
I

I

DOT/FAA/CT-87/33

FAA Technical Center

Atlantic City International Airport

N.J. 08405

New York TRACON
Demonstration of Program
Recoding Software Translation
and Verification Methodology
Document

Data Transformation Corporation
8121 Georgia Avenue
Silver Spring, Maryland 20910

August 1987

Final Report

This document is available to the U.S. public
through the National Technical Information
Service, Springfield, Virginia 22161.

us.Department of Transportation

Federal AtwIatIon AdmInIstlallcM

••00013460

NOTICE

This document is disseminated under the sponsorship of
the Department of Transportation in the interest of
information exchange. The United States Government
assumes no liability for the contents or use thereof.

The United States Government does not endorse product.
or manufacturers. Trade or manufacturer's names appear
herein solely because they are considered es.ential to
the object of this report.

I. Rlpo" N•. 2. G."."'....". Acc•••i." N•. 3. R.c;pi."'·. C.,•••• No.

DC1/FAA/CT-87/33
4. Ti II••"cI Sub,i,l. 5. Rop." I).,.
New York TRACON Demonstration of Program Recoding August 1987
Software Translation and Verification Methodology 6. P"'o".;". O'....i.o'i." Cocl.

Document ACT-101
e. P.,'o'lIIi". O'....ilo'io" R.po" No.

7. Author.)

Data Transformation Corporation DOT/FAA/CT-87/33
9. P.,'o,...i". O,...ilo'lo" N_..........,... 10. Wort. U"i' No. ITRA'S)

Federal Aviation Administration
Technical Center 11. Co"',oc, 0' G,..., No.

Atlantic City International Airport, N.J. 08405 DTFA 03-85-C-0058 (16)
13. T"p. 0' R.po,' P.,io" Co".,.cI

12. Sp.....,I"••••"c" N_..........,•••
Department of Transportation
Federal Aviation Administration Final Report
ATC Automation Division 14. Spo".o'i". A••"c" Co".

Washington, D.C. 20591 APM-200
15. SUpp'_OIl'''" No•••

IBM and Pai1en Johnson Associates (PJA) supported the Data Transformation Corp. (DTC)
in the performance of this effort.

16. Ab."oc'

This document is the concluding report in a project whose objective
was to convert in a reasonably short period of time, machine
dependent software to a higher order language capable of running on
any general purpose computer. A subset of the New York (N. Y.)
TRACON (version A5.04) software was chosen for conversion,
specifically, the tracking algorithms. The effort concluded with a
demonstration of the converted software running on an IBM 3080
processor and was presented on a Sony display. The present UNIVAC
ULTRA programs were converted to ADA/POL and the system implemented
in PASCAL. Over 53,000 lines of ULTRA source code were converted
to 47,000 lines of ADA/POL (including commentary) and then to
32,000 lines of PASCAL (without . commen tary) . The project was
concluded in 9 months with the successful demonstration.

17. 1<." Wo,d. 11. Oi."ibu,io" 5,0'...._,

New York TRACON This document is available to the U.S.
ARTS IlIA public through the National Technical
ADA/PDL Information Service, Springfield, Va. 22161

19. S."u,i,y Clollil. (0' "'i. ,.po"l 20. S.cu,lty CI.llil. '0' '''i. po,.l 21. No. 01 Po,•• 22. P,i".

UNCLASSIFIED UNCLASSIFIED 124

Form DOT F 1700.7 (8-721 R...,.lIuctl_ of c••pl.tott po.o ou.ho,lucl

EXECUTIVE SUMMARY

This document is the concluding report in a project whose objective
was to convert in a reasonably short period of time, machine
dependent software to a higher order language capable of running on
any general purpose computer. A subset of the New York (N.Y.)
TRACON (version A5.04) software was chosen for conversion,
specifically, the tracking algorithms. The effort concluded with a
demonstration of the converted software running on an IBM 3080
processor and was presented on a Sony display. The present UNIVAC
ULTRA programs were converted to ADA/POL and the system implemented
in PASCAL. Over 53,000 lines of ULTRA source code were converted
to 47,000 lines of ADA/POL (including commentary) and then to
32,000 lines of PASCAL (without commentary). The project was
concluded in 9 months with the successful demonstration.

1

3.2.4
3.2.5

3.3 Code

Table of Content

Preface

1.0 Summary and Conclusions

2.0 Introduction .
2.2 Project Objectives .•....
2.3 Applicable Documents .•...•..

2.3.1 Project Documentation .•••..
2.3.2 FAA Documentation .••••..

3.0 Translation Methodology. . • • • . ..
3.1 Requirements Analysis ..•••.••......

3.1.1 Architectural Analysis •..•••.
3.1.2 Requirements Analysis of the TRACON NAS-MDs
3.1.3 Data Base Analysis.••....

3.2 Design
3.2.1 Common Data Types ..•....
3.2.2 Gateway Packages.• •
3.2.3 Using the PDL/Ada Body to Map Level-1 to

Level-2
Level-2 Design in PDL/Ada
Data Base Design
and Development Test

4.0 Verification Methodology. . . • • • •• . •....
4.1 Initial verification Tools and Standards .

4.1.1 Mapping of the MPE Services to MVS/RTX .
4.1.2 Charting the Expected Behavior of the Software
4.1.3 Formulation of the Software Measurement and

Performance Standards • • • • . . • • • . • . . .
4.1.4 Defining the Development Processes and Procedures

4.2 Software Build and Integration Testing.. • •.•
4.2.1 Build Testing •..........•..
4.2.2 Quality Assurance. . •.••••
4.2.3 Reviews .

4.3 Traceability.• . .
4.3.1 Levels of Traceability .
4.3.2 Maintaining Traceability• . ..
4.3.3 Traceability Matrix.

4.4 CDR Editor Listing Output Validation•

5.0 Project Management

6.0 statistical Summary
6.1 System Development Results ...
6.2 Methodology Questionnaire Poll

2

5

6

9
10
11
11
11

12
14
16
21
25
29
31
35

35
35
36
38

50
52
53
53

53
55
55
55
59
60
61
61
61
62
63

67

69
69
70

Table of Appendix

Appendix A. System Parts and Their Work

Appendix B-1. Layout of the Data Element Dictionary

Appendix B-2. Description of the Mapping Tables

Appendix c. Outline of Questionnaire Analysis

Appendix D. Glossary

3

Table of Figures

Figure 1. N.Y. TRACON Demonstration Operational Software
Architecture 18

Figure 2. MPE SERVICES

Figure 3. Mapping MPE SERVICES to MVS/RTX

Figure 4. Requirements Analysis Template ..

19

20

23

Figure 5. Operational Parameter Data Element Dictionary 26

Figure 6. System and Site Parameter Data Element Dictionary 27

Figure 7. Mapping Table for Site Adaptation Data
Element Dictionary and System Database .

Figure 8. State Machine Diagram . . . · · · · · · · · ·
Figure 9. TEMPLATE for Level-1 Sequential Design · · · · ·
Figure 10. TEMPLATE for Level-1 State Data Package · · · ·
Figure I!. TEMPLATE for Level-2 Sequential Design · · ·
Figure 12. TEMPLATE for Level-2 Procedures · · · · · · ·
Figure 13A Converting PDL/Ada to Pascal/VS · · · · · · ·
Figure 13B Converting PDL/Ada to Pascal/VS · · · ·
Figure 14A Procedure or Function Template used in Code

Development · · · · · · · · · · ·
Figure 14B Procedure or Function Template used in Code

Development · · · · · · · ·
Figure 15A FAA TRACON SOFTWARE QUALITY ANALYSIS REPORT

Figure 15B FAA TRACON Quality Analysis Report

Figure 16 Sample from Traceability Matrix

4

28

30

32

33

34

37

40

41

43

44

46

47

64

Preface

This report is sponsored by the Federal Aviation Administration
(FAA), Technical Center, Atlantic City Airport, New Jersey 08405.
Funding for the effort was provided by the FAA, Contract number
DTFA 03-85-C-00058 MOD 16, Contract description: New York TRACON
demonstration of program recoding.

FAA's sponsorship and management oversight for this contract was
provided by APM-220 from the FAA's Washington D.C. office, and by
ACT-IOI, from the Atlantic City Technical Center. This contract
was administered as a Cost Plus Fixed Fee (CPFF) contract of nine
months duration.

The New York TRACON demonstration of program recoding project was
implemented by the team of Data Transformation Corporation (DTC),
International Business Machines (IBM), and Pailen Johnson
Associates (PJA), under DTC contract 42-37G.

5

1.0 Summary and Conclusions

The team of DTC, IBM, and PJA completed the recoding of a subset
of the current New York TRACON ARTS IlIA software and
successfully demonstrated its execution on a Systemj370, running
under MVSjRTX. This activity proved that the tracking function
from the existing operational system can be translated into a
higher order language and rearchitectured to run in a different
system configuration. The project was completed on schedule (in
nine months) and within budget.

The team provided a final two hour demonstration on May 29, 1987.
The demonstration used an FAA-provided input file, containing the
recorded output of a current FAA New York TRACON system run. The
contractors and the FAA compared the output recorded from the
demonstration run with the New York TRACON generated output and
found no unanticipated discrepancies. The analysis verified that
the recoded tracking algorithms are functionally equivalent to
the original.

The demonstration was run on an IBM 3083 processor, connected to
a modern situation display. The tracking outputs, including
lists and full data blocks, were presented on the display in
real-time, providing visual evidence that the recoded software
performed correctly.

The primary objective of the demonstration was to prove that, in
a reasonably short period of time, real-time air traffic
applications can be transported from one processor and unique
instruction architecture to another general architecture without
affecting their functional or computational performance. The
process included extracting the functional requirements from an
existing, proven system that accomplished the primary mission
(e.g., the tracker), plus any function that is necessary to
support its correct operation (e.g., PSRAP, keyboard message
processing, etc.), plus any function that is needed to provide
verification of it correct execution (e.g., CDR extraction,
display, etc.). Operational data in the form of continuous data
recording extractions were used for verification. Computer
performance was monitored to determine successful operation of
the application functions and the viability of the selected
processor and commercial-off-the-shelf operating system.

Several key factors contributed to the project's success:

o The software development laboratory, including all equipment
and software tools, was available at the start of the
contract.

6

o The team used a consistent and proven set of development
methods and followed the standard software development life
cycle; including, requirements analysis and architecture,
two levels of design, incremental software builds, design
and inspections, and an independent software integration and
test team.

o A formal software architecture was developed that insulated
the applications and the applications programmers from the
system operating environment.

o A complete data element dictionary mapping the existing
ULTRA variables to the recoded variables was developed.

o The team's formal design methods, used in conjunction with
Ada, led to a design marked by independent modules, with no
global database and precisely-defined interfaces. The
design was recorded in an Ada process design language (PDL).

o Early in the program, the system inputs were converted to
the new format. The input variables were defined as Ada
data types to ensure consistency throughout the entire
software system. (The CDR Editor, for example, used the
same data-types as Retrack, the system input driver.)

o The software was recoded in Pascal/VS, which made the
transition from POL/Ada easy. Pascal/VS is a strong
data-typing language with well-defined rules which allow
many types of errors to be determined at compile time rather
than execution time.

Over 53,000 lines of ULTRA were converted to over 83,000 source
lines of Pascal/VS code, including instructions, data, and
commentary. (Approximately 62% of the Pascal/VS source lines are
comments.) The system rearchitecture and translation of the
ULTRA to Pascal was effected by the development of two levels of
PDL/Ada. Primarily because of Ada and Pascal/VS, there were no
major software errors when the final demonstration was given.
Seventy-eight errors were generated and resolved during software
integration and testing.

Recoding an existing software system to run on an instruction
architecture that is different from the original has significant
advantages over an approach where the system is re-specified and
re-designed:

o The existing software source code is ultimately the most
reliable specification.

o Recoding avoids the errors that would result in developing
new engineering requirements and functional specifications.

7

o Proving source code equivalence is more reliable and more
cost-effective than a full-scale verification and validation
testing program.

In short, because recoding takes advantage of the profound
effects of evolution, it results in a converted system that is
more reliable (as it leaves the factory) and far less expensive
to develop. The error-prone processes of discovery and invention
are minimized.

8

2.0 Introduction

The information contained in the remainder of this document
represents the chronological sequence of activities utilized in
the development of the New York TRACON Demonstration of Program
Recoding Project (referred to as the Demonstration System). It
is subdivided into the following four sections:

o Translation Methodology

o Verification Methodology

o Project Management

o Statistical Summary

Translation Methodology (Section 3.0)

This section describes the definition and approach to the system
analysis, design, code, development, tests, and reviews.

Verification Methodology (Section 4.0)

This section describes the expected behavior of the software,
the methods and standards used to measure the reengineered
software, the development approach and standards, software
traceability, software testing, and reviews.

Project Management (Section 5.0)

This section describes the tools, methods, guidelines, and
standards used to efficiently manage this project.

Statistical Summary (Section 6.0)

This section provides a statistical summary of the results of
the system's development and implementation, including an
analysis of the SLOCs for each development phase (ULTRA,
POL/Ada, pascal/VS), design issues, and PTRs. Also included in
this section is information pertaining to a poll of each
individual developers approach to the reengineering process, a
graph illustrating the results of the questionnaires, and the
raw data collected from this interview process.

2.1 Scope

This document describes the methods used to convert a subset of
the current New York TRACON ARTS IlIA software from a
multi-processor/machine language instruction architecture to a
uni-processor/high order language System/370. It illustrates
that a machine dependent language like ULTRA, can be reengineered
to a High Order Language (HOL) adaptable to a general purpose

9

machine and operating system architecture. Michael J. Lyons and
RaYmond Jozwik in an article for Government Computer News (GCN)
said, "Software reengineering provides a less costly, proven
alternative to the time-consuming and risky from-scratch rewrites
so many agencies are facing today. Through reengineering,
organizations have realized a 20 percent to 40 percent reduction
in maintenance costs, extended the useful life of systems and
done so for less than half the cost of a start-over approach".
Although the information contained in the GCN article applies to
sequential data processing programs and not real-time systems,
and thus is not directly applicable to this ULTRA reengineering
project, it contains information relevant to reengineering
efforts in general. This document provides the detail
description of each step used in the demonstration system
reengineering effort, including the methods, analytical and
developmental approach, architecture, design, coding, testing,
implementation, performance, and management standards.

2.2 Project Objectives

The objective of the Demonstration System project was to prove
the validity of the software translation and verification
methodology used to recode a subset of the New York TRACON
Operational program. To achieve this, the contractor
demonstrated and documented an efficient translation (i.e.,
reverse engineering) of the existing New York TRACON Operational
software ULTRA source code subset into the Process Design
Language (PDL)/Ada. The resultant PDL/Ada was used to generate
Pascal/VS Higher Order Language (HaL) which was capable of
execution on a general purpose, commercial, target computer and
operating system. The newly generated POL/Ada and HaL was
functionally identical and directly traceable to the existing New
York TRACON version A5.04 ULTRA source code. The contractor
provided means to allow the FAA to verify the recoding (reverse
engineering) of the source code.

The translation methodology provides the procedures and tools
used to generate an accurate system translation. The
verification methodology procedures and tools are used for the
verification of the translation process.

This effort was not intended to convert the entire N.Y. TRACON
ARTS IlIA software, or to change and/or improve the existing
algorithms. Display evaluation or development, performance
measurements, and detailed computer sizing, were not objectives
of this contract.

10

2.3 Applicable Documents

It is recommended that a copy of the associated Demonstration
System's glossary be available when reading this document,
because some of the terms used are unique to the Demonstration
System's applications.

2.3.1 Project Documentation

0 AOOI Program Management Plan

0 AOO2 Requirements Analysis Document

0 AOO3 Top Level Design Document

0 AOO4 PDL and Traceability Matrices

0 AOO5 Test Plan

0 AOOS Program Listings

0 AOI0 PDL Reference Manual

2.3.2 FAA Documentation

o N.Y. TRACON A5.04 Program Listings, and Continuous Data
Recording (CDR) files on magnetic tapes (GFE)

o N.Y. TRACON A5.04 Coding Specifications (GFE)

o N.Y. TRACON Computer Program Functional Specification (GFE)

o N.Y. TRACON A5.04 CULL Listings (GFE)

o N.Y. TRACON Supplement To ARTS IlIA (System Design Data)

11

3.0 Translation Methodology

A basic goal of the project was to adhere to modern software
engineering principles such as data ownership, data hiding and
package definitions. The project team used a conversion
methodology based on the standard software system development
life cycle. The major life cycle steps are:

Requirements Analysis
Design
Implementation
Software Integration and Testing (SWIT)
Demonstration

The conversion methods considered the selection of the hardware
configuration, operating system, and high order language.

The demonstration system architecture mirrors the New York TRACON
AS.04 system architecture by structural components only, not in
the content of these components. The demonstration system
consists of two subsystems: 1) the real-time operational
subsystem and 2) the offline support subsystem. The capabilities
of the demonstration system's hardware (processors and
peripherals) were mapped to its counterpart, the New York TRACON
AS.04 system hardware and its interfaces, to ensure that all
functionality was provided.

The demonstration system was constructed from release AS.04,
revision H of the New York TRACON operational system. The
critical components and services provided by the ARTS IlIA system
were mapped by the architectural committee and defined as the
minimal requirements to be satisfied by the demonstration system
(See Figure 3 "Mapping of MPE Services to MVS!RTX" on page 20).
This approach ensured that the recoded system was functionally
equivalent to the current operational system. It also made the
application work much simpler by helping to identify
interrelationships and interfaces, and this relieved the
developers from real-time and MVS!RTX considerations and allowed
them to concentrate on their specific application areas. From
the architectural committee's baselines and analysis, the minimal
acceptable goals, objectives, and standards, and the operating
system's behavioral criterion were defined. They include:

o Automatic scheduling and dispatching of tasks

o A system architecture that was processor-independent and
would accommodate the addition of new software components.

o An architecture that would accommodate a distributed
hardware implementation.

12

o Replacing the encoded lattices with static tables. The
encoded lattices defined rules for concurrent and sequential
execution of ARTS applications among the various members of
the lOP system. The static tables define the number of
tasks, the priority assigned to each application task and
the resources required for each. Lattices, which are
inherent in a multi-processing architecture, are not
required in a uniprocesning environment.

o Eliminating the need or constraints of maximizing resources,
because tasks wait for work and execute without these
constraints in the demonstration system.

o Use of a commercial general purpose operating system (MVS) ,
instead of special purpose, machine and dependent monitors
(MPE, NAS Monitor).

o Providing alternate layers of task, storage, timing and
recovery controls.

o Reducing the operating system overhead through the use of
the Real-time Executive (RTX).

o Shielding the application software from the operating system
control program services by a layer of application services.
The application services initialize and terminate the tasks,
supply timer services to the tasks, monitor the execution
time of each task, and handle all inter-task communication.

o Isolating the algorithms from applications.

o Maximizing the source code traceability.

o Ensuring task ownership of necessary data.

o Assisting task communication through the use of well-defined
messages (similar to processors in a network).

o Localizing the I/O requests (interface with the input CDR
file, output CDR file and the display hardware.)

o Aiding the precise definition of global data.

o Helping tasks provide internal queueing to ensure
consistency.

o Localizing application requests for service in programs
(called gateways) which interface with RTX to send and
receive work, time or schedule events, and acquire resources
(global data) outside its boundaries.

13

The demonstration system architecture was developed within the
following boundaries and limitations:

1) Recoding was limited to a subset of the functions of the
N.Y. TRACON A5.04 system. This subset included the basic
tracking functions, front end (PSRAP), and man-machine
interface processing.

2) The demonstration system does not support error recovery.

3) The demonstration system does not process bulk flight data.

4) The demonstration system does not provide the capability to
interrupt or allow operator input during system operation.

5) The demonstration system maintains the identical overall
data flow.

6) The demonstration system maintains the algorithmic
processing of the system work.

7) The demonstration system will provide no interface with
ARTCCSi it only accepts interfacility data from a CDR tape.

8) The demonstration system provides interfaces only with disk
files and a single situation display.

9) The demonstration system processes simulated input from DEDS
keyboards, magnetic tapes, and from interfacility interfaces
through the Retrack CDR records written to a file resident
on a 3380 Direct Access Storage Device (DASD).

3.1 Requirements Analysis

Requirements Analysis consisted of the following sub-phases:

a. Understanding the task to be performed.

The following steps were taken in this effort:

(1) A high level understanding of the application to be
re-engineered was gained. This included an under
standing of the application (air traffic control), the
operating environment and tools, the hardware environ
ment, and the real world interfaces (inputs and outputs
to the application).

(2) Identifying and interpreting the contract requirements.
The SOW and FAA directions were used as requirements.

14

The following requirements were found in the SOW :

(a) Software generated by the conversion effort must
be functionally equivalent and directly traceable
to the NY TRACON system.

(b) A HOL must be used as the target language.

(c) A PDL (Process Design Language) must be used to
record the design.

(d) The CDR Editor shall have the same functional
capabilities as the NY TRACON CDR Editor for
version A5.04 and produce hardcopy identical in
content and format.

(e) RETRACK must control the timing of the sensor
inputs.

(f) Priorities for software translation were assigned.

(g) Use of existing off the shelf software components
should be maximized.

Additional assumptions based on the SOW were:

(a) Commercially available hardware would be used.

(b) A Commercial Off-The-Shelf (COTS) operating system
would be used.

(c) Modern software engineering principles would be
adhered to.

(3) Understanding the system (hardware or software)
architectural differences.

This was accomplished by:

(a) Analyzing the MPE services and how they could be
supplied by MVS/RTX.

(b) Architecturing the system to use multi-programming
on a uniprocessor to emulate the multi-processing
environment of the existing system.

b. Developing an architecture for the re-engineered system. A
summary of the steps taken can be found below and details
can be found in section 3.1.1 of this document.

15

(1) High-level blocks were defined to represent the
functional components of the re-engineered system
(PSRAP, KEYBOARD, etc.)

(2) The functional components and their dependencies on
other components were analyzed to determine the work
flow through the system.

(3) The architecture was formally recorded and reviewed.

c. The requirements for data use and access were analyzed. A
summary of the steps taken can be found below and details
can be found in section 3.1.2.

(1) The subset of data necessary for the recoded system was
determined.

(2) The applications that used each particular piece of
data were identified.

(3) Ownership of the data was assigned to a specific
application.

d. The NAS-MDs, the coding specifications and the source
listings from the NY TRACON system were analyzed to
determine the sub-functions that would be implemented to
meet the SOW. For details on this process, refer to 3.1.2
of this document.

e. Work products were created and reviewed; after they were
determined to be acceptable, they were used as input to the
design phase.

