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This report describes the motivation, conduct. and analysis of some 2500 low-
level hardware fault cases applied in automated testing at the NASA Ames
Reconfigurable Digital Flight Control System (RDFCS) Facility, Fault detection
was correlated with hardware and software fault monitoring, and in limited
cases, with sensitivity to flight program execution modes. Results obtained
have been statistically assessed to ascertain system-level reliability
implications based on a model that is described herein. The overall
methodology/facility itself has been critiqued and found to constitute a
promising enhancement to curren~ practice.
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FOREWORD

This report describes the theory, conduct, and results of automated low
level hardware fault testing that was performed as part of an FAA
sponsored program entitled "Methods for the Verification and Validation
of Digital Flight Control Systems." Specifically, this work was
accomplished as Subtask 4.5.7 of Contract NAS2-ll853, Modification 2 .
The intent has been to demonstrate, describe, and critique the
intensive, statistically based assessment of fault detection and
recovery mechanisms, especially as impacts system reliability .. Such an
approach is considered to offer exceptional new capability for
establishing airworthiness of critical digital flight systems.

Over 2500 simulated hardware fault cases were applied at the chip pin
level in the Reconfigurable Digital Flight Control System (RDFCS)
Laboratory at NASA Ames. Most testing was done on an open-loop basis;
the more persistant faults, however, were subjected to closed loop
simulator testing in order to involve explicit fault detection
mechanisms. The test results are in reasonable accord with similar
prior data, conform well with the associated fault models, and indicate
the value of this type testing for practical system validation efforts.
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1.0 INTRODUCTION

The Federal Aviation Administration (FAA) is executing a multi-faceted
plan to generate and disseminate information deemed vital in
establishing the airworthiness of near-tearm civil transports.
Particular emphasis is directed toward the integrated application of
state-of-the-art tools, techniques, methodologies, criteria, and data to
evaluate the integrity, reliability, and capability of the onboard
software-based digital flight control and avionic systems (Reference 1).
This report summarizes the activities of one of the FAA-sponsored tasks.
As such, it will later be incorporated partially in Volume II of their
Digital System Validation Guidebook and presented at an associated
Government/Industry Workshop during 1988.

The FAA's research agenda in digital systems assurance technology has
been motivated by the trend within the aviation community toward more
highly integrated fault-tolerant digital architectures. The criticality
of these complex systems, moreover, is compounded by the range of their
application in varied functions such as structures, propulsion,
electrical power, flight control, and avionics. Fortunately, the
assurance technology being addressed is quite generic, so the focus here
on digital flight controls is representative but not limiting as far as
the applicability of results is concerned.

This particular task is the third in a sequence of FAA-sponsored program
elements focusing on low-level hardware fault detection. Reference 2
detailed a study setting forth options for modifying the RDFCS Facility
to support such experimentation, and Reference 3 documented the
mechanization of certain modifications actually needed to perform the
work reported herein. Note that these modifications, which are
described in Section 5, extended the utility of a Fault Injector System
(FIS) developed by the Charles Stark Draper Laboratories (CSDL)
(Reference 4). The added capability included automated test case
sequence application, instrumentation, timing, and interpretation
centered upon the FIS. Hence, the expanded test system has been
referred to as the Fault Insertion and Instrumentation System (FIlS).
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2.0 EXECUTIVE SUMMARY

Fault injection experiments were conducted using the Fault Injection and
Instrumentation 'System (FIlS), which was developed, in a previous
program, by the Lockheed-Georgia Company under contract to the FAA. The
facility was resident at NASA Ames Research Center at Moffett Field,
California. The target hardware was a dual flight control computer,
which was part of a dual/dual flight control system for the Lockheed L
1011 Tristar. Each dual lane featured a Rockwell/Collins CAPS-6 digital
computer as the principal computational element. 2715 distinct'stuck-at
and invert faults were injected on the pins of devices of the data path
and control cards of the CAPS-6 while executing inner loops and
autopilot modes. Faults were detected by hardware comparators located
in the secondary actuator drive electronics or by self-test.

2.1 PREVIOUS FAULT INJECTION EXPERIMENTS

Similar fault injection experiments were conducted previously, and
independently, by Bendix (Reference 5) and the (CSDL) (Reference 4). In
the Bendix study a Bendix BDX-930 flight control computer was simulated
in software at the gate-level and faults were injected at gate nodes.
In the CSDL study faults were injected on pins of digital devices of
FTMP (Fault-Tolerant Multi-processor) (References 4, 6, 7), which also
featured the CAPS-6 as the principal computing element. The fault
injector hardware was identical to that used in the present study. The
methodology and results of these studies were examined (Section 4) in
order to establish guidelines for the FIlS experiments, to avoid a
repetition of results and to identify gaps and ommissions which could be
remedied by further experimentation. In addition, a number of
unresolved issues associated with flight control system (FCS)
survivability assessment were identified (Section 4.2).

2.2 OBJECTIVES

The objectives of the FIlS experiments were:

1) Corroborate and augment, if possible, the results of the Bendix
and CSDL studies.

2) Provide a database of detection coverage and fault latency which
future experimenters could use as goals or as a basis for
comparison.

3) Evaluate the FIlS fault injection methodology. It was hoped that
this methodology would be the first step in establishing guide
lines for future fault injection experiments and fault detection
coverage estimation.

4) Provide a database for the
fault models which could
assess FCS survivability.

construction of single and multiple
be used by reliability programs to
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5) Identify unresolved issues associated. with FCS survivability
assessment and recommend studies to resolve them.

2.3 RESULTS AND CONCLUSIONS

A detailed description of the results of the FIlS experiments is given
in Section 7, with summary and conclusions, in Section 9. The results
and conclusions are briefly summarized here.

1) Most detected faults are detected by comparators within 500 ms
of their occurrence.

2) Most faults are activated by operational software or computer
hardware and not by sensor inputs.

3) Most faults (96.3%) were detected while executing the baseline
program, i.e., inner loops and altitude hold; 1.3% were detected
while executing an autopilot mode; 2.4% were not detected by
comparators at all. The undetected faults could accumulate in
redundant channels and eventually be activated by an
infrequently used outer loop computation.

4) All undetected faults were detected by self-test. Preflight or
background self-test is an effective way to eliminate latent
faults.

5) Faults which are activated by the baseline program produce
errors within 500 ms of their occurrence; faults activated by
the autopilot modes (and not by the baseline) produce errors
over somewhat longer intervals, e.g. , up to 6.5 sec.).

6) 6.11% of all
subsequently
tabulations.

faults were "don't
identified and their

care" faults. These were
effects removed from the

7) FIlS test results generally corroborated the results of the
Bendix and CSDL studies. This was surprising considering the
dissimilarity of sensor input selection, computer architecture
and operational software. Similarity at the lower levels of
computer hardware implementation may explain this phenomenon.

8) The FIlS methodology was thoroughly tested during the study.
FIlS performance was impressive, especially in the areas of (a)
fault generation capability, (b) ease of use, (c) fidelity, and
(d) the real time nature of the experiments. This latter
feature made it possible to make runs of 15 or more seconds of
real time, which would have been impracticable with a software
simulator. This high productivity during fault testing
facilitates comprehensive, and hence more conclusive, flight
computer hardware testing.

4



2.4 RECOMMENDED FUTURE STUDIES

A number of issues associated with FCS survivability assessment remain
unresolved. To resolve some of these issues the following studies are
recommended:

1) Failure Modes of Digital Devices

As a practical first step, Bendix and CSDL injected stuck-at
faults on pins or gate nodes. It remains to be seen to what
extent these faults represent failure modes of real 'devices.
Hence, the deceptively difficult task of determing actual low
level hardware failure modes is required.

2) Pin-Level Versus Gate-Level Faults

It is not likely that real failure mode data will become
available in the near-term. In the interim, experimenters will
continue to use stuck-at faults. The Bendix study indicated a
significant difference between pin-level and gate-level
detection coverage. At issue is the validity of either fault
type and the extent to which one is more or less latent than the
other.

3) Single and Multiple-Fault Models

These models are essential ingredients of reliability assessment
programs. Simple models for permanent faults were proposed in
Section 4. These models should be improved and extended to
include intermittent/transient faults, for these tend to occur
relatively often and they may substantially impact system
reliability.

4) Reliability/Survivability Assessment of an FCS

A reliability parameter sensitivity study should be conducted to
(a) identify critical ranges of single and multiple-fault model
parameters and (b) determine inflight, preflight and maintenance
test coverage requirements to reduce latent faults to acceptable
levels. These issues need to be addressed so that more
confidence can be placed in system reliability predictions.

5
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3.0 RESULTS OF PREVIOUS FAULT INJECTION EXPERIMENTS

Prior to the FIlS experiments, most of the published information on data
latency in digital flight control systems was obtained from two
important studies conducted, independently, by Bendix (Reference 5) and
CSDL (Reference 4). The methodology and results of these experiments
were examined in detail in order to establish guidelines for the FIlS
experiments, to avoid a repetition of results and to identify gaps and
ommissions which could be remedied by further experimentation. Here the
intent is to demonstrate an effective methodology for calibrating fault
detection/latency in a dependable manner that relates readily to system
level reliability.

