parametrization. To solve for 
[AI, equation (A-5) is to be inverted: 

where 

[C]: [N]- 1 = 1 0 0 0 

0 0 1 0 

-3 3 -2 -1 
2 -2 1 1 

(A-6) 

Substitution of (A-6) into (A-3) completes the cubic curve 
parametrization, 

(A-7) 

Equation (A-7) implies that the cubic parametrization requires only the 
end point positions and slopes as inputs. 

Another approach of arriving at the same result is to express r(u) in 
terms of a set of four cubic polynomial blending functions, [f.j; 

l 

(A-8) 

= [f1(u) f2(u) f 3(u) f 4(u)l [r(O) ru(O) r(l) ru(1)1T 

Equation (A-8) imposes the following constraints on the blending 
functions: 

I I I I 

fl fl f2 f2 f3 f3 f4 f4 

u = 0 1 0 0 0 0 1 0 0 (A-9) 
u = 1 0 0 1 0 0 0 0 1 
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The cubic blending functions are 
4 
L n-1 f ( u) = bmn u m = 1, 2, 3, 4 

m n=l 

Coefficients bmn are determined easily from 

m = 1; 1 = bll 
0 = bll + bl2 + bl3 + bl4 
0 = bl2 
0 = bl2 + 2bl3 + 3b14 

(A-9) and 

bll = 1 

bl2 = 0 

bl3 = -3 

b14 = 2 

Repeating the process for the remaining three, we have 

fl (u) = 1 -3u 2 + 2u 3 

f2 (u) = 3u2 2u 3 

f3 (u) = u -2u2 
+ 3u 3 

2 u3 f4 ( u) = - u + 

In matrix form, (A-ll) becomes 

[ f 1 (u) f 2(u) f 3(u) f 4(u) I = [ 1 u u2 u3 1 
0 

-3 
2 

= l u I l c I 

(A-10) 

(A-10): 

(A-ll) 

0 0 0 
0 1 0 
3 -2 1 

-2 1 1 

(A-12) 

Substituting (A-12) into (A-8), we see that the same parametric equation 
(A-7) results. 
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A.2.0 Parametric Surface Description 

The parametric curve formulation can be extended to describe a surface 

element (patch) by allowing the vector coefficients in equation (A-1) to 
be functions of a second parameter. 

A.2.1 Parametric Bi-cubic Surface Representation 

Expressing the vector coefficients [a; I of equation (A-2) as functions 
of a second parameter v, we have 

= (A-13) 

Since equations (A-2) and(A-8) are equivalent, i.e., ai 1 S are simply the 
linear combinations of the curve end point position and tangent vectors, 
one can also introduce the parameter v into the equation (A-8) to 
describe a patch; 

(A-14) 

If we had arrived at the curve parametric equation using the parameter 
variable name v instead of u and then introduced the second parameter u, 
we would have obtained 

Inspection of equations (A-14) and (A-15) shows that each form uses a 
set of single parameter blending functions and hence is not symmetric in 
u and v. Phys i ca 1 meaning of these equations can be shown from Figure 
Al. 
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The parametric form of (A-14) is expressed in terms of the variable end 

points (r(O,v) and r(1,v)) and end point tangents (ru(O,v) and ru(1,v)). 
Therefore it represents a u-parameter family of curves spanning the 
patch as the curve end conditions are continuously changed by sweeping v 

in the interval, [0,11. Likewise, equation (A-15) represents a v­
parameter family of curves spanning the patch. In order to obtain a bi­
cubic surface parametrization symmetric in u and v, the two equations, 

(A-14) and (A-15), must be combined. 

From equation (A-14) 

Taking partials of (A-14) with respect to v 

r (u,v) = r (Q,v)f 1(u) + r (l,v)f 2(u) + r (O,v)f 3(u) + r (1,v)f4(u) v v v uv uv 

from which 

(A-16) 

( A-17} 

(A-18) 

(A-19) 

Substituting equations (A-16) thru (A-19) into (A-15) andre-expressing each 
term on the R.H.S. of (A-15) in matrix form, 

= [ f 1(u) f 2(u) f 3(u) f 4(u)] r( o ,o) 0 0 0 f 1 ( v) 
(~.-20) 

r(1,o) 0 0 0 f 2(v) 

ru(O,O) 0 0 0 f 3(v) 

ru ( 1 ,0) 0 0 0 f 4(v) 
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= [ f 1(u) f2(u) f 3(u) f 4(u)] o r( o, n 0 0 

o r(, , n 0 0 
0 ru(O,l) 0 0 
oru(l,l) 0 0 

= [f1(u) f 2(u) f 3(u) f 4(u)] 0 0 rv(O,O) 0 
00r(1,0) 0 

v 
o o r uv ( o, o) o 
0 0 ruv(l,O) 0 

= [f1(u) f 2(u) f 3(u) f 4(u)] 0 0 0 rv(O,l) 
0 0 0 rv ( l , l ) 