The work products that were delivered to the FAA in the
Requirements Analysis document are:

(1) a formally recorded architecture,

(2) the functions to be recoded (by NAS-MD)

(3) and a data element dictionary.

3.1.1 Architectural Analysis

During the requirements analysis step, the architecture for the
recoded system was derived and formally recorded. The
architecture was recorded in two parts: (1) the rationale for
selecting the architecture and (2) the definitions and rules of
expected behavior of the operational software.

The architectural considerations included the system architecture
and the software architecture. The system architecture includes

16

the functionality of the current New York TRACON A5.04 system
hardware configuration, the mapping of software to hardware, and
the flow of control and data through the system. The software
architecture consists of a description of the operating
environment, its development and operational (real-time)
subsystems, mapping of the system application tasks and system
operations tasks to the software, units of software, functions,
data bases, allocations, int9rfaces, synchronization and resource
use.

The primary architectural requirement was that the demonstration
system algorithms perform functionally the same as the A5.04
TRACON system but execute on a uniprocessor under a COTS
operating system.

In a TRACON operational system, target reports are received from
the external world, processed by the applications and the results
are presented to the users of the system. This flow of data
suggests a "pipeline" through the system and is reflected in the
architecture.

Figure 1 depicts the architecture that was defined. It is an
implementation independent architecture that could be implemented
in a uniprocessor or multi-processor environment.

Since the target operating system was MVS/RTX, the services
supplied by the MPE were reviewed and mapped to services that
were available in MVS/ RTX. The mapping is illustrated in
Figures 2 and 3.

As the architecture evolves, a need was identified for a set of
software to support the architecture and its implementation on
specific hardware and to supply operating system services to the
applications. The following applications were defined:

a. initialization and termination

b. the message passing

c. timer services

d. and input and output services (DEDs).

The package concept was used to record the architecture and to
satisfy the requirements for data ownership and encapsulation.

During the requirements analysis step, the application packages
were defined and the flow of work through the system was
characterized. Work flow diagrams were developed and analyzed.
The behavior and rules for each category of tasks were defined
and recorded. Functions were restructured to run under the
Multiple Virtual Storage (MVS) operating system to accomplish the

17

o

CD C

E Co
X t R,~

Ct.
'On

~

In
t.
"/

~<:

'I.

\,

A
I

CD u C 0
;Jd~omm

o t, 0"

~~ ~•

c

__ -l
CD !I CDCD

P

T~
Ps

rg
RA

et~

?

(2)

0 ~ 0
p

Tr
~=-.c.

'ng

-------.
M I

I
1
I
I
I
I
I
1
I
I
I
I
I
I

M

r-:----
I
I
I
I
I
I
I L...-__....l

I
I
I
I

I
I
IL.. _

+

o
~--

0;
'~
l~

• • •

""'\

I S.ouena ot \
I ,,;c:x O.SCI;V 1

SClea t;c:atl~n, 6v I
\ ~t.90ry: ..06_. I
\. J

OEOS
Aa:eu

Legend:

C - Control
D - Data
I - Interactive
M- Monitor
o - Offline
P - Pipe line

1-10 - Interface Requirements

Figure 1. N.Y. TRACOij Demonstration Operational Software Architecture

18

SUMMARY OF lOP MPE SERVICES (ESRs)

Service Name

1. EXIT
2. CHAIN/BUFFER

3. REQUEST
PERIPHERAL
ASSIGNMENT

4. INTERCEPT
INTERRUPT

5. TERMINATE I/O
6. ENABLE/DISABLE

CHANNEL
7. REQUEST ALTERNATE

CHANNEL
8. REQUEST ALTERNATE

PERIPHERAL
9. SEL. LATTICE IDX.

10. REQ. POPUP IDX.
11. SCHEDULE POPUP
12. SCHEDULE PERIODIC

POPUP
13. CYCLE CONTROL
14. INSERT LATTICE
15. ABORT LATTICE
16. INITIATE OTHER
17. DEBUG SNAPSHOT

D~P

18. DECL. CRIT. DATA
19. RCD. CRIT. DATA
20. LOAD CRIT. DATA
21. DISC
22. IMT
23. MSP

24. TTY
25. SCATTER INTERRUPT
26. ON-CALL LOAD
27. BACK-UP PGM LOAD
28. CAPTURE CMC

INTERRUPT
29. REQUEST ALTERNATE

CMC PERIPHERAL
30. CMC I/O
31. SWITCH TTY

Description of Service

1. Exit from a task
2. Perform I/O to peripherals

that do not have separate handlers
3. Request channel and lOP number for

specified peripheral

4. Request device interupts be routed
to application

5. Stop 1-0 for specified peripheral
6. Enable or disable channel interrupts

7. Switch channel for peripheral

8. Switch between primary and backup
peripheral

9. Alter starting point of next lattice
10. Find task index of popup task
11. Dynamically schedule/deschedule popup
12. Dynamically schedule/deschedule

popup task
13. Modify cycle advance time
14. Insert new lattice as next lattice
15. Stop current lattice and start next one
16. Allow execution of next lattice
17. Dump debug data on TTY or printer

18. Define data to be recorded
19. Record all critical data
20. Load all critical data
21. Schedule DISC popup task
22. Schedule tape popup task
23. Add message to printer queue, schedule

printer popup task
24. Add message to TTY
25. Perform global interrupt
26. Load and start an on-call program (disk)
27. Spec'y program load under degraded conf.
28. Establish user interrupt handling on CMC

29. Switch between CMC subchannels

30. Initiate I/O on specific ESI channel
31. Switch messages between TTY and printer

Figure 2. MPE SERVICES

19

MAPPING OF lOP MPE SERVICES (ESRS)
TO MVS and RTX

PART 1

MVS/RTX FUNCTION MVS/RTX*
SERVICE

ESR
#

REPLACED MPE ESR

* Services beginning with 'G' are MVS/RTX Macros.
Other entries are MVS standard system services.

WORK MANAGEMENT

Task Creation, Control and
Scheduling

DEVICE ACCESS METHODS

GQRETUR
GQWORK
GQWORK
GQWORK
GQWORK
GKWORK
GQWORK
GQWORK
GQWORK

1
9
10
11
12
13
14
15
16

Exit ESR
Select Lattice Index
Request Popup Index
Schedule Popup
Schedule Periodic Pop.
Cycle Control
Insert Lattice
Abort Lattice
Initiate Other

3274 Communications
Controllers I/O

3480 Tape Access Method

Online Print Interface
Data Management Service

SERVICE LEVEL I/O

VTAM 24 TTY ESR
VTAM 28 Capture CMC Interrupt
VTAM 29 Request Alternate CMC

Peripheral
VTAM 30 CMC I/O
READ/ 22 IMT ESR
WRITE
GKSPRINT 23 MSP ESR
GKREAD 21 DISC ESR
GKWRITE 21 DISC ERR

lOS
lOS

lOS
lOS
lOS
lOS

lOS

lOS

2
3

4
5
6
7

8

31

Chain/Buffer Request
Request Peripheral
Assignment
Intercept Interrupt
Terminate I/O
Enable/Disable Channel
Request Alternate
Channel
Request Alternate
Peripheral
Switch TTY ESR

Figure 3. Mapping MPE SERVICES to MVS/RTX

20

equivalent task organization and timing that was accomplished by
the lattice architecture in the current multi-processing
environment with the Multi-processor Executive (MPE).

The project's team used Pascal/VS HOL for most of the
trans la tion. IBM Assembler H was used to construct interfaces
between RTX system services and the applications. Specific
examples of this include:

o Applica tion bridges to create and preserve state data
vectors and to monitor task elapsed time.

o Services to obtain system time of day.

o SEND/RECEIVE interface to RTX to provide application tasks
the ability to enqueue and dequeue work among other
application tasks.

3.1.2 Requirements Analysis of the TRACON NAS-MDs

During the requirements analysis phase, the contractor was
required to perform a comprehensive analysis of the NY TRACON
software, represented by the GFE NY TRACON software listings and
CPFSs. The portion of the requirements analysis described in
this section was the detailed analysis of the software
requirements, based on the ARTS IlIA Computer Program Functional
Specifications (CPFS) for version AS.04. This work was organized
by NAS-MD. In addi tion to the CPFS, the Statement of Work
required that the recoding (translation, text, demonstration, and
verification) be accomplished in accordance with the schedule and
priority scheme identified in Section 3.3.3, "Operational and
Support Software Component Priority" within the New York TRACON
Demonstra tion of Program Recoding: Statement of Work. The
support software was to include a CDR Reduction Program and a
driver (Retrack type). There were three priorities identified in
the statement of work. Ingeneral, priority 1 items were coded,
priority 2 items were optionally coded, and priority 3 items were
not coded. Further information is provided on exceptions to this
guideline.

Each section contains an introductory paragraph, the analysis by
NAS MD subsection, and a discussion of additional capabilities,
if there are any. If a subsection contains a functional
capability that is being converted from ULTRA to Pascal/VS, it is
identified under the heading "Recoded" with a "Yes" i if the
function is not a software function, or is being replaced by
commercial software, or is not being considered for the
demonstration, or contains administrative information only, and
so on, it is identified under the "Recoded" heading with a "No.".
In either case, the rationale is included.

21

The template shown in Figure 4 was used to record our analysis.
For the most part, the functional analysis proceeded based on
priority: Priority 1 items were all coded, Priority 2 items were
omitted, except for Display Output, and Priority 3 items were
omitted.

The following exceptions arose from this:

o Interfacility

Though interfacility was a priority 3 function, there was
need in the recoded system to provide for a buildup of
flight plan data. By processing FP (and DA messages for the
FP), AM, and ex messages from the CDR file, a flight plan
data base could be created for association with tracking
data. No additional interfacility messages were processed;
no hardware interface was implemented.

o Keyboard Input Processing

Our analysis indicated that the
was after KIP had processed.
necessary to record KIP, even
item.

extraction of keyboard data
Therefore, it was not

though it was a Priority 1

Other issues that were addressed were:

o CDR Conversion

The recoding was performed using the PASCAL language. It
does not allow reference to the assembler bit-specific
formats used in the current system. Therefore, the CDR file
had to be converted to PASCAL format by a combination of
assembler and PASCAL code (after being duplicated from
7-track tape format to the 9-track tape format). We decided
to perform the conversion offline for the following reasons:

00 The entire process does not have to be repeated on
every demonstration run

00 The operational system does not have to be concerned
with the formats in the current ARTS IlIA system

00 The Retrack input formats are identical to the CDR
Extractor output formats, allowing for the possibility
of:

000 Running the CDR Editor against the converted GFE
tapes (which we did to test the Editor and obtain
multiple copies of the GFE output)

22 -"

--
Sub-section

x.x.x.x.x.x.x

Title

yyyy yyy yyyyyyy yy

Recoded

Yes

For any part or for the entire sub-section,
enter the rationale for recoding, such as
functi0n is a priority 1 item, or enter the
rationale for not recoding: choose one of
the following or add rationales as needed:

This is a priority 1 function ... (include
a reason if we are not doing it).

This is a priority 2 function ... (include
a reason if we are not doing it).

This function is derived from the FAA
requirements and is required to maintain an
integral system.

This section is administrative and contains
no demonstrable functions.

This section provides technical content but
contains no demonstrable functions.

Refer to Section x.x.x of this document for
the rationale.

An equivalent function is being provided by
(and identify the products or capabilities we
are substituting.)

(include explanations that will clarify system
issues, such as our use of a KVDT instead of
their eDT.)

This function is not required by the FAA and
is not required to maintain an integral
system.

Figure 4. Requirements Analysis Template

23

000 Using the CDR Extractor file as input to Retrack

The requirements analysis for the CDR Conversion
program identified the messages that needed to be
converted; input and output messages not processed
by the demonstration system were not converted.

00 CDR Extraction

In the recoded system, CDR Extraction would not have
global access to the data that is extracted in the
current NY TRACON system. Therefore, the tasks that
generated the data now had to send the data to the
extraction task. The extraction task buffered the data
onto the CDR file.

00 Retrack

Retrack in the current NY TRACON system has the
capability to search the operational Central Track
Store (CTS) and other operational data that it needs.
In the recoded system, tasks, including Retrack, are
not able to access data owned by other tasks (CTS was
owned by Tracking). Therefore, handling of input
messages was different. Retrack had to become more of
a driver, sending each CDR message to the input queue
of the program that would process the message.

The following items were added to Retrack in the
demonstration system:

000 Discarding Target Report and Radar Only Target
messages until the first sector mark for that
sensor was received. Blocking of Target Report
and Radar Only Target messages for PSRAP.

This minimized the number of Sends from Retrack to
PSRAP.

000 Matching of NY TRACON generated DA messages to FP
messages sent by the ARTCC. Saving the AcrD based
on the TcrD from the CDR input file.

This enabled the demonstration system to process
only those FP messages (and subsequent AM and CX
messages) that were accepted by the NY TRACON
system.

000 Fabrication of Flight Data Entry controller
messages from Tracking Data CDR messages. This
enabled the demonstration system to build a flight
data base complementary to the interfacility data

24

base to allow for association with target reports.

00 Display

The display output processing had to support the
situation display that was used in the demonstration.

3.1.3 Data Base Analysis

As part of the requirements analysis, the project team generated
two data element dictionaries (DED): 1) an operational system
data element dictionary, and 2) a system and site adaptation
parameter data element dictionary. The data dictionaries
identified for each member in the data base, the current name,
the new Pascal name, the procedures that referenced it, and how
each were defined and used.

To accomplish this the project team utilized the FAA GFE (ULTRA
listings of the source programs) and the A5.04 CULL listings.
This effort enabled the developers to gain a concise
understanding of each element, how and where it was used,
identify dependent routines, local, and global parameters, and
understand the content and complexity of the element.

The analysis of the operational system data element dictionary
was completed during the requirements analysis phase. All the
developers reviewed their code to understand if the element was
set or used in the program. When this work was completed, the
Operational and Support Software Component Priority (Section
3.3.3 of the Statement of Work) was used as a basis to determine
whether the element was needed in the demonstration system. An
example of the operational parameter data element dictionary is
shown in Figure 5. See Appendix B-1 for a description of the
layout of the data element dictionary.

The system and site adaptation parameter data element dictionary
was developed in two separate components: elements referenced by
the system data base (e.g., SDBl, SDBIRO, SDB2, DBASEC, DBASED,
and DBASEE) located in the mapping tables shown in Figure 6; and
the other elements defined by the site adaptation procedures and
not referenced by the system data base (e.g., CSITEQ, DSITEQ,
MSITEQ, TSITEQ, SYSEQO, and TI). Figure 7 contains parameters
relevant to system and site data and program controls. A
description of the layout of the mapping tables is located in
Appendix B-2.

The system and site adaptation parameters differs from the
operational system data element dictionary by the exclusion of
the columns depicting which procedures set or define the
parameter. The elements defined in the system and site
adaptation parameter data element dictionary were mainly
constants and array definitions. The system and site parameters

25

Record' C(WAIlY DATABASE DATABASE PAGEHUH PI 51 P2 S2 P3 53 P4 54 P5 S5 P6 S6 Pl 57 P8 58 P9 59 PIO 510 TYPE VANHAME OBHAME NEWPGNUH

AQlR2T 5082

AQLR3T 5082

AQlRCT S082

AWOT S082

CRTYXTl S082

CRTYXT2 5082

08COUHTl 5082

D8COUHT2 S092

09COUHT3 SD82

OCOHT S082

OCOHT SD82

OCOHl S082

OflAGT S082

OFLAGT SOB2

CHGFLG TMP

CLDTRK TMP

OSPCLR TMP

DTCHGFLG TMP

LKDTRK TMP

TEHTRI TMP

TEHTR2 TMP

TEHTR3 TMP •

TEHTRK TMP

TRADB3 TMP

TRAJlB5 THP

TRKAL T TMP

TRKCLR TMP

TRKFAH TMP

TRKLCA TMP

o HTGCT 0 POOP 3 QLOO< 0 RC<X1P 0 RooP 0 RK I P 0

2 QLOO< 0 RCOHR 0 RKIP 0 RTooP 0 SWA8S 0 TooP

o

o
o

o
o
o
o

o
o
o

o
o
o

o

o
o
o

o
o

o
o

o
o

o

o
o

o
o

o
o

o

o
o
o
o
o
o
o

OISP

OISP

OISP

015P

015P

OISP

OISP

OISP

015P

DISP

OISP

OISP

OISP

OISP

OISP

015P

OISP

OISP

OISP

OISP

015P

OISP

015P

OISP

OISP

OISP

OISP

015P

OISP

OISP

OISP

OISP

OISP

OISP

OISP

OISP

OISP

aIt_fllter_dlsp lay_up_low_lIl1lts OISP

55_cOllnter

fdb_counter

para_tabl_dlsp

paraID_tabl_dlsp

parll_tabl_dlsp

paralll_tab2_dlsp

PUID_teb2_disP

para._tab2_dlsp

dsl1mt_trad

esJf_counter

hLu_counters

Idupbt_key_trk_lnfo

dls_count_dlsp

tkrext_lIlsc_dlsp

db_aIt_counter

chgflg_temp_trk

cldtrk_temp_trk

dspclr_temp_trk

aIt_chg_f1ag_trk

kdtrk_temp_trk

temtrl_temp

temtr2_temp_trk

temtr3_temp_trk

temtrk_temp

tradb3_temp

tradb5_temp

trkalt_tellp

trkclr_telllp

trktall_tellp_trk

trk lca_temp_trk

A

A

A

A

A

A

o

o

o

o

o
o
o

o

o
o

o C dlsp_pack_store_dlsp

o C key_two_encode_dlsp

o C key_ three_encode_dlsp

o C key_one_encode_dlsp

II A aword_tab Ie

o I xcoordJange

o I ycoordJange

o
o

o
o

o

o
o

o
o
o

o
o
o
o

KIPH 0

o
o

o

o

o

o
o

o

o

o
o

o
o

o
o
o

o

o

o

o

o

o
o
o
o
o

o
o

o
o

o
II

o
o
II

o

o
o

o
o

o

o

o

o

o

o
o
o

II

o
o

o

o
o

o
o

o
o

o

o
o

o

o

o
o
o

2 SLINK 0 TPSEC 0 TlNIT 0

o

o

o ALOOK 0 AKIP 0 TRAU

o

o

o
o

o

o

o

o

o

o
o

o

o

o

o

o

o
o
o

o
o

o
o

o

o
o

o
o

o

o

o

o

o

o

o

o

o

o

o
o
o

3 TRAU

o

o MPEO

o

o
o
o
o

o
o
o

o

o

o

o

o

o
o
o
o
o

o

o

o

o
o

o
o

o
o
o

o
o
o
o
o

o

o KIF

o

o
o
o
o
o
o

o
o
o

o
o
o
o
o
o

3 CRIT 0 OOP 0 IF! 0 If0 0 KOf

o IFO 0 KIP 0 KIPH 0 KOF 0

o

o

o

o

o
o
o
o
o
o
o
o
o

o
D

o
o
o
o

o 0

o 0

o ROBMO 0

o ROBHO 0

3 TPUR 0 KOf

o D

3 CRIT 0 IFO

o

o

o

o
o
o

o KOF 0 TRAD

3KOf

o

o
o C<X1B I POOP

o C<X1B 1 POOP

o TROUT 0 C<X1A

o

o COR 2 COHC

OTRAD

o TRAD 3

OTRAD

o COHC 3 TRAD 3

o OTRAO 0

o COHC 3 TRAD

TRAD

TRAD

KIP

TooP

5

C<X1C 3 THP 0 TRAD 3

5 TMP OTRAD 3 0

TMP 0 TRAD 3 0

6 TMP OTRAD 3 0

5 0 TRAD 3 0

5 0 TRAD 3 0

5 0 C<X1C 3 TRAD

OTRAD 3 0

o TRAD 3 0

5

6

6

37 KOF. 0 MPEP 0

C<X1C 2 TRAD

C<X1C 2 TRAD

40 TRAD 0 0 0 MPE8

KOf 0 0 MPE8 0 HTGA

AUT 2 C<X1A 2 C<X1Il 3 COMC

RlOOP 0 SWAB5 0 TOOP 3 TRAU

AUT 2 C<X1C 2 CRIT 0 OOP

• MPE8 0 HTGA 0 HTGCT 0 POOP

COMC 2 TRAD 2 0 0

39 0 C<X1C 2 TRAO 0 II

5 AUT 2 If0 0 KIP 0 RKIP II

5 AUT 2 If0 II KIP II RKIP 0

40 TRAD 3 C<X1C 3 OOP 0 MPEB 0

40 TRAD 3 C<X1C 3 OOP 0 MPEB 0

52

24

24

15

52

5082

SDB2

SOB2

5DB2

SDB2

50B2

SDB2

SOB2

SDB2

APAQ(

DFLAGT

DSlIHT

EHRFT

HJT

IOUBT

looPT

TKRCXT

UAFLT

15

16

17

18

19

20

21

22

10

11

12

13

14

23

24

25

26

21

28

29

30

31

32

33

34

35

36

37

3&

U1

t-zj
1-"

~
Ii
11l

o
'd

11l
Ii
PI
rt
1-"
o
~
PI
I-'

tt:t
PI
Ii

~
11l
rt
11l
Ii

t:J
PI
rt
PI

tJj
I-'
11la
11l
~
rt

t:J
1-"
n
rt
1-"
o
~
PI

~

tv
(J)