3.1 OVERVIEW OF THE BENDIX AND CSDL STUDIES

Bendix Study

The purpose of this study was to estimate (1) detection coverage of
several candidate self test programs and (2) fault latency in a
conventional, redundant digital flight control system. Fault injection
experiments were conducted on a software simulated version of the Bendix
BDX-930, bit-sliced flight control computer, which featured the 290lA
arithmetic logic unit (ALU) as the principal processing element. The
simulated components consisted of the central processor unit (CPU) and
micromemory, program memory and random access memory (RAM) scratchpad.
The I/O circuitry was not simulated: sensor inputs were randomly
generated and deposited in scratchpad memory at the start of each
computational frame. Each device of the CPU was represented by a gate
equivalent circuit and stuck-at faults were injected at the gate nodes,
something not possible in actual hardware fault testing. The
micromemory was represented functionally and faults were simulated by
reversing the logic states of single bits.

The program and RAM memories were also represented functionally but no
faults were injected into these devices. Faults were randomly selected
and injected, one at a time. Fault selection was weighted in proportion
to the failure rate of the device, i.e., the average number of faults
injected into a particular device was proportional to the device failure
rate. The simulation technique was "parallel mode" (Reference 8), which
allowed for the simultaneous simulation of up to 32 computers, one of
which was always the non-failed version. This made it possible to
compare the responses of the failed and non-failed computers at any time
in the compute cycle and at any device.

Although all devices were simulated at the gate-level, faults were
injected at both the pin-level and gate-level in order to determine
differences in detection coverage between the two fault types.

Two types of experiments were conducted, depending upon the method of
detection:

7



1) To determine the effectiveness of comparison monitoring, the
computed outputs of a failed and non-failed computer were
compared at the end of each frame. Any discrepancy was defined
as a "detected fault". These comparisons were performed by the
simulatot executive and did not involve the detection mechanisms
that would normally be resident in the flight control computers.
Each computer executed the same flight control program, which
consisted of the inner loops for a high performance aircraft.
In order to reduce simulation time, a fault run was terminated
immediately after detection or after eight repetitions,
whichever occurred first. To avoid any ambiguity in the
comparison process, each computer received identical sensor
inputs at the start of each frame. The simulation was conducted
"open-loop," with sensor values selected independently and at
random.

2) To determine the effectiveness of
injected and a candidate self-test
fault was defined as "detected" if
test routine so indicated.

CSDL Study

self-test, each fault was
program was executed. A
the mechanism of the self-

The purpose of this study was to assess the fault detection,
identification and reconfiguration capabilities of the CSDL
designed FTMP (References 4, 6, 7). This system featured the
Rockwell/Collins CAPS-6 computer as the principal processing
element. The CAPS-6 is similar to the BDX-930 in that it, too,
is a bit-sliced processor utilizing the 290lA, arithmetic logic
unit (ALU). FTMP is a triple modular redundant (TMR) , bit
synchronized multiprocessor designed for ultra high reliability
and fault-tolerance. The design is based on independent
processor-cache memory modules and common memory modules
(Reference 6) which communicate via redundant serial busses.
All information processing and transmission is conducted in
triplicate. Data transmitted over the bus network is monitored
by Bus Guardian Units (BGUs), which compare the transmitted
data, bit by bit. Faults are detected when they produce errors
at the BGUs. Faults are also detected by self test programs,
which are executed continuously, in the background.

The fault injection experiments were conducted on real hardware
and stuck-at faults were injected, one at a time, on device pins
of one of the three processing elements. (The fault injection
hardware was identical to that used in the FIlS experiments.)
Faults were systematically selected (unweighted) and injected on
pins of eight circuit boards: CPU Data Path, CPU Control Path,
Processor Read Only Memory, Processor Cache Controller, Bus
Guardian Unit, Transmit Bus Interface, Poll and Clock Bus
Interfaces, and System Bus Controller. FTMP executed a flight
control software program consisting of inner loops and autopilot

8
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modes, which were patterned after the L-lOll Tristar flight
control system. Fault runs were terminated after 15 seconds of
real time. Unlike the Bendix experiments, the simulation was
"closed-loop," L e., the sensor values were obtained from the
motion parameters of a simulated aircraft. For the more
persistent types of faults, closed-loop testing may introduce
added fault detection capability via runstream/datastream fault
sensitivity.

3.2 RESULTS

1) Both studies indicated that most faults were detected within a
few computational frames of their occurrence (e.g., 0-500ms).
The fact that both studies produced this result was surprising
considering the dissimilarity of input sensor selection,
computer architecture and operational software. Because fault
runs were terminated after eight repetitions, the Bendix study
gave no information about detection beyond 800ms (assuming 100
ms/frame). The CSDL results indicated that relatively few
faults (2%-4%) were detected in later repetitions and these were
detected by background self-test programs (Reference 4). From
these results it was conjectured that most faults are activated
by the baseline software program and independently of the input
sequence. This phenomenon is generally accompanied by shorter
latency times.

2) CSDL injected 21,055 faults (each pin fault was injected 5
times, at different locations of the program) and 3,637 (17.3%)
were undetected. CSDL estimated that about 3000 of the
undetected faults were "don't care" faults, i.e., faults on
unused pins or on signals that were always low or always high
under normal circumstances. Of the remainder, a few were
analyzed and found to be "don't cares". In the Bendix study,
3000 faults were injected during the self-test evaluation phase
and each undetected fault was analyzed. It was found that 466
faults (15.5%) were "don't cares 1

' and, of these, 245 occurred in
the bits of the micromemory and 47 in the control PROMS. When
memory bit-faults were excluded, 7.2% of gate-level faults were
"don't cares" and 6% of pin-level faults were "don't cares".
Both Bendix and CSDL concluded that the identification of "don't
care" faults was a non-trivial task, but essential to excluding
irrelevant test results as in the form of the completely
undetected faults.

3) The Bendix study found that 86.5% of gate-level faults
(excluding bit-faults in the micromemory and control PROMS) were
detected during the eight repetitions of the FCS program, based
on 148 injected "care" faults. Pin-level faults were not
injected while executing the FCS program. The equivalent
coverage in the CSDL study is not clear because of the large
number of undetected, unanalyzed faults, most of which (but,
possibly, not all) were "don't cares." CSDL did conclude,

9



however, that between 2% and 4% of all detected faults were
detected by the background self-test programs and not by the
comparators. Since self-test was not executed during the FCS
experiments, Bendix would have concluded that these faults were
undetected.

4) The Bendix study showed
were detected during the
"care" faults. The CSDL

that
FCS

study

88% of 2901A, gate-level faults
experiments, based on 52 injected
gave no results for this device.

5) In the Bendix study, 97.4% of gate-level faults and'97.6% of
pin-level faults were detected by self-test, based on 2234 and
376 injected "care" faults, respectively. The gate-level
coverage excluded bit-faults in the memory elements. When these
faults were included, coverage was 92%. The self-test program
consisted of 346 assembly language instructions and required
2ms-3ms to complete. The CSDL study gave no results for self
test coverage.

6) The Bendix study concluded that gate-level faults were more
difficult to detect than pin-level faults, especially when
faults were injected into single bits of the memories. When
executing software, other than the FCS, the ratio of gate-level
to pin-level undetected faults was a factor of two.
Unfortunately, "don't care" faults were not identified in these
runs. As a result, detection coverage estimates tended to be
pessimistic.

3.3 CONCLUSIONS

The principal conclusions of the Bendix and CSDL studies are:

1) Most detected faults are detected within a few computational
frames of their occurrence.

2) The proportion of faults not detected by comparison monitoring
while executing the baseline program can range from 2% to 13.5%.

3) Although not discussed in the Overview, CSDL results showed that
detection, isolation and recovery could take up to several
seconds, during which time the system is potentially vulnerable
to second faults. The occurrence of a second fault, before the
first fault is isolated, could confuse the majority vote and
result in a system breakdown.

4) Both studies indicated a significant proportion of "don't care"
faults (between 6% and 17.3%). These faults are difficult to
identify. Unidentified "don't care" faults could result in
uncertain and pessimistic detection coverage estimates.

10



5) Self-test coverage of 95%
faults and for gate-level
excluded.

is easily
faults, if

1

achieved
mentory

for pin-level
bit-faults are

o·

6) There is a significant difference in detection coverage between
pin-level and gate-level faults particularly if memory bit
faults are in~luded in the latter.

The Bendix and CSDL studies were intended to provide an initial database
for eventual FCS survivability assessment. In the next section some of
the unresolved issues connected with this assessment are discussed.

0 11
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4.0 UNRESOLVED ISSUES OF FCS SURVIVABILITY ASSESSMENT

Prior to conducting the FIlS experiments, a survey was made to determine
some of the unresolved issues connected with FCS survivability
assessment. The 'purpose of the survey was to identify issues which
could be resolved by further experimentation.

In order to avoid confusion and ambiguity later on, we give a few
informal definitions of fault types and associated processes, some of
which were suggested by previous fault injection experiments and others,
from a survey of the literature.

4.1 DEFINITIONS: FAULT TYPES AND ASSOCIATED PROCESSES

Malfunction: An error at the output of a digital device.

Fault: An internal condition of
causes a malfunction for some
input and internal state.

a device which
combination of

Excitation:

Permanent Fault:

A condition such as an input or internal
state which, in conjunction with a fault,
causes the device to malfunction.

A fault which persists indefinitely.

Intermittent Fault: A fault which
intermittently.

occurs and reoccurs,

Healed Fault: A former fault which can no longer produce a
malfunction for any excitation.

Transient Malfunction:

Latent Fault:

A malfunction which
period of time
Sometimes referred
fault."

