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EXECUTIVE SUMMARY
 

The detailed design of the software for a navigation recovery block is 
specified. The navigation software models the Very High Frequency (VHF) 
Omnidirectional Range (VOR)/Distance Measuring Equipment (DME). A 
description of the program structure is provided. Also, an example problem 
and the program source listing are included. 
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INTRODUCTION
 

PURPOSE. 

The contents of this document establish the software design for the Very 
High Frequency (VHF) Omnidirectional Range (VOR)/Distance Measuring Equipment 
(DME) model software. The VOR/DME ~odel is implemented with the fault 
tolerant software technique of a recovery block. 

OBJECTIVE. 

This document is intended to demonstrate the type of software specification 
and implementation that the certification specialist may be expected to 
encounter in the next generation of digital or all-electric aircraft. 

SYMBOLOGY 

The flow diagrams in this document have been developed according to top-down 
methods. Table 1 summarizes the symbols used in the flowcharts in this 
document. 

REQUIREMENTS 

The recovery block method is a fault tolerant software technique which 
provides alternate components which may be swi tched in (usually serially) 
to take the place of a faulty component that has been rejected by the 
acceptance test. These alternate components are designed independently 
from the main software component (the primary alternate) and generally 
only provide partial functionality of the software component, thus reducing 
it to a degraded, simpler mode. Prior to entering an alternate, the state 
of the process is restored to that current just before entry to the primary 
alternate [1]. Software fault tolerance is described in further detail 
in Appendix A [2]. 

The hierarchical diagram for the executive functions for running a recovery 
block is shown in Figure 1. The recovery block time line is shown in Figure 
2 [3]. The fo llowing report <included in Appendix B) provides de tailed 
information concerning the sequential processing and forms part of this 
specification: 

Hitt, Ellis, "So f twa re System Error Detection and, Correction 
Techniques", Battelle Columbus Laboratories, Columbus, Ohio, 
March 5, 1986. 

The navigation recovery block consists of two components: a primary alternate 
and a secondary alternate. Figure 3 gives a simple block diagram 
representation of the recovery block structure. 

VOR/DME. 

The hierarchical diagram of the primary alternate for the VOR/DME model 
is shown in Figure 4. The hierarchical diagram for the secondary alternate 
of the recovery bLock for the VOR/DME model is given in Figure 5. The 
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TABLE 1. FLOWCHART SYMBOLS 

Symbol Definition 

Beginning of sUbroutine. 

Processing function; defined operation(s) 
causing a change in value, fo~, or location 
of infonnation. 

Input/Output function; information available 
for processing (input) or recording of 
processed information (output). 

A decision block that determines which of a 
number of alternative paths to follow. 

an-page connector. 

Off-page connector. 

Termination of subroutine. 
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FIGURE 1. EXECUTIVE SOFTWARE FOR NAVIGATION 
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FIGURE 1 (Continued). EXECUTIVE SOFTWARE FOR NAVIGATION 
SYSTEM RECOVERY BLOCK 
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VOR!DME module calculates the aircraft north and west position and velocity 
components and the aircraft latitude and longitude from the aircraft altitude 
and the range and bearing of the aircraft from the tuned navigation station. 

PRIMARY ALTERNATE. The primary alternate performs the following checks' 
prior to performing the actual calculations: 

a. frequncy check 
b. range check 
c. unusable area check 
d. cone of confusion check 

FreQuency Check. In the frequency check module, the software loops 
through the stored navigation station data to determine if a station 
frequency matches the tuned frequency. If the tuned navigation frequency 
does not match a station in the navigation area, then the probability of 
a signal, is zero. Therefore, the total probability o.f the signal,Ps' 
Pt, which is calculated after each check is performed, is zero since 

If the tuned navigation frequency does match a station in the navigation 
area, then Ps = 1 [4J. 

The VOR receiver should operate on the 50 KHz spaced channels (a total 
of 160) from 108.00 MHz through 117.95 MHz [5]. When a DME transponder 
is intended to operate in association with a single VHF navigational 
facility, it also operates in the 108.00 MHz to 117.95 MHz frequency band 
[6].' Appendix C pr ov Ld e s a table· of' stations in the United States and 
their frequencies. 

Range Check. This software module checks whether or not the aircraft 
is within the effective range of the tuned navigation station. The DME 
equipment should provide at' least a 300 nautical mile range [6]. If the 
aircraft is within the effective station range, then Ps = 1. If not, then 
Ps = O. The effective station ranges"are given in Table 2. 

To combine the resul t of this check wi th the resul t of the frequency 
check, 

Unusable Area Check. This module determines if the aircraft is within 
an unusable area of the tuned navigation station. This check is performed 
by looping through all of the specified unusable areas for the tuned station 
and determining the location of the aircraft with respect to the unusable 
area [4J. The various unusable areas for each station will be stored in 
a data base for comparison. If it is determined that the aircraft is within 
an unusable area, then Ps = O. Otherwise, Ps = 1. Again, to update the 
total probability of the signal, 
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TABLE 2.' EFFECTIVE STATION RANGES BY CLASS [4] 

Class 
T 
L 
H 
H 

H 

H 

Legend: 

Altitude 
S 12,000 feet 

-
< 
< 

18,000 feet 
18,000 feet 

Within the 48 conterminous 
states between 14,500 feet 
and 17,999 feet 

~ 18,000 feet and < flight level 
(FL) 450 (45,000 feet) 

> FL450 

T - Terminal; L - Low; H - High 

Effective Range
 
(in miles)
 

25
 
40
 
40
 
100
 

130
 
100
 

Cone of Confusion Check. This module determines if the aircraft is within 
the cone of confusion of the tuned navigation station. This check calculates 
the elevation angle from the tuned station to the aircraft. If the elevation 
angle is too large, then the aircraft is in the area above the VOR/DME 
station and it will experience a loss of signal. A simplified diagram 
representing this is shown in Figure 6. 

VOR/DME ALGORITHMS. The primary and secondary alternates have the following 
modules in common and utilize the same equations: 

a. Aircraft Latitude and Longitude 
b. North and West Position Components 
c. North and West Velocities 

Aircraft Latitude and Longitude. Figure 7 shows the aircraft and 
VOR/DME station positions. The VOR/DME station posi~ion is represented 
with fixed geocentric spherical coordinates (R, e, q,: iI, 31, kl) with 
e representing the station longitude measured positive westward from the 
Greenwich meridian, and q, representing the station latitude measured positive 
northward from the equator. The aircraft's position is represented by 
tangeAnt plane coordinates fixed at the site of t~e VOR/DME station with 
the i2 unit vector denoting true north and the j2 unit vector denoting 
true west. (See Figure 8.) We define 
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N 
~ 
12Aircraft 

w 
~ 
J2 
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~2 Unit Vector Out of Page 

S 

FIGURE 8. AIRCRAFT POSITION ON TANGENT 
PLANE COORDINATES 

~ 

vI = 
t:.	 

vector representing the location of the VOR/DME station 

.~ 

V2 
t:. 
=	 vector representing the location of the aircraft 

~ 
~V3	 vector representing the position of the aircraft relative 

to the VOR/DME station 

~RI	 (the sea level radius of the earth) + (the VOR/DME station 
elevation above sea level) 

RZ	 = 
t:. 

(the radius of the earth) + (the aircraft's altitude) 

t:.
R = the sea level radius of the earth 

Consequently. we can define 

~ 

VI	 (Rlcos<t>lsinelil. Rlcos¢lcosSljl, RISin<t>lkl) (aliI, bdl' c IkI) 
.­~ " 

V2 = (RZcos<t>Zsinezi 1, RZCOS0 Zcos:; 2j I, IlZsiM ZI;l) = laZil. bzh. eZkI) 
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To calculate ~3 (reference Figure 9), 

A
RZ = R + h, where h	 = the aircraft altitude
 

A
 
R3 = the distance of the aircraft from the 

VOR/DME station 

A 
4>3 = the angle that	 the aircraft makes with .. -:­the l2,]2 plane 

Aircraft 

VOR/DME 
Station 

FIGURE 9. EDGE VIEW OF 12, t2 PLANE
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By the law of cosines, 

(R+h)Z = RIZ + R3 Z - ZRIR3cOS ¢~ 

+ R3Z - ( R+h)Z ] 

ZRIR3
 

¢ 3 = ¢' - Tr/ Z
 

Recalling,
 

6­
8 3 = toe aircraft bearing measured positive from west (i.e., Tr/Z radians 

plus the bearing from true north). 

~ 

V3 can be written as 

~ 

V3	 (R3 cos ¢3 sin 83 iZ, R3 cos ¢3 cos 83 jz, R3 sin ¢3 'Z)
 

(a3 iZ' .b3JZ, C3kZ)'
 

~ 

We want ;0 exp~ess VJ in terms of the geocentric coordinates (i.e., 
Vj = (a3 il' b3jl' c3 kl)· 

The proper coordinate transformations are 

a3 = (-sin ¢l sin 81aZ + cos 81bZ + cos ¢l sin 81cZ) 

b3 = (-sin ¢l cos 81aZ - sin 81bZ + cos ¢i cos 81cZ) 

By substitution, 

~ 

V3 = R3[(-sin ¢l sin 81 cos ¢3 sin 83 + cos 81 cos ¢3 cos 83 + 

cos ¢l sin 81 sin ¢3) i l + (-sin ¢l cos 81 cos ¢3 sin 83 

sin 81 cos ¢3 cos 83 + cos ¢l cos 81 sin ¢3)jl + 

(cos ¢l cos ¢3 sin 83 + sin ¢l sin ¢3) kl] ­

--"	 ~ ~ 

Vz is	 related to VI and V3 by the vector equation 

Equating components gives 
A 

kl:	 Cz = cl + c3
 

RZ sin ¢Z = cl + c3
 

¢Z = sin- l [~(Cl + c3)] .
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The 
82, 

i and j components can now be used to compute the sine and cosine of 

A 

il: aZ = al + a3 

sin 82 = [1
R2cos<P2 

(a 1 + a 3) ] 

cos 82 = 

The longitude, 82' is then given by 

52 = tan- l (sin ~?) = tan-l (~l + a3).
 
cos 02 bl + b3
 

When performing this computation, care must be exercised to as sur e that 
82 falls in the correct quadrant of the equatorial plane. The function 
is defined so that it yields longitude values which range between - 1T and 
+ 1T. 

