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EXECUTIVE SUMMARY

The detailed design of the software for a navigation recovery block is
specified. The navigation software models the Very High Frequency (VHF)
Omnidirectional Range (VOR)/Distance Measuring Equipment (DME). A
description of the program structure is provided. Also, an example problem
and the program source listing are included.
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INTRODUCTION

PURPOSE.

The contents of this document establish the software design for the Very
High Frequency (VHF) Omnidirectional Range (VOR)/Distance Measuring Equipment
(DME) model software. The VOR/DME model is implemented with the fault
tolerant software technique of a recovery block.

OBJECTIVE.

This document is intended to demonstrate the type of software specification
and implementation that the certification specialist may be expected to
encounter in the next generation of digital or all-electric aircraft.

SYMBOLOGY

The flow diagrams in this document have been developed according to top-down
methods. Table 1 summarizes the symbols used in the flowcharts in this
document. '

REQUIREMENTS

The recovery block method is a fault tolerant software technique which
provides alternate components which may be switched in (usually serially)
to take the place of a faulty component that has been rejected by the
acceptance test. These alternate components are designed independently
from the main software component (the primary alternate) and generally
only provide partial functionality of the software component, thus reducing
it to a degraded, simpler mode. Prior to entering an alternate, the state
of the process is restored to that current just before entry to the primary
alternate [1]. Software fault tolerance is described in further detail
in Appendix A [2].

The hierarchical diagram for the executive functions for running a recovery
block is shown in Figure 1. The recovery block time line is shown in Figure
.2 [3]. The following report (included in Appendix B) provides detailed
information concerning the sequential processing and forms part of this
specification:

Hitt, Ellis, "Software System Error Detection and Correction
Techniques", Battelle Columbus Laboratories, Columbus, Ohio,
March 5, 1986.

The navigation recovery block consists of two components: a primary alternate
and a secondary alternate. Figure 3 gives a simple block diagram
representation of the recovery block structure.

VOR/DME.
The hierarchical diagram of the primary alternate for the VOR/DME model

is shown in Figure 4. The hierarchical diagram for the secondary alternate
of the recovery block- for the VOR/DME model is given in Figure 5. The
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TABLE 1. FLOWCHART SYMBQLS

Symbol

Definition

=
ij _
>

or ()
‘v

=

CrOr

Beginning of subroutine.

Processing function; defined operation(s)
causing a change in value, form, or location
of information.

Input/Qutput function; information available
for processing (input) or recording of
processed information (output).

A decision block that determines which of a
number of alternative paths to follow.

On-page connector.
O0ff-page connector.

Termination of subroutine.
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VOR/DME module calculates the aircraft north and west position and velocity
components and the aircraft latitude and longitude from the aircraft altitude
and the range and bearing of the aircraft from the tuned navigation station.

PRIMARY ALTERNATE. The primary alternate performs the following checks’
prior to performing the actual calculations:

frequncy check

range check

unusable area check
cone of confusion check

an oe

Frequency Check. In the frequency check module, the software loops
through the stored navigation station data to determine if a station
frequency matches the tuned frequency. If the tuned navigation frequency
does not match a station in the navigation area, then the probability of
a signal, Pg, is zero. Therefore, the total probability of the signal,
Py, which is calculated after each check is performed, is zero since

If the tuned navigation frequency does match a station in the navigation
area, then Pg = 1 [4]. : .

The VOR receiver should operate on the 50 KHz spaced channels (a total
of 160) from 108.00 MHz through 117.95 MHz [5]. When a DME transponder
is intended to operate in association with a single VHF navigational
facility, it also operates in the 108.00 MHz to 117.95 MHz frequency band
[6].- Appendix C provides a table. of stations in the United States and
their frequencies.

Range Check. This software module checks whether or not the aircraft

is within the effective range of the tuned navigation station. The DME
equipment should provide at least a 300 nautical mile range [6]. If the
aircraft is within the effective station range, then Pg = 1. If not, then

Pg = 0. The effective station ranges are given in Table 2.

To combine the result of this check with the result of the frequency
check,

P, = P, * Pg. .

Unusable Area Check. This module determines if the aircraft is within
an unusable area of the tuned navigation station. This check is performed
by looping through all of the specified unusable areas for the tuned station
and determining the location of the aircraft with respect to the unusable

area [4]. The various unusable areas for each station will be stored in
a data base for comparison. If it is determined that the aircraft is within
an unusable area, then Pg = 0. Otherwise, Pg = 1. Again, to update the

total probability of the signal,
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TABLE 2. EFFECTIVE STATION RANGES BY CLASS [4]

Effective Range
Class Altitude (in miles)
T < 12,000 feet 25
L < 18,000 feet 40
H " < 18,000 feet 40
H Within the 48 conterminous 100
states between 14,500 feet
and 17,999 feet
H >18,000 feet and < flight level
(FL) 450 (45,000 feet) 130
H > FL 450 100

Legend: T = Terminal; L = Low; H = High

Cone of Confusion Check. This module determines if the aircraft is within
the cone of confusion of the tuned navigation station. This check calculates
the elevation angle from the tuned station to the aircraft. If the elevation
angle is too large, then the aircraft is in the area above the VOR/DME
station and it will experience a loss of signal. A simplified diagram
representing this is shown in Figure 6.

VOR/DME ALGORITHMS. The primary and secondary alternates have the follow1ng
modules in common and utilize the same equations:

a. Aircraft Latitude and Longitude
b. North and West Position Components
¢c. North and West Velocities

Aircraft Latitude and Longitude. Figure 7 shows the aircraft and
VOR/DME station positions. The VOR/DME station p051£10n is represented
with fixed geocentric spherical coordinates (R, 8, ¢: i1, J1, kp) with

©® representing the station longitude measured positive westward from the
Greenwich meridian, and ¢ representing the station latitude measured positive
northward from the equator. The aircraft's position is represented by
tangent plane coordinates fixed at the site of the VOR/DME station with
the i wunit vector denoting true north and the j; unit vector denoting

true west. (See Figure 8.) We define
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FIGURE 7. AIRCRAFT AND VOR/DME STATION POSITIONS
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FIGURE 8. AIRCRAFT POSITION ON TANGENT
PLANE COORDINATES
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vector representing the location of the VOR/DME station

ne>

vector representing the location of the aircraft

L

vector representing the position of the aircraft relative
to the VOR/DME station

ne>

(the sea level radius of the earth) + (the VOR/DME station
elevation above sea level)

e

Ry = (the radius of the earth) + (the aircraft's altitude)

Hne

R the sea level radius of the earth

Consequently, we can define
JEN - - - A - -
V1 = (Ryjcos¢sindjiy, Rjcosvjcosdijl, Rysinejky) = (ajip, byjp, ciky)

= 2 -t . - - 4 -
Vo (chos¢zsinezil, Rocosojycos93]j], R251n@2k1) = (api1, boi1s coky)
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To calculate ¢3 (reference Figure 9),

the aircraft altitude

He>

Ry = R + h, where h

>

the distance of the aircraft from the
VOR/DME station

R3

ne>

$5 = the angle that the aircraft makes with

the 1,,j7 plane

Aircraft

VOR/DME
Station

L/

FIGURE 9. EDGE VIEW OF 2, j2 PLANE
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By the law of cosines,

(R+h)2 = Ry12 + R32 - 2RjR3cos ¢~

Ry2 + R32 -(R+h)?
2R1R3

cos~ !

6

$3 =07 - T2
Recalling,

A
03 = the aircraft bearing measured positive from west (i.e., 7/2 radians
plus the bearing from true north).

SN
V3 can be written as

- R - R
V3 = (R3 cos ¢3 sin 83 iy, R3 cos ¢3 cos 83 jp, R3 sin ¢3 kp) =

(a3{2,.b352, C31;2)°

a—
We want to express V; in terms of the geocentric coordinates (i.e.,

73 = (a3i1, b3ji, C3kl).

The proper coordinate transformations are

aj = (-sin ¢] sin fjap; + cos 81by + cos ¢; sin 8jcy)
b3 = (-sin ¢; cos @jap; - sin 8;by + cos ¢] cos 8jcy)
c3 = (cos 9jap + sin ¢1c3)

By substitution,
—
V3 = R3[(-sin ¢] sin 8] cos ¢3 sin 63 + cos 8] cos ¢3 cos 63 +
cos ¢] sin 8] sin ¢3) i; + (-sin 9¢; cos €] cos ¢3 sin 63 =
sin 8] cos ¢3 cos 83 + cos 9] cos O] sin ¢3)J] +
(cos ¢] cos ¢3 sin 83 + sin ¢; sin ¢3) ﬁl] -
— -— —
Vo is related to V] and V3 by the vector equation
— PN —
Vo = V1 + V3,
Equating components gives
l:]_: cp = c1 + c3
Ry sin ¢3 = ¢ + ¢3

by = sin~1 [R%.(cl + c3)].
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The i and j components can now be used to compute the sine and cosine of
8
2.

ij: ap = a; + aj

1
in 849 = [——m— +
sin 8, ( 7cos (a1 + a3)]

j12 bz = Db; + b3
1
6y = [————(by + b
cos 6, ( Rpcose; (b 3)]
The longitude, 65, is then given by
in @
8y = tan~l (Z2222) = tan-! (31 * a3y
cos 99 b; + b3

When performing this ¢omputation, care must be exercised to assure that
8, falls in the correct quadrant of the equatorial plane. The function
is defined so that it yields longitude values which range between - and

. FT.

82 tan'1'< a * 33) " for (b + b3) > 0,

by + b3

6, = t:an'l(al * 33)+ 7 for (b; + b3) < 0 and (aj + a3) > 0,

b] + by
8, = tan~! (%%_;_%%)- 7 for (by; + b3) < 0 and (a; + a3) < 0,
8y = T/2 for (b; + b3) = 0 and (a; + a3) > 0,
8, = -T/2 for (b; + b3) = 0 and (a; + a3) < 0.