A fault which has
malfunction.

occurs for a brief
and then disappears.
to as a "transient

not yet produced a

Stuck-at Fault:

Pin-Level Fault:

Gate-Level Fault:

A fault which causes a gate node to assume a
logic 0 or a logic 1 state, denoted by S-a-O
and S-a-l, respectively.

A stuck-at fault on an input or output pin
of a digital device.

A stuck-at fault on a gate node of a gate
equivalent circuit.

13



Don't Care Fault: A fault which cannot
for any combination
state.

produce a malfunction
of input and internal

Correlated Faults: Two or more faults which can produce a
malfunction for the same excitation.

Near-Coincident Fault: A fault which occurs before a prior fault
has been detected and isolated.

Baseline Program:

Auxiliary Program:

Active Fault:

A set of software that is executed
continuously, e.g., an inner-loop.

A software program that is executed
occasionally, e.g., an outer-loop.

A fault which can produce a malfunction
while executing the current on-line program.

Benign Fault: An inactive fault wrt
program but active wrt
some other program.

the current on-line
to (with respect to)

Alpha-Fault:

Beta-Fault:

4.2 UNRESOLVED ISSUES

An active fault wrt the baseline program.

A benign fault wrt the baseline program but
active wrt an auxiliary program.

1) Effects of Latent Faults

Latent faults may accumulate in different lanes of an FCS,
particularly if pre-flight self-testing is limited in detection
coverage. Their eventual activation by a single excitation
event (e.g., the execution of a seldom-used outer-loop) could
result in a rapid loss of lanes, even if successively detected.
Such an event could have a significant impact on system
survivability. Required for this assessment:

a An understanding of the mechanisms that transform latent
faults into error-producing faults.

o Estimates of the accumulation of latent faults.

o Extent to which latent faults are correlated across
lanes.

o Single and multiple-fault models incorporating latent
faults.

o Reliability analyses .

. 14



The Bendix and CSDL studies showed that the build-up of latent.. "faults could range fron 2% to 13.5%, especially if background
self-test was not employed. Neither study examined the
potential correlation of these faults.,

2) Effects of Intermittent/Transient Faults

These faults affect the rate at which errors are produced.
(Reference 9) addresses their affect on FTMP survivability.
These results should be extended to include a wider class of FCS
architectures. Transient faults could result in a premature
disengagement of FCS lanes if their rate of occurrence greatly
exceeds that of conventional failures. Most flight control
systems avoid premature, permanent disengagement by allowing the
reengagement of a previously failed lane under certain
conditions. Required for this assessment:

o Occurrence, duration and reoccurrence
intermittent/transient faults.

rates of

o Relative proportion of intermittent/transient faults
versus permanent faults.

o Single and multiple-fault
intermittent/transient faults.

o Reliability analyses.

models incorporating

3) Effects of Near-Coincident and Multiple Faults

(Reference 10) addresses the potential problem of near
coincident faults in a multiprocessor system. The Bendix and
CSDL studies gave an indication of the expected "time-on-risk"
during which the FCS is vulnerable to second faults. Multiple
fault conditions have yet to be evaluated, e.g., the effect of a
latent fault followed by an active fault, particularly when the
latent fault may preclude detection of the active fault.
Required for this assessment:

o Fault injection experiments.

o Multiple-fault models.

o Reliability analyses.

4) Proportion of Alpha/Beta Faults

The Bendix results were obtained while executing the baseline
FCS program. Thus, all detected faults were alpha-faults. It
was never determined if any of the undetected faults would have
been detected while executing an auxiliary program. If so, then
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the execution of an infrequently-used outer-loop could
simultaneously activate latent faults in different lanes. The
CSDL study gave no information on this subject. Required for
this assessment:

o The relative proportion of alpha and beta-faults.

5) Dynamics of Alpha/Beta Faults

The Bendix study found that alpha-faults produced errors, at
comparators, within several frames of their occurrence. Beta
faults, once activated by an auxiliary program, could,
conceivably, produce errors at a different rate or be more
difficult to detect by self-test. Required for this assessment:

o Fault injection experiments
faults and their detection
outer-loops.

which
while

identify individual
executing inner and

o Estimates of self-test coverage for both types of
faults.

6) I/O Faults

Detection coverage estimates of I/O hardware faults are not
available, probably because of the difficulties in simulation.
Required for this assessment:

o Failure mode data for I/O devices.

o Techniques for simulating I/O hardware and associated
faults.

o Fault injection experiments on I/O hardware.

7) Failure Modes of Digital Devices; Pin-Level Versus Gate-Level
Fault Models

The Bendix study indicated a significant difference between pin
level and gate-level fault detection. At issue is the validity
of either model. Required for this assessment:

o Failure mode data of actual digital devices.

o An analysis of the relative latency of pin-level and
gate-level faults.

8) Weighted Versus Unweighted Faults

In the Bendix study, faults were weighted according to the
failure rate of the device. In the CSDL study all faults were
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treated as equally probable.
either approach and b) the
detection coverage. Required

At issue are a) the validity of
relative, resultant differences in
for this assessment:

o Establish, once and for all, the definition of "fault
detection coverage."

o Estimates of detection coverage for both approaches.

9) Guidelines for Simulation Testing

In order to obtain a industry-wide uniformity in simulation
testing it is necessary to establish guidelines. The guidelines
should include fault models, apportionment of fault types,
methods of simulation, FCS scenarios, self-test coverage
validation procedures, etc. Required for this assessment:

o Failure mode data.

o Recommended fault models.

o Weighted versus unweighted faults

o Recommended methods of simulation.

o Effects of latent faults on survivability.

o Establishment of confidence
requirements of test results.

o Recommended FCS scenarios.

levels and accuracy

o Establishment of single and multiple-fault models and
the identification of critical model parameters.

10) Self-Test Requirements

A typical FCS incorporates several self-test programs for
inflight, preflight and maintenance testing. At issue are the
coverage requirements of each test and the rationale for the
requirements. Required for this assessment:

o Build-up of latent
survivability.

faults and the effect on

o The determination of an acceptable rate of build-up via
reliability analysis.

o Effects of periodic repair, possibly requiring higher
coverage levels .
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11) Proportion of Faults Affecting Surface Commands

Required for this assessment:

o Fault injection experiments.

12) Proportion of Faults Affecting the Monitoring Process

Required for this assessment:

o Fault injection experiments.

o Analysis of failure rates of monitoring components.

13) Reliability Assessment Programs

A number of reliability assessment programs are now available to
the flight control community, e.g., CARE III, HARP, ARIES,
CARSRA, SURE, etc. Evidently, it remains to be seen whether
these programs are capable of representing and analyzing the
fault combinations identified in this section. Required for
this assessment:

o Establishment of single and multiple-fault models.

o Evaluation of
programs.

4.3 STRAWMAN SINGLE-FAULT MODEL

the capabilities of the candidate

In planning the FIlS experiments, it was agreed, by all of the
participants, that the principal and fundamental objective was to obtain
a database for the reliability assessment of flight control systems. As
a consequence, it was necessary to anticipate the kind of data that
might be required. Recognizing that the key elements of a reliability
assessment program are single and multiple-fault models, it was decided
to generate a single-fault model in order to identify transition
parameters which could be obtained from the FIlS experiments. The
structure of the single-fault model was suggested from the experience
gained from the Bendix and CSDL studies. The model is semi-markov and
appears to have sufficient degress-of-freedom to model a wide variety of
fault and error dynamics, particularly as observed in the Bendix and
CSDL fault injection studies. The model is intended to represent
permanent faults, only. The mathematically more tractable markovian
version is shown in Figure 1. The following parameters describe the
fault and error dynamics:
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a ;:: ACTIVE f3 - FAULT

b = BENIGN FAULT

a- FAULTS

Figure 1. Single-Fault Model Markov Version
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>. failure rate of a lane (failures/hour)

pl proportion of alpha-faults

p2 proportion of beta-faults which are active at their
occurrence

p3 proportion of beta-faults which are benign at their
occurrence

e Q rate at which alpha-faults produce errors (errors/hour)

efJ rate at which active beta-faults produce errors
(errors/hour)

[It was anticipated that
same rate. However, the
e Q and efJ.]

alpha and
experiments

beta-faults produce errors at the
showed a small difference between

as rate at which auxiliary programs are brought on-line
(programs/hour)

lids average duration of an auxiliary program (hours/program)

q proportion of auxiliary programs that activate a benign
fault

We note that

pl + p2 + p3 = 1.

The parameters of the single-fault model are not independent. In fact,

pl + p2 + p3 = 1

p2 (p2 + p3)q[as/(as+ds)] = (l-pl)q[as/(as+ds)]

p3 (p2 + p3)[1 - q(as/(as+ds))] = (l-pl) [l-q(as/(as+ds))] .

The remaining parameters pl, as, ds and A are independent.

and previous experiments it was expected to
e and q. The parameters p2, as, and ds

flight control operational scenarios, via
and b.) time between call-ups of auxiliary

From the results of the FIlS
obtain estimates of pl, p3,
would be determined from
estimates of a.) duration
programs.
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4.4 EXTENSION TO MULTIPLE-FAULT MODELS

To illustrate the potential use of the single-fault model in reliability
studies, a simple multiple-fault model will be constructed. The model
is for a multiprocessor system, such as SIFT or FTMP, and is shown in
Figure 2. The model is constructed on the basis of the following
groundrules:

1) The system contains a core of powered, triplex processors and an
unlimited number of unpowered spares.

