
DOTIFAAICT- 87/15

'AA TWCHNICALCRNTEIt
AttenUc CIty ln1emauan. Airpart
N.J. 0840lI

WJH Technical Center \i \\\\\\\\\\\\\\\\\\\\\\\\\\\}\\\\\\\ \11\ \UI
'00025785

•

Navigation Recovery Block
Design Description

E.F. Hitt
S.A. Prater

Battelle
Columbus Divison
505 King Avenue
Columbus, Ohio 43201

March 1987

This document is available to the U.S. public

through the National Technical Information

Service. Springfield, Virginia 22161.

us.[)epa Ii i e • 01 Tra"lSOOi rolia i

Fadc:aal~tIoai Adlaalistration

- - ---

\\~\\I~[i\~\~i\I\II~[\rlii\~i[~~~

00013480

I2. Gow.mment ~ion No.
nb~~AA~CT-87/l5
4.	 Tir•• Ind SubtItle

Navigation Recovery Block Design Description

7. AutllcWls'

E. F. Bitt, S. A. Prater

t.,01'""'" OrgBl'lizatiotl ~.... Ind Addreta

Lockheed-Georgia Company
Marietta, Georgia 30063

tr. ~nrrre'i'~e~"'o-r	 ~sportation
Federal Aviation Administration Technical Genter
Atlantic City Airport, New Jersey 08405

15.	 Suppi_WV I'ft2tes

1 R-=ipient', Ca~1oI No.

5.	 R.oon 0..

M.,,..,,J, ,q~7

8.	 Pwtormi"ll O~Ution Code

8.	 I'wtorming Or;.niution R-e-t No.

DOT/FAA/CT-87/l5
10. Wan: Unit No.

NAS2-11853

11. CDntnct Of' GtMt No.

11 Type of Report Ind Pwiod Cowred

Contractor Report
14.	 ~i"ll AqIN:y Coda

Point of Contact:	 W. E. Larsen/MS 210-2
Ames Research Center
Moffett Field, CA 94035

16.	 Abstract
This report describes the recovery block approach to fault-tolerant software and
illustrates its application to a flight navigation problem. The navigation
problem using VOR (Visual Omnirange) and DME (Distance Measuring Equipment) is
developed, especially with regard to its software specification and
implementation needs. Related aspects of the recovery block approach are
reviewed, and Ada implemented source code is presented.

,

:

17.	 I(ty Words ISU9l/Dted by Author!s)) 18. Distribution S~t.ment

Acceptance Test, Avionics, Digital Fligl t
Systems, Error Detection, Fault-Toleran Unlimited

Software, Navigation Aids, Recovery B'Loc
 k, Subj ect Category 38

! Software Structure, System Architecture

.22..Orrc.19.	 Securltv 0'11'/ 10/ thr' ,epon) 120 Sec4lrrtY C:n.,f. 10/ th,. ~I j21. No. 0/ Paqes
Unclassified	 Unclassified

• I

TABLE OF CONTENTS

Page

EXECUTIVE SUMMARY
 iv

INTRODUCTION 1

Purpose 1

Objective 1

SYMBOLOGY 1

REQUIREMENTS 1

VOR!DME 1

Primary Alternate 9

Frequency Check 9

Range Check 9

Unusable Area Check 9

Cone of Confusion Check 10

VOR!DME Algorithms 10

Aircraft Latitude and Longitude 10

North and West Position Components 15

North and West Velocities 16

Recovery Block Independence 16

Acceptance Test 17

EXAMPLE "17

NOMENCLATURE 20

APPENDIX A. SOFTWARE FAULT-TOLERANCE A-I

APPENDIX B. SOFTWARE SYSTEM ERROR DETECTION AND

CORRECTION TECHNIQUES B-1

APPENDIX C. NAVIGATION STATION FREQUENCIES C-1

APPENDIX D. NAVIGATION STATION LOCATIONS D:-1

APPENDIX E. NAVIGATION RECOVERY BLOCK ADA CODE E-1

APPENDIX F. REFERENCES F-1

i

LIST OF ILLUSTRATIONS

Figure

1 Executive Software for Navigation System
Recovery "Block

2 Recovery Block Time Line

3 Recovery Block Structure

4 VOR/DME Primary Alternate Hierarchical Design

S VOR/DME Secondary Alternate Hierarchical Design

6 Cone of Confusion

7 Aircraft and VOR/DME Station Positions

a Aircraft Position on Tangent Plane Coordinates

9 Edge View of i2. j2 Plane

A-l Fault Tolerant Software Event Relationships

A-2 Parallel-Processing Classification

A-3 Frame Synchronous Time Line

A-4 State Transitions of a Version

A-S Software Structure Hierarchy

A-6a CC-Point Graph of a Simple Program Version

A-6b Partial Graph of a Complex Program

A-7 Alternate N-Version Software System Architectures

A-a Syntax for Recovery Block

B-1 Recovery Block Time Line

Page

3

S

6

7

a

11

11

12

13

A-3

A-IO

A-13

A-1S

A-17

A-19

A-19

A-21

A-24

B-2

ii

LIST OF TABLES

Table Page

1 Flowchart Symbols 2

2 Effective Station Ranges by Class 10

3 Recommended Nomenclature 20

C-l Navigation S~ation Frequencies C-l

D-l Navigation Station Locations D-l

iii

EXECUTIVE SUMMARY

The detailed design of the software for a navigation recovery block is
specified. The navigation software models the Very High Frequency (VHF)
Omnidirectional Range (VOR)/Distance Measuring Equipment (DME). A
description of the program structure is provided. Also, an example problem
and the program source listing are included.

iv

INTRODUCTION

PURPOSE.

The contents of this document establish the software design for the Very
High Frequency (VHF) Omnidirectional Range (VOR)/Distance Measuring Equipment
(DME) model software. The VOR/DME ~odel is implemented with the fault
tolerant software technique of a recovery block.

OBJECTIVE.

This document is intended to demonstrate the type of software specification
and implementation that the certification specialist may be expected to
encounter in the next generation of digital or all-electric aircraft.

SYMBOLOGY

The flow diagrams in this document have been developed according to top-down
methods. Table 1 summarizes the symbols used in the flowcharts in this
document.

REQUIREMENTS

The recovery block method is a fault tolerant software technique which
provides alternate components which may be swi tched in (usually serially)
to take the place of a faulty component that has been rejected by the
acceptance test. These alternate components are designed independently
from the main software component (the primary alternate) and generally
only provide partial functionality of the software component, thus reducing
it to a degraded, simpler mode. Prior to entering an alternate, the state
of the process is restored to that current just before entry to the primary
alternate [1]. Software fault tolerance is described in further detail
in Appendix A [2].

The hierarchical diagram for the executive functions for running a recovery
block is shown in Figure 1. The recovery block time line is shown in Figure
2 [3]. The fo llowing report <included in Appendix B) provides de tailed
information concerning the sequential processing and forms part of this
specification:

Hitt, Ellis, "So f twa re System Error Detection and, Correction
Techniques", Battelle Columbus Laboratories, Columbus, Ohio,
March 5, 1986.

The navigation recovery block consists of two components: a primary alternate
and a secondary alternate. Figure 3 gives a simple block diagram
representation of the recovery block structure.

VOR/DME.

The hierarchical diagram of the primary alternate for the VOR/DME model
is shown in Figure 4. The hierarchical diagram for the secondary alternate
of the recovery bLock for the VOR/DME model is given in Figure 5. The

2

TABLE 1. FLOWCHART SYMBOLS

Symbol Definition

Beginning of sUbroutine.

Processing function; defined operation(s)
causing a change in value, fo~, or location
of infonnation.

Input/Output function; information available
for processing (input) or recording of
processed information (output).

A decision block that determines which of a
number of alternative paths to follow.

an-page connector.

Off-page connector.

Termination of subroutine.

I

3

Illitictlj~tjoll y
~

Estctblish

Recovery Point

t

Minor Frctme

Wcttchdog Timer

l
Sel1sor
Input

-
-~

Scheduler

~

Version

Wcttchdog Timer

l

Version i

l

Service

Interrupts

I

FIGURE 1. EXECUTIVE SOFTWARE FOR NAVIGATION
SYSTEM RECOVERY BLOCK

4

Acceptance

Test

Roll

Back

Restore

Recovery

Point

Increment

Version

True (Pass)

Output

y

Wait

I

I

c5J

FIGURE 1 (Continued). EXECUTIVE SOFTWARE FOR NAVIGATION
SYSTEM RECOVERY BLOCK

,~--- Najor Frame ~I
1----1­ ~sk--~-lIe sk 1\ Task Il I Task 1\ I Task C Task 1\ I Tas~ 0 Task 1\ I Task D Task 1\1 I

-INlnor frame ­

!

'·Iinor frame Time line Details
If Ven i on
Passes I/O, Estahlish Execute Execute Purge
I\cceptance Event Validate Recovery Primary I\cceptance Hecovery Halt
lest Poll ing Input Poillt Version lest Point

---'

(J1-----_ .._-­._----­-~-----

Execute Execute
I\lternate I\cceptanceElse noll

Back Version Test

FIGURE 2. RECOVERY BLOCK TIME lINE (3)

6

Acceptance Pass
Version i

r ·1 ·1 Test I

I

i .­
I

,

!
 Fail i
!
I

I
RollbackI I~

FIGURE 3. RECOVERY BLOCK STRUCTURE

VOR/DME

---~~ -_.'.

Cone of
Unusa lie Confusion

Area Ch eck Check

Aircraft '!

North and Latitude and
West Velocities Longitude .

..------------­- .. _.­ --­ - ~ - ­ -

Frequen
Check

__.____ - _. ,_4_~_.

Range
Check

cy

North, West

Position

Components

FIGURE 4. VOR/DME PRIMARY ALTERNATE HIERARCHICAL DESIGN

8

VOR/DME

..

II

North, West
 Aircraft.

Northand
Latitude and Position

West V elocities
LongitudeComponents

FIGURE 50 VOR/DME SECONDARY ALTERNATE HIERARCHICAL DESIGN

9

VOR!DME module calculates the aircraft north and west position and velocity
components and the aircraft latitude and longitude from the aircraft altitude
and the range and bearing of the aircraft from the tuned navigation station.

PRIMARY ALTERNATE. The primary alternate performs the following checks'
prior to performing the actual calculations:

a. frequncy check
b. range check
c. unusable area check
d. cone of confusion check

FreQuency Check. In the frequency check module, the software loops
through the stored navigation station data to determine if a station
frequency matches the tuned frequency. If the tuned navigation frequency
does not match a station in the navigation area, then the probability of
a signal, is zero. Therefore, the total probability o.f the signal,Ps'
Pt, which is calculated after each check is performed, is zero since

If the tuned navigation frequency does match a station in the navigation
area, then Ps = 1 [4J.

The VOR receiver should operate on the 50 KHz spaced channels (a total
of 160) from 108.00 MHz through 117.95 MHz [5]. When a DME transponder
is intended to operate in association with a single VHF navigational
facility, it also operates in the 108.00 MHz to 117.95 MHz frequency band
[6].' Appendix C pr ov Ld e s a table· of' stations in the United States and
their frequencies.

Range Check. This software module checks whether or not the aircraft
is within the effective range of the tuned navigation station. The DME
equipment should provide at' least a 300 nautical mile range [6]. If the
aircraft is within the effective station range, then Ps = 1. If not, then
Ps = O. The effective station ranges"are given in Table 2.