82 tan-l(a l + 
a3 ) for (bl + b3) > 0,
 

bl + b3
 

+82	 tan- l (a l a~+ 1T for (bl + b3) < 0 and (al + a3) > 0, 
bl +	 b 

82 = tan- l (a l + a 3)_ 1T for (bl + b3) < 0 and (al + a3) < 0,
 
bl + b3
 

82 =	 1T/2 for (bl + b3) o and (al + a3) > 0, 

82 =	 -1T/2 for (bl + b3) = o and (al + a3) < O. 

North and West Position Components. Neglecting the curvature of the 
A A 

earth, the 12,j2 components of the aircraft position are 

Positionwest = Xl = R3 cos <P3 sin 83 ~2 

A 

Positionnorth = 11 = R3 cos <P3 cos 83 j2 

~ 
with	 R3 the distance of the aircraft from the VOR/DME station 

~	 A A 

<P3	 the angle that the aircraft makes with the i2,j2 plane 

~ 
83	 the aircraft bearing measured positive from west
 

(i.e., 90 degrees plus the bearing from true north.)
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North and West Velocities. The velocity components are calculated 
with the true airspeed as a function of the aircraft's heading. 

We define 

w ~ the pitch angle (the angle that the longitudinal axis of 
the aircraft makes with the 12 ,31 p l ane ).. 

64 = the heading of the aircraft relative to the north
t::. 

(positive 
clockwise) 

UA 
t::. 
= true airspeed 

The northern component of the velocity is given by 

The western component of the velocity is given by 
A 

Uw = -UA cos Wsin 64 j2' 

Therefore, the ground speed is 

RECOVERY BLOCK INDEPENDENCE. 

To "force" the independence of the two alternates in the· recovery block, 
the equations which determine the north and west position components, the 
aircraft l~titude and longitude, and the north and· west velocities are 
"forced" to perform their calculations differently. The primary alternate 
calculates the sine and cosine values with the use of the Ada math library. 
However, the sine and cosine terms in the secondary alternate are .determined 
with the use of a power series representation for these functions. The 
Maclaurin series for the sine function is 

x3 X5 x2n+ l 
sin x = x - +sr- ... + ( -un + e •••"'IT (2n+U! 

The Maclaurin series for the cosine function is 

x4 x2n ~ 
cos x = 1 - 2! + 4! - ... + ( -un (2n)! + 

The Maclaurin series may be used. to approximate values of the sine and 
cosine functions. When the polynomial approximation for the sine func tion 
involves using the sum of the first two terms, the error is less than 
I x5 1 /5! . The error involved in us ing the sum of the firs t two terms in 

4/4!.the cosine function is less than x
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In the determination of the aircraft latitude and longitude, the inverse 
of the tangent function is used. To make the two alternates explicitly 
different, the primary al ternate uses the Ada math library to determine 
these values and the secondary alternate uses the interval halving method 
of numerical analysis. This method is sometimes called the bisection method 
and enables the determination of a root of f Cx ) = 0, accurate within a 
specified tolerance value, given values of xl' and x2 such that f(xl) and 
f(x2) are of the opposite sign [7]. 

ACCEPTANCE TEST. 

An acceptance test is a logical expression or algorithm which checks the 
acceptability of the results that are generated by a software component­
[1]. For the navigation software, the acceptance test will be an independent 
calculation of the aircraft's velocity components. These velocity components 
are compared to those determined earlier. 

For the acceptance test, the north and west velocity components are 
determined by the change in the north and west position components with 
respect to the change in time. For an aircraft in flight, with points 
PI and P2 indicating the aircraft's positions at times tl and t2' 
respectively, the corresponding north and west position components (Xl, 
Yl and X2' YZ) are calculated. The velocity components are then determined 
using ,the following equations: 

VelocitYwest 

If the velocity component calculations are found to be correct with the 
acceptance test, then it will be assumed that all of the navigation recovery 
block software is correct. If the primary a lte rna t e is in use and the 
acceptance test fails, the software will recover the input state to its 
condition prior to when the incorrect or faulty version was run (known 
as "rollback") and restart the computation using the secondary al ternate. 
If the acceptance test fails while the secondary al ternate is in use, then 
the entire naVigation software will fail. 

EXAMPLE. 

Consider the navigation station located in Albuquerque, New Mexico. Assume 
that the station elevation is at sea level. Assume that an aircraft is 
flying at an altitude of 15,000 feet, a distance of 50 nautical miles from 
the station, with a northeast· heading. The aircraft's tuned frequency 
is 113.2 MHz. Its true airspeed is ZOO miles per hour. 

From Table C-l, we find the station frequency t'or Albuquerque, New Mexico 
is 113.2 MHz. and its class is high (H). Since the tuned.frequency matches 
the station frequency, the frequency check passes. 
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With Table 2, since the station's class is high, it has an effective "range 
of 100 nautical miles for aircraft flying at an altitude betwen 14,500 
feet and 17,999 feet. We have assumed that our aircraft is flying at an 
altitude of 15,000 feet, so its distance must be less than or equal to 
the station's effective range of 100 nautical m{les. In this case, 50 
nautical miles is less than 100 nautical miles, so the range check passes. 

The unusable area check passes since we do not have any unusable areas 
declared for this navigation station. Similarly, the cone of confusion 
check passes 
is not too la

since 
rge. 

the.aircraft's elevation angle with respect to the station 

The aircraft 
values: 

latitude and longitude are determined using the following 

¢l = 35: 2: 37.4 N = 35.04J72° 

61 = 106: 48: 56.6 W = 106.81572° 

(The station latitude and longitude are obtained from Table D-l.) 

63 = 135° = tqe bearing measured positive from west 

= 90° + the bearing from true north 

Rl = 3443.93 

(The earth's radius is assumed to be 6378.163 km 3443.93 n mi = 20925732 
feet [8] . ) 

Rj = 50 n mi
 

R2 = R + h = 3446.77
 

[The aircraft altitude, h, is 15,000 feet = 2.4687 nautical miles (1 nautical
 
mile = 6076.115 feet [9] ).] 

2 2 2 
¢3 = cos - 1 [R1 + R3 - R2 J' - 90 ° 

2RIR3 

-1 r (3443.93)2 + (50)2 - (3446.77)21 900 
cos l 2(3443.93)(50) J-

The aircraft latitude is computed by 

Rl sin ¢l = (3443.93) sin (35.04372) 1977.5092 
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(50)	 [cos (35.04372) cos (2.84) sin (135) + sin (35.04372) sin (2.84) 

= 30.3329 

~2 = sin- 1 [R~ (cl + c3)] = sin- 1 [344~.77 (1977.5092 + 30.3329)] 

= sin- 1 (0.5825286) = 35.6286° 

Therefore, the aircraft latitude = 35.6286° = 35: 37: 42.92 N. 

The aircraft longitude -is computed by 

bl	 = Rl cos tt cos 61 = (3443.93) cos (35.04372) cos (106.81572) a 

= -815.69292 

b3	 = R3 (-sin ~1 cos 61 cos ~3 sin 63 - sin 61 cos ~3 cos 63 + 

cos ~1 cos 6 1 sin ~3) = (50) [-sin (35.04372) cos 006.81572) 

cos (2.84) sin (135) - sin 006.81572) cos (2.84) cos (135) + 

cos (35.04372) cos (106.81572) sin (2.84)J 

=	 39.081 

al	 = Rl cos ~1 sin 61 = (3443.93) cos (35.04372) sin (106.81572) 

= 2699.0288 

cos ~1 sin 61 sin ~3) 

= (50)[-sin (35.04372) sin (106.81572) cos (2.84) sin (135) + 

cos (106.81572) cos (2.34) cos (135) + cos (35.04372) 

sin (106.81572) sin (2.84)J
 

= -7.2520886
 

tan- 1 (2699.0288 - 7.2520886) 
-815.69292 + 39.081 

62 = tan- 1 (-3.4660512) + 180 0 since (bl + b3) < 0 and (al + a3) > O. 

62 = 106.09353° 
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Hence, the aircraft longitude is 106.09353° = 106: 5: 36.71 W.
 

The north and west position components are determined as:
 

West position component
 

Xl = 35.3119.
 

North position component
 

Yl = -35.3119. 

Here J we assume that the aircraft's pitch angle is 10° and the heading 
is 45°. 

The north and west velocity components are computed as 

velocitYwest = 200 cos 10° sin 45° = 139.27 miles per hour 

velocitYnorth = 200 cos 10° cos 45° = 139.27 miles per hour 

NOMENCLATURE. 

The modules for these calculations incorporate the recommended nomenclature 
of the Integrated Control Mathematical Routines for MIL-STD-1750 Built-In 
Functions (BIFs). This nomenclature is shown in Table 3. 

TABLE 3. RECOMMENDED NOMENCLATURE [10] 

Variable Nomenclature Ada Identification 

-Latitude LAT LAT:FLOAT; 

Longitude LONG LONG: FLOAT; 

Relative Bearing BEAR REL BEAR_REL:FLOAT; 

True Airspeed AIRSPEED TRUE AIRSPEED_TRUE: FLOAT; 

True Heading HDG TRUE HDG_TRUE:FLOAT; 
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A-I 

SOFTWARE FAULT-TOLERANCE 

by 

Ellis F. Hitt 

INTRODUCTION 

Real-time systems employing software to implement 
application functions which may be critical to the safety of 
the vehicle and its occupants must be assured of the continuous 

correct operation of software (and the hardware on which the 
software executes). Since it is virtually impossible thro~gh 

exhaustive testing to prove that software is free of all design 
and implementation faults, the use of redundant software 
modules (to achieve robustness to external input faults and to 
tolerate design and implementation faults) has been the subject 
of sponsored research and academic studies. The primary 
methpds of using redundant software modules involve either 
sequential or parallel execution. The method followed in 
implementation ~nd processing of the redundant software modules 
distinguishes the software fault-tolerance techniques. 
Software fault-tolerance techniques can be broadly classified 

into two categories: self-chec~ing software, limited to 
detection of software failures; and fault-tolerant software 
which allows the system to recover after a software failure has 
occured [MAKAM]. This distinction is important since, up to 
the point of recovery, the two categories could be identical. 