2) The core uses identical inputs and employs
computed outputs to detect and isolate a
Single fault detection coverage and isolation

majority voting of
faulty processor.

is 100%.

3) When a faulty processor is identified it is immediately replaced
by a spare, which is then powered.

4) The failure rate of an unpowered spare = O.

5) It is assumed, conservatively,
processors results in loss of
has produced an error. (This
states.)

that active faults in different
control (LOC) even if neither one

assumption reduces the number of

6) There is only one auxiliary software program, i.e., q=l. (This
simplifies the transition probabilities.)

This model is interesting because LOC cannot occur due to exhaustion of
processors but only as a result of near-coincident active faults or the
simultaneous activation of benign faults in different processors.

rates by deriving the rates
condition that one processor

two processors contain benign

We illustrate the derivation of transition
from state #7. This state depicts the
contains an active fault and the other
faults.

Transition from State #7 to State #6

The active fault produces an error while the other faults remain
benign. The error is detected and the faulty processor is replaced.

Transition from State #7 to State #9 (LOC)

The auxiliary program is called on-line or one of the two
processors, containing benign faults, experiences an active fault.

multiple-fault model is presented for
It is recognized that the generation of
models is a difficult undertaking,

faults are included, and is far beyond the

It is emphasized that this
illustrative purposes, only.
appropriate multiple-fault
particularly when correlated
scope of this study.
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Figure 2. Multiple-Fault Model for a Multiprocessor System
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5.0 DESCRIPTION OF FIlS CAPABILITIES

The following is an abstracted version of certain parts of Reference 3,
a companion document to this report. The intent here is to provide
adequate information about the FIlS testing capability to enable better
insight into the ensuing experimental results. For the type and scope
of testing undertaken, it was necessary to extend the capabilities of
the RDFCS. In particular, it was necessary to:

o Automate sequences of command files applied to the Draper's FIS
software for test productivity.

o Add a precise timing mechanism to measure the inverval from test
stimuli application to its detection for latency data.

o Expand the instrumentation capability through the PDP 11/04
utility computer for bandwidth and selectivity.

o Set up test case post-processing
interpreting and storing results.

in the PDP 11/60 for

o Establish a test executive in the PDP 11/60 for the unified
control.

The resulting FIlS capability for the RDFCS facility is depicted in
Figure 3. Added hardware includes an external clock and an associated
DR11C processor interrupt so that fault detection in an FCC is quickly
evident to the PDP 11/60 through a DR11C interrupt. The rest of the
modifications are implemented in software as described in Reference 3.
Considerable additional software has been developed to analyze, reduce,
and present the results presented herein.
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6.0 OBJECTIVES OF THE FAULT INJECTION EXPERIMENTS

The resolution of the issues of the previous section requires a
combination of fault injection experiments, industry surveys and
reliability analyses. Issues resolvable by fault injection experiments
were analysed to determine what additional data could be obtained by the
FIlS experiments. This resulted in the following specific objectives of
the fault injection experiments:

1) Obtain estimates of the proportion of alpha and beta-faults,
i.e., the proportion of faults detected while executing the
inner and outer-loops, respectively.

2) Estimate and compare the dynamics of alpha and beta-faults,
e.g., obtain latency histograms for each type of fault.

3) Assess the ability of the self-test program to detect alpha and
beta-faults.

4) Estimate the proportion
surfaces.

of faults affecting the control

5) Estimate the parameters of the strawman single-fault model,
i.e., pl, p3, ea , e~ and q.

6) Compare results for weighted and unweighted faults.

7) Corroborate and compare results with those of Bendix and CSDL.

8) Evaluate the FIlS
obtain meaningful
effectively.

methodology with respect to its ability to
fault latency data efficiently and cost

9) Provide a database for future studies. It is intended that the
collective results of the Bendix, CSDL and FIlS experiments will
be used by future experimenters as goals and for comparison
purposes. An important feature of the FIlS experiments is the
use of flight-certified FCS as the target computer. It is hoped
that future flight control systems will produce similar results
for the stuck-at class of faults.

Permanent Versus Intermittent/Transient Faults

The initial intention was to simulate intermittent/transient faults
especially since the fault injection hardware provided this
capability. However, in planning these experiments, it quickly
became apparent that simulating intermittent/transient faults and
fault scenarios required the selection of too many arbitrary
parameters to yield convincing results. Among these were:
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1) duration and reoccurrence rates,

2) place of occurrence within the FCS program,

3) faiture modes of intermittent/transient faults.

In addition, the effort required to set-up these
have exceeded the time and resources of the study.
was decided to simulate permanent faults, only.

Pin-Level Failure Modes

experiments would
Consequently, it

Because of the extensive fault injection capability of FIlS a large
variety of pin-level faults could have been simulated. To mention
but a few (see Reference 3 for the complete list):

1) individual input/output pins faulted S-a-O/S-a-l,

2) individual input/output pins faulted by inverting their
nominal values ("invert" faults),

3) one or more input/output pins faulted as a function of the
values of other input/output pins.

It was recognized that the results (e.g., latency) would be strongly
affected by the kinds of failures injected and especially by the
proportion of input vectors which were changed by a fault. For
example, a S-a-O on a single pin would change half of the input
vectors whereas an invert fault on the same pin would change all of
the input vectors. In the absence of failure mode data for the
actual devices it was considered too innovative to introduce fault
combinations other than S-a-O/S-a-l of single pins. In addition, it
was desirable to employ the same groundrules as the Bendix and CSDL
experiments so that the results could be compared. However, as a
concession to innovation, it was decided to inject invert faults,
with the proviso that the results would be separately tabulated to
test the relative latency of stuck-at versus invert faults.
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7.0 RESULTS OF FIlS EXPERIMENTS

7.1. TEST GROUNDRULES/PROCEDURES

Overview

The target hardware is a dual FCC, which implements a complete flight
control system for a commercial aircraft (Lockheed L-IOll Tristar).
Faults were detected by comparison monitoring of computed variables
which were periodically exchanged between FCCs. Either FCC could
request and affect system disengagement if it observed a discrepancy in
any of these monitored variables. System disengagement constituted
"detection." In addition, the system featured hardware comparators
which were located in the secondary actuators. These comparators, which
were not faulted, effectively measured the difference between the
surface commands generated by the two FCCs. Again, comparator
exceedances constituted "detection" and resulted in system
disengagement. The experiments were conducted in open-loop and closed
loop scenarios.

Open-Loop Scenario

The simulated airframe was disconnected for all runs. As a consequence,
sensor inputs were invariant. In this configuration the operational
program consisted of the inner loops, mode logic servicing, executive
functions, synchronization, control panel and display servicing, voting
and monitoring and intercomputer communications. The open-loop program
executed approximately 11,000 assembly instructions every 50 ms.

Closed-Loop Scenarios

The simulated airframe was connected, including the sensor feedback
signals. In addition to the open-loop programs, the operational program
consisted of the autopilot modes: cruise altitude hold, cruise climb,
cruise turn, localizer capture, glideslope capture/track. The land
modes consisted of approximately 1200 additional assembly language
instructions. In the autopilot modes the aircraft was perturbed from
equilibrium flight by initial conditions and control wheel steering
commands. The localizer mode was executed every 100 ms, the glideslope
modes, every 200 ms and the other modes, every 50 ms.

The open-loop experiments were conducted first. All faults were first
injected in the open-loop scenario and only undetected faults were
injected in the closed-loop scenarios. This saved time since most faults
were detected in the open-loop experiments. Each undetected fault was
subsequently injected during an autopilot mode, the purpose being to
determine the proportion of faults detected by programs other than the
baseline program (it was assumed that the baseline program consisted of
the open-loop programs and cruise altitude hold). The same fault was
successively injected while executing each of the autopilot modes.

27



Self-Test

Each FCC contains a self-test program which is normally executed in
background. During the open-loop and closed-loop experiments the self
test program was ~isconnected. In order to determine the coverage of
the self-test program and to identify "care faults" all faults which
were undetected by both the open-loop and closed-loop programs and a
larger sample of detected faults were injected separately, executing
only the self-test program.

Test Conditions

o Faults consisted of permanent S-a-O, S-a-l and pin inversions,
injected on input and output pins of almost every device on the.
data path and control cards of the CAPS-6 computer (see Appendix
A for the device complement). Devices were only excluded in the
event that they would not function when the FIlS multiplexers
were inserted.

o No faults were injected in the analog interface hardware.

o Faults were injected in a single FCC of the dual pair.

o Only single faults were injected.

o Faults were
Self-test was
scenarios.

detected by comparison
not executed in the

monitoring, exclusively.
open-loop and closed-loop

o No faults were injected in the hardware associated with failure
detection, i.e., hardware comparators and disengage mechanisms.

o Detection was recorded at 50 ms intervals (this was the same as
the minor frame interval).

o An undetected fault run was terminated after 15 seconds of real
time (i.e., 300 open-loop iterations).

o Each fault was individually identified.

o Coverage was tabulated for unweighted
the latter, faults were weighted in
rate of the device; in the former,
equally. The weights associated with
Appendix B.

and weighted faults. In
proportion to the failure
all faults were weighted

each fault are given in

o All undetected faults were analyzed and "don't care" faults were
eliminated from the tabulations although the number of "don't
cares" was tabulated. "Don't care" faults consisted of unused
pins or signals that were always high or always low under all
operating conditions.
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7.2 RESULTS

7.2.1 Open-Loop/Closed-Loop Detection Coverage

These results are given in Tables 1 through 11. Tables 1-4 give the
results for unweighted faults; Tables 5-8 for weighted faults; Table 9
summarizes the results for open-loop faults; Table 10 summarizes the
results for baseline/auxiliary faults; Table 11 gives a summary of
faults activated by autopilot modes. Altogether, 2715 distinct faults
were injected in devices of the Data Path and Control Path cards. Of
these, 166 were subsequently found to be "don't care" faults (6.11%).
In interpreting the tables it is noted that the column "totals" are not
the sum of the column entries. The "totals" refer to the column
headings, e.g., in Table 1, 2549 = total number of faults injected; 2461

total number of faults detected.