To combine the resul t of this check wi th the resul t of the frequency
check,

Unusable Area Check. This module determines if the aircraft is within
an unusable area of the tuned navigation station. This check is performed
by looping through all of the specified unusable areas for the tuned station
and determining the location of the aircraft with respect to the unusable
area [4J. The various unusable areas for each station will be stored in
a data base for comparison. If it is determined that the aircraft is within
an unusable area, then Ps = O. Otherwise, Ps = 1. Again, to update the
total probability of the signal,

10

TABLE 2.' EFFECTIVE STATION RANGES BY CLASS [4]

Class
T
L
H
H

H

H

Legend:

Altitude
S 12,000 feet

-
<
<

18,000 feet
18,000 feet

Within the 48 conterminous
states between 14,500 feet
and 17,999 feet

~ 18,000 feet and < flight level
(FL) 450 (45,000 feet)

> FL450

T - Terminal; L - Low; H - High

Effective Range

(in miles)

25

40

40

100

130

100

Cone of Confusion Check. This module determines if the aircraft is within
the cone of confusion of the tuned navigation station. This check calculates
the elevation angle from the tuned station to the aircraft. If the elevation
angle is too large, then the aircraft is in the area above the VOR/DME
station and it will experience a loss of signal. A simplified diagram
representing this is shown in Figure 6.

VOR/DME ALGORITHMS. The primary and secondary alternates have the following
modules in common and utilize the same equations:

a. Aircraft Latitude and Longitude
b. North and West Position Components
c. North and West Velocities

Aircraft Latitude and Longitude. Figure 7 shows the aircraft and
VOR/DME station positions. The VOR/DME station posi~ion is represented
with fixed geocentric spherical coordinates (R, e, q,: iI, 31, kl) with
e representing the station longitude measured positive westward from the
Greenwich meridian, and q, representing the station latitude measured positive
northward from the equator. The aircraft's position is represented by
tangeAnt plane coordinates fixed at the site of t~e VOR/DME station with
the i2 unit vector denoting true north and the j2 unit vector denoting
true west. (See Figure 8.) We define

11

Operational
Range

Operational
Range

Out of /
Range /

/
/

I

<,
<,

-,
\.

\

\

. Out of
Range

FIGURE 6. CONE OF CONFUSION [4J

VOR/DME

Position

~.....;;.-../
I

.k-....,..~.......-..-----j-------~-1'

Equator

Aircraft
Position

Greenwich
Meridian

FIGURE 7. AIRCRAFT AND VOR/DME STATION POSITIONS

12

N
~
12Aircraft

w
~
J2

Location of YOR/DME;
~2 Unit Vector Out of Page

S

FIGURE 8. AIRCRAFT POSITION ON TANGENT
PLANE COORDINATES

~

vI =
t:.	

vector representing the location of the VOR/DME station

.~

V2
t:.
=	 vector representing the location of the aircraft

~
~V3	 vector representing the position of the aircraft relative

to the VOR/DME station

~RI	 (the sea level radius of the earth) + (the VOR/DME station
elevation above sea level)

RZ	 =
t:.

(the radius of the earth) + (the aircraft's altitude)

t:.
R = the sea level radius of the earth

Consequently. we can define

~

VI	 (Rlcos<t>lsinelil. Rlcos¢lcosSljl, RISin<t>lkl) (aliI, bdl' c IkI)
.­~ "

V2 = (RZcos<t>Zsinezi 1, RZCOS0 Zcos:; 2j I, IlZsiM ZI;l) = laZil. bzh. eZkI)

13

To calculate ~3 (reference Figure 9),

A
RZ = R + h, where h	 = the aircraft altitude

A

R3 = the distance of the aircraft from the

VOR/DME station

A
4>3 = the angle that	 the aircraft makes with .. -:­the l2,]2 plane

Aircraft

VOR/DME
Station

FIGURE 9. EDGE VIEW OF 12, t2 PLANE

14

By the law of cosines,

(R+h)Z = RIZ + R3 Z - ZRIR3cOS ¢~

+ R3Z - (R+h)Z]

ZRIR3

¢ 3 = ¢' - Tr/ Z

Recalling,

6­
8 3 = toe aircraft bearing measured positive from west (i.e., Tr/Z radians

plus the bearing from true north).

~

V3 can be written as

~

V3	 (R3 cos ¢3 sin 83 iZ, R3 cos ¢3 cos 83 jz, R3 sin ¢3 'Z)

(a3 iZ' .b3JZ, C3kZ)'

~

We want ;0 exp~ess VJ in terms of the geocentric coordinates (i.e.,
Vj = (a3 il' b3jl' c3 kl)·

The proper coordinate transformations are

a3 = (-sin ¢l sin 81aZ + cos 81bZ + cos ¢l sin 81cZ)

b3 = (-sin ¢l cos 81aZ - sin 81bZ + cos ¢i cos 81cZ)

By substitution,

~

V3 = R3[(-sin ¢l sin 81 cos ¢3 sin 83 + cos 81 cos ¢3 cos 83 +

cos ¢l sin 81 sin ¢3) i l + (-sin ¢l cos 81 cos ¢3 sin 83

sin 81 cos ¢3 cos 83 + cos ¢l cos 81 sin ¢3)jl +

(cos ¢l cos ¢3 sin 83 + sin ¢l sin ¢3) kl] ­

--"	 ~ ~

Vz is	 related to VI and V3 by the vector equation

Equating components gives
A

kl:	 Cz = cl + c3

RZ sin ¢Z = cl + c3

¢Z = sin- l [~(Cl + c3)] .

15

The
82,

i and j components can now be used to compute the sine and cosine of

A

il: aZ = al + a3

sin 82 = [1
R2cos<P2

(a 1 + a 3)]

cos 82 =

The longitude, 82' is then given by

52 = tan- l (sin ~?) = tan-l (~l + a3).

cos 02 bl + b3

When performing this computation, care must be exercised to as sur e that
82 falls in the correct quadrant of the equatorial plane. The function
is defined so that it yields longitude values which range between - 1T and
+ 1T.

82 tan-l(a l +
a3) for (bl + b3) > 0,

bl + b3

+82	 tan- l (a l a~+ 1T for (bl + b3) < 0 and (al + a3) > 0,
bl +	 b

82 = tan- l (a l + a 3)_ 1T for (bl + b3) < 0 and (al + a3) < 0,

bl + b3

82 =	 1T/2 for (bl + b3) o and (al + a3) > 0,

82 =	 -1T/2 for (bl + b3) = o and (al + a3) < O.

North and West Position Components. Neglecting the curvature of the
A A

earth, the 12,j2 components of the aircraft position are

Positionwest = Xl = R3 cos <P3 sin 83 ~2

A

Positionnorth = 11 = R3 cos <P3 cos 83 j2

~
with	 R3 the distance of the aircraft from the VOR/DME station

~	 A A

<P3	 the angle that the aircraft makes with the i2,j2 plane

~
83	 the aircraft bearing measured positive from west

(i.e., 90 degrees plus the bearing from true north.)

16

North and West Velocities. The velocity components are calculated
with the true airspeed as a function of the aircraft's heading.

We define

w ~ the pitch angle (the angle that the longitudinal axis of
the aircraft makes with the 12 ,31 p l ane)..

64 = the heading of the aircraft relative to the north
t::.

(positive
clockwise)

UA
t::.
= true airspeed

The northern component of the velocity is given by

The western component of the velocity is given by
A

Uw = -UA cos Wsin 64 j2'

Therefore, the ground speed is

RECOVERY BLOCK INDEPENDENCE.

To "force" the independence of the two alternates in the· recovery block,
the equations which determine the north and west position components, the
aircraft l~titude and longitude, and the north and· west velocities are
"forced" to perform their calculations differently. The primary alternate
calculates the sine and cosine values with the use of the Ada math library.
However, the sine and cosine terms in the secondary alternate are .determined
with the use of a power series representation for these functions. The
Maclaurin series for the sine function is

x3 X5 x2n+ l
sin x = x - +sr- ... + (-un + e •••"'IT (2n+U!

The Maclaurin series for the cosine function is

x4 x2n ~
cos x = 1 - 2! + 4! - ... + (-un (2n)! +

The Maclaurin series may be used. to approximate values of the sine and
cosine functions. When the polynomial approximation for the sine func tion
involves using the sum of the first two terms, the error is less than
I x5 1 /5! . The error involved in us ing the sum of the firs t two terms in

4/4!.the cosine function is less than x

17

In the determination of the aircraft latitude and longitude, the inverse
of the tangent function is used. To make the two alternates explicitly
different, the primary al ternate uses the Ada math library to determine
these values and the secondary alternate uses the interval halving method
of numerical analysis. This method is sometimes called the bisection method
and enables the determination of a root of f Cx) = 0, accurate within a
specified tolerance value, given values of xl' and x2 such that f(xl) and
f(x2) are of the opposite sign [7].

ACCEPTANCE TEST.

An acceptance test is a logical expression or algorithm which checks the
acceptability of the results that are generated by a software component­
[1]. For the navigation software, the acceptance test will be an independent
calculation of the aircraft's velocity components. These velocity components
are compared to those determined earlier.

For the acceptance test, the north and west velocity components are
determined by the change in the north and west position components with
respect to the change in time. For an aircraft in flight, with points
PI and P2 indicating the aircraft's positions at times tl and t2'
respectively, the corresponding north and west position components (Xl,
Yl and X2' YZ) are calculated. The velocity components are then determined
using ,the following equations:

VelocitYwest

If the velocity component calculations are found to be correct with the
acceptance test, then it will be assumed that all of the navigation recovery
block software is correct. If the primary a lte rna t e is in use and the
acceptance test fails, the software will recover the input state to its
condition prior to when the incorrect or faulty version was run (known
as "rollback") and restart the computation using the secondary al ternate.
If the acceptance test fails while the secondary al ternate is in use, then
the entire naVigation software will fail.

EXAMPLE.

Consider the navigation station located in Albuquerque, New Mexico. Assume
that the station elevation is at sea level. Assume that an aircraft is
flying at an altitude of 15,000 feet, a distance of 50 nautical miles from
the station, with a northeast· heading. The aircraft's tuned frequency
is 113.2 MHz. Its true airspeed is ZOO miles per hour.

From Table C-l, we find the station frequency t'or Albuquerque, New Mexico
is 113.2 MHz. and its class is high (H). Since the tuned.frequency matches
the station frequency, the frequency check passes.

18

With Table 2, since the station's class is high, it has an effective "range
of 100 nautical miles for aircraft flying at an altitude betwen 14,500
feet and 17,999 feet. We have assumed that our aircraft is flying at an
altitude of 15,000 feet, so its distance must be less than or equal to
the station's effective range of 100 nautical m{les. In this case, 50
nautical miles is less than 100 nautical miles, so the range check passes.

The unusable area check passes since we do not have any unusable areas
declared for this navigation station. Similarly, the cone of confusion
check passes
is not too la

since
rge.

the.aircraft's elevation angle with respect to the station

The aircraft
values:

latitude and longitude are determined using the following

¢l = 35: 2: 37.4 N = 35.04J72°

61 = 106: 48: 56.6 W = 106.81572°

(The station latitude and longitude are obtained from Table D-l.)

63 = 135° = tqe bearing measured positive from west

= 90° + the bearing from true north

Rl = 3443.93

(The earth's radius is assumed to be 6378.163 km 3443.93 n mi = 20925732
feet [8] .)

Rj = 50 n mi

R2 = R + h = 3446.77

[The aircraft altitude, h, is 15,000 feet = 2.4687 nautical miles (1 nautical

mile = 6076.115 feet [9]).]

2 2 2
¢3 = cos - 1 [R1 + R3 - R2 J' - 90 °

2RIR3

-1 r (3443.93)2 + (50)2 - (3446.77)21 900
cos l 2(3443.93)(50) J-

The aircraft latitude is computed by

Rl sin ¢l = (3443.93) sin (35.04372) 1977.5092

19

(50)	 [cos (35.04372) cos (2.84) sin (135) + sin (35.04372) sin (2.84)

= 30.3329

~2 = sin- 1 [R~ (cl + c3)] = sin- 1 [344~.77 (1977.5092 + 30.3329)]

= sin- 1 (0.5825286) = 35.6286°

Therefore, the aircraft latitude = 35.6286° = 35: 37: 42.92 N.