A software fault is any defect within a software 
component (e.g. a module. a procedure, a process, a collection 
of processes). Software faults may be due to mistakes in 
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translating specification into a design or in implementation of 

the software design. A failure occurs whenever the external 
behavior of a system does not conform to that described by the 
system specification [ANDER8I]. Figu"re A-I represents the 

relationship between these terms. 
Software faults are caused by design mistakes as 

contrasted with hardware faults, which are caused b~ both 
physical wearout and design mistakes. The case where the 
software accepts external-to-the-system faulted input as good 
input is a software fault. Although all software faults are 

due to human mistakes and as such, might seem to cause only 
unanticipated faults, there can be anticipated software faults. 
These faults are exemplified by divide-by-zero and overflow 
fau l t s , 

Fault tolerant principles can be discussed in terms 
of four phases: 

(1) Fault detection 
(2) Damage assessment 

(3) Recovery 
(4) Fault treatment 

Fau It Detect i on 

One way of viewing fault detection in a unified way 
is that all erroneous-state detection is accomplished b~ 

run-time assertions. A run-time assertion is "a logical 
expression specifying a program state that must exist or a set 

of conditions that program variables must satisfy at a " 

particular point during program execution" [IEEE 729-83J. 
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In real-time applications, fault detection occurs at . 
the following levels: 

(1) Correct operation of each processing unit 
(2) Valid transmission of data between digital subsystems 
(3) Data validity, prior to use in subsequent computation 

(a) Input of	 sensor data prior to execution of the 
algorithm implemented in each version of the 
control software 
(i)	 Input range limit test 

(ii) Input rate of change test 
(iii) Parameter correlation check 
(iv) Parameter majority logic check 
(v) Output wraparound test 

(vi) Known input test
 
(vii)" Known output test
 

(viii) Loop dynamic check 
(ix) End of conversion not detected 

(b)	 Dynamic fault detection consisting of a comparison 
signal generation followed by a decision mechanism 
based on the comparison signals 
(i)	 Comparison signals 

-Redundant measurements 
~Identical sensors 
-Non-identical sensors which have one or 
more common components in the state vector 

-Two sensors, having no common component, 
but having a component in common with a 
third dedicated observer 

-Analytic redundancy 
(ii)	 Decision mechanism 

Generalized likelihood ratio 
Sequential probability ratio tests 
Modified sequential probability ratio tests 
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(4) Run-time	 assertion after execution of the software 
module implementing th6 dpplication function prior to 

output of the result to a display used by the crew 
or a control actuator. 

The run-time assertion takes the form of an 
Acceptance Test for recovery blocks and the form of a voter for 
Multi-Version Software- (MVS) (also referred to as N-Version 
Software (NVS)). 

Damage Assessment 

When a fault in the software state information has 
been detected, it is necessary to determine the extent of the 

damage done by the fault before recovery can be accomplished. 

Damage assessment may be derived from constraints on' the flow 
of information in a system. Encapsulation is the concept of 
containing the effects of an action to only the objects to 
which that action in a software component has legal access. 
Through the proper enforcement of encapsulation, it is possible 
to assess the extent of the damage to the state information due 
to a fau It. 

Recovery 

After the extent of the damage has been determined, 

the system must be restored to a consistent state in order to 
resume processing. This entire process (detection, damage 

assessment, and recovery) must take place fast enough to 
satisfy real-time requirements. There are two main techniques 
to accomplish recovery, forward recovery and backward recovery. 
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Forward recovery restores the system to a consistent 
state by compensating for inconsistencies found in the current 
state. Forward fault recovery in a single process implies 
detailed knowledge of the extent of the damage done and a 
strategy for fixing the inconsistencies. While this may be 
possible in certain cases where the recovery process was 
designed to handle th~ detected fault, it is difficult to 

conceive appropriate strategies in the case of unanticipated 
faults such as transient faults. 

Backward recovery, cften referred to as roll-back, 
involves restoring the system to some previous known correct 
state and restarting the computation from .that point. "The 
basic problem is to keep copies of past states of processes, 
being sure that: a) copies of process state~ are consistent 
with one another, so that the state reached after a recovery is 
really correct; an important issue is to minimi~e the amount 
of information needed for roll-back; b) copies of process 
states are protected against failure of system components." 
[BARI GAlZI] 

Backward recovery must obey the "roll-back 
consistency rule: If a process Pi is rolled back to a state of 
its past history, in which the last message exchanged with 
process Pj was M, then Pj must also be rolled back to a state 
in which the last message exchanged with Pi was M." [BARIGAlZI] 

Fau 1t Treatment .. 

Once a fault has been detected, the damage assessed, 
and fault recovery accomplished, fault treatment attempts to 
remedy the fault condition. The damage assessment phase should 



identify which software component caused the fault such as 
through the use of the concept of encapsulation. If the level 
of encapsulation is at the software component, then possible 
courses of action are to ignore lhe fault either temporarily 

(i.e., skip frame) or forever (i.e., delete the function 
performed by the software component and continue to operate the 

system in a degraded model, retry the function with existing 
components, or reconfigure with alternate components. 

Response Time And Synchronization 

No matter which fault tolerant software method is 

used, real-time systems must arrive at a consistently correct 
solution within the time frame determined by the control system 
dynamics. A rule of thumb often given for selecting sampling 

rates is that a rate of at least five times per system time 
constant is a good choice. This necessitates that the response 

time, d~fined as the delay between the t~iggering of a job by 
the arrival of the relev~nt sensor input to the 
actuator/display output that f ina l ly results, be no more than 
1/5 of the system time constant. The response time is the sum 
of the time for reaching agreement on the sensor data, the time 
for execution of the application function, sjnchronization and 
reaching agreement that its output is correct, and either 
moving the actuator, or displaying the result. Obviously, time 
spent in fault detection, damage assessment, recovery, and 
fault treatment at each level must be accounted for in 
determining the response time. Failure can occur due to 
excessively long response times, e.g. the system goes unstable 
since the hard deadlines for code execution are 

missed.[KRISHNA] 
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Synchronization, such as that required at each point 
of fault detection, can be performed using software or 
hardware. Software synchronization has significant overhead 
and the trend is to hardware synchronization [KRISHNA p.6, 
ALLAN], although some commercial systems utilize software 
voting on inputs and hardware voting on outputs. 

DESCRIPTION OF PRIMARY FAULT TOLERANT SOFTWARE TECHNIQUES 

There are two primary methods for providing software 
fault tolerance: mr lt i-vers f cn ~rograrrming(N-vers;on 

programming) and recovery blocks. Investigations into 
combinations of these methods have been conducted at many 
universities [HITT]. This report will concentrate on the two 
main methods and the reader is referred to the foregoing 
reference for description of the combinations. 

N-Vers ion Programming (NVP) 

N-version programming is the process of independently 
specifying, designing, generating, and maintaining multiple 
versions (N)2) of a program (module) for the same application 
function. This is done by separate, independent, non­
communicating programmers who may use different algorithms and 
even different languages [CHAl8]. It is important to realize 
that N-vers ion programmi ng is 'defined to be a genera 1 
methodology for producing highlj independent, redundant program 
modules. It does not restrict the way these multiple versions 
are operated in a computer. Thus, NVP could very well be used 
to produce several alternate blocks for use in the recovery 
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block method [MAKAM p3]. Recent 'experimental results reject 
the hypothesis of different versions having independent faults 

[KNIGHT/LEVESON]. This does not mean that NVP does not provide 
fault tolerant software, but does indicate that software 
reliability models based on the assumption of independence may 
give overly optimistic predictions. 

Multi-Version Software (MVS) 

The software obtained by NVP, controlled with a 
system level driver and executed in parallel on a computer 
system as a unit is called multi-version software (MVS) [MAKAM, 
ANDER8l]. If there are N active versions executing in 
parallel, this has been called N-version software (NVS) 

[MAKAM]. 

"The	 driver is responsible for: 

(i) invoking each of the versions; 
(ii)	 waiting for the versions to complete their 

execution; 
(iii)	 comparing and actir,g upon the N sets of results." 

[ANDER8l] 

The organization and operation of the computer system 
on which NVS is implemented must be taken into consideration. 
If multiple processors are used which is the normal case for 
NVS, the architecture of the processors impacts the performance 
of the system. Figure A-2 depicts the classifications of various 
parallel-processing architectures. Relevant factors include 
whether the system architecture is parallel or distributed. If 
parallel, whether it is single instruction/multiple data 

(SIMO), where all processing elements 
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debate. Because many of the

MULTI PROCESS ING system differences and 
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DATA FLOW 

MIMD 
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MULTIDATA-STREAM) 

SW ITCH NETWORK1 

SOURCE: ROBIN CHANG, INTERNATIONAL PARALLEL MACHINES 

FiGURE A-2. PARALLEL-PROCESSING CLASSIFICATION 
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simultaneously/synchronously execute the same instructions on 

different data, or multiple instruction/multiple data (MIMO), 
where the processing elements are not necessarily synchronous 
and execute different instructions on different data. At the 
initiation of a major frame, each of the N-versions must have 
access to an identical set of input values. Intermediate 
results would not necessarily have the same data, but the final 
result output to the v~ter must represent the output data value 
and be in a consistent format. 

If a distributed processing architecture is used, the 
consideration of tightly coupled versus loosely coupled 
architectures also must be taken into account. In a tightly 

coupled architecture, the computers are not autonomous and may 
be interconnected by a hardware clock. Tightly coupled multi­
processors share access to cO~un memory and share one copy of 

the operating system. Loosely coupled architectures supply 
each processor with its own memory and its own copy of the 
operating system, allowing each to operate relatively 
autonomously [HINOIN]. Practically speaking, if the processors 
exchange results over an external data bus, as contrasted with 
an internal backplane bus, the architecture will not be tightly 
coupled since the bus protocol of existing buses, along with 
bus transport delays, effectively makes control by a master 
clock impractical. Hence, the driver software must implement 
the synchronization. 

Synchronization is very important in MVS. There are 
three primary software methods: 

(i) Clock synchronous 
(ii) Frame synchronous 

(iii) Event synchronous. 
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The synchronization method has to allow for different 

execution times for each version, including the case where a 
version might get stuck in an infinite loop due to a design or 
implementation fault. This case is often handled using a 
watchdog timer (a timeout mechanism) coupled with the 
synchronization method. Clock and frame synchronous systems 
have been designed to achieve tolerance to hardware faults, the 

best examples being Fault Tolerant Multiple Processors (FTMP) 
and Software Implemented Fault iulerance (SIFT), respectively. 