Table 1: Open-Loop. Unweighted Faults (Invert Faults Included)

Out of 2549 injected "care" faults, 2461 (96.55%) were
detected and 88 (3.45%) were undetected. Of the 88
undetected faults, 15 were invert faults. 1.71% of invert
faults were undetected whereas 4.37% of stuck-at faults
were undetected, indicating that invert faults are less
latent than stuck-at faults, as expected. Each of the 88
undetected faults was identified and injected while
executing self-test. All of these faults were detected,
indicating that they were "care" faults. All micromemory
and 290lA faults were detected. This is not surprizing
since these devices are highly multiplexed. Detection of
input versus output pin faults is approximately equal.
This was, at first, surprizing since it was conjectured
that input pin faults were more latent than output pin
faults. It was realized, subsequently, that most devices
of the CAPS-6 computer are sequential, and that output
faults of one device are, effectively, input faults of a
downstream device. As a consequence, the statistical
uncertainty of the results precludes a determination of
the relative latency of input and output pins.

Table 2: Closed-Loop. Unweighted Faults (Invert Faults Included)

Each of the 88, undetected, open-loop faults was
successively injected while executing each of the six
autopilot modes. Thus, the same fault could have been
detected while executing several modes, as indeed, the
results show. Of the 88 injected faults, 39 (44.32%) were
detected, and 49 (55.68%) were undetected. All 88 faults
were detected by self-test. It is again noted that 15 of
the 88 faults were invert faults.
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Table 3: Open-Loop. Unweighted Faults (Invert Faults Excluded)

These results are comparable to those of Table 1 except
that invert faults are excluded. Out of 1670 injected
"care" faults, 1597 (95.63%) were detected and 7 3(4.37%)
were undetected.

Table 4: Glosed-Loop, Unweighted Faults (Invert Faults Excluded)

These results are comparable to those of Table 2 except
that invert faults are excluded. Out of 73 injected
"care" faults, 33 (45.21%) were detected and 40 (54.71%)
were undetected.
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TABLE 1

Open-Loop
Unweighted Faults (Invert Faults Included)

,

#
# Faults # Faults # Faults Don't % %

Device Injected Detected Undetected Cares Detected Undetected

Data Path 1535 1502 33 83 97.85 2.15
Control 1014 959 55 83 94.58 5.42
S-a-O/S-a-l 1670*** 1597 73 123 95.63 4.37
Invert 879 864 15 43 98.29 1.71
2901 423 423 a 25 100. 0.0
Micromemory 231 231 a 9 100. 0.0
Input Pins 1805 1741 64 87 96 .45 3.55
Output Pins 744 720 24 79 96.77 3.23
Self-Test 1687 1687 a a 100. 0.0

Totals 2549 2461** 88* 166 96.55** 3. 45~'<*

Note: 1) Injected faults do not include "don't cares"
2) % "don't cares" = 6.11
3) * = Detected by self-test
4) ** = Excludes self-test
5) *** = 791 S-a-O, 806 S-a-l
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Table 2

Closed-Loop
Unweighted Faults (Invert Faults Included)

,

#

# Faults # Faults # Faults Don't % %
Mode Injected Detected Undetected Cares Detected Undetected

Alt Hold 88 13 75 0 14.77 85.23
Climb 88 13 75 0 14.77 85.23
Turn 88 13 75 0 14.77 85.23
Loc/Capt 88 16 72 0 18.18 81. 82
GS/Capt 88 11 77 0 12.5 87.5
GS/Track 88 12 76 0 13.64 86.36
Self-Test 88 88 0 0 100. O.

Totals 88 39* 49* 0 44.32 55.68

Note: 1) * Detected by self-test
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TABLE 3

Open-Loop
Unweighted Faults (Invert Faults Excluded).

#

# Faults # Faults # Faults Don't % %
Device Injected Detected Undetected Cares Detected Undetected

Data Path 1016 990 26 60 97.44 2.56
Control 654 607 47 63 92.81 7.19
S-a-O/S-a-l 1670 1597 73 123 95.63 4.37
2901 283 283 a 13 100. 0.0
Micromemory 146 146 a 9 100. 0.0
Input Pins 1184 1133 51 69 95.69 4.31
Output Pins 486 464 22 54 95.47 4.53
Self-test 1115 1115 a a 100. O.

Totals 1670 1597** 73* 123 95.63 4.37

Notes: 1) % "don't cares" = 6.86
2) * = Detected by self-test
3) ** = Excludes self-test
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TABLE 4

Closed-Loop
Unweighted Faults (Invert Faults Excluded).

#
# Faults # Faults # Faults Don't % %

Mode Injected Detected Undetected Cares Detected Undetected

Alt. Hold 73 11 62 0 15.07 84.93
Climb 73 10 63 0 13.7 86.3
Turn 73 10 63 0 13.7 86.3
Loc/Capt 73 13 60 0 17.81 82.12
GS/Capt 73 9 64 0 12.33 87.67
GS/Track 73 12 61 0 16.44 83.56
Self-Test 73 . 73 0 0 100. 0.0

Totals 73 33* 40* 0 45.21 54.79

Notes: 1) * - Detected by self-test
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Table 5: Open-Loop. Weighted Faults (Invert Faults Included)

These results are comparable to those of Table 1 except
that faults are weighted. Out of 282,345 injected "care"
faults, 274,926 (97.37%) were detected and 741 9(2.62%)
were undetected.

Table 6: Closed-Loop. Weighted Faults (Invert Faults Included)

to those of Table 2 except
Out of 7419 injected "care"

detected and 3828 (51.6%) were

These results are comparable
that faults are weighted.
faults, 3591 (48.4%) were
undetected.

Table 7: Open-Loop. Weighted Faults (Invert Faults Excluded)

These results are comparable to those of Table 3 except
that faults are weighted. Out of 185,253 injected "care"
faults, 178,787 (96.51%) were detected and 6466 (3.49%)
were undetected.

Table 8: Closed-Loop. Weighted Faults (Invert Faults Excluded)

These results are comparable to those of Table 4 except
that faults are weighted. Out of 6466 injected "care"
faults, 3063 (47.37%) were detected and 3403 (52.63%) were
undetected.

Table 9: Summary of Open-Loop Faults

This table shows the relative
detection coverage of 1) unweighted vs
2) invert faults vs non-invert faults.
differences are of the order of 1%.

differences between
weighted faults and

In both cases, the
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TABLE 5

Open-Loop
Weighted Faults (Invert Faults Included),

Device
# Faults
Injected

# Faults
Detected

#
# Faults Don't

Undetected Cares
% %

Detected Undetected

S-a-0/S-a-1 185,253 178,787 6466 15,444 96.51 3.49
Invert 97,092 96,139 953 5,964 99.02 0.98
2901 60,912 60,912 0 3,600 100. 0.0
Micromemory 24,255 24,255 0 945 100. 0.0
Input Pins 192,350 187,390 4960 9,913 97.42 2.58
Output Pins 89,995 87,536 2459 11 ,495 97.27 2.73
Self-Test 220,482 220,482 0 0 100. 0.0

Totals 282,345 274,926** 7419* 21,408 97.37 2.63

Notes: 1) % "don't cares" = 7.05
2) * = Detected by self-test
3) ** = Excludes self-test
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TABLE 6

Closed-Loop
W,eighted Faults (Invert Faults Included)

#

# Faults # Faults # Faults Don't % %
Mode Injected Detected Undetected Cares Detected Undetected

Alt. Hold 7419 1278 6141 0 17.23 82.77
Climb 7419 1135 6284 0 15.3 84.7
Turn 7419 1100 6319 0 14.83 85.17
Loc/Capt 7419 1376 6043 0 18.55 81.45
GS/Capt 7419 793 6626 0 10.69 89.31
GS/Track 7419 1188 6231 0 16.0 84.0
Self-Test 7419 7419 0 0 100. 0.0

Totals 7419 3591* 3828* 0 48.4 51. 6

Notes: 1) * - Detected by self-test
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TABLE 7

Open-Loop
Weighted Faults (Invert Faults Excluded)

Device
# Faults
Injected

# Faults
Detected

# Faults
Undetected

#
Don't
Cares

%
Detected

%
Undetected

S-a-O/S-a-l 185,253 178,787 6466 15,444 96.51 3.49
2901 40,752 40,752 0 1,872 100. 0.0
Micrornernory 15,330 15,330 0 945 100. 0.0
Input Pins 126,179 122,105 4074 7,476 96.77 3.23
Output Pins 59,074 56,682 2394 7,968 95.95 4.05
Self-Test 146,375 146,375 0 0 100. 0.0

Totals 185,253 178,787** 6466* 15,444 96.51 3.49

Notes: 1) % "don't care" faults 7.7
2) * = Detected by self-test
3) ** = Excludes self-test
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TABLE 8