The aircraft longitude -is computed by

bl	 = Rl cos tt cos 61 = (3443.93) cos (35.04372) cos (106.81572) a

= -815.69292

b3	 = R3 (-sin ~1 cos 61 cos ~3 sin 63 - sin 61 cos ~3 cos 63 +

cos ~1 cos 6 1 sin ~3) = (50) [-sin (35.04372) cos 006.81572)

cos (2.84) sin (135) - sin 006.81572) cos (2.84) cos (135) +

cos (35.04372) cos (106.81572) sin (2.84)J

=	 39.081

al	 = Rl cos ~1 sin 61 = (3443.93) cos (35.04372) sin (106.81572)

= 2699.0288

cos ~1 sin 61 sin ~3)

= (50)[-sin (35.04372) sin (106.81572) cos (2.84) sin (135) +

cos (106.81572) cos (2.34) cos (135) + cos (35.04372)

sin (106.81572) sin (2.84)J

= -7.2520886

tan- 1 (2699.0288 - 7.2520886)
-815.69292 + 39.081

62 = tan- 1 (-3.4660512) + 180 0 since (bl + b3) < 0 and (al + a3) > O.

62 = 106.09353°

20

Hence, the aircraft longitude is 106.09353° = 106: 5: 36.71 W.

The north and west position components are determined as:

West position component

Xl = 35.3119.

North position component

Yl = -35.3119.

Here J we assume that the aircraft's pitch angle is 10° and the heading
is 45°.

The north and west velocity components are computed as

velocitYwest = 200 cos 10° sin 45° = 139.27 miles per hour

velocitYnorth = 200 cos 10° cos 45° = 139.27 miles per hour

NOMENCLATURE.

The modules for these calculations incorporate the recommended nomenclature
of the Integrated Control Mathematical Routines for MIL-STD-1750 Built-In
Functions (BIFs). This nomenclature is shown in Table 3.

TABLE 3. RECOMMENDED NOMENCLATURE [10]

Variable Nomenclature Ada Identification

-Latitude LAT LAT:FLOAT;

Longitude LONG LONG: FLOAT;

Relative Bearing BEAR REL BEAR_REL:FLOAT;

True Airspeed AIRSPEED TRUE AIRSPEED_TRUE: FLOAT;

True Heading HDG TRUE HDG_TRUE:FLOAT;

APPENDIX A

SOFTWARE FAULT-TOLERANCE

A-I

SOFTWARE FAULT-TOLERANCE

by

Ellis F. Hitt

INTRODUCTION

Real-time systems employing software to implement
application functions which may be critical to the safety of
the vehicle and its occupants must be assured of the continuous

correct operation of software (and the hardware on which the
software executes). Since it is virtually impossible thro~gh

exhaustive testing to prove that software is free of all design
and implementation faults, the use of redundant software
modules (to achieve robustness to external input faults and to
tolerate design and implementation faults) has been the subject
of sponsored research and academic studies. The primary
methpds of using redundant software modules involve either
sequential or parallel execution. The method followed in
implementation ~nd processing of the redundant software modules
distinguishes the software fault-tolerance techniques.
Software fault-tolerance techniques can be broadly classified

into two categories: self-chec~ing software, limited to
detection of software failures; and fault-tolerant software
which allows the system to recover after a software failure has
occured [MAKAM]. This distinction is important since, up to
the point of recovery, the two categories could be identical.

A software fault is any defect within a software
component (e.g. a module. a procedure, a process, a collection
of processes). Software faults may be due to mistakes in

A-2

translating specification into a design or in implementation of

the software design. A failure occurs whenever the external
behavior of a system does not conform to that described by the
system specification [ANDER8I]. Figu"re A-I represents the

relationship between these terms.
Software faults are caused by design mistakes as

contrasted with hardware faults, which are caused b~ both
physical wearout and design mistakes. The case where the
software accepts external-to-the-system faulted input as good
input is a software fault. Although all software faults are

due to human mistakes and as such, might seem to cause only
unanticipated faults, there can be anticipated software faults.
These faults are exemplified by divide-by-zero and overflow
fau l t s ,

Fault tolerant principles can be discussed in terms
of four phases:

(1) Fault detection
(2) Damage assessment

(3) Recovery
(4) Fault treatment

Fau It Detect i on

One way of viewing fault detection in a unified way
is that all erroneous-state detection is accomplished b~

run-time assertions. A run-time assertion is "a logical
expression specifying a program state that must exist or a set

of conditions that program variables must satisfy at a "

particular point during program execution" [IEEE 729-83J.

A-3

DESIGN/IMPLEMENTATION

INADEQUACY

(MISTAKE)

SOFTWARE FAULT

FAULT TRIGGER r-----------------~
EVENT

ERROR

(ERRONEOUS STATE)

N y

FAILURE
 INITIATE

RECOVERY

yN

FAULT
TOLERATED

FIGURE A-I. FAULT TOLERAfH SOFnJARE EVENT RELATIOfJSIHPS

A-4

In real-time applications, fault detection occurs at .
the following levels:

(1) Correct operation of each processing unit
(2) Valid transmission of data between digital subsystems
(3) Data validity, prior to use in subsequent computation

(a) Input of	 sensor data prior to execution of the
algorithm implemented in each version of the
control software
(i)	 Input range limit test

(ii) Input rate of change test
(iii) Parameter correlation check
(iv) Parameter majority logic check
(v) Output wraparound test

(vi) Known input test

(vii)" Known output test

(viii) Loop dynamic check
(ix) End of conversion not detected

(b)	 Dynamic fault detection consisting of a comparison
signal generation followed by a decision mechanism
based on the comparison signals
(i)	 Comparison signals

-Redundant measurements
~Identical sensors
-Non-identical sensors which have one or
more common components in the state vector

-Two sensors, having no common component,
but having a component in common with a
third dedicated observer

-Analytic redundancy
(ii)	 Decision mechanism

Generalized likelihood ratio
Sequential probability ratio tests
Modified sequential probability ratio tests

A-5

(4) Run-time	 assertion after execution of the software
module implementing th6 dpplication function prior to

output of the result to a display used by the crew
or a control actuator.

The run-time assertion takes the form of an
Acceptance Test for recovery blocks and the form of a voter for
Multi-Version Software- (MVS) (also referred to as N-Version
Software (NVS)).

Damage Assessment

When a fault in the software state information has
been detected, it is necessary to determine the extent of the

damage done by the fault before recovery can be accomplished.

Damage assessment may be derived from constraints on' the flow
of information in a system. Encapsulation is the concept of
containing the effects of an action to only the objects to
which that action in a software component has legal access.
Through the proper enforcement of encapsulation, it is possible
to assess the extent of the damage to the state information due
to a fau It.

Recovery

After the extent of the damage has been determined,

the system must be restored to a consistent state in order to
resume processing. This entire process (detection, damage

assessment, and recovery) must take place fast enough to
satisfy real-time requirements. There are two main techniques
to accomplish recovery, forward recovery and backward recovery.

A-6

Forward recovery restores the system to a consistent
state by compensating for inconsistencies found in the current
state. Forward fault recovery in a single process implies
detailed knowledge of the extent of the damage done and a
strategy for fixing the inconsistencies. While this may be
possible in certain cases where the recovery process was
designed to handle th~ detected fault, it is difficult to

conceive appropriate strategies in the case of unanticipated
faults such as transient faults.

Backward recovery, cften referred to as roll-back,
involves restoring the system to some previous known correct
state and restarting the computation from .that point. "The
basic problem is to keep copies of past states of processes,
being sure that: a) copies of process state~ are consistent
with one another, so that the state reached after a recovery is
really correct; an important issue is to minimi~e the amount
of information needed for roll-back; b) copies of process
states are protected against failure of system components."
[BARI GAlZI]

Backward recovery must obey the "roll-back
consistency rule: If a process Pi is rolled back to a state of
its past history, in which the last message exchanged with
process Pj was M, then Pj must also be rolled back to a state
in which the last message exchanged with Pi was M." [BARIGAlZI]

Fau 1t Treatment ..

Once a fault has been detected, the damage assessed,
and fault recovery accomplished, fault treatment attempts to
remedy the fault condition. The damage assessment phase should

identify which software component caused the fault such as
through the use of the concept of encapsulation. If the level
of encapsulation is at the software component, then possible
courses of action are to ignore lhe fault either temporarily

(i.e., skip frame) or forever (i.e., delete the function
performed by the software component and continue to operate the

system in a degraded model, retry the function with existing
components, or reconfigure with alternate components.

Response Time And Synchronization

No matter which fault tolerant software method is

used, real-time systems must arrive at a consistently correct
solution within the time frame determined by the control system
dynamics. A rule of thumb often given for selecting sampling

rates is that a rate of at least five times per system time
constant is a good choice. This necessitates that the response

time, d~fined as the delay between the t~iggering of a job by
the arrival of the relev~nt sensor input to the
actuator/display output that f ina l ly results, be no more than
1/5 of the system time constant. The response time is the sum
of the time for reaching agreement on the sensor data, the time
for execution of the application function, sjnchronization and
reaching agreement that its output is correct, and either
moving the actuator, or displaying the result. Obviously, time
spent in fault detection, damage assessment, recovery, and
fault treatment at each level must be accounted for in
determining the response time. Failure can occur due to
excessively long response times, e.g. the system goes unstable
since the hard deadlines for code execution are

missed.[KRISHNA]

A-B

Synchronization, such as that required at each point
of fault detection, can be performed using software or
hardware. Software synchronization has significant overhead
and the trend is to hardware synchronization [KRISHNA p.6,
ALLAN], although some commercial systems utilize software
voting on inputs and hardware voting on outputs.

DESCRIPTION OF PRIMARY FAULT TOLERANT SOFTWARE TECHNIQUES

There are two primary methods for providing software
fault tolerance: mr lt i-vers f cn ~rograrrming(N-vers;on

programming) and recovery blocks. Investigations into
combinations of these methods have been conducted at many
universities [HITT]. This report will concentrate on the two
main methods and the reader is referred to the foregoing
reference for description of the combinations.

N-Vers ion Programming (NVP)

N-version programming is the process of independently
specifying, designing, generating, and maintaining multiple
versions (N)2) of a program (module) for the same application
function. This is done by separate, independent, non­
communicating programmers who may use different algorithms and
even different languages [CHAl8]. It is important to realize
that N-vers ion programmi ng is 'defined to be a genera 1
methodology for producing highlj independent, redundant program
modules. It does not restrict the way these multiple versions
are operated in a computer. Thus, NVP could very well be used
to produce several alternate blocks for use in the recovery

A-9

block method [MAKAM p3]. Recent 'experimental results reject
the hypothesis of different versions having independent faults

[KNIGHT/LEVESON]. This does not mean that NVP does not provide
fault tolerant software, but does indicate that software
reliability models based on the assumption of independence may
give overly optimistic predictions.

Multi-Version Software (MVS)

The software obtained by NVP, controlled with a
system level driver and executed in parallel on a computer
system as a unit is called multi-version software (MVS) [MAKAM,
ANDER8l]. If there are N active versions executing in
parallel, this has been called N-version software (NVS)

[MAKAM].

"The	 driver is responsible for:

(i) invoking each of the versions;
(ii)	 waiting for the versions to complete their

execution;
(iii)	 comparing and actir,g upon the N sets of results."

[ANDER8l]

The organization and operation of the computer system
on which NVS is implemented must be taken into consideration.
If multiple processors are used which is the normal case for
NVS, the architecture of the processors impacts the performance
of the system. Figure A-2 depicts the classifications of various
parallel-processing architectures. Relevant factors include
whether the system architecture is parallel or distributed. If
parallel, whether it is single instruction/multiple data

(SIMO), where all processing elements

A-10

FUNCTIONAL DISTRIBUTION

LOOSELY PIPELINING
COUPLED

LOCAL AREA NETWORK
DISTRIBUTED

PROCESSING

GLOBAL MEMORY VIA GLOBAL BUS
TIGHTLY
COUPLED Parallel-processing

MULTIPLE GLOBAL BUSES classifications are loose.1
overlapping, and subject to
debate. Because many of the

MULTI PROCESS ING system differences and
similarities are not included,
the classifications shown here
are relatively crude.

j
FAULT· TOLERANT COMPUTERS

(REDUNDANT PROCESSORS)

VECTOR PROCESSORSSIMDPARALLEL (SINGLE INSTRUCTION-STREAMPROCESSING MULTI DATA-STREAM) SOME CELLULAR COMPUTERS1
DATA FLOW

MIMD
(MULTI-INSTRUCTION-STREAM SYSTOLIC ARRAYS

MULTIDATA-STREAM)

SW ITCH NETWORK1

SOURCE: ROBIN CHANG, INTERNATIONAL PARALLEL MACHINES

FiGURE A-2. PARALLEL-PROCESSING CLASSIFICATION

A-ll

simultaneously/synchronously execute the same instructions on

different data, or multiple instruction/multiple data (MIMO),
where the processing elements are not necessarily synchronous
and execute different instructions on different data. At the
initiation of a major frame, each of the N-versions must have
access to an identical set of input values. Intermediate
results would not necessarily have the same data, but the final
result output to the v~ter must represent the output data value
and be in a consistent format.