Clock synchronous performs the voting check (usually 
bit-by-bit) at predetermined fixed times rather than waiting 
for completion signals from the versions. This is very 
difficult to implement for an NVS as compared to the case of N 
modular redundant (NMR) processors exe~uting identical versions 
in parallel [ANDER8!]. 

Frame synchronous mechanizations partition the 
control task a priori into a number of subtasks, each of which 

needs to be iteratively executed in some time relationship to 
the other subtasks and each of which can be completed in a 
single frame in a block of frames. These subtasks can then be 
assigned to frames in specific patterns such that the 
sequencing of the subtasks is correct and such that the 
iteration frequency of each subtask is correct. The resulting 
pattern normally repeats every n frames and this block of n 
frames is called a major frame as shown in Figure A-3. Exchanges 
between channels of input data and output data are scheduled a 
priori. This approach requires multiple frames to comp]ete the 
process of sampling an input, transfer of this input to all 
versions, processing of the input to produce an output for each 
version, and voting on the outputs. This results in a 
transport delay of three or four frames. 

Event synchronous systems are loosely coupled and 
evolved from the frame synchronous systems in order to achieve 
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tolerance to design faults in the software. The major events 
a~ which synchronization takes place between redundant 
computing elements are: inputs, outputs, interrupts, 
programmed exceptions, and the intermodule and interprocess 
communication in the multi-version software [MAKAM]. 

Initially a version is in an inactive state. When 
invoked by the driver,· it enters into a waiting state where it 

waits for a synchronization signal representing a request for 
service from the driver. When this signal is received, it 

transfers into a running state as shown in Figure A-4. If any 
terminating condition is signaled by the status in the 
comparison vectors, then the execution of this version is 
terminated and it returns to the inactive state. Otherwise, it 
generates a comparison-vector when a cross check (cc)-point is 
satisfied. It then uses a synchronization signal to notify th~ 

driver that a comparison-vector is ready, and finally returns 

to the wait state. 

Synchronization between the N processors is 
accompl ished under control .of the" driver using a 
synchronization algorithm. Each processor enters a 
synchronization phase when it generate~ a synchronizing event 
and transmits a synchronization message or when it receives the 
first synchronization message from another processor. A 
time-out clock is activated when a processor enters a 
synchronization phase. A processor enters a wait-phase within 
a synchronization phase only if it generates a synchronization 
event but not when it receives a synchronization message from 
another processor. The wait phase is terminated by an 
internally generated time-out interrupt at the end of a preset 
time-out limit, or earli~r if N-l synchronization messages are 
received. The synchronization phase is terminated when all the 
synchronization messages are processed by the processor and its 
normal execution is resumed [MAKAM]. 
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Error Detection 

It is desirable to be able to distinguish between 

errors due to software design faults and hardware physical 
failures or malfunctions. Software faults can be in the driver 

operating system (OS) or in the application software (AS). 
Errors are detected by-two basic mechanisms: the 
synchronization procedure and the decision function (voter). 
Synchronization, voting, and error recovery are provided by the 

underlying operating system and hardware in NVS. 

Synchronization errors can be grouped into 
incompatibility errors and timing violations [MAKAM]. The 
actual processing of synchronization messages involves checking 
for compatibility of event-types (and label fields), running 
the decision function on the comparison-vector data to get the 
most acceptable results, and finally updating the local 
comparison-vector. 

Since physical clocks do not keep perfect time, but 
can drift with respect to one another, the clocks must be 

periodically resynchronized. This can be done in software by 
exchanging clock values. A global functional resynchronization 
of processes should be performed periodically by the as to 
recover from f.aults of any type and origin which cause a 
processor to temporarily lose its context and hence its 
coordination with the other prccessors. Dynamic 

resynchronization in an event synchronou~ design requires the 
restart points be defined a priori and implemented as part of 

the global scheduling algorithm in the driver operating system. 

Applications Software. Consider the forms of logical 
structure available in Ada as shown in Figure A-5. These are: 
blocks, sUbprograms, packages, and tasks. A block ;s a section 
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of program code located in the executable part of some logical 
unit (subprogram, main program, ~ackage, or task) optionally 
prec~ded by a declarative part and optionally followed by 
exception handlers. A task is a subunit whose parent task may 
be a subprogram, a declare block, a package, or another task. 
The execution of the parent task determines the start and 
finish of the execution of the task. 

Application Software 

Pack age Subprogram Task 
Subprogram Procedure Task 

Procedure 810ck Block 
Block Statement Statement 

Statement Task 

Task Block 
Block Function 

Function Expression 
Expression 

FIGURE A-S. SOFTlJARE STRUCTURE HIERARCHY 

Versions Error Detection. The decision function 
(algorithms used for comparison of output variables from each 
version) for an event synchronous system depends on the type of 
comparison-vector, but must permit an inexact match at most 
crosscheck (cc) points due, for example, to inexact sampling of 
inputs, and different computational precision in each version. 
Characterization of a cc-point includes the specification of 
the data formats of all the comparison-variables in the 
comparison vector, the error tolerance limits (if non-zero), 
and the time constraints to be satisfied (in real-time 
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applications) by the segments of software between any two 
adjacent nodes as shown in the cc-point graph of Figure A-6a &A-6b. 
[MAKAM p.40J. All N versions have the same number of built-in 
cross-check points which serve as both synchronization points 

as well as communication ports between the different versions. 

The driver operating system executes the decision function, 

updates the comparison variables (or performs output), controls 
the exchange of data, ~nd finally returns control to the 

application software under control of the operating system 
scheduler which is event synchronized. 

Damage Assessment 

Damage assessment is not required in an NVS if the 

activities of the versions are atomic [ANDER81, p.279J. Error 
location becomes important if one wants to distinguish between 

errors due to software design faults (operating system or 
application software) and hardware physical faults. The 
strategy for discovering the origin of a fault depends on the 
design approach. Heuristics have been suggested for isolating 

a hardware failure and a software fault [MAKAM p.75-76J. 

Recovery 

Recovery in NVS normally' involves ignoring the values 
identified as erroneous by the check [ANDER81 p.279J and 
continuing to the next major frame as long as a minority of the 
processors' synchronization messages disagree. The minority 
processors should attempt resynchronization with the majority 
good processors. If a clear majority of the processors do not 
produce compatible synchronization messages, then a global 
resychronization becomes necessary [MAKAM p. 70J. 
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Fault Treatment 

Fault treatment in NVS simply results in the versions 
determined to have produced erroneous results being ignored 

[ANDERS1 p.279]. The operating system should provide a default 
failure exception nandler task to determine the type of such 

exception and save the status in a special buffer to be used 
later by the error manager. At the next cross-check point, the 
decision function will indicate the particular version in 
error. The reconfiguration task can then either reinitialize 
the failed task such that there are no states which are 
inconsistent, or replace the version by unlinking the module 
completely encapsulating the failed program segment and 

replacing it with a compatible but more reliable unit from a 

different version. 

Alternate NVS Syst~m Architectures 

Figure A-7 depicts various alternate architectures for an NVS 

system. 

The first architecture is illustrative of a system 
with redundant analog sensors whose output must be sampled and 
converted to a digital value for input to a version that 
implements a function such as computing the present state 
vector of the vehicle. The driver operating system must 

synchronize the start of the conversion by each 
analog-to-digital (A/D) converter. If a voter is part of each 
version as indicated in Figure 7a, each voter module must 
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(whether hardware or software) start a timer and await the DATA 
READY indication from each converter, at which time the data 
can be transmitted over the processor data bus for use by the 
input voter. When all three AID outputs are received, the 
voter decision function can be invoked either by the local 
operating system or the driver operating system to arrive at 

the value to be input to the version. The operating system 
must monitor the compl~tion of all voters prior to 
synchronizing the start of each version's processing. Since 
the versions will have different execution times, the voter on 
the output of each version must wait until all versions' 
results are available for the vote using the applicable 
decision function, or .the version execution time watchdog timer 
times out. The operating systGm must again monitor the s~atus 

of each versions completion, and vote completion. The outputs 
from each version to the.dig~tal-to-analog (D/A) converter 
should be synchronized by the director operating system. The 
input to a D/A is parallel. The final step of the voting 
process is to prepare the output for transmission under command 
of the director operating system to the D/A. If the D/A is 
connected to the processer"s parallel data bus, no further 
conversion would be required once the data is received by the 
D/A. If a serial data bus is used to transmit the output from 
the processor containing each version, the D/A must be preceded 

by a serial to parallel conversion to utilize the data. This 
serial to parallel conversion should be synchronized by the 
director operating system so that the actuator complex receives 
the analog values computed by each version at the same time 

. instant for each channel. Obviously, there are tradeoffs of 
software complexity as to whether the local operating system 
for each version of the director operating system controls the 
cross check points of the input voter, start of each version, 
completion of each version, and output voter. To summarize, 
the director operating system must control the synchronization 
of the start of AID and D/A conversion at a minimum. 
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Figure 7b represents a somewhat simpler, but 

potentially less fault tolerant architecture due to the single 

point failure possibility for either voter. In this 
architecture, the input and output voters are not part of the 
version but are implemented in the driver operating system. In 
this architecture, the directcr operating system: 

(1) controls start-of AID conversion, 

(2) implements and controls the input voter, 
(3) controls start of each version, 
(4) implements and "controls the output voting, and 
(5) controls tne transmission to the single D/A. 

The architecture in Figure 7c is typical of a system 
which has a single sensor for measuring some data parameter 
required by a function. In this case, the driver operating 
system controls: 

(1) the start of AID conversion and the writing to a 
memory buffer accessible to each version,
 

(~) the synchronous start of each- version,
 

(3) implements and controls the output voting, and 

(4) controls the transmission to the single D/A. 

As can be seen from these examples, implementing an 
NVS system requir~s much more than simply developing 
independent versions of a module, and voting on the output. 
The driver operating system contains some different procedures 
for each architecture. The processes of damage assessment, 
recovery, and fault treatment for each of these architectures 
will have some similarities but also differences dependent upon 
the approach taken by the designers. 
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Recovery 8lock 

The recovery block technique for providing tolerance 
to software faults in sequential programs is based on the 
concept of developing multiple independent versions of a 
software module with a single version processed at a time, 
followed by sUbjecting the output of that version to a run time 
assertion, called an acceptance test. Should the output of the 
version fail the acceptance test, the system is restored to the 
state which existed prior to the execution of the version which 
failed the acceptance test, and the operating system invokes 
the first alternate version for the function whose primary 
version failed. The output of the first alternate version is 
subjected to the same acceptance test used for the primary 
version. If it passes, the operating system invokes the 
primary version for the next function to be executed- and the 
process proceeds in a similar manner as depitted in Figure A-8. 