FILE: SITE OEO Al VM/SP CONVERSATIONAL MOHITOR SYSTEM

*••••••••••••**.*****•••*••**
• DATA ELEMENT DICTIONARY *
• OF *
• SITE &SYSTEM PARAMETERS *

PAGE 00001

COMPANY OATANAME DATABASE PAGEHUMBER Pl P2 P3 P4 P5 TYPE VARH.A1oIE OBHAME NEI1PGN"
OTC AADTQ TI 2.0-36 MSITEQ I ~EDS_PROC_SSFOB_AWORO_OISP_TIME OISP
OTC APBTQ TI I TIME_SHARE_OE.AD_TIME_ABO_PARM DISP
OTC ACNTQ TSITEQ TIN IT 1 HO_SCAH_TARGET_HITS SPARM
OTC ACPZONEQ TI 2.0-28 f" MISC_TRK_ALLOC_ACPZONE TRACK
OTC AFIRMQ TI 2.0-26 TIN IT 1 MISC_TRK_ALLOC_FIRM_AUTO_AC TRACK
OTC AIHOQ TI 2.0-4 lOAT 1 IFY_ALLOC_MILES IFY
oTC ANCRESQ MSITEQ 3.0-34 BRATS CTIP OTOO FPOU LIMO I LEHGTH_TTY_INPUT_8UFFER SPARM
oTC AHCRESQ MSITEQ 3.0-34 MSITEQ HTGA HTGCT SCDU TSO 1 SPARM
OTC AHCRESQ MSmQ 3.0-34 HTGA HTGCT SCOU TSO TI 1 SPARM
oTC ANCTK1Q TI 2.0-28 1 OH_CALL_PROG_INITIALIZE SPARM
oTC AHCTK2Q TI 2.0-28 1 ON_CALL_PROG_EXECUTE SPARM
OTC ANCTK3Q TI 2.0-28 BRATS CTIP OTOO FPOU LIMO 1 OH_CALL]ROG_TERM_ENABLJLAG SPARM
oTC ANCTK3Q TI 2.0-28 SCOU TSO 1 SPARM
OTC AHCTK4Q TI 2.0-28 BRATS OTOO FPOU LIMO SCOU 1 OH~CALL_PROG_MSG_PREFIX_AREA SPARM
oTC ANCTK4Q TI 2.0-28 TSO SPARM
OTC AHCTK5Q TI 2.0-28 CTIP 1 ON_CALL_PROG_IHPUT_TTY_MSG SPARM
OTC AHCTK6Q TI 2.0-28 oTOO FPoU LIMO MTGA MTGCT 1 OH_CALL_PROG_UNPACK_TTY_MSG SPARM
OTC ANCTK6Q TI 2.0-28 SCOU TSO 1 SPARM
oTC AHCTK7Q TI 2.0-29 SRATS CTIP FPDU lFO KIP 1 ON_CALL_PROG_PASSEO_OATA SPARM
OTC ANCTK7Q TI 2.0-29 LIMO RKIP SCDU TSO 1 SPARM
OTC AOFSTLQ MSITEQ 3.0-14 SOB2 1 AUTO_OFFSET_ENABLE SPARM
DTC ARCSTQ DSmQ lDAT A ARTCC_SOURCE_IO SPARM
OTC AREATQ TI ALTRKR AlTRKRl 1 IHIT~LT_ACCEL_REASOH TRACK
OTC AREAUQ TI AlTRKR AlTRl<Rl 1 SEC_ALT_ACCEL_REASOH TRACK
OTC ARTSIOQ OSITEQ IDAT A EBCDIC_SOURCE_IO IFY
oTC ARTSIQ OSITEQ IOAT SOB2 A HYTRACOH_SOURCE_IO SPARM
oTC ARTS1Q OSITEQ lOAT A HYT_SOURCE_IO_l SPARM
OTC ARTS2Q OSITEQ lOAT A HYT)OURCE_IO_2 SPARM
OTC ARTS3Q OSITEQ lOAT A HYT_SOURCUO_3 SPARM
oTC ARTS4Q OSITEQ lOAT A HYT_SOURCE_IO_4 SPARM
OTC ARTS5Q OSrrEQ lOAT A HYT_SOURCE_IO_5 SPARM
OTC ASQ TI 3.O-16 COMA 1 MIHS_PRE_ETA_FP_CHHG_STOR_OISPL IFY
oTC ASR7Q TSmQ 1 ASR_BEACON_SUBSYS SPARM
oTC AOR7SQ TSITEQ 1 "ASR_ASSOC_OISPLAY_NO SPARM
OTC ATRHGQ MSITEQ 3.0-39 HTGA HTGCT I AOAPTED_TRAIH_DISP_FLAG SPARM
OTC ATSQ TI 3.0-15 COMA 1 MIHS]REJIX_ARIV_OVFL_TMPTOCTS IFY
OTC AUTO SYSEQO 3.5.2-2 AUT KOFC SOB2 SYSEQl SYSEQ2 1 AUTO_OFFSET SPARM
OTC AUTTIMQ IT AUT 1 TIME_ALLOC_OELTA_AUTO_OFFSET OISP
OTC AVGOTQ OSITEQ 1 AVG_OISP_OEAO_TIME OISP
OTC AWDQ TI 2.0-21 KOFA KOFB KOFC MTGA HTGCT 1 HEM_ALLOC_8UFF_TBPRET_AB_WOROS K8D
OTC AWDQ TI 2.0-21 SOB2 K80
OTC 8CNTQ TSITEQ KOFA KOFC NO_SCAN_OISP_BEACON SPARM
OTC 8IN8IASQ TI 2.0-25 HISC_TRK_ALlOC_8IN_8IAS TRACK
OTC BlKS SYSEQO 3.5.2-2 CRIT KOFC HT? SOB2 SYSEQl 8ULK_STOREJP SPARM

Figure 6. System and Site Parameter Data Element Dictionary

27

FILE: SITE MAP Al VM/SP CONVERSATIONAL MONITOR SYSTEM PAGE 00001

**********************.*.****

* MAPPING TABLE FOR *
* DATA ELEMENT DiCTIONARY *
* AND *
* SYSTEM DATABASE *

DATANAME SECTION PAGENUM DATABASE SDB1 SDB1RO SDB2 CFGT CORD SUBS MBUF
AkQ 3.85 3.0-31 DSITEQ KBDT
AkQ 3.85 3.0-31 DSITEQ TBPRET
AkQ 3.85 3.0-31 DSITEQ SYMT
AAljQ 3.55.14 3.0-24
AADTQ 2.158 2.0-36
AAFljQ 3.55.15 3.0-24
AAZalQ 3.33 3.0-9 TSITEQ AAFXP
AAZrnlQ 3.30 3.0-8 TSITEQ OVAR2
AZZrnlQ 3.31 3.0-8 TSITEQ OVAR1
AAZLmiQ 3.31 3.0-8 TSITEQ OA20R2
AAZLmlQ 3.31 3.0-8 TSITEQ OA30R3
AAZLmiQ 3.31 3.0-8 TSITEQ OA10Rl
ABEAT 2.165 2.0-37
ABIASQ 2.26 2.0-5
ACMQ 8.3.1 8.0-9
ACNTQ 3.54.13 3.0-17
ACPZONEQ 1.126 2.0-28
ACQ 8.4.1 8.0-15
ACTYPT 2.165 2.0-39
ADljQ 3.55.14 3.0-24
ADAQ 8.2.1 8.0-1
ADBNQ 3.119 3.0-36 MSITEQ DSLIMT
ADDBP 2.41 2.0-8
AFIRMQ 2.126 2.0-26
AFIXA1Q 3.32 3.0-9 TSITEQ AFXP AAFXP
AFRMQ 2.27 2.0-5
AIFRQ 3.20 3.0-5 DSITEQ VIALT

.AIHOQ 2.17 2.0-4
ALALT 7.5.3 7.0-44
ALARMQ 7.6.2 7.0-45
ALT 2.165 2.0-38
ALTiQ 2.2 2.0-1
ALTMASKQ MSITEQ ALTMASK
ANCRESQ 2.127 2.0-29
ANCRESQ 3.109 3.0-34
ANCT1<lQ 2.127 2.0-28
ANCT1<2Q 2.127 2.0-28
ANCT1<3Q 2.127 2.0-28
ANCT1<4Q 2.127 2.0-28
ANCT1<5Q 2.127 2.0-28
ANCT1<6Q 2.127 2.0-28
ANCT1<7Q 2.127 2.0-29
AOFSTLQ 3.46 3.0-14
APAljQ 3.55.9 3.0-22a
APAL1jQ 3.55.8 3.0-22

Figure 7. Mapping Table for Site Adaptation Data
Element Dictionary and System Database

28

are used by the NY TRACON software; they are not set or changed
by the operational code.

The results of the system and site data parameter analysis was
used to determine the parameters to recode in the demonstration
system and also to understand how to organize the parameters. By
again applying the priorities defined in the statement of work,
we were able to determine the parameters that would be recoded.
For example, Conflict Alert and MSAW parameters were not recoded,
because they related to functions we were not recoding. NY
TRACON display unique variables were not recoded because we were
using a different situation display. Variables that would map a
region of airspace to a display were retained to enable the
demonstration system to present tracking data for that airspace
on the demonstration system situation display.

A discussion of the organization of the system and site
parameters for the demonstration system is discussed in the
design section.

3.2 Design

The inputs to the sequential design
requirements analysis phase;
(concurrent design), the functional
data element dictionary.

phase were the outputs of the
that is the architecture
requirements document and the

The sequential software design was completed and baselined in
increments. The increments were

o The Level-l (or top level) sequential design

o The Level-2 sequential design.

The software was modeled as functions and/or state machines and
refined and constructed algebraically, through the successive
replacement of rules and predicates with more concrete and
equivalent rules and predicates.

Each package was represented as a state machine prior to
recording the design on PDL/Ada. This is illustrated in Figure 8.

The design was recorded as PDL/Ada packages and included the
specification of Level-l packages, their decomposition into
Level-2 packages, and the elaboration of the Level-2 packages.

An Ada package comprises a specification, a body and procedures.
The specification part defines the behavior -- as a set of
operations acting on and encapsulating a set of objects -- of the
package at its boundary: users of the package know only that
information needed to interface with the package. The body of
the package defines the packages internal behavior, and is

29

STATE DATA:

1.

2.
3.
4.

5.

6.
7.
8.

o 9.

L10.

w
o

I-.j.....
I.Q
~
Ii
CD

00.
(J)

n
III
n
CD

~
o
::r.....
~
CD

o.....
III

I.Q
Ii
IIIa

INPUTS:

1.

2.

3.
4.

5.
6.

7.
8.
9 .

10.

1- -- -·-------··-----l---===-==----==---=---1 I
OPERATIONS: I -J--.-

- I OUTPUTS
1. I

1.2. 2.

3. 3.

4.4. 5.

5. J. 6.

- i 7 .

I 8.
I 9.

I 10.
I

I
I
I
!
I

I

typically a refinement of the specification; the procedures
elaborate the operations.

For each online Level-l Ada package, the template shown in Figure
9, when completed, represents a dispatchable task. To separate
the issues of concurrent design from those of sequential design,
the online Level-l packages used a gateway package to record the
interface with the appli<.;ations services. The gateway was
specified in a package associated with, but separate from, the
Level-l package for which it is providing the services.

The scope of the Level-l design was the specification, in Ada, of
each abstract data type, at a level that could be verified to be
complete and correct by the entire design team. The template
used to generate the Ada Level-l design is shown in Figure 10.
The scope of the Level-2 design was the decomposition of the
Level-l Ada packages into Level-2 packages and their elaboration.
The template used to generate the Ada Level-2 design is shown in
Figure 11.

The paragraphs below define the detailed rules that were followed
in using PDL/Ada in each of the two levels of design.

For online packages, the Level-1 sequential design was recorded
in an Ada package that was constrained to the Ada specification
part only (type definitions, state data and initialization, and
operations, called procedures in Ada). Data type packages (see
below) were used to define data types. Gateway packages were
used to represent the Level-1 package concurrent design, if the
Level-1 package was online. For offline packages, such as CDR
Editor, there was no gateway package, and the designer had the
option of defining data types in a separate package.

3.2.1 Common Data Types

Several PDL/Ada packages were defined to centralize data types:

o TDGLOBAL - containing type definitions that are required by
more than two Level-1 packages. An example would be a type
that enumerated the names of all the tasks on the system.

o TDCDRMSG - containing type definitions for all messages that
are used for CDR format information

o TDSENDS - containing type definitions for records that are
passed between the system initialization and termination
module and the other operational tasks.

o TCyyxx$$ - (where yy and xx represent the Level-l package
identifiers of the sending and receiving packages)
containing the types for messages that are passed between
tasks by SEND and are not included in TDSENDS or TDCDRMSG.

31

-- TMXX$$$$

This member defines the Level-l sequential design package
for XXXX. Associated Level-l packages are TDXX$$$$
the Level-l state data type package, and TGXX$$$$ the
gateway package at Level-l design.

SPECIFICATION
-- TMxx$$$$

--<functional commentary for package.>
package XXXX is

--Definition Section

with xxxx STATE; use xxxx STATE; --state data types for xxxx
--note: xxxx_STATE is in member TDxx$$$$

--Intended State Machine Section:
-- State Data:

DATAl state type 1; --commentary

DATAN state type ni --commentary

-- State Initialization
DATAl := value or state;

DATAN := value or state;

-- TRANSITION FUNCTIONS:

--commentary

--commentary

-- TMxx$$Ol
--<one entry for each visible procedure>-----
--<function of complete procedure.>

'procedure PROCI (Xl: DATATYPEl)i

logic function step
SEND (parrn list) description of send
logic function step

end PROCli

end XXXXi

Figure 9. TEMPLATE for Level-l Sequential Design

32

-- TDXX$$$$

This member defines the Level-l state data types for XXXX.
Associated Level-l packages are TMXX$$$$ - the Level-l
sequential design package, and TGXX$$$$ the gateway
package at Level-l design.

STATE DATA TYPE SPECIFICATION

--<function commentary.>

package xxxx_STATE is
--Definition Section:

with yyyy_TO_xxxx;
use yyyy_TO_xxxx;

type BUILDTYPEI is

type BUILDTYPEN is

.. ,

..,

use the interface package defined for
xxxx and yyyy (TCYYXX$$) if required

--commentary

--commentary

CONSTANTl

CONSTANTN

constant type := valuel;

constant type := valuen;

--commentary

--commentary

type STATE TYPE 1 is
type STATE TYPE 2 is

type STATE TYPE N is

end xxxx_STATEi

.· ,
• •••• I

.
• • • • • I

--commentary
--commentary

--commentary

Figure 10. TEMPLATE for Level-1 State Data Package

33

-- TMXXYY$$

This member defines the Level-2 sequential design package
for XXXX_YYYY. Associated Level-2 package is TDXXYY$$.

SPECIFICATION

-- TMxxyy$$
--<functional commentary for package.>

. package XXXX_YYYY is

--Definition Section

with xxxx-yy¥y_STATE; use xxxx-yyyy_STATE; --state data types
--note: in member TDxxyy$$

--Intended State Machine Section:

-- State Data:
DATAl state type 1; --commentary

DATAN state type n; --commentary

-- State Initialization
DATAl := value or state;

DATAN := value or state;

-- TRANSITION FUNCTIONS:

--commentary

--commentary

The procedures here are the visible procedures only. The TMxxyyzz
procedures encompass all the procedures, including the hidden ones.

TMxxyyOl
--<function of complete procedure.>
procedure PROel (Xl: DATATYPE1);

function statement that summarizes the processing of
this procedure; e.g., A =: MAX(B,C) describes the
determining of the greater value -- from Band C -
and assigning it A

end PROel;

end xxxx-yy¥y;

Figure 11. TEMPLATE for Level-2 Sequential Design

34

•

o TDOOOOOO - a collection point for other data type packages,
used as an index, but not referred to by other packages.

3.2.2 Gateway Packages

With the exception of Application Services, ~ach online Level-l
Ada package, in implementa-tion, represents a dispatchable task.
The portion of the package that interfaces with applications
services to receive work and establish the environment for the
application is defined as a gateway.

The gateway was specified in a package associated with, but
separate from, the Level-l sequential design specification for
which it provides the services.

The gateway maps the valid commands to the procedures defined in
the Level-l specification. Responses to a conversational send do
not appear in the gateway.

3.2.3 Using the POL/Ada Body to Map Level-l to Level-2

At the conclusion of the Level-l design, designers completed the
body portion of the Ada package. The body was used to identify
the mapping of Level-l packages to Level-2.

3.2.4 Level-2 Design in POL/Ada

At least one Level-2 package was defined for each Level-l
package.

The decomposition from Level-l packages to Level-2 was dictated
by the decomposition of the state data space; the decomposition
was object- oriented.

If a Level-l sequential design package decomposed one-to-one to
Level-2 (because its state data space was sufficiently small),
the designer created a Level-2 sequential design specification,
and copied the Level-l sequential design specification as the
foundation for further elaboration. Offline support programs
decomposed one-to-one.

When the relationship from Level-l to Level-2 was one-to-many,
the designer created a Level-2 sequential design package for each
decomposed object in the Level-l state data space.

The mapping of Level-l objects and/or oper~tions to Level-2
packages was recorded in the Level-l body.

The operations defined in the Level-2 sequential design
specification were elaborated in the procedures part of the Ada
package.

35

Each procedure defined, at a m~n~mum, the inputs and outputs, and
function rules describing the expected behavior of the procedure.
The internal (procedure) variables were defined if used in the
function rules; if a function rule refers to identifier "a", "a"
was declared. Types required only within a procedure were
specified within the procedure.

The body of Level-2 procedure packages, the template which is
shown in Figure 12, listed the entire set of procedures including
the visible operations and the hidden procedures (housed entirely
within the Level-2 package).

3.2.5 Data Base Design

As part of the refinement of the software architecture and the
two levels of sequential design, and prior to implementation, the
strategy for partitioning and initializing the overall software
data base and for building the operational and support subsystems
was defined.

The requirements analysis section described the creation of two
data element dictionaries, one for operational system data
elements and the other for system and site parameter data
elements. The analysis also included analysis to determine if
the data element was applicable to the demonstration system.

In the design phase, the data base effort determined how to
represent the data elements in the demonstration system so that
the recoded software could access the data.

For the most part, the operational system data elements were
recoded to resid~ in the same structure as in the NY TRACON
system. These data elements were in the Central Track Store
(CTS), Target Report Store (TRS), Radar Only Target (ROT) Table
and the Beacon Only Target (BOT) Table.

The system and site parameters presented a challenge in
definition, organization, and setting. The system and site DED
referred to each parameter by the name given it in the CPFS,
which is the name given to each individual data item. If a data
item had 150 values, it was defined using 150 unique names. We
needed to develop a scheme for defining the data items without a
proliferation of names that were unique to NY TRACON. In
addition, these data items were assembled into data elements in
the operational parameter DED using macros in specially coded
data base members. We needed to develop a more generic way of
defining the data for the operational system. Finally, some data
items were assembled without consideration for related types of
items. If there were a number of items, say 10, that described
keyboard information, there might be 10 arrays of data, with each
element of the array describing the value for one keyboard. We

36

PROCEDURE

-- TMxxyyzz

procedure PROCEDURE LONG NAME
(PARAMETER_l
PARAMETER 2
PARAMETER-3

: in
in
out

PARM 1 TYPE;
PARM-2-TYPE;
PARM=3=TYPE) ;

State the intended function
used in the procedure statement
of the specification (e.g., A := MAX(B,C))

Used by: PROCEDURE_LONG_NAME TMxxyyzz
PROCEDURE LONG NAME TMxxyyzz

LOCAL 1 TYPE = INTEGER;
L~CAL-2-TYPE = BOOLEAN;
LOCAL-3-TYPE = INTEGER;

is

Uses PROCEDURE LONG NAME- -PROCEDURE LONG NAME

type local data

TMxxyyzz
TMxxyyzz

LOCAL DATA 1
LOCAL-DATA-2

LOCAL 1 TYPE;
LOCAL=2=TYPE;

declare local data

begin
-- intended function

if
A = B

then
C := D;

else
C : = E;

end_if;
-- intended function

while
A = C

loop
A := A + 1;
B := B-1;

end_loop;

Figure 12. TEMPLATE for Level-2 Procedures

37

needed to group data that described different aspects of one
object together, for ease of reference.

To address the type items described above, we implemented the
following:

o All items that described an entity, say a keyboard or
display, were all grouped together in one entry of an array.

o A name was given to each item that it could be referenced by
the operational code. The name uniqueness from the current
NY TRACON system was removed.

o As each set of data items was defined, it was initialized by
defining the constants in the data item. The data was
preset using Pascal/VS structured constants.

Top level software design was completed prior to the start of
detailed low level design. To ensure that the nine-month schedule
was met, the low level design period overlapped the development
of build 1 modules, although all low level designs were completed
prior to the start of build 1 software integration and testing.
All PDL modules were inspected and documented at each level.

This design approach, including the use of PDL/Ada, encouraged
more organized structure and greater modularity, aided
identification of dependencies, state and local data, and
streamlined access to tasks and procedures. It also facilitates
software development in any HOL, and on any contemporary
operating system and computer.

3.3 Code and Development Test

The New York TRACON demonstration system was implemented by
converting the Level-2 PDL/Ada to Pascal/VS.

The implementation life cycle activities and products were

a. Source code generation

b. Generating unit/string test plans

c. Inspecting the source code and test plans and reporting the
results

d. Conducting unit tests

e. Conducting string tests

f. Creating builds

38

g. Conducting build tests from a structural point of view (in
preparation for formal software integration and testing)

h. Controlling the configuration of the software at each node

i. Fixing errors and retesting the software at each node.

The New York TRACON demonstration software was built
incrementally. The sequential design unfolds from Level-l
packages, through Level-2 packages, and procedures. The
implementation starts with units (procedures may comprise one or
more units), and proceeds through strings and builds. There were
multiple builds and each build was tested while the successive
build was implemented.

The following subsections describe the procedures for defining,
documenting, packaging, inspecting and testing software units,
and configuring them (and testing the configurations), until a
completed software build resulted.

SOURCE CODE GENERATION

The composition of Level-2 packages (into a single Level-l
package) represent a Pascal/VS load module; and the unit of
execution in Pascali VS is a load module with a single entry and
exit.

Figure l3A and l3B illustrates the process of converting a
POL/Ada design unit to a Pascal/VS procedure.

The New York TRACON software was coded in Pascal/VS and, where
necessary, in S/370 assembly language.

The official reference guide for Pascal/VS is the "Program
Offering, Pascal/VS Language Reference Manual, Program Number
5796-PNQ."

A single member, named for each Level-l package (TMxx$$$$), in
the appropriate build 1 development string library, e.g.,
TR050l.DDISPLAY. PASCAL, contain a list of the compilation (and
assembly) units that compose that Level-l package.

Each compilation unit was identified by a descriptive name (e.g.,
ITERM); the descriptive name was identical to a PDL name, if
there is a PDL counterpart. If a compilation unit can be traced
to an ULTRA name (representing a program or data that performs
the same function), the ULTRA name was used.

The name of a compilation unit, a Pascal/VS main program, a
Pascal/VS segment, or an Assembly Language source module, is
identical to the name of the library member in which it resides.