If a distributed processing architecture is used, the
consideration of tightly coupled versus loosely coupled
architectures also must be taken into account. In a tightly

coupled architecture, the computers are not autonomous and may
be interconnected by a hardware clock. Tightly coupled multi­
processors share access to cO~un memory and share one copy of

the operating system. Loosely coupled architectures supply
each processor with its own memory and its own copy of the
operating system, allowing each to operate relatively
autonomously [HINOIN]. Practically speaking, if the processors
exchange results over an external data bus, as contrasted with
an internal backplane bus, the architecture will not be tightly
coupled since the bus protocol of existing buses, along with
bus transport delays, effectively makes control by a master
clock impractical. Hence, the driver software must implement
the synchronization.

Synchronization is very important in MVS. There are
three primary software methods:

(i) Clock synchronous
(ii) Frame synchronous

(iii) Event synchronous.

A-12

The synchronization method has to allow for different

execution times for each version, including the case where a
version might get stuck in an infinite loop due to a design or
implementation fault. This case is often handled using a
watchdog timer (a timeout mechanism) coupled with the
synchronization method. Clock and frame synchronous systems
have been designed to achieve tolerance to hardware faults, the

best examples being Fault Tolerant Multiple Processors (FTMP)
and Software Implemented Fault iulerance (SIFT), respectively.

Clock synchronous performs the voting check (usually
bit-by-bit) at predetermined fixed times rather than waiting
for completion signals from the versions. This is very
difficult to implement for an NVS as compared to the case of N
modular redundant (NMR) processors exe~uting identical versions
in parallel [ANDER8!].

Frame synchronous mechanizations partition the
control task a priori into a number of subtasks, each of which

needs to be iteratively executed in some time relationship to
the other subtasks and each of which can be completed in a
single frame in a block of frames. These subtasks can then be
assigned to frames in specific patterns such that the
sequencing of the subtasks is correct and such that the
iteration frequency of each subtask is correct. The resulting
pattern normally repeats every n frames and this block of n
frames is called a major frame as shown in Figure A-3. Exchanges
between channels of input data and output data are scheduled a
priori. This approach requires multiple frames to comp]ete the
process of sampling an input, transfer of this input to all
versions, processing of the input to produce an output for each
version, and voting on the outputs. This results in a
transport delay of three or four frames.

Event synchronous systems are loosely coupled and
evolved from the frame synchronous systems in order to achieve

A-13

----------------Major Frame

Task C Task A Task D Task A I Task B Task A Task C Task A Task B

Minor Frame---------­ I ..

Minor Frame Time Line Details

I/O.
Event
Polling

I

Exchange
I

Sensor
Processing Redundancy
and Voting I Management

Control
. Computations

(Task B Computations)

FIGURE A-3. FRAilE SYrJCHRONOUS TIflE LInE

A-14

tolerance to design faults in the software. The major events
a~ which synchronization takes place between redundant
computing elements are: inputs, outputs, interrupts,
programmed exceptions, and the intermodule and interprocess
communication in the multi-version software [MAKAM].

Initially a version is in an inactive state. When
invoked by the driver,· it enters into a waiting state where it

waits for a synchronization signal representing a request for
service from the driver. When this signal is received, it

transfers into a running state as shown in Figure A-4. If any
terminating condition is signaled by the status in the
comparison vectors, then the execution of this version is
terminated and it returns to the inactive state. Otherwise, it
generates a comparison-vector when a cross check (cc)-point is
satisfied. It then uses a synchronization signal to notify th~

driver that a comparison-vector is ready, and finally returns

to the wait state.

Synchronization between the N processors is
accompl ished under control .of the" driver using a
synchronization algorithm. Each processor enters a
synchronization phase when it generate~ a synchronizing event
and transmits a synchronization message or when it receives the
first synchronization message from another processor. A
time-out clock is activated when a processor enters a
synchronization phase. A processor enters a wait-phase within
a synchronization phase only if it generates a synchronization
event but not when it receives a synchronization message from
another processor. The wait phase is terminated by an
internally generated time-out interrupt at the end of a preset
time-out limit, or earli~r if N-l synchronization messages are
received. The synchronization phase is terminated when all the
synchronization messages are processed by the processor and its
normal execution is resumed [MAKAM].

A-1S

INVOKED

SERVICE
CROSS-CHECK POINT REQUIRED
CONDITION

SATISFIED

TERMINATING CONDITION
SAn·SFI ED

FIGURE A-4. STATE TRArJSITIorJS OF A VERSIOJJ

A-16

Error Detection

It is desirable to be able to distinguish between

errors due to software design faults and hardware physical
failures or malfunctions. Software faults can be in the driver

operating system (OS) or in the application software (AS).
Errors are detected by-two basic mechanisms: the
synchronization procedure and the decision function (voter).
Synchronization, voting, and error recovery are provided by the

underlying operating system and hardware in NVS.

Synchronization errors can be grouped into
incompatibility errors and timing violations [MAKAM]. The
actual processing of synchronization messages involves checking
for compatibility of event-types (and label fields), running
the decision function on the comparison-vector data to get the
most acceptable results, and finally updating the local
comparison-vector.

Since physical clocks do not keep perfect time, but
can drift with respect to one another, the clocks must be

periodically resynchronized. This can be done in software by
exchanging clock values. A global functional resynchronization
of processes should be performed periodically by the as to
recover from f.aults of any type and origin which cause a
processor to temporarily lose its context and hence its
coordination with the other prccessors. Dynamic

resynchronization in an event synchronou~ design requires the
restart points be defined a priori and implemented as part of

the global scheduling algorithm in the driver operating system.

Applications Software. Consider the forms of logical
structure available in Ada as shown in Figure A-5. These are:
blocks, sUbprograms, packages, and tasks. A block ;s a section

A-I?

of program code located in the executable part of some logical
unit (subprogram, main program, ~ackage, or task) optionally
prec~ded by a declarative part and optionally followed by
exception handlers. A task is a subunit whose parent task may
be a subprogram, a declare block, a package, or another task.
The execution of the parent task determines the start and
finish of the execution of the task.

Application Software

Pack age Subprogram Task
Subprogram Procedure Task

Procedure 810ck Block
Block Statement Statement

Statement Task

Task Block
Block Function

Function Expression
Expression

FIGURE A-S. SOFTlJARE STRUCTURE HIERARCHY

Versions Error Detection. The decision function
(algorithms used for comparison of output variables from each
version) for an event synchronous system depends on the type of
comparison-vector, but must permit an inexact match at most
crosscheck (cc) points due, for example, to inexact sampling of
inputs, and different computational precision in each version.
Characterization of a cc-point includes the specification of
the data formats of all the comparison-variables in the
comparison vector, the error tolerance limits (if non-zero),
and the time constraints to be satisfied (in real-time

A-18

applications) by the segments of software between any two
adjacent nodes as shown in the cc-point graph of Figure A-6a &A-6b.
[MAKAM p.40J. All N versions have the same number of built-in
cross-check points which serve as both synchronization points

as well as communication ports between the different versions.

The driver operating system executes the decision function,

updates the comparison variables (or performs output), controls
the exchange of data, ~nd finally returns control to the

application software under control of the operating system
scheduler which is event synchronized.

Damage Assessment

Damage assessment is not required in an NVS if the

activities of the versions are atomic [ANDER81, p.279J. Error
location becomes important if one wants to distinguish between

errors due to software design faults (operating system or
application software) and hardware physical faults. The
strategy for discovering the origin of a fault depends on the
design approach. Heuristics have been suggested for isolating

a hardware failure and a software fault [MAKAM p.75-76J.

Recovery

Recovery in NVS normally' involves ignoring the values
identified as erroneous by the check [ANDER81 p.279J and
continuing to the next major frame as long as a minority of the
processors' synchronization messages disagree. The minority
processors should attempt resynchronization with the majority
good processors. If a clear majority of the processors do not
produce compatible synchronization messages, then a global
resychronization becomes necessary [MAKAM p. 70J.

A-19

Start

Camman-input point
(cc-point)

Semantic-consistency Transaction-commit point
point (t c- po i nt 1)
(sc-point)

Transaction-commit point
(t c- po i nt 2)

i - a cc-point P. . , ,J(i ,j) - a directed branch
t .. - specified time constraint , ,J

R., - a priori reliability of cc-point

FIGURE A-Ga. cc-romr GRAPH OF A

SIilPLE PROGRAf.l VERSIorJ

FIGURE A-Gb. PARTIAL GRAPH OF A
COIJPLEX PROGRAi;

A-20

Fault Treatment

Fault treatment in NVS simply results in the versions
determined to have produced erroneous results being ignored

[ANDERS1 p.279]. The operating system should provide a default
failure exception nandler task to determine the type of such

exception and save the status in a special buffer to be used
later by the error manager. At the next cross-check point, the
decision function will indicate the particular version in
error. The reconfiguration task can then either reinitialize
the failed task such that there are no states which are
inconsistent, or replace the version by unlinking the module
completely encapsulating the failed program segment and

replacing it with a compatible but more reliable unit from a

different version.

Alternate NVS Syst~m Architectures

Figure A-7 depicts various alternate architectures for an NVS

system.

The first architecture is illustrative of a system
with redundant analog sensors whose output must be sampled and
converted to a digital value for input to a version that
implements a function such as computing the present state
vector of the vehicle. The driver operating system must

synchronize the start of the conversion by each
analog-to-digital (A/D) converter. If a voter is part of each
version as indicated in Figure 7a, each voter module must

A-21

VERSION 1

VERSION 2

VERSION 3

VERSION 1

ACTU ATOR
VERSION 2 COMPLEX

VERSION 3 '

AIRCR AF

LANT

YERSION 1

VERSION 2

VERSIOl'13

(c)

FIGURE A-7. ALTERHATE rJ-VERSIOU SOFTlJARE SYSTEil ARCHITECTURES

A-22

(whether hardware or software) start a timer and await the DATA
READY indication from each converter, at which time the data
can be transmitted over the processor data bus for use by the
input voter. When all three AID outputs are received, the
voter decision function can be invoked either by the local
operating system or the driver operating system to arrive at

the value to be input to the version. The operating system
must monitor the compl~tion of all voters prior to
synchronizing the start of each version's processing. Since
the versions will have different execution times, the voter on
the output of each version must wait until all versions'
results are available for the vote using the applicable
decision function, or .the version execution time watchdog timer
times out. The operating systGm must again monitor the s~atus

of each versions completion, and vote completion. The outputs
from each version to the.dig~tal-to-analog (D/A) converter
should be synchronized by the director operating system. The
input to a D/A is parallel. The final step of the voting
process is to prepare the output for transmission under command
of the director operating system to the D/A. If the D/A is
connected to the processer"s parallel data bus, no further
conversion would be required once the data is received by the
D/A. If a serial data bus is used to transmit the output from
the processor containing each version, the D/A must be preceded

by a serial to parallel conversion to utilize the data. This
serial to parallel conversion should be synchronized by the
director operating system so that the actuator complex receives
the analog values computed by each version at the same time

. instant for each channel. Obviously, there are tradeoffs of
software complexity as to whether the local operating system
for each version of the director operating system controls the
cross check points of the input voter, start of each version,
completion of each version, and output voter. To summarize,
the director operating system must control the synchronization
of the start of AID and D/A conversion at a minimum.

A-23

Figure 7b represents a somewhat simpler, but

potentially less fault tolerant architecture due to the single

point failure possibility for either voter. In this
architecture, the input and output voters are not part of the
version but are implemented in the driver operating system. In
this architecture, the directcr operating system:

(1) controls start-of AID conversion,

(2) implements and controls the input voter,
(3) controls start of each version,
(4) implements and "controls the output voting, and
(5) controls tne transmission to the single D/A.

The architecture in Figure 7c is typical of a system
which has a single sensor for measuring some data parameter
required by a function. In this case, the driver operating
system controls:

(1) the start of AID conversion and the writing to a
memory buffer accessible to each version,

(~) the synchronous start of each- version,

(3) implements and controls the output voting, and

(4) controls the transmission to the single D/A.

As can be seen from these examples, implementing an
NVS system requir~s much more than simply developing
independent versions of a module, and voting on the output.
The driver operating system contains some different procedures
for each architecture. The processes of damage assessment,
recovery, and fault treatment for each of these architectures
will have some similarities but also differences dependent upon
the approach taken by the designers.

A-24

Recovery 8lock

The recovery block technique for providing tolerance
to software faults in sequential programs is based on the
concept of developing multiple independent versions of a
software module with a single version processed at a time,
followed by sUbjecting the output of that version to a run time
assertion, called an acceptance test. Should the output of the
version fail the acceptance test, the system is restored to the
state which existed prior to the execution of the version which
failed the acceptance test, and the operating system invokes
the first alternate version for the function whose primary
version failed. The output of the first alternate version is
subjected to the same acceptance test used for the primary
version. If it passes, the operating system invokes the
primary version for the next function to be executed- and the
process proceeds in a similar manner as depitted in Figure A-8.

<recovery block>::=ensure <acceptance test> by

<primary alternate>

<other alternates> else error

<primaryalternate>::=<alternate>
<other alternates>::<empty>j<other alternates>

else by <alternate>
<alternate>::=<statement list>
<acceptance test>::=<logical expression>

FIGURE A-S. SyrHAX FOR RECOVERY [lLOCK [flELLIAR-SrHTH]

A-25

If the first alternate fails, the second alternate

version is scheduled if the remaining time permits it to
execute and be subjected to the acceptance test while still

maintaining real-time operation. In a real-time environment,

missing a hard time deadline for executing a process can lead

to system failure, or at least a degradation in performance.
In the case of the recovery bleck, this can happen due to a
number of reasons including:

(1)	 a faulty acceptance test,
(2) exhausting	 the spare modules with none passing a valid

acceptance test, and

(3)	 run time of the versions and acceptance test exceeding
the time' frame dictated by the real-time requirement.

If the recovery block fails, recovery is attempted,at
the next higher level which could be another recovery block in
the case of nested recovery blocks.

Error Detection

"The first stage in providing fault tolerance is to

detect errors arising from the ~xecution of the prima~ module"

[ANDER81, p. 251]. Assertions can be included in the module
itself. This by itself is not sufficient and must be followed
by the completion of an acceptance test which executes after
the primary module has run. The acceptance_test shall raise an
exception if the module output does not pass the test.

"The function of the acceptance test is to ensure
that the operation performed by the recovery block is to the
satisfaction of the program .which invoked the block. The

A-26

acceptance test is therefore performed by reference to the
variables accessible to that program, rather than variables

local to.the recovery block, since these can have no effect or
significance after exit from the block. Indeed the different
alternates will probably have different sets of local

variables." [RAND75]

"When an acceptance test is being evaluated, any
non-local variables that have been modified must be available
in their original as well as their modified form because of the

possible need to reset the system state. For convenience and
increased rigor, the acceptance test is enabled to access such
variables either for their modified value or for their original
(prior) value." [RAN075]

Damage Assessment

Damage assessment is not currently used in the

recovery block technique. In the case of a fault being
detected by the acceptance test, one would ideally like to
return to the state nearest in time to the present time that
allows full regeneration of lost results. To perform such a
feat in real-time is very difficult, so no attempt is made to
locate that state in current recovery block implementations.

Recovery

Recovery blocks primarily re lyon backward recovery.

For single sequential processes, the systen saves the" state at
the a priori determined recovery point prior to beginning the
execution of the primary version. No damage assessment attempt

is made. The inherent danger in this approach for a system
with concurrent processes is the rollback propagation in which
rollback of a process may cause other processes to rollback
because of process interaction. This rollback propagation can

·ccintinue until a globally consistent state is reached and

could, in the worst case, necessitate a restart [ANDER8!,
GOLDBERG, SHIN, VELARDI]. Two approaches to dealing with this
phenomena are the techniques of "conversations" between

processes [RAND75, GOLDBERG] and the recovery cache [LEE,
MELLIAR-SMITH] •

Fau It Treatment

Fault treatment in the recovery block technique re1ys
on one of the alternate versions being correct and passing the
acceptance test. In real-time applications which repetitively
perform the same functions througout a mission, a version which
persistently fails the acceptance test would be removed from
the· execution schedule and replaced with a spare. if one were
available. Whether a spare is available or not, the fault log
would be retained and the faulty version removed from the
execution schedule and subjected to analysis to determine the
specific faults that caused it to consistently fail the

acceptance test.

A-28

REFERENCES

[ALLANJ Allan, Roger, "For Fault-Tolerant Computing, Software

is Finding a Powerful Ally in Hardware", Electronic Design,

Oct. 31, 1985, pp. 110-117.

[ANDER81J Anderson, T. and Lee, P. A., Fault Tolerance:

Principles and Practice, Prentice/Hall International, London, 1981.

[BARIGAZ4IJ Barigazzi, G. and Strigini, L., Application-

Transparent Setting of Recovery Points, IEEE, 1983.

[CHA78J Ch.en, L. and Avizienis, 'A., "N-Version proqr armri nq:

a fault-tolerance approach to reliabi lity of software operation",

Digest FTSC-8, Toulouse, France, June 1978, pp. 3-9.

[GOLDBERGJ Goldberg, Jack, and Levitt, Karl, Architectural

and Hardware Implications of Fault Tolerant Software, NASl-17412,

SRI International, 1984.

[HINDINJ Hindin, Harvey J., "Parallel Processing Promises

Faster Program Execution", Computer Design, August 15, 1985.,

pp. 57-66.

[HITTJ Hitt, Ellis F., Webb, Jeffrey J., and Bridgman,

Michael S., Comparative Analysis of Fault-Tolerant Software Design

Techniques, NASl-17412, Battelle Memorial Institute, Feb. 15, 1984.

[IE.EE 729-83J IEEE Stanaard Glossary of Software

Engineering Terminology, IEEE 729, 1983.

[KNIGHT/LEVESONJ Knight, John C. and Leveson, Nancy, and

St. Jean, Lois D., "A Large Scale Experiment in N-Version

Programming", Digest FTSC 15, The University of Michigan,

June 1985, pp. 135-139.

[KRISHNAJ Krishna, C. M., Shin, Kang G., and Butler,

Ricky W., Synchronization and Fault-Masking in Redundant

Real-Time Systems, NASA TM-87478, Nov. 1983.

[LEEJ Lee, P. A., Ghani, N., and Heron, K., "A Recovery

Cache for the PDP-II", Digest FTSC-9, June 1979, pp. 3-8.

[MAKAMJ Makam, Srinivas V., Design Study of.a Fault-Tolerant

Computer System to Execute N-Version Software, Report No. CSD-821222,

UCLA Computer Science Department, December 1982.

[MELLIAR-SMITHJ Melliar-Smith, Peter Michael, Development of Software

Fault-Tolerance Techniques, NASA CR 172122~ SRI International, March 1983.

[RAND75J Randell, B., "System Structure far Software

Fault Tolerance", IEEE Trans. on Software Engineering",

Vol. SE-l, No.2, June 1975.

A-29

[SHIN] Shin, Kang G. and Lee, Yann-Hang, Analysis of
Backward Error Recovery for Concurr.ent Processes with Recovery
Blocks, The University of Michigan, 1983.

[VELARDI] Velardi, Paola, and Ciciani, Bruno, "Recovery
Blocks for Communicating Systems", Microprocessing and Microprogramming
11 (1983), North Holland, pp. 287-294.

APPENDIX B

SOFTWARE SYSTEM ERROR DETECTION

AND CORRECTION TECHNIQUES

B-1

SOFTWARE SYSTEM ERROR DETECTION AND CORRECTION TECHNIQUES

by

Ellis F. Hitt

1. INTRODUCTION

1.1 Requirements Definition

The software req~irements for the experiments which will provide data
from real-time implementation of one or more of the eXisting fault
tolerant software techniques include ~he functions to be implemented,
the test drivers, and the data to be acquired. This document
accompanied by the formal software specification to be developed under
Subtask 2.2 meet the requ~rements of Document No.2 referenced in
RTCA/DO-178A [RTCA].

2. Recov~ry Blocks

2.1 Functions to be Implemented

The components of the system state vector to be estimated are:
latitude, longitude, altitude, north and east velocities. The north
and east velocities will be used to compute the desired velocity
output, the true velocity. The recovery block will be evaluated for
implementing these navigation functions which provide the components
of the state vector:

(1) Altitude from air data
<2> VOR/DME/air data [BRYSON] yields estimates of latitude,

longitude, and north and east velocities~

The coordinate systems to be used are the:
(1) inertial frame
<2> earth fixed
(3) local level or geographic
(4) body
<5> navigation (local horizontal) CHITT85J.

2.2 Recovery Block Implementation of Navigation

2.2.1 Sequential Processing

A major frame will be composed of a sequence of minor frames as shown
in Figure 6-1. At the start of each minor frame, the frame timer is
reset to zero. In the minor frame the navigation process is to
execute, the inputs will be read from the respective addresses. The
recovery point will be established. Th. inputs will be tested for
validity and then be processed by the primary version. The output
will be SUbjected to the acceptance test. I If the output passes the
acceptance test, it is written to the output addresses and no further
processing of the navigation function is required until the next minor
frame in which navigation is scheduled. If the output fails the

--

1- Major frame r-I
Task Il I Task 1\ J Task C Task A I Task 0 [TaSk A I Task 0 I Task 1\ Task ·c·lTask 1\ "I .:

Ninor Frame ~ I

-~---

.
Ninor Frame Time line Details

If Version
Passes I/O. Estab l i sh Execute Execute Purge
Acceptance Event Val1date necovery Primary Acceptance necovery I/a it
lest Po11jl19 Input Point Version Test Point

l;};j
I

N

El se no11
Back

l l'

Execute
Alterna te
Version

_ f~ -~-~ -~ ~ ;;i: n c e]
Test

FIGURE 8-1. RECOVERY BLOCK TIllE LIrlE

B-3

acc~pt3nc~ test, the system rolls back to the r~cove~y point and
invokes the £irst alte~~ate version. This process con~inues un~il the
output passes the acceptance test or the mi~or i~ame timer t~mes out.

2.2.2 Response Time

The minor £rame time shall be 25 milliseconds. Forty minor £~ames

shall comprise the major £rame. Within each minor £rame the recovery
block is scheduled to execute, the total time must be allocat~d to the
input processing, establishi~g the recovery point, executing the
primary version, executing the acceptance test, and either purging the
recovery point i£ the output passes the acceptance test, or rolling
back to the recovery· point and repeating the process using an
aiternate version. The primary version as well as each alternate
version must execute in a given time increment. For the purpose o£
this project, this time shall be less than 2 milliseconds. The entire
process £rom minor £rame timer start to completion o£ the execution o£
the £irst acceptance test shall be less than 5 milliseconds.

2.3 Requirements

The recovery block model o£ the system shall make use o£ the states
and system model given in BRYSON. A primary and at leas~ one
alternate version shall be provided. The acceptance test shall be
separately speci£ied and developed.

2.3.1 Sensor Inputs

Sensor inputs shall be assumed to be transmitted over a simulated MIL­
STD-1553B data bus. This establishes a 16 bit data word with parity
as the last bit. The MSB is transmitted £irst and parity last.

2.3.1.1 Air Data Inputs

2.3~1.1.1 Data Type

The input variable dat3 type shall be integer as specizied in [ASDJ.

2.3.1.1.2 Input Data Word Formats

The data word £ormat is the structure, order, and value represented by
the bits in a signal data transmission. The data word £ormat is as
£ollows £or each input variable:

Barometric Altitude MSB: 16,384
Units: Feet LSB: 1

Coding: 2's.complement. Integer.
Max: .32,768
Min: - 1,000

BIT 1 23456 7 8 9 10 11 12 13 14 15 16 17 18 19 20
TIMES SYNC SIGN MSa • • • • • • • • • • • • • LSa PARITY

Trar.smission Rate: 20 H=

Indicated Airspeed
Units: Knots

~SB: 4,096
LSB: 2£-3
Codi~g: 8NR
~ax: e,lS:
Mi~: 0

B-4

BIT 1 2 :3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
TIMES SYNC I1Sa • • • • • • • • • • • Lsa PARITY

T:ansmission Rate: 20 H:

2. 3 .. 1. 2 VOR/DME Inputs

2.3.1.2.1 Data Type

The input data shall be real.

2.3.1.2.2 Input Data Word Formats

The data word format follows for each input variable:

Magnetic Bearing to VOR MSB: 90
Units: Degrees LSB: 0.04394531

Coding: BNR
Max: "'180
Min: -180

BI~ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
TIMES SYNC SIGN I1SB. • • o 0 PARITY• • • • • • • LSB	 0
Transmission Rate: 20 Hz

Distance to VORTAC	 I1SB: 327.68
Units: Nautical Miles	 LSB: 0.01

Coding: BNR
Max: 655.36
Min: 0

BIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
TIMES SYNC MSa· • • • • • • • • • • •	 • • LSB PARITY
Transmission Rate: 20 H:

2.3.2 Processing

The VOR/DME measurement	 model shall be based on that given in BRYSON.

The recovery block (~ITT86J mechani:ation shall sequentially:

1. Validate input data
2. Establish recovery point
3. Execute subprogram for primary version­
4. Execute acceptance test
5. Ii subprogram passes acceptance tes~, then purge rec~very

point and wait until next scheduled minor frame, else rollback t~

recovery point
6. Execute subpr~gram ior alternate version
7. Ii subprogram passes acceptance test, then purge recovery

point and wait until next scheduled minor frame, else rollback to
recovery point

8. I£ another alternative available, then e:<ecute. subpr=gram
for alternate version, else fail.

2.3.3 Output

The output 0= the version wh~ch passes the acce~~ance test sna:l be
conv~rted into the output iormat which iollow~ ==r ~ach ccmpcr.ent 0=

B-3

the state vector.

2.3.3.1 Data Type

The output vpriable data type shall be as g~ven in the data word
coding :format.

2.3.3.2 Output Data Word Formats

The data word :format :follows :for each output variable:

Latitude, Pres~nt	 11:sa: 45
Units: Degrees	 LSS: 5.36E:-6

Coding: BnR
Max: .90 (. is north)
Min: -90

Word 1
BIT 1 2 345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
TIMES SYNC SIGN I'1SB PARITY

Word 2
BIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1a 19 20
TIMES SynC LSa 0 0 0 0 0 0 0 PARITY
Computation Rate: 20 Hz

Longitude, Present	 MSB: 90
Units: Degrees	 LSB: 5.36E:-6

Coding: BNR
MaA: +180 (+ is East)
Min: -180

Word 1
BIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
TIMES SynC SIGn 11:SB • • PARITY

Word 2
BIT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1.8 19 20
TIMES SynC LSB 0 0 0 0 0 0 PARITY

Computation Rate: 20 Hz

Barometric Altitude	 MSB: 16,384
Units: Feet	 LSB: 1

Coding: 2's complement, Integer
l'1ax: +32,768
l'1in: - 1,000

BIT 1 2 3 4 =: 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20'oJ

TIMES SY~C SIGN MSB LSB PARIi'{

Computation Rate: 20 Hz

True Vo:loci":y	 MSB: 4.096
Units: Knots	 LSB: 2E-3

Coding: BNR
Max: 8,192
:1':':1: 0

...,	 .,..
... 1	 20a-- 1 3 4: 5 6	 7 9 10 1: 1: 1.3 1~ :5 1.5 1.7 13 .=

B-6

T!~ES SYNC MS3· • • • • • • • • • • • LSa PARITY
C~mputa~ion Rate: 20 Hz

3. Data to be Acquired

The individual subprograms should be designed to automatically acqui~e

certain data. So£tware probes will be embedded in the code. Data to
be acqui~ed £rom each subprogram includes execution time, input
variables' values, and output variables' values £or each version on a
stand-alone basis. When the complete recovery block is integrated,
the outputs shall include the execution time, input variables' values,
and output variables' values £or each version which £ails the
acceptance test.

4. Test Drivers

The test drivers £or each subprogram shall be derived £rom the input
speci:ications £or each subprogram. The test drivers £or the
integrated set o£ subprograms required to implement the real-time
recovery block shall simulate the input data transmission rates as
well as the £ull range o£ dynamics derived £rom a simulated aircra£t
trajectory.

REFERENCES

CASD] MIL-STD-1553 Multiplex Data Bus Word Formats, ADA 121934,
Boeing Military Airplane Company, December 1981.

[BRYSONJ Bryson, A.E. Jr., and Bobick, J.C., ftImproved Navigation by
Combining VOR/DME In£ormation and Air Data ft, Journal o£ Aircra£t, Vol.
9, No.6, pp. 420~426, June 1972.

CHITT8S] Hitt, Ellis F., McCown, Robert B., Schweikert, Katherine M.,
and Gallivan, Richard, Integrated Contiol Mathematical Routines ;£or
MIL-STD-1750 Built-In-Functions (BIFS>, AFWAL-TR-85-3056,' Battelle
Columbus Laboratories, August 1985.

CHITT86J Hitt, Ellis F., So£tware Fault Tolerance, Technical Report,
Battelle Columbus DiVision, Jan. 9, 1986.

CRTCA] So£tware Considerations in Airborne Systems and EqUipment
Certi£ication, Document No. RTCA/DO-178A, Radio Technical Commission
£or Aeronautics, March, 1985.

APPENDIX C

NAVIGATION STATION FREQUENCIES

C-l

NAVIGATION STATION FREQUENCIES

Table C-l lists some of the navigation stations in the United States and
their corresponding station frequencies. This data is from a VORTAC listing
that was compiled around 1970, so there may be old VORTACs that are listed
that should be deleted~ However, for use in our navigation recovery block,
this table satisfactorily illustrates our intentions.

TABLE C-l. NAVIGATION STATION FREQUENCIES [11]

Location Frequency Location Frequency

Nabb, IN. 113.5 Attica, OH. 112.8
Allentown, PA. 117.5 Waterloo, DE. 112.6
Abilene, TX. 113.7 Watertown, SD. 116.6
Albuquerque, NM. 113.2 Augusta, ME. 111.4
Aberdeen, SO. 113. a Austin, MN. 108.8
Albany, GA. 116.1 Austin, TX. 112.5
Anton Chico, NM. 110.0 Wausau, WI. 111. 6
Nantucket, MA. 117.7 Akron, OH. 114.4
Waco, TX. 115.3 Atlantic City, NJ. 108.6
Ardmore, OK. 116.7 Addison, TX. 111.4
Camp Springs, MD. 113.1 Albert Lea, HN. 109.8
Alexandria, LA. 116.1 Pittsburgh, PA. 110. a
Augusta, GA. 113.9 Athens, GA. 109.6
Alliance, NE. 111.8 Bellaire, OH. 117.1
King Salmon, AK. 112.8 Akron, CO. 114.4
Albany, NY. 117.8 Allendale, SC. 116.7
Alice, TX. 114.5 Waterloo, IA. 108.2
Alamosa, CO. 113.9 Walla Walla, WA. 111. 8
Amarillo, TX. 117.2 Alma, GA. 115.1
Anniston, AL. 108.8 Anchorage, AK. 114.3
Anderson, SC. 108.6 Annette Island, AK. 117.1
Ainsworth, NE. 112.7 Anthony, KS. 112.9
Lima, OH. 108.4 Altoona, PA. - 108.8
Napa, CA. 112.1 Appleton, OH. 116.7
Naperville, IL. 116.0 Alpena, MI. 108.8
Acton, TX. 110.6 Yardley; PA. 108.2
Walnut Ridge, AR. 114.5 Watertown, NY. 109.8
Astoria, OR. 114.0 Atlanta, GA. .115.6

APPENDIX D

NAVIGATION STATION LOCATIONS

0-1

NAVIGATION STATION LOCATIONS

Table 0-1 gives some of the navigation stations (listed by city and state)
and their corresponding latitude and longitude. The table is incomplete,
but suffices to illustrate its use in the calculations.

TABLE 0-1. NAVIGATION STATION LOCATIONS [llJ

City, State Latitude Longitude

Nabb, IN. 38: 35: 19.5 N 85: 38: 9.7 W
Allentown, PA. 40: 43: 35.7 N 75: 27: 18.4 W
Abilene, TX. 32: 28: 52.5 N 99: 51 : 47.1 W
Albuquerque, NM. 35: 2 : 37.4 N 106: 48: 56.6 W
Al:!erdeen, SO. 45 : 25: 2.7 N 98: 22: 6.1 W
Albany, GA. 31 : 39: 18.2 N 84: 17: 35.5 W
Anton Chico, NM 35: 6 : 41.9 N 105: 2: 21.7 W
Nantucket, HA. 41 : 16: 54.2 N 70: 1 : 38.0 W
Akron, OH. 41: 6 : 28.2 N 81 : 12: 6.2 W
Waco, TX. 31: 39: 43.7 N 97: 16: 7.4 W
Atlantic City, NJ. 39: 27: 20.7 N 74: 34: 36.2 W
Ardmore, OK. 34: 12: 41.3 N 97: 10: 4.9 W
Addison, TX. 32: 58: 24.6 N 96: 50: 8.3 W
Camp Springs, MD. 38: 48: 25.6 N 76: 51 : 59.4 W
Albert Lea, MN 43: 40: 60.0 N 93: 22: 8.0 W
Alexandria, LA. 31: 15: 23.2 N 92: 30: 2.0 W
Pittsburgh, PA. 40: 16: 42.9 N 80: 2 : 27.9 W
Augusta, GA. 33: 32: 39.8 N 82: 7 : 59.6 W
Athens, GA. 33: 56: 50.9 N 83: 19: 29.6 W
Alliance, NE. 42: 3 : 18.4 N 102: 48: 14.9 W
Bellaire, OH. 40: 1 : 1.0 N 80: 49: 2.8 W
King Salmon, AK. 58: 43 : 31.3 N 156: 44: 59.9 W
Akron, CO. 40: 9 : 20.1 N 103: 10 : 45.2 W
Albany, NY. 42: 44: 49.9 N 73:- 48: 13.0 W
Allendale, SC. 33: 0: 44.4 N 81 : 17: 32.6 W
Alice, TX. 27: 44: 22.2 N 98: 1 : 15.5 W
Waterloo, IA. 42: 33: 23.4 N 92: 23: 55.5 W
Alamosa, CO. 37: 20: 56.9 N 105: 48: 48.7 W
Walla Walla, WA. 46: 5 : 13.5 N 118: 17: 29.1 W

APPENDIX E

NAVIGATION RECOVERY BLOCK ADA CODE

NAVIGATION RECOVERY BLOCK ADA CODE

The following pages are the source code listing for the navigation recovery
block described "in this report. The source code is written in Ada.

The decision for the use of a maximum of seven significant figures in all
of the constants in this program was governed by the use of the predefined
standard Ada real numeric type FLOAT (which is implemented on the VAX using
F-floating representation). The F-floating representation has a size of
32 bits and provides six digits of precision. Although the use of the
Ada numeric type LONG FLOAT (implemented using D-floating or G-floating
representation) would provide additional digits of precision CD-floating
has a size of 64 bits and provides nine digits of precision; G-floating
has a size of 64 bits and provides fifteen digits of precision). its use
would result in source code that is less portable [12,13J.

E-2

with TEXT_IO, FLOAT_MATH_LIB;

procedure NAVIGATION is

use TEXT IO, FLOAT MATH LIB;

package fNT_I_O is-new INTEGER_IO(INTEGER);

package FLOAT_I_O is new FLOAT_IO(FLOAT);

use INT_I_O, FLOAT_I_O;

type TUNED_FREQUENCY is delta 0.1 range 108.0 .. 118.0;
type FREQUENCY is (113.5, 117.5, 113.7, 113.2, 113.0, 116.1);

-- Note that the frequencies listed are given just for this example
-- and would need to be changed for your specific use.

type LOCATION is (STATES, NOTSTATES);

The general location of the aircraft is necessary for the range
-- check. LOCATION is defined as within the 48 conterminous states,
-- STATES, or not, NOTSTATES.

NUMBER_ITERATIONS, NUMBER_TRIALS: INTEGER;

ACCEPTANCE, FREQ CHECK, NEW PROB SIGNAL,PROB SIGNAL,

TOTAL_PROB_SIGNAL: BOOLEAN;- -	 ­

A, AIRCRAFT ALTITUDE, AIRCRAFT LAT, AIRCRAFT LONG, AIRSPEED TRUE,

A ONE, A THREE, AT NORTH, AT wEST, BEAR TRUE~ BONE, B THREE,

C-ONE, C-THREE, DME RANGE, EFFECTIVE RANGE, ELEVATION,­

ELEVATION ANGLE, F ONE, F TWO, F THREE, HDG TRUE, M, N,

NORTH POSITION, OLD NORTH-POSITION, OLD TIME, OLD WEST POSITION,

P, PHI THREE, PITCH~ Q, QUOTIENT," RADIUS EARTH, R-ONE,-R TWO,

R THREE, S, STATION ELEVATION, STATION LAT, STATION LONG~

THETA THREE, THETA FOUR, TIME, TOLERANCE, UNUSABLE AREA,

VELOCITY NORTH, VELOCITY WEST, WEST POSITION, X, Y~ Y ONE, Y_TWO,

Y_THREE,-y_MAX: FLOAT; - -	 ­

type STATION_CLASS is (TERMINAL, LOW, HIGH);

function	 ARCTANGENT(NUMBER ITERATIONS: in~INTEGER;
X, TOLERANCE, Y_MAx: in FLOAT) return FLOAT is

begin

E-3

FIND:

for J in 1 .. NUMBER_ITERATIONS loop

Y THREE : = (Y ONE;. Y THREE) /2;

F-ONE : ~TAN(Y ONE) --X;

F-TWO : ~TAN(Y-TWO) - X;

_ F:THREE : = TANTY_THREE) - X;

if (F ONE < TOLERANCE) then
Y : = Y ONE;
exit FIND;

elsif (F TWO < TOLERANCE) then
Y :-=Y TWO;
exit FIND;

elsif (F THREE < TOLERANCE) then
Y : -= Y THREE;
exit FIND;

end if;

if ((F THREE/F ONE) < 0.0) then
.Y:TWO : = Y_THREE;

else
Y ONE := Y_THREE;

end it;

end loop FIND;

end;

The above function, ARCTANGENT, is used to determine the arc
tangent in the secondary alternate. To "force" explicit
differences ~o exist between the primary and seconda~y.

alternates, the primary alternate uses the Ada math library to
determine these values, while the secondary alternate uses the
.interval halving method. This enables the determination of a
root of f(x) = 0, accurate within a specified tolerance value.

-- The following "begin" starts the main program.

begin

GET (NUMBER_TRIALS); .

E-4

VORDME:

for	 I .. NUMBER_TRIALS loop

GET	 (TUNED_FREQUENCY);

The frequency check is performed by comparing the
tuned-navigation frequency, TUNED_FREQUENCY, to the
stored navigation station data, STATION_FREQUENCY.
If the tuned navigation frequency does not match a
station in the navigation area, then the probability
of a signal, PROB SIGNAL, is zero. If the frequency
does match a statIon, then the probability of a
signal·is one. The total probability of the signal.
TOTAL FROB SIGNAL, is calculated after each check is
performed and is dependent upon the individual
probability of signal results.

FREQ CHECK : = FALSE;

FROB-SIGNAL : = FALSE;

TOTAL PROB SIGNAL := FALSE;

NEW_FROB_sIGNAL : = FALSE;

for	 STATION FREQUENCY in FREQUENCY'PIRST FREQUENCY'LAST
loop ­

if TUNED FREQUENCY = STATION FREQUENCY then
FREQ CHECK : = TRUE; ­

end if; ­

if FREQ CHECK = TRUE then
FROB SIGNAL: = TRUE;

end	 if; ­

end	 loop;

TOTAL FROB_SIGNAL := PROB_SIGNAL;

The range check determines whether or not the aircraft
is within the effective range of the tuned navigation
station. If the aircraft is within the effective
range, then the probability of signal, FROB SIGNAL, is
one. Otherwise, the probability of a signal is zero.

FROB SIGNAL : = FALSE;

E-5

The range is obtained from the distance measuring
equipment (DME). The aircraft's altimeter gives the
AIRCRAFT_ALTITUDE.

DME_RANGE : = 0;

GET (STATION CLASS);

GET (LOCATION);

GET (DME RANGE);

GET (AIRCRAFT_ALTITUDE);

EFFECTIVE_RANGE : = 0;

case STATION CLASS is
when TERMINAL = >

if AIRCRAFT ALTITUDE < = 12 000 then
EFFECTIVE RANGE : = 25;

end if; ­
when LOW = >

if AIRCRAFT ALTITUDE < 18 000 then
EFFECTIvE RANGE : = 40;

end if; ­
when HIGH

if (AIRCRAFT ALTITUDE < 18_000) and (LOCATION
/= STATES; then

EFFECTIVE RANGE: = 40;
end if; ­

if (AIRCRAFT ALTITUDE> = 14 500 and
AIRCRAFT ALTITUDE < = 17 999) and
(LOCATION = STATES) then

EFFECTIVE RANGE: = 100;
end if; ­

if (AIRCRAFT ALTITUDE> = 18 000) and
(AIRCRAFT-ALTITUDE < = 45-000) then

EFFECTIVE RANGE : = 1307
end if; ­

if (AIRCRAFT ALTITUDE> 45 000) then
EFF:::CTIVE RANGE : = 100;

end if; ­
end case;

E-6

if DME RANGE < =EFFECTIVE RANGE then

PROB_SIGNAL := TRUE;­

else

PROB SIGNAL := FALSE;

end if; ­

NEW PROB SIGNAL: = (TOTAL PROB SIGNAL and PROB_SIGNAL);
'TOTAL_PROB_SIGNAL := NEW_PROB_SIGNAL;

The unusable area check determines if the aircraft is
within an unusable area of the tuned navigation
station. This check is performed by looping through
all of the specified unusable areas for the tuned
station and determining the location of the aircraft
with respect to the unusable area. These values would
need to be changed to suit your use.

PROB_SIGNAL : = FALSE;

UNUSABLE_AREA : = -1;

case	 TUNED FREQUENCY is

when 113.5 = > UNUSABLE AREA : = 10;

when 117.5 = > UNUSABLE-AREA : = 40 ;

when 113.7 = > UNUSABLE-AREA : = 100;

when 113.2 = > UNUSABLE-AREA : = -1;

when 113.0 = > UNUSABLE-AREA : = -1;

when 116.1 > UNUSABLE:AREA : = -1;

end case;

if DME RANGE < = UNUSABLE AREA then

PROB_SIGNAL : = FALSE;

else

PROB SIGNAL : = TRUE;

end if; ­

NEW PROB SIGNAL := TOTAL PROB SIGNAL and PROB SIGNAL;
TOTAL_PROB_SIGNAL : = NEW:PROB=SIGNAL; - .

The cone of confusion check determines if the aircraft
is in the area above the VOR/DME station and might
experience a loss of signal. As with the unusable·
area check, sample data has been inserted into the

-- cases for this program. This data would have to be

E-7

-- changed to suit your individual needs.

PROB_SIGNAL := FALSE;

case	 TUNED_FREQUENCY is
when 113.5 = > ELEVATION := 89
when 117.5 = > ELEVATION := 88
when 113.7= > ELEVATION := 89
when 113.2 = > ELEVATION := 87
when 113.0 = > ELEVATION := 86
when 116.1 = > ELEVATION := 89

end case;

GET (ELEVATION_ANGLE);

if ELEVATION ANGLE > ELEVATION then
PROB_SIGNAL : = FALSE; .

else
PROB SIGNAL := TRUE;

end if; ­

NEW PROB SIGNAL : = TOTAL PROB SIGNAL and PROB_SIGNAL;
TOTAL_PROB_SIGNAL.:= NEW:PROB:SIGNAL;

if TOTAL_PROB_SIGNAL = TRUE then

-- This part of the primary alternate determines the
-- aircraft latitude and longitude.

GET (STATION LAT); in degrees

GET (STATION-LONG); -- in degrees

GET (BEAR TRUE);

GET (STATION_ELEVATION);

-- The earth's radius is assumed to be 6378.163 km =
-- 3443.93 n mi = 2°_925_732 feet. (Reference 8.)

RADIUS_EARTH := 3443.93;

THETA_THREE : = BEAK...TRUE • 90;

R ONE := RADIUS EARTH. STATION ELEVATION;

R-TWO := RADIUS:EARTH .,. BEAR_TRUE;

E-8

M := (R_ONE**2) + (DME_RANGE**2) - (R_TWO**2);
N :~ 2*R_ONE*DME_RANGE;

-- PHI THREE is defined as the angle in degrees that
-- the-aircraft makes with the j2 plane.i 2,
PHI_THREE :~ ACOSD(M/N) -90;

-- To compute the aircraft latitude.

CONE :: R ONE * SIND(STATION LAT);
C-THREE ::-DME RANGE * ((COSDTsTATION LAT) *
- COSD (PHI THREE) il- SIND (THETA THREE)) ...

(SIND(STATION_LAT) ,... SIND (PHI_THREE)));

P :: (C_ONE + .C_THREE) /R_TWO;

AIRCRAFT_LAT : = ASIND (P) ;

-- To compute the aircraft longitude.

BONE := R ONE il- COSD(STATION LAT) * COSD(STATION' LONG);
B-THREE ::.-DNIE RANGE * (((-l)*SIND(STATION LAT) *­
- COSD(STATION LONG) * COSD(PHI THREE) *

SIND(THETA THREE)) - (SIND(STATION LONG) *
COSD(PHI THREE) * COSD(THETA THREE) +
(COSD(STATION LAT) * COSD(STATION LONG) *
SIND (PHI_THREE))) ; . ­

A ONE := R ONE * COSD(STATION LAT) * SIND(STATION LONG);
A-THREE := DME RANGE .:t- (((-1) ·*SIND (STATION LAT) * ­
- SIND(STATION LONG) * COSD(PHI THREE)-,I­

SIND(THETA THREE)) + (COSD(STATION LAT) *
COSD(PHI THREE) * COSD(THETA THREET) ­
(COSD (STATION LAT) * SIND (STATION LONG) ,I­
SIND (PHI_THREE))) ; ­

Q :: A ONE' + A THREE;
S :: B:ONE + B:THREE;

if S>O then
AIRCRAF'I :'ONG := AT.iV'iD(Q/S);

elsif S,O and-~>O then
AIRCRAFT ~ONG := ATAND(Q/S) + 180;

elsif S~O and-Q~O then
AIRCRA?T :'ONG ::: ATAND(Q/S) -180;

elsif s=o and-~)O then
AIRCRA?~ :ONG := 90;

elsif s=o and-~'O then
AIRCR.';'P~ :"C':lG := -90;

end if; ­

E-9

This part of procedure NAVIGATION for the primary
alternate determines the north and west position
components of the aircraft. The range has already
been obtained from the range check. The bearing of
the aircraft was obtained in the aircraft latitude
and longitude calculations.

WEST POSITION : = DME RANGE i~ COSD (PHI THREE) .~
-SIND (THETA THREE); ­

NORTH POSITION 7:: DME RANGE * COSD (PHI THREE) ~l-
COSD (THETA_THREET; ­

-- This part of the primary alternate determines the
-- aircraft's north and west velocity components.

GET (PITCH);
GET (HDG TRUE);
GET (AIRSPEED_TRUE);

VELOCITY NORTH ::: AIRSPEED TRUE * COSD (PITCH) ~l-

COSD(HDG TRUE); ­
VELOCITY WEST-::: AIRS PEED TRUE i~ COSD (PITCH) .;t-

SIND (HDG_TRUE) ; - .

-- This part sets up the conditions initially for the
-- acceptance test to be run.

GET (TIME);

if I	 = 1 then
OLD WEST POSITION .- WEST POSITION;
OLD-NORTH POSITION ::: NORTH_POSITION;
OLD-TIME ~= TIME;

end if; ­

This is the acceptance test. If the acceptance
test fails, then the secondary alternate is run.
Otherwise, calculations will continue to be made
with the primary alternate, and the seconda~J

alternate will not be used.

if I	 > 1 then
AT WEST ::: (WEST POSITION - OLD WEST POSITION)/

- (TIME - OLD-TIME);. - ­
AT NORTH :=(NORTH POSITION - OLD NORTH POSITION)/

- (TIME - OLD_TIME); - ­

E-IO

if (AT WEST = VELOCITY WEST) and

(AT-NORTH = VELOCITY NORTH) then

ACCEPTANCE : = TRUE;

else

ACCEPTANCE : = FALSE;

end if;

end if;

If the acceptance test passes, then the results of the
calculations for the north and west position and
velocity components, along with the aircraft latitude
and longitude, will be printed out. Otherwise, the
program will enter the secondary alternate to
re-calculate these desired values.

if ACCEPTANCE TRUE then
PUT ("THE FOLLOWING VALUES ARE FROM THE PRIMARY

ALTERNATE"); .
NEVI LINE;
PUT-("AIRCRAFT LATITUDE; IS "); PUT (AIRCRAFT_::'AT);
NEW LINE;
PUT-("AIRCRAFT LONGITUDE IS "); PUT (AIRCRAFT LONG);
NEW LINE· ­- ,
PUT ("WEST POSITION COMPONENT IS ");

PUT (WEST POSITION);

NEW LINE;­
PUT-("NORTH POSITION COMPONENT IS ");

PUT (NORTH POSITION);

NEW LINE; ­
PUT-("WEST VELOCITY COMPONENT IS ");

PUT (VELOCITY WEST);

NEW LINE- ­- ' PUT ("NORTH VELOCITY COMPONENT IS ");

PUT (VELOCITY NORTH);

NEW_LINE; ­

OLD WEST POSITION := WEST POSITION;

OLD-NORTH POSITION := NORTH POSITION;

OLD-TIME -;-= TIME; ­

end if; ­

This is the entrance into the secondary alternate.

if ACCEPTANCE = FALSE then

-- This part of the secondary alternate determines
-- the aircraft latitude and longitude.

RADIUS_EARTH := 3443.93;

THETA_THREE : = BEAR TRUE + 90;

E-ll

R ONE := RADIUS EARTH + STATION ELEVATION;
R::TWO := RADIUS=EARTH + BEAR_TRUE;

M .- (R ONE * R ONE) + (DME RANGE * DME_RM~GE) ­
(R-TWO * R-TWO); ­

N .- 2 * R_ONE * DME_RANGE;

PHI_THREE := ACOSD(M/N) - 90;

In the following calculations, the sine and
-- cosine functions are represented by a power
-- series.

CONE := R ONE * ((STATION LAT * 0.0174533) ­
- ((STATION LAT ,1- 0.01745J3)**3)/6~;

C THREE := DME RANGE * (1 - (STATION LAT *
- 0.0174533)**2/2) * (1 - (PHI THREE *

0.0174533)**2/2) * ((THETA THREE *
0.0174533) - ((THETA THREE *" 0.0174533)*~~3)/6) +
((STATION LAT * 0.0174533) -((STATION LAT *
0.0174533)**3)/6) * ((PHI· THREE * 0.0174533)
((PHI_THREE * 0.0174533)**))/6);

P := (C_ONE + C_THREE)/R_TWO;

AIRCRAFT_LAT := ASIND(P);

B ONE:= R ONE * (1 - (STATION LAT * 0.0174533)**2/2)
- * (1 --(STATION_LONG * 0.0174533)**2/2);

B THREE ::: DME RANGE * (((-l)*(STATION LAT -:..
- 0.0174533) -= ((STATION LAT * 0.0174333)~H"3)/6) 0,..

(1 - (STATION LONG * 0-:-0174533)**2/2)" *
(1 - (PHI THREE * 0.0174533)i~*2/2) -:'~ ((THETA THREE:

i!- 0.0174533) - ((THETA THREE i .. 0.017453J)~·~.<-;T/6) ­
((STATION LONG * 0.017~533) - ((STATION LONG *
0.0174533T**3)/6) * (1 - (PHI THREE * ­
0.0174533)**212) * (1 - (THETA THREE *

0.0174533)**2/2) + (1 - (STATION tAT *

0.0174533)**2/2) * (1 - (STATION-LONG *

0.0174533)**2/2) * ((PHI THREE *-0.0174533) ­
((PHI_THREE * O. 01745JJ)*~~ 3)/6) ;

A ONE := R ONE * (1 - (STATION LAT *
- 0.0174533)**2/2) * ((STATION LONG * 0.0174533) ­

((STATION_LONG * 0.0174533)**3)/6);
A THREE: = DME RANGE * ((-1) * (STATION LAT ~..
- 0.0174533) -= ((STATION LAT * 0.0174533)**3)/6)

~!- ((STATION LONG * 0.0174533) - ((STATION LONG
* 0.0174533j**3)/6) * (1 - (PHI THREE * ­
0.0174533)**2/2) * ((THETA THREE * 0.0174533) ­
((THETA THREE * 0.0174533)*~!-3)/6) +
(1 - (STATION LAT * 0.0174533)**2/2) *
(1 - (PHI_THREE * 0.0174533)**2/2) *

E-12

(1 - (THETA THREE * 0.0174533) *-ll-2/2) ­
(1 - (STATION LAT * 0.0174533),Hl-2/2) ~!­

«STATION LON~ * 0.0174533) - «STATION LONG

* 0.0174533)*,!-3) /6) * « PHI_THREE * ­
0.0174533) - «PHI THREE * 0.0174533)**3)/6);

Q :; A ONE + A THREE;
S :;.. B-ONE + B-THREE·- - ,

QUOTIENT := Q/S;

GET (y MAX);

GET (TOLERANCE);

GET (NUMBER_ITERATIONS);

if S) 0 then
AIRCRAFT LONG :; ARCTANGENT (QUOTIENT) * 57.29578;

elsif S (0 and Q) 0 then
AIRCRAFT· LONG : 0; ARCTANGENT (QUOTIENT) *

57.29578 - 180;
elsif S < 0 and Q) 0 then

AIRCRAFT LONG := ARCTANGENT (QUOTIENT) *
57.29578 - 180;

elsif S = 0 and Q) 0 then
AIRCRAFT LONG : =90;

elsif S ; 0 and Q < 0 then
AIRCRAFT LONG := -90;

end if; ­

This part of the secondary alternate determines
-- the north and west position components of the
-- aircraft.

WEST POSITION : = DME RANGE i!- (1 - (PHI THREE'!-*2) /2) ,I­

-(THETA THREE - TTHETA THREEo:l-*3)/6j·- - '

NORTH POSITION :; DME RANGE -;r (1 - (PHI THREE-:Hl-2)/2) ~.r
1"1 - (THETA_THREEifo*2)/2); ­

This part of the secondary alternate determines
the north and west velocity components of the
aircraft.

VELOCITY NORTH := AIRSPEED TRUE * (1 - (PITCH**2)/2) *
(1 =(HDG_TRUE**2)/2); .

VELOCITY WEST := AIRSPEED TRUE ,!- (1 - (PITCH**2)/2) ~.
HDG:TRUE - (HDG_TRUE**3)/6);

E-13

PUT ("THE. FOLLOWING VALUES ARE FROM THE SECONDARY
ALTERNATE") ;

NEW LINE;
PUT- (" AIRCRAFT LATITUDE IS "); PUT (AI RCRAFT_LAT) ;
NEW LINE;
PUT-("AIRCRAFT LONGITUDE IS ");.
PUT (AIRCRAFT LONG);
NEW- LINE, ­- ' PUT ("WEST POSITION COMPONENT IS ");

PUT (WEST POSITION);

NEW LINE;­
PUT- ("NORTH POSITION COMPONENT IS ");

PUT (NORTH POSITION);

NEW LINE; ­
PUT-("WEST VELOCITY COMPONENT IS ");

PUT (VELOCITY WEST);

NEW LINE; ­
PUT- ("NORTH VELOCITY COMPONENT IS ");

PUT (VELOCITY NORTH);

NEW_LINE; ­

OLD WES't POSITION : = WEST POSITION;

OLD-NORTH POSITION : = NORTH POSITION;

OLD:TIME. -; = TIME; ­

end if;

end if;

end loop VORDME;

APPENDIX F

REFERENCES

F-l

REFERENCES

1. Randell, B., "Sys tem Structure for Software Faul t Tolerance", IEEE
Transactions on Software Engineering, Volume SE-l, Number 2, June 1975.

2. Hitt, Ellis F., "Software Fault-Tolerance", Battelle Columbus Division,
Columbus, Ohio, January 9, 1986.

3. Hitt, Ellis, "Software System Error Detection and Correction Techniques",
Battelle Columbus Laboratories, Columbus, Ohio, March 5, 1986.

4. Kluse, Michael and Rea, Fred G., Dynamic Navigation Signal Simulation
(DNSS) Program Development Specifications, DCSF-SD-2060, Battelle Columbus
Laboratories, Columbus, Ohio, May 20, 1980.

5. AIRBORNE VOR RECEIVER, Aeronautical Radio, Inc., Annapolis, Haryland,
ARINC Characteristic No. 579-1, February 5, 1971, p. 6.

6. MARK 5 AIRBORNE DISTANCE MEASURING EQUIPMENT, Aeronau t Lc a l Radio, Inc. ,
Annapolis, Maryland, ARINC Characteristic No. 709-3, January 19, 1981,
pp. 6 and 40.

7. Gerald, Curtis F., Applied Numerical Analysis, Addison-Wesley Printing
Company, Reading, Massachusetts, 1978, pp. 8-14.

8. Kay ton, Myron and' Fried, Walter R., Avionics Navigation Systems, John
Wiley & Sons, Inc., New York, ~969, pp. 17 and 18.

9. Webster's Ninth New Collegiate Dictionary, Merriam-Webster, Inc.,
Springfield, Massachusetts, 1985, p. 789.

10. Hitt, Ellis F., McCown, Robert B., Schweikert, Katherine M., and
Gallivan, Richard, Integrated Control Mathematical Routines for MIL-STD-17S0
Built-In Functions (BIFs), AFWAL-TR-85-3056, Battelle Columbus Laboratories,
Columbus, Ohio, August 20, 1985.

11. "Radio and Navigation Aid Data", Battelle Columbus Laboratories,
November 7, 1972 .

. 1'2. VAXTM Ada® Language Reference Manual, AA-EG29A-TE, Digital Equipment
Corporation, Maynard, Massachusetts, February 1985, p. 3-27.

13. Booch, Grady, Software Engineering with Ada®, The Benjamin/Cummings
Publishing Company, Iric , , Reading, ~lassachusetts, 1983, p , 89.

TM VAX is a trademark of Digital Equipment corporation.

®	 Ada is a registered trademark of the U.S. Government, Ada Joint Program
Office.

-."-.",

