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EXECUTIVE SUMMARY 

Smoke evacuat ion and p e n e t r a t i o n  tes ts  aboard a i r c r a f t  t y p i c a l l y  involve  
a r t i f i c i a l  smokes with minimal buoyant p r o p e r t i e s .  
t h e a t r i c a l  smoke machine t h a t  p r o j e c t s  a j e t  of f i n e  a e r o s o l  d r o p l e t s  i n t o  the  
surrounding a i r .  
ae roso l  drops is  s m a l l ,  t h e s e  a r t i f i c i a l  smokes do not s imula te  the gaseous 
volumetr ic  expansion processes  t h a t  occur dur ing  actual fires. 

The smoke source is o f t e n  a 

Because t h e  cumulative volume d isp laced  by a l l  t h e  i n d i v i d u a l  

I n  order  t o  provide a smoke wi th  more r e a l i s t i c  behavior  f o r  a i r p l a n e  tests, a 
device w a s  developed t h a t  mixes helium, air and theatr ical  smoke t o  genera te  a 
r i s i n g  plume t h a t  behaves s i m i l a r l y  t o  a f i r e  plume. 
mixed i n  va r ious  propor t ions  t o  yield mixtures  t h a t  have a range of d e n s i t i e s  
t h a t  can s imula te  the  d e n s i t i e s  of h o t  combustion products .  The t o t a l  mix ture  
d e l i v e r y  ra te  can be va r i ed  t o  s imula te  d i f f e r e n t  f i r e  s izes .  The a d d i t i o n  of 
helium no t  only provides f o r  buoyancy b u t  also provides  t h e  s imula t ion  of gaseous 
expansion. The t h e a t r i c a l  smoke conten t  of t h e  mixture  a l lows f o r  observa t ion  of 
smoke movement behavior .  The aerosol content  f u r t h e r  a l lows  t h i s  buoyant smoke 
genera tor  t o  be used f o r  rea l i s t ic  tests of smoke d e t e c t o r  i n s t a l l a t i o n s .  

The helium and a i r  can b e  

The buoyant smoke generator  w a s  t e s t e d  aboard a Boeing 757-200 a i r c r a f t .  
a i r c r a f t  w a s  s p e c i a l l y  modified t o  provide f o r  vary ing  cabin  v e n t i l a t i o n  f low 
rates. 
v e n t i l a t i o n  a i r  out  of t he  top  of t h e  fuse l age  as an alternate t o  t h e  s tandard  
outflow valve on the  bottom of the a i r c r a f t .  

This 

A provis ion  w a s  also incorpora ted  i n  t h i s  a i rc raf t  f o r  exhaust ing cabin  

The tes ts  wi th  buoyant a r t i f i c i a l  smoke showed smoke movement behavior  e n t i r e l y  
d i f f e r e n t  from what had been seen in past t e s t i n g .  
v e n t i l a t i o n  condi t ions ,  t h e  buoyant smoke w i l l  r ise t o  the c e i l i n g ,  move down t h e  
length  of t h e  cabin,  and g radua l ly  m i x  wi th  v e n t i l a t i o n  flow so t h a t  smoke f i l l s  
t h e  he igh t  of t he  cabin.  
p red ic t ions  of smoke movement. 
when app l i ed  t o  the  behavior of a buoyant smoke source.  

Under normal a i r p l a n e  

Test: r e s u l t s  w e r e  compared with earlier a n a l y t i c a l  
The p r e d i c t i o n s  were demonstrated as i n c o r r e c t  

V 





INTRODUCTION 

PURPOSE. 

Thea t r i ca l  smoke is commonly used t o  t e s t  smoke d e t e c t o r s  and smoke c o n t r o l  
design f e a t u r e s  i n  a i r c r a f t .  
materials, t h e a t r i c a l  smoke genera tors  provide smoke plumes a t  r e l a t i v e l y  low 
temperatures which means they are not very buoyant. 
smoke plumes of themselves cannot simulate t h e  volumetr ic  gas expansion e f f e c t s  
assoc ia ted  with combustion. I n  order  t o  overcome these  shortcomings, a device  
was developed t o  generate  a buoyant mixture  of helium and a i r  as a carr ier  gas 
fo r  the  t h e a t r i c a l  smoke. 

I n  c o n t r a s t  t o  hot  smoke plumes from burning 

Furthermore, t h e a t r i c a l  

BACKGROUND. 

I n  some p a s t  a i r c r a f t  acc idents  r e s u l t i n g  from i n - f l i g h t  fires, smoke has  spread 
throughout the a i r c r a f t  cab in  ( re ferences  1 and 2 ) .  These acc idents  i n d i c a t e  
t h a t  cu r ren t  procedures and p resen t  a i r c r a f t  cab in  v e n t i l a t i o n  systems may no t  be 
ab le  t o  prevent  or e l imina te  t h i s  widespread smoke t r a n s p o r t  un le s s  t he  fire i s  
f i r s t  ext inguished.  
d i l u t i o n  as f r e s h  a i r  is pumped i n t o  t h e  cabin.  Since f r e s h  a i r  exchange rates 
are once every 3 t o  5 minutes,  t he  d i l u t i o n  process  can be expected t o  t ake  10 
t o  15 minutes f o r  s u b s t a n t i a l  smoke c l ea r ing .  

Even i n  t h a t  ins tance ,  t h e  smoke is removed by gradual  

Smoke con t ro l  t o  a g rea t  e x t e n t  i s  determined by t h e  a i r c r a f t  v e n t i l a t i o n  
system. 
and a i r  cyc le  machines t o  t h e  r i g h t  condi t ions  f o r  cabin  p re s su r i za t ion  and 
v e n t i l a t i o n .  The a i r  e n t e r s  t h e  cabin from overhead and/or s idewa l l  d i s t r i b u t i o n  
duc ts  through var ious  nozzles  t h a t  are designed t o  p r o j e c t  t h e  a i r  i n t o  t h e  cabin  
dynamically fox passenger comfort. The a i r  exi ts  the cabin through g r i l l s  a t  the  
base of t h e  cabin s idewalls .  The a i r  exits t h e  fuse l age  hull p r i n c i p a l l y  through 
an outflow va lve  t o  t h e  rear of the  a i r c r a f t  and below t h e  cabin f l o o r .  The 
o v e r a l l  a i r  flow i n  the  cabin  i s  from c e i l i n g  t o  floor and tends t o  flow 
rearward i n  the  cabin.  

Compressor b leed  a i r  from t h e  engines i s  passed through h e a t  exchangers 

Two conceptual  approaches were evaluated for improving smoke evacuat ion 
c a p a b i l i t y  through v e n t i l a t i o n  system changes ( r e fe rence  3). One approach added 
a c a p a b i l i t y  f o r  pumping ram a i r  i n t o  t h e  cabin,  and t h e  o the r  involved upgrading 
the  e x i s t i n g  bleed air  system t o  accommodate more a i r f low.  Both involved an 
a d d i t i o n a l  lower lobe  outflow valve i n  the  forward p a r t  of t h e  a i r c r a f t .  
motivat ion f o r  t he  a d d i t i o n a l  outf low valve was t h e  p o t e n t i a l  for l o c a l i z i n g  
smoke a t  t h e  source by us ing  t h e  n e a r e s t  outf low valve t o  t h e  f i r e  source.  
eva lua te  t h e  relative e f f e c t i v e n e s s  of t he  two smoke evacuat ion approaches,  a 
s i m p l i f i e d  
n e i t h e r  approach of fered  any s i g n i f i c a n t  improvement over cu r ren t  a i rc raf t  
v e n t i l a t i o n  systems. 