39

PDL/Ada

Package TMxx$$$$ is
--definitions

with TDGLOBAL;
with TDSEND;
with TDxx$$$$;

with TM$STATE;
--TM$STATE contains the
--STATE DATA package

I Pascal/VS

program TMxx$$$$;

%include TDGLOBAL;
%include TDSEND;
%include TDxx$$$$;
(* TDxx$$$$ is a member in either

TR050l.Dyyyyyy.MACLIB or
TR050l.DCOMMON.MACLIB and
contains the constant and
type declarations *)

--STATE
type

STATE DATA
fieldl
field2

is record
atype;
btype;

type
STATE DATA

fieldl
field2 :

= record
atype;
btype;

var
TASK
SIZE
INPUT

end record

var
TASK_STATE : STATE_DATA ;

INPUT : COMMUNICATION_PACK;

end; (* record STATE_DATA *)

STATE PTR = -> STATE_DATA;

STATE : STATE_PTR;
: INTEGER ;

: -> COMMUNICATION_PACK;

%include TMSTATE ;
%include TMOl$$$$;{SEND/RECEIVE}
%include TMyy$$$$;
%include TMzz$$$$;
{TMyy$$$$ and TMzz$$$$ are member
in either TR050l.Dyyyyyy.MACLIB
or TR050l.DCOMMON.MACLIB and
contain external procedure
declarations}

Figure l3A Converting PDL/Ada to Pascal/VS

40

PDL/Ada

procedure Main

RECEIVE ;
case INPUT.CMD is

when X => call A;
when Y => call B;

end case;
end TMxx$$$$;

Pascal/VS

begin { Main Program }
TASK STATE := GetState ;
if TASK STATE = nil
then

begin
SIZE := SIZEOF(TASK_STATE)
GetNewState (TASK_STATE ,SIZ
(* initialize TASK_STATE *
end ;

RECEIVE(INPUT) ;
case INPUT->.CMD of

X A;
Y : B;

end; { case}
end; {Main program TMxx$$$$}

Figure 13B Converting PDL/Ada to Pascal/VS

41

Under each compilation unit name are listed the visible
procedures and functions; the prologue of each compilation unit
contains a list of all units composing the compilation unit.

Program preambles define the functional, structural and
performance attributes and summarize the internal behavior of
each unit, such that future maintainers of the source have no
difficulty understanding its contents, nor its relationship to
the other system software.

Developmental history and problem resolution information is not
included with the source code; it is produced automatically by
the automated program trouble report system and the accounting
system.

The rules for packaging of Pascal!VS units and Assembly units
are slightly different and will be discussed separately. The
following definitions are common to both.

o Entry point - a location in a module to which control
can be passed from another module or from the control
program.

o Execution unit - object code that can be executed on a
computer. (A load module.)

o Link edit - process of combining separately compiled
object modules into an executable load module. The
output of a link edit is a load module; sYmbolic cross
references among object modules are resolved during
link edit.

o Load Module object code in a format suitable for
execution; the output of a link edit.

o Loader - combines the basic functions of a linkage
editor with the execution of a program. Used during
testing of a load module.

o Object module - the output of a compiler or an
assembler. (In our application, the Pascal!VS compiler
and Assembler H.) Object modules are input to the
linkage editor or loader.

o Program entry point - address in the load module to be
given control by the control program whenever the load
module is executed.

The templates were used for defining PASCAL!VS and assembly
language units. Figures 14A and 14B contains the Pascal
procedure or function template used in code development.

42

(Short summary of function)

(DESCRIPTION OF INPUT PARAMETER N)

oparm1
oparm2

IPARMN

IPARM1
IPARM2

Output
Parameter

Input
Parameter

--- }
PROCEDURE or FUNCTION }

--- }
Procedure or Function Name : aaaaaa }
--}
Descriptive Name: aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa }
--------------------------_._--------------------------------------}
Function: }

}
}
}

--}
Date Of Implementation: mm/dd/yy }
--}
Input: } .
Calling Sequence Input: }

}
}

Desc. Of Input Parameter and Variable Name}
--}
(DESCRIPTION OF INPUT PARAMETER 1) }
(DESCRIPTION OF INPUT PARAMETER 2) }

}
}
}
}

Note: If a parameter is both input and output, describe in both}
---}
Output: }
Calling Sequence Output: }

}
}

Desc. Of Input Parameter and Variable Name}
--}
(Description of output parameter 1) }
(Description of output parameter 2) }

}
}

oparmn (Description of output parameter n) }
--- }
Output Messages (SENDs): (If none, indicate "none") }
--- }
Assumptions/Unresolved issues: (If none, indicate "none") }
--- }
Calling Modules: (Include a list of procedures that call) }
--- }
Called Modules (Internal): (Include a list of procedures that }

this program calls that are internal }
to this procedure) }

--}

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

Figure 14A Procedure or Function Template used in Code Development

43

{ Called Modules (External): (Include a list of subprocedures that}
{ this procedure calls that are· }
{ external to this procedure) }
{ --}
{ Date Of Last Modification: mrn/dd/yy }
{ --}
{ *** }

%page

procedure PROCEDURE LONG NAME
(PARAMETER_l

PARAMETER 2
PARAMETER-3

PARM 1 TYPE;
PARM-2-TYPE;
PARM=3-TYPE) ;

OR - OR - OR - OR - OR - OR - OR

Used by: PROCEDURE LONG NAME
PROCEDURE_LONG_NAME

function FUNCTION LONG NAME
(PARAMETER_l

PARAMETER 2
PARAMETER-3
return_type

{
{
{
{
{
{

Uses

type

PROCEDURE LONG NAME- -PROCEDURE LONG NAME

PARM 1 TYPE;
PARM-2-TYPE;
PARM=3=TYPE)

}
}
}
}
}
}

-- type local data
LOCAL 1 TYPE = INTEGER;
LOCAL 2 TYPE BOOLEAN;

var
LOCAL DATA 1
LOCAL-DATA-2

begin

end ;

LOCAL 1 TYPE;
LOCAL=2=TYPE;

declare local data

{ begin procedure aaaaaaaa }

{ end procedure aaaaaaaaaa }

Figure 14B Procedure or Function Template used in Code Development

44

GENERATING UNIT/STRING TEST PLANS

Unit and string test plans were written and inspected with the
source code. A test plan template was used.

INSPECTING SOURCE CODE and TEST PLANS and REPORTING RESULTS

All software units were formally inspected. Figure 15A and 15B
represents the template for the FAA TRACON Quality Analysis
Report.

a. The entry criteria to each inspection are

Completed design, code (compiled) or test cases
without syntax errors;

Make available at the inspection the preceeding
level of specification: the specification tree is

Development

- Requirements analysis
- Level-l Ada packages
- Level-2 Ada packages
- Source code

Testing

- String tests
- Unit test planning
- Unit test cases

The timing for inspecting test plans and test
cases may vary, but the test exhibits must be
inspected prior to the running of the tests.

The size of the material must be small enough to
complete the inspection in 3 hours.

The moderator, author, presenter and inspectors
must have inspected all material prior to the
meeting and should report as many errors as
possible to the author prior to the meeting.

If any of the above criteria are breached, the
moderator may postpone the meeting.

b. To exit an inspection the inspected material must have
satisfied the inspectors that the design, code or test
performs the function specified by the previous level
specification, with a minimum of rework. The moderator
is responsible for determining whether the material
must be re-inspected.

45

A. TYPE OF REPORT

Type (TLD,LLD,CD,TC) ==> CD

TLD: top-level design inspection
LLD: Low-level design inspection
CD: Code inspection
TC: Test case inspection

B. ADMINISTRATIVE DATA

Date of Inspection
Time
Location
CPCI/cpc
Build Number
Modules or Test Case No.s

==> October 31, 1986
==> 9 AM
==> 865 2D-26
==> 03
==> 01
==> TM01$$$$, TM02$$$$, TM03$$$$
==> ITERM, SEND, RECEIVE modules

~---

C. INSPECTION INVITATION AND PREPARATION

Inspection Attendees

. Re-inspection?
Labor-hours to
Labor-hours to
Labor-hours to
Clock-hours of

(Yes/No)
prepare
inspect
rework
meeting

==> Moderator:
==> Author
==> Presenter:
==> Inspector:
==> Other
==> Other
==> Other
==> No
==> 14
==> 12
==> a
==> 3

Figure 15A FAA TRACON SOFTWARE QUALITY ANALYSIS REPORT

46

D. METRICS (NOT USED FOR TEST CASE INSPECTIONS)

Design: lines of POL
lines of comment
total lines

==> 100
==> 20
==> 120

Estimated SLOCs ==> 500

Code:
Only

lines
lines
lines
lines
total

of prologue
of instruc.
of data
of comments
lines

=-=>
==>
==>
==>
==>

E. ERROR REPORT

Categories of Errors

Standards violations ==>
Inadequate requirements ==>
Interface error ==>
Type specification error ==>
Incorrect logic ==>
Incorrect data declaration==>

(Test cases only)
Inadequate test plan ==>
Inadequate test coverage ==>

Major errors Minor errors

Re-inspection required ==> No

Moderator Date

Figure lsB FAA TRACON Quality Analysis Report

47

c. Major errors are errors in:

- standardized names and identifiers
- intended function statements
- type specifications (arguments, data or functions)
- control structures
- data declarations
- test case procedures and test data

d. Minor errors are errors in

- form (alignment, readability, etc.)
- commentary

CONDUCTING UNIT TEST

The entry and exit criteria for this node (Unit exit -- String
entry) are:

o No compilation errors

o Inspections complete

o Unit testing complete

Test drivers were used that incorporated certain debugging
routines, such as dump a CTS track file, print a boolean value.

CONDUCTING STRING TESTS

The entry and exit criteria for this node (String exit -- Build
entry) are:

o No compilation errors

o Inspections complete

o String testing complete

The string test drivers used were similar to the unit test
drivers. String testing executed a number of related functions.
Another type of string testing involved using RETRACK under VM
to provide the test inputs for TRACK string testing.

CREATING BUILDS

To create a build all development work was stopped and prepared
for promotion. These procedures were followed.

If some members have been promoted, run a SUPERCOMPARE of the
Dlibs to the Rlibs. If the only changes are debugging OLPRTs,
then no repromotion is required. If source changes were found,

48

PTR numbers were assigned following the PTR procedures.

CONDUCT BUILD TESTS

The build was link-edited then tested using a GFE tape. The
build test was successful if the entire tape was processed and
the results were expected.

CDR Editor was performed on the recorded data to verify the
results of the test.

49

4.0 Verification Methodology

The process for verification of the demonstration system's
performance, standards, integrity, software, output reports
(specifically CDR Editor output report), and display outputs was
a multi-tiered methodology. This methodology was defined,
instituted, and enforced by developers, build committees, string
leaders, software engineers, the independent Software Integration
and Testing (SWIT) team, and the FAA and its representatives
(SEI).

The primary objectives of this verification process was not only
to attain the same performance from the reengineered
demonstration system functions, as the respective N.Y. TRACON
A5.04 functions, but also to maintain functional equivalency,
wherever applicable. In addition, the demonstration system was
tasked to maintain the tried and tested Tracking algorithms, to
generate a CDR Editor output report identical in content to the
N.Y. TRACON A5.04 CDR Editor output report (using the input file
generated by the ARTS system), and to demonstrate this
equivalency visually through the situation display developed for
this project.

This section contains the chronological sequence of activities
that comprise the processes and methodology inherent in the
verification of the demonstration system.

Step #lA - Initial Verification Tools and Standards
(Section 4.1)

Software verification is an ongoing process which commences
at proposal generation, with the definition of processing
methods, plans, and approaches to achieve the contractual
objectives, and continuing through to the design,
development, and implementation phases. The demonstration
system's team, in its approach to software verification,
incorporated several aspects of this verification approach
prior to software development or formal systems design.

Step #lB - Mapping of the MPE services to MVs/RTX
(Section 4.1.1)

This initial effort, completed prior to contract start-up,
and exhibited within the N.Y. TRACON Operational
Demonstration of Program Recoding Technical Proposal
resulted in the mapping of the MPE services to MVs/RTX.

50

Step #1C - Charting the Expected Behavior of the Software
(Section 4.1.2)

During the requirements analysis phase the demonstration
system's team reviewed and analyzed the current ARTS IlIA
system and all available ARTS IlIA document (GFE) resulting
in the definition and documentation of the expected behavior
of the demonstration system's software.

Step #1D - Formulation of the Software Measurement and
Performance Standards (Section 4.1.3)

These guidelines and measurement criterion were developed to
standardize all software, deliverables, internal products,
and program status documents, and served as a benchmark from
which all work products were measured.

Step #1E - Defining the Development Processes and Procedures
(Section 4.1.4)

This effort resulted in the definition of a single set of
development processes and procedures for all program
products, and it was instituted through the use of
templates, outlines, and summaries.

Step #2 - Software Build and Integration Testing
(Section 4.2)

Multiple layers of testing, including Unit, String, Build,
Benchmark, and SWIT testing were instituted to verify the
integrity of the software developed, redesigned, and/or
reengineered.

Step #3 - Build Testing (Section 4.2.1)

The software development was organized into three builds.
Each build included four levels to which the testing process
was directed to verifying. The four levels of testing were
unit, string, benchmark, and SWIT.

Step #4 - Quality Assurance (Section 4.2.2)

Quality assurance procedures were instituted to enforce
compliance to baselines and standards, and to monitor
functional equivalency.

Step #5 - Reviews (Section 4.2.3)

Inspections, re-inspections, program and technical reviews,
and demonstrations were also conducted to monitor adherence
to project standards, and to verify the integrity of the
software.

51

Step #6 - Traceability (Section 4.3)

A major contributant to the verification process was the
development of traceability matrices that depicted the
mapping of the ULTRA source code to the POL/Ada software
design, and from POL/Ada to the Pascal/VS HaL.

Step #7 - Levels of Traceability (Section 4.3.1)

Three levels of traceability were developed for the
representation of the demonstration system's software. The
categories of traceability were, directly traceable,
redesigned category, and the category that were implemented
differently (due to differences in hardware configuration
and/or operating system).

Step #8 - Maintaining Traceability (Section 4.3.2)

Based on contractual requirements, operating system
differences, and architectural differences, some functions
were required to be directly traceable and functionally
equivalent, while others maintained only assemblance of
traceability. This sub-section elaborates on these
differences.

Step #9 - Traceability Matrix (Section 4.3.3)

This sub-section describes the components
traceability matrix, how it was developed,
information sources used to generate it.

Step #10 - CDR Editor Listing Output Validation
(Section 4.4)

of
and

the
the

The main component of the verification process was the
comparison of the demonstration systems CDR Editor output
report to the ARTS IIIA CDR Editor output report. This
verification was completed first by the demonstration
system's team and then by the FAA.

4.1 Initial Verification Tools and Standards

Prior to any software development, some of the activities,
reviews, and analysis resulted in the development of viable
tools, standards, and guidelines that also contributed to
software verification. They included :

o Mapping of MPE services to MVS/RTX
o Charting the expected behavior of the software
o Formulation of the software measurement and performance

standards
o Definition of the development processes and procedures

52

4.1.1 Mapping of the MPE Services to MVs/RTX

This effort, completed prior to contract start-up, and presented
in the N.Y. TRACON Operational Demonstration of Program Recoding
Technical Proposal, mapped the critical components and services
provided by the ARTS IlIA system (See Figure 3 Mapping of the MPE
Services to MVs/RTX). The mapped services and components were
developed and defined by the architectural committee as the
minimal requirements to be satisfied by the demonstration system.

This approach ensured that the applicable subsets of the
reengineered system was functionally equivalent to its respective
subset in the current ARTS lIlA operational system. It also made
the application work much simpler by helping to identify
interrelationships and interfaces, and this relieved the
developers from real-time and MVs/RTX considerations, and allowed
them to concentrate on their specific application areas. This
approach also provided a benchmark from which the demonstration
system's components and services were measured during the
development, design, and implementation phases.

4.1.2 Charting the Expected Behavior of the Software

To an~lyze and verify the integrity, accuracy, completeness, and
consistency of the software, it was necessary to define and
document the expected behavior of the software (See Appendix A
System Parts and Their Work). The expected behavior of the
operational software was determined by an analysis of system
work, system functions and their relationship to the work, the
decomposition of parts, tasks and concurrency, communications
between tasks, data bases, and data coherency.

This effort was conducted during the requirements analysis phase
of the contract by the architectural committee. The current ARTS
IlIA system, all available ARTS IlIA documents (GFE), and the
proposed demonstration system requirements and objectives were
reviewed and analyzed in order to chart the expected behavior of
the demonstration system software.

The benefits derived from this effort contributed to the
definition of the application packages, characterization of the
flow of work through the system, well defined task interfaces,
and the maintenance of functional equivalency (where applicable).

4.1.3 Formulation of the Software Measurement and Performance
Standards

The major guideline for all work products developed for the
demonstration system was that all work products, including the
software, deliverables, program status documents, and internal
work products must be measurable. To achieve this objective, the

53

demonstration system's team developed a single set of program
controls based on government standards, to monitor and control
the project. These controls were tailored specifically to a
project of short duration. The controls and measurement
criterion were :

o The correctness, at each level of abstraction, including the
architecture and top level design, detailed design, and
source code.

o The traceability (and correctness of the trace)

1)
2)

3)

to the requirements;
between levels of development (design--source code,
etc.);
between the converted software and the GFE ULTRA
software.

o The development and informal verification of the
architecture and the top level design.

o The development and correct execution of software modules.

o The development and running of unit and string test cases.

o The completion and correct execution of software build.

o The development and running of software integration test
cases.

o The completion of the software integration and testing.

o The number and severity of design issues.

o The number and severity of software errors.

o The successful controlling of the software configuration.

o The measurement of all deliverables, internal products, and
program status documents, in terms of their completeness,
coherency, clarity, correctness, precision, and conciseness,
as agreed to by the contractors' internal quality review
and/or by the FAA.

Detailed development milestones were also developed and monitored
for adherence to overall project schedule. A project work
breakdown structure (WBS), based on the software system life
cycle activities was also developed, and it enabled management to
track cost/schedule performance for the program, and to identify
and/or forecast possible problem areas, bottlenecks, and
dependencies. Initial source lines of code (SLOC) estimates, by
computer program configuration item (CPCI), were presented in the

54

technical proposal. They provided management with a
cross-reference for each program product developed or
reengineered. Configuration control was maintained by the
establishment of two separate levels of product control : a
baseline level and a development level.

4.1.4 Defining the Development Processes and Procedures

The demonstration system team selected a representative
configuration committee who was primarily responsible for the
definition of the development approach and standards. The
committee formulated a single set of development standards for
each project development phase, which were transmitted to the
developers via electronic public libraries. They included
templates, outlines, and summaries that aided design, coding, and
testing (See Figure 9 Template for Level-l Sequential Design).

The committee, headed by a system engineer, verified that the
standards were met. Deviations were permitted only after a
thorough review was completed by the committee and also the
project's upper management.

The development approach chosen, was the incremental build
approach, or building on tested and approved modules. This
ensured that the system was built in small manageable units.
This approach also facilitated the software integration and
testing (SWIT) activities, which were performed concurrent with
module development and unit testing. It allowed SWIT and the
developers to test each build while the successive build was
being implemented.

4.2 Software Build and Integration Testing

Several layers of testing were implemented
integrity, accuracy, guidelines, standards,
equivalency of the recoded, developed, and/or
demonstration system software. They included:

o Build Testing

o Quality Assurance Testing

o Design and Code Reviews

4.2.1 Build Testing

to verify the
and functional
the redesigned

The software development was organized into three builds. Each
subsequent build was directly additive to the previous. Each
build was required to use as input the operational continuous
data recording input file and provide evidence of successful
operation. To accomplish this, the first build established the
system architecture, primary services to the application

55

programs, the system driver (RETRACK), the concurrent portion of
each application package (GATEWAY), and the tape conversion
program. The build performed system and task initialization,
went into steady state processing, and successfully terminated
each task. During steady state processing, CDR input was read by
RETRACK and sent to the appropriate task gateway, using
application services.

The second build added the CDR editor and extraction functions,
established the link to the display (displaying the map and range
rings), established the data base and common routines, PSRAF, and
the syntax verification and parsing portion of the keyboard and
interfacility functions. Build 2 was validated by analyzing the
CDR extraction produced by the run. The extraction output
contained sector marks, keyboard, and interfacility messages.

The third build added the tracking processing and display
functions, and processing for keyboard and interfacility
messages. Full display, CDR extractor output, application online
printouts, and RTX log messages were used for problem analysis
and test verification.

The testing process was directed towards verification of each
build, and included four levels :

o Unit

o String

o Benchmark

o SWIT

Unit testing was performed primarily by the developers of the
packages (tokens,modules). The packages were first compiled and
tested under the VM!CMS operating system as independent entities,
to eliminate syntactical errors. After a successful compilation
was achieved, the package was then recompiled while incorporating
gateway, application, and dependent packages (using Pascal!VS
%Include), which aided in eliminating most logical errors.

A successful compilation of the incorporated packages was the
final phase of a unit test.

String testing, the testing of a combination of logical or
interrelated units, was performed by appointed string leaders, in
corporation with developers of the interrelated packages. Each
string'leader was responsible for generating a driver, where
necessary. The generation of data drivers, used to exercise the
strings, was also the responsibility of string leaders.

56

All string tests were completed under the VM/cMS operating
system.

Benchmark testing, a viable entity that works optimally with an
operating system that produces valid data, was also conducted on
the demonstration system's software. Benchmark testing was
performed to measure the performance of the demonstration
system's software against the performance of the respective ARTS
IlIA software. This method of testing the system's software used
valid and tested strings which were always initiated through the
Retrack function. It was designed to test valid data through all
components of the strings.

Each level of test used appropriate tools and followed procedures
that had been reviewed. Each developer submitted a unit test
plan for inspection with the low level design inspection
material. Each string leader submitted a string test plan and
results to the build coordinator.

The purpose of the unit test was to verify the logical
correctness of each module. As modules were verified, they were
grouped into larger units for testing. This testing was
performed under VM using drivers written to support each separate
module. As required, developers developed stubs for applications
that they interfaced with, and system services that they
required. Data from the operational CDR tapes were analyzed and
coded into the drivers to maximize use of real data.

Upon completion of unit tests, string tests were conducted. A
string test consisted of several units compiled and tested
together. The string tests verified the interface between all
modules in a package. String tests were run in an incremental
fashion, combining modules until all modules within a package
were successfully tested. String tests were run interactively
under VM using drivers and special routines that simulated the
MVS/RTX services. As with the unit tests, maximum use was made
of operational data to assure thorough and accurate testing.
String leaders were appointed to oversee successful string test
completion.

Before passing a build to SWIT the entire build was tested at the
development level under the control of a build leader. The
purposes of the build tests were to verify the correctness of the
interfaces between the various strings and to ensure that the
architecture and use of the system services was still correct.
Upon completion of build test, the software was promoted from the
development to the release level.