North and West Position Components. Neglecting the curvature of the

earth, the fz,fz components of the aircraft position are
Positiongegy = X1 = R3 cos ¢3 sin 03 £2
Positionporth = Y1 = R3 cos 93 cos 93 ja

the distance of the aircraft from the VOR/DME station

ne>

with Rj

>

93 the angle that the aircraft makes with the i5,j; plane

>

the aircraft bearing measured positive from west
(i.e., 90 degrees plus the bearing from true north.)

03
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North and West Velocities. The velocity components are calculated
with the true airspeed as a function of the aircraft's heading.

We define

Y 4 the pitch angle (the angle that the longltudlnal axis of

the aircraft makes with the 1;,j; plane) -

8, = the heading of the aircraft relative to the north (positive
clockwise) .
4 .
Up = true airspeed

The northern component of the velocity is given by
Uy = Uy cos ¥ cos 8y iz.
The western cbmponent of the velocity is given by
Uy = -Up cos ¥ sin 6By 32.
Therefore, the ground speed is
lul = (uy? + uy2)% = Uy cos V.

~ RECOVERY BLOCK INDEPENDENCE.

To '"force" the independence of the two alternates in the recovery block,
the equations which determine the north and west position components, the
aircraft latitude and longitude, and the north and - west velocities are
“"forced" to perform their calculations differently. The primary alternate
calculates the sine and cosine values with the use of the Ada math library.
However, the sine and cosine terms in the secondary alternate are .determined
with the use of a power series representation for these functions. The
Maclaurin series for the sine function is

, _ x3 x> o x2n+l
sin x = x = 3T +37 - ... + (-1) G DT +

The Maclaurin series for the cosine function is

2 <4 2n

X
cos x = 1 =27 + 47T~ ... + (-1)0 Gy7+ ---

The Maclaurin series may be used .to approximate values of the sine and
cosine functions. When the polynomial approximation for the sine function
involves using the sum of the first two terms, the error is less than
, 5I/S' The error involved in u51ng the sum of the first two terms in
the cosine function is less than x%/4!.
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In the determination of the aircraft latitude and longitude, the inverse

of the tangent function is used. To make the two alternates explicitly
different, the primary alternate uses the Ada math library to determine
these values and the secondary alternate uses the interval halving method
of numerical analysis. This method is sometimes called the bisection method
and enables the determination of a root of f(x) = 0, accurate within a
specified tolerance value, given values of x], and x) such that f(x;) and
f(x;) are of the opposite sign [7].

ACCEPTANCE TEST.

An acceptance test 1s a logical expression or algorithm which checks the
acceptability of the results that are generated by a software component:
[1]. For the navigation software, the acceptance test will be an independent
calculation of the aircraft's velocity components. These velocity components
are compared to those determined earlier.

For the acceptance test, the north and west velocity components are
determined by the change in the north and west position components with
respect to the change in time. For an aircraft in flight, with points
P) and P; indicating the aircraft's positions at times t] and t3,
respectively, the corresponding north and west position components (Xj,
Y; and X3, Yj) are calculated. The velocity components are then determined
using the following equations: .

Velocityyese = (Xp = X1)/(tpy - t1)
Velocityporth = (Yy - Yl)/(tz - t1)

If the velocity component calculations are found to be correct with the
acceptance test, then it will be assumed that all of the navigation recovery
block software is correct. If the primary alternate is in use and the
acceptance test fails, the software will recover the input state to its
condition prior to when the incorrect or faulty version was run (known
as '"rollback') and restart the computation using the secondary alternate.
If the acceptance test fails while the secondary alternate is in use, -then
the entire navigation software will fail.

EXAMPLE.

Consider the navigation station located in Albuquerque, New Mexico. Assume
that the station elevation is at sea level. Assume that an aircraft is
flying at an altitude of 15,000 feet, a distance of 50 nautical miles from
the station, with a northeast "heading. The aircraft's tuned frequency
is 113.2 MHz. Its true airspeed is 200 miles per hour.

From Table C-1, we find the station frequency for Albuquerque, New Mexico
is 113.2 MHz. and its class is high (H). Since the tuned_ frequency matches
the station frequency, the frequency check passes.
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With Table 2, since the station's class is high, it has an effective range
of 100 nautical miles for aircraft flying at an altitude betwen 14,500
feet and 17,999 feet. We have assumed that our aircraft is flying at an
altitude of 15,000 feet, so its distance must be less than or equal to
the station's effective range of 100 nautical miles. In this case, 50
nautical miles is less than 100 nautical miles, so the range check passes.

The unusable area check passes since we do not have any unusable areas
declared for this navigation station. Similarly, the cone of confusion
check passes since the .aircraft's elevation angle with respect to the station
is not too large.

The aircraft latitude and longitude are determined using the following
values:

¢ = 35: 2: 37.4 N = 35.04372°
8 = 106: 48: 56.6 W = 106.81572°
(The station latitude and longitude are obtained from Table D-1.)

135° = the bearing measured positive from west

53

90° + the bearing from true north
Ry = 3443.93

(The earth's radius is assumed to be 6378.163 km = 3443.93 n mi = 20925732
feet [8].)

R = 50 n mi
Rp = R+ h = 3446.77

[The aircraft altitude, h, is 15,000 feet = 2.4687 nautical miles (1l nautical
mile = 6076.115 feet [9]).]

2 2 . R2
¢3 = cos~l R1¢ + R3 Ro - 90°
2R1R3

-

' (3443.93)2 + (50)2 - (3446.77)2} - 90°
2(3443.93)(50) |

= cos™!

-—

3 =92.84° = 90° = 2.84°
The aircraft latitude is computed by

c1 = Ry sin ¢; = (3443.93) sin (35.04372) = 1977.5092

c3 = R3 (cos 9] cos 93 sin 3 + sin ¢ sin ¢3) =

°



19

(50) [cos (35.04372) cos (2.84) sin (135) + sin (35.04372) sin (2.84)

30.3329

.- 1 . - 1 o \
¢ = sin 1 PE;- (ep + e3)] = sin 1 PEZZET777 (1877.5092 + 30.332¢)]

sin~l (0.5825286) = 35.6286°

Therefore, the aircraft latitude = 35.6286° = 35: 37: 42.92 N.
The aircraft longitude is computed by
by = R} cos % cos 6] = (3443.93) cos (35.04372) cos (106.81572) =
= -815.69292 .
b3 = R3 (-sin ¢] cos 9] cos ¢3 sin 63 - sin 6] cos ¢3 cos 63 + .
cos 97 cos & sin ¢3) = (50) [-sin (35.04372) cos (106.81572)
cos (2.84) sin (135) - sin (106.81572) cos (2.84) cos (135) +
cos (35.04372) cos (106.81572) sin (2.84)]

= 39.081

a] = Ry cos ¢ sin 8] = (3443.93) cos (35.04372) sin (106.81572)
= 2699.0288
a3 = R3(-sin ¢] sin 6] cos ¢3 sin 63 + cos 8] cos ¢3 cos 93 +
cos ¢] sin 6] sin ¢3)
= (50)[-sin (35.04372) sin (106.81572) cos (2.84) sin (135) +
cos (106.81572) cos (2.84) cos (i35) + cos (35.04372)
sin (106.81572) sin (2.84)]

= -7.25208386 .

{ - 7.2520886
8, = tan~1l a) + 33y = pan-l (2699.0288

b, + 53 ~815.69292 ¥ 39,081

8, = tan~l (-3.4660512) + 180° since (by + b3) < 0 and (a] + a3) > 0.

8, = 106.09353°
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Hence, the aircraft longitude is 106.09353° = 106: 5: 36.71 W.
The north and west position components are determined as:

West position component

1}

X1 = R3 cos 93 sin 63

X1 = 35.3119. }

North position component

Y; = R3 cos ¢3 cos 93

-35.3119.

Y]

Here, we assume that the aircraft's pitch angle is 10° and the heading
is 45°.

The north and west velocity components are computed as
velocityyest = 200 cos 10° sin 45° = 139.27 miles per hour
velocityporth = 200 cos 10° cos 45° = 139.27 miles per hour

NOMENCLATURE.

The modules for these calculations incorporate the recommended nomenclature
of the Integrated Control Mathematical Routines for MIL-STD-1750 Built-In
Functions (BIFs). This nomenclature is shown in Table 3.

TABLE 3. RECOMMENDED NOMENCLATURE [10]

Variable Nomenclature Ada Identification
Latitude ﬂ LAT " LAT:FLOAT;
Longitude LONG LONG:FLOAT;
Relative Beari;g BEAR_REL BEAR_REL:FLOAT;
True Airspeed AIRSPEED_TRUE' AIRSPEED TRUE:FLOAT;
True Heading HDG_TRUE HDG_TRUE: FLOAT;
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SOFTWARE FAULT-TOLERANCE

by

E1lis F, Hitt

INTRODUCTION

Real-time systems employing software to implement
application functions which may be critical to the safety of
the vehicle and its occupants must be assured of the continuous
correct operation of software (and the hardware on which the
software executes). Since it is virtually impossible through
exhaustive testing to prove that software is free of all design
and implementation faults, the use of redundant software
modules (to achieve robustness to external input faults and to
tolerate design and implementation faults) has been the subject
of sponsored research and academic studies. The primary
methods of using redundant software modules involve either
sequential or parallel execution. The method followed in
implementation and processing of the redundant software modu les
distinguishes the software fault-tolerance techniques.

Software fault-tolerance techniques can be broadly classified
into two categories: self-checking software, limited to
detection of software failures; and fault-tolerant software
which allows the system to recover after a software failure has
occured [MAKAM]. This distinction is important since, &p to
the point of recovery, the two categories could be identical,

A software fault is any defect within a software
component (e.g. a module, a procedure, a process, a collection
of processes). Software faults may be due to mistakes in
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translating specification into a design or in implementation of
the software design. A failure occurs whenever the external
behavior of a system does not conform to that described by the
system specification [ANDER81]. Figure A-1 represents the
relationship between these terms.