The 

To 

This  model i nd ica t ed  t h a t  cabin smoke spread model w a s  developed. 

I n i t i a l  expec ta t ions  were t h a t  one of the two system changes would result i n  a 
def inable  improvement over cu r ren t  systems. Had t h i s  been s o ,  a pro to type  of t h e  
b e s t  system would have been i n s t a l l e d  i n  an a i r c r a f t  t o  experimental ly  v e r i f y  t h e  
pred ic ted  improvement. The experiments would involve  continuous t h e a t r i c a l  smoke 
genera t ion  a t  var ious  p o i n t s  i n  t h e  a i r c r a f t  cab in  during l e v e l  c r u i s e  f l i g h t ,  
The p red ic t ions  of the  smoke spread model did no t  j u s t i f y  s e l e c t i o n  of e i t h e r  
approach for f l i g h t  t e s t i n g .  

1 
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The smoke spread model d id  not  i nc lude  buoyancy e f f e c t s .  
t h a t  a buoyant smoke source could be developed, t h e  a i r p l a n e  modi f ica t ion  
approach w a s  reworked s o  t h a t  t h e  a d d i t i o n a l  outf low va lve  would be i n s t a l l e d  on 
the  upper lobe of the  a i r c r a f t  r a t h e r  than  t h e  lower lobe.  
i n s t a l l a t i o n s  were designed, f a b r i c a t e d ,  and t e s t e d  on an experimental  B757 
( r e fe rence  4 ) .  
on the  systems eva lua t ion  s tudy  scena r ios  ( r e fe rence  3) and f ind ings  from related 
f i r e  t e s t  work ( r e fe rences  5 and 6 ) .  

With t h e  assumption 

Pro to type  system 

The development cr i ter ia  for t h e  buoyant smoke source  were based 

OBJECTIVE. 

The Object ive w a s  t o  design,  f a b r i c a t e ,  and eva lua te  a genera tor  of buoyant 
t h e a t r i c a l  smoke f o r  use  i n  a i r c r a f t  t e s t i n g  of cab in  smoke evacuat ion 
c a p a b i l i t y .  
a i r c r a f t  onboard smoke d e t e c t o r s .  

A secondary o b j e c t i v e  w a s  t o  determine t h e  s u i t a b i l i t y  f o r  t e s t i n g  

GENERATOR DEVELOPMENT 

DESIGN REOUIREMENTS. 

One of t h e  t h e a t r i c a l  smoke gene ra to r s  ex tens ive ly  used f o r  a i r c r a f t  smoke tests 
is  t h e  Rosco Smoke Machine (Model PRO 1500). The planned approach f o r  impart ing 
buoyancy t o  t h e  t h e a t r i c a l  smoke w a s  t o  dev i se  a way of mixing t h e  smoke wi th  
helium. The low atomic weight of helium makes i t  much less dense than  a i r  a t  
equ iva len t  temperatures and pressures .  Thus, a plume of pure helium could be 
expected t o  rise and flow somewhat l i k e  t h e  low d e n s i t y ,  ho t  gases  from a f i r e  
plume . 
The amount of gas t o  be generated was based on t h e  scena r ios  i n  t h e  systems 
eva lua t ion  s tudy.  These s c e n a r i o s  assumed a smoke source t h a t  produced 200 cubic  
f e e t  p e r  minute (cfm) of p a r t i c u l a t e  laden gas. In a f i r e ,  a i r  is  e n t r a i n e d  i n t o  
the  combustion zone, and t h e  air 's  oxygen conten t  reacts wi th  f u e l  t o  release 
energy. This  energy hea t s  t h e  combustion products  a long  wi th  i n e r t  components t o  
form a gas mixture  t h a t  is less dense b u t  makes up more volume than t h e  en t r a ined  
air .  Furthermore, t h e  mass ratio of a i r  to f u e l  will be  around 10 so t h a t  t h e  
mass a d d i t i o n  of f u e l  can be ignored t o  f i r s t  approximation. Thus, t h e  
volumetr ic  expansion e f f e c t s  of f i r e  can be s i m p l i f i e d  and t r e a t e d  as h e a t i n g  of 
a i r  t h a t  passes  through the  combustion zone. When t h e  ho t  gas  plume f lows 
a g a i n s t  w a l l s  and c e i l i n g s ,  some hea t  w i l l  be l o s t  and t h e  gas w i l l  
correspondingly con t r ac t  somewhat. The d e n s i t y  of t h i s  p a r t i a l l y  cooled gas w i l l  
g ive  t h e  volumetr ic  smoke a d d i t i o n  i f  t h e  mass f low of a i r  i n t o  t h e  f i r e  plume i s  
known. The t a r g e t  dens i ty  f o r  t h e  buoyant t h e a t r i c a l  smoke w a s  d e n s i t y  der ived  
from p a r t i a l l y  cooled c e i l i n g  l a y e r s  i n  r e l a t e d  f i r e  tests. 

I n  e f f o r t s  p a r a l l e l  t o  t he  a i r p l a n e  systems eva lua t ion ,  f i r e  tests w e r e  done on 
one-quarter and one-half scale a i r c r a f t  cab in  mockups ( r e fe rences  5 and 6 ) .  
These tests involved ce i l i ng - to - f loo r  v e n t i l a t i o n  p a t t e r n s  wi th  a i r  change t i m e s  
comparable t o  those found i n  a i r c r a f t .  V e n t i l a t i o n  rates and f i r e  s i z e s  were 
v a r i e d  t o  determine e f f e c t s  on t h e  cabin  i n t e r i o r  environment. Because t h e  f i r e s  
of i n t e r e s t  were those  t h a t  would no t  be immediately d e s t r u c t i v e  for an a i r c r a f t ,  
all tests were done with f i r e s  s m a l l  enough t h a t  c e i l i n g  l a y e r  temperatures  d id  
n o t  r each  500 OF over a lo-minute  test .  A major f i n d i n g  from t h e s e  tests was 
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t h a t  approximately 80 percent of the heat released i n  the combustion zone was 
absorbed by the ce i l ing  and upper cabin w a l l s .  
exhausted a t  the floor g r i l l  locat ion i n  the form of  heated exhaust gas. 
order t o  be able t o  r e l a t e  the a r t i f i c i a l  smoke generation t o  these f i r e  t e s t s ,  
the density of the a r t i f i c i a l  smoke w a s  targeted t o  be equivalent t o  a i r  heated 
t o  between 400 and 500 O F .  

have t o  be diluted with  a i r .  