<recovery block>::=ensure <acceptance test> by
 
<primary alternate>
 
<other alternates> else error
 

<primaryalternate>::=<alternate> 
<other alternates>::<empty>j<other alternates> 

else by <alternate> 
<alternate>::=<statement list> 
<acceptance test>::=<logical expression> 

FIGURE A-S. SyrHAX FOR RECOVERY [lLOCK [flELLIAR-SrHTH] 
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If the first alternate fails, the second alternate 

version is scheduled if the remaining time permits it to 
execute and be subjected to the acceptance test while still 

maintaining real-time operation. In a real-time environment, 

missing a hard time deadline for executing a process can lead 

to system failure, or at least a degradation in performance. 
In the case of the recovery bleck, this can happen due to a 
number of reasons including: 

(1)	 a faulty acceptance test, 
(2) exhausting	 the spare modules with none passing a valid 

acceptance test, and 

(3)	 run time of the versions and acceptance test exceeding 
the time' frame dictated by the real-time requirement. 

If the recovery block fails, recovery is attempted,at 
the next higher level which could be another recovery block in 
the case of nested recovery blocks. 

Error Detection 

"The first stage in providing fault tolerance is to 

detect errors arising from the ~xecution of the prima~ module" 

[ANDER81, p. 251]. Assertions can be included in the module 
itself. This by itself is not sufficient and must be followed 
by the completion of an acceptance test which executes after 
the primary module has run. The acceptance_test shall raise an 
exception if the module output does not pass the test. 

"The function of the acceptance test is to ensure 
that the operation performed by the recovery block is to the 
satisfaction of the program .which invoked the block. The 
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acceptance test is therefore performed by reference to the 
variables accessible to that program, rather than variables 

local to.the recovery block, since these can have no effect or 
significance after exit from the block. Indeed the different 
alternates will probably have different sets of local 

variables." [RAND75] 

"When an acceptance test is being evaluated, any 
non-local variables that have been modified must be available 
in their original as well as their modified form because of the 

possible need to reset the system state. For convenience and 
increased rigor, the acceptance test is enabled to access such 
variables either for their modified value or for their original 
(prior) value." [RAN075] 

Damage Assessment 

Damage assessment is not currently used in the 

recovery block technique. In the case of a fault being 
detected by the acceptance test, one would ideally like to 
return to the state nearest in time to the present time that 
allows full regeneration of lost results. To perform such a 
feat in real-time is very difficult, so no attempt is made to 
locate that state in current recovery block implementations. 

Recovery 

Recovery blocks primarily re lyon backward recovery. 

For single sequential processes, the systen saves the" state at 
the a priori determined recovery point prior to beginning the 
execution of the primary version. No damage assessment attempt 



is made. The inherent danger in this approach for a system 
with concurrent processes is the rollback propagation in which 
rollback of a process may cause other processes to rollback 
because of process interaction. This rollback propagation can 

·ccintinue until a globally consistent state is reached and 

could, in the worst case, necessitate a restart [ANDER8!, 
GOLDBERG, SHIN, VELARDI]. Two approaches to dealing with this 
phenomena are the techniques of "conversations" between 

processes [RAND75, GOLDBERG] and the recovery cache [LEE, 
MELLIAR-SMITH] • 

Fau It Treatment 

Fault treatment in the recovery block technique re1ys 
on one of the alternate versions being correct and passing the 
acceptance test. In real-time applications which repetitively 
perform the same functions througout a mission, a version which 
persistently fails the acceptance test would be removed from 
the· execution schedule and replaced with a spare. if one were 
available. Whether a spare is available or not, the fault log 
would be retained and the faulty version removed from the 
execution schedule and subjected to analysis to determine the 
specific faults that caused it to consistently fail the 

acceptance test. 
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SOFTWARE SYSTEM ERROR DETECTION AND CORRECTION TECHNIQUES 

by 

Ellis F. Hitt 

1. INTRODUCTION 

1.1 Requirements Definition 

The software req~irements for the experiments which will provide data 
from real-time implementation of one or more of the eXisting fault 
tolerant software techniques include ~he functions to be implemented, 
the test drivers, and the data to be acquired. This document 
accompanied by the formal software specification to be developed under 
Subtask 2.2 meet the requ~rements of Document No.2 referenced in 
RTCA/DO-178A [RTCA]. 

2. Recov~ry Blocks 

2.1 Functions to be Implemented 

The components of the system state vector to be estimated are: 
latitude, longitude, altitude, north and east velocities. The north 
and east velocities will be used to compute the desired velocity 
output, the true velocity. The recovery block will be evaluated for 
implementing these navigation functions which provide the components 
of the state vector: 

(1) Altitude from air data 
<2> VOR/DME/air data [BRYSON] yields estimates of latitude, 

longitude, and north and east velocities~ 

The coordinate systems to be used are the: 
(1) inertial frame 
<2> earth fixed 
(3) local level or geographic 
(4) body 
<5> navigation (local horizontal) CHITT85J. 

2.2 Recovery Block Implementation of Navigation 

2.2.1 Sequential Processing 

A major frame will be composed of a sequence of minor frames as shown 
in Figure 6-1. At the start of each minor frame, the frame timer is 
reset to zero. In the minor frame the navigation process is to 
execute, the inputs will be read from the respective addresses. The 
recovery point will be established. Th. inputs will be tested for 
validity and then be processed by the primary version. The output 
will be SUbjected to the acceptance test. I If the output passes the 
acceptance test, it is written to the output addresses and no further 
processing of the navigation function is required until the next minor 
frame in which navigation is scheduled. If the output fails the 
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FIGURE 8-1. RECOVERY BLOCK TIllE LIrlE 
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acc~pt3nc~ test, the system rolls back to the r~cove~y point and 
invokes the £irst alte~~ate version. This process con~inues un~il the 
output passes the acceptance test or the mi~or i~ame timer t~mes out. 

2.2.2 Response Time 

The minor £rame time shall be 25 milliseconds. Forty minor £~ames 

shall comprise the major £rame. Within each minor £rame the recovery 
block is scheduled to execute, the total time must be allocat~d to the 
input processing, establishi~g the recovery point, executing the 
primary version, executing the acceptance test, and either purging the 
recovery point i£ the output passes the acceptance test, or rolling 
back to the recovery· point and repeating the process using an 
aiternate version. The primary version as well as each alternate 
version must execute in a given time increment. For the purpose o£ 
this project, this time shall be less than 2 milliseconds. The entire 
process £rom minor £rame timer start to completion o£ the execution o£ 
the £irst acceptance test shall be less than 5 milliseconds. 

2.3 Requirements 

The recovery block model o£ the system shall make use o£ the states 
and system model given in BRYSON. A primary and at leas~ one 
alternate version shall be provided. The acceptance test shall be 
separately speci£ied and developed. 

2.3.1 Sensor Inputs 

Sensor inputs shall be assumed to be transmitted over a simulated MIL­
STD-1553B data bus. This establishes a 16 bit data word with parity 
as the last bit. The MSB is transmitted £irst and parity last. 

2.3.1.1 Air Data Inputs 

2.3~1.1.1 Data Type 

The input variable dat3 type shall be integer as specizied in [ASDJ. 

2.3.1.1.2 Input Data Word Formats 

The data word £ormat is the structure, order, and value represented by 
the bits in a signal data transmission. The data word £ormat is as 
£ollows £or each input variable: 

Barometric Altitude MSB: 16,384 
Units: Feet LSB: 1 

Coding: 2's.complement. Integer. 
Max: .32,768 
Min: - 1,000 

BIT 1 23456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
TIMES SYNC SIGN MSa • • • • • • • • • • • • • LSa PARITY 

Trar.smission Rate: 20 H= 

Indicated Airspeed 
Units: Knots 

~SB: 4,096 
LSB: 2£-3 
Codi~g: 8NR 
~ax: e,lS: 
Mi~: 0 
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BIT 1 2 :3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
TIMES SYNC I1Sa • • • • • • • • . ..... • • • Lsa PARITY 

T:ansmission Rate: 20 H: 

2. 3 .. 1. 2 VOR/DME Inputs 

2.3.1.2.1 Data Type
 

The input data shall be real.
 

2.3.1.2.2 Input Data Word Formats
 

The data word format follows for each input variable:
 

Magnetic Bearing to VOR MSB: 90 
Units: Degrees LSB: 0.04394531 

Coding: BNR 
Max: "'180 
Min: -180 

BI~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
TIMES SYNC SIGN I1SB. • • o 0 PARITY• • • • • • • LSB	 0
Transmission Rate: 20 Hz 

Distance to VORTAC	 I1SB: 327.68 
Units: Nautical Miles	 LSB: 0.01 

Coding: BNR 
Max: 655.36 
Min: 0 

BIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
TIMES SYNC MSa· • • • • • • • • • • •	 • • LSB PARITY 
Transmission Rate: 20 H: 

2.3.2 Processing 

The VOR/DME measurement	 model shall be based on that given in BRYSON. 

The recovery block (~ITT86J mechani:ation shall sequentially: 

1. Validate input data 
2. Establish recovery point 
3. Execute subprogram for primary version­
4. Execute acceptance test 
5. Ii subprogram passes acceptance tes~, then purge rec~very 

point and wait until next scheduled minor frame, else rollback t~ 

recovery point 
6. Execute subpr~gram ior alternate version 
7. Ii subprogram passes acceptance test, then purge recovery 

point and wait until next scheduled minor frame, else rollback to 
recovery point 

8. I£ another alternative available, then e:<ecute. subpr=gram 
for alternate version, else fail. 

2.3.3 Output 

The output 0= the version wh~ch passes the acce~~ance test sna:l be 
conv~rted into the output iormat which iollow~ ==r ~ach ccmpcr.ent 0= 
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the state vector. 

2.3.3.1 Data Type 

The output vpriable data type shall be as g~ven in the data word 
coding :format. 

