
I
J

"·

J

FAA WJH Technical Center
\WIIIIIIIIIIIIIIIIIIllllllllllllllllllmllllllll

00093297

DOT/FAA/CT-91/19

FAA Technical Center
Atlantic City International Airport
N.J. 08405

Avionic Data 13us
1 hnology

::. ;;; ·::. -~~ ::;
··~· ·:::- ·:: -::: ·~=·

December 1991

Final Report

This document is available to the U.
... u,;v.,~_lofh the National Technical

fie

0 0

U.S. Department of Transportation
Federal Aviation Administration

NOTICE

This document is disseminated under the sponsorship
of the U.S. Department of Transportation in the interest
of information exchange. The United States Government
assumes ~o liability for the contents or use thereof.

The United States . Government does not endorse
products or manufacturers. Trade or manufacturers'
names appear herein solely because they are considered
essential to the objective of this report.

I. Aepett Ne.

DOT/FAA/CT-91/19
•· Title eft4f Su~title

AVIONIC DATA BUS INTEGRATION TECHNOLOGY

T ec .. lc•l R.,ort O.Cu t .. IOft P•t•

s. ...,. , •••
December 1991

•· ,...,,.,.,,., o . ..,., c.-

t:7r .. -:&Au:th~_,~-:i:i1)1--------------------------- I. ,...,,.,_.,., o,,.,., • .,,.,. lt.,.,t Ne.

D. Elwell, L. Harrison, J. Hensyl, and N. VanSuetendael
t. ,..,,_,.,,., Ort•laetle~~ N-• •4 A44rell

Computer Resource Management, Inc.
200 Scarborough Drive, Suite 108
Pleasantville, New Jersey 08232

DOT/FAA/CT 91/19
10. Werli U111t Ne. (TAAIS)

11. C...Hect ., Gte~tl Ne.
DTFA03-86-C-00042

t-;-:--:--""'"':--:--~:---:--:-:~-----------------·- u. ,,.. •••• ,.,. •4 '••••4 c
12. S....•erl11e Aee11cy N- •4 A411re.. --
U.S. Department of Transportation
Federal Aviation Administration
Technical Center
Atlantic City International Airport, NJ 08405

Pete Saraceni, FAA Technical Center, Program Manager

I 16. A~•trect

Final Report

••· S....eeriltl A .. 11cr Ce4e

ACD-230

As multiple digital avionic systems were introduced irtto aircraft, there arose
a need for digital communications between systems. I·rt the early 1970s, many
different digital data bus designs were used to provi·:ie this communication.
Because these digital systems proved to be reliable .and cost effective, their
popularity increased. Proliferation led to standardi~ation, particularly in
the air transport category of aircraft, which allowed communications between
line replaceable units (LRUs) to become more complex. The LRUs began to rely

-more heavily on each other to reduce the amount of equipment required. Sensor
data and systems data could be shared among multiple :;ystems, rather than each
system requiring its own private source.

Integrated digital avionics are increasingly being us~~d to implement essential
and critical functions that cannot be sufficiently reproduced by conventional
means. The safety of such aircraft is highly dependent upon the computer
software, hardware, and data buses connecting the systems. The newest
concerns relate to the problems that are unique to highly integrated systems.
There is no standard with which to assess the possibln impact of these bus
based systems on aircraft safety. These and other advanced avionic systems
will result in specific safety assessment problems whEm the appropriate data
packages are submitted to the Federal Aviation Adminintration during the
certification process.

17. ICer Wer4• II. Dlatrl._, .. .,. Stet~-•

Avionics, Data Bus, Integration, Buffer, Document is a~ailable to the u.s. public
Controller, Network, Protocol, Digital, through the National Technical Information
Software, Error, Fault, Frame, Interrupt, 1 Service, Spri::tgfield, VA 22161
Parity, Station, Token, Multiplexing I
lt. S.curitr Cle .. ll, Cel ••• ,..,,, a. .._,.., Cle ... f. (ef till a~ ...) 21• Ne. ef 22. Ptlce

Unclassified Unclassified 232

Fena DOT F 1700.7 fl-72) • .., •• te4 , , •• .4

TABLE OF CONTENTS

Chapter

1. INTRODUCTION

1.1 Background
1.2 Scope

2. BUS-INTEGRATED AVIONIC SYSTEMS

2.1 Avionic System Architectures
2.2 Avionic Data Buses
2.3 Aircraft Implementations

3. CERTIFICATION PROCEDURES FOR BUS-INTEGRATED SYSTEMS

3.1 Applying for a Type Certificate
3.2 Applying for a Production Certificate
3.3 Applying for a Supplemental Type Certificate
3.4 Applying for a Parts Manufacturer Approval
3.5 Applying for a Technical Standard Order A~thorization
3.6 Conducting Certification Testing
3.7 Certification Concerns

4. RElATED REGUlATIONS AND STANDARDS

4.1 Relevance of Formal Guidelines to Bus-Integrated Systems
4.2 Relevance of Informal Guidelines to Federal Regulations
4.3 Relevance of Manufacturer Testing to Federal Regulations

5. BUS-INTEGRATED SYSTEMS TECHNOLOGY

5.1 System Integration Concerns
5.2 Bus Hardware-Software Interaction
5.3 Bus Protocol Specification and Verification Methods
5.4 Bus Integration Standards, Guidelines, and Techniques

6. CONCLUSIONS

6.1 Certification Procedures for Bus-Integrated Systems
6.2 Related Regulations and Standards
6.3 Bus-Integrated Systems Technology
6.4 Summary

iii

1

1
2

3

3
7
9

11

13
15
16
17
18
19
21

23

23
29
37

45

45
96

117
144

187

187
188
189
192

TABLE OF CONTENTS
(Continued)

Chapter Page

APPENDIX A - FEDERAL REGULATIONS SUMMARY 193

APPENDIX B - DYNAMIC TIME SLOT ALLOCATION PROTOCOL 199

APPENDIX C - HIGH-LEVEL DATA LINK CONTROL PROTOCOL 203

APPENDIX D - CHECKLIST FOR ANALYSIS OF DATA BUS HARDWARE AND SOFTWARE 205

BIBLIOGRAPHY 207

GLOSSARY 223

ACRONYMS AND ABBREVIATIONS 231

iv

Figure

2.1-1
2.1-2
2.1-3
2.1-4
2.1-5
2.1-6
2.1-7
5.1-1
5.1-2
5.1-3
5.1-4
5.1-5
5.1-6
5.1-7
5.1-8
5.1-9
5.1-10
5.2-1
5.2-2
5.2-3
5.2-4
5.2-5
5.2-6
5.3-1
5.3-2
5.3-3
5.3-4
5.3-5