Only 20 percent o r  less w a s  
In 

To get  t h i s  density,  i t  w a s  evident t h a t  helium would 

T h i s  200-cfm smoke production r a t e  from a f i r e  t h a t  loses  80 percent of i t s  heat 
t o  the enclosure l inings can be used t o  estimate the f i r e  source t h a t  i s  
represented. Using the simplified view of the f i r e  as heating of entrained a i r ,  
the equivalent fire heat re lease  rate for t h i s  smoke source can be defined as 
follows : 

9 = 5V2dl (TI /T2) Cp (T2-T.1) (1) 

I n  t h i s  equation,'Q is the f i r e ' s  energy re lease  r a t e ,  V is the volumetric 
production of gas, d is density,  C is heat capacity, T i s  absolute temperature, 

respectively.  
percent of plume heat being l o s t  t o  the enclosure l i n i n g  mater ia ls .  
of 475 OF f o r  the heated gas and 7 2  OF for ambient, the  200-cfm smoke source i s  
representative of a f i r e  heat re lease  r a t e  of 246,000 Btu/hr. 
the 2-gallon-per-hour oil burner used i n  cargo compartment l i n e r  tests 
(reference 7 )  theore t ica l ly  has a heat output of 250,000 Btu/hr. 
t h a t  a 200-cfm buoyant smoke source represents a s igni f icant  f i r e  source. 

and subscr ipts  1 and 2 r e f e r  t o  a m  E i e n t  and plume thermal conditions, 
The factor  of 5 i n  the equation compensates f o r  an assumed 80 

Using values 

For comparison, 

This ind ica tes  

The f i n a l  question associated with gas mixture requirements involves the  r a t i o  of 
helium t o  air tha t  is needed t o  simulate heated a i r  a t  a spec i f ic  temperature. 
This can be derived from use of the perfect  gas l a w  with mixtures. 

The subscr ipts  A and H r e f e r  t o  air and helium at ambient temperature and x is  
the mole f r a c t i o n  of helium i n  the  mixture. Equation 2 can be res ta ted  as 

where R r e f e r s  t o  the gas constants f o r  air  and helium respectively.  This can be 
rearranged t o  form 

The . la t te r  pressure r a t i o  can be subst i tuted by the following form of the l a w  of 
p a r t i a l  pressures: 

Equation 4 can then be manipulated t o  form 

3 



The r a t i o  of t he  partial pres su re  of helium t o  t h e  ambient p re s su re  i s  i d e n t i c a l  
t o  the  r a t i o  of the  volume of helium t o  t h e  volume of t h e  helium a i r  mixture .  
Using degrees  Rankine (OR) as t h e  temperature u n i t ,  equat ion 6 can  be w r i t t e n  as 
fo l lows  : 

Figure 1 shows a p l o t  of volume f r a c t i o n  of helium mixtures  t h a t  would have t h e  
same d e n s i t y  a t  7 2  OF t h a t  
mixture  of 50 percent  helium by volume i n  a i r  has t h e  same d e n s i t y  as a i r  hea ted  
t o  475 O F  (935 OR). 

heated  a i r  would over a range o f  temperatures .  A 

DEVICE DESCRIPTION. 

Figure 2 shows a schematic of t h e  device i n  i t s  o r i g i n a l  conf igu ra t ion  (Pa ten t  
Appl ica t ion  S e r i a l  No. 371,883, f i l e d  June 27 ,  1989).  A i r  is  suppl ied  through t w o  
h o r i z o n t a l  duc ts  running i n t o  t h e  base of t h e  mixing chamber (chimney). These 
duc t s  are each 5 inches  square .  
r i g h t  is 3 f e e t  long. The two muff in  f a n s  are powered through a speed c o n t r o l  
t ransformer so t h a t  a i r  d e l i v e r y  rate can be  ad jus t ed .  T h e a t r i c a l  smoke is  
i n j e c t e d  i n t o  t h e  longer  duc t  t o  a l low adequate mixing with a i r  so  t h a t  t h e  j e t  
of a e r o s o l  from the  smoke gene ra to r  w i l l  no t  impinge and c o l l e c t  on t h e  mixing 
chamber w a l l s .  Detail  A of f i g u r e  2 shows t h e  8-inch-diameter r i n g  t h a t  
d i s t r i b u t e s  the  helium t o  t h e  mixing chamber. 
i n  t h e  mixing chamber ( i . e . ,  t h e  a x i s  through t h e  r i n g  i s  v e r t i c a l ) ,  and t h e  
inner  circumference of t he  r i n g  h a s  12  h o l e s  d r i l l e d  wi th  a 5/32-inch b i t .  
r e g u l a t o r  p re s su re  from helium supply b o t t l e s  i s  ad jus t ed  t o  g e t  t h e  d e s i r e d  
helium f low rate .  Earlier a t t empt s  t o  p l ace  t h e  r i n g  d r i l l  h o l e s  on t h e  upper o r  
lower faces of the  de l ive ry  r i n g  were unsuccessfu l  due t o  j e t  pump e f f e c t s  i n  t h e  
mixing chamber r e s u l t i n g  from t h a t  conf igura t ion .  
1 f o o t  square  and 3 f e e t  high.  
p i ece  of r e t i c u l a t e d  foam (Type I p o l y e s t e r  s a f e t y  foam manufactured by S c o t t  
Paper Company). 
t o  t h e  o u t s i d e  such t h a t  t h e  smoke mixture  i s  uniform ac ross  t h e  ex i t  plane.  
T e s t s  without  t h e  foam evidenced e x i t  flows t h a t  were h ighly  asymmetrical, 

The l e f t  duc t  i s  1 f o o t  i n  l eng th  while  the 

The r i n g  is  mounted h o r i z o n t a l l y  

The 

The mixing chamber i t s e l f  is 
A t  t h e  o u t l e t  on t h e  top  i s  a 1.5-inch-thick 

This  foam causes  a s m a l l  p r e s su re  drop from t h e  mixing chamber 

To ge t  a mixture  t h a t  w a s  50 pe rcen t  each o f .he l ium and a i r ,  t h e  fo l lowing  
procedure w a s  used: A hand-held velometer w a s  placed a t  t h e  chamber e x i t ,  and 
t h e  a i r  flow w a s  ad jus t ed  u n t i l  a v e l o c i t y  of 100 f e e t  pe r  minute was a t t a i n e d .  
This  w a s  done wi th  the  helium supply turned  off. 
t he  fan speed c o n t r o l l e r  was l e f t  a t  t h e  s e t  position, and t h e  helium supply w a s  
turned on. The helium b o t t l e  r e g u l a t o r  p re s su re  w a s  increased  u n t i l  a hand-held 
oxygen ana lyze r  a t  the  mixing chamber ex i t  fnd ica t ed  an  oxygen conten t  of 
approximately 10.5 percent .  
be a t t a i n e d  by s e t t i n g  the  speed concro l  and t h e  helium p res su re  a t  t h e  gage on 
t h e  chamber f a c e  t o  the  c a l i b r a t i o n  va lues .  

Once t h i s  s e t t i n g  was achieved, 

In r o u t i n e  use, t h e  s a m e  mixture  and f low rate could 

Figure 3 shows the  device  in opera t ion  i n  a B707 test  fuse lage .  The view i s  from 
t h e  a f t  end of t h e  a i r c r a f t  cab in  looking forward a long  t h e  c e n t e r  a is le ,  The 
buoyant t h e a t r i c a l  smoke is  shown flowing out  of t h e  top  of t h e  mixing device.  
At t h e  lower r i g h t  is t h e  Rosco smoke machine. Also t o  t h e  r i g h t  are f i v e  ganged 
helium b o t t l e s  whlch provide about  10 minutes o p e r a t i o n  at the 200-cfm t o t a l  
d e l i v e r y  rate.  At t h e  t i m e  t h e  photograph w a s  taken,  t h e  smoke had spread  above 
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ha t r ack  l e v e l  a l l  t he  way t o  t h e  cockpi t .  
l i g h t  ha lo  around each of two f l o o d l i g h t s  l oca t ed  above t h e  ha t r ack  l e v e l .  Each 
l i g h t  is  loca ted  j u s t  forward o f  each of t h e  two ind iv idua l s  s t a t i o n e d  along t h e  
a i s l e .  

This i s  evidenced by t h e  s c a t t e r e d  

For t he  tests repor ted  here ,  t h e  Rosco P r o  1500 smoke machine was opera ted  a t  a 
s e t t i n g  of two. 
observa t ions ,  and it: was low enough t h a t  t h e  machine d id  not  cyc le  on and off  as 
i t  c h a r a c t e r i s t i c a l l y  does a t  higher  s e t t i n g s  ( r e fe rence  8 ) .  

This s e t t i n g  r e s u l t e d  i n  adequate smoke f o r  smoke movement 

AIRPLANE TESTS 

TEST PLAN. 

The B757 smoke evacuation t e s t  p l an  included t e n  ground tests and n ine  f l i g h t  
t e s t s  ( r e fe rence  4 ) .  Four of t h e  ground tests employed t h e  ROSCO Pro 1500 
without  t he  use of helium. These tests were p r imar i ly  d i r e c t e d  a t  t e s t i n g  
a i r c r a f t  and da ta  c o l l e c t i o n  systems, bu t  they  do o f f e r  a basis for comparison 
wi th  buoyant smoke. 
and those t e s t s  are the  major focus of t he  t e s t  d i scuss ion  of t h i s  r e p o r t .  
Figure 4 shows a schematic of t h e  tes t  a i r c r a f t  and shows design changes and 
a i r c r a f t  s t a t i o n  numbers. There w e r e  two des ign  changes: The flow c o n t r o l  
va lves  t h a t  r e g u l a t e  t he  cabin  air supply from t h e  engine compressors were both 
modified and rescheduled t o  provide t h r e e  flow s e t t i n g s .  They were (1) t h e  100 
percent  t h a t  i s  used normally when cabin a i r  r e c i r c u l a t i o n  fans  are i n  opera t ion ,  
( 2 )  the  a v a i l a b l e  165 percent  f o r  use when r e c i r c u l a t i o n  fans a r e  out  of 
opera t ion ,  and (3) t h e  215 percent  s e t t i n g  t h a t  i s  no t  a v a i l a b l e  on product ion 
a i r c r a f t .  
p ressure-cont ro l l ing  outflow valve on t h e  s t a rboa rd  s i d e  of t h e  B757 a t  s t a t i o n  
490 a t  roughly the  2 o 'c lock p o s i t i o n  looking forward. 

Six of t h e  ground tests employed t h e  helium mixing device,  

The o ther  design change w a s  t he  i n s t a l l a t i o n  of a B737 product ion 

The t h r e e  flow s e t t i n g s  have t o  be put  i n  pe r spec t ive  wi th  regard t o  a c t u a l  
a i r c r a f t  opera t ions .  
w i l l  be 100 percent  and both r e c i r c u l a t i o n  fans  w i l l  be on. 
and r e c i r c u l a t e d  a i r  amount t o  a d e l i v e r y  ra te  of 300 pounds per  minu te . .  
Emergency procedures for cab in  smoke evacuat ion i n  t h e  B757 c a l l  f o r  s h u t t i n g  o f f  
both r e c i r c u l a t i o n  fans .  A t  t h e  100 percent  pack s e t t i n g ,  t h i s  would r e s u l t  i n  
t he  de l ive ry  rate dropping t o  142 pounds per  minute. However, when t h e  
r e c i r c u l a t i o n  fans  are turned o f f ,  as  pe r  emergency procedures,  the packs 
au tomat ica l ly  go t o  165 percent .  A t  Bea level takeoff  condi t ions ,  t h e  165 
percent  s e t t i n g  g ives  234 pounds p e r  minute air supply. The 215 percent  pack 
s e t t i n g  provides  307 pounds pe r  minute, which i s  v i r t u a l l y  t h e  s a m e  as t h e  t o t a l  
f r e s h  and r e c i r c u l a t e d  flow under normal a i r p l a n e  operat ions.  
s e t t i n g s  of 165 and 215 percen t  provide a c a p a b i l i t y  of determining whether 
increased a i r f low affects smoke removal. 

I n  a normal takeoff  conf igu ra t ion ,  t h e  a i r  pack s e t t i n g s  
The combined f r e s h  

The t e s t  pack 

The t h r e e  smoke generation l o c a t i o n s  for t hese  tes ts  were ad jacent  t o  t h e  p o r t  
s idewal l  a t  s t a t i o n s  465, 1030, and 1664. These s t a t i o n s  a r e  a t  t h e  forward, 
middle, and a f t  l oca t ions  i n  t h e  passenger cabin.  Two smokemeters w e r e  mounted 
a t  each of f i v e  s t a t i o n s  along the  fuse lage .  The s t a t i o n  p o s i t i o n s  w e r e  560, 
800, 1030, 1270, and 1530. Thus, t h e  smokemeter s t ands  w e r e  spaced a t  
approximately 20-foot i n t e r v a l s  along t h e  cabin  l eng th .  The top smokemeter w a s  
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66 inches  above the  f l o o r ,  and t h e  bottom m e t e r  w a s  4 3  i nches  above t h e  f l o o r .  
Figure 5 shows a schematic of t he  type  smokemeter used i n  these  tests. 
smokemeter s i g n a l s  were processed i n  an  ACRO 900 d a t a  a c q u i s i t i o n  system and 
s to red  on a Zeni th  181 lap-top computer. Besides manual no te s  recorded by t e s t  
p a r t i c i p a n t s ,  f u r t h e r  documentation w a s  gathered i n  t h e  form of video coverage 
from t h r e e  video cameras. A camera w a s  mounted a t  each end of t h e  cab in  wi th  a 
view down the  length  of t he  fuse lage .  
moved with t h e  smoke genera tor  to g e t  coverage of smoke behavior  a t  t h e  
genera t ion  loca t ion .  

The 

The t h i r d  camera w a s  on a t r i p o d  which w a s  

The a i r  d e l i v e r y  ra te  t o  t h e  cabin  w a s  monitored through observa t ion  of t h e  
p re s su re  i n  the  a i r c r a f t  mix manifold.  Air from t h e  l e f t  and r i g h t  packs along 
wi th  r e c i r c u l a t e d  air from two f a n s  are brought t oge the r  i n  t h i s  manifold before  
flowing t o  the  cabin d i s t r i b u t i o n  duc ts .  

Table 1 shows the  t es t  cond i t ions  f o r  the t e n  ground tests. I n  tests 1 through 
4, t h e  t es t  du ra t ion  was planned t o  l a s t  u n t i l  t h e  smoke s p a t i a l l y  s t a b i l i z e d  b u t  
no longer  than 10 minutes each. Tests 14, 16, and 18 w e r e  t o  be conducted wi th  
a i r  packs i n  opera t ion  u n t i l  smoke s p a t i a l  s t a b i l i z a t i o n  o r  10 minutes.  A t  t h a t  
time t h e  packs would be turned  of f  and two a i r c r a f t  doors opened. Smoke 
genera t ion  would then cont inue f o r  2 more minutes.  These t h r e e  tests would have 
a s p e c t s  of a smoke-filled a i r c r a f t  l anding  using c u r r e n t  procedures and systems. 
The 2 minutes of added smoke genera t ion  wi th  doors  open a r e  somewhat 
r e p r e s e n t a t i v e  of a per iod f o r  passenger evacuat ion.  These t h r e e  t e s t s  (14, 16 ,  
and 18) employed helium f o r  buoyancy, had t h e  165 percent  pack flow s e t t i n g ,  used 
t h e  lower lobe rear outflow valve, and had r e c i r c u l a t i o n  f ans  turned o f f .  

T e s t s  15, 17, and 19  w e r e  planned t o  inc lude  a s p e c t s  of t h e  two des ign  change 
concepts and a l s o  t o  inc lude  helium for buoyancy. The a i r  pack flow s e t t i n g  w a s  
215 pe rcen t ,  t he  r e c i r c u l a t i o n  f ans  were o f f ,  and t h e  outf low valve n e a r e s t  t h e  
smoke source w a s  open whi le  t h e  o t h e r  w a s  c losed.  These tests were t o  be 
conducted wi th  a i r  packs i n  ope ra t ion  u n t i l  smoke s t a b i l i z a t i o n  or 10 minutes.  
At: t h a t  t i m e  two doors would be opened, b u t  t h e  packs would be l e f t  on and smoke 
genera t ion  would cont inue.  A f t e r  2 minutes i n  t h e  doors open and pack on mode, 
t he  packs would be turned o f f ,  b u t  smoke genera t ion  would cont inue f o r  another  2 
minutes.  These tests might show i f  continued cabin v e n t i l a t i o n  dur ing  passenger  
evacuat ion w a s  of any b e n e f i t .  

The smoke movement observa t ions  i n  these  ground t e s t s  could change i n  f l i g h t  due 
t o  one major f a c t o r .  
fu se l age  h u l l  w a s  too n e g l i g i b l e  t o  cause s i g n i f i c a n t  leakage. Thus, a l l  t h e  
a i r f l o w  leaves  the  a i r p l a n e  through t h e  outf low valves. For example, u se  of t h e  
rear outf low valve i n  the  165 pe rcen t  pack s e t t i n g  mode with r e c i r c u l a t i o n  f ans  
of f  would r e s u l t  i n  a l l  a i r  d i s t r i b u t e d  t o  t h e  f r o n t  h a l f  of t h e  cabin  moving 
a x i a l l y  i n  the  fuse l age  from f r o n t  t o  rear. This same condi t ion  i n  p re s su r i zed  
f l i g h t  would have a smaller axial  v e l o c i t y  component because a i r  would leave the 
fuse l age  n o t  only through t h e  outf low va lve  bu t  a l s o  by means of numerous 
leakage p o i n t s  such as door seals on t h e  main deck and i n  t h e  cargo 
compartments. 

I n  the  ground tests t h e  p re s su re  d i f f e r e n t i a l  a c r o s s  the 
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TABLE 1. TEST CONDITIONS 

AIRPLANE VENTILATION 

TEST 
NO. 

1 

2 

3 

4 

1 4  

15 

1 6  

1 7  

18 

1 9  

OUTFLOW 
VALVE 

AFT 

1;wD 

AFT 

FWD 

AFT 

FWD 

AFT 

AFT 

AFT 

AFT 

NONBUOYANT TEST RESULTS. 

RECIRC 
FANS 

ON 

ON 

OFF 

OFF 

OFF 

OFF 

OFF 

OFF 

OFF 

OFF 

PACK 
FLOW 
(%I 

100 

100 

2 15 

215 

1 6 5  

215  

1 6 5  

2 1 5  

165 

2 1 5  

STATION 
LOCATION 

1030 

1030 

1030 

1030 

4 65 

465 

1664 

1 6 6 4  

1030 

1030 

SMOKE 
GENERATION 

BUOYANT 

NO 

NO 

NO 

NO 

YES 

YES 

YES 

YES 

YES 

YES 

CABIN 
DOORS 
USED 

NONE 

NONE 

NONE 

NONE 

4L, 4R 

4L, 4R 

l L ,  1R 

l L ,  1R 

lL, 1R 

l L ,  1R 

In t e s t s  1 through 4 ,  smoke was generated without helium with the smoke machine 
located at station 1030 for a l l  four t e s t s .  In  a l l  these t e s t s ,  the  smoke moved 
with the flow of vent i la t ion  a i r  i n  the cabin. Test 1 had the a i r  pack flow 
se t t i ng  a t  100 percent and both rec i rcu la t ion  fans on. 
makes up approximately half of the  cabin a i r  delivered, roughly half  the  a i r  
outflow from the cabin went t o  the rec i rcu la t ion  fans i n  the f ront  while the r e s t  
went t o  the lower lobe outflow valve i n  the rear .  The net  e f f ec t  was a 
negligible cabin axial flow a t  the smoke generation point with the r e s u l t  t ha t  
the smoke produced remained confined t o  the area between s ta t ions  850 and 1300. 

In  t e s t  2, the pack se t t i ng  was at 100 percent and both recirculat ion fans were 
on. However, the upper lobe outflow valve was used instead of the  lower lobe 
valve. Since all cabin airflow sinks w e r e  i n  the f ront  half  of the a i r c r a f t ,  a l l  
the smoke flowed t o  the f ront  of the a i r c r a f t  where it could e x i t  through the 
outflow valve o r  through the f loor  g r i l l s .  No smoke flowed i n  the  a f t  direct ion.  

Since recirculated a i r  

For  t e s t s  3 and 4 ,  the recirculat ion fans were turned o f f  and the  pack se t t i ng  
was 2 1 5  percent. 
the smoke spread rapidly t o  the rear  of the a i r c r a f t .  The ax ia l  flow was strong 
enough t o  tilt the smoke plume from the  smoke machine rearward. No smoke flowed 
forward. 

In t e s t  3, the rear  outflow valve was used with the r e s u l t  t ha t  
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In test  4 ,  the  forward upper lobe outflow was used with the r e s u l t  t ha t  the smoke 
spread t o  the forward cabin and exited through the outflow valve. No smoke moved 
rearward i n  t h i s  test. 

Because the thea t r i ca l  smoke flowed with the ven t i l a t ion  a i r ,  strong three- 
dimensional e f f ec t s  were observed i n  these t e s t s  due t o  the placement of the 
smoke generator against  the port  cabin wall. The most dramatic example was i n  
t e s t  3 where the ce i l ing  vent i la t ion  j e t s  blocked the t h e a t r i c a l  smoke from 
moving across the cabin t o  t h e  starboard side.  The e f f ec t s  of the  ven t i l a t ion  
j e t s  coupled with the a x i a l  f l o w  i n  the cabin caused the smoke t o  move rearward 
i n  a s p i r a l  fashion along the port  side.  

The r e s u l t s  of these tests can be compared with the predictions from the  non- 
buoyant model developed e a r l i e r  (reference 3) .  
would remain localized a t  the center of the cabin with current procedures and 
also with the 215 percent a i r  pack se t t ing ;  and i n  both cases,  between 62 and 65 
percent of the cabin length would be f r ee  of smoke. In  t e s t s  3 and 4 ,  the  smoke 
moved from the midpoint t o  e i the r  the back o r  front end of the  fuselage; and i n  
both cases, 50 percent of the fuselage remained smoke f ree .  In t e s t  1 where the 
smoke d i d  remain localized, the smoke f r e e  f r ac t ion  of the  fuselage was 68 
percent. However, because the rec i rcu la t ion  fans were on i n  test 1, the test  
cannot be considered representat ive of current procedures. 

That model predicted the  smoke 

BUOYANT TEST RESULTS. 

Tests 1 4 ,  16, and 18 employed the 200-cfm buoyant smoke and were iden t i ca l  
except fo r  smoke generator locat ion (forward, a f t ,  and m i d  fuselage, 
respectively.  Because the rec i rcu la t ion  fans were off and the a f t  outflow valve 
was used, the average rearward fuselage ax ia l  flow a t  the  165 percent pack 
se t t i ng  would be approximately 15 f e e t  per minute or  0.25 f e e t  per second. This 
would range from near zero a t  the f ront  of the cabin t o  nearly 0.5 f e e t  per 
second a t  the back. 

Unlike the r e s u l t s  of t e s t s  1 through 4 where the  smoke followed the  ven t i l a t ion  
a i r ,  the  buoyant smoke i n  t e s t s  14, 16, and 18 t rave l led  along the  fuselage a t  
speeds and direct ions r e l a t ive ly  unaffected by the a x i a l  vent i la t ion  flow 
ve loc i t ies .  
smoke. 
w a l l ,  the r i s i n g  smoke plume quickly spread l a t e r a l l y  across the cabin. 
given time, the overal l  cabin smoke pat tern o r  density varied longi tudinal ly  
along the cabin length and vertically--but not laterally--across the cabin. 

Also i n  contrast  was the two-dimensional behavior of the  buoyant 

At a 
Even though the buoyant smoke generator was adjacent t o  the por t  cabin 

These three t e s t s  involved generating smoke with the  airplane ven t i l a t ion  system 
turned on fo r  5 minutes, 20 seconds; 6 minutes, 18 seconds; and 6 minutes, 15 
seconds, respectively.  
and t w o  doors were opened f o r  an addi t ional  2 minutes of continued smoke 
generation (simulated passenger evacuation period). For a l l  three tests, the,  
following observations applied: 

At t h a t  time the vent i la t ion  w a s  turned o f f  i n  each test ,  
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1. The smoke remained s t r a t i f i e d  i n  the  v i c i n i t y  of t h e  smoke genera tor .  

2 .  A s  t he  smoke moved along the  c e i l i n g ,  t h e  c e i l i n g  v e n t i l a t i o n  j e t s  caused 
mixing, s o  t h a t  t he  smoke became more homogenous from floor to c e i l i n g  as t h e  
d i s t ance  from the  smoke genera t ion  poin t  increased.  

3. By about 5 minutes,  f l o o r  l e v e l s  throughout t h e  a i r c r a f t  w e r e  hazy. 

4 .  Conditions in the  cabin  s tayed  t h e  same o r  became s l i g h t l y  worse during 
the  2-minute per iod when the v e n t i l a t i o n  w a s  turned o f f .  

An important number t o  de r ive  from these  t e s t s  is t h e  ra te  t h e  c e i l i n g  smoke 
l aye r  moved along the  a i r c r a f t .  Figure 6 shows t h e  scgnal  t r a c e s  a t  t h e  top 
smokemeters a t  s t a t i o n s  1530 and 800 during t e s t  16 .  Since t h e  smoke took 62 
seconds t o  t r a v e l  61 f e e t ,  t he  smoke movement ra te  from r e a r  t o  f r o n t  between the  
two s t a t i o n s  w a s  0.98 f e e t  per  second. Visual  observa t ion  during t h e  same tes t  
showed the  smoke reaching s t a t i o n  800 a t  85 seconds a f t e r  smoke genera t ion  
s t a r t e d  a t  s t a t i o n  1664. This i n d i c a t e s  a movement rate of 0.85 f e e t  pe r  second. 
I n  tes t  18, manual no tes  i n d i c a t e  t h a t  t he  smoke reached s t a t i o n  700 a t  30 
seconds a f t e r  the s t a r t  of smoke genera t ion  a t  s t a t i o n  1030. This i n d i c a t e s  a 
movement of 0.92 f e e t  per  second. Thus, t h e  forward smoke l a y e r  progress ion  
speed i n  these  tests can be approximated a t  0.9 f e e t  pe r  second. 

Data l i k e  t h a t  on f i g u r e  6 can be analyzed f o r  t h e  rearward smoke movement i n  
t e s t  14. The da ta  i n d i c a t e  t h a t  t h e  smoke t r a v e l e d  from t he  smokemeters a t  
s t a t i o n  800 t o  those a t  1530 i n  5 2  seconds. 
f e e t  per  second when the  smoke i s  moving wi th  t h e  a x i a l  flow r a t h e r  than  aga ins t  
i t .  Doing the  a n a l y s i s  a t  s t a t i o n  1030 i n s t e a d  of 800 l eads  t o  an ind ica t ed  
movement r a t e  of 2 f e e t  per  second. Thus, t h e  rearward smoke movement is  
somewhere in the  v i c i n i t y  of 1.5 feet per  second. 

This  g ives  a movement r a t e  of 1.2 

I f  t h e  average rearward v e n t i l a t i o n  v e l o c i t y  were 0.3 f e e t  per  second, a smoke 
movement v e l o c i t y  of 1 .2  f e e t  pe r  second i n  s t i l l  a i r  would become 0.9 f e e t  p e r  
second i n  the  forward d i r e c t i o n  or 1.5 f e e t  p e r  second i n  t h e  rearward d i r e c t i o n .  
The r e l a t i v e  s i z e s  of these  numbers are s i g n i f i c a n t  i n  iden t i fy ing  t h e  type a x i a l  
v e l o c i t i e s  needed for smoke con t ro l .  It i s  f u r t h e r  important t o  no te  t h a t  a more 
buoyant (or  h o t t e r )  smoke would have a higher  v e l o c i t y  i n  s t i l l  air t h a n , t h e  
smoke t h a t  i s  the  objec t  of this discuss ion .  

Tes ts  15, 17, and 19  a l l  had the  v e n t i l a t i o n  s e t t i n g  of 215 percent  and 
t h e r e f o r e  should have had axial cabin  flow 30 pe rcen t  higher  than t h e  tes ts  a t  
the  165 percent  s e t t i n g .  Test 15 had buoyant smoke product ion i n  t h e  forward 
p a r t  of t he  cabin and employed t h e  forward upper lobe  outflow valve.  I n  t h i s  
tes t  the  smoke w a s  confined t o  t h e  cabin  f r o n t  and ex i t ed  t h e  outf low valve 
without  spreading throughout t h e  cabin  length.  However, when t h e  v e n t i l a t i o n  w a s  
l e f t  on and the a f t  cabin doors opened, t he  smoke moved from t h e  f r o n t  t o  t h e  a f t  
cab in  wi th  smoke throughout w i t h i n  a 2-minute per iod .  
turned of f  and smoke genera t ion  continued f o r  2 more minutes. There w a s  no 
subs t an t ive  change i n  cabin  condi t ions  i n  t h i s  l a t t e r  per iod.  

The v e n t i l a t i o n  was then 

Tes t  17 involved smoke genera t ion  i n  t h e  a f t  cab in  and used t h e  lower lobe  
outflow valve.  Although the  smoke d id  spread throughout t he  cabin  i n  t h i s  tes t ,  
the smoke i n  the forward cabin  remained extremely t h i n  u n t i l  t h e  forward 
passenger doors were opened a t  6 minutes i n t o  t h e  t e s t .  A t  t h a t  po in t  t h e  smoke 
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from t h e  rear of t he  cabin  moved forward and s u b s t a n t i a l l y  lowered v i s i b i l i t y  at 
a l l  p o i n t s  i n  the  cabin ahead of s t a t i o n  800. When t h e  v e n t i l a t i o n  w a s  shu t  off 
2 minutes la ter  and smoke genera t ion  continued, v i s i b i l i t y  condi t ions  i n  the 
forward cabin continued t o  remain poor. 

Figures  7 and 8 compare t h e  l i g h t  t ransmiss ion  a t  t h e  smokemeter l o c a t i o n  
c l o s e s t  t o  t h e  smoke source f o r  t es t s  15 and 17. The per iod  of smoke genera t ion  
p r i o r  t o  opening the  cabin  doors w a s  3 minutes and 2 seconds f o r  t e s t  15 and 6 
minutes for t es t  17 .  I n  t e s t  15, t h e  continuous ven t ing  through t h e  upper lobe 
outf low valve r e s u l t e d  i n  very  l i t t l e  smoke obscura t ion  i n  t h a t  area of t h e  
cabin.  The upper and lower smokemeters a t  s t a t i o n  560 were averaging 94 and 97 
percent  t ransmission,  r e s p e c t i v e l y .  A t  3 minutes i n t o  t e s t  17, t h e  upper and 
lower smokemeters a t  s t a t i o n  1530 w e r e  averaging 7 7  and 93 percent  t ransmiss ion ,  
r e s p e c t i v e l y .  I n  t es t  17 t h e  buoyant smoke could n o t  ex i t  a t  t h e  c e i l i n g .  Thus, 
t he  smoke could move only l o n g i t u d i n a l l y  a long t h e  fuse l age  c e i l i n g  o r  downward 
as i t  w a s  mixed by the  c e i l i n g  v e n t i l a t i o n  jets. 

T e s t  19 involved smoke gene ra t ion  i n  t h e  mid cab in  and use  of t h e  a f t  outf low 
valve. 
forward when the  forward doors were opened and v i s i b i l i t y  remaining poor dur ing  
t h e  2-minute per iod fol lowing V e n t i l a t i o n  shu to f f .  However, t h e  smoke spread 
f a s t e r  and wi th  more obscura t ion  i n t o  t h e  f r o n t  of t h e  cabin  i n  t h e  e a r l y  p a r t  oi 
t h i s  test as compared t o  t e s t  17. 

The r e s u l t s  of t h i s  t es t  were very  similar t o  test  17 w i t h  smoke f lowing 

The buoyant smoke t e s t  r e s u l t s  can be  compared wi th  t h e  nonbuoyant model 
p r e d i c t i o n s  ( r e fe rence  3). For the var ious  o p e r a t i o n a l  conf igu ra t ions ,  t h e  model 
p r e d i c t s  62 t o  65 percent  of t h e  cabin  l eng th  w i l l  remain smoke f r e e  when smoke 
is generated i n  the  mid-cabin area. 
t h e  model p r e d i c t s  t h a t  8 4  t o  88 pe rcen t  of t h e  cab in  length  w i l l  be  smoke f r e e .  
When smoke is generated i n  the  f r o n t  of t h e  cabin ,  t h e  model p r e d i c t s  t h a t  79 t o  
91 pe rcen t  of t he  cabin  l eng th  w i l l  be smoke f r e e .  
wi th  buoyant smoke generated a t  these  l o c a t i o n s  r e s u l t e d  i n  ZERO percen t  of t h e  
cabin  l eng th  being smoke f r e e .  
cabin and had the forward upperlobe outf low valve i n  opera t ion ,  r e s u l t e d  i n  
approximately 72  percent  of t h e  cabin  l eng th  remaining smoke f r e e .  

When smoke i s  generated i n  t h e  a f t  cab in ,  

Except f o r  t es t  15, t h e  tests 

T e s t  15, which had smoke generated in t h e  forward 

ADDITIONAL APPLICATIONS 

The buoyant smoke generator  developed f o r  t h e  a i r p l a n e  smoke evacuat ion program 
has been used i n  subsequent a p p l i c a t i o n s  i n  t h e  commercial and m i l i t a r y  a i r p l a n e  
s e c t o r s .  
who t r i e d  t h e  devices  i n  B747-400 and MD-11 a p p l i c a t i o n s  r e s p e c t i v e l y .  The USAF 
M i l i t a r y  A i r l i f t  Center used t h e  device  i n  f l i g h t  tests of t h e  C-5B t o  test  the 
e f f e c t i v e n e s s  of t he  a i r p l a n e  smoke d e t e c t o r s  and t o  f i n d  more e f f e c t i v e  
l o c a t i o n s  fo r  t h e i r  placement. The 4950th Test Wing of t h e  USAF Aeronaut ica l  
Systems Div i s ion  used the  device  t o  tes t  t h e  e f f e c t i v e n e s s  of t h e  cab in  smoke 
d e t e c t o r s  and t h e i r  i n s t a l l a t i o n  housings in t h e  VC-25A a i r p l a n e .  

Copies of t he  o r i g i n a l  pro to type  have been loaned t o  Boeing and Douglas 
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SUMMARY 

A buoyant t h e a t r i c a l  smoke genera tor  w a s  developed and t e s t e d  f o r  a i r p l a n e  
app l i ca t ions .  
cubic  f e e t  per  minute a t  475 O F .  
output of a 2-gallon-per-hour oil burner  and i s  achieved by mixing 100 cubic  
f e e t  per  minute each of a i r  and helium. T h e a t r i c a l  smoke is en t r a ined  i n t o  t h i s  
mixture for e i t h e r  t r a c i n g  smoke plume movement o r  t e s t i n g  smoke d e t e c t o r s .  

The device s imula tes  a ho t  a i r  plume wi th  a product ion ra te  of 200 
This  i s  a source t h a t  is comparable wi th  t h e  

Airplane tests t o  da t e  have shown t h a t  t e s t  r e s u l t s  from such a buoyant smoke 
source are r a d i c a l l y  d i f f e r e n t  from those t h a t  are found when a commercial 
t h e a t r i c a l  smoke generator  i s  used by i t s e l f .  With nonbuoyant smoke, cab in  a i r  
flow management i n  some cases can r e s u l t  i n  confinement of smoke t o  t h e  
genera t ion  area. For  i n s t ance ,  when a t h e a t r i c a l  smoke generator  is placed i n  
the  rear of the passenger cabin,  t h e  smoke w i l l  o f t e n  remain l o c a l i z e d  t h e r e  when 
a i r c r a f t  r e c i r c u l a t i o n  f a n s  i n  t h e  f r o n t  of t h e  a i r c r a f t  are turned o f f .  Turning 
the  fans  off  r e s u l t s  in a fore t o  a f t  cab in  f low t h a t  blocks a nonbuoyant smoke 
from spreading forward. I n  c o n t r a s t ,  a buoyant smoke can overcome t h i s  axial 
flow and spread aga ins t  i t  a l l  t h e  way t o  the  f r o n t  of t h e  cabin.  

Nonbuoyant t h e a t r i c a l  smoke moves through t h e  cabin  i n  a manner t h a t  i s  a 
t e l l t a l e  f o r  o v e r a l l  cabin v e n t i l a t i o n  flows. For i n s t ance ,  when smoke i s  
generated i n  the  f r o n t  of t h e  cabin  wi th  a f t  lower lobe  outf low valve open and 
r e c i r c u l a t i o n  fans o f f ,  t h e  smoke w i l l  very g radua l ly  move from t h e  f r o n t  of t h e  
a i r c r a f t  t o  some po in t  i n  t h e  a f t  h a l f  of t h e  cabin.  The smoke i n  t h e  aft p a r t  of 
the  cabin w i l l  hug t he  f l o o r .  This i s  demonstrating t h a t  t h e  v e n t i l a t i o n  a i r  
d i s t r i b u t e d  i n  the  f r o n t  h a l f  of t h e  aircraft  i s  a x i a l l y  car ry ing  a l l  t h e  
generated smoke rearward. 
because the  r e c i r c u l a t i o n  f ans  a r e  o f f .  Once t h e  smoke i s  c a r r i e d  p a s t  t h e  wing 
roo t  a r e a ,  then air and smoke can e x i t  f l o o r  g r i l l s  and flow t o  t h e  a f t  outflow 
valve.  Thus, when the  rearward moving smoke and a i r  g e t s  t o  the a f t  h a l f  of t h e  
a i r c r a f t ,  t he  a i r  from the  f r o n t  combined wi th  a i r  de l ive red  through t h e  
d i s t r i b u t i o n  duc t s  i n  t h e  rear r e s u l t s  i n  a downward flow of a i r  t h a t  keeps t h e  
smoke near  t he  f l o o r  i n  the  a f t  ha l f  of t h e  a i r c r a f t .  

None can leave through t h e  forward f l o o r  g r i l l e s  

Under t h e  i d e n t i c a l  a i r p l a n e  conf igura t ion  ( r e c i r c u l a t i o n  f ans  o f f  and a f t  
outflow valve open), buoyant t h e a t r i c a l  smoke generated i n  t h e  f r o n t  of t h e  cabin  
r e s u l t s  i n  r e l a t i v e l y  quick spread of smoke t o  t h e  rear of t h e  a i r c r a f t  cabin.  
Near the  smoke generat ion po in t ,  t he  smoke remains r e l a t i v e l y  s t r a t i f i e d  near  t h e  
c e i l i n g .  However, as the  buoyant smoke moves a f t ,  it i s  con t inua l ly  mixed  by 
downward d i r e c t e d  c e i l i n g  V e n t i l a t i o n  je t s .  Thus, t h e  smoke a t  t h e  rear of t h e  
cahin  i s  r e l a t i v e l y  homogenous i n  dens i ty  from f l o o r  t o  c e i l i n g .  
minutes a buoyant smoke plume a t  one end of t h e  cab in  w i l l  lead t o  poor 
v i s i b i l i t y  condi t ions  throughout t h e  cabin.  

I n  a matter of 

Airplane t e s t i n g  has shown t h a t  t h e  buoyant smoke can be l oca l i zed  i n  t h e  cab in  
when a x i a l  f lows are aided by a v e n t i l a t i o n  a i r  outf low va lve  a t  t h e  c e i l i n g  of 
t h e  a i r c r a f t  i n  the  v i c i n i t y  of t h e  smoke o r i g i n a t i o n  po in t .  
t es t  t h a t  demonstrated t h i s  smoke containment c a p a b i l i t y ,  t h e  buoyant plume was  
l oca t ed  i n  the  forward p a r t  of t h e  cab in  ahead of a p a i r  of f i r s t  c l a s s  d i v i d e r s ,  
and t h e  v e n t i l a t i o n  flow w a s  a t  t h e  215 percent  s e t t i n g .  Recorded manual no te s  
show t h a t  t h e  c e i l i n g  smoke l a y e r  spread back t o  these  d iv ide r s .  Since a l l  cabin 
a i r  was flowing forward t o  t h e  forward c e i l i n g  mounted outflow valve, t h e s e  

I n  t h e  s p e c i f i c  
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dividers  provided a flow cons t r ic t ion  t h a t  accelerated the axial flow even more 
a t  t h a t  location. 
the c e i l i n g  smoke layer from moving any fur ther  a f t  i n  the cabin. 
effect iveness  of venting the cabin from the c e i l i n g  could be determined only by 
fur ther  systematic study with var ia t ion  of the following parameters: smoke 
generation point ,  ce i l ing  vent locat ion,  v e n t i l a t i o n  a i r  supply r a t e ,  and 
locat ion of cabin dividers.  
not necessar i ly  mean penetrat ion of the fuselage h u l l  i n  the upper lobe. 
Alternat ively,  a vent located i n  the c e i l i n g  could be routed through ducting t o  
an outflow locat ion below the main deck. 

This flow forward between the dividers  w a s  adequate t o  prevent 
The general 

It can be fur ther  noted t h a t  c e i l i n g  venting does 
I 

Mixing helium with a i r  a l so  allows p a r t i a l  simulation of the volumetric 
expansion e f f e c t s  associated with combustion. 
a 200-cubic-foot-per-minute buoyant source may not be too s i g n i f i c a n t  i n  a non- 
compartmentized passenger cabin where the overa l l  v e n t i l a t i o n  flow may be from 
one t o  several  thousand cubic f e e t  per minute. 
minute buoyant source is  l i k e l y  t o  have s i g n i f i c a n t  e f f e c t s  i n  confined 
compartments ( l i k e  cockpits and lavator ies)  where the  overa l l  v e n t i l a t i o n  r a t e s  
can be comparable t o  or s i g n i f i c a n t l y  less than t h e  200 figure.  For example, the  
B757 cockpit  vent i la t ion  r a t e  is approximately 280 cubic f e e t  per minute. 
Airplane lavatory v e n t i l a t i o n  rates are generally 35 t o  40 cubic f e e t  per minute. 
C e r t i f i c a t i o n  smoke tests involve placing a smoke generator i n  the  lavatory and 
demonstrating t h a t  nothing more than wisps of smoke escape i n t o  the passenger 
cabin. What t h i s  e s s e n t i a l l y  shows is t h a t  the  a i r  flow is managed such t h a t  
cabin air can flow in to  the lavatory from the cabin during f l i g h t  but not from 
the lavatory i n t o  the cabin. 
might overwhelm the smoke containment o r  management c a p a b i l i t i e s  of these type 
compartments. 

The expansion effect: simulated by 

However, the 200-cubic-foot-per- 

Use of the 200-cubic-foot-perminute buoyant source 
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