When the build reached the release level, overall system testing
was performed by SWIT. SWIT provided detailed guidelines for
test execution and clearly documented any discrepancies from the
expected results. If a discrepancy occurred, a Program Trouble

- 57

Report (PTR) was issued and sent to developers. Responsibility
to explain and resolve the PTR was assigned to the developer.

Final system testing was conducted by SWIT. SWIT developed the
test plan, build plans, test schedules, and identified all
necessary equipment and personnel required for integration and
test.

The demonstration system was configured into two distinct
components. The first component was developed to run online in
real-time, using the MVS/RTX operating system. The second
component, containing the CDR Editor and Conversion program, ran
offline using the VM/CMS operating system.

During system initiation of the online demonstration subsystem,
the Send/Receive utility was directed to transmit initialization
messages to all software module message gateways. The
Send/Receive module handled all data distribution functions which
provided the capabilities for each software module to transmit
data to other modules. The message gateway was the central point
of entrance and exit for each software module. At each gateway,
the data message codes were examined, and the messages were
passed on to the respective subroutine for processing.

Data enters the online demonstration system when the Retrack
module reads it from the input CDR message file. The application
package modules directs the send/receive modules to distribute
these messages to 3 software gateways: Keyboard, PSRAP, and
Interfacility. The Keyboard, PSRAP, and Interfacility modules
process data received from the Retrack module and sends the data
to other modules within the system.

Data exits the online demonstration system when the CDR
Extraction module extracts CDR data messages from the PSRAP,
Tracking, Keyboard, and Interfacility (input and output
processing) modules at specified time intervals. This data is
retained as output in a CDR Extraction file.

The messages extracted contained a mix of CDR messages, which
were identical to the original CDR messages injected into the
system by the Retrack module. The Retrack module also provided
the capability to fabricate CDR messages. These fabricated
messages were, flight data entry messages that were necessary to
initiate the track file for targets already within the tracking
area at start time. In the ARTS IlIA system, tracks are
established when a target initially enters a TRACON area, but in
the demonstration system, at system startup the data needed to
initiate some tracks were not included on the GFE CDR tapes. The
types of CDR messages expected within the CDR Extraction data set
included: Sector Time, Target Report, Keyboard, Interfacility,
and Radar Only Target Report messages. The messages extracted
were identical to the original CDR input data. The fabricated

58

flight data messages were verified by comparing them to the CDR
input Tracking messages.

Since the system jobs were run native on the IBM 3083 computer,
the Job Control Language (JCL) was submitted using panel driven
interfaces. The results of the job run was then routed to the
users terminal. After the system run, the CDR Extractor data set
was transferred from the IBM 3083 computer and MVS operating
system to the IBM 3081 computer under the VM/CMS operating system
to facilitate the execution of the CDR Editor and the generation
of its hardcopy report. This process was instituted by copying
the data set to tape and then uploading it to the IBM 3081
computer system.

The CDR Editor, read the CDR extraction file and generated a CDR
messages report that summarized the CDR messages found. It also
has the ability to create 4 types of message reports,
Interfacility, Keyboard, Auto Function, and Target Report. The
data must consist of an Initialization message, which must be the
first message, and it must end with a Termination message.

To create an Interfacility or Auto Function message report, the
CDR Editor used as input the CDR Extractor data file. All the
other messages were then filtered out. To generate a Keyboard or
Tracking message report, the CDR Editor also used as input the
CDR Extractor data file in the same manner as when creating an
Auto Function Report. The Sector Time messages were used to
create sensor summary reports for the Keyboard and Tracking
reports. The sensor summary reports consisted of a one line
tally of all targets detected after a complete sensor sweep of
360 degrees. For the 4 active radar sensors which revolve at
differing rates, the target detection count was reported for each
separately upon completion of their respective revolution.

4.2.2 Quality Assurance

Cross-checking procedures were followed when implementing the
reengineered TRACON software. The developers were responsible
for performing unit testing of their respective modules.
Cross-checking was instituted to enforce compliance to baselines,
standards, and guidelines, and to ensure that functional
equivalency was maintained, wherever applicable. The
cross-checking was accomplished through design and code reviews
performed by build committees. Additional cross-checking was
completed across functional lines (e.g.: Tracking function), and
instituted by developers of dependent routines, and developers of
segments or routines of the respective function.

When a module was ready for promotion to the release level, the
developer added an accounting card. The accounting card
reflected the build number of the module. The build coordinator
checked the accounting card, and if satisfied, directed the

59

developer to complete a promotion form which was approved and
signed off by management and the build coordinator. The
promotion form was submitted to SWIT, who had the responsibility
for promoting the module to the release level. During SWIT
testing, if problems were encountered with the modules a PTR was
issued. The PTR documented required changes or improvements. If
changes were required, management assigned the problem analysis
and resolution to a developer. When the developer completed the
necessary improvements, a second accounting card, a change update
card, was issued. The change update card contained the date and
the PTR number, which was issued in sequential order. If the
build coordinator approved, the module was again released to
SWIT. As each build was completed, all release level members
were copied to the next build. This build number was reflected
in the accounting card numbers. In this way, a history of each
module was maintained, and the module's history could be traced
through the accounting file numbers.

4.2.3 Reviews

Design and code inspections were conducted by technical peer
groups for each work product developed for the demonstration
system. These groups were comprised of, a moderator, an
inspector, a presenter, the developer(s), developers of dependent
routines, and other relevant personnel. The inspections were
formal in nature, and they were standardized through the
development of templates specifically designed for the said
purpose (See Figure 15A and 15B FAA TRACON Quality Analysis
Report).

The inspection team recorded results, examined the code or
design, test cases, and qualified the errors inherent in the
package being inspected. Re-inspections were conducted by the
same inspection team if severe errors were identified.

These inspections were conducted to ensure functional equivalency
and accuracy, to enforce project standards, and to verify the
technical correctness of the demonstration system software, top
and low level designs, and test cases.

Program and technical reviews, and demonstrations were also
conducted with the FAA. They were held at FAA headquarters, and
at IBM-FSD's Rockville facility on dates mutually agreed upon by
the contractors, and the FAA. The topics of the reviews
included:

o The status of all software and deliverable work products.

o The cost expended to date.

o The status of the work with respect to the overall schedule
and the forecast for completing the work.

60

o The status of work with respect to the detailed schedules,
as requested by the FAA.

o The status of all action items.

Demonstrations, ending with a final demonstration on May 29,
1987, were also conducted. This final demonstration used an FAA
provided input file, containing the recorded output of a current
FAA N.Y. TRACON ARTS IIIA run. The output from the demonstration
run was compared to the N.Y. TRACON ARTS IIIA system generated
output, and no unanticipated discrepancies were found. The
output was verified by the contractors and the FAA.

4.3 Traceability

One of the major constraints on the development of the
demonstration system, was the maintenance, development, and
documentation of traceability. For the demonstration system,
traceability was maintained between the subset of the ARTS IIIA
system ULTRA source code reengineered, the two levels of software
design (PDL/Ada), and the recoded, newly developed software,
and/or redesigned software in Pascal/VS HOL.

4.3.1 Levels of Traceability

In support of the traceability requirement, the demonstration
system team developed three categories of traceability, for the
reengineered TRACON software. The first category, was that group
which was directly traceable. An example of this category was
the Tracking modules. The second category, was that group whose
basic function was equivalent, but still had to redesigned,
either to fit into the system architecture or to accommodate a
subset of the complete function being translated. The parallel
SRAP processing (PSRAP), was an example of this category. The
final category, was that set of functions that were in the
existing system, but which was implemented differently in the
demonstration system, because of differences in either the
hardware configuration, or the operating system. The data entry
and display subsystem (DEDS) was an example of this category. The
MPE services were replaced by combinations of commercial off the
shelf (COTS) software, Multiple Virtual System (MVS), the
Real-time Executive (RTX), and application services routines that
made the executive services transparent to the application code.

4.3.2 Maintaining Traceability

Because the demonstration system's Tracking modules and
algorithms were required to be functionally equivalent, and
directly traceable to its ARTS IIIA system counterpart, the ARTS
IIIA system Tracking modules were decomposed into the smallest
possible, self-contained increments (tokens, modules). Smaller
increments were much easier to analyze, design, and code, and

61

therefore maintaining functional equivalency for these modules
became much easier to implement.

Although the CDR Editor, Retrack, Interfacility, Keyboard, and
the CDR Extractor are functions within the ARTS IlIA system,
these respective functions were not directly traceable nor
functionally equivalent within the demonstration system.
Equivalency and traceability, are only evident in the converted
code segments, algorithms, and capabilities that were retained
from these functions. The CDR Extractor front-end filtering
capabilities in the ARTS IlIA system are provided automatically
in the demonstration system, eliminating or minimizing its
functional equivalency. The CDR Editor, although not completely
functionally equivalent, generates a hardcopy report that is
functionally equivalent to the CDR Editor report generated by the
ARTS IlIA system. The Retrack, Interfacility, and Keyboard
functions, maintain some equivalency, but these functions were
limited by the scope of this project, which was designed to
recode only a subset of the current ARTS IlIA system.

Traceability was also maintained through the retention of the
program or function names used in the ARTS IlIA system where
possible, and through the unrestricted use of in-line
documentation imbedded in the design and source code. ULTRA
program names and labels were also used as Pascal/VS HOL program
names and comments wherever possible. In some cases where the
original ULTRA code was translated, existing labels were carried
forward into the Pascal/VS code as in-line documentation
(comments). It provided a convenient mechanism for locating the
program, and/or sections of code within the program.

4.3.3 Traceability Matrix

This section describes the generation of the demonstration
system's traceability matrix. The matrix was designed to map the
ULTRA assembly lines of code to the demonstration system design
and source code. The first phase of the mapping, was from ULTRA
to PDL/Ada, and the second phase from PDL/Ada to Pascal/VS HOL.

The traceability matrix consisted of four sections. The first,
and largest of these sections, entitled Tracking, was the
combination of the Tracking (See Figure 16 Traceability Matrix
Representation (Sorted NAS_MD and Section Numbers for
Tracking)),Interfacility, and Keyboard modules. The last three
sections were, the CDR Conversion, Retrack, and CDR Editor
modules. All four sections were sorted on PDL/Ada, and on
Pascal/VS HOL lines of code. Tracking, Retrack. and the CDR
Editor, were also sorted on NAS-MD and section numbers. Retrack
and the CDR Conversion modules had no NAS-MD documents for
reference.

62

The sub-sections show the recode transition on a conceptual
basis. Due to variations in the system's hardware and software
architecture, and differences in the languages, and coding
structure, the mapping varied from line by line to ranges of
lines. This occurred where these ranges encompassed integral
units, functions, algorithms, or design decisions, which the
developer decided were irreducible conceptual entities.

The raw data for the Traceability Matrix was provided by the
demonstration system software developers. Each developer filled
in a blank traceability matrix panel with information specific to
their area of expertise. The Tracking, Keyboard, and
Interfacility panels were combined into one file entitled
TRACKING. The three remaining panels, which are files unto
themselves, were entitled CDR Conversion, Retrack, and the CDR
Editor.

The basic process for acquiring the above information involved:

1) Obtaining and analyzing the NAS-MD's specific to the area of
recoding.

2) Obtaining a compiled listing of the ULTRA code specific to
the area of recoding.

3) Obtaining a copy of the Requirements Analysis Document.

4) Identifying functions in the ULTRA code which were to be
converted as declared in the Requirement Analysis Document.

5) Converting the ULTRA functions to POL/Ada and documenting
the conversion in the traceability matrix.

6) Converting the POL/Ada functions to HOL and documenting the
conversion in the traceability matrix.

4.4 CDR Editor Listing Output Validation

The major constraint placed on the demonstration system output
was the maintenance of functional equivalency of the CDR Editor
output hardcopy report to the ARTS IlIA system CDR Editor output
report.

To accomplish this the input data, the processing applied to the
data, and the method of extracting the output had to be
functionally and numerically equivalent.

The GFE CDR tape was converted to Pascal/VS format using an
offline program. This program preserved each data item in the
records the recoded system would process. The numerical format
of some of the data was changed, some scaled integers were
converted to real numbers, specifically in relation to the

63

I-.j.....
IQ
~
Ii
CD

I-'
0'\

ff}

III

~
I-'
CD

H1
H

0) 0
~ ~

t-3
H
III
n
ro
III
tt.....
I-'.....
rt
~

~
III
rt
H.....
><

APPENDIX 8.4.1 Sorted NAS-MD and Section Numbers for Tracking (page 14 of 14)
. I--,

Ultra Source Code lProgram Design language I Iligh Order language lNAS: Sect ion : Description I
---------------------:--t---------------------r--.f---------------------:--:---:----------:--:
If I 01273-01295 112: ilIA I I N/A I :640\0500000000: Process Output Routing field (lfOTROT) :
If I 01702-01836 1121 N/A I I "/A I lMO \05000000001 Response Message Processing (lfACK) :
If I 00251-00321:: N/A I: N/A I 1640:05000000001 NY TRACOH-ARTCC&ARTS Response Msg Xfer :
COMA 00979-00981 IPll N/A :: "/A : :64010602000000: Register save and lockout flag :

,eOMA 00982-00989 I lTMl11213 15800-16000: ITMllI213 00136-00148: /640:06020000001 Check for discrete beacon code :
ICOMA 00990-00993 I ITI1111213 16100-16500: ITMl11213 00149-00160 I 1640:0602000000: Set up while loops :
leOMA 00994-00996 1 lTH111213 16600-16700 I lTMlll213 00163-00165 I 1640106020000001 Check If comparing track to Itself I
ICOMA 00997-01000 lP2: N/A I I N/A 1640:0602000000: Training track checks :
leOMA 01001-01017: lTMl11213 16800-18000: lTMl1l213 00168-00192 1640:0602000000: Check for matching beacon code 1
leOMA 01018-01020 :PI: iliA I : ilIA :64010602000000: Restore registers I
leOHA 00437-00439 :Pl1 N/A I I N/A 164010602010000: Set sr2 to temporary storage :
leOMA 00440-00445 :Pl1 N/A I: iliA 1640:06020100001 Save temporary variables I
leOMA 00446-00463: ITH111218 00132-00135 I ITM111218 00515-00523 :640:06020100001 Save aircraft Id & I characters in id :
leOMA 00464-00465 :P2: N/A : I "/A :640:0602010000: Training tracks :
leOMA 00466-00466: ITMl11218 00136-00137 I ITHll1218 00524-00527 I \640\0602010000: Call oUPlOe to get duplicate acid's 1
leOMA 00467-00472 IPI: U/A : I U/A \64010602010000: Restore temporary variables I
:IFr 00322-00821 III: U/A I I If/A 1640POOOOOOOOO: Discarded Messages :
: If I 00322-00423 : II: N/A I I N/A :640POOOOOOOOOI Acceptance Message (DA) :
Pfl 00424-00467 I Jl: H/A I: N/A 1640: 1000000000: Retransmit (DR) and Rejection (OX) Hsg :
: If I 00468-00493 III iliA : 1 ilIA IMOPOOOOOOOOO: Data Test Message (DT) I
: Ifl 00494-00526 : 11 iliA : I iliA 1640pOOOOOOOOO: Test Data Transfer (TR) :
llfl 00527-00607 III U/A I: "/A :6'10:1000000000: Track Update Message (TU) :
llfl 00608-00718 III H/A : I N/A 1640pOOOOOOOOO: Initiate Track Messge (T1) :
I If I 00719-00821 III iliA : I N/A :64011000000000: Accept Transfer Message (TA) :
leOR 02195-02220 IPI iliA : I "/A \648:0302010400: Eliminate filter check and buffer manlpl
ICOR 02221-02287 I TMI11240 12300-16600 1 ITM111240 00350-00402 :648:0302010400: Construct output msg for cdr extractor /
ICDR 02288-02320 IPI H/A I: "/A :648\03020104001 Delete cts msg and buffer manipulation:
ICOR 01936-01966 IP2. N/A : I "/A /64810302010600: Delete etg,subsyst,ass status f i It chksl
leDR 01967-02002: ITMll1204 1ll00-13200 I ITH111204 00465-00508 I 164810302010600: Construct output mssge for cdr extract 1
:COR 02003-02005 IPll ilIA I: N/A I 164810302010600: Eliminate user count 1
ICOn 02006-02010 :PI: iliA I I N/A 1648:0302010600\ Register manipulations :
:eOR 02884-02887 I :TM111205 12000-12100 ITM111205 00266-00269 164810302010600: Get trk num, check if associated :
leDR 02888-02890: :TM111205 12200-12400 ITMI11205 00270-00273 1648:0302010600: Check to see if trk Is ARTCC controlled:
:COR 02891-02895 I lTHl11205 12900-13000 llHll1205 00277-00283 164810302010liOOl Get contrlr symbol from symt table I
:COR 02896-02901 I l1Ml1l20512600-12700 l1MIl120500275-00276 1648:0302010600: Get catb words and update contrl. symbl:
ICOR 01529-01537 IP4:TH111206 08900-09400 :THI1120600127-00132 :648:0302010600: eompute time of day using system funct.1
leOR 02865-02868: ITM111241 10900-11000 ITM111241 00192-00196 164810302010600: Determine index to SYMT table using ctsl
leDR 02869-02872: ITH111241 11100-11300 :TH111241 00197-00199 /648:0302010600: Get the associated kb subset from symt :
t--~---~
:APPEIl01X 8.4.1 Footnotes: Sorted HAS-HO and Section Numbers for Tracking :
~--- -----------;---1
IPI - for use In assembly language only; not used in 1I0l (example :llnking, loading. saving registers) :
IP2 - function is not part of requirements document (requirements document says no) :
:P3 - Not necessary - Different architecture (example: Multiprocessor to single processor) :
IP4 - Different implementation in PASCAL (example: Ultra replaced by a built in function; Equivalent function different) :
Ip5 - Other (explain in the cooment section when code 05 is used) - I
--:
11 - These messages are discarded, therefore the Ultra code Is not implemented for this demonstration. :
12 - The function Is not Implemented for the demonstrat lon, It Is listed for cont inuity of ULTRA sequence numbers. :
13 - Library TR0501.Dlfl.PDL :
14 - library TR0501.DTRACK.PDL I
15 - Library TR0502.Dlfl.PASeAl I
16 - library TR0503.DIFI.PASCAl I
--1

velocity, and x and y coordinates. This new format (or type) was
perpetuated throughout the entire system resulting in improved
precision.

The demonstration system team performed two distinct types of
comparison to verify the functional equivalence of the two CDR
Editor outputs. One method required the input of filters to
select specific information (e.g. Beacon codes, sensors,
azimuth). The generated CDR Editor output was then compared to
the ARTS IlIA CDR Editor output to prove the correlation exists.
The first, entry on the demonstration system output was then
located, and the system time, range, azimuth, beacon code and
sensor was then verified for functional equivalency to the ARTS
IlIA CDR Editor respective fields.

The alternate method of verifying the functional equivalency of
the demonstration system CDR Editor output to the ARTS IlIA CDR
Editor output entailed inputting a data class only, with no
filter selection. The output from this method was expected to
yield the identical information as the ARTS IlIA CDR Editor.
This was verified by examining the demonstration system generated
CDR Editor report, which was done in the same manner as the
verification of the first method.

The demonstration team and the FAA also compared the outputs from
the CDR Editor, generated from runs of the New York TRACON system
and the recoded system, to verify functional equivalence. To
facilitate the job of comparing the outputs the team took several
steps prior to the validation, they included:

o Recoded the CDR Editor, so that it would be functionally
equivalent.

o Designed the CDR Editor output listing to look exactly like
the FAA-furnished output.

o Wrote CDR analysis programs to simplify analysis of the CDR
input file.

Comparisons between the operational and recode output provided
a quick and objective method of accurately identifying
differences. Each difference was analyzed to distinguish
between software errors and architectural differences.
Architectural differences were due primarily to the use of a
different processor which ran at a different speed and
different numerical representations. Slight differences in
timing and numerical accuracy were expected.

65

The following discrepancies were noted:

o The ranges and x,y-values had .01 discrepancy at times
due to use of floating point rather than scaled integer
notation.

o The ranges had discrepancies due to the use of the
square root function of x**2 + y**2 as compared with
the approximation method used in the GFE system.

o Some differences in time were noted due to use of
1/1024 seconds in the NY TRACON system versus 1/1000 in
the demonstration system.

o The demonstration system had fabricated keyboard
messages.

o The only interfacility messages that were converted
were the FP, AM, and CX messages.

o When comparing the TD messages, a flight had to be
found and followed.

66

5.0 Project Management

The information contained in this section describes the tools,
methods, guidelines, and standards used to manage the pr?ject.

A single set of program controls, based on government standards,
was developed to monitor and control this project. These
controls were tailored specifically to a project of short
duration. Their procedures and standards were documented in the
Program Management Plan (CDRL A001). Specific measurement points
and milestones were assigned to verify the quality of the
products produced and any cost or schedule variance. The team's
definition and use of a single set of software performance
controls for software deliverables (CDRL AD01 - Program
Management Plan: Section 3.2.2.1 Performance Control), internal
products, and program status documents, provided the capability
to measure and compare adherence to the program controls for each
deliverable.

The master milestone schedule was documented in the technical
proposal. Detailed development milestones were documented in the
software development plan. These detailed milestones were
monitored for adherence to overall project schedule.

The project work breakdown structure (WBS), based on the software
system life cycle activities, enabled management to track
cost/schedule performance for the program and identify and/or
forecast possible problem areas, bottlenecks and dependencies.
Initial source lines of code (SLOC), estimates by computer
program configuration item (CPCI), were presented in the
technical proposal. They provided management with a
cross-reference for each program product developed or converted.

The requirements analysis specified the detailed technical
activity necessary to implement the project objective. Project
requirements were documented and baselined in the Requirements
Analysis Document (CDRL A002). This document was divided into
two sections. The first, the functional specification, was
organized to correspond to the existing system functional
definition (NAS MD). The second described the system and
architectural changes that were not present in the current
operational system. This document was used as the basis for the
design and project verification activities.

Standards and controls for the design, implementation and test
activities are documented in the Program Management Plan. Design
and code inspections by technical peer groups were conducted to
ensure and enforce project standards and to verify the technical
correctness of the product. Data management was established
through the use of the software development laboratory (SDL),
which was used for storing disk data sets and magnetic tapes; and
through the software library, which was used for storing

67

pertinent documents. Configuration control was maintained by the
establishment of two separate levels of product control: a
baseline level and a development level. Risk analysis identified
and categorized technical risks and defined a risk reduction
approach.

68

6.0 Statistical Summary

This section provides a statistical summary of the results of the
system's development including total lines of code for each phase
of the contract (PDL/Ada, ULTRA, Pascal/VS) design issues, and a
PTR analysis. Also included in this section is information
pertaining to a poll of each individual developer's approach to
the reengineering process, a graph illustrating the results of
questionnaires and the raw data collected from this process.