2.3.3.2 Output Data Word Formats 

The data word :format :follows :for each output variable: 

Latitude, Pres~nt	 11:sa: 45 
Units: Degrees	 LSS: 5.36E:-6 

Coding: BnR 
Max: .90 (. is north) 
Min: -90 

Word 1 
BIT 1 2 345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
TIMES SYNC SIGN I'1SB .. .. .. .. .. .. .. .. .. .. .. .. .. .. PARITY 

Word 2 
BIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1a 19 20 
TIMES SynC .... .. .. .. .. .. .. LSa 0 0 0 0 0 0 0 PARITY 
Computation Rate: 20 Hz 

Longitude, Present	 MSB: 90 
Units: Degrees	 LSB: 5.36E:-6 

Coding: BNR 
MaA: +180 (+ is East) 
Min: -180 

Word 1 
BIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 
TIMES SynC SIGn 11:SB .. .. .. • • .. .. .. .. .. .. .. .. .. PARITY 

Word 2 
BIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1.8 19 20 
TIMES SynC .. .. .. .. .. .. .. .. .. LSB 0 0 0 0 0 0 PARITY 

Computation Rate: 20 Hz 

Barometric Altitude	 MSB: 16,384 
Units: Feet	 LSB: 1 

Coding: 2's complement, Integer 
l'1ax: +32,768 
l'1in: - 1,000 

BIT 1 2 3 4 =: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20'oJ 

TIMES SY~C SIGN MSB .. .. .. .. .. .. .. .. .. .. .. .. .. LSB PARIi'{ 

Computation Rate: 20 Hz 

True Vo:loci":y	 MSB: 4.096 
Units: Knots	 LSB: 2E-3 

Coding: BNR 
Max: 8,192 
:1':':1: 0 

...,	 .,..
... 1	 20a-- 1 3 4: 5 6	 7 9 10 1: 1: 1.3 1~ :5 1.5 1.7 13 .= 
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T!~ES SYNC MS3· • • • • • • • • • • • LSa PARITY 
C~mputa~ion Rate: 20 Hz 

3. Data to be Acquired 

The individual subprograms should be designed to automatically acqui~e 

certain data. So£tware probes will be embedded in the code. Data to 
be acqui~ed £rom each subprogram includes execution time, input 
variables' values, and output variables' values £or each version on a 
stand-alone basis. When the complete recovery block is integrated, 
the outputs shall include the execution time, input variables' values, 
and output variables' values £or each version which £ails the 
acceptance test. 

4. Test Drivers 

The test drivers £or each subprogram shall be derived £rom the input 
speci:ications £or each subprogram. The test drivers £or the 
integrated set o£ subprograms required to implement the real-time 
recovery block shall simulate the input data transmission rates as 
well as the £ull range o£ dynamics derived £rom a simulated aircra£t 
trajectory. 
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NAVIGATION STATION FREQUENCIES 

Table C-l lists some of the navigation stations in the United States and 
their corresponding station frequencies. This data is from a VORTAC listing 
that was compiled around 1970, so there may be old VORTACs that are listed 
that should be deleted~ However, for use in our navigation recovery block, 
this table satisfactorily illustrates our intentions. 

TABLE C-l. NAVIGATION STATION FREQUENCIES [11] 

Location Frequency Location Frequency 

Nabb, IN. 113.5 Attica, OH. 112.8 
Allentown, PA. 117.5 Waterloo, DE. 112.6 
Abilene, TX. 113.7 Watertown, SD. 116.6 
Albuquerque, NM. 113.2 Augusta, ME. 111.4 
Aberdeen, SO. 113. a Austin, MN. 108.8 
Albany, GA. 116.1 Austin, TX. 112.5 
Anton Chico, NM. 110.0 Wausau, WI. 111. 6 
Nantucket, MA. 117.7 Akron, OH. 114.4 
Waco, TX. 115.3 Atlantic City, NJ. 108.6 
Ardmore, OK. 116.7 Addison, TX. 111.4 
Camp Springs, MD. 113.1 Albert Lea, HN. 109.8 
Alexandria, LA. 116.1 Pittsburgh, PA. 110. a 
Augusta, GA. 113.9 Athens, GA. 109.6 
Alliance, NE. 111.8 Bellaire, OH. 117.1 
King Salmon, AK. 112.8 Akron, CO. 114.4 
Albany, NY. 117.8 Allendale, SC. 116.7 
Alice, TX. 114.5 Waterloo, IA. 108.2 
Alamosa, CO. 113.9 Walla Walla, WA. 111. 8 
Amarillo, TX. 117.2 Alma, GA. 115.1 
Anniston, AL. 108.8 Anchorage, AK. 114.3 
Anderson, SC. 108.6 Annette Island, AK. 117.1 
Ainsworth, NE. 112.7 Anthony, KS. 112.9 
Lima, OH. 108.4 Altoona, PA. - 108.8 
Napa, CA. 112.1 Appleton, OH. 116.7 
Naperville, IL. 116.0 Alpena, MI. 108.8 
Acton, TX. 110.6 Yardley; PA. 108.2 
Walnut Ridge, AR. 114.5 Watertown, NY. 109.8 
Astoria, OR. 114.0 Atlanta, GA. .115.6 
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NAVIGATION STATION LOCATIONS 

Table 0-1 gives some of the navigation stations (listed by city and state) 
and their corresponding latitude and longitude. The table is incomplete, 
but suffices to illustrate its use in the calculations. 

TABLE 0-1. NAVIGATION STATION LOCATIONS [llJ 

City, State Latitude Longitude 

Nabb, IN. 38: 35: 19.5 N 85: 38: 9.7 W 
Allentown, PA. 40: 43: 35.7 N 75: 27: 18.4 W 
Abilene, TX. 32: 28: 52.5 N 99: 51 : 47.1 W 
Albuquerque, NM. 35: 2 : 37.4 N 106: 48: 56.6 W 
Al:!erdeen, SO. 45 : 25: 2.7 N 98: 22: 6.1 W 
Albany, GA. 31 : 39: 18.2 N 84: 17: 35.5 W 
Anton Chico, NM 35: 6 : 41.9 N 105: 2: 21.7 W 
Nantucket, HA. 41 : 16: 54.2 N 70: 1 : 38.0 W 
Akron, OH. 41: 6 : 28.2 N 81 : 12: 6.2 W 
Waco, TX. 31: 39: 43.7 N 97: 16: 7.4 W 
Atlantic City, NJ. 39: 27: 20.7 N 74: 34: 36.2 W 
Ardmore, OK. 34: 12: 41.3 N 97: 10: 4.9 W 
Addison, TX. 32: 58: 24.6 N 96: 50: 8.3 W 
Camp Springs, MD. 38: 48: 25.6 N 76: 51 : 59.4 W 
Albert Lea, MN 43: 40: 60.0 N 93: 22: 8.0 W 
Alexandria, LA. 31: 15: 23.2 N 92: 30: 2.0 W 
Pittsburgh, PA. 40: 16: 42.9 N 80: 2 : 27.9 W 
Augusta, GA. 33: 32: 39.8 N 82: 7 : 59.6 W 
Athens, GA. 33: 56: 50.9 N 83: 19: 29.6 W 
Alliance, NE. 42: 3 : 18.4 N 102: 48: 14.9 W 
Bellaire, OH. 40: 1 : 1.0 N 80: 49: 2.8 W 
King Salmon, AK. 58: 43 : 31.3 N 156: 44: 59.9 W 
Akron, CO. 40: 9 : 20.1 N 103: 10 : 45.2 W 
Albany, NY. 42: 44: 49.9 N 73:- 48: 13.0 W 
Allendale, SC. 33: 0: 44.4 N 81 : 17: 32.6 W 
Alice, TX. 27: 44: 22.2 N 98: 1 : 15.5 W 
Waterloo, IA. 42: 33: 23.4 N 92: 23: 55.5 W 
Alamosa, CO. 37: 20: 56.9 N 105: 48: 48.7 W 
Walla Walla, WA. 46: 5 : 13.5 N 118: 17: 29.1 W 
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NAVIGATION RECOVERY BLOCK ADA CODE 

The following pages are the source code listing for the navigation recovery 
block described "in this report. The source code is written in Ada. 

The decision for the use of a maximum of seven significant figures in all 
of the constants in this program was governed by the use of the predefined 
standard Ada real numeric type FLOAT (which is implemented on the VAX using 
F-floating representation). The F-floating representation has a size of 
32 bits and provides six digits of precision. Although the use of the 
Ada numeric type LONG FLOAT (implemented using D-floating or G-floating 
representation) would provide additional digits of precision CD-floating 
has a size of 64 bits and provides nine digits of precision; G-floating 
has a size of 64 bits and provides fifteen digits of precision). its use 
would result in source code that is less portable [12,13J. 
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with TEXT_IO, FLOAT_MATH_LIB; 

procedure NAVIGATION is 

use TEXT IO, FLOAT MATH LIB;
 
package fNT_I_O is-new INTEGER_IO(INTEGER);
 
package FLOAT_I_O is new FLOAT_IO(FLOAT);
 
use INT_I_O, FLOAT_I_O;
 

type TUNED_FREQUENCY is delta 0.1 range 108.0 .. 118.0; 
type FREQUENCY is (113.5, 117.5, 113.7, 113.2, 113.0, 116.1); 

-- Note that the frequencies listed are given just for this example 
-- and would need to be changed for your specific use. 

type LOCATION is (STATES, NOTSTATES); 

The general location of the aircraft is necessary for the range 
-- check. LOCATION is defined as within the 48 conterminous states, 
-- STATES, or not, NOTSTATES. 