Software faults are caused by design mistakes as
contrasted with hardware faults, which are caused by both
physical wearout and design mistakes. The case where the
software accepts external-to-the-system faulted input as good
input is a software fault. Although all software faults are
due to human mistakes and as such, might seem to cause only
~unanticipated faults, there can be anticipated software faults.
These faults are exemplified by divide-by-zero and overflow
faults.

Fault tolerant principles can be discussed in terms
of four phases:

(1) Fault detection
(2) Damage assessment
(3) Recovery

(4) Fault treatment

Fault Detection

One way of viewing fault detection in a unified way
is that all erroneous-state detection is accomplished by
run-time assertions., A run-time assertion is "a logical
expression specifying a program state that must exist or a set
of conditions that program variables must satisfy at a
particular point during program execution" [IEEE 729-83].
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In real-time applications, fault detection occurs at
the following levels: '

(1) Correct operation of each processing unit
(2) valid transmission of data between digital subsystems
(3) Data validity, prior to use in subsequent computation
(a) Input of sensor data prior to execution of the
algorithm implemented in each version of the
control software
(i) Input range limit test
(i1) Input rate of change test
(iii.) Parameter correlation check
(iv) Parameter majority logic check
(v) Output wraparound test
(vi) Known input test
(vii) Known output test
(viii) Loop dynamic check
(ix) End of conversion not detected
(b) Dynamic fault detection consisting of a comparison
signal generation followed by a decision mechanism
based on the comparison signals
(i) Comparison signals
-Redundant measurements
~Jdentical sensors
-Non-identical sensors which have one or
more common components in the state vector
-Two sensors, naving no common component,
but having a component in common with a
third dedicated observer
-Analytic redundancy
(ii) Decision mechanism
Generalized likelihood ratio
Sequential probability ratio tests
Modified sequential probability ratio tests
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(4) Run-tiﬁe assertion after execution of the software
module implementing the application function prior to
output of the result to a display used by the crew
or a control actuator.

The run-time assertion takes the form of an
Acceptance Test for recovery blocks and the form of a voter for
Multi-Version Software (MVS) (also referred to as N-Version
Software (NVS)).

Damage Assessment

When a fault in the software state information has
been detected, it is necessary to determine the extent of the
damage done by the fault before recovery can be accomplished.
Damage assessment may be derived from constraints on the flow
of information in a system. Encapsulation is the concept of
containing the effects of an action to only the objects to
which that action in a software component has legal access.
Through the proper enforcement of encapsulation, it is possible
to assess the extent of the damage to the state information due
to a fault.

Recoverz

After the extent of the damage has been determined,
the system must be restored to a consistent state in order to
resume processing. This entire process (detection, damage
assessment, and recovery) must take place fast enough to
satisfy real-time requirements. There are two main techniques
to accomplish recovery, forward recovery and backward recovery.
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Forward recovery restores the system to a consistent
state by compensating for inconsistencies found in the current
state. Forward fault recovery in a single process implies
detailed knowledge of the extent of the damage done and a
strategy for fixing the inconsistencies. While this may be
possible in certain cases where the recovery process was
designed to handle the detected fault, it is difficult to
conceive appropriate strategies in the case of unanticipated
faults such as transient faults.

Backward recovery, cfien referred to as roll-back,
involves restoring the system to some previous known correct
state and restarting the computation from .that point. “The
basic problem is to keep copies of paSt states of processes,
being sure that: a) copies of process states are consistent
with one another, so that the state reached after a recovery is
really correctj an important issue is to minimi;e‘the amount
of information needed for roll-back; b) copies of process
states are protected against failure of system components.”
[BARIGAZZI] | '

Backward recovery must obey the "roll-back
consistency rule: If a process Pi is rolled back to a state of
its past history, in which the last message exchanged with
process Pj was M, then Pj must also be rolled back to a state
in which the last message exchanged with Pi was M." [BARIGAZZI]

Fault Treatment . " -

Once a fault has been detected, the damage assessed,
and fault recovery accomplished, fault treatment attempts to
remedy the fault condition. The damage assessment phase should



identify which software component caused the fault such as
through the use of the concept of encapsulation. If the level
of encapsulation is at the software component, then possible
courses of action are to ignore the fault either temporarily
(i.e., skip frame) or forever (i.e., delete the function
performed by the software component and continue to operate the
system in a degraded mode), retry the function with existing
components, or reconfigure with alternate components.

Response Time And Synchronization

No matter which fault tolerant software method is
used, real-time systems must arrive at a consistently correct
solution within the time frame determined by the control system
dynamics. A rule of thumb often given for selecting sampling
rates is that a rate of at least five times per system time
constant is a good choice., This necessitates that the response
time, defined as the delay between the triggering of a job by
the arrival of the relevant sensor input to the |
actuator/display output that finally results, be no more than
1/5 of the system time constant. The response time is the sum
of the time for reaching agreement on the sensor data, the time
for execution of the application function, synchronization and
reaching agreement that its output is correct, and either
moving the actuator, or displaying the result. QObviously, time
spent in fault detection, damage assessment, recovery, and
fault treatment at each level must be accounted for in ’
determining the response time. Failure can occur due to
excessively long response times, e.g. the system goes unstable
since the hard deadlines for code execution are
missed.[KRISHNA] '



Synchronization, such as that required at each point
of fault detection, can be performed using software or
hardware. Software synchronization has significant overhead
and the trend is to hardware synchronization [KRISHNA p.6,
ALLAN], although some commercial systems utilize software
voting on inputs and hardware voting on outputs.

DESCRIPTION OF PRIMARY FAULT TOLERANT SOFTWARE TECHNIQUES

There are two primary methodé for providing software
fault tolerance: multi-versicn programming -(N-version
programming) and recovery blocks. Investigations into
combinations of these methods have been conducted at many
universities [HITT]. This report will concentrate on the two
main methods and the reader is referred to the foregoing
reference for description of the combinations.

N-Version Programming (NVP)

N-version programming is the process of independently
specifying, designing, generating, and maintaining multiple
versions (N>2) of a program (module) for the same application
function. This is done by separate, independent, non- )
communicating programmers who may use different algorithms and
even different languages [CHA78]. It is important to realize
that N-version programming is defined to be a general
methodology for producing highly independent, redundant program
modules. It does not restrict the way these hu]tip1e versions
are operated in a computer. Thus, NVP could very well be used
to produce several alternate blocks for use in the recovery
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block method [MAKAM p3]. Recent experimental results reject
the hypothesis of different versions having independent faults
[KNIGHT/LEVESON]. This does not mean that NVP does not provide
fault tolerant software, but does indicate that software
reliability models based on the assumption of independence may
give overly optimistic predictions,

Multi-Version Software (MVS)

The software obtained by NVP, controlled with a
system level driver and executed in parallel on a computer
system as a unit is called multi-version software (MVS) [MAKAM,
ANDER81]. If there are N active versions executing in
parallel, this has been called N-version software (NVS)

[MAKAM] . '

“The driQer is responsible for:

(1) invok ing each of the versions;
(ii1) waiting for the versions to complete their
execution;
(ii1) comparing and acting upon the N sets of results."
[ANDER81]

The organization and operation of the computer system
on which NVS is implemented must be taken into considerqtion.
If multiple processors are used which is the normal case for
NVS, the architecture of the processors impacts the performance
of the system., Figure A-2 depicts the classifications of various
parallel-processing architectures. Relevant factors include
whether the system architecture is parallel or distributed. If
parallel, whether it is single instruction/multiple data
(SIMD), where all processing elements
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simultaneously/synchronously execute the same instructions on
different data, or multiple instruction/multiple data (MIMD),
where the processing elements are not necessarily synchronous
and execute different instructions on different data. At the
initiation of a major frame, each of the N-versions must have
access to an identical set of input values., Intermediate
results would not necessarily have the same data, but the finatl
result output to the voter must represent the output data value
and be in a consistent format.

[f a distributed processing architecture is used, the
consideration of tightly coupled versus loosely coupled
architectures also must be taken into account. In a tightly
coupled architecture, the computers are not autonomous and may
be interconnected by a hardware clock. Tightly coupled multi-
processors share access to common memory and share one copy of
the operating system. Loosely coupled architectures supply
each processor with its own memory and its own copy of the
operating system, allowing each to operate relatively
autonomously [HINDIN]. Practically speaking, if the processors
exchange results over an external data bus, as contrasted with
an internal backplane bus, the architecture will not be tightly
cdup]ed since the bus protocol of existing buses, along with
bus transport delays, effectively makes control by a master
clock impractical. Hence, the driver software must implement
the synchronization.

Synchronization is very important in MVS. There are
three primary software methods:

(1) Clock synchronous
(ii) Frame synchronous
(iii) Event synchronous.
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The synchronization method has to allow for different
execution times for each version, including the case where a
version might get stuck in an infinite loop due to a design or
implementation fault. This case is often handled using a
watchdog timer (a timeout mechanism) toup]ed with the
synchronization method. Clock and frame synchronous systems
have been designed to achieve tolerance to hardware faults, the
best examples being Fault Tolerant Multiple Processors (FTMP)
and Software Implemented Fault Tulerance (SIFT), respectively.

Clock synchronous performs the voting check (usually
bit-by~bit) at predetermined fixed times rather than waiting
for completion signals from the versions. This .is very
difficult to implement for an NVS as compared to the case of N
modular redundant (NMR) processors executing identical versions
in parallel [ANDER81]. '

Frame synchronous mechanizations partition the
control task a priori into a number of subtasks, each of which
needs to be iteratively executed in some time relationship to
the other subtasks and each of which can be completed in a
single frame in a block of frames. These subtasks can then be
assigned to frames in specific patterns such that the
sequencing of the subtasks is correct and such that the
iteration frequency of each subtask is correct. The resulting
pattern normally repeats every n frames and this block of n
frames is called a major frame as shown in Figure A-3. Exchanges
between channels of input data and output data are scheduled a
priori. This approach requires multiple frames to complete the
process of sampling an input, transfer of this input to all
versions, processing of the input to produce an output for each
version, and voting on the outputs. This results in a
transport delay of three or four frames.