Closed-Loop
Weighted Faults (Invert Faults Excluded)

,

#
# Faults # Faults # Faults Don't % %

Mode Injected Detected Undetected Cares Detected Undetected

Alt. Hold 6466 1087 5379 0 16.81 83.19
Climb 6466 871 5595 0 13.47 86.53
Turn 6466 881 5585 0 13 .63 86.37
Loc/Capt 6466 1112 5354 0 17.2 82.8
GS/Capt 6466 647 5819 0 10.0 90.0
GS/Track 6466 1188 5278 a 18.37 81. 63
Self-Test 6466 6466 a 0 100. 0.0

Totals 6466 3063* 3403* 0 47.37 52.63

Notes: 1) * - Detected by self-test
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TABLE 9

Summary of Open-Loop Faults

Invert Invert Invert Invert
Faults Faults Faults Faults
Included Included Excluded Excluded
Unweighted Weighted Unweighted Weighted

% Detected 96.55 97.37 95.63 96.51
% Undetected 3.45 2.63 4.37 3.49
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7.2.2 Detection Coverage of Baseline and Auxiliary Programs

The reader will recall (Section 4.1) that a baseline program is a set of
software that is executed continuously. In obtaining the following
estimates, it was' assumed that the baseline program consisted of the
open-loop programs together with altitude hold. Thus, the auxiliary
progrms consisted of the remaining autopilot modes.

lao Unweighted Faults, Invert Faults Included

Total Faults Injected = 2549
Detected by Baseline =2474;
Undetected = 75;
%Detected - 97.07
Undetected by Baseline but detected by Auxiliary - 26 (1.02%)
Undetected by Baseline and undetected by Auxiliary = 49 (1.92%)

lb. Unweighted Faults, Invert Faults Excluded

Total Faults Injected = 1670
(Detected by Baseline = 1608;
Undetected = 62;
%Detected = 96.287
Undetected by Baseline but detected by Auxiliary - 22 (1.317%)
Undetected by Baseline and undetected by Auxiliary = 40 (2.395%)

2a. Weighted Faults, Invert Faults Included

Total Faults Injected = 282,345
Detected by Baseline = 276,204;
Undetected = 6141;
%Detected = 97.83
Undetected by Baseline but detected by Auxiliary = 2313 (0.819%)
Undetected by Baseline and undetected by Auxiliary = 3828 (1.92%)

2b. Weighted Faults, Invert Faults Excluded

Total Faults Injected = 185,253
Detected by Baseline = 179,874;
Undetected = 5379;
%Detected = 97.1
Undetected by Baseline but detected by Auxiliary = 1976 (1.65%)
Undetected by Baseline and undetected by Auxiliary = 3403 (1.84%)

Table 10: Summary of Baseline/Auxiliary Faults

These results indicate that most faults are detected
while executing the baseline program. However, there is
a significant proportion of faults not detected by the
baseline and auxiliary programs, e.g., 2%, approximately.
The effect of these undetected faults remains to be
determined. It is noted that self-test detected all of
these faults.
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TABLE 10

Summary of Baseline/Auxiliary Faults

Invert Faults Included Invert Faults Excluded

Unweighted Weighted Unweig;hted Weighted

Detected by
Baseline

2474 (97.07%) 276,204 (97.83%) 1608 (96.25%) 179,874 (97.1%)

Not Detected
by Baseline
but Detected
by Auxiliary

26 (1. 02%) 2,313 (0.819%) 22 (1. 317%) 1,976 (1.65%)

Not Detected
by Baseline 49 (1.92%)
and not Detected
by Auxiliary

3,828 (1.92%)
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7.2.3 Latency Histograms

The fault injection data was organized to give probability density
functions (pdf) of detection (%) versus time for a variety of different
fault sets. Histbgrams of the pdf's are given in Figures 4 to 21. The
figures are organized as follows:

Figures 4 to 12: Open-Loop, Unweighted Faults (Invert
Faults Excluded)

Figure 4: All Faults
Figure 5: Data Path
Figure 6: Control Card
Figure 7 : 2901A
Figure 8: Micromemory
Figure 9: 8-a-0
Figure 10: 8-a-l
Figure 11: Input Pins
Figure 12: Output Pins
Figure 13: Open-Loop, Unweighted Invert Faults
Figure 14: All Open-Loop, Unweighted Faults (Invert

Faults Included)
Figure 15: All Open-Loop, Weighted Faults (Invert

Faults Excluded)
Figures 16 to 21: Closed-Loop, Unweighted Faults (Invert

Faults Excluded)
Figure 16: Alt. Hold
Figure 17: Climb
Figure 18: Turn
Figure 19: Loc/Capt
Figure 20: G8/Capt
Figure 21: G8/Trk

Although a few faults (0.3%) were occasionally detected between 1 and
6.5 seconds, the time scales were terminated at 5000 ms. The percentage
of faults that were not detected is also indicated on each histogram.
All of the histograms show that most detected faults are detected within
500ms of their occurrence, irrespective of the types of faults injected,
e.g., 8-a-0, 8-a-l, invert. A comparison of Figures 9, 10, 13 indicates
that the histograms for 8-a-0, 8-a-l and Invert faults are remarkably
similar. The histogram for all faults (Figure 4) reflects this
similarity. The alternating peaks and valleys, which are characteristic
of all of the histograms, reflect the complexity of error propagation.
From Figures 16 through 21 it can be seen that closed-loop faults
require somewhat longer times to produce errors.
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Figure 4. All Open-Loop, Unweighted Faults (Invert Faults Excluded)
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Figure 5. Open-Loop, UnweightedData Path Faults (Invert Faults Excluded)
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Figur~ 6. Open-Loop, Unweighted Control Card Faults
(Invert Faults Excluded)
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Figure 7. Op~n-Loop, Unweighted 290lA Faults (Invert Faults Excluded)
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Figure 8. Open· Loop , Unweighted Micromemory Faults
(Invert Faults Excluded)
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Figure 9. Open-Loop, Unweighted S-a-O Faults (Invert Faults Excluded)
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Figure 10. Open-Loop, Unweighted S-a-1 Faults (Invert Faults Excluded)
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4.31% UNDETECTED

Figure 11. Open-Loop,Unweighted Input Pin Faults
(Invert Faults Excluded)
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l
Figure ,12. Open-Loop, Unweighted Output Pin Faults

(Invert Faults Excluded)
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Figure 13. Open-Loop, Unweighted Invert "Faults
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Figure 14. All Open-Loop, Unweighted Faults (Invert Faults Included)
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Figure 15. All Open-Loop, Weighted Faults (Invert Faults Excluded)
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Figure 16. Closed-Loop, Unweighted Altitude Hold Faults
(Invert Faults Excluded)
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Figure 17. Closed-Loop, Unweighted Climb Faults
(Invert Faults Excluded)
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Figure 18. Closed-Loop, Unweighted Turn Faults
(Invert Faults Excluded)
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•

Figure 19. Closed-Loop, Unweighted Localizer Capture Faults
(Invert Faults Excluded)
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Figure 20. Closed-Loop, Unweighted Glideslope Capture Faults
(Invert Faults Excluded)
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Figure 21. Closed-Loop, Unweighted Glideslope Track Faults
(Invert Faults Excluded)
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8.0 COMPARISON WITH PREVIOUS FAULT INJECTION EXPERIMENTS

Test Ground Rules/Procedures/Test Conditions

1) Target Hardware

Bendix:
CSDL:
FIlS:

Bendix BDX-930 digital processor.
FTMP, which included the CAPS-6 digital processor.
CAPS-6 digital processor.

2) Simulation Technique

Bendix: The processor was simulated in software at the gate-level
and faults were injected at gate nodes.

CSDL: Faults were injected into the real hardware, at the pin-
level.

FIlS: Faults were injected into the real hardware, at the pin-
level.

3) Sensor Inputs

Bendix: Sensor inputs were selected at random at the start of each
frame.

CSDL: Sensor inputs were normal sensor values, obtained from a
simulated airframe.

FIlS: Sensor inputs were constant in the open-loop scenario and
normal sensor values, obtained from a simulated airframe,
in the closed-loop scenarios.

4) Fault Detection

Bendix: Faults were defined as "detected" if they produced an
error in a computed output.

CSDL: Faults were detected by the Bus Guardian Units
(comparators) and by background self-test programs.

FIlS: During the FCS experiments, faults were detected by
software and hardware comparators. Background self-test
was disconnected.

5) Types of Faults

Bendix: Permanent S-a-O/S-a-l. Weighted faults, only. Faults
inj ected, one at a time.

CSDL: Permanent S-a-O/S-a-l. Unweighted faults, only. Faults
injected, one at a time.

FIlS: Permanent S-a-O/S-a-l and invert. Weighted and unweighted
faults. Faults injected, one at a time.

63



6) I/O Hardware

Bendix:
eSDL:
FIlS:

Analog I/O hardware was not simulated.
Faults were not injected in the analog I/O hardware.
Faults were not injected in the analog I/O hardware.

7) Failure Detection Hardware

Bendix:
CSDL:
FIIS:

Not simulated; no faults injected.
Faults were injected in the BGUs.
No faults injected.

8) Termination of an Undetected Fault Run

Bendix:
CSDL:
FIlS:

After eight repetitions.
After 15 seconds of real time.
After 15 seconds of real time.