6.1 System Development Results

The demonstration system's team developed three hundred forty
(340) Pascal/VS procedures. One hundred fifty six (156)
procedures, mostly tracking, were implemented with no functional
deviations from the original ULTRA implementation. The remaining
procedures consisted of newly developed support code and
modifications to the current ARTS IlIA system.

These Pascal/VS procedures made up the demonstration software and
were equivalent to fifty-three thousand (53,000) lines of ULTRA
source code. This was converted into forty-seven thousand lines
(47,000) of high and low level POL/Ada, including commentary.
The POL/Ada design was implemented in eighty-three thousand
(83,000) lines of commented Pascal/VS source code (approximately
32,000 lines without commentary). This source code ratio, 53,000
lines of ULTRA to 32,000 lines of Pascal/VS, suggests a workload
estimation factor in the vicinity of 1.6 ULTRA to one Pascal/VS
source line. This metric will prove useful in estimating other
program conversions.

The Demonstration System's team identified and documented fifty
eight (58) DIs during the conversion and redevelopment effort.
Each of the 58 DI's was resolved within a week, supporting the
perception that the design methodology was working as expected.

The Demonstration System's team wrote seventy-eight (78) Program
Trouble Reports (PTRs) during the project. In view of the scope
and complexity of the demonstration system, the PTR count is low.
Of these 78 PTR's, 56 were issued during development testing, 18
during integration testing, and 4 were issued as a result of
demonstration testing.

The PTR's are summarized in the following table:

PTR Type DEV INTG DEMO TOTAL
Improvements 21 9 1 31
Errors 35 9 3 47

TOTALS 56 18 4 78

69

Errors corrected during unit testing and initial build testing
were not tracked and exhaustive system tests were not performed.
We experienced an error rate of 1.5 per one thousand SLOC.

The demonstration system was not thoroughly tested and errors
still remain which may contributes to the low error rate.
Anomalies in the tracking output also exist. These anomalies,
although existent within the tracking output, are not indications
of errors in the tracking algorithms. Based upon the limited
duration of this effort (9 months), further testing and
investigation may yield minimal additional errors.

6.2 Methodology Questionnaire Poll

A poll of each developer of the demonstration system was
conducted to capture relevant information not depicted by any
reporting activity, or deliverable. To ensure objectivity the
poll was conducted in private on a one to one basis, (i.e
interviewer to developer), during the post-development period of
Build 3 but prior to it's implementation.

Defining each individual developer's personal approach to the
conversion process was the purpose of the Methodology
Questionnaire. It permitted developers to describe different
aspects of the conversion process; including, module criticality,
level of conversion, algorithmic complexity, and code
organization. Developer responses to these questions and
analysis of the data provided important information to the
Methodology Document.

Perhaps the most important result of the questionnaire analysis
was a graphic illustration of the correlation between algorithmic
complexity in the original ULTRA source code and the number of
POL lines of code. This analysis showed that the more complex
and mission critical the module is, the greater the number of POL
lines of code produced in the conversion process. An outline
illustrating the format followed in the questionnaire analysis
and the graphs plotting POL/ULTRA SLOC ratio, which were derived
from the responses to the questionaire poll, are included in
Appendix C.

70

Appendix A. System Parts and Their Work

The information contained in this Appendix is an excerpt of
System Parts and their Work (Expected Behavior of the Software)
which was initially presented in the Program Management Plan CDRL
AOOl.

0 There will be six classes of level-l packages:

00 Monitor (M)

00 Offline (0)

00 Control (C)

00 Interactive (I)

00 Pipeline (P)

00 Data (D)

o The Initialization and Termination package (M) will
synchronize the system startup and shutdown by sending and
receiving notification software messages to and from the
other packages. It will process operator requests to start
and stop the job. (In operational mode there would be an
interactive interface with the operator; in test mode, the
interaction with this package.) If the run is terminated
gracefully for other reasons, such as a processing timing
parameter is exceeded, this package will be invoked. Its
retained data will included the names of the other packages
and information about their processing states.

o Messages Control (M) will field the communications
primitives issued by the other packages and interface with
RTX to provide the appropriate (time and space) resources.
Its retained data will include the names of the other
packages and information about their communications states.
It will error check messages at the link level to ensure
that message types and destinations are correct and will
terminate processing if an error is found.

o Timing Control (M) will periodically determine if the
pipeline deadlines are being met; if they are not it will
terminate processing. Its retained data will include the
critical system events and expected elapsed times for each.
It will terminate processing if a critical event does not
occur within the expected time. It will provide system time
services to the other packages.

71

o The offline package, CDR Editor (0), will execute in batch
mode under MVS. It will use MVS services directly to read
the CDR (output) tape and generate a listing of the online
system's journal. The listing will show that the
demonstration system functions are equivalent to those in
the current New York TRACON system.

o The online application packages and their primary work units
are:

DED Access (C)
Retrack (C)
CDR Extraction (C)
Interfacility (I)
Keyboard (I)
Target Acquisition (P)
Tracking (P)
Display (P)

Common Updatable (D)
Data

Softw~re messages
CDR records
CDR Records
Flights
Controller commands
TRACON airspace
TRACON airspace
Controller sector (a set of
tracks and targets within a
sensor)
Software Message

o The DEDS Access package provides -- through commercial
off-the-shelf and developed software -- the link level I/O
support between the Display outputs application and the
DEDS. Because controller commands (keyboard inputs) are
input from Retrack only, DEDS Access supports outputs only.
DEDS Access uses MVS services to provide channel and
interrupt level I/O support. It retains data about the DACU
and the display generator protocol.

o Retrack reads the CDR tape containing the recorded
transactions from a previous execution of the full ARTS
system (not our demonstration system). Retrack reads
target, controller command and flight records into its
internal buffers and passes the target records to the Target
Acquisition package, the commands to Keyboard, and the
flight data to Interfacility. Retrack does not pass work
that has already been identified on the CDR tape as in
error. Retrack sends second-order messages, modifications
to existing flights and tracks, to Interfacility and
Keyboard. If the messages are out of sequence they are
recorded as errors on the CDR output by Keyboard or
Interfacility. (Retrack does not interface directly with
the CTS as in the current New York TRACON system.)

o CDR Extraction receives software messages from the other
online packages, transforms them to CDR records and writes
the records to the CDR (output) file using a standard MVS
access method.

72

-Appendix B-1. Layout of the Data Element Dictionary.

DATA ELEMENT DICTIONARY

The Data Element Dictionary (DED) contains all the tracking
subsystem global data element names and descriptions. The main
purpose of this DED is to bring the data element specification
control under Configuration Management (CM). This central
control of the data element convention, data typing, database
assignment, and description will eliminate confusion among the
software development personnel during system PDL, code, and
integration testing. The configuration manager will be the only
person allowed to modify the file copy of the DED.

In arriving at the new DE names, you will note that the old DE
names map from a single old name to multiple new names. The
reason for this is as follows: In the old DE list, the old names
were associated with UNIVAC 30 bit words and arrays (tables) of
words. The fields identified at the sub-word or bit level are
not given a discrete DE name; however, in the new DE, all the
fields that appear at the sub-word level have been assigned a
discrete DE name. Since multiple fields (sub-words) exist for

; single words in the old DE, correspondingly, multiple new DE
names exist for single old DE names. This assignment of new,
descriptive DE names for all defined fields in the database will
enhance the readibility, reliability, and maintainability of the
software. The following section describes how Higher Order
Language data structures can support the DE typing to the bit
level with no problem.

The DE will be maintained using the DBASE III+ software package.
The structure of each DE record is as follows:

Field
Field Name

1 COMPANY
2 DATANAME
3 DATABASE
4 PAGENUMBR
5 PI
6 Sl

7 - 24

25 TYPE
26 VARNAME
27 DBNAME
28 DESCRIPT

Field Description
company respon. (0 - DTC, I - IBM, P - PJA)
Old data element name (existing system)
Old database assignment
Page number in database doc. section
A referencing procedure name
An indicator specifying whether the

referencing procedure sets or uses
the data element

Fields 4 and 5 are repeated for nine
more procedures

New data element type code
New data element name
New database name
Data element description

Notes:

-.-=-:.---
1) The set/use indicator is defined as follows:

1 - set by referencing procedure
2 - used by referencing procedure
3 - both set and used by referencing procedure

73

2) The new data element type code is defined as follows:
S - character string
C - character
L - boolean
i - integer (short)
I - integer (long)
r - real (short)
R - real (long)
B - Bit
A - array (table)
p - pointer (address)
E - enumerated type

74

Appendix B-2. Description of the Mapping Tables

SITE & SYSTEM lATA DICTIONARY ELEMENT (OED)

The Site and System OED includes all the variables in 3.5.2
of Codin~ Specification and sections 2 to 3 of NAS-MO 643.
This OED is created by the combination of variables in the
files CSITEQ, oSITEQ, NSIT~Q, TSITEQ, SYSEQO "and TI of TRA
CON.A504.DATA. Any duplicated elements in CTS have been dis
carded. If the element is only referenced by system
database (SOBl, SOBlRO, SDB2, OBASEC, DBASED and DBASEE), it
would be located in mapping table. The structure of the
mapping table follows:

DATANAME

SECTION

PAGENUM

DATABASE

SDBl

SDBlRO

SDB2

CFGT

CORD

SUBS

MBUF

data element name (for the existing NY TRACON).

section number appears in NAS-MO-643.

page number appears in NAS-MD-643.

database name from TRACON.A504.DATA in existing
NY TRACON

element or table name which uses the DATANAME in
SDBl

element or table name which uses the DATANAME in
SDBIRO

element or table name which uses the DATANAME in
SDB2

element or table name which uses the DATANAME in
CFGT (DBASEE).

element or table name which uses the DATANAME in
CORD (DBASEC)

element or table name which uses the DATANAME in
SUBS (DBASEC)

element or table name which uses the DATANAME in
MBUF (DBASED)

75

Appendix C Description of Questionnaire Analysis

1.0 Interview Questionnaires

The interview questionnaire was designed to obtain two distinct
classes of information regarding the methodology process:

Numerical assessments of the decisions made during the
recoding process to be used to mathematically relate these
factors to the accomplishment of the project objectives. The
data from this information set is reported, discussed and
analyzed.

Objective assessments of the methodology originally
intended, problems encountered, and the modifications made
during actual use to correct them, as well as any
suggestions that would improve the process for use on
future projects. The overall impressions and common
concerns of the developers in their discussions of this
second class of information is the purpose of this
supplement.

The interview questionnaire was intended to capture the reservations,
recommendations, concurrences and differences of opinion, and
approaches of the developers of the demonstration system. It was a
concrete focus for the ideas to be discussed during the interviews and
served as a record of their impressions.

2.0 The Interview Process

Each developer on the project with responsibility for one or more
distinct NAS-MD functions was given a questionnaire form. Each was
given a copy of the classification descriptions and values. The
developers completed the numerical evaluation and initial comments
following the completion of the coding phase of the project. The
interviews were scheduled during the system integration phase. No
attempt was made to guide the contents of the comments other than the
g~neral instructions that they were an opportunity to report
'1 ifficulties and make recommendations for future recoding proj ects.
fhe actual interviews were conducted in groups of two or three
developers from one of the team companies, and one or two
interviewers. In order to ensure maximum freedom of expression, and
confine the discussions to a small number of issues, technical,
supervisory and management personnel were all interviewed separately.

The interview was divided into three major sections, each covering a
specific portion of the project development. In section one,
developers were asked to discuss their overall approach to the
project. Differences between the New York TRACON and a more
"traditional" project were addressed in section two. The third
section, tools, discussed what tools were, or would have been,
especially helpfUl in completing this project.

76

3.0 Summary of Questionnaire Discussions

The methodology questionnaire permitted developers to describe
different aspects of the conversion process; including, module
criticality, level of conversion, algorithmic complexity, and code
organization. Developer responses to these questions, and analysis of
the data, provided information used in preparation of the Translation
and Verification Methodology Document. The areas of discussion and
comments have been loosely grouped for reporting purposes.

3.1 Training and Orientation

As the developers considered their initial proj ect approach, many
fel t an orientation period would have been beneficial. This ranged
from a simple orientation lecture to an intensive two-week training
period.

The majority of the developers spoke about the difficulty in reading
the original ULTRA source code. A training session in ULTRA, including
architecture, would have provided valuable assistance. It was
generally felt that more time should have been spent with the entire
team understanding ULTRA and its environment.

It was also suggested that training in Pascal be included. The
developers suggested that even individuals who knew Pascal be
required to attend such a training session. The Pascal used for this
project was not standard, and it was the consensus that all
developers should begin the project with the same information.

Developers also requested training in CMS/MVS. They believed they
were not able to gain maximum benefit from a powerful system due to a
lack of both documentation and knowledge of the system.

A final training suggestion addressed the Air Traffic Control System
as a whole. Some developers felt knowing the "big picture" would have
helped them understand their role in the New York TRACON Proj ect.
Suggestions included a field trip to a TRACON, a field trip to the FAA
Technical Center in N.J., and/or an orientation lecture regarding FAA
policies and procedures.

3.2 Analysis of Requirements Phase

Requirements Analysis was the second major subject of discussion in
the interview. It was unanimously agreed that this stage was one of
the most important. One individual stated that "A lot of work early is
worth a little work later." It was also said that "Errors encountered
at test are more costly than those encountered during requirements
analysis."

In contrast, because this project did not follow a standard/classical
software cycle with which they were familiar, it was difficult to know
what to expect. For that reason, many developers felt too much time
was spent "designing the design." This caused problems later on when
time constraints interfered with testing.

77

A positive result of the requirements analysis stage was the
development of a data element dictionary. This dictionary was widely
praised by all developers. It was agreed that the development of this
dictionary should be the one of the first tasks completed in another
re-coding proj ect. One developer stated that "if we hadn't done an
analysis of the data base, we wouldn't have gotten this far."

3.3 Coding and Testing

As the developers discussed coding, it was the prevailing opinion
that reading the original ULTRA source code to determine requirements
was also important. Opinions on this sUbj ect differed as to how
detailed this stage of the conversion should be. Some developers, such
as those working on DISPLAY and CDR CONVERSION, were not affected
because their sections were generally re-designed. However, those who
performed a straight re-code felt a line-by-line analysis of their
section was required.

3.4 comparison with Classical Projects

Developer Interviews also discussed the differences
recoding project and a "traditional" software project,
involved primarily creative programming. Generally, most
felt differences were not pronounced.

between a
one that

developers

The biggest difference noted was that a traditional software cycle was
not followed; therefore, one did not know what to expect.

Many developers felt a recoding proj ect would never be as difficult
again because they were "leaving a trail behind them." All developers
expressed a real sense of responsibility and made sure clear
documentation was kept.

The importance of teamwork on a recoding project was also stressed.
Developers believed teamwork was more important on this project than
on previous projects with which they had been involved.

3.5 Development Tools

The tools used in the Demonstration System project were generally
felt to have been helpful.

The ULTRA source code comments were mentioned most often as providing
the best assistance. Some developers wished these comments were more
detailed; but overall, they were invaluable.

The coding specs (CPFS) also provided an excellent overview; but
again, were not always accurate or detailed enough.

The NAS-MD's were an important information source. A minor complaint
was that the documents were not always up-to-date.

78

The data element dictionary, as discussed in section one, was roundly
approved as an important design, development, and testing tool.

There were tools that were not available to the developers, but would
have been helpful. These included a more user-friendly editor, an
automatic formatter, and a programmer's notebook.

3.6 Suggestions

Many suggestions for similar projects were given. These include:

A. Require internal (peer) reviews of the POL.

B. Different developers should code from ULTRA to
POL/Ada and from POL/Ada to Pascal. This would
catch many problems before test.

c. Provide an expert or experts to answer questions.
This should be someone who knew ULTRA, was
familiar with FAA policies and procedures, and
could apply what was being done to the 'real
world.' All developers expressed appreciation to
the controller who became available toward the end
of the project and to the assistance of the FAA
SEI representative.

D. Specific background and experience was considered
beneficial by many project developers. These
included a physical science background, assembly
language experience of any kind, a mathematical
background, real-time programming experience, and
high-level programming experience.

4. Analysis of Questionnaire Data

Perhaps the most important result of the questionnaire analysis was a
graphic illustration of the correlation between algorithmic
complexity in the original ULTRA source code and the number of POL
lines of code. This analysis showed that the more complex and mission
critical the module is, the greater the number of POL lines of code
produced in the conversion process. Following is a table illustrating
the format following in the questionnaire analysis. Graphs plotting
POL/ULTRA SLOC ratio are also included.

79

r-----.-.-----------------------.-----.-------- ..--------------------- -----------

~
~
'0::r
til

o
HI

en
8
n
~
~
rt....
o

to
o
I;-i
.........

8
~

~
~
8-
1-"
~

n

I
I
I
i

-.-.--.J,~

A Comparison of
SLoe Ratio V5. Avg Guestionaire Answer

-.-
4.4 4.2 4 3.B 3.7 3.7 3.6 3.4 3 2.6

4.4 4.2 4 3.7 3.7 3.6 3.4 3.2 2.8 2.6
Average Ouestionaire Answer

4.6
4.6

7

1

2

o

5

6

0.,..
.v
to
0:

U 4a
CXJ -.J
0 U1

~
n: -J
t- -J 3
-'':J
'-_J
an...

AfPENDIX C
DEVELOPER INTERVIEWS

OUTLINE

Interviews were divided into three sections.

A. Project Development
(Conve~sicn Process)

These were:

B. Differences between this and a ~Laditional

s oft wa l~ e p l~ 0 j e c t

C. Tools

A. Projec~ Developmen~

1. Provide an initial overall introduction/training period
for project team members.
Training period should include:

* ULTRA (architecture)
* PDL/Ada
* System (MVS/PTX)
* ATC system overview (FAA ~olicies & procedures)

2. Requirements Analysis
* More time should be spent on this stage. "A lot of

work early is worth a little work later."
* Data Element Dictionary
* "Errors encountered at test are more costly than those

~ncounteLed during requirements analysis."
:

3. Return to ULTRA code to determine coding requirements.
* Some developers were not affected by this (e.g. DISPLAY).
* Done at different levels by different developers.

A.... Time Fl"a ",E'
* ~·J(jt realisocic
* Led :0 d~ff~~ulri~5 ~ith inteQi-ation

Suggestions fer PrC}Ect Developrnpnt:

1. Pequire ; ,:tei"n;; 1 per n:views (peer Leviews)
2. Different developers should code from ULTRA to PDL/Ada and from

PDL/Ada to Pasccil.
3. Make sure an e~pert is available to answer questions.

81

Develop~r Exppri~nce. The iollo~ing were cited by
as skill5/eKperie~ce they fo~~d especiall! helpful
completion on this prOject.

* Physical science background
* Assembly language experience
* ~athematics background
* Real-time programming experience
* High-level language programming experience

developers
in tr,e

B. Differences be:~een this and a more traditional software project.

1. Diffei-enc~5 ~~~e n0: pr0nounced.
2. Teamwork was very impor:an:.

C.

been m0~e detailed.
,;..

1__ • . _ ..; .~ T

L l ':":" J. :_' .'- '.... ' btlt: could ha'ie

3. Coding Spec3 (CPS'S)
Good overview, but not always accurate.

4. NAS-HDs
Very helpful, but at too high a level. Not updated.

5. Data Element Dictionary

Tools Missing:

1.

4.

More detailed and complete ULTRA comments.
More user-friendly editor
Automatic formatt~~

Programmer's notebook

82

Definitions for Questionnaire

I) Criticality: A measure of the system's dependancy upon the software
module in order to accomplish the missions objective. The more the
system depends on the module, the more mission critical is the module.
The less the system depends on the module the less mission critical is
the module.

How do you rate criticality of this module?

4) Mission Critical

3) Somewhat Mission Critical

2) Somewhat Not Mission Critical

1) Less Mission Critical

II) Conversion level: The level of precision with which the original
source code is translated. The more detailed the replication,
the higher the conversion level. The less detailed the replication,
the lower the conversion level.

What Conversion Level did you use to recode this module?

6} Translate (Line by line)

5) Recode (Software thoughts)

4) Rewrite (Change in original flowchart)

J) Redesign (Modular design changes)

2) Replace (Requirements modified)

1) Discard/Add (Entire module is added/discarded)

83

III) Algorithmic complexity: A measure of the complexity of the computational
method. The more difficult it is to understand the logic, the more
complex the computational method. The less difficult it is to understand
the logic the less complex the computational method.

How do you rate the Algorithmic complexity of this module?

4) Complex

3) Somewhat Complex

2) Somewhat Not Complex

1) Not Complex

IV) Organization of the code: A measure of varience between the
physical and logical flow of code. The more the varience, the
more unstructured the code. The less the varience, the less
unstructured the code.

How do you rate the Organization of the code in this module?

4) Unstructured

3) Somewh~t unstructured

2) Somewhat structured

1) Structured

V) Tokenization: The act of dividing the source software code into
smaller more manageable software units. The higher the level
of tokenization the higher the replication of the oriqinal code,
the lower the level of tokenization the lower the replication
of the original code.

What l~vel of tokenization did you choose for this module?

6) Identity (Line by line)

5) Lexical (Source lines equal to a flowchart symbol)

4) Logical (Predicates, loops, and linear)

3) Functional (Subroutine calls)

2) Process (Routine)

1) Modular (Entire Module)

84

METHODOLOGY INTERVIEW

DuE
(0 jq (~1

Th~

Developer's
Name: 8 ..;....;;.WOII'T k

Developer" s
Supervisor: <S' 1"112 L.lj

Date:

Company: () rc

Assembly Unit
Name: KETp A<:~

Question/Answer PDL
SLOC

gf 'G.'t

f1 _£_1..__

« U{ (

pi 59

g5 35

¢ 73

.¢" 34
R:r~?

2. 2- 5"b
i:JAouT, flfll::>I1"Il-te.1Q

50 ss
SO L.f3

ULTRA
SLOC

III.

III.

III.

II.~ III.~ Iv.3 V.

II.~ III. 3 IV.~ V.

II.

II.

II.

I I . .t!.b I I I . IV/II IV . HJ.t. V. .!!l.A
II. I III.) IV. (V.

rv.I v.
Iv.I V.

IV.+ V.

II. III. IV.~ V.

II. tilt! III.NJ£. IV.t& v.cil!!
II.~ III.~ IV.~ V.

I.

I.

I . .i.
I . .!:f...

I..:!..

I.

I.

I.

I.

/);t - ~oc.