NUMBER_ITERATIONS, NUMBER_TRIALS: INTEGER;
 

ACCEPTANCE, FREQ CHECK, NEW PROB SIGNAL,PROB SIGNAL,

TOTAL_PROB_SIGNAL: BOOLEAN;- -	 ­

A, AIRCRAFT ALTITUDE, AIRCRAFT LAT, AIRCRAFT LONG, AIRSPEED TRUE,
 
A ONE, A THREE, AT NORTH, AT wEST, BEAR TRUE~ BONE, B THREE,
 
C-ONE, C-THREE, DME RANGE, EFFECTIVE RANGE, ELEVATION,­

ELEVATION ANGLE, F ONE, F TWO, F THREE, HDG TRUE, M, N,
 
NORTH POSITION, OLD NORTH-POSITION, OLD TIME, OLD WEST POSITION,
 
P, PHI THREE, PITCH~ Q, QUOTIENT," RADIUS EARTH, R-ONE,-R TWO,
 
R THREE, S, STATION ELEVATION, STATION LAT, STATION LONG~
 
THETA THREE, THETA FOUR, TIME, TOLERANCE, UNUSABLE AREA,
 
VELOCITY NORTH, VELOCITY WEST, WEST POSITION, X, Y~ Y ONE, Y_TWO,

Y_THREE,-y_MAX: FLOAT; - -	 ­

type STATION_CLASS is (TERMINAL, LOW, HIGH);
 

function	 ARCTANGENT(NUMBER ITERATIONS: in~INTEGER; 
X, TOLERANCE, Y_MAx: in FLOAT) return FLOAT is 

begin 
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FIND: 

for J in 1 .. NUMBER_ITERATIONS loop 

Y THREE : = (Y ONE;. Y THREE) /2;
 
F-ONE : ~TAN(Y ONE) --X;
 
F-TWO : ~TAN(Y-TWO) - X;
 

_ F:THREE : = TANTY_THREE) - X; 

if (F ONE < TOLERANCE) then 
Y : = Y ONE; 
exit FIND; 

elsif (F TWO < TOLERANCE) then 
Y :-=Y TWO; 
exit FIND; 

elsif (F THREE < TOLERANCE) then 
Y : -= Y THREE; 
exit FIND; 

end if; 

if ((F THREE/F ONE) < 0.0) then 
.Y:TWO : = Y_THREE;

else 
Y ONE := Y_THREE; 

end it; 

end loop FIND; 

end; 

The above function, ARCTANGENT, is used to determine the arc 
tangent in the secondary alternate. To "force" explicit
differences ~o exist between the primary and seconda~y. 

alternates, the primary alternate uses the Ada math library to 
determine these values, while the secondary alternate uses the 
.interval halving method. This enables the determination of a 
root of f(x) = 0, accurate within a specified tolerance value. 

-- The following "begin" starts the main program. 

begin 

GET (NUMBER_TRIALS); . 
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VORDME: 

for	 I .. NUMBER_TRIALS loop 

GET	 (TUNED_FREQUENCY); 

The frequency check is performed by comparing the 
tuned-navigation frequency, TUNED_FREQUENCY, to the 
stored navigation station data, STATION_FREQUENCY. 
If the tuned navigation frequency does not match a 
station in the navigation area, then the probability 
of a signal, PROB SIGNAL, is zero. If the frequency 
does match a statIon, then the probability of a 
signal·is one. The total probability of the signal. 
TOTAL FROB SIGNAL, is calculated after each check is 
performed and is dependent upon the individual 
probability of signal results. 

FREQ CHECK : = FALSE;
 
FROB-SIGNAL : = FALSE;
 
TOTAL PROB SIGNAL := FALSE;
 
NEW_FROB_sIGNAL : = FALSE;
 

for	 STATION FREQUENCY in FREQUENCY'PIRST FREQUENCY'LAST 
loop ­

if TUNED FREQUENCY = STATION FREQUENCY then 
FREQ CHECK : = TRUE; ­

end if; ­

if FREQ CHECK = TRUE then 
FROB SIGNAL: = TRUE;

end	 if; ­

end	 loop; 

TOTAL FROB_SIGNAL := PROB_SIGNAL; 

The range check determines whether or not the aircraft 
is within the effective range of the tuned navigation 
station. If the aircraft is within the effective 
range, then the probability of signal, FROB SIGNAL, is 
one. Otherwise, the probability of a signal is zero. 

FROB SIGNAL : = FALSE; 
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The range is obtained from the distance measuring
equipment (DME). The aircraft's altimeter gives the 
AIRCRAFT_ALTITUDE. 

DME_RANGE : = 0; 

GET (STATION CLASS);

GET (LOCATION);

GET (DME RANGE);

GET (AIRCRAFT_ALTITUDE);
 

EFFECTIVE_RANGE : = 0;
 

case STATION CLASS is 
when TERMINAL = > 

if AIRCRAFT ALTITUDE < = 12 000 then 
EFFECTIVE RANGE : = 25; 

end if; ­
when LOW = > 

if AIRCRAFT ALTITUDE < 18 000 then 
EFFECTIvE RANGE : = 40; 

end if; ­
when HIGH 

if (AIRCRAFT ALTITUDE < 18_000) and (LOCATION
/= STATES; then 

EFFECTIVE RANGE: = 40; 
end if; ­

if (AIRCRAFT ALTITUDE> = 14 500 and 
AIRCRAFT ALTITUDE < = 17 999) and 
(LOCATION = STATES) then 

EFFECTIVE RANGE: = 100; 
end if; ­

if (AIRCRAFT ALTITUDE> = 18 000) and 
(AIRCRAFT-ALTITUDE < = 45-000) then 

EFFECTIVE RANGE : = 1307 
end if; ­

if (AIRCRAFT ALTITUDE> 45 000) then 
EFF:::CTIVE RANGE : = 100; 

end if; ­
end case; 
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if DME RANGE < =EFFECTIVE RANGE then
 
PROB_SIGNAL := TRUE;­

else
 
PROB SIGNAL := FALSE;
 

end if; ­

NEW PROB SIGNAL: = (TOTAL PROB SIGNAL and PROB_SIGNAL); 
'TOTAL_PROB_SIGNAL := NEW_PROB_SIGNAL; 

The unusable area check determines if the aircraft is 
within an unusable area of the tuned navigation 
station. This check is performed by looping through 
all of the specified unusable areas for the tuned 
station and determining the location of the aircraft 
with respect to the unusable area. These values would 
need to be changed to suit your use. 

PROB_SIGNAL : = FALSE; 

UNUSABLE_AREA : = -1; 

case	 TUNED FREQUENCY is
 
when 113.5 = > UNUSABLE AREA : = 10;
 
when 117.5 = > UNUSABLE-AREA : = 40 ;
 
when 113.7 = > UNUSABLE-AREA : = 100;
 
when 113.2 = > UNUSABLE-AREA : = -1;
 
when 113.0 = > UNUSABLE-AREA : = -1;
 
when 116.1 > UNUSABLE:AREA : = -1;
 

end case; 

if DME RANGE < = UNUSABLE AREA then
 
PROB_SIGNAL : = FALSE;
 

else
 
PROB SIGNAL : = TRUE;
 

end if; ­

NEW PROB SIGNAL := TOTAL PROB SIGNAL and PROB SIGNAL; 
TOTAL_PROB_SIGNAL : = NEW:PROB=SIGNAL; - . 

The cone of confusion check determines if the aircraft 
is in the area above the VOR/DME station and might
experience a loss of signal. As with the unusable· 
area check, sample data has been inserted into the 

-- cases for this program. This data would have to be 



E-7
 

-- changed to suit your individual needs. 

PROB_SIGNAL := FALSE; 

case	 TUNED_FREQUENCY is 
when 113.5 = > ELEVATION := 89 
when 117.5 = > ELEVATION := 88 
when 113.7= > ELEVATION := 89 
when 113.2 = > ELEVATION := 87 
when 113.0 = > ELEVATION := 86 
when 116.1 = > ELEVATION := 89 

end case; 

GET (ELEVATION_ANGLE); 

if ELEVATION ANGLE > ELEVATION then 
PROB_SIGNAL : = FALSE; . 

else 
PROB SIGNAL := TRUE;

end if; ­

NEW PROB SIGNAL : = TOTAL PROB SIGNAL and PROB_SIGNAL; 
TOTAL_PROB_SIGNAL.:= NEW:PROB:SIGNAL; 

if TOTAL_PROB_SIGNAL = TRUE then 

-- This part of the primary alternate determines the 
-- aircraft latitude and longitude. 

GET (STATION LAT); in degrees

GET (STATION-LONG); -- in degrees

GET (BEAR TRUE);

GET (STATION_ELEVATION);
 

-- The earth's radius is assumed to be 6378.163 km = 
-- 3443.93 n mi = 2°_925_732 feet. (Reference 8.) 

RADIUS_EARTH := 3443.93; 

THETA_THREE : = BEAK...TRUE • 90; 

R ONE := RADIUS EARTH. STATION ELEVATION;
 
R-TWO := RADIUS:EARTH .,. BEAR_TRUE;
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M := (R_ONE**2) + (DME_RANGE**2) - (R_TWO**2);
N :~ 2*R_ONE*DME_RANGE; 

-- PHI THREE is defined as the angle in degrees that 
-- the-aircraft makes with the j2 plane.i 2, 
PHI_THREE :~ ACOSD(M/N) -90; 

-- To compute the aircraft latitude. 

CONE :: R ONE * SIND(STATION LAT);
C-THREE ::-DME RANGE * ((COSDTsTATION LAT) * 
- COSD (PHI THREE) il- SIND (THETA THREE)) ... 

(SIND(STATION_LAT) ,... SIND (PHI_THREE) )); 

P :: (C_ONE + .C_THREE) /R_TWO; 

AIRCRAFT_LAT : = ASIND (P) ; 

-- To compute the aircraft longitude. 

BONE := R ONE il- COSD(STATION LAT) * COSD(STATION' LONG);
B-THREE ::.-DNIE RANGE * (((-l)*SIND(STATION LAT) *­
- COSD(STATION LONG) * COSD(PHI THREE) * 

SIND(THETA THREE)) - (SIND(STATION LONG) * 
COSD(PHI THREE) * COSD(THETA THREE) + 
(COSD(STATION LAT) * COSD(STATION LONG) * 
SIND (PHI_THREE) ) ) ; . ­

A ONE := R ONE * COSD(STATION LAT) * SIND(STATION LONG);
A-THREE := DME RANGE .:t- (( (-1) ·*SIND (STATION LAT) * ­
- SIND(STATION LONG) * COSD(PHI THREE)-,I­

SIND(THETA THREE)) + (COSD(STATION LAT) * 
COSD(PHI THREE) * COSD(THETA THREET) ­
(COSD (STATION LAT) * SIND (STATION LONG) ,I­
SIND (PHI_THREE) ) ) ; ­

Q :: A ONE' + A THREE; 
S :: B:ONE + B:THREE; 

if S>O then 
AIRCRAF'I :'ONG := AT.iV'iD(Q/S);

elsif S,O and-~>O then 
AIRCRAFT ~ONG := ATAND(Q/S) + 180;

elsif S~O and-Q~O then 
AIRCRA?T :'ONG ::: ATAND(Q/S) -180; 

elsif s=o and-~)O then 
AIRCRA?~ :ONG := 90; 

elsif s=o and-~'O then 
AIRCR.';'P~ :"C':lG := -90; 

end if; ­
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This part of procedure NAVIGATION for the primary 
alternate determines the north and west position 
components of the aircraft. The range has already
been obtained from the range check. The bearing of 
the aircraft was obtained in the aircraft latitude 
and longitude calculations. 