5.3-6
5.3-7
5.3-8
5.3-9

5.3-10

5.3-11
5.3-12
5.4-1
5.4-2
5.4-3

LIST OF ILLUSTRATIONS

DATA BUS COMPONENTS
UNIDIRECTIONAL BUS ARCHITECTURE
AVIONIC SYSTEM USING UNIDIRECTIONAL BUSES
BIDIRECTIONAL BUS ARCHITECTURE
AVIONIC SYSTEM USING A BIDIRECTIONAL BUS
BIDIRECTIONAL BUS ARCHITECTURE, CENTRAL CONTROL
BIDIRECTIONAL BUS ARCHITECTURE, DISTRIBUTED CONTROL
COMMON DATA BUS TOPOLOGIES
LINEAR DATA BUS TOPOLOGIES
GATEWAY AND BRIDGE USED IN AVIONIC SYSTEMS
DATA BUS DELAY WITH A GATEWAY
PERIODIC ACCESS FOR THREE BUS USERS
APERIODIC ACCESS FOR THREE BUS USERS
HDLC FRAME FORMAT
ASCB FRAME FORMAT
ARRAY CODES
CALCULATION OF A CRC
DATA BUS HARDWARE-SOFTWARE INTERFACE
SHARED INTERFACE RAM
DATA FRAMING
INPUT VOTING
OUTPUT VOTING
SELF-CHECKING PAIRS
OS! BASIC REFERENCE MODEL
STATE MACHINE
COUPLED STATE MACHINES
POSITIVE ACKNOWLEDGEMENT/RETRANSMISSION PROTOCOL
STATE DIAGRAM FOR THE POSITIVE ACKNOWLEDGEMI:NT/RETRANSMISSION
PROTOCOL
PETRI NET WITH FOUR STATES AND FOUR TRANSITION BARS
PETRI NET FIRING PRINCIPLE
A PETRI NET DIFFICULT TO REPRESENT BY A STATE MACHINE
PETRI NET FOR THE POSITIVE ACKNOWLEDGEMENT/RETRANSMISSION
PROTOCOL
TOKEN MACHINE FOR THE POSITIVE ACKNOWLEDGEMENT/RETRANSMISSION
PROTOCOL
PROTOCOL FAILURE DUE TO PREMATURE SENDER THlEOUT
ACCESS PROTOCOL OVERVIEW FOR ARINC 629 BUS
TYPICAL FAULT TREE
QUANTITATIVE FAULT TREE ANALYSIS
HAZARD ANALYSIS WORKSHEET HEADER

v

3
3
4
4
5
5
6

48
49
51
53
58
59
62
63
82
83
97

100
102
108
109
115
119
123
124
125

127
130
131
132

133

136
139
143
172
173
178

2.2-1
2.2-2
2.3-1
3.1-1
5.1-1
5.1-2
5.1-3
5.1-4
5.1-5
5.1-6
5.2-1
5.2-2
5.3-1
5.3-2

5.3-3

5.3-4
5.3-5
5.3-6
5.4-1
5.4-2
5.4-3
5.4-4
5.4-5
5.4-6

LIST OF TABLES

CURRENT AVIONIC DATA BUSES
NEW AVIONIC DATA BUSES
DATA BUSES, LISTED BY AIRCRAFT
CERTIFICATION PROCESS SAMPLE SCHEDULE
LTPB CHARACTERISTICS
HSRB CHARACTERISTICS
LTPB MESSAGE CHARACTERISTICS
LTPB MESSAGE PRIORITIES
HSRB MESSAGE LENGTH VERSUS INFORMATION WORDS
HSRB EFFICIENCY VERSUS INFORMATION WORDS
BUS INTERFACE UNIT INTEGRATED CIRCUITS
DATA BUS HARDWARE-SOFTWARE INTERACTION PROBLEMS
PROTOCOL SPECIFICATION GUIDELINES
DECISION TABLE FOR THE POSITIVE ACKNOWLEDGEMENT/RESPONSE
PROTOCOL
NORMAL PROTOCOL STATES FOR THE POSITIVE
ACKNOWLEDGEMENT/RETRANSMISSION PROTOCOL
PROTOCOL STATES WITH A LOST SEQUENCE-ZERO MESSAGE
PROTOCOL STATES WITH A LOST ACKNOWLEDGEMENT
ALGEBRAIC REPRESENTATION OF A PETRI NET
INTEGRATION STANDARDS AND GUIDELINES, BY BUS (2 PARTS)
INTEGRATION TECHNIQUES DOCUMENTS
FMEA QUALITATIVE ANALYSIS REPORT
FMEA QUANTITATIVE ANALYSIS REPORT
FMECA ANALYSIS REPORT
SYSTEM SAFETY ANALYSIS METHODOLOGY

vi

8
9

10
15
66
67
77
77
80
80
99

101
121

129

134
134
135
138
145
165
174
174
175
177

1. INTRODUCTION

1.1 Background

Fixed and rotary wing civilian aircraft have used digital flight control and
avionic systems since the late 1960s. One of the earliest digital systems was
the Inertial Navigation System. Subsequently, other digital systems were added
(Spradlin 1983). As multiple systems were introduced into aircraft there arose
a need for digital communications between systems. In the early 1970s, many
different digital data bus designs were used to provide this communication.
Because these digital systems proved to be reliable and cost effective, their
popularity increased.

Proliferation led to standardization, particularly in the air transport category
of aircraft. In 1976, the air transport industry approved the Aeronautical
Radio, Incorporated, (ARINC) Mark 33 Digital Information Transfer System (DITS)
for digital data bus communications between Line Replaceable Units (LRUs) that
conformed to the ARINC 500-Series Equipment characteristics. In the early
1980s, the General Aviation (GA) industry began using two data bus standards
unique to its requirements.

Standardization of digital communications allowed communications between LRUs
to become more complex. LRUs began to rely more heavily on each other to reduce
the amount of equipment required. Sensor data and systems data could be shared
among multiple systems, rather than each system requiring its own private
source. The tighter coupling of systems led to the introduction of systems that
were previously too complex or too cumbersome to produce. Complete Automatic
Flight Control and Flight Management systems we:re implemented. Cockpits
produced in the 1980s consisted of flight contro:_ electronics and avionics
composed primarily of digital systems.

Although today' s aircraft primarily use digital sy~:tems, the issue of whether
digital systems can be relied upon for the safety of the aircraft, crew, and
passengers has been avoided. Modern aircraft are c':!rtificated as safe for air
transport use based on the assumption that any computer system may fail without
producing a life threatening hazard. This is true because modern aircraft
continue to rely on conventional mechanical, hydraulic, and analog electronic
back-up systems to provide the minimum performancB necessary to ensure safe
flight and landing.

Civilian aircraft presently being developed can no longer be certificated on
this basis. Complex digital systems are being used to implement essential and
critical functions that cannot be sufficiently reproduced by conventional means.
The X-29 military aircraft, with forward swept wings, is an example of what lies
ahead for commercial aircraft. This aircraft is an inherently unstable design
that requires computer control to keep it stable; a pilot could not fly it by
standard means. It would be pointless to provide conventional back-up systems.

The safety of such aircraft is highly dependent upon the computer software,
hardware, and the data buses connecting the systems. These aspects of digital
systems have undergone, individually, much study and improvement over the years.
The newest concerns relate to the problems that arB unique to complex, highly

1

integrated, systems. In particular, the modern bidirectional data buses will
be heavily relied upon, yet at the same time, become more complex. There is no
standard with which to assess the possible impact of these bus-based systems on
aircraft safety. These and other advanced flight control and avionic systems
will result in specific safety assessment problems when the appropriate data
packages are submitted to the Federal Aviation Administration (FAA) during the
certification process.

1.2 Scope

This technical report addresses the concerns related to reliable communication
on the serial digital data buses used to integrate digital systems in civilian
aircraft. The reliability needed for buses used in essential and critical
systems is particularly addressed. The communication on the parallel backplane
buses used within LRUs is not addressed. Topics discussed include the
following:

The process followed by the FAA to certify that aircraft digital systems
are safe.

The formal and informal regulations that aircraft digital systems must
satisfy:

• Safety concerns related to system integration based on current avionic data
bus standards for air transport and GA aircraft.

Safety concerns related to system integration based on new avionic data bus
standards for air transport and GA aircraft.

How data bus software-hardware interaction relates to aircraft safety.

Data bus protocol specification and verification methods for ensuring
proper operation.

The extent to which data bus integration is controlled by data bus
standards.

Safety lessons that can be learned from current and new avionic data bus
standards for military aircraft.

The relationship of data bus standards to the certification process and
regulatory standards.

This technical report is provided to serve as a guide to Certification Engineers
(CEs). It should help the CEs evaluate the material submitted for review when
they are asked to approve bus-integrated systems.

2

2. BUS-INTEGRATED AVIONIC SYSTEMS

2.1 Avionic System Architectures

An avionic system may perform a major cockpit funetion, like flight control,
flight management, navigation, communications, autopilot, or autoland. Each
system consists of a suite of electronic units that each perform a particular
function needed by the system. These electronic untts are usually called LRUs.
(Entire systems are not considered replaceable units under routine maintenance.)
LR.Us typically transfer digital information among themselves and other systems
on serial data buses. Each LRU, or bus user, usually consists of a host Central
Processing Unit (CPU) interfaced to the bus by a BuB Interface Unit (BIU). The
configuration is shown in figure 2.1-1.

Host CPU
LR U or

BIU Bu .s User

Bus Stub

Serial Digital Data Bus

FIGURE 2.1-1. DATA BUS COMPONENTS

There are two primary types of bus- integrated avior.ic systems: those based on
unidirectional data buses and those based on bidirectional data buses. A
typical unidirectional bus architecture is sho"n in figure 2.1-2. The
transmitting LRU controls the bus protocol and provides the bus message data.
The protocol is very simple; it primarily consists of a standard message format.
When the transmitting LRU broadcasts its messages onto the data bus, each of the
other LR.Us connected to the bus monitors the bro.sdcast messages in order to
detect and read the messages required.

LRU 3

Transmitting LRU

Receiving LRU LJ
FIGURE 2.1-2. UNIDIRECTIONAL BUS pgCHITECTURE

3

When unidirectional data buses are used to integrate a system, the bus network
is usually complex and requires large amounts of wire. Every LRU that needs to
transmit data must have a unique data bus for its messages. Each LRU may need
to have several bus interfaces to receive messages from multiple buses. For
example, the navigation system shown in figure 2.1-3 requires five buses.

I Air Data System I

VOR Navigation

DME

II Graphics Processor I Displ~

FIGURE 2.1-3. AVIONIC SYSTEM USING UNIDIRECTIONAL BUSES
(Hitt 1986)

Since each required message is made available by a direct connection, a system
level design of the data bus network is unnecessary. The final bus network in
an aircraft could be simply the configuration that results after every LRU has
individually satisfied its information requirements.

A typical bidirectional data bus architecture is shown in figure 2.1-4. All
LRUs can transmit and/or listen on one bus. Messages are time multiplexed.
Each LRU only needs to have one bus interface and the bus network is reduced to
a single data bus.

Transmitting and
Receiving LRU

FIGURE 2.1-4. BIDIRECTIONAL BUS ARCHITECTURE

4

When bidirectional data buses are used, the physical network is usually simple,
as shown in figure 2.1-5. On the other hand, the bus control is quite complex.
The protocol must not only provide standard messageB, but also arbitrate data
bus transmissions to ensure that only one LRU transmits at a time and that
listeners are listening at the proper time. The communication for LRUs
integrated into a single system by a bidirectional data bus requires a system
level design for successful operation. If each LRU attempted to independently
satisfy its information requirements, the bus communications would never work.

Air Data System ll
Navigation

VOR

DME

II Graphics Processor I Displays II

FIGURE 2.1-5. AVIONIC SYSTEM USING A BIDIRECTIONAL BUS

Because bus control is much more complex for bidirectional data buses, many
different architectures may be employed for bus con1:rol. The two fundamental
approaches in these architectures are central and distributed control. Figure
2.1-6 shows the bus control provided by a central Bus Controller (BC). The BIU
portion of each LRU is explicitly shown.

Bus

I
BIU

Transmitting and
Receiving LRU

BIU

1

Controller

~

BIU

Receiving LRU

BIU~
T --

I

[BIU

Receiving LRU Transmitting LRU

-

I

FIGURE 2.1-6. BIDIRECTIONAL BUS ARCHITECTURE, CENTRAL CONTROL

5

The main advantage of central bus control is that only one bus component ever
has control of the bus operation. All data bus users can only use the bus as
directed by the BC. The controller can be a tightly coupled system, with
minimal interaction with outside influences. Another advantage is that when the
data bus configuration changes, only the BC must be changed to support the new
configuration. Other LRUs usually remain unaffected. Furthermore, system
integration issues are necessarily addressed explicitly when the BC is designed.
The main disadvantage of a bus which is centrally controlled is that the BC
represents a single point of failure. Advanced designs attempt to solve this
problem by using redundant controllers and redundant data buses.

Figure 2.1-7 shows a bidirectional data bus that relies on distributed control.
The BIU of each transmitting LRU must recognize when it is its turn to control
the bus. It then transmits its messages and relinquishes control.

I

Transmitting and
Receiving LRU Receiving LRU

BIU/BC I BIU

I f - --
t I

I

BIU

I

BIU/BC

Receiving LRU Transmitting LRU

FIGURE 2.1-7. BIDIRECTIONAL BUS ARCHITECTURE, DISTRIBUTED CONTROL

Typically, a bus that uses distributed control has the primary advantage that,
if an LRU controls the bus improperly, the remainder of the bus users can
continue to communicate unaffected. However, distributed control is weak on
the very points that are advantages for central control. Since every BIU is a
BC, bus control must be coordinated among LRUs. Also, changes to the bus
configuration may require a change to every BIU. Distributed control can cause
the designer of a BIU to take a narrow approach, concentrating on bus control
during the window available to the one LRU. System design becomes an independ
ent task that must be delegated, rather than an inescapable task, as it is for
central control.

The implications of these architectural variations for the safety of data bus
integrated systems is discussed in detail in subsequent chapters.

6

2.2 Avionic Data Buses

Currently, three digital data buses predominate in civilian aircraft. One is
used in the large transport aircraft and two in the smaller business and private
GA aircraft.

Transport category aircraft primarily use the unidire,:tional data bus standard
ized by ARINC. It is defined in ARINC Specification 429, "Mark 33 DITS" (1990).
Data on the Mark 33 DITS are transmitted, at a bit rate of either 12.5 or 100
kilobits per second, to up to 20 LRUs monitoring the bus messages. Nearly every
transport aircraft has a large network of ARINC 429 data buses connecting
avionics within and between the major systems.

GA aircraft use the unidirectional Commercial Standard Data Bus (CSDB),
developed by the Collins General Aviation Division cf Rockwell International,
and the bidirectional Avionics Standard Communications Bus (ASCB), developed by
Honeywell, Incorporated. The bus used in a particular aircraft is determined
by which company the airframe manufacturer chooses to supply the avionics. Both
companies are major contributors to avionics today. However, in 1989, only
about one-third of the GA fleet used guidance and corttrol avionics that likely
used data buses ("Avionics Market Data," 1991).

A CSDB can be either a low- or high-speed bus. Data are transmitted at a bit
rate of 12.5 kilobits per second on a low-speed bus ~md 50 kilobits per second
on a high-speed bus. Up to 10 receivers can be attached to one bus.

The ASCB is a centrally controlled, bidirectional bus. The basic configuration
consists of one BC directing the operation of two, ctherwise isolated, buses.
Each bus can support up to 48 users. Data are transferred at a bit rate of two
thirds of a megabit per second. LRUs may transmit on one bus and listen to
either bus. This isolation allows less critical systems to receive data from
more critical systems without being able to affect their operation. The BC
synchronizes the activity of the LRUs on both buses. The ASCB pair may also be
fitted with a standby controller whose operation is coordinated with the active
controller.

In military aircraft, one data bus predominates. Since about 1970, military
aircraft have used the MIL-STD-1553 Digital Time Division Command/Response
Multiplex Data Bus. Because the bus has been used ex~ensively for so long, and
in critical systems, many important lessons have be·,m learned that should be
applied to data buses used in civilian aircraft. This data bus is being fully
relied upon in fly-by-wire aircraft, like the X-29. It has found its way into
civilian aircraft only in isolated cases.

The MIL-STD-1553 data bus is a bidirectional, centrally controlled data bus.
This bus can support 31 users and data are transmitted at a bit rate of 1
megabit per second. Many implementations use it in a dual, fully redundant,
configuration. All activity can be replicated on eit:her bus since each bus is
controlled by identical controllers.

A fiber optic implementation of the MIL-STD-1553 bus has been defined. It is
the MIL-STD-1773 (1983) bus. It has not been used irt commercial aircraft.

7

The predominant data buses in use are summarized in table 2.2-1. These buses
are analyzed in this report with regard to their use in integrating digital
systems.

TABLE 2.2-1. CURRENT AVIONIC DATA BUSES

Data Bus Usage

ARINC Specification 429-12, "Mark 33 Digital Air Transport
Information Transfer System (DITS)"

Commercial Standard Data Bus (CSDB) General Aviation

Avionics Standard Communications Bus (ASCB) General Aviation

MIL-STD-1553, "Digital Time Division Command/Response Military
Multiplex Data Bus"

MIL-STD-1773, "Fiber Optics Mechanization of an Military
Aircraft Internal Time Division Command/Response
Multiplex Data Bus"

Some recent experimental air transport aircraft have used a new data bus
developed by the Boeing Commercial Airplane Company (BCAC). The BCAC version
is known as the Digital Autonomous Terminal Access Communication (DATAC) data
bus. This bus has been made an air transport standard under ARINC Specification
629, Part 1 (1990). It will be used in the Airbus 340 and Boeing 777, as well
as subsequent air transports.

The ARINC 629 bus is a bidirectional bus utilizing distributed control. This
bus can support up to 120 users. Data are transmitted at a bit rate of 2
megabits per second. It supports the higher data rate and large message
transfers needed in highly integrated digital systems. It is intended that this
bus will be relied upon in essential and critical systems.

Two other data buses are being developed and standardized, primarily for
military aircraft. They are targeted to be the primary buses used in military
aircraft, replacing the MIL-STD-1553 bus. Because they are very high- speed
buses, they may also find application in civilian aircraft that require a
greater data bus throughput than an ARINC 629 bus can supply. These buses are
the Society of Automotive Engineers (SAE) AS4074.1 Linear Token Passing Bus
(LTPB) and the AS4074.2 High Speed Ring Bus (HSRB). Both transfer data at a bit
rate of 50 megabits per second. They are multi-transmitter buses that operate
under distributed control. Messages can be sent bidirectionally, but not in the
conventional sense.

8

The LTPB is a linear bus and bus users can either transmit or receive, but
messages are passed in a logical ring. The HSRB is configured in both a
physical and logical ring. Bus users can either transmit or receive, but
messages are passed around the ring until they reach their destination.

The prominent data buses being newly used or developed are summarized in table
2.2-2. These buses are also analyzed in this report with regard to their use
for integrating digital systems.

TABLE 2.2-2. NEW AVIONIC DATA BUSES

Data Bus Usage

ARINC Specification 629, "Multi-Transmitter Data Bus" Air Transport

SAE AS4074.1, Linear Token Passing Bus (LTPB) Military

SAE AS4074.2, High Speed Ring Bus (HSRB) Military

2.3 Aircraft Implementations

This section gives a sample of the mix of data buses and the aircraft in which
they are installed. The list in table 2. 3-1 is not ·~omprehensive.

9

TABLE 2.3-1. DATA BUSES, LISTED BY AIRCRAFT

Aircraft Data Bus Reference

Airbus A310/A320 ARINC 429 Shaw and Sutcliffe 1988
Clifton

Airbus A330/A340 ARINC 629 ARINC Specification 629
(being developed) Part 3, 1989

Bell Helicopter ARINC 429 Clifton

Boeing 727 CSDB has been used in Rockwell International
retrofits (Collins Division)

Boeing 737 ARINC 429 Clifton

DATAC was retrofitted to Shaw and Sutcliffe 1988
the NASA TSRV 737 Holmes 1986

CSDB has been used in Rockwell International
retrofits (Collins Division)

Boeing 747 ARINC 429 Clifton

Boeing 757 ARINC 429 Shaw and Sutcliffe 1988

Boeing 767 ARINC 429 Shaw and Sutcliffe 1988

Boeing 777 ARINC 629 Bailey 1990
(being developed)

Cessna Citation ASCB FAA, Atlanta AGO

Dassault Falcon 900 ASCB FAA, Atlanta AGO

DeHavilland- 8 ASCB FAA, Atlanta AGO

Gulfstrearn IV ASCB FAA, Atlanta AGO

McDonnell-Douglas DC-8 CSDB has been used in Rockwell International
retrofits (Collins Division)

McDonnell-Douglas MD-11 ARINC 429 Spitzer1 1986

10

3. CERTIFICATION PROCEDURES FOR BUS-INTEGRATED SYSTEMS

Certification is the process of obtaining FAA approval for the design,
manufacture, and/or sale of a part, subsystem, system, or aircraft, by
establishing that it complies with all applicable government regulations. The
purpose of certification is to demonstrate and record that the total aircraft
is suitable and safe for civilian use. The FAA does this by requiring that
aircraft products (aircraft, engines, and propellers) be Type Certificated
(TCed). Major avionic systems that are to be manufactured for use in an aircraft
are certificated individually under an aircraft type certification program. The
requirements for the certification of avionic systems are covered in the Federal
Aviation Regulations (FARs), as follows:

• Part 21, "Certification Procedures for Products and Parts"

Part 23, "Airworthiness Standards: Normal, Utility, and Acrobatic Category
Airplanes"

Part 25, "Airworthiness Standards: Transport Category Airplanes"

Part 27, "Airworthiness Standards: Normal Cate~;ory Rotorcraft"

Part 29, "Airworthiness Standards: Transport Category Rotorcraft"

Part 33, "Airworthiness Standards: Aircraft En~;ines"

Part 91, "General Operating and Flight Rules"

Part 121, "Certification and Operation: Domestic, Flag, and Supplemental
Air Carriers and Commercial Operators of Large 1\ircraft"

Part 135, "Air Taxi Operators and Commercial Ope!rators of Small Aircraft"

Data buses, on the other hand, are not explicitly certificated because they have
been viewed simply as the connectors of the systems. Certification procedures
need to be expanded to include reviews and tests for data buses used by digital
systems.

There are two approaches to approving an avionic system, depending on whether
the system is an original design or an independent design of a previously
approved product. When a major design effort is required to develop a system,
the integrity of the aircraft into which it will be installed is in question.
Thus, one of two "type certification" processes must be followed to receive a
certificate. For totally new designs, or changes that are so extensive as to
require a complete reinvestigation of the design, the developer must follow the
process required to obtain a TC for the aircraft. For major changes (as defined
in FAR Part 21, section 93) to a system previously approved under a TC, the
developer can follow a simpler process to obtain a Supplemental Type Certificate
(STC). In either case, after the certificate is issued, the manufacturer may
also obtain a Production Certificate approval to manufacture additional systems,
whose type certification is based on conformity to the type design, rather than
tests of each system.

11

When a manufacturer wishes to produce modification or replacement parts (i.e.,
parts not previously approved by a TC or an STC) for sale or installation on a
TCed aircraft, simpler approvals are sufficient. The manufacturer who holds
the TC or STC for the design can request an amendment to their certificate. A
manufacturer who wishes to produce such a part for an aircraft, but does not
hold the TC or STC, can obtain a Parts Manufacturer Approval (PMA). Such a
second party manufacturer can also apply for a Technical Standard Order (TSO)
Authorization. The FAA publishes TSOs that establish the minimum performance
requirements for such interchangeable parts. Any manufacturer can obtain this
specification and build a part that satisfies it. If the manufacturer is given
a TSO Authorization, the parts may be stamped with the TSO number, showing
compliance with the requirements of the TSO. The parts can then be legally sold
or installed in aircraft. It is the responsibility of the installer to ensure
that they are used in an application that does not exceed performance require
ments.

The system to be certificated can be a component or several components. It can
be simple or complex. The FARs stipulate which process must be followed in each
case. Although the manufacturer may refer to the FARs to decide which approval
should be sought, often a CE recommends which application the manufacturer
should submit. The authority for determining whether a change constitutes a
modification or a redesign, and whether a redesign is minor or major, rests with
the Ai~craft Certification Office (ACO).

By way of example, the all new Boeing 777 is being developed under a TC program.
On the other hand, the FAA has required that the entire fleet of commercial
aircraft (all aircraft that operate under FAR Part 121 rules) be retrofitted
with a Traffic Alert and Collision Avoidance System (TCAS). This system was
developed under STC programs.

Whenever an applicant presents a situation that is not covered by the existing
rules, the ACO can request direction from the Directorate by using an Issue
Paper. The Directorate may need to rule on an issue because the applicant
believes they are in compliance, but the ACO does not. In this case, the
Directorate gives their conclusion on the Issue Paper, sustaining the ACO' s
position, overruling the AGO's position, or presenting an alternative position.

The ACO submits an Issue Paper when an applicant claims to provide an equivalent
level of safety by means other than provided in the regulations. If the claim
is substantiated, the FAA Directorate issues a Finding of Equivalent Safety.

An Issue Paper may also be presented when an applicant's design is sufficiently
new that no regulation seems to apply. In this case, the request for action by
the Directorate results in a Special Condition (SC) being issued.

The application and approval process for each of the methods of aircraft
certification that might be followed for data bus-based avionics are described
in the following sections.

12

3.1 Applying for a Type Certificate

Generally, only aircraft being newly developed require a TC program. The steps
to obtaining a TC are as follows (FAA Order 8110.4, 1985; Improving Aircraft
Safety, 1980):

1. The company submits a completed FAA Form 8110 ·12, Application for Type
Certificate, Production Certificate, or SupplemE!ntal Type Certificate, to
the FAA AGO having jurisdiction in their area. The application includes
a proposed certification plan which lists the regulations that must be met
and how the applicant intends to show compliancE! with them.

2. The AGO's Type Certification Board (TCB) assigns a project engineering team
to become familiar with the application.

3. A preliminary meeting between the TCB and the applicant is held to first
establish the need for the TC, and then to appro·~e the certification plan.
Based on the regulations and the applicant's plan, the board develops a
test and inspection plan to substantiate the claims that the system is safe
and functions properly. A schedule for complet:Lng the type certification
program is established.

4. The company proceeds with the development, submitting descriptions,
analyses, test plans, and test results to the FAl. for review by the project
team. As prescribed, some of the hardware, soft:ware, and system tests or
prototypes will be witnessed or inspected by t:he FAA or its designated
representatives.

5. The progress is reviewed at an interim meeting between the company and the
TCB. If all items of significance have been shown to comply, the board
issues an FAA Form 8110-1, Type Inspection Authorization (TIA). The TIA
is issued to the manufacturer by a letter of r.otification which clearly
states the status of the project so that there will be no questions
concerning what remains to be accomplished t:o receive the TC. The
authorization inaugurates the official ground inspection and flight tests.

6. During the inspection period, the FAA oversees ground and flight tests, as
necessary to determine compliance. A pilot who holds an appropriate pilot
certificate makes the flight tests required in FAR Part 21. The company
submits the test results to the Certification Manager.

7. The FAA issues an FAA Form 8110-5 (8110-4 for rotorcraft), Type Inspection
Report, detailing the results of the inspection:;.

8. A final meeting is held with the TCB to finalize the TC data sheet items,
the airplane flight manual items, and the status of any other outstanding
technical data. The issuance of the TC is dependent upon satisfactory
disposition of all outstanding items.

Upon successful
to the company.
the limitations

completion of the process, the FAA awards a TC, FAA Form 8110-9,
The completed TC data sheet is part of the TC; it sets forth

prescribed by the applicable airwortl1iness regulations and any

13

other limitations found necessary for type certification (FAA Order 8110.4,
1985).

After an aircraft prototype has been TCed, the manufacturer may apply for a
Production Certificate. This allows the company to produce multiple copies of
the aircraft without having to substantiate every copy. The procedures for
applying for a Production Certificate are explained in section 3.2. Once an
aircraft is produced, the company can apply for an Airworthiness Certificate.
This certificate shows that a particular aircraft has been built to the design
specifications of the TC and is in a condition for safe operation. An FAA
inspector issues this certificate, which is then posted in the airplane.

As an avionic system is developed, the manufacturer submits various documents
to the FAA. The documents later become part of the Certification Package. The
number of documents filed depends on the nature of the system being certifi
cated. Complex systems, involving several pieces of hardware and accompanying
software, require more documentation, while simpler systems require less.

A Certification Package may contain the following:

A Certification Plan outlining the regulations and documents that apply to
the system being certificated. This plan establishes the agreement between
the FAA and the applicant on the procedures that will be followed to
certificate the system. A compliance checklist, listing every rule to
which the manufacturer must comply, may be included.

• A Type Design data package consisting of drawings and specifications
necessary to define the configuration and design features of the product
which was shown to comply with FAR Part 21, Subpart C. It also contains
information on dimensions, materials, and processes necessary to define the
structural strength of the product. The Airworthiness Limitations section
of the Instructions for Continued Airworthiness are part of this data
package as well.

Ground and flight test procedures and test results of the component or
system to be certificated.

If the system contains software, the Certification Package should also include
the documentation stipulated in Radio Technical Commission for Aeronautics
(RTCA)/D0-178A. The types of documents required depend on the criticality of
the software. Documents that may be required include system requirements;
Software Configuration Management (SCM) plan and configuration index; Software
Quality Assurance (SQA) plan; Verification and Validation (V&V) plans,
procedures, and results; and an accomplishment summary. A sample schedule for
submitting documents in the certification process is shown in table 3.1-1.

Type certification is a closely watched process. The FAA is involved in the
process, from guiding development to witnessing testing. Designated Engineering
Representatives (DERs) are vital in this area. DERs are company employees who
are designated to be FAA representatives. The FAA delegates engineering tasks
to them. They are allowed to approve certain data for the government (FAA Order
8110.4, 1985).

14

TABLE 3.1-1. CERTIFICATION PROCESS SAMPLE SCHEDULE

Action Date

Submit System Requirements 09/05/89

Submit Certification Plan 11/01/89

Submit Design Data Package 12/07/89

Submit Verification Plan 12/07/89

Submit Software Quality Assurance Plan 01/20/90

Submit Software Configuration Management Plan 01/20/90

Submit Verification Procedures and Result::; 02/15/90

Submit Unit Configuration Index 02/15/90

Submit Accomplishment Summaries 02/15/90

3.2 Applying for a Production Certificate

A Production Certificate allows a manufacturer who balds a TC or an STC for a
aircraft to build a component system and obtain approval for installation on
certificated aircraft. It also allows the manufactu:cer to issue an Airworthi
ness Certificate for each aircraft built, without fu:cther demonstration to the
FAA. Following is the procedure necessary to apply fer a Production Certificate
(Improving Aircraft Safety, 1980; FAR Part 21, Subpa:ct G):

1. The manufacturer submits a completed FAA Form 8L0-12 to the FAA ACO having
jurisdiction in the area.

2. The manufacturer must show that a quality control system has been
established for the product to be produced.

3. The manufacturer must submit a description of "the inspection and test
procedures necessary to ensure that each articl•:! produced conforms to the
type design and is in a condition for safe oper.:ttion." (FAR Part 21).

4. The manufacturer must allow FAA investigators "to make any inspection and
tests necessary to determine compliance." (FAR !'art 21).

5. The FAA Production Certification Board (composed of a team of experts from
the ACO and a Manufacturing Inspection District Office) reviews the
applicant's manufacturing process. and quality C·)ntrol procedures.

15
FAA WJH Technical Center

IIIIIIIIIWIIWIIIIIII/IIIIIIIIIIIIIIWIIIIIIII
00093297

6. Upon satisfactory fulfillment of all requirements, the FAA awards the
Production Certificate.

Once the certificate is granted, the government assigns inspectors to monitor
the production process and verify, by formal record, that each system meets the
TC design. The manufacturer has the option of submitting qualified employees
to be considered as Designated Manufacturing Inspection Representatives (DMIRs).

The DMIRs may perform the same functions as the FAA inspector. However, the FAA
usually delegates assisting roles to these representatives. A DMIR may conduct
inspections and submit results to the FAA inspector. The inspector, in turn,
reviews these results and may or may not use them.

Company representatives and federal inspectors collaborate to ensure that the
systems continuously meet company and federal quality control standards. The
FAA inspector is charged with the broader responsibility of ensuring that the
quality control program is carried out in accordance with the approved plan
submitted to the FAA. The inspector reviews the company's quality control
program and the tools used to test the systems (Improving Aircraft Safety,
1980).

3.3 Applying for a Supplemental Type Certificate

The FAA grants STCs for major design changes to TCed products, provided the
changes are not extensive enough to warrant applying for a new TC (FAR Part 21,
section 19). For example, a new TC would be required for an aircraft design
that changed the number of engines, whereas an STC could be granted if the type
of engine were to be changed.

An applicant for an STC can be anyone other than the original manufacturer. An
original manufacturer who wants to change the design would apply for an Amended
Type Design Change, and follow procedures similar to those for the STC.

Following is the procedure for obtaining an STC for a digital system containing
a data bus (FAA Order 8110.4, 1985):

1. The applicant submits a completed FAA Form 8110-12 to the FAA ACO having
jurisdiction in the area. With this application, the applicant submits
drawings, data, test plans, and test reports to show that the modified
avionic equipment meets the applicable regulations. If the applicant
employs a DER, that portion of the data which the DER approves or
recommends for approval should be submitted with an FAA Form 8110-3.

2. The ACO's Aircraft Modification section reviews the documents to determine
if the design still complies with all of the airworthiness standards that
were applicable to obtain the TC.

3. The FAA performs a Compliance Inspection of the prototype modification, if
necessary, to fully establish compliance with the airworthiness standards.

4. The FAA performs a Conformity Inspection to verify that the modification
conforms to the technical data. The results are published on FAA Form

16

8100-1, Conformity Inspection Report. If the prototype conforms, the
applicant must submit FAA Form 317, Statement c·f Conformity, to the FAA
prior to the start of official FAA tests.

5. The FAA conducts ground and flight tests, as necessary.

Upon successful completion of the process, the FAA awards an STC (FAA Form
8110-2) to the company. If STCs need to be changed t:o cover new models or to
show revised data, the STC is amended. The original number is kept, and both
the original and revised issue dates appear on the certificate.

After an STC has been awarded, the holder must obtai::1 approval to install the
system in a TCed aircraft. If the STC has been awarded for a particular
aircraft, the holder may apply for an Airworthiness Certificate.

3.4 Applying for a Parts Manufacturer Approval

PMAs are government approvals allowing another manufacturer to produce a
substitute part for a system that already has a TC or an STC. For example,
consider an STCed digital avionics system that uses an Analog/Digital converter.
Another developer has an identically designed converter they want to produce and
sell for use in the same digital system. The developer would apply for a PMA
using the following procedure (FAR Part 21, Subpart R):

1. The company sends the manager of the AGO an application that includes the
following information:

• "The identity of the product on which the part will be installed."

The name and address of the manufacturing facility where the part will
be produced.

• Design specifications for the part.

"Test reports and computations necessary to show that the design meets
the airworthiness requirements applicable . . . to the product on which
the part is to be installed."

2. The company establishes and maintains a fabricatlon inspection system that
ensures the part conforms to the design, and that it is safe for installa
tion on the applicable TCed products (FAR Part n).

3. The company submits a statement to the FAA certifying that these facilities
were created.

4. The FAA may make any inspection or test necessary to determine compliance
with the FARs. They may check the design to ensure that it is identical
to the existing part in the certificated system. They also may inspect
the manufacturing facility where the part will he produced.

5. Upon satisfactory fulfillment of the requiremen1:s, the FAA issues the PMA
I

to the company, allowing the company to manufac<:ure the part.

17

-- ~------ -------------------------·-·-·~-------------- ----

6. FAA field inspectors authorize the ~art to be installed.

PMAs allow different manufacturers to produce identical components for
certificated systems, and to sell these components directly to an operator.
Because the original design specifications already exist (the original
manufacturer has them), an applicant simply needs to obtain these specifications
and build the part to conform to them.

An original manufacturer who wants to change an existing product applies for an
amended TC, an STC, or an amended type design change, per FAR Part 21.

3.5 Applyin& for a Technical Standard Order Authorization

A TSO Authorization is an FAA design and production approval issued to a
manufacturer of a part which has been found to meet a specific TSO. The part
is specified and approved independent of an aircraft (FAR Part 21). The FAA
does not consider whether the part is suitable for specific aircraft.

TSOs are government standards that prescribe the minimum performance standard
a part must meet. These standards include requirements for the hardware
performance, the environmental conditions the hardware must meet, and the V&V
of the software. Major systems, such as the Electronic Flight Instrumentation
System (EFIS), may have satisfied several TSOs. The steps to obtain a TSO
Authorization are as follows (FAR Part 21, Subpart 0):

1. The manufacturer sends the ACO an application for a TSO Authorization. The
application consists of a cover letter, a Statement of Conformance
(certifying that the applicant has met the requirements for a TSO
Authorization and that the component meets the applicable TSO), a copy of
the technical data required in the TSO, and a description of the quality
control system used for the component.

2. The FAA determines whether the applicant complies with the TSO Authoriza
tion regulations and whether the parts can be reproduced per the TSO
requirements. If so, a TSO Authorization is issued to the manufacturer.
It is this authorization that allows the manufacturer to produce the parts
and label them with the TSO number.

To make minor changes to an existing TSOed piece of equipment, an applicant
writes a Minor Change Letter to the FAA. The FAA reviews the letter and, if
the CE agrees that the changes are minor, stamps it with an approval statement
similar to the following:

MINOR TSO CHANGES ACCEPTED
REFERENCE DATA ON FILE
FAA AIRCRAFT CERTIFICATION OFFICE
CITY, STATE

Date: Branch: Initial:

18

If the manufacturer has substantial changes, or want:s to authorize additional
versions of equipment under an existing TSO, the company must submit an
application letter along with supporting documents, such as environmental forms
and test reports. If the changes are accepted, the :?AA sends an authorization
letter to the manufacturer.

Once a manufacturer receives a TSO Authorization, installation approval must be
applied for through the TC or STC process, or by filling out FAA Form 337, Major
Alterations and Repair. FAA Form 337 is used only when the change does not
impact the design.

3.6 Conducting Certification Testing

In the past, to certificate an airplane, inspectors and engineers had to
understand avionics based on analog electronic sy::;tems driving mechanical,
pneumatic, and/or hydraulic systems. Today's digital systems are more complex.
Data buses within these systems perform their own functions and could be
considered separate systems, not simply wires. Existing requirements do not
cover the expanded functions that data buses perform.

The environmental tests described in "Environmental Conditions and Test
Procedures for Airborne Equipment" (RTCA/D0-160C, 1989) address electronic
component tests, such as magnetic effects, voltage spikes, and induced voltages.
These general tests can be performed on any electronic component. For example,
the ARINC 429 bus has been subjected to these tests because it has been used to
connect electronic components. While these tests ar·e necessary, they are not
sufficient. Bidirectional data buses require new test:s that should be addressed
in RTCA/D0-178. The ASCB, for example, allows signals to be both transmitted
and received over the same wire. This two-way communication requires complex
digital electronics to control bus transmissions. BCs, software in the
controllers, and protocols must now be tested.

The FAA relies on the manufacturer to conduct testir.g.
bus tests, the manufacturer must comply with them.
compliance with the FARs, a component must be subjected
software tests, and failure analyses.

If the FAA adopts new
In general, to show

to environmental tests,

For certificating systems containing data buses, the manufacturer should test
the bus to ensure that it is reliable and performs its intended function. If
the bus relies on a back-up system, it also should be tested.

FAR Part 25, section 1309, shows the objectives the c:ests are
for transport category airplanes. The airplane systems
components considered separately and in relation ':o other
designed to ensure that the following conditions are met:

designed to meet
and associated

sys terns must be

The occurrence of any failure condition which would prevent the continued
safe flight and landing of the airplane is extremely improbable.

The occurrence of any other failure condition which would reduce the
capability of the airplane or the ability of the crew to cope with adverse
operating conditions is improbable.

19

For electrical systems and equipment design (and thus for the subset of digital
avionic systems containing data buses) critical environmental conditions must
be considered. Digital avionic equipment must comply with this section, unless
the equipment is already covered by TSOs that include environmental test
procedures and test designs for meeting the two requirements above.

Section 4 addresses related standards for testing, as provided in the Advisory
Circulars (ACs) and SCs published by the FAA. These documents address testing
for lightning and High Intensity Radiated Frequency (HIRF) susceptability.

3.6.1 Approaches to Bus Reliability

For certificating systems that will be used for flight-critical functions,
designers can take one of two approaches. The first approach, "safe-life,"
means the component is designed to keep its strength and integrity throughout
its life. The second method, "fail-safe," means safety is assured by having a
redundant or back-up part that will work if the first component fails (Improving
Aircraft Safety, 1980).

The fail-safe approach has been adopted for digital avionic systems containing
data buses. Because of the risk of applying complex technology to critical or
essential functions, data buses used to support either category usually consist
of a pair of redundant buses, and the entire digital system has a back-up.

In the Gulfstream IV airplane, for example, the ASCB ties together a sophisti
cated navigation system that drives navigation displays and provides steering
inputs to a digital autopilot. The ASCB is controlled by redundant BCs (Jennings
1986). For this aircraft, the controllers are built into the two fault warning
computers. By design, if one computer fails the other takes control, so the
system still operates correctly. The entire digital system is backed up by an
electromechanical system.

Eventually, if redundancy can ensure that the probability of an unsafe event
occurring is acceptable (not greater than lxl0-9 for critical functions), digital
systems may supersede older ones and may not need mechanical back-ups. In the
new F-16C and F-16D, the current Advanced Fighter Technology Integration F-16's
triple-redundant digital computers, each with analog back-up, will be replaced
by quadruple-redundant digital computers (Spitzer1 1986) without back-up. Pilots
will rely solely on the digital systems in the cockpit. Hence, redundancy
becomes more important, and testing the redundant systems to ensure that they
will operate as intended becomes critical.

3.6.2 Testing Data Buses

A manufacturer who plans to use an existing data bus differently, or would like
to certificate equipment that uses a new bus, should thoroughly document any new
tests. For example, while the ASCB has been in the field for over a decade, it
has not been used on flight-critical systems. Also, in many cases, it has not
been used to its fullest capability, i.e., bidirectionally. This function may
need to be tested during integration testing. When no regulations and standards

20

exist to create the tests, the manufacturer must devise them and submit them in
the test plan.

As data buses are being designed to carry more functions than in the past,
low-level considerations, such as the message formats, become important. Also,
depending on the architecture of the data bus, other components may need to be
tested. For example, National Semiconductor is de".reloping a bus controller
Integrated Circuit (IC) that will be installed in the BIU of an ARINC 629 data
bus user. The controller interfaces a linear, set·ial bus with a parallel,
16-bit subsystem bus. The manufacturer must develop tests for the IC using
RTCA/D0-178A and RTCA/D0-160C for guidance. In addition to normal factory tests
of the IC, the ARINC 629 BIU, data buses, and connected equipment should all be
tested as a system at a validation or simulation facility.

3.7 Certification Concerns

The TSO Authorization method of approving components was developed to allow
manufacturers to substitute equivalent components "off-the-shelf" without
jeopardizing the existing TC. Since a TSO Authorization request must be
processed within 30 days and does not require integration testing, manufacturers
use this method rather than Type Certification whene·.rer possible.

In the days of simpler aircraft design, TSO Authorizations were adequate. Now,
however, digital avionics systems are more complex and require involved
integration testing procedures. In some cases, if a manufacturer substitutes
one black box for another (by using the TSO method), the FAA risks having a
system certificated with potential safety risks. - WfLile the new black box may
function perfectly in a laboratory setting, it may not have the required
protocol to interact effectively with the rest of the digital system. Hence,
this failure could result in a system failure.

To improve the TSO approval process, ACOs are becoming more involved in
approving new digital systems. They are reviewing V~V plans for TSO packages,
and are working more closely with the manufacturers. The ACOs are suggesting
that system integration test plans be required for sQbstitutions in integrated
digital systems. Additionally, sections of RTCA/D0-178A addressing certifica
tion issues are being rewritten to address these integrated systems.

As data buses become more complex, the manufacturer must ensure that the data
bus will function as intended within its operating environment. Manufacturers'
validation facilities will play a greater role in establishing the requirements
for integration testing, since the functions of digital avionic systems will be
simulated there. The certification requirements wi:_l expand for such systems
to reflect the FAA's concern that they safely perform their functions once the
systems are installed in an aircraft.

21

4 I RElATED REGUlATIONS AND STANDARDS

The CE's job has become more complex due to rapid gro~th in the microelectronics
industry. Breakthroughs in hardware and software technology have made it
difficult for CEs to determine what avionic data bus standards are permissible.
For example, the CE must ensure that both the data bus and the method for testing
the bus (e. g., simulation, fault analysis) meet pred,~termined regulations.

Because few specific certification procedures exist, the CE has only a general
approach for certificating new and upgraded digital data buses. As a result,
the CE must consult many sources for certification information.

Fortunately, associations like the American Institute of Aeronautics and
Astronautics (AIAA) and the Institute of Electrical and Electronics Engineers
(IEEE) hold conferences and produce publications addre:;sing certification issues.
These publications often state requirements that a specific data bus should meet.
Other articles presented by aircraft associations list standards, guidelines,
and test procedures which may be adopted by individual manufacturers or federal
agencies.

ARINC and the General Aviation Manufacturers Association (GAMA) publish data bus
standards. They include descriptions of specific bus topologies and protocols.
Subcommittees within these associations often publish guidelines that an avionic
system manufacturer can follm1, like ARINC Project Papers 617 (1990) and 651
(1990). Although these two guidelines have not been formally accepted by the
FAA and are currently in draft form, manufacturers may refer to them for guidance
during a system's design process.

Associations like the SAE and RTCA publish analysis and test procedures. They
address failure analyses (SAE Aerospace Recommended Practice [ARP] 1834) and
environmental testing (RTCA/D0-160C). These procedures are used by manufac
turers to demonstrate their system's reliability and functionality.

Before the above standards are applied in certificati.on, they are compared with
federal regulations. The only regulations applicablE~ to digital data buses and
integrated avionic systems are the FARs, ACs, and S<::s. The relevant FARs are
Parts 23, 25, 27, 29, and 33, while ACs and SCs are nteans of showing compliance
with the FARs.

4.1 Relevance of Formal Guidelines to Bus-Inte&rated Systems

The following sections present FARs applicable to the certification of data
buses and integrated avionic systems. Additional F~ sections, which address
HIRF requirements, are forthcoming. When they take effect, they should also be
considered. ACs and SCs, and their relationship to the FARs, are then discussed.
(Appendix A lists and describes each FAR and AC referred to in this chapter.)

4.1.1 Bus-Inte&rated Avionic Systems and Federal A,·iation Re&ulations

FARs are published by the U.S. Government to regulate civil aviation activities.
They range from Part 1, "Definitions and Abbreviations," to Part 189, "Use of
Federal Aviation Communication Systems." Each Fl\R part is separated into

23

-------------------------------- ------------ ---

sections. Within some of these sections are rules that avionic system
manufacturers must follow during a system's design process.

FAR Parts 23, 25, 27, and 29 contain requirements for manufacturers of integrated
avionic systems. Section 1309, of these parts, and section 25.581 provide
guidelines for integrated avionic equipment and data buses.

FAR Parts 23, 25, 27, and 29, section 1309, require that systems and equipment
be designed to perform their intended functions under any foreseeable operating
conditions. These sections also address failure conditions by defining how many
failures are allowed throughout a specified time period. A failure is any
condition that could inhibit the continued safe flight and landing of the
aircraft. As stated in section 23.1309:

and

"The occurrence of any failure condition, that would prevent the
continued safe flight and landing of the aircraft must be extremely
improbable,"

"the occurrence of any other failure condition that would reduce the
capability of the aircraft or the ability of the crew to cope with
adverse operating conditions is improbable."

An AC provides the failure rates for these requirements. Extremely improbable
failures have a probability of lxl0-9 or less. Improbable failures have a
probability of lxlo-s or less, but greater than lxl0-9

•

FAR Parts 25 and 29, section 1309, state similar requirements for their related
aircraft. FAR Part 27, section 1309, however, does not go into as much detail;
this section merely states that "the equipment, systems, and installations of
a multi-engine rotorcraft must be designed to prevent hazards to the rotorcraft
in the event of a probable malfunction or failure," and "equipment, systems, and
installations of a single-engine rotorcraft must be designed to minimize hazards
to the rotorcraft in the event of a probable malfunction or failure."

These requirements have a direct impact on the design of data buses and avionic
equipment because the manufacturer must develop a scheme to satisfy them.
Usually, manufacturers employ laboratory, ground, flight, and simulator tests
to meet section 1309.

FAR Parts 23, 25, 27, and 29, section 1309, also contain short statements of how
to comply with certain requirements in those FARs. Section 25.1309 states that
one must use environmental tests to evaluate the electrical system's design and
installation, except when the component is authorized under a TSO. Part 23 also
states that environmental testing must be used for compliance, and additionally,
that it should include analyses for radio frequency (RF) energy and lightning
effects. In addition to environmental, laboratory, ground, flight, and
simulator tests, manufacturers can show compliance by referencing previous
comparable service experience on other aircraft.

24

FAR Part 25, section 581, also must be considered during the avionic system
design process. It expresses a need for lightning protection, and is more
specific than FAR Part 23, section 1309. Part 25, section 581, states that
equipment should be designed so that a lightning st1~ike will not endanger the
aircraft. It also suggests eliminating the threat of lightning damage by
diverting the electrical current. FAR Parts 27 and 29, section 610, describe
lightning requirements for transport and normal category rotorcraft. Both parts
recount the same requirements as FAR Part 25, section 581.

Electronic Engine Controls (EECs) using data buses are addressed differently.
FAR Part 33, section 75, requires a safety analysis to determine that no
probable failure or improper operation of an engine can cause an engine to catch
fire, burst, generate excessive loads, or lose its ability to be shut down.
EECs certainly require this analysis. Furthermore, section 33. 9la requires
additional tests for those components for which reliable operation cannot be
adequately substantiated by the endurance tests of section 33.82. The FAA has
followed the recommended Notice of Proposed Rulemaking, No. 85-6 (1985), as
guidance