0 0 0 ruv(0,1) 
0 0 0 ruv(l,l) 

f l ( v) 
f 2(v) 
f 3(v) 
f 4(v) 

f 1 ( v) 

f
2

(v) 

f
3

(v) 

f 4(v) 

f 1 ( v) 

f 2 ( v) 

f
3

(v) 

f 4(v) 

Adding equations (A-20) thru (A-23), equation (A-15) becomes 

r(u,v) 
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where the patch boundary matrix [Q] is given by 

r( o ,o) r( o, 1) rv(O,O) rv ( 0' 1) 

r( 1 , o) r( 1 , , ) r\( 1 ,o) rv(1,1) 

[Q] - ru(O,O) ru(O,l) ruv(O,O) r (o,1) 
(A-25) 

uv . 

r (1,o) r (1,1) 
u u ruv(1,0) r (1,1) 

uv 

Using the relationship (A-12) the blending function arrays can be 

expressed as 

= [U] [C] 

where [U], [V], and [CI are defined as before. 

Thus, the bi-cubic surface parametric equation is 

= [UI [CI [QI [CIT [VIT (A-26) 

Looking at the array e 1 ements of [QI the b i -cubic surf ace 
parametrization requires the four vector quantities at each of the four 
corners of the patch element; 
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-r - (pas it ion vector) 

ru= (tangent vector along constant-v curve) 

r =(tangent vector along constant-u curve) v -

ruv= (twist vector) 

Equation (A-26) is in a compact matrix form, well suited for numerical 
programming purposes. 

A.2.2 Geometrical Properties of Bi-cubic Surface Parametrization 

From the bi-cubic parametric patch equation {A-26) many geometrical 

quantities can be obtained in analytic forms. 

The unit normal vector (n) at a point r(u
0

,v
0

) on the surface: 

(proper sign is to be chosen for particular application) 

rv(u
0

,v
0

) = [U(u
0

)][C][QJ[C]T[V' (v
0

)]T 

[U']- ~U] = [0 2u 3u2] 

[V']- ~V] = [0 1 2v 3v 2]. 
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The surface area (S) of a patch surface: 

1 1 (A-28) s = I I I r X r I dudv 
0 0 u v 

3 3 (ar ar where (rU X rV)i = I I c ·k au)j(av)k 
j=lk=l lJ 

or [u•][C][Qj][C]T[V]T (-au) j -

ar [U][C][Qk][C]T[v•]T (av)k -

The volume (Vol) subtended by a patch surface at the origin: 

Vol = (A-29) 

where r· Cr x r ) u v = 
3 3 3 ar, ar I I I s .. kr.(-. 1 • ( ;:;----) k 

1 J 1 dU J oV 

i=lj=lk=l 
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A.2.3 Coordinate Transformations on Patch Surface 

Once a surface is parametrized, transformations, such as translation and 

rotation, are easily implemented without having to modify the parameter 

functions - only the vector quantities at the boundary corners of the 

patch need be transformed. If [RI denotes the particular transformation 

matrix and r* the position vector in the transformed system 

{A-30) 

where components of the new patch boundary matrix [Q*I are 

3 
Q*. = I R .. Q. 

1 j=l lJ J 
= l ,2,3 (A-31) 

Similarly derivative quantities are obtained using the same [Q*I; 

ru*(u,v) = [ u I I [ c I [ Q* I [ c I T [ v I T (A-32) 

A.3.0 Trajectory-Bicubic Patch Intersection 

To ccmoute the impingement point on the surface defined in terms of the 

bicubic parametric patch notation, equations (A-25) and (A-26), the 
geometric intersection between the trajectory line segment and the patch 
must be determined. 
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A.3.1 Problem Definition 

At the required intersection point, the following must be satisfied: 

Fi(u,v,w) :: li(w) - ri(u,v) = 0; i = 1,2,3 (A-33) 

Quantities T(w) and r(u,v) represent the position along the line 
(trajectory) segment and the position on the patch surface respectively: 

(line) 

where 

(patch) 

= p. + E;:.wl 
1 1 

(q - p)/L = unit direction vector along the line, ~ -

L - IP - ql = length of the line segment, 

w _ normalized line length parameter 0 <w < l ) • 

(p,q) = line end position vectors. 

r.(u,v) = [U][C][Q.][C]T[V]T 
1 1 

A.3.2 Numerical Method 

(A-34) 

Solution of (A-33) is obtained by the Newton-Raphson technique for 
solving a system of non-linear algebraic equations: 

(l)x(n) 

F(n) 

(2) J .. (n) 
1J 

3 

= (X l , x2 , X J) = ( U, V , W) 

= T[x
3
(n)] - r[x 1(n) ,x2(n)] 

aF. 
= [ax~Jx(n) 

J 

(3) L J .. (n)·t.(n) =- F.(n) 
j=l 1J J 1 

t is solved by Gauss elimination ) 

(4) x(n+l) = x(n) + 6(n) 
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Steps (1) thru (4) are iterated, each time updated with the correction 

vector K, until the equation (A-33) is satisfied within a specified 

tolerance. 