9) Identification of Undetected Faults

Bendix:

eSDL:
FIlS:

Faults were not individually identified. Although several
software programs were executed, in addition to the FeS,
it was never determined what proportion of faults,
undetected by one program, would be detected by another.
No information was given.
Faults were individually identified. A fault, which was
undetected while executing the inner-loops, was
successively injected while executing each outer-loop
program. Thus, it was possible to determine the latency
of the same fault for different software programs.

10) Length of FCS Program

Bendix:
CSDL:
FIIS:

2200 assembly language instructions.
Data not given.
11,000 assembly language instructions.

11) Length of Self-Test Program

Bendix:
eSDL:
FIlS:

Test Results

346 assembly language instructions
Data not given.
Approximately 500 assembly language instructions.

1) FCS Detection Coverage of Stuck-At Faults

Bendix: 86.5% of gate-level faults
were detected, based on 148
9% of memory bit-faults were

64

(excluding memory bit-faults)
injected "care" faults. Only
detected.



..

CSDL:

FIlS:

3637 out of 21,055 faults were undetected (17.3%). Of
these, approximately 3000 were definitely identified as
"don't cares." Assuming, conservatively, that the
remaining 637 were "care" faults, then pin-level coverage
was' 97%. Of the detected faults, between 2% and 4%
required background self-test for their detection .
97% were detected in the open-loop scenario and 98%, in
the combined open-loop and closed-loop scenarios, based on
2549 injected, "care" faults.

2) FCS Detection Coverage of Invert Faults

Bendix:
CSDL:
FIlS:

Invert faults were not
Invert faults were not
Unweighted, open-loop
versus 4.37% stuck-ats.

simulated.
simulated.
faults: 1.71% undetected inverts

3) FCS Detection Coverage of 290lA Faults

Bendix:

CSDL:
FIlS:

88% of gate-level faults were detected, based on 52
injected "care" faults.
Data not given.
100% detection, based on 423 injected "care" faults.

4) Time to Detect Faults

Bendix: Most detected faults were detected within 800ms of their
occurrence.

CSDL: Most detected faults were detected within 600ms of their
occurrence.

FIlS: Most detected faults were detected within 500ms of their
occurrence; a few faults required up to 6.5 seconds for
detection.

5) Self-Test Coverage

Bendix:

CSDL:
FIlS:

97.4% of gate-level faults (excluding memory bit-faults)
detected, based on 2234 injected "care" faults. 92% of
all gate-level faults were detected, based on 2534
injected "care" faults. 97.6% of pin-level faults were
detected, based on 376 injected "care" faults.
Data not given.
100% detected, based on 1687 injected "care" faults.

6) "Don't Care" Faults

Bendix:

CSDL:

FIlS:

15.5% of all gate-level faults were "don't cares". When
memory bits were excluded, 7.2% of gate-level faults were
"don't cares". 6% of pin-level were "don't cares".
Possibly as much as 17.3% of pin-level faults were "don't
cares".
6.11% of pin-level faults were "don't cares".
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9.0 SUMMARY AND CONCLUSIONS OF FIlS EXPERIMENTS

When FIlS results are cited, they refer to unweighted faults with invert
faults excluded. '

9.1 FAULT DETECTION

1) Most detected faults are detected within a few computational
frames of their occurrence, e.g., 10 frames = 500ms. [This
corroborates the results of previous studies, e.g., Bendix and
Draper. ]

2) Faults are activated (i.e.,
operating software and not
evidenced by the high coverage

produce errors) primarily
by varying sensor inputs,

in the open-loop scenario.

by
as

3) Most faults are activated by the baseline software (96.3%)
[these are alpha-faults in the single-fault model. This
coverage is considerably better than the Bendix study indicated,
which is not surprising considering that the Bendix FCS program
was 2200 words whereas the open-loop program was 11,000 words.]

4) A small proportion of open-loop detected faults are detected
between 1 and 6.5 seconds (0.3%). [These are alpha-faults with
long latency times in the single-fault model.]

5) A small proportion of faults are not activated by the baseline
program but are activated by an auxiliary program (1.3%).
[These are beta-faults in the single-fault model. This
important observation was made possible because a) individual
faults were identified in the experiments and b) auxiliary
software programs were part of the operating software. This
observation is important in constructing a single-fault model.]

6) A small proportion of faults are not activated by either the
baseline or auxiliary programs (2.4%). [These faults could
accumulate and, if eventually activated, could result in a near
simultaneous loss of lanes. Preflight or background self-test
is an effective way to detect these faults.]

7) Faults which are activated by the
errors at a somewhat higher rate
autopilot modes (and not activated by

baseline program produce
than faults activated by
the baseline program).

8) Detection statistics for weighted and unweighted faults are
similar, e.g., 96.51%, open-loop, weighted versus 95.63%, open
loop, unweighted. [A surprising result since the failure
rate/pin differs widely over the devices of the caps-6
computer. ]
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9) Invert faults are less latent than stuck-ats, e.g., for
unweighted, open-loop faults, 1.71% undetected inverts versus
4.37% undetected stuck-ats.

10) Micromemory and 290la faults are 100% detected. [Not surpr1s1ng
since pin-level stuck-at faults on these devices are not very
latent. ]

11) Detection of input versus output pin faults is approximately the
same. [It was expected that input pin faults would be more
latent than output pin faults. However, since output faults
are, effectively, input faults of downstream devices, the
difference in latency is probably not significant when tandem
devices are involved.]

12) Self test coverage is 100%. [Impressive, even at the pin-level,
especially for a 500 word program. The self test designer was
obviously well-acquainted with the hardware.]

13) 6.11% of all faults were "don't cares." [This is consistent
with Bendix's results, which estimated 7% at the pin-level. The
relatively large number of "don't cares" and the uncertainty and
difficulty in identifying them precludes accurate estimates of
detection coverage, i.e., the statistical uncertainty is at
least several percent.]

14) FIlS test results generally corroborate the results of the
Bendix and CSDL studies. This is surpr1z1ng considering the
dissimilarity of input sensor selection, computer architecture
and operational software between the three studies.

15) The validity of the FIlS approach hinges on the validity of pin
level fault models. Until this issue is resolved the results of
the FIlS and previous experiments must be considered tenatative.
However, the results can be used as a relative measure of fault
detection capability.

16) The FIlS results provide a good basis for the construction of a
single-fault model, e.g. I identification of key states and
order-of-magnitude transition rates. This is the most
significant output of the experiments. The next logical step is
the construction of multiple-fault models and reliability
parameter sensitivity studies.

17) The FIlS approach to fault latency and coverage estimation is
relatively inexpensive compared with a software simulation
approach. For example, it required only 4 man weeks to perform
the FIlS experiments. This assumes that the FIlS fault
injection hardware and recording equipment is already in place.
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18) The FIlS methodology was thoroughly tested
FIlS performance was impressive, especially
areas:

a) Fault Generation Capability

during the study.
in the following

Although only S-a-O, S-a-l and invert faults were
injected, FIlS provided the capability of simulating a
wide variety of fault types, under software control.

b) Ease of Use

Injecting faults and recording data was tedious but
relatively simple after the initial set-up.

c) Fidelity

Since faults were injected into real hardware there
was never any question about the fidelity of the
experiments nor was there a need to validate the
simulation.

d) Speed

All of the FIlS experiments were run in real time. As
a consequence, it was possible and practicable to
determine detection coverage over long periods of time
and while executing a variety of software programs.

9.2 Single-Fault Model Assessment

The results of the FIlS experiments confirmed the structure of the
single-fault model, at least to the level of detail it was intended to
represent. It was definitely confirmed that the transitions from active
fault states are extremely fast relative to the rate of failure
occurrences. As a consequence, these rates can be approximated by
constants, as shown in (Reference 11). If, in addition, the transitions
between benign and active states can also be approximated by constants,
then a markov model results. This greatly simplifies the single-fault
model.

On the basis of results from the Bendix, CSDL and FIlS experiments we
can obtain order-of-magnitude estimates of the parameters of the single
fault model.

The parameter, pl

pl = proportion of alpha-faults.

From Table 10, .9625<pl<.9783.
From Bendix, .85<pl.
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The Parameter, p2

p2 = proportion of beta-faults active at their occurrence,

This parameter cannot be determined from fault injection experiments. A
conservative estimate would be p2=0.

The Parameter, p3

p3 = proportion of beta-faults benign at their occurrence.

Since p3=l-pl-p2 and p2=0, we obtain

1) .0216< p3<.0373 (FIlS) and
2) p3<.15 (Bendix).

The Parameters, eo, eB

The histograms show that most alpha-faults are detected within 500 ms of
their occurrence and that active beta-faults tend to produce errors over
longer time intervals, e.g., up to 4 sec. Thus,

eo >
e~ >

7200/hour
900/hour

The Parameter, 9

q - proportion of auxiliary programs that activate a benign fault.

This parameter could not be obtained since the auxiliary programs used
in the experiments were only a subset of the autopilot modes. However,
preliminary (and conservative) estimates of survivability can be
obtained by assuming that there is only one auxiliary software program,
in which case q = 1.

The Parameter, as

as = rate at which auxiliary programs are brought on-line.

This parameter is determined by the operational scenarios
cannot be determined by fault injection experiments.
range of as is .0l/hour<as<10/hour.

The Parameter. lids

lids = average duration of an auxiliary program.

of the FCS and
The estimated

This parameter is also determined by the operational scenarios of the
FCS. The estimated range of lids is .01 hour<l/ds<l hour.
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The Parameter, A

A = failure rate of an FCS lane.