WEST POSITION : = DME RANGE i~ COSD (PHI THREE) .~ 
-SIND (THETA THREE); ­

NORTH POSITION 7:: DME RANGE * COSD (PHI THREE) ~l-
COSD (THETA_THREET; ­

-- This part of the primary alternate determines the 
-- aircraft's north and west velocity components. 

GET (PITCH);
GET (HDG TRUE);
GET (AIRSPEED_TRUE); 

VELOCITY NORTH ::: AIRSPEED TRUE * COSD (PITCH) ~l-

COSD(HDG TRUE); ­
VELOCITY WEST-::: AIRS PEED TRUE i~ COSD (PITCH) .;t-

SIND (HDG_TRUE) ; - . 

-- This part sets up the conditions initially for the 
-- acceptance test to be run. 

GET (TIME); 

if I	 = 1 then 
OLD WEST POSITION .- WEST POSITION; 
OLD-NORTH POSITION ::: NORTH_POSITION; 
OLD-TIME ~= TIME;

end if; ­

This is the acceptance test. If the acceptance 
test fails, then the secondary alternate is run. 
Otherwise, calculations will continue to be made 
with the primary alternate, and the seconda~J 

alternate will not be used. 

if I	 > 1 then 
AT WEST ::: (WEST POSITION - OLD WEST POSITION)/ 

- (TIME - OLD-TIME);. - ­
AT NORTH :=(NORTH POSITION - OLD NORTH POSITION)/ 

- (TIME - OLD_TIME); - ­
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if (AT WEST = VELOCITY WEST) and
 
(AT-NORTH = VELOCITY NORTH) then
 

ACCEPTANCE : = TRUE;
 
else
 

ACCEPTANCE : = FALSE;
 
end if; 

end if; 

If the acceptance test passes, then the results of the 
calculations for the north and west position and 
velocity components, along with the aircraft latitude 
and longitude, will be printed out. Otherwise, the 
program will enter the secondary alternate to 
re-calculate these desired values. 

if ACCEPTANCE TRUE then 
PUT ("THE FOLLOWING VALUES ARE FROM THE PRIMARY 

ALTERNATE" ); . 
NEVI LINE; 
PUT-("AIRCRAFT LATITUDE; IS "); PUT (AIRCRAFT_::'AT );
NEW LINE; 
PUT-("AIRCRAFT LONGITUDE IS "); PUT (AIRCRAFT LONG);
NEW LINE· ­- ,
PUT ("WEST POSITION COMPONENT IS ");

PUT (WEST POSITION);

NEW LINE;­
PUT-("NORTH POSITION COMPONENT IS ");

PUT (NORTH POSITION);

NEW LINE; ­
PUT-("WEST VELOCITY COMPONENT IS ");
 
PUT (VELOCITY WEST);

NEW LINE- ­- ' PUT ("NORTH VELOCITY COMPONENT IS ");
 
PUT (VELOCITY NORTH);

NEW_LINE; ­

OLD WEST POSITION := WEST POSITION;
 
OLD-NORTH POSITION := NORTH POSITION;

OLD-TIME -;-= TIME; ­

end if; ­

This is the entrance into the secondary alternate. 

if ACCEPTANCE = FALSE then 

-- This part of the secondary alternate determines 
-- the aircraft latitude and longitude. 

RADIUS_EARTH := 3443.93; 

THETA_THREE : = BEAR TRUE + 90; 
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R ONE := RADIUS EARTH + STATION ELEVATION; 
R::TWO := RADIUS=EARTH + BEAR_TRUE; 

M .- (R ONE * R ONE) + (DME RANGE * DME_RM~GE) ­
(R-TWO * R-TWO); ­

N .- 2 * R_ONE * DME_RANGE; 

PHI_THREE := ACOSD(M/N) - 90; 

In the following calculations, the sine and 
-- cosine functions are represented by a power 
-- series. 

CONE := R ONE * ((STATION LAT * 0.0174533) ­
- ((STATION LAT ,1- 0.01745J3)**3)/6~; 

C THREE := DME RANGE * (1 - (STATION LAT * 
- 0.0174533)**2/2) * (1 - (PHI THREE * 

0.0174533)**2/2) * ((THETA THREE * 
0.0174533) - ((THETA THREE *" 0.0174533)*~~3)/6) + 
(( STATION LAT * 0.0174533) -((STATION LAT * 
0.0174533)**3)/6) * ((PHI· THREE * 0.0174533)
((PHI_THREE * 0.0174533)**))/6); 

P := (C_ONE + C_THREE)/R_TWO; 

AIRCRAFT_LAT := ASIND(P); 

B ONE:= R ONE * (1 - (STATION LAT * 0.0174533)**2/2) 
- * (1 --(STATION_LONG * 0.0174533)**2/2);

B THREE ::: DME RANGE * (((-l)*(STATION LAT -:.. 
- 0.0174533) -= ((STATION LAT * 0.0174333)~H"3)/6) 0,.. 

(1 - (STATION LONG * 0-:-0174533)**2/2)" * 
(1 - (PHI THREE * 0.0174533)i~*2/2) -:'~ ((THETA THREE: 

i!- 0.0174533) - ((THETA THREE i .. 0.017453J)~·~.<-;T/6) ­
((STATION LONG * 0.017~533) - ((STATION LONG * 
0.0174533T**3)/6) * (1 - (PHI THREE * ­
0.0174533)**212) * (1 - (THETA THREE *
 
0.0174533)**2/2) + (1 - (STATION tAT *
 
0.0174533)**2/2) * (1 - (STATION-LONG *
 
0.0174533)**2/2) * ((PHI THREE *-0.0174533) ­
( (PHI_THREE * O. 01745JJ )*~~ 3 )/6 ) ; 

A ONE := R ONE * (1 - (STATION LAT * 
- 0.0174533)**2/2) * ((STATION LONG * 0.0174533) ­

((STATION_LONG * 0.0174533)**3)/6); 
A THREE: = DME RANGE * ((-1) * (STATION LAT ~.. 
- 0.0174533) -= ((STATION LAT * 0.0174533)**3)/6) 

~!- ((STATION LONG * 0.0174533) - ((STATION LONG 
* 0.0174533j**3)/6) * (1 - (PHI THREE * ­
0.0174533)**2/2) * ((THETA THREE * 0.0174533) ­
((THETA THREE * 0.0174533)*~!-3)/6) + 
(1 - (STATION LAT * 0.0174533)**2/2) * 
(1 - (PHI_THREE * 0.0174533)**2/2) * 
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(1 - (THETA THREE * 0.0174533) *-ll-2/2) ­
(1 - (STATION LAT * 0.0174533),Hl-2/2) ~!­

«STATION LON~ * 0.0174533) - «STATION LONG

* 0.0174533 )*,!-3) /6) * « PHI_THREE * ­
0.0174533) - «PHI THREE * 0.0174533)**3)/6);
 

Q :; A ONE + A THREE; 
S :;.. B-ONE + B-THREE·- - , 

QUOTIENT := Q/S;
 

GET (y MAX);
 
GET (TOLERANCE);
 
GET (NUMBER_ITERATIONS);
 

if S ) 0 then 
AIRCRAFT LONG :; ARCTANGENT (QUOTIENT) * 57.29578; 

elsif S ( 0 and Q ) 0 then 
AIRCRAFT· LONG : 0; ARCTANGENT (QUOTIENT) * 

57.29578 - 180; 
elsif S < 0 and Q ) 0 then 

AIRCRAFT LONG := ARCTANGENT (QUOTIENT) * 
57.29578 - 180; 

elsif S = 0 and Q ) 0 then 
AIRCRAFT LONG : =90; 

elsif S ; 0 and Q < 0 then 
AIRCRAFT LONG := -90; 

end if; ­

This part of the secondary alternate determines 
-- the north and west position components of the 
-- aircraft. 

WEST POSITION : = DME RANGE i!- (1 - (PHI THREE'!-*2) /2) ,I­

-(THETA THREE - TTHETA THREEo:l-*3)/6j·- - ' 

NORTH POSITION :; DME RANGE -;r (1 - (PHI THREE-:Hl-2)/2) ~.r 
1"1 - (THETA_THREEifo*2)/2); ­

This part of the secondary alternate determines 
the north and west velocity components of the 
aircraft. 

VELOCITY NORTH := AIRSPEED TRUE * (1 - (PITCH**2)/2) * 
(1 =(HDG_TRUE**2)/2); . 

VELOCITY WEST := AIRSPEED TRUE ,!- (1 - (PITCH**2)/2) ~. 
HDG:TRUE - (HDG_TRUE**3)/6); 
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PUT ("THE. FOLLOWING VALUES ARE FROM THE SECONDARY 
ALTERNATE" ) ; 

NEW LINE; 
PUT- (" AIRCRAFT LATITUDE IS "); PUT (AI RCRAFT_LAT ) ; 
NEW LINE; 
PUT-("AIRCRAFT LONGITUDE IS ");. 
PUT (AIRCRAFT LONG); 
NEW- LINE, ­- ' PUT ("WEST POSITION COMPONENT IS ");
 
PUT (WEST POSITION);
 
NEW LINE;­
PUT- ("NORTH POSITION COMPONENT IS ");
 
PUT (NORTH POSITION);
 
NEW LINE; ­
PUT-("WEST VELOCITY COMPONENT IS ");
 
PUT (VELOCITY WEST);
 
NEW LINE; ­
PUT- ("NORTH VELOCITY COMPONENT IS ");
 
PUT (VELOCITY NORTH);
 
NEW_LINE; ­

OLD WES't POSITION : = WEST POSITION;
 
OLD-NORTH POSITION : = NORTH POSITION;
 
OLD:TIME. -; = TIME; ­

end if; 

end if; 

end loop VORDME; 
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