Since the solution is sought within the specified line segment and on 

the patch surface, the following constraints must be imposed on the 

independent variables: 

0 < x
1

(=u) < 

0 < x2(=v) < 

0 < x
3

(=w) < 

The constraint equations are satisfied by the transformation 

2 2 x. = s. /(1 + s.) 
1 1 1 

s. E:(-oo,oo) 
1 

= 1 '2 '3 (A-35) 

The Newton-Raphson steps can be modified accordingly in terms of the new 

variables= (s 1,s 2,s 3): 

J~.(n) = 
lJ 

3 
I 

k=l 
( ( 2)-2 J .. n)·2s.· 1 + s. 

lJ J J 
(A-36) 
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3 
I 

j = 1 
J~.(n)·ll~(n) 

1 J J 
(A-37) 

s(n+l) = ~(n) +6*(n) (A-38) 

Thus the transformation (A-35) modifies the 

elements in a simple way, as shown in (A-36). 

unconstrained Jacobian elements are 

Newton-Raphson Jacobian 

The components of the 

d r;(u,v)] 
3r;(u,v) 

[U'][C][Q;][C]T[V]T 
J i 1 = -[ l.(w) - - - -

au 1 au 

" 
ar.(u,v) 

[U][C][Q.][C]T[V']T 
Ji2 = £.r 1 . ( w) r.(u,v)] 1 - - - -av·· 1 1 av 1 

J.
3 

=,.}{ 1.(\v)- r.(u,v)] = .~ 1.L 1 oW 1 1 

At the converged solution (u , v , w ), the intersection point (x) and o o o rn 
the unit outward normal vector n(xm) are computed by substitution of 

(u
0

,v
0

) into the patch parametric equations (A-26) and (A-27): 

(n) . 
1 

H. 
1 
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APPENDIX 8 

Derivation of the Trajectory Equation (3-1): 

( 8-1) 

A vector diagram of the forces acting on the particle is shown in Figure 

81. 

-- _ ... v- u 

Figure Bl - Forces Acting on Particle and Velocities 
at Center of Particle 

Drag force, 0, is given by 

where 

o. 
1 

= 

CD = sphere drag coefficient, 

q 
1 - - 2 
2 pjV-Uj = velocity head experienced by the 

in the flowfield, 

a = nd2/4 = projected area of spherical particle, 

V = flow velocity, U = particle velocity, 

(B-2) 

particle 

cos(i,n) = (V-U)i/IV-UI = direction cosine between the unit 
~ ~ 

vectors i(// to i-axis) and n(// to V-U). 
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Using the definitions, (8-2) becomes 

(8-3) 

Buoyancy and gravity forces are 

1 _ nd 3/6 = volume of spherical particle 
(8-4) 

where the gravity force is assumed to act along the -ve y (i=2) axis. 

Summing the forces 

dU./dt 
1 

I F = rna ) , 

(B-5) 

Introducing 
where C is 

the inertia parameter, P::r*d2V /(18\.lC) , 
00 

the characteristic dimension of the boundary surface, the - -coefficient of I V - U I ( V - U ) i term i n ( 8- 5 ) c an be 
written as 

~ aC0(Rv)(a/T) = oC 0 (Rv)·(nd2 /4)·(2~d 3 !6)-l= 3oC0(Rv)·(4p*d)-l 

3oC0(Rv) 
= 

4 (p*d '100 ) 

18 wC 

= c0 ( Rv). _!!V,,d 
24PC ~ 

c0(Rv)R 
= 

24PC 
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R~ynolds number based on d ). 

Equation (B-5) thus becomes 

-
C (R )·R·iV- iJifV- U). 

au./~· t = , 
D v : I ' 1 

- g ( 1 -cr) 0 i 2 24 PC 

Non-Jimensionalizing (B-6) 

-
C0(R )·R ·(V./V -U./V ) 

V V 1001CO 
= 

d[ t/ (C/V ) ] 
co 

24 p 

which is 

·.-~here 

C0(R )·R ·(V.-U.) 
= v v 1 l 

24P 

2 - (1 - cr)gC6. 2/V 
1 co 

u. - u.;v v. _ V./V and t ~ t/(C/V ). 
1 1 00 1 1 ~ 00 
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APPENDIX 0 

Comparison between the Computed 3-D Full Potential CFD Flow Data 

and Wind Tunnel Test Data ( from NASA CR-3514 and Boeing Document 

06-49848): 

Figure Dl 

Wing pressures at: 

-1 f-- y/D =·0.5 

o-

X 

j_ 

Pylon pressures at 

r 
zJD = ·0.38 

( z/D = ·0.2 

..:.-..:........cc ~ 
~::7 E - :t . 

NASA Wing-Pylon-Nacelle Test Model; Location of 

Pressure Measurements Used for Analysis Comparison 

(from NASA CR-3514) 
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