Tit' 0"5"<16 5¢
fI #1- Pllo<:..
-rM~5e6 tI-!f

C>'-- CHi<
rMff .; t2G ,1""/

/11'1- CHk
TiMt/c;q'60b

(!.HR_CM~

/Mc;1 ~ 'if (, ¢" '3

Ir-~ _ flf'P
T~'" ri<:-i (" 12

OiL Cf(F

7m¢'~nf~a#5'

f>li'I'-(C:~S ~ T~ ':1_ f"\ <; G

T t"t ~.,'"G~¢

Module* Name

~x:- p(Jo<:..

TM?'~(/ & 'f'; 1.~ 1I..2..]II. 3 K.2 "SZ:_ 40

* A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

Developer's
Name:
Moil e. BY'OU) ()

METHODOLOGY INTERVIEW

Developer's
Supervisor:

Assemb!y Unit
Name: \::di+or

Date: Lt/~J~7, ,
Company: DTC-

Module* Name Question/Answer ULTRA PDL
------------ --------------- SLOC SLOe

Ed'l +Or III.66:- IV.c2- v.J:
----- ----&3CO

I.d IL:? ID:30{) §~

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. __ III. __ IV. __ V. __

* A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

86

Developer's
Name: '

.!;Ie"'""; <. oeu"J-

METHODOLOGY INTERVIEW

Developer's
Supervisor:

Assembly Unit
Name: _

Date:

Gompany: DT c

Module- Name Question/Answer ULTRA POL
------------ --------------- SLoe SLoe

C0~ \J 6rz.<£o J I.~ II._\ III.dB IV.~ v.M; ---NM 2.006

I. II. III. IV. v.

I. II. III. IV. V.

I. II. III. IV. v.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. v.

I. II. III. IV. v.

I. II. III. IV. V.

I. II. III. IV. V.

$iY\A-C Cu"rv~CY'- ~~ de wet hc..v<- T0. ~kv/~

() JA:ltc.t... urk. 11 Q~ ~ tf'0- ~c<;z""~ ""c ~ I.J(A .
. ~ GL Y1S,"Q,\-<.. ~vQ..,

* A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

87

Developer's
Name: I "'.J.'L'/

;.Jt15) z.') 4- cr.l~~

Assembly Unit
?c~ .., 0./ ..

METHODOLOGY INTERVIEW

Developer's
Supervisor:

EiJllLi

Date: _

Company: _

String Leader

Module* Name Question/Answer ULTRA
SLOC

PDL
SLOe

Pr"QC.l1: 55• ..,.IO'.:" .. ··-;~,

rM &"0 :Zoc

e (//.1.:;:' _ ,!::-,~ ~1- DN T,;:j
i t"\ It ,,"0"; .. ~

proc:;t:.;5_ .z:/#-- 7"'3
Tc: ~<" ~ .~"'"

/l,.G J 0_ ::H' ,;.;; i::

"T M~ r, ~.;l 3
S£..': P '2."- .,// e "-J

,..,.. .. .,~ .. ()4

~ vG,l'lc,..r.I'"SC,';4 8-!A"- •"',..'3,1'1 D 5" 0 'is~ I

'P£L_ol~C't_ 3e <. _'11'l'8
-r1'1 ~ ~- ~ ~"2.

sd-lJrrlVJ-·O, $C 2 • 8<;""C -7~6'

'="" .. r,"<co3

I..,.}/A II. N/A. III.,.J/Q IV.~ V.~

I.\03 I (\,. II.c4~ III.~IV.~V."'/A

I.~~ II.~III.NI~IV.~V.r-\/~

~ 2 ~ -I.~ II. __ III. __ IV.~ V.~

I. tJ-fPr- II .~III .Ala-IV .#4/g,.V.~

I.~/~ II.N/~III.~IV.Nf~V.~

I.~ II. ,.liP:- III .rJfP-IV .~If).. v.r/;;

I.rJlPr II. rltA- III.~ IV.~~ V. ~/P

b :::;'4

Q is.!..

lr' -:';'1
<

I qi-+- Iq~~ ~4

0 ,71.

Q !-:fr-

O So
\) '39

I.

1.

II.

II.

III.

III.

IV.

IV.

V.

V.

* A module is a distinct software unit within an assembly unit. Each
assembly unit has one or more distinct modules.

88

METHODOLOGY INTERVIEW

Developer's
Name:

Developer's
Supervisor:

Date: _

Company: _

Assembly Unit
Name: '2.'-TJZ~<:.1L

Module* Name

~'('acl-":'~ _ 5E,.N o;o{'. 1"15 (...

-r1"1 ~ ::- :~. • .

Question/Answer ULTRA POL
--------------- SLOe SLoe

I.~ II. 5"" III.2 Iv._1 V.:!:.... ~ Cf!?
I.~ II.) III. I IV._'_ V.J- I/Io-I,~~ /2--
I.4 II.i: III._1 IV._' V.~ IlIa -I Lao

• I· J
~,~

I.~p. II.~ III.N/A- IV .~ V• t-J I P. a> I~

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. - III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

:3lltV::_T"P-r..~ - £. t i";'-.115(;,

=(M 9;=sr 'd"'''
;AJ~.e.""D~~_ ""'~.::J f'1'$(..

.,. t" $",",,,3
"SAil:!_::>.r: ;tf)!2. _'OrJ_I'" S ,.

™os= '.a/

~ module is a distinct software unit within an assembly unit. Each
lnit has one or more distinct modules.

89

Developer's
Name:m L :I:c.bo) "0\,-:<:)~\

METHODOLOGY INTERVIEW

Developer's
~u.ppv~or:
l: r, tm\-l_t._S__

Assemply Unit
Name: \\\)£7 x..T

Date:~\q\~1

Company: 1&0

Module* Name Question/Answer ULTRA
------------ --------------- SLOe

IN \\~ t:C;'- --+

I. S II. III. '2 IV. v.3- -
I. II. III. IV. V.

Re:.eb S [C:1- I.3 II.2. III. 2- IV._I_ V.3....

I. II. III. IV. V.

"'""f2 ~ 1'1\ S Lei
II.:!.... III. 2, Iv._l v.3-I.2....

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

POL ~r<.. :·_
SLoe :::);

Z0 lC-----

-'? c·
"-: _....:..-_--

[
I,
tl.;)