The current range' of A values is . OOl/hour<A<.OOOl/hour.

9.3 PROBLEM AREAS

The only serious problem encountered during the experiments was the
extreme sensitivity of some devices to being placed on the extender
board. The associated module of such a device would not function
correctly in the presence of an intervening pair of field effect
transistors (FETS) and would immediately trigger a comparator alarm. No
data was acquired on these sensitive pins. The following devices would
not operate correctly on the extender board:

54LS74 D Flip Flop
54LS174 D Flip Flop
54LSl75 D Flip Flop
54LS377 D Flip Flop
54LSl61 Bit Counter
54LS194 Shift Register
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10.0 RECOMMENDED FUTURE STUDIES

Although the FIlS, Bendix and CSDL studies have contributed
significantly to our understanding of fault, error and detection
dynamics, a numbe'r of important issues connected with FCS survivability
assessment remain unresolved. These issues have already been identified
in Section 4.2. In order to resolve some of these issues the following
studies are recommended:

1. Failure Modes of Digital Devices

Previous fault injection experiments have employed stuck-at
faults either on device pins or internal gate nodes. It remains
to be determined to what extent stuck-at faults represent failure
modes of real devices (Reference 8). A determination of real
failure mode data is required.

2. Pin-Level Versus Gate-Level Faults

Until actual failure mode data becomes available, experimenters
will, no . doubt, continue to inject pin-level and gate-level
stuck-at faults. The Bendix study indicated a significant
difference between pin-level and gate-level detection coverage.
At issue is the validity of either fault type and the extent to
which one is more or less latent than the other.

3. Single-Fault Model Incorporating Intermittent/Transient Faults

The strawman single-fault model of Section 4.3
adequate for permanent faults. The model should
include intermittent/transient faults. Estimates
duration and reoccurrence rates are required.

4. Multiple-Fault Models

appears to be
be extended to
of occurrence,

In order to perform
essential to model
multiple-fault model

a reliability assessment of an FCS it is
multiple fault effects. The rudimentary
of Figure 2 is a good starting point.

5. Reliability/Survivability Assessment of an FCS

The FIlS, Bendix and CSDL studies have provided a database of
fault, error and detection dynamics, at least for permanent
faults. It now remains to use this data (augmented, if possible,
by intermittent/transient fault data) to assess the reliabilty/
survivability of an FCS. A reliability parameter sensitivity
study is needed in order to a) identify critical ranges of single
and multiple-fault model parameters and b) determine inflight,
preflight and maintenance test coverage required to reduce latent
faults to acceptable levels.

73



THIS PAGE LEFT INTENTIONALLY BLANK

74



11.0 REFERENCES

1. Larsen,~. E. and A. Carro, "Digital Avionics Systems - Overview
of FAA/NASA/Industry-Wide Briefing," 7th Digital Avionics Systems
Conference Proc., October 1986.

2. Mulcare, D. B., J. W. Benson, D. Eldredge, W. E. Larsen, et al.,
"Hardware Fault Insertion and Instrumentation System (FIlS)
Definition Study," DOT/FAA/CT-83-32, FAA Technical Center, June
1983.

3. Benson, J. W., W. E. Larsen, and R. Taper, "Hardware Fault
Insertion and Instrumentation System: Mechanization and
Validation," Draft DOT/FAA/CT-86-3l, November 1986.

4. La1a, J., and T. B. Smith,
Fault-Tolerant Multiprocessor
Test and Evaluation," NASA
Center, May 1983.

"Development and Evaluation of a
(FTMP) Computer - Volume III, FTMP
CR 166073, NASA Langley Research

5. McGough, J. G., F. Swern, "Measurement of Fault Latency in a
Digital Avionic Processor," Part II, NASA CR 3651, NASA Langley
Research Center, January 1983.

6. Lala, J., and T. B. Smith, "Development and Evaluation of a
Fault-Tolerant Multiprocessor (FTMP) Computer Volume I, FTMP
Principles of Operation)," NASA CR 166071, NASA Langley Research
Center, May 1983.

7.

8.

Lala, J., and T. B. Smith,
Fault-Tolerant Multiprocessor
Software," NASA CR 166072 ,
1983.
McGough, J. G., "Feasibility
Software Simulator," NASA
Center, July 1983.

"Development and Evaluation of a
(FTMP) Computer - Volume II, FTMP
NASA Langley Research Center, May

Study for a Generalized Gate Logic
CR 172159, NASA Langley Research

9. Hopkins, A., T. B. Smith, J. Lala, "FTMP - A Highly Reliable
Fault-Tolerant Multiprocessor for Aircraft," Proc. IEEE, Vol. 66,
October 1978.

10. McGough, J. G., "Effects
processor Systems," Proc.
Conference, November 1983.

of
of

Near-Coincident
5th Digital

Faults in Multi
Avionics Systems

11. McGough, J. G., Trivedi, K., Smotherman, M., "The
Conservativeness of Reliability Estimates Based on Instantaneous
Coverage," IEEE Trans. Computers, July, 1985.

75



THIS PAGE LEFT INTENTIONALLY BLANK

76



APPENDIX A

CAPS 6 Components

* FR Failure Rate, PPMH; Mil 217D, Airborne, Inhabited Transport

I, CArS 6 Data Path Card

Device

Processor (ALU)
290lA

Pins/
Component Device

U14,U15,U17,U18 40

Total
Pins

160

FR/
Device

.5792

Total FR

2.3168

Program Counter LSB Mux
54LS253 US

Carry Input Sel, Mux
54LS253 UB

Processor Address Sel, Mux
54LS253 U9,U10
54LS257 Ull

16

16

16
16

16

16

32
16

,1177

.1177

.1177

.0886

.1177

.1177

.2354

.0886

Shift/Rotate Mux
54LS253

Data Sel, Mux
54LS253
54LS257

Status Register
54LS377

U2,U3 16

U2l,U22,U23,U28 16
U29,U36 16

U12 20

32

64
32

20

,1177

,1177
.0886

,4258

,2354

.4708

.1772

,4258

Instruction Register
54LS377 U19,U20

Instruction Syllable Sel, Mux
54LS257 U30,U35

20

16

40

32

,4258

.0886

.8516

.1772

Address Select Mux
54LS257 U32,U33,U34,U37 16 64 .0886 .3544

Stack Vector Register
54LS194 U4 16
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Pins! Total FR!
Device Component Device Pins Device Total FR

Look-Ahead Carry
54LS182 . Ul3 16 16 .0932 .0932

Loop Counter
54LS1.63 U3l 16 16 .1249 .1249

Data Bus Transceiver
7835 U38. U39. U40. U4l 16 64 .1892 .7568

Interrupt Controller
2914 U16 40 40 .5792 .5792

Total FR = 7.24
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II, CAPS 6 Control Card

Pins/ Total FR/
Device Component Device Pins Device Total FR

Instruction Mapper Prom
HM7643 Ul, U7, U13 16 48 .1899 .5697

Control Store Memory
HM7643 U3 ,U4 ,U5 , U6 ,U9 ,

U10,U11,U12,U17,
U18 16 160 .1899 1.899

Next Address Control Prom
HM7603 U8 16 16 .1014 .1014

Transfer Bus Address Register
54LS377 U40,U42 20 40 .4258 ,8516

Control Registers
54LS377 U24,U25 20 40 .4258 ,8516
54LS174 U21 ,U23 16 32 ,3117 .6234
29LS18 U30,U31,U32 16 48 .1024 .3072

Transfer Bus Access Control Registers
54LS175 U22 16 16 .2983 ,2983

Interrupt Decoder
54LS138 U33 16 16 .2870 ,2870

Control Register Decoder
54LS138 U46 16 16 .2870 .2870

Microprogram Sequencer
2911 U14,U15,U16 20 60 .4258 1.2774

Clock/Control Logic Register
54LS175 U34 16 16 .2983 .2983

Clock/Control Logic D FFs
54LS74 U20A,U20B,U27B

U29A,U39B 8 40 .0519 .2595

Transfer Bus Acquisition Logic D FFs
54LS74 U29B,U39A 8 16 .0519 ,1038

Transfer Bus Address Transceiver
7835 U47, U48, U49, U50 16 64 .1892 .7568

Total FR = 8.772
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APPENDIX B

Fault Weighting

In the computatioh of detection coverage each fault was weighted in
proportion to the failure rate of its associated device. Thus, pins of
devices with large failure rates were given greater weight than pins of
devices with smaller failure rates. The relative weighting of each pin
is given in the following table. The FR/Pin was obtained by dividing
the failure rate of the device by the number of pins.

Device FR/Pin Number of Eguiva1ent Faults/Pin

2911 .0213 213
54LS377 .0213 213
54LS174 .0195 195
54LS175 .0186 186
54LS138 .0179 179
2901A .01448 145
HM7643 .01187 119
7835 .01183 118
54LS163 .00781 78
54LS253 .00736 74
54LS194 .00726 73
54LS74 .0065 65
29LS18 .0064 64
HM7603 .00634 63
54LS182 .00583 58
54LS257 .00554 55

When constructing latency histograms or when estimating coverage, each
fault was assumed to be representative of a larger set, the number being
equal to the "number of equivalent faults/pin." Thus, for example, if a
pin fault of 2911 is detected, it will be counted as though 213 faults
were detected (and injected).
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