Event synchronous systems are loosely coupled and
evolved from the frame synchronous systems in order to achieve
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tolerance to design faults in the software. The major events
at which synchronization takes place between redundant
computing elements are: inputs, outputs, interrupts,
programmed exceptions, and the intermodule and interprocess
communication in the multi-version software [MAKAM].

Initially a version is in an inactive state. When
invoked by the driver,- it enters into a waiting state where it
waits for a synchronization signal representing a request for
service from the driver. When this signal is received, it
transfers into a running state as shown in Figure A-4. If any
terminating condition is signaled by the status in the
comparison vectors, then the execution of this version is
terminated and it returns to the inactive state., Otherwise, it
generates a comparison-vector when a cross check (cc)-point is
satisfied. It then uses a synchronization signal to notify the
. driver that a comparison-vector is ready, and finally returns
to the wait state.

Synchronization between the N processors is
accomplished under control of the driver using a
synchronization algorithm. Each processor enters a
synchronization phase when it generates a synchronizing event
and transmits a synchronization message or when it receives the
first synchronization message from another processor. A
time-out clock 1is activated when a processor enters a
synchronization phase. A processor enters a wait-phase within
a synchronization phase only if it generates a synchronization
event but not when it receives a synchronization messagé from
another processor., The wait phase is terminated by an
internally generated time-out interrupt at the end of a preset
time-out limit, or earlier if N-1 synchronization messages are
received. The synchronization phase is terminated when all the
synchronization messages are processed by the processor and its
normal execution is resumed [MAKAM].
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Error Detect{on

It is desirable to be able to distinguish between
errors due to software design faults and hardware physical
failures or malfunctions. Software faults can be in the driver
operating system (0S) or in the application software (AS).
Errors are detected by-two basic mechanisms: the
synchronization procedure and the decision function (voter).
Synchronization, voting, and error recovery are provided by the
underlying operating system and hardware in NVS.

Synchronization errors can be grouped into
incompatibility errors and timing violations [MAKAM]. The
actual processing of synchronization messages involves check ing
for compatibility of event-types (and label fields), running
the decision function on the comparison-vector data to get the
most acceptable results, and finally updating the local
comparison-vector.

Since physical clocks do not keep perfect time, but
can drift with respect to one another, the clocks must be
periodically resynchronized. This can be done in software by
exchanging é1ock values. A global functional resynchronization
of processes should be performed periodically by the 0S to
recover from faults of any type and origin which cause a
processor to temporarily lose its context and hence its
coordination with the other prccessors. Dynamic
resynchronization in an event synchronous design requires the
restart points be defined a priori and implemented as part of
the global scheduling algorithm in the driver operating system.

Applications Software. Consider the forms of logical
structure available in Ada as shown in Figure A-5. These are:

blocks, subprograms, packages, and tasks. A block is a section



of program code located in the executable part of some logical

unit (subprogram, main program, package, or task) optionally

preceded by a declarative part and optionally followed by

exception handlers,

A task is a subunit whose parent task may

be a subprogram, a declare block, a package, or another task.
The execution of the parent task determines the start and

finish of the execution of the task.

Pack age
Subprogram
Procedure
Block
Statement
Task
Block
Function
Expression

' Application Software

Subprogram Task
Procedure Task
BTock Block
Statement Statement
Task
Block
Function
Expression

FIGURE A-5. SOFTUWARE STRUCTURE HIERARCHY

Versions Error Detection. The decision function

(algorithms used for comparison of output variables from each

version) for an event synchronous system depends on the type of

comparison-vector, but must permit an inexact match at most

crosscheck (cc) points due, for example, to inexact sampling of

inputs, and different computational precision in each version.

Characterization of a cc-point includes the specification of

the data formats of all the comparison-variables in the

comparison vector, the error tolerance limits (if non-zero),

"~ and the time constraints to be satisfied (in real-time



applications) by the segments of software between any two

adjacent nodes as shown in the cc-point graph of Figure A-6a & A-6b.
[MAKAM p.40]. A1l N versions have the same number of built-in
cross~-check points which serve as both synchronization points

as well as communication ports between the different versions.

The driver operating system executes the decision function,

updates the comparison variables (or performs output), controls

the exchange of data, and finally returns control to the

application software under control of the operating system

scheduler which is event synchronized.

Damage Assessment

Damage assessment is not required in an NVS if the
activities of the versions are atomic [ANDER81, p.279]. Error
location becomes iinportant if one wants to distinguish between
errors due to software design faults (operating system or
application software) and hardware physical faults. The
strategy for discovering the origin of a fault depends on the
design approach. Heuristics have been suggested for isolating
a hardware failure and a software fault [MAKAM p.75-76].

RECOVEY‘Z

Recovery in NVS normally involves dignoring thé values
identified as erroneous by the ciheck [ANDER81 p.279] and
continuing to the next major frame as long as a minority of the
processors’' synchronization messages disagree. The minority
processors should attempt resynchronization with the majority
good processors. If a clear majority of the processors do not
produce compatible synchronization messages, then a global
resychronization becomes necessary [MAKAM p. 70].
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Fault Treatment

Fault treatment in NVS simply results in the versions
determined to have produced erroneous results being ignored
[ANDER81 p.279]. The operating system should provide a default
failure exception nandler task to determine the type of such
exception and save the status in a special buffer to be used
later by the error manager. At the next cross-check point, the
decision function will indicate the particular version in
error. The reconfiguration task can then either reinitialize
the failed task such that there are no states which are
inconsistent, or replace the version by unlinking the module
completely encapsulating the failed program segmént and
replacing it with a compatible but more reliable unit from a
different version,

Alternate NVS Systiem Architectures

Figure A-7 depicts various alternate architectures for an NVS
system,

The first architecture is illustrative of a system
with redundant analog sensors whose output must be sampfed and
converted to a digital value for input to a version that
implements a function such as computing the present state
vector of the vehicle. The driver operating system must
synchronize the start of the conversion by each
analog-to-digital (A/D) converter. If a voter is part of each
version as indicated in Figure 7a, each voter module must
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(whether hardware or software) start a timer and await the DATA
READY indication from each converter, at which time the data
can be transmitted over the processor data bus for use by the
input voter. When all three A/D outputs are received, the
voter decision function can be invoked either by the local
operating system or the driver operating system to arrive at
the value to be input to the version. The operating system
must monitor the completion of all voters prior to
synchronizing the start of each version's processing. Since
the versions will have different execution times, the voter on
the output of each version must wait until all versions'
results are available for the vote using the applicable
decision function, or .the version execution time watchdog timer
times out. The operating systcm must again monitor the status
of each versions completion, and vote completion. The outputs
from each version to the-digital-to-analog (D/A) converter
should be synchronized by the director operating system. The
input to a D/A is parallel. The final step of the voting
process is to prepare the output for transmission under command
of the director operating system to the D/A. 1If the D/A is
connected to the processer's parallel data bus, no further
conversion would be required once the data is received by the
D/A. If a serial data bus is used to transmit the output from
the processor containing each version, the D/A must be preceded
by a serial to parallel conversion to utilize the data. This
serial to parallel conversion should be synchronized by the
director operating system so that the actuator complex receives
the analog values computed by each version at the same time
“instant for each channel. Obviously, there are tradeof%s of
software complexity as to whether the local operating system
for each version of the director operating system controls the
cross check points of the input voter, start of each version,
completion of each version, and output voter. To summarize,
the director operating system must control the synchronization
of the start of A/D and D/A conversion at a minimum.
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Figure 7b represents a somewhat simpler, but
potentially less fault tolerant architecture due to the single
point failure possibility for either voter. In this
architecture, the input and output voters are not part of the
version but are implemented in the driver operating system. In
this architecture, the directcr vperating system:

controls start-of A/D conversion,
implements and controls the input voter,

(1)

(2)

(3) controls start of each version,

(4) implements and-controls the output voting, and
(5)

controls tne transmission to the single D/A.

The architecture in Figure 7c is typical of a system
which has a single sensor for measuring some data parameter
required by a function. In this case, the driver operating
system controls:

(1) the start of A/D conversion and the writing to a
memory buffer accessible to each version,

(g) the synchronous start of each version,

(3) implements and controls the output voting, and

(4) controls the transmission to the single D/A.

As can be seen from these examples, implementing an
NVS system requires much more than simply developing
independent versions of a module, and voting on the output.
The driver operating system contains some different procedures
for each architecture. The processes of damage assessmént,
recovery, and fault treatment for each of these architectures
will have some similarities but also differences dependent upon
the approach taken by the designers,
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Recovery Block

The recovery block technique for providing tolerance
to software faults in sequential programs is based on the
concept of developing multiple independent versions of a
software module with a single version processed at a time,
followed by subjecting the output of that version to a run time
assertion, called an acceptance test. Should the output of the
version fail the acceptance test, the system is restored to the
state which existed prior to the execution of the version which
fajled the acceptance test, and the operating system invokes
the first alternate version for the function whose primary
version failed. The output of the first alternate version is
subjected to the same acceptance test used for the primary
version. If it passes, the operating system invokes the
primary version for the next function to be executed-and the
process proceeds in a similar manner as depicted in Figure A-8.

<recovery block>::=ensure <acceptance test> by
<primary alternate>
<other alternates> else error

<primary alternate>::=<alternate>

<other alternates>::<empty>|<other alternates>
else by <alternate>

<alternate>::=<statement 1list>

<acceptance test>::=<logical expression>

FIGURE A-8. SYNTAX FOR RECOVERY BLOCK [NELLIAR-SHITI{]



I[f the first alternate fails, the second alternate
version is scheduled if the remaining time permits it to
execute and be subjected to the acceptance test while still
maintaining real-time operation. In a real-time environment,
missing @ hard time deadline for executing a process can lead
to system failure, or at least a degradation in performance.
In the case of the recovery blcck, this can happen due to a
number of reasons including:

(1) a faulty acceptance test,

(2) exhausting the spare modules with none passing a valid
acceptance test, and

(3) run time of the versions and acceptance test exceeding
the time-frame dictated by the real-time requirement.

If the recovery block fails, recovery is attempted. at

the next higher level which could be another recovery block in
the case of nested recovery blocks.

Error Detection

“The first stage in providing fault tolerance is to
detect errors arising from the execution of the primary module"
[ANDER81, p. 251]. Assertions can be included in the module
itself. This by itself is not sufficient and must be followed
by the completion of an acceptance test which executes after
the primary module has run. The acceptance test shall raise an
exception if the module output does not pass the test.

“The function of the acceptance test is to ensure
that the operation performed by the recovery block is to the
satisfaction of the program which jinvoked the block. The
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acceptance test is therefore performed by reference to the
variables accessible to that program, rather than variables
local to.the recovery block, since these can have no effect or
significénce after exit from the block. Indeed the different
alternates will probably have different sets of local
variables." [RAND75]

“When an acceptance test is being evaluated, any
non-local variables that have been modified must be available
in their original as well as their modified form because of the
possible need to reset the system state. For convenience and
increased rigor, the acceptance test is enabled to access such
variables either for their modified value or for their original
(prior) value." [RAND75]

Damage Assessment

Damage assessment is not currently used in the
recovery block technique. In the case of a fault being
detected by the acceptance test, one would ideally like to
return to the state nearest in time to the present time that
allows full regeneration of lost results. To perform such a
feat in real-time is very difficult, so no attempt is made to
locate that state in current recovery block implementations.

Recoverx

Recovery blocks primarily rely on backward recovery.
For single sequential processes, the system saves the state at
the a priori determined recovery point prior to beginning the
execution of the primary version. No damage assessment attempt
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is made. The inherent danger in this approach for a system
with concurrent processes is the rollback propagation in which
rollback of a process may cause other processes to rollback
because of process interaction. This rollback propagation can
" continue until a globally consistent state is reached and

‘ could, in the worst case, necessitate a restart [ANDERS1,
GOLDBERG, SHIN, VELARDI]. Two approaches to dealing with this
phenomena are the techniques of "conversations" between
processes [RAND75, GOLDBERG] and the recovery cache [LEE,
MELLIAR-SMITH].

Fault Treatment

Fault treatment in the recovery block technique relys
on one of the alternate versions being correct and passing the
acceptance test. In real-time applications which repetitively
perform the same functions througout a mission, a version which
persistently fails the acceptance test would be removed from
the-execution schedule and replaced with a spare if one were
available. Whether a spare is available or not, the fault log
would be retained and the faulty version removed from the
execution schedule and subjected to analysis to determine the
specific faults that caused it to consistently fail the
acceptance test.
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SOFTWARE SYSTEM ERROR DETECTION AND CORRECTION TECHNIQUES

by
Ellis F. Hitt
1. INTRODUCTION
1.1 Requirements Definition

The scoftware requirements for the experiments which will provide data
from real-time implementaticn of one or more of the existing fault
tolerant software techniques include the functions to be implemented,
the test drivers, and the data to be acquired. This document
accompanied by the formal software specification to be developed under
Subtask 2.2 meet the requirements of Daocument No. 2 referenced in
RTCA/DO-178A ([RTCAI.

2. Recovery Blocks
2.1 Functions to be Implemented

The components of the system state vector to be estimated are:
latitude, longitude, altitude, north and east velocities. The north
and east velocities will be used to compute the desired velocity
output, the true velocity. The recovery block will be evaluated for
implementing these navigation functions which provide the components
of the state vector:

(1) Altitudé from air data
(2) VOR/DME/air data [BRYSON)] yields estimates of latitude,
longitude, and north and east velocities. .

The coordinate systems to be used are the:
(1) inertial frame
(2) earth fixed
(3) local level or geographic
(4) body
(S) navigation (local horizoantal) (HITT&S].

2.2 Recovery Block Implementation of Navigation
2.2.1 Sequential Processing

A major frame will be composed of a sequence of minor frames as shown

in Figure B-1. At the start of each minor frame, the frame timer is
reset to zero. In the minor frame the navigation process is to
execute, the inputs will be read from the respective addresses. The

recovery point will be established. The inputs will be tested for
validity and then be processed by the primary version. The output
vill be subjected to the acceptance test. | If the output passes the
acceptance test, it is written to the ocutput addresses and no further
procegsing of the navigation function 18 required until the next minor
frame in which navigation is scheduled. If the output fails the



Major Frame

Task A Task B Task A Task C Task A Task D Task A Task B Task A Task C
Minor Frame - - —
Minor Frame Time Line Details
If Version
Passes 1/0, Establish Execute Execute Purge
Acceptance Event Validate Recovery Primary Acceptance Recovery Wait .
Test Polling Input Point Version Test Point
Execute Execute
Else Roll Alternate Acceptance
Back Version Test .......

FIGURE B-1. RECOVERY BLOCK TIHE LIKE

Z-9
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acceptance t2st, the system rolls back to the recovery point and
invekes the first al4“ernate version. This prccess continues until the
cutput passes the acceptance test or the minor Zr-ame timer times out.

2.2.2 Response Time

The minor frame time shall be 25 milliseconds. Ferty minor frames
shall comprise the major frame. Within each minor frame the recovery
block is scheduled to execute, the total time must be allocated to the
input processing, establishing the recovery point, executing the
primary version, executing the acceptance test, and either purging the
recovery point if the output passes the acceptance test, or rolling
back to the recovery point and repeating the process using an
alternate version. The primary version as well as each alternate
version must execute in a given time increment. For the purpose of
this project, this time shall be less than 2 milliseconds. The entire
process from minor frame timer start to completion of the execution of
the first acceptance test ghall be less than S milliseconds.

2.3 Requirements

The recovery block madel of the system shall make use of the states
and system model given in BRYSGH. A primary and at least one
alternate version shall be provided. The acceptance test shall be
separately specified and developed.

2.3.1 Sensor Inputs

Sensor inputs shall be assumed to be transmitted over a simulated MIL-
STD-1SS3B data bus. This establishes 2 16 bit data word with parity
as the last bit. The MSB is transmitted first and parity last.

2:3.l.l Air Data Inpuﬁs

2.3.1.1.1 Data Type

The input variable data type shall be integer as specified in [ASD].
2.3.1.1.2 Input Data Word Formats

The data word format is the structure, order, and value represented by
the bits in a signal data transmission. The data word format is as
follows for each input variable:

Barometric Altitude MSB: 16, 384 -
Units: Feet LsS8: 1
Coding: 2’s complement, Integer,
Max: +32, 768
Min: - 1,000

BIT 1 2 3 4 S &6 7 8 9 10 11 12 13 14 15 158 17 18 13 20
TIMES SYNC SIGN MSB » =+ =+ + =+ =+ @« =+ + +» =« =+ =« L5B PARITY

Transmission Rate: 20 K=

Indicated Airspeed MSB: 4, 096

Units: Knots ) LSB: 28-3
Coding: BHNR
Max: &,1%
Min: O
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BIT 1 2 3 4 s 6 7 8 S 10 11 12 13 14 13 18 17 18 15 20
TIMES SYNC MS2E +» =+ =+ =+ =» =+ =2 = = =« .= = = = LSB PARITY
Transmission Rat2: 20 Hz
2.3..1.2 VOR/DME Inputs
2.3.1.2.1 Data Type
The input data shall be real.
2.3.1.2.2 Input Data Word Formats
The data word format écllcvs for each input variable:

Magnetic Bearing to VOR MSB: 90

Units: Degrees LSB: 0.04394531
Coding: BNR
Max: +«180
Min: -180

IT 1 2 3 4 S 6 7 8 S 10 ii 12 13 14 1S 18 17 18 15 2C
TIMES SYNC SICGN MSB » » =+ = =» =+ » = + =+ [LSB O 0O O PARIT
Transmission Rate: 20 H=z

Distance to VORTAC MSB: 327.68

Units: Nautical Miles LSB: 0.01
Coding: BANR
Max: &53. 36
Min: O

BIT l 2 3 4 3 & 7 8 S 10 11 12 13 14 15 18 17 18 19 20.
TIMES SYNC MSB = =+ =+ = =+ = & = =+ =+ =+ =+ =+ = LSB PARITY
Transmission Rate: 20 H=

2.3.2 Processing
The VOR/DME measurement model shall be based on that given in BRYSON.
The recovery block [HITT86] mechanization shall sequentially:

1. Validate input data

2. Establish recovery point

3. Execute subprogram for primary version-

4. Execute acceptance test -

S. If subprogram passes acceptance test, then purge rescovervy
pocint and wait until next scheduled minor frame, else rollback to
recovery pcint

6. Execut2 subpraoagram Icr alternate version

7. IZ subprogram passes acceptance t=2st, then purge recovery
point and wait until next scheduled minor frame, else rallback to
recovery peint

8. IZ anotner alternative available, then =sx=2cuts subprzgram
for alternate version, else fail.

2.3.3 Output

The output ¢ th2 version wnhich passes the acca

£tance t2st shall be
converta2d into the cutpus Zaormaz which follows Zar

2ach ccmpenent ol



+the state vector.

2.3.3.1 Data Type
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The output variable data type shall be as gaven in the data word

coding format.

2.3.3.2 OQutput Data Word Formats

The data word format follows for each ocoutput variable:

Present

Latitude,
Units: Degrees
Word 1

BIT 1 2 3 4 S 8

TIMES SYNC SIGN MS3 »
Word 2

BIT 1 2 3 4 S 6
TIMES SYNC - * .
Computation Rate: 20 Hz
Longitude, Present
Units: Degrees

Word 1

BIT 1 2 3 4 S 6
TIMES SYNC SIGN MSB =
Word 2

BIT 1 2 3 4 -5 6
TIMES SYNC - o+ =

Computation Rate: 20 Hz

Barometric Altitude
Units: Feet

BIT 1 2 3 4 S 6
TIMES SYNC SIGN MS3 »

Computation Rate: 20 Hz

True Velocity
Units: Knots

MSB: 4S

LSB: S.36E-§
Coding: BNR
Max: +90 (-~
Min: -90

is Nerth)

10 11 12 13 14

» *» L J * * * » »

10 11 12 13 14
Lss 0 O

» * » - »*

MSB: 90

LSB: 5.36E-6
Coding: BNR
Max: +180 (~
Min: -180

is East)

7 8 9 10 11 12 13 14

» » » » » » » *

13 14
LsSB O

7 &8 9 10 11 12

- » » » » »

MSB: 16,384

LSB: 1

Coding: 2's complement,
Max: +32, 768

Min: - 1,000

7 8 9 10 11 12 13 14

» » »* * » » * »

MSB: 4,096
Ls3: 2E-~3
Coding: BNR
Max: 8,192
Mian: O

7 & 9 10 11 12 12 14

'

13 18 17 18 19 20

* = =+ =« » PARITY
13 16 17 13 19 20

0O O 0O O O PARITY
13 16 17 18 19 20

+ =» =+ « = PARITY
15 16 17 18 15 20

0O O O O O PARITY
Integer

15 16 17 18 12 20

LS3 PARITY

» * » -

[¥]]
-
()
[
~)
p-
w
b
)
)
(B



T

MEZ SYNC MS3 + s+ » <+ = s s * s s * » e = LS3 PARITY

Czmputation Rate: 20 H=z=
3. Data to be Acguired

The individual subpreograms should be designed to automatically acqui
certain data. Software probes will be embedded in the code. Data to
be acquired from each subprogram includes execution time, iaput
variables’ values, and output variables’ wvalues for each version on a
stand-alone basis. When the complete recovery block is integrated,
the outputs shall include the execution time, input variables’ values,
and output variables’ values for each version which fails the
acceptance test.

4. Test Drivers

The test drivers for each subprogram shall be derived from the input
specifications for each subprogram. The test drivers for the
integrated set of subprograms required to implement the real-time
recovery block shall simulate the input data transmission rates as
well as the full range of dynamics derived from a simulated aircraft
trajectory.
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NAVIGATION STATION FREQUENCIES

Table C-1 lists some of the navigation stations in the United States and
their corresponding station frequencies. This data is from a VORTAC listing
that was compiled around 1970, so there may be old VORTACs that are listed
that should be deleted. However, for use in our navigation recovery block,
this table satisfactorily illustrates our intentions.

TABLE C-1. NAVIGATION STATION FREQUENCIES {1l1]

Walnut Ridge, AR. 114.5 Watertown, NY. 109.
Astoria, OR. 114.0 Atlanta, GA. .115.

Location Frequency Location Frequency
Nabb, IN. 113.5 Attica, OH. 112.8
Allentown, PA. 117.5 Waterloo, DE. 112.6
Abilene, TX. 113.7 Watertown, SD. 116.6
Albuquerque, NM. 113.2 Augusta, ME. 111.4
Aberdeen, SD. 113.0 Austin, MN. 108.8
Albany, GA. 116.1 Austin, TX. . 112.5
Anton Chico, NM. 110.0 Wausau, WI. - 111.6
Nantucket, MA. 117.7 Akron, OH. 114.4
Waco, TX. 115.3 Atlantic City, NJ. 108.6
Ardmore, OK. 116.7 Addison, TX. 111.4
Camp Springs, MD. 113.1 Albert Lea, MN. 109.8
Alexandria, LA. 116.1 Pittsburgh, PA. 110.0
Augusta, GA. 113.9 Athens, GA. 109.6
Alliance, NE. 111.8 Bellaire, OH. . 117.1
King Salmon, AK. 112.8 Akron, CO. 114.4
Albany, NY. 117.8 Allendale, SC. 116.7
Alice, TX. 114.5 Waterloo, IA. 108.2
Alamosa, CO. 113.9 Walla Walla, WA. 111.8
Amarillo, TX. 117.2 Alma, GA. 115.1
Anniston, AL. 108.8 Anchorage, AK. 114.3
Anderson, SC. 108.6 Annette Island, AK. 117.1
Ainsworth, NE. 112.7 Anthony, KS. 112.9
Lima, OH. 108.4 Altoona, PA. . 108.8
Napa, CA. ’ 112.1 Appleton, OH. 116.7
Naperville, IL. 116.0 Alpena, MI. 108.8
Acton, TX. 110.6 Yardley, PA. 108.2

8
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NAVIGATION STATION LOCATIONS

Table D-1 gives some of the navigation stations (listed by city and state)
and their corresponding latitude and longitude. The table is incomplete,
but suffices to illustrate its use in the calculations.

TABLE D-1. NAVIGATION STATION LOCATIONS [11]

City, State Latitude Longitude
Nabb, IN. 38: 35: 19.5 N 85: 38: 9.7 W
Allentown, PA. 40: 43: 35.7 N 75: 27: 18.4 W
Abilene, TX. 32: 28: 52.5 N 99: 51: 47.1 W
‘Albuquerque, NM. 35: 2: 37.4 N 106: 48: 56.6 W
Aberdeen, SD. 45: 25: 2.7 N 98: 22: 6.1 W
Albany, GA. 31: 39: 18.2 N 84: 17: 35.5 W
Anton Chico, NM 35: 6: 41.9 N 105: 2: 21.7 W
Nantucket, MA. 41: 16: 54.2 N 70: 1: 38.0 W
Akron, OH. 41: 6: 28.2 N 8l: 12: 6.2 W
Waco, TX. 31: 39: 43.7 N 97: 1l6: 7.4 W
Atlantic City, NJ. 39: 27: 20.7 N 74: 34: 36.2 W
Ardmore, OK. 34: 12: 41.3 N 97: 10: 4.9 W
Addison, TX. 32: 58: 24.6 N 96: 50: 8.3 W
Camp Springs, MD. 38: 48: 25.6 N 76: 51: 59.4 W
Albert Lea, MN 43: 40: 60.0 N 93: 22: 8.0 W
Alexandria, LA. 31: 15: 23.2 N 92: 30: 2.0 W
Pittsburgh, PA. 40: 16: 42.9 N 80: 2: 27.9 W
Augusta, GA. 33: 32: 39.8 N 82: 7: 59.6 W
Athens, GA. 33: 56: 50.9 N 83: 19: 29.6 W
Alliance, NE. 42: 3: 18.4 N 102: 48: 14.9 W
Bellaire, OH. 40: 1l: 1.0 N 80: 49: 2.8 W
King Salmon, AK. 58: 43: 31.3 N 156: 44: 59.9 W
Akron, CO. 40: 9: 20.1 N 103: 10: 45.2 W
Albany, NY,. 42: 44: 49.9 N 73: 48: 13.0 W
Allendale, SC. 33: 0: 44.4 N 8l: 17: 32.6 W
Alice, TX. 27: 44 22.2 N 98: 1: 15.5 W
Waterloo, IA. 42: 33: 23.4 N 92: 23: 55.5 W
Alamosa, CO. 37: 20: 56.9 N 105: 48: 48.7 W
Walla Walla, WA. ' 46: 5: 13.5 N 118: 17: 29.1 W
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NAVIGATION RECOVERY BLOCK ADA CODE

The following pages are the source code listing for the navigation recovery
block described in this report. The source code is written in Ada.

The decision for the use of a maximum of seven significant figures in all
of the constants in this program was governed by the use of the predefined
standard Ada real numeric type FLOAT (which is implemented on the VAX using
F-floating representation). The F-floating representation has a size of
32 bits and provides six digits of precision. Although the use of the
Ada numeric type LONG_FLOAT (implemented using D-floating or G-floating
representation) would provide additional digits of precision (D-floating
has a size of 64 bits and provides nine digits of precision; G-floating
has a size of 64 bits and provides fifteen digits of precision), its use
would result in source code that is less portable [12,13].
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with TEXT_IO, FLOAT_MATH_LIB;
procedure NAVIGATION 1is

use TEXT_IO, FLOAT_MATH LIB

package INT_I_O is new INTEGER _IO(INTEGER);
package FLOAT_I _0 is new FLOAT_IO(FLOAT);
use INT_I_O, FLOAT _I1_0;

type TUNED_FREQUENCY is delta 0.1 range 108.0 .. 118.0;
type FREQUENCY is (113.5, 117.5, 113.7, 113.2, 113.0, 116.1);

-- Note that the freguencies listed are given just for this example
-- and would need to be changed for your specific use.

type LOCATION is (STATES, NOTSTATES);

-- The general location of the aircraft is necessary for the range
-- check. LOCATION is defined as within the 48 conterminous states,
-- STATES, or not, NOTSTATES.

NUMBER_ITERATIONS, NUMBER_TRIALS: INTEGER;

ACCEPTANCE, FREQ_CHECK, NEW_PROB_SIGNAL, PROB_SIGNAL,
TOTAL_PROB_SIGNAL: BOOLEAN

A, ATRCRAFT_ALTITUDE, AIRCRAFT _LAT, AIRCRAFT_LONG, AIRSPEED TRUE,
A_ONE, A_THREE, AT NORTH AT_WEST, BEAR_TRUE, B_ ONE B_THREE,
C_ONE, C_THREE, DME RANGE EFFECTIVE _RANGE, ELEVATION

ETEVATION ANGLE F_ONE, F_TWO, F_THREE, HDG _TRUE, M, N
NORTH_POSITION, OLD NORTH POSITION OLD _TIME, OLD WEST _POSITION,
P, PHI THREE, PITCH Q, QUOTIENT, RADIUS EARTH R_ONE, R_TWO,
R_THREE, S, STATION _ELEVATION, STATION LAT, STATION LONG

THETA THREE THETA_FOUR, TIME, TOLERANCE, UNUSABLE AREA,
VELOCITY NORTH VELOCITY _WEST, WEST POSITION X, ¥, Y_ ONE Y _TWO,
Y THREE TY_MAX: FLOAT;

type STATION_CLASS is (TERMINAL, LOW, HIGH);

function ARCTANGENT(NUMBER ITERATIONS in  INTEGER;
X, TOLERANCE, Y_MAX: in FLOAT) return FLOAT is

begin

Y_ONE :

: = -Y_MAX;
Y TWO : = MAx
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FIND:
for J in 1 .. NUMBER_ITERATIONS loop

Y THREE : = (Y_ONE + Y_THREE)/2;
F_ONE : AN(Y ONE) ~ X;

F_TWO : =TAN(Y_TWO) - X;
F_THREE : = TAN{Y_THREE) - X;

ﬂ

if (F_ONE < TOLERANCE) then
Y : =Y_ONE; .
exit FIND;

elsif (F_TWO < TOLERANCE) then
Y : =Y _TWO;
exit FIND;

elsif (F_THREE < TOLERANCE) then
Y : =Y THREE;
exit FIND;

end if;

if ((F THREE/F ONE) < 0.0) then
Y TWO := Y_THREE;

else
Y_ONE += Y_THREE;

end if;

end loop FIND;

end;

-- The above function, ARCTANGENT, 1s used to determine the arc
-- tangent in the secondary alternate. To "force" explicit

-- differences to exist beiween the primary and secondary.

-- alternates, the primary alternate uses the Ada math library to
-- determine these values, while the secondary alternate uses the
-- interval halving method. This enables the determination of a
-- root of f(x) =0, accurate within a specified tolerance value.

-- The following "begin"” starts the main program.

begin

GET (NUMBER_TRIALS);



E-4

VORDME :
for I .. NUMBER_TRIALS loop
GET (TUNED FREQUENCY);

-- The frequency check is performed by comparing the

-- tuned-navigation frequency, TUNED_FREQUENCY, to the
-- stored navigation station data, STATION_FREQUENCY.
-- If the tuned navigation frequency does not match a
-~ station in the navigation area, then the probability
-- of a signal, PROB SIGNAL, 1s zero. If the frequency .
-- does match a statIon, then the probability of a

-- signal 'is one. The total probability of the signal,
-- TOTAL_PROB_SIGNAL, is calculated after each check is
-- performed and is dependent upon the individual

-- probability of signal results.

FREQ_CHECK : = FALSE;
PROB_SIGNAL := FALSE;
TOTAT_PROB_SIGNAL := FALSE;
NEW_PROB_SIGNAL : = FALSE;

for STATION_FREQUENCY in FREQUENCY'FIRST .. FREQUENCY'LAST
loop -

if TUNED_FREQUENCY = STATION_FREQUENCY then
FREQ_CHECK : = TRUE;
end if;

if FREQ_CHECK = TRUE then
PROB_SIGNAL : = TRUE;
end if;

end loop;
TOTAL_PROB_SIGNAL := PROB_SIGNAL;

-~ The range check determines whether or not the aircraft
-- 1s within the effective range of the tuned navigation

-- station. If the aircraft is within the effective

-- range, then the probability of signal, PROB_SIGNAL, is
~- one. Otherwise, the probability of a signal is zero.

PROB_SIGNAL : = FALSE;
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-- The range is obtained from the distance measuring
-- equipment (DME). The aircraft's altimeter gives the
-- AIRCRAFT_ALTITUDE.

DME_RANGE

: =0y

GET (STATION_CLASS);

GET (LOCATION);

GET (DME_RANGE) ;

GET (AIRCRAFT_ALTITUDE);

EFFECTIVE_RANGE := O;

case STATION CLASS 1is

when

when

when

end case;

TERMINAL = >

if AIRCRAFT_ALTITUDE <
EFFECTIVE_RANGE

end if;

LOW = > )

if AIRCRAFT ALTITUDE < 18_000 then
EFFECTIVE_RANGE : = 40;

end if;

HIGH

if (AIRCRAFT ALTITUDE < 18_000) and (LOCATION

/= STATES) then

EFFECTIVE_RANGE : = 40;

end if;

12_000 then
25;

if (AIRCRAFT ALTITUDE > = 14 500 and
AIRCRAFT ALTITUDE < = 17_399) and
(LOCATION = STATES) then
EFFECTIVE_RANGE : = 100;
end if;

if (AIRCRAFT_ALTITUDE > 18_000) and
(AIRCRAFT ALTITUDE < = 45°000) then
EFFECTIVE_RANGE : = 130;
end if; .

if (AlRCRAFT_ALTITUDE > 45_000) then
EFFECTIVE_RANGE : = 100;
end if;
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if DME_RANGE < =EFFECTIVE_RANGE then
PROB SIGNAL := TRUE;

else
PROB_SIGNAL := FALSE;

end if;

NEW_PROB_SIGNAL : = (TOTAL_PROB_SIGNAL and PROB_SIGNAL);
" TOTAL_ PROB_SIGNAL := NEW_PROB_SIGNAL;

-- The unusable area check determines if the aircraft is
-- within an unusable area of the tuned navigation

-- station. This check is performed by looping through
-- all of the specified unusable areas for the tuned

-- station and determining the location of the aircraft
-- with respect to the unusable area. These values would
-- need to be changed to suit your use.

PROB_SIGNAL : = FALSE;
UNUSABLE_AREA := -1;
case TUNED_FREQUENCY 1is

when 113.5 = > UNUSABLE_AREA := 10;

when 117.5 = > UNUSABLE_AREA := 40;

when 113.7 = > UNUSABLE_AREA := 100;

when 113.2 = > UNUSABLE_AREA := -1;

when 113.0 = > UNUSABLE_AREA := -1;

when 116.1 = > UNUSABLE_AREA := -1;
end case;

if DME_RANGE < = UNUSABLE_AREA then
PROB_SIGNAL : = FALSE;

else
PROB_SIGNAL : = TRUE;

end if;

NEW_PROB_SIGNAL := TOTAL_PROB_SIGNAL and PROB_SIGNAL;
TOTAL_PROB_SIGNAL : = NEW_PROB_SIGNAL;

-~ The cone of confusion check determines if the aircraft
-- is in the area above the VOR/DME station and might

-~ experience a loss of signal. As with the unusable

-- area check, sample data has been inserted into the

-~ cases for this program. This data would have to be



-- changed to suit your individual needs.
PROB_SIGNAL := FALSE;
case TUNED_FREQUENCY is

when 113.5 = > ELEVATION := 89;

when 117.5 = > ELEVATION := 88;

when 113.7 = > ELEVATION := 89;

when 113.2 = > ELEVATION := 87;

when 113.0 = > ELEVATION := 86;

when 116.1 = > ELEVATION := 89;
- end case;

GET (ELEVATION_ANGIE);

if ELEVATION ANGLE > ELEVATION then
PROR SIGNAL : = FALSE;

else
PROB_SIGNAL := TRUE;

end if; .

NEW_PROB SIGNAL : = TOTAL_PROB_SIGNAL and PROB _SIGNAL;
TOTAL_PROB_ SIGNAL := NEW_PROB_ SIGNAL

if TOTAL_PROB_SIGNAL = TRUE then

-~ This part of the primary alternate determlnes the
-~ alrcraft latitude and longitude.

GET (STATION_LAT); -- in degrees
GET (STATION_LONG); -- in degrees
GET (BEAR_TRUE);

GET (STATTON_ELEVATION);

-~ The earth's radius 1s assumed to be 6378.1€3 km =
.=~ 3443.93 n mi = 20_925_732 feet. (Reference 8.)

RADIUS_EARTH := 3443.93;
THETA_THREE : = BEAR_TRUE + 90;

R_ONE
R_TWO

RADIUS EARTH + STATION_EILEVATION;
RADIUS EARTH + BEAR_TRUE;
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(R_ONE*#2) + (DME_RANGE¥*%*2) - (R_TWO%*#*2);
2%*R_ONE#*DME_RANGE;

W on

M
N :
-- PHI_THREE is defined as the angle in degrees that
~- the aircraft makes with the i2, j2 plane.

PHI_THREE := ACOSD(M/N) -90;
-- To compute the aircraft latitude.

C_ONE := R_ONE * SIND(STATION_LAT);

C_THREE := DME_RANGE ¥ ((COSDTSTATION LAT) =*
COSD(PHI_THREE) * SIND(THETA THREE)) «
(SIND(STATION _LAT) * SIND(PHI_THREE)));

P := (C_ONE + C_THREE)/R_TWO;
ATRCRAFT_LAT := ASIND(P);
-- To compute the aircraft longitude.

B_ONE := R_ONE * COSD(STATION_LAT) * COSD(STATION_LONG);
B_THREE := DME_RANGE * (((-1)¥SIND(STATION_LAT) *
COSD(STATION _LONG) * COSD(PHI_THREE) ¥
SIND(THETA_THREE)) - (SIND(STATION_LONG) *
COSD(PHI_THREE) * COSD(THETA_THREE) +
(COSD(STATION _LAT) * COSD(STATION LONG) *
SIND(PHI_THREE)));

A_ONE :=z R_ONE * COSD(STATION_LAT) * SIND(STATION LONG);

A_THREE := DME_RANGE * (((-1)®*SIND(STATION_LAT) * ~
SIND(STATION LONG) * COSD(PHI_THREE) *
SIND(THETA_THREE)) + (Cosn(amAmION LAT)
COSD(PHI_THREE) * COSD(THETA_THREE)) -
(COSD(STATION_LAT) * SIND(3STATION_LONG) *
SIND(PHI_THREE)));

Q := AONE + A_THREE;
S := B ONE + B THREE

if S>0 then
AIRCRAFT_LONG := ATAND(Q/S);
elsif S5<¢0 and 23>0 then
AIRCRAFT_LONG := ATAND(Q/S) + 180;
elsif S<0 and 23«0 then ‘
AIRCRAFT _ZONG := ATAND(Q/S) - 180;
elsif 5=0 and 23>0 then
ATRCRAFT_LONG := 90;
elsif 5=0 and 2¢O then
AIRCRAFT _LCHG := =903
end 1f;
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.~- This part of procedure NAVIGATION for the primary
-- alternate determines the north and west position

-- components of the aircraft. The range has already
-- been obtained from the range check. The bearing of
-- the aircraft was obtained in the aircraft latitude
-- and longitude calculations.

WEST _POSITION := DME_RANGE * COSD(PHI_THREE) ¥
TSIND(THETA_THREE);

NORTH POSITION ;= DME_RANGE * COSD(PHI_THREE) *
COSD(THETA_THREE) ;

-~ This part of the primary alternate determines the
-- aircraft's north and west velocity components.

GET (PITCH);
GET (HDG_TRUE);
GET (AIRSPEED_TRUE);

VELOCITY NORTH := AIRSPEED_TRUE * COSD(PITCH)
COSD(HDG_TRUE ) ;

VELOCITY WEST := AIRSPEED _TRUE * COSD(PITCH) :
SIND (HDG_TRUE) ;

-- This part sets up the conditions initially for the
-- acceptance test to be run.

GET (TIME);

if I = 1 then
OLD_WEST_POSITION := WEST_POSITION;
QLD NORTH POSITION := NORTH_POSITION;
OLD TIME := TIME;

end if;

-- This is the acceptance test. If the acceptance
-- test fails, then the secondary alternate is run.
-- Otherwise, calculations will continue to be made
-- with the primary alternate, and the secondary

-- alternate will not be used.

if I > 1 then
AT_WEST := (WEST_POSITION - OLD_WEST_POSITION)/
(TIME - OLD_TIME); .
AT_NORTH :_(NORTH POSITION - OLD_NORTH_POSITION)/
(TIME - OLD_TIME);
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if (AT_WEST = VELOCITY_WEST) and
(AT_NORTH = VELOCITY_NORTH) then
ACCEPTANCE : = TRUE;
else
ACCEPTANCE : = FALSE;
end if;
end if;

-- If the acceptance test passes, then the results of the
-- calculations for the north and west position and

-- velocity components, along with the aircraft latitude
-- and longitude, will be printed out. Otherwise, the

-- program will enter the secondary alternate to

-- re-calculate these desired values.

if ACCEPTANCE TRUE then

PUT ("THE FOLLOWING VALUES ARE FROM THE PRIMARY
ALTERNATE");

NEW_LINE; .

PUT™ ("AIRCRAFT LATITUDE IS "); PUT (AIRCRAFT_IAT);

NEW_LINE;

PUT ("AIRCRAFT LONGITUDE IS "); PUT (ALRCRAFT_LONG);

NEW_LINE;

PUT™ ("WEST POSITION COMPONENT IS ");

PUT (WEST_POSITION);

NEW_LINE;

PUT™ ("NORTH POSITION COMPONENT IS ");

PUT (NORTH_POSITION);

NEW_LINE;

PUT™ ("WEST VELOCITY COMPONENT IS ");

PUT (VELOCITY_WEST);

NEW_LINE;

PUT™ ("NORTH VELOCITY COMFONENT IS ");

PUT (VELOCITY_NORTH);

NEW_LINE;

OLD_WEST_POSITION := WEST_POSITION;
OLD_NORTH_POSITION := NORTH_POSITION;

OLD_TIME := TIME;
end if;

-- This 1s the entrance into the secondary alternate.
if ACCEPTANCE = FALSE then

-- This part of the secondary alternate determines
-- the aircraft latitude and longitude.

RADIUS_EARTH := 3443.93;
THETA_THREE : = BEAR_TRUE + 90;
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R_ONE := RADIUS_EARTH + STATION_ELEVATION;
R_TWO := RADIUS_EARTH + BEAR_TRUE;

M := (R_ONE * R_ONE) + (DME_RANGE * DME_RANGE) -
(R TWO * R TWO),

2 ¥ R_ONE ¥ DME_RANGE;

N :

1

PHI THREE := ACOSD(M/N) =~ 90;

" -= In the following calculations, the sine and
-- cosine functions are represented by a power
-- series.

C_ONE := R_ONE * ((STATION_LAT * 0174533) -
((STATION_LAT * Q. 0174533)**3)/6

C_THREE := DME_RANGE * (1 - (STATION LAT *
0.0174533)%%2/2) = (1 -~ (PHI_THREE #
0.0174533)*#2/2) * ((THETA_THREE *
0.0174533) - ((THETA_THREE ¥ 0.0174533)#%3)/6) +
(( STATION_LAT * 0.0I74533) -((STATION_LAT *
0.0174533)%%3) /6 * ((PHI. THREE % 0.0174533) -
((PHI_THREE * 0.0174533)%%3)/6);

P := (C_ONE + C_THREE)/R_TWO;
ATRCRAFT_LAT := ASIND(P);

B_ONE:= R_ONE * (1 ~ (STATION_LAT * 0.0174533)%%2/2)
* (1 - (STATION_LONG #* 0.0174533) **2/2)
B_THREE := DME_RANGE * (((-1)#*(STATION_LAT *
0.0174533) = ((STATION_LAT % 0.0174533)%*%3)/6) *
(1 - (STATION_LONG * O. 0174533)**2/2) *
(1 - (PHI THREE * 0. 0174533)**2/2 ((THETA THREEZ
* 0,0174533) - ((THETA_THREE # O, m?b 33)%%27/6) -
((STATION_LONG * 0,017E533) - ((STATION_LONG *
0. 01745337**3)/6) *# (1 - (PHI_THREE *
0.0174533)##2/2) * (THETA_THREE *
0.0174533)%%#2/2) « (STATION_LAT *
0.0174533) **2/2; * (STATION_LONG *
3*
1

J‘I

0.0174533)%#%*2 /2 PHI THREE * 0.0174533) -
((PHI_THREE * 0.0174533)%%3)/6);
A_ONE := R _ONE * (1 - (STATION LAT *
0.0174533)%#2/2) * ((STATION LONG * 0.0174533) -
((STATION_LONG * 0.0174533)%%3)/6);
A_THREE := DME_RANGE * ((-1) * (STATION_LAT *
0.0174533) = ((STATION_LAT * 0,0174533)%%3)/6)
# ((STATION_LONG * 0.0174533) - ((STATION_LONG
* 0.01745337#*%3)/6) * (L - (PHI_THREE *
0.0174533)%*%2/2) % ((THETA_THREE #* 0.0174533) -
((THETA_THREE * 0.0174533)%#3)/6) =+
(1 - (STATION_LAT * 0.0174533) *wz/z *
(1 - (PHI_THREE * 0. 017u533)**2/2>

1
1
1
(
53
s
(
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(1 - (THETA_THREE * 0.0174533)%%2/2) -

(1 - (STATION_ LAT * 0,0174533)%%2/2) *
((STATION_ LONG 0174533) - ((STATION LONG
0.0174533)%*3)/6) * ((PHI_THREE #*
.0174533) ~ ((PHI_THREE * 0.0174533)%%3)/6);

A_ONE + A_THREE;
B_ONE + B_THREE;

O*

Q :
S

n*an

QUOTIENT := Q/S;

GET (Y_MAX);

GET (TOLERANCE);

GET (NUMBER_ITERATIONS);

if S > 0 then

AIRCRAFT_LONG := ARCTANGENT(QUOTIENT) * 57.29578;

elsif S < 0 and Q > O then
AIRCRAFT_LONG : = ARCTANGENT (QUOTIENT) *
57.29578 - 180;
elsif S < 0 and @ > O then
AIRCRAFT_LONG := ARCTANGENT(QUOTIENT) *
57.29578 - 180;
elsif S = 0 and Q@ > O then
AIRCRAFT_LONG : =90;
elsif § = 0 and Q < O then
AIRCRAFT_LONG := -90;
end if;

-- This part of the secondary alternate determines
-~ the north and west position components of the
-~ aircraft.

WEST_POSITION := DME_RANGE * (1 - (PHI_THREE#*2)/2)
T (THETA_THREE - (THETA_THREE*%*3)/67;

NORTH_POSITION := DME_RANGE * (1 - (PHI_THREE®*#2)/2)

{1 - (THETA_THREE#®*2)/2)

-- This part of the secondary alternate determines
-- the north and west velocity components of the
-- aircraft.

VELOCITY_NORTH := AIRSPEED_TRUE * (1 - (PITCH®%2)/2)

(1 = (HDG_TRUE#%¥2)/2)7

VELOCITY_WEST := AIRSPEED TRUE * (1 - (PITCH##2)/2)
HDG_TRUE - (HDG_TRUE¥*3) /6)

%

3



PUT ("THE.FOLLOWING VALUES ARE FROM THE SECQNDARY

end 1

end if;

ALTERNATE") ;
NEW_LINE;
PUT™ ("AIRCRAFT LATITUDE IS "); PUT (ALRCRAFT_LAT);
NEW_LINE; '
PUT ™ ("AIRCRAFT LONGITUDE IS ");
PUT (AIRCRAFT_LONG);
NEW- LINE;
PUT™ ("WEST POSITION COMPONENT IS ")
PUT (WEST_POSITION);
NEW_LINE;
PUT™("NORTH POSITION COMPONENT IS ");
PUT (NORTH_POSITION);
NEW_LINE;
PUT™ ("WEST VELOCITY COMPONENT IS ");
PUT (VELOCITY WEST);
NEW_LINE;
PUT™ ("NORTH VELOCITY COMPONENT IS ");
PUT (VELOCITY_NORTH);
NEW_LINE;

OLD_WEST_POSITION : = WEST_POSITION;
OLD_NORTH_ DOSITION : = NORTH_POSITION;
OLD_TIME : = TIME;

T

end loop VORDME;
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