* A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

9 r ;. - •.~., ,/

, 90

Developer's
~me:
~~~~C~

METHODOLOGY INTERVIEW

Developer's
su~rViSo~
~~

Assembly Unit
Name: »4:rr't

Date: 'f(~

Company: ~M-

Module* Name Question/Answer ULTRA. POL
------------ --------------- SLOC SLoe

-----
I.~ II.~ III.~ IV.3L v.

I. II. IIl._ IV. v.

I. II. III. IV. v.

I. II. III. IV. v.

I. II. III. IV. v.

I. II. III. IV. v.

I. II. III. IV. v.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

* A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

91



Developer's
NaI}\e:

L. nJ t} ) ) ..oJ 'J-

METHODOLOGY INTERVIEW

Developer's
Supervisor:
~ r;~·1 1S

(/

Assembly Unit
Name: TT~£ ,.~,)

4 1-:;:- fro" ~
Date : ,/:j 1\ /

Company:TC//l .

Module. Name Question/Answer ULTRA PDL
--------------- SLOe SLOC

-----
I.!::t... II._' III. ~ IV . .L V.=-

~

I.4 II. I III . .3.- IV 0 __'
v. - -- - --

I.LL II·L III.~ IV. I
V . .=... ---

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. _V. __

I. II. III. IV. V.
::::0 ../-...

I. II. III. IV. V.

I._, II. III. IV. V.

I. II. __ III. __ IV. __ v. __

• A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

92



Developer's
Name:

ri<? (j.11C'LNSO,J

METHODOLOGY INTERVIEW

Assembly Unit
Name: TRAidKl NG

Date: _

Company: PTA

Question/AnswerModule- Name

-----TJ<~Q-'"-'-u.........f __
SLINK

ifI._

I.....::...

r.i
I '1
'-'-

II.~ III. ~ IV o.J.... v. (
" I J ,./

II. ~ III.~ IVo_7 V.l-
~' /} t/ ~

II.~ IIr.~ IV. __, V.~

/"'1 . ./
II.2- III.~ IV, ~! v._~_

ULTRA
SLOe

---9/s
/ fd.-

:J-/ I

PDL
SLOC

L/ 5,){)
I

f:;-'/
?,7:J-

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

* A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

93



D~veloper's

Name:/2
/ ALI fl4 t} PHPrI

METHODOLOGY INTERVIEW

Developer's
supervigor:
_La m. A ~'fS1=

Assem~:'~,:J"~? tName: AcKL /lie,

Date: _

.Company: PJ~

Module* Name

_TcR.ss
---IJ?S;;;;..er-~__

Question/Answer

I.~ II.~ III.~ IV.~ V.~

I.ft. II.ISIII.~ IV.-g.. V.~

I.tf II.~ III.4 Iv.4 v.~

I . .4 . II..J III. ~ Iv.£L V. ..s:
I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II._, III. IV. V.

ULTRA
SLOe

PDL
SLoe

f:< IS'

13£~

1;2$ /

469£.

* A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

94



Developer's
Name: I J

C LAAK~ rn.t)wr~~

METHODOLOGY INTERVIEW

Developer's
S'.:U?ervi~or=

10M l;AX n:-Z-

AssemblyrEniASJ
Name: f'".:::) R.,n

Date: _

Company: f.T1t

Module* Name Question/Answer ULTRA POL lo',k ..... ;,..,..1,
------------ --------------- SLOe SLoe

Pj~AP 3 -----
I.':L ILl.- III. 3 IV. 1.. v. 14fP )q1~- -
I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

* A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

95



METHODOLOGY INTERVIEW

Date: _

Company: p::rtt
Assembly Unit
Name: liZ Aq(t r./G

Module* Name Question/Answer ULTRA POL ""~./Ii,,-r{
------------ --------------- SLOC SLOC

Ltd.. II..£. v.-f'
----- z-i-?-y:rU D III.2- IV.I- ~)'t)

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

* A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

96



Developer's

Name: :)EfF- !AA-lWS

METHODOLOGY INTERVIEW

Developer's
Sup~vis~:

-10M \j~lL~

Assembly Unit
Name: Tg"C\(\N'

.Company: p::rA

Module* Name Question/Answer ULTRA PDL
------------ --------------- SLOC SLOe

I.!1 II.~ III.3 IV.3.- V. S
-----

T"E\X.. _I/~ L",
. -'

I. II. III. IV._ V. -
I. II. III. IV._ V. -
I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV._ V. -
I. II. III. IV. V.

I. II. III. IV. V.

* A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

97



Developer's
Name:

y11rCt-fA$. &,4,vlg

METHODOLOGY INTERVIEW

Developer's
SU.E..ervi~or:

10M nz+x.;~

Assembly Unit
Name: 1R.~K,,J4

Date: _

Company: fJ.4

Module* Name Question/Answer ULTRA POL
------------ --------------- SLOe SLoe

lj"uJ II III..i i
..-

-{~-z.j -Tact 9I..:L II. I) IV. V. )
- -

CetM.Jt!i)K] Suh t7JlA. -h'nf4.- I.~ II...£. III.l.- IV . .l. V.i.-
I. II._ III. - IV. _ V,_

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

I. II. III. IV. V.

* A module is a distinct software unit within an assembly unit. Each
unit has one or more distinct modules.

98



Appendix D. Glossary of Terms

The following represents a glossary of terms used in the
development of the N.Y. Tracon Demonstration of Program Recoding.
Emphasis has been placed on the retention of the terminology and
content used in the N.Y. Tracon A5.04 System wherever possible.

99



ABSTRACT DATA

ACCESS TIME

ACKNOWLEDGE

ACTIVE STATUS

ACTIVE COAST

ACTIVE HANDOFF

ADA PACKAGE

ADAPTATION

ALARM

ALPHANUMERIC
CHARACTER

APPLICATIONS

APPLICATION
MESSAGES

APPLICATION

The specification of a data type and a "hidden"
TYPE (from its user) body defining a more concrete
representation.

The time interval between the instant information
is requested from memory and the instant the
information is available.

The indication of the status of data on the
input/output lines.

Refers to a track which is being correlated,
corrected and predicted every scan. A track which
is not in flight plan status, store status, suspend
status or tabular coast status.

Refers to an active track which has failed to
STATUS correlate but which has not met the
conditions for tabular coast status. A track in
active coast status has its next scan position
predicted.

An active coast track in handoff to another STATUS
controller (N.Y. TRACON or ARTCC).

A software unit that has a specification part, a
body part and a procedures part that defines an
abstract data type and behaves as a state machine.

Unique site dependent data required by the
operational program to provide the flexible
capability necessary to allow it to function at
individual sites.

Refers to a signal or indicator which warns of a
abnormal or out-of-tolerance condition.

A letter or number.

The ARTS work exclusive of operations, tracking for
example; the software that automates that work.

Units of data by which the system and the real (air
traffic) world communicate, beacon and radar
targets, tracks and flights.

Work units, containing system application WORK
messages, that define the processing constraints of
the software; a process must complete one system
application work unit, such as a track, before
starting the next.

100



APPLICATION WORK

ASSEMBLY UNIT

ASSIGNED BEACON

ASSOCIATED TRACK

AVAILABLE WRITE
TIME

AZIMUTH CHANGE
PULSE

BASE

BASELINE

BATCH MODE

BEACON REPORT

BIN

BINARY

BINARY-CODED
DECIMAL (BCD)

BIT

An integral input from the system application
STATION COMMAND work station.

Source code that can be separately assembled to
produce object code. In Assembler H, a source
module (see below).

The mode 3/A beacon code assigned to a track CODE
by the computer or controller.

A track that is actively correlating with a target
and which has either manually or automatically been
associated with a flight plan.

The amount of processing time available for the
system to output alphanumeric radar data to the
displays.

360 degrees is divided into 4096 equal parts and
thus each azimuth change pulse (ACP) equals .088
degrees.

A number base; quantity used implicitly to define
some system of representing numbers by positional
notation; radix.

The official version of a product; used on the New
York TRACON demonstration to mean the software
delivered by FAA to DTC at the start of the
contract.

Execution of an offline program non-interactively.

An aircraft target detection message which is
formed in the BDAS and sent to the BDAS correlation
logic for possible correlation with a radar report.

A gate formed around a track's predicted position
which is used to correlate the track with a target
report.

A characteristic, property, or condition in which
there are but two possible alternatives; e.g., the
binary number system using 2 as its base and only
the digits zero (0) and (1).

Representing decimal digits with binary digits.

A single character in a binary number.

101



BLOCK

BRITE ALPHANUMERIC
DISPLAY

BUFFER

BUILD

A unit of Pascal/VS source code consisting of an
optional declaration section followed by a
statement section.

A display of sufficient brightness for presenting
radar and/or other data in a control tower.

A temporary storage area where information is held
for transfer to/from internal or external storage.

An integral software system that contains a subset
of (or all of -- if it is the final build) the
system capabilities. A build represents the last
step in integrating software source units. The
final software system may be the product of several
builds, each one built on top of the previous.

CENTRAL TRACK STORE The major internal table containing data for each
track.

CLEAR

COMPILER

CONCURRENT DESIGN

CONSOLIDATION

CONTINUOUS DATA
RECORDING (CDR)

CONTINUOUS DATA
RECORDING EDITOR

To restore a storage or memory device to the zero
state. COMPILATION UNIT Source code that can be
separately compiled to produce object code. (In
Pascal/VS, a SEGMENT or a PROGRAM.)

A computer program which produces machine language
instructions and subroutines from source
statements.

The rules that describe how subtasks (see below)
interact as they compete for system resources
(processor, channels, data, etc.).

Combine control positions. This entry will transfer
the control of all present and future assigned
flight plans from one control position (b) to
another designated, surrogate, control position
(a). This includes store tracks, flight plans
assigned by keyboard symbol, and flight plans
assigned by fix pairs. In addition, handoffs
directed to a combined position (b) will be
transferred to the surrogate position.

Extraction of operational data on disk or tape.

Function to reduce operational data collected
during CDR run, with the capability of filtering
CDR data.

102



CONTROL SECTION

CONTROLLER

The smallest subdivision of an Assembler program
that can be relocated as a unit. Each control
section is assembled as part of an object module.
By writing the proper linkage edit control
statements, you can select a complete object module
or any individual control section of the object
module to be linkage edited and later loaded as an
executable program.

A keyboard action from the DEDS. COMMAND

CONTROLLER POSITION A keyboard status that has full keyboard entry
capability (except for supervisory) and can have
tracks assigned to it.

CONTROLLER SECTOR

CONVERSATION

COpy

CORRELATION

CRITICAL DATA

CROSSTELL

CYLINDER

DATA TYPE

DEVICE, INPUT

DEVICE, OUTPUT

DIGITIZE

An area of real airspace mapped onto display
coordinates that composes an application work
station.

Two-way communication between processes.

Instruction to the Assembler to get additional
source lines from a macro library. The Assembler
will replace the copy statement with a
predetermined list of source statements from a
library.

The process whereby target data are uniquely
identified with a given track.

Operational data which is recorded periodically by
the operational program for use during a system
recovery.

The point at which the status of a track during
handoff is indeterminate ...
A set of tracks on disc pack which have in common
the same track number.

The specification of a set of related data
(objects) and the legal operations on that data
(for example, an integer, a queue or an operating
system access method.)

A unit designed to bring data to be processed into
a computer, e.g., a tape reader or a keyboard.

A unit designed to output processed data from the
computer, e.g., display.

To convert an analog measurement of a physical
variable into a numerical value, thereby,
expressing the quantity in digital form.

103



DISC PACK

DISCRETE CODE

DISPLAY CONSOLE

DOMAIN

DOWN TIME

DUMP

EDIT

ENTRY POINT

EXECUTION UNIT

EXECUTIVE
ROUTINE

FAILSAFE

FAILSOFT

FAULT

FIELD

A storage device consisting of a stack of rotating
magnetic discs which are used to store and recover
digital data. The disc pack is used on a disc
drive.

A unique train of electronic pulses transmitted by
an aircraft transponder in reply to a radar beacon
interrogator. A four digit code in which one or
both of the last two digits is other than zero.

A visual display unit which can display
information.

The set of input values that can cause a function
to execute.

The time during which a computer is malfunctioning
during scheduled hours of operation, i.e., power
failure.

To transfer all or part of the contents of one
section of the computer memory into another section
or type of storage.

The off-line process that can reduce and
selectively filter the data that was extracted by
the operational program and provide an operator
usable output on a printout device.

A location in a module to which control can be
passed from another module or from the control
program.

Object code that can be executed on a computer. (A
load module) .

A routine which directs execution of other routines
in concurrent design, the subtasks (see below).

A system in which failure recovery is possible from
single point failures without loss of system
capability.

A system in which failure recovery is possible from
single point failures where system operation
continues in a degraded mode.
A condition under which a malfunction occurs
causing an interruption of the processor. This
malfunction may have been caused by a physical
breakdown or the attempted execution of an illegal
function code.

A set of one or more characters which is treated as
a whole, a unit of information.

104



FILTER A computer software function which performs the
task of specifying which parts of another computer
word or data word that are to be operated on or
interpreted.

FLAG A data bit used for indicating purposes or for a
status condition.

FLIGHT The set of data that defines and characterizes an
aircraft controlled within ARTS.

FLIGHT PLAN A track file in Central Track Store that is not
STATUS yet active, and has not met specific time criteria

for display in the tabular list or designation of
flight plans being IFR, VFR or OTP.

FORCE To intervene in a routine, by means of normal
operation or programmed operation and change the
normal sequence of computer operations.

FROZEN FULL A condition resulting when a track in active
DATA BLOCK handoff coast has a firmness of zero or the coast

count parameter (CCNTQ) value has been reached and,
for interfacility handoffs, subsequent Track Update
(TU) messages are interrupted.

FRUIT Beacon transponder replies received by the radar
which are the result of interrogation from another
radar. These replies are asynchronous with the
radar's timing circuits and can therefore be
discriminated against.

FULL CONSOLIDATION Combine control positions and transfer all tracks.
This entry will accomplish all functions of a
consolidation and also, transfer tracks .

. FUNCTION A mathematical (Cartesian) function; a set of
ordered pairs -- f(x,y); an algorithm modeled as a
function; used during implementation to mean a
Pascal/VS function that, given an argument, returns
a value; for example I "square-root". See also the
definition for rules.

GARBLE The superimposing of a set of code pulses on either
another set of code pulses or on noise, so that it
cannot be deciphered.

GATEWAY A set of programs and data that provide the
concurrent interface control for a package.

105



HANDOFF STATUS

HARDWARE

HIT

IDENTIFIER

ILLEGAL
CHARACTER

INITIALIZE

INPUT

INPUT/OUTPUT

INSTRUCTION

INTERACTIVE (I)

INTERACTIVE
APPLICATION
WORK STATION

INTERROGATOR

INTERFACE

INTERLACE

INTERRECORD GAP

Refers to a track which is in the process of having
responsibility for its control passed from one
control position to another controller or from one
facility to another.

The mechanical, electrical, magnetic and electronic
devices from which a computer or peripheral device
is constructed.

A given response to an interrogation.

A name.

A character which will not be accepted as a valid
representation of data or function.

To set counters, addresses or switches to zero or
other starting values at the beginning of a routine
or program.

Information transferred from auxiliary or external
storage into core storage of the computer.

A means of communication between a computer and
external equipment of other computers.

A computer word which is a coded directive to the
control section to initiate a prescribed sequence
of steps necessary to effect a particular logical
operation.

A process initiated by an external input that may
interrupt and modify the flow of data through the
system.

The device (the DEDS) (including hardware and
software), functions and people that interact
with the system to create, observe, modify or
delete system application work.

Ground equipment to generate mode interrogations
which trigger airborne beacon transponders and
receiver responses therefrom.

A common boundary between parts of a single
automatic data processing system or between entire
systems.

The specified sequence of mode interrogations, on a
sweep-to-sweep basis, used by a given beacon
system.

The unrecorded portion between records on magnetic
tape.

106



INTERRUPT

KEYBOARD ENTRY

LEGAL LIMITS

LEVEL-l PACKAGE

LEVEL-2 PACKAGE

LINK EDIT

LIMITED
CONSOLIDATION

LINEAR
PROTECTION

LOAD

LOAD MODULE

LOADER

LOAD MODULE

MACRO

A manually or automatically generated request,
detected by the rop, that a specific condition
exists.

A means of entry of alphanumeric data.

Sixty-three and seven eighths (63 7/8) miles
(Radar) in range for the applicable subsystem.

The top level software parts that compose the
monitor and application software; in sequential
design, the Ada packages that define the top level
abstract data types.

The lowest level packages that decomposes from
level-l package.

Process of combining separately compiled object
modules into an executable load module. The output
of a link edit is a load module; sYmbolic cross
references among object modules are resolved during
link edit.

Partially combine control positions. This entry
will transfer the control of specific types of
flight plans from one control position (b) to
another designated position (a). Those transferred
are store tracks (flight plans), all flight
residing in CTS, and future flight plans assigned
by fix pairs. Handoffs addressed to (b) will be
redirected to (a), unless a virgule is appended to
the entry.

The straight line prediction of an aircraft path.

To read information into the computer.

A collection of programs that will execute
independently; in the demonstration, a load module
maps one-to-one onto a Pascal/VS main program.

Combines the basic functions of a linkage editor
with the execution of a program. Used during
testing of a load module.

Object code in a format suitable for execution; the
output of a link edit.

Instruction to the Assembler to get additional
source lines from a macro library.

107



MACRO DEFINITION

MACRO LIBRARY

MAGNETIC TAPE

MAIN PROGRAM

MAINTENANCE
POSITION

MICROSECOND

MILLISECOND

MODE

MODE

MODEM

MODIFIED BUILD

MODIFIED STRING

MONITOR

MULTIPROCESSING

A set of statements that define the name m6+.mat of,
and conditions for generating, a sequence of
assembler instructions from a single source
statement (macro call or macro instruction).

A library containing macro definitions.

A storage medium consisting of metal, paper or
plastic tape coated with magnetic material.

A single-entry, single exit Pascal/VS program that
executes independentYy; it may contain
(synchronous) calls to other programs that have
been compiled separately but link-edited with it.
Typically, a main program is equivalent to a
Level-l package.

A keyboard status that has restricted keyboard
entry capability and tracks cannot be assigned to
this position unless it has been paired to another
position.

One millionth of a second, 10-6 seconds.

One thousandth of a second, 10-3 seconds.

3/A An interrogation mode in which a beacon radar
transponder automatically reports identification
when interrogated by a ground station (64 and 4096
codes) .

C An interrogation mode in which a beacon radar
transponder automatically reports altitude when
interrogated by a ground station.

A device which converts digital pulses to modulated
audio signals for transmission via telephone
circuits and converts the received modulated audio
signals back to digital pulses.

A version of a build that has been changed as a
result of fixing an error or errors.

A version of a string that has been changed as a
result of fixing an error or errors.

A set of programs and data that provide data and
control synchronization for the software system
without knowledge of the application.

A technique for handling numerous tasks
simultaneously through the use of an executive
control program and more than one processor.

108



:MVS

NANOSECOND

NONDISCRETE

OBJECT

OBJECT MODULE

Batch operating system for IBM 370 series machines.

One billionth of a second, 10-9 second.

A unique train of electronic pulses transmitted by
an aircraft transponder in reply to a radar beacon
interrogator. A four digit code in which both of
the last two digits are zero.

A variable that can be computed by a machine.

The output of a compiler or an assembler. (In our
application, the Pascal/VS compiler and Assembler
H.) Object modules are input to the linkage editor
or loader.

OFFLINE A run separate from an online run; a data
processing job that runs under VM.

ON-CALL A set of operational support programs that reside
on disc and may be loaded one at a time into a
program buffer area. These programs, when loaded
perform system support functions simultaneously
with the execution of the operational program.

ONLINE A run (or execution) of the New York TRACON
operational system. The online system runs under
MVs/RTX.

OPERATIONAL MODE Running the ARTS with live target and live
controller interaction -- as it would be run in the
field.

OPERATION A visible (defined in the specification part of a
package) set of rules tha t act on the da ta
encapsulated in an Ada package (state data) or that
define a pure function defined in that package.

OPERATIONS Work required to run the system (hardware, software
and human interface to them); the software that
automates that work, such as the online operating
system.

OPERATIONS MESSAGE Units of data through which the system and the
humans or machines running the system communicate.

OPERATIONAL PROGRAM The Automated Radar Terminal System which creates a
semi-automated air traffic control system and is
suitable for application to terminal radar
facilities with varying densities and complexities.

OPERATIONS WORK Units of data containing system operations
messages.

109



OPERATIONS WORK
STATION

OUTPUT

PAIRED POSITION

PARAMETER

PARITY CHECK

PASCAL/VS LOAD
MODULE

PASCAL/VS PROGRAM

PASS

PATCH

PDL

POL/ADA

PERIPHERAL
EQUIPMENT

PIPELINE (P)

PLANNED TASK

The device (including hardware and software),
functions and people that interact with the system
to create, modify or delete system operations work.

computer data that is transferred from internal
storage to secondary or external storage, or to any
device outside the computer.

A keyboard position that has full keyboard entry
capability, but cannot be assigned tracks.

A quantity which specifies operating conditions or
configurations. The descriptions of variable data
and tables.

Checking the one bits of a block of data to test
whether the total number is odd or even.

An execution unit consisting of the link edited
copy of user written functions and procedures and
Pascal/VS Run time routines which are automatically
supplied to the programmer.

Main Program. The name of the outermost procedure
of the program being run. It is a self-contained
and independently compilable and executable unit of
code; the program that gains initial control when
the load module is invoked by RTX.

One cycle of processing a body of data.

A section of coding inserted into a routine to
correct or alter the routine.

Process Design Language, a formal language used to
record software design.

A PDL based on Ada. (see Ada packages; PDL/Ada
packages can also -- in addition to modeling an
abstract data type -- contain a set of data or a
collection of related functions.)

Various units or machines that are used combination
in or conjunction with the computer but are not
part of the computer itself.

A set of processes that execute in order; process A
produces data for process B and so on.

An operational subprogram that is scheduled
periodically by a lattice.

110



PREDICATE
PRIMARY RADAR

PRETRIGGER

PULSE

PROCEDURE

PROCESS

PROGRAM

A statement that can be evaluated; eg., max (a,b).
The non-active portion of the terminal radar system
which utilizes radar pulse energy which has been
reflected off the aircraft skin for the generation
of the primary radar data.

A pulse generated by the beacon interrogator

which is used for timing subsequent mode 3/A and
mode C pulses.

A collection of Ada statements that define the
function rules for a specific operation on a
package's state data (see definition of a state
machine). A procedure can also be a function that
is not visible (in the specification), but is an
elaboration of a visible procedure (and would be
defined only within the body of the package.) A
procedure can also be a Pascal/VS program that can
be called from within a main program; the procedure
may be separately compiled.

The execution of a subtask that operates on a unit
of application work.

A computer program ( a set of executable
statements, data, and commentary.)

PROGRAM ENTRY POINT Address in the load module to be given control by
the control program whenever the load module is
executed.

PROPOSITION

PSEUDO FULL
BLOCK DATA

PULSE REPETITION
FREQUENCY

RADAR REPORT

RANGE

A statement that can be evaluated true or false;
e.g., x is in the set A; the state, s, of a
proposition can be expressed as either s(i,TRUE) or
s(i,FALSE). 14

A term used to describe any full data block
initiate for display within ARTS by an Initiate
Transfer (TI) message and/or updated by positional
information contained within Track Update (TU)
messages received from the ARTCC and is not being
predicted or tracked by ARTS. NAT (No ARTS Track)
will be displayed in field two of the FDB.

The rate at which radar or beacon interrogations
are transmitted, expressed in pulses per second.

An aircraft target detection message which is
formed in the RDAS and transmitted BDAS for
possible correlation with a beacon report.

The set of output values that result from th
execution of a function.

111



RANGE COUNTER

REAL TIME CLOCK

RECORD

A counter which measures distance in 1/64 NM
increments between a radar or beacon interrogation
pulse and a reply.

Develops periodic signals for the computer to allow
computation of elapsed time between events.

A set of one or more consecutive fields on a
related subject.

RELEASE A completed build -- one that has successfully
passed software integration 'and testing.

RESECTORIZATION The selection of one of the alternate sets of
predefined combinations of entry/exit fixes and
controller responsibilities.

RING-AROUND TARGET A target whose number of hits exceeds a parametric
value between its leading edge declaration and its
trailing edge.

ROUTINE A set of computer instructions arranged in such a
way as to solve some defined problem (program).

RTX Control program running under MVS to provide
realtime services to applications running under it.

RULE A specification that defines the behavior of an
algorithm; x :=max(a,b) replaces x with the maximum
of the values defined by a and b.

RUN One or several routines linked to form an operating
unit where the operator does not need to intervene.

SCALE FACTOR The coefficients used to multiply or divide
quantities in order to convert them so they lie in
a given range of magnitude.

SCAN One full 360 degree rotation of a radar antenna.

SCOPE Lexical scope. The area of a module where a
particular identifier can be reference is the scope
of that identifier. Since routines may be nested, a
lexical level is associated with each routine.
Record definitions also define a lexical scope for
fields of the record. An identifier can be declared
only once in each lexical level.

112



SCOPE RULES

SECOND-ORDER

SECTOR

SEGMENT

SENSOR

SEQUENTIAL DESIGN

SITE VARIABLE
PARAMETERS

SMOOTH

SOFTWARE

SOFTWARE MESSAGES

SOURCE MODULE.

SPECIAL CHARACTER

The rules that are applied to determine the scope
of an identifier. In Pascal/VS static,
block-structured scoping is applied. Any,identifier
defined within a block, is global to any procedure
within that block. If procedures are nested, the
compiler will search up the hierarchy of procedures
until it finds the declaration of the identifier.
The identifier declared at the innermost level is
the identifier that is found.

Application messages that modify the state MESSAGES
of a track or a flight.

A subset of an antenna scan; there are 32 sectors
per scan. A pie shaped wedge model of a radar scan
which is defined by a starting azimuth and a ending
azimuth. The typical sector size used in the NY
TRACON system is 128 ACPs wide, or 11.25 degrees
and is used as a reference measurement in real time
processing programs.

A shell in which procedures and functions may be
separately compiled. A compilation unit. Must be
link edited with a Pascal/VS program to form a load
module.

A unique radar antenna. The AS.04 N.Y. Tracon
operates in a four sensor environment.

The decomposition of the software system into parts
(and their relationship to one another), expressed
in a deterministic way without regard for
processing concurrency, data coherency and the
impact of executing the software on machines.

The parameters that are defined through adaptation
by each site to meet their particular requirements.
They may vary from site-to-site and can be changed
by each to accommodate their specific requirements.

To apply procedures that decrease or eliminate
rapid fluctuations in data~

A computer program.

Units of data through which packages communicate.

A sequence of Assembler instructions that can be
separately assembled. Produces a separate object
module.

A character that is neither a number nor a letter,
e.g., *,$,+,/.

113



SPECIFICATION A precise definition of the expected behavior of an
Ada package, given in terms of its objects and the
operations that act on them (see the definition of
an Ada package.)

STAGGERED HODE RADAR A non-constant Pulse Repetition Frequency radar.

START

STATE

STATE MACHINE

STORAGE

STORE STATUS

STRING

SUBROUTINE

SUBTASK

SUPERVISORY
POSITION

SUSPEND STATUS

An Assembler instruction used to specify the first
executable control section of a source module.

The function of a value mapped to an identifier;
thus, s(i,v), where v is the value of identifier i.

A function with memory, such ~hat the domain is
defined by a set of input values and the current
state (set of values) of the memory (referred to as
state data) and the range is defined by a set of
output values and the new state of the memory; the
state machine function is called a transition
function and represents the union of possible
operations on the state data (for example, an
integer behaves as a state machine: the union of
arithmetic operators s(+,-,/,*) defines the
transition function acting on the set of whole
numbers.

A device capable of recelvlng data, retaining them
for indefinite periods of time, and supplying them
upon command.

A track file in Central Track Store than is not yet
active, but has met specified time criteria and is
eligible for display in the tabular list.

A set of functionally-related programs, such as
tracking.

A portion of a routine to which control is
transferred upon instruction to carry out some
operation and after executing may transfer back to
the main routine.

A set of applications software that operates
independently, and is dispatchable under MVS-RTX;
the binding of a work unit to a level-l package.

A keyboard status that allows certain exclusive
keyboard functions to be performed.

A track which has had data block display on it
temporarily terminated by keyboard action.

114



SWEEP

SYSTEM DATA AREA

SYSTEM VARIABLE
PARAMETERS

TABLE

TABULAR COAST
STATUS

TARGET REPORT

TASK

TEMPORARY

. TEST MODE

TEXT FILE

THREAD

TRACK

One beacon radar pulse proceeding from the
interrogator to the end of the range interval at
one particular azimuth.

A predefined area on the display console where
general system and site information is presented in
a series of alphanumeric characters.

The adapted parameters that are defined for the ATC
computer system. System parameters can be changed
to accommodate the requirements of the system but
cannot be changed by the site.

A collection of data that can be identified by code
or uniquely placed position.

A condition whereby tracking correlation no longer
is attempted because correlation has failed for a
parametric number of scans, or confidence in the
predicted position for future correlation is zero.

An aircraft target detection message which is
formed in the SRAP and sent to the DPS. The three
categories of target reports are Beacon Only, Radar
Only, and Radar Reinforced Beacon.

The automatic execution of system work under the
control of an operating system that allocates and
monitors all the system resources (channels,
devices, memory, programs etc) required to perform
the work.

An area of memory that is used to store STORAGE
transit computer data when no long term storage is
desired.

Running the ARTS system using simulated targets,
flights, and controller commands.

A file which contains the object code created
during an assembly.

A programming technique for linking together data
files by providing pointers within each file
identifying the next file in the chain. An
operational example would be having all CTS files
that are in the same sector for the same sensor all
be in one thread (TNP).

A computer model of an aircraft's position and
velocity, -- maintained in real work and display
coordinates; a dynamic record of the aircraft's
behavior.

115



TRACK ALL

TRACK FILE

TRACK FIRMNESS

TRANSPONDER

TYPE

TYPE AREAS

UNASSOCIATED

UNIT

VALIDITY TARGET
CODE

VERSION

WORK HIERARCHY

A tracking scheme where all qualifying declared
targets are tracked whether or not they are
associated with flight data or a controller.

A track file is a computer record containing active
tracking and/or flight data.

A number functionally related to the correlation
history of the track. The greater the number, the
more accurate the correlation. The lower the
number, the lower the accuracy of the correlation.

An airborne radar beacon receiver-transmitter which
receives radio signals from an interrogator on the
ground and selectively replies with a specific
reply pulse sequence. (Mode A - Beacon; Mode C 
Altitude)

A specification of the operations that can be
performed on a set of data.

Airport Area Types
I = Airport Vicinity
II = Approach Vicinity
III = All else

A track that is actively correlating with TRACK a
target but has not been associated with any flight
data.

The smallest measurable collection of source
statements; typically, a Pascal/VS procedure, a
macro, a function, a homologous set of data
declarations.

A numeric value assigned by the BOAS to a Mode 3/A
code or Mode C to indicate its reliability based on
code reception.

A distinct copy of a unit, string or build, that
represents a modification to a previous unit,
string or build.

A tree of categories of work units; categories are
numbered from 1 to n, where 1 is at the top of the
tree.

116



Section 2: Acronyms And Abbreviations

ABC Assigned Beacon Code

ACID Aircraft Identifier

ACK Acknowledge

ACP Azimuth Change Pulse

ADC Azimuth Data Converter

ADU Azimuth Distribution Unit

ALID Airline Identification

AM Flight Plan Amendment Message

AMB Ambiguous Handoff Indicator

A/N Alphanumeric

APG Azimuth Pulse Generator

APT Airport Table

ARP Azimuth Reference Pulse

ARTCC Air route Traffic Control Center

ARTG Azimuth, Range and Timing Group

ARTS Automated Radar Terminal System

ASCII American Standard Code for Information Interchange

ASR Airport Surveillance Radar

ASR-37 Teletype Model 37 Automatic Send-Receive Console Typewriter

ASR-40 Teletype Model 40 Automatic Send-Receive Console Typewriter

ATC Air Traffic Control

ATCBI Air Traffic Control Beacon Interrogator

ATCRBI Air Traffic Control Radar Beacon Interrogator

ATCRBS Air Traffic Control Radar Beacon System

ATCT

ATIS

Air Traffic Control Tower

Automatic Terminal Information Service

117



AUT

AWT

AZC

AZT

BAM

BANS

BCD

BCN

BDAS

BEX

BMC

BPM

BRITE

BTL

CA

CCD

CD

CDR

CDRS

CDT

CDTSO

CFG

CGD

CLS

CONS

CPFS

CRIT

Auto Offset

Available Write Time

Center Azimuth

Trailing Edge Azimuth

Binary Angular Measurement

Brite Alphanumeric Subsystem

Binary Code Decimal

Beacon

Beacon Data Acquisition Subsystem

Beacon Extractor

Beacon Micro Controller

Break Point Module

Bright Radar Indicator Tower Equipment

Beacon Tracking Level

Conflict Alert

C0nfiguration Control Directive

Common Digitizer

Continuous Data Recording

Continuous Data Recording Subsystem

Console Data Terminal (Model 40 Teletype)

Continuous Data Time Selected Output

Configuration

Computer Generated Data

Current Lateral Separation between Two Aircraft

Consolidation of Positions

Computer Program Functional Specification

Critical Data Record

118



CRSL Cross Reference Listing

CRT Cathode-Ray Tube

cis Coast/Suspend

CST Coast Status

CTS Central Track Store

CVT Coordinate Validity Time CX Cancellation .Message

DA Acceptance Message

DCON Deconsolidation of Positions

DCU Disk Control Unit

DDU Disk Drive Unit

DEDS Data Entry and Display Subsystem

DM Departure Message

DNP Do Not Process

DOM Display Output Message

DOP Display Output Processing

DPS Data Processing Subsystem

DR Rejection Message DSG Digital Sweep Generator

DT Data Test Message

DUPAIR Duplicate Pair Table

DX Retransmit Message

DZ Current Altitude Separation between two Aircraft

EBCDIC Extended Binary Coded Decimal Interchange Code

ECID Enroute Computer Identification

EM Emergency

EOM End of Message

ESR Executive Service Request

ETA Estimated Time of Arrival

119



ETG

FAA

FDB

FDEP

FDP

FIX

FP

FPDU

GFE

GI

GMT

GND

GSI

HD

HJ

HZ

IA

Ie

lCA

ID

IDA

IDR

IF

IFR

I/O

lOP

IRG

Enhanced Target Generator

Federal Aviation Administration

Full Data Block

Flight Data Entry and Printout Equipment

Flight Data Processing

Fix Table

Flight Plan

Flight Plan Disc Update

Government Furnished Equipment

General Information

Greenwich Mean Time (ZULU)

Ground

General Systems Information Area

Handoff

Hijack

Hertz

Input Acknowledge

Integrated Circuit

Interfacility Communications Adapter

Identification

Input Data Acknowledge

Input Data Request

Interfacility

Instrument Flight Rules

Input/Output

Input Output Processor

Inter Record Gap

120



KIP Keyboard Interrupt Processing

KOF Keyboard Operational Function Processing

LDB Limited Data Block LCON Limited Consolidation

LE Leading Edge

LINCON Linear Conflict Prediction

LMD Lateral Miss Distance (e.g., distance between aircraft in XY, at
point of closest approach)

LRC Longitudinal Redundancy Check

LSB Least Significant Bit

MAT Monitor Tab Coast

MFMAMS Module for Maneuvering And Maneuver Sensitive Aircraft

MHZ Megahertz

MODEM Modulator/Demodulator

MSAW Minimum Safe Altitude Warning

MSP Medium Speed Printer

MSS Mass Storage Subsystem

MTA Magnetic Tape Adapter

MTBF Mean Time Between Failure

MTI Moving Target Indicator

MTP Bulk Store Flight Plans

NAS National Airspace System

NCP NAS Change Proposal

NM Nautical Mile

NSP Non-Standard Part

OA Output Acknowledge

OPE Output Parity Error

OR Out of Radar Range for the Controlling Display

OTE Output Timing Error

121



OTP

PASS

POB

POOP

PFA

PI

PN

PPI

PRF

pIs

PTO

PT

PTR

PUNS

PUR

QLOOK

RALM

RAT

RBC

RBTL

RDAS

ROOP

REX

RF

RFOU

RMC

RTC

VFR On-top

Pack Associated Tracks

Partial Data Block

Periodic Display Output Processing

Probability of False Alarm

Program Improvement

Probability of Noise

Plan Position Indicator

Pulse Repetition Frequency

Primary/Secondary Correlation

Proposed Time of Departure

Program Trouble

Program Trouble Report

Pack Unassociated Tracks

Process Unused Reports

Quick Look Processing

Recovery Alarm

Report Address Table

Reported Beacon Code

Radar Beacon Tracking Level

Radar Data Acquisition Subsystem

Remote Display Output Processing

Radar Extractor

Radio Failure

Reconfiguration Fault Detection Unit

Radar Micro Controller

Recovery System Library

122



..

RTCC

SA

SED

SLINK

SP

SPI

SRAP

SS

SV

SWABS

SYNC

TA

TAB

TABC

TALT

TB

TCID

TCL

Remote Tower Cab Controls

Suspect Aircraft SD Sector Display

Slew Entry Devices

Intersubsystem Link

System Parameter

Special Position Indicator (IDENT)

Sensor Receiver and Processor

Single Symbol STAT Status

Site Variable Parameter

Software Adaptation to Beacon System

Synchronization

Track Accept

Tabular List

Tentative Assigned Beacon Code

Altitude Tracking

Beacon Terminate Message

Terminal Computer Identification

Tracked Chain List

TCROSS Tracking Cross-Referencing

TDOP Tabular DOP

TEDC Tracking Early Discrete Correlation

TEXEC Tracking Control

TI Tracking Initiate Message

TINIT Tracking Initial/Trial Correlation

TL Target Leading Edge

TNP Track Number Pointer

TNT Track Number Table

123



TOLV Time of Lateral Violation

TOKA Time of Minimum Approach

TOS Track Oriented Smoothing

TOV Time of Violation

TPRED Tracking Prediction

TPSEC Tracking Primary/Secondary Correlation

TPUR Tracking Process Unused Reports

TR Test Data Message

TRACON Terminal Radar Approach Control

TRK Track

TROUT Track Output

TT Target Trailing Edge Threshold

TTl Tabular Track Index

TU Track Update

TUn Thread Update

TUM Track Update Message

OF/cR Upfeed/Carriage Return

Va Mode 3/A Validity

Vc Mode C Validity

VFR Visual Flight Rules

124
-t:r

u.s. GOVERNMENT PRINTING OFFICE: 1987-505-068160221

..



•

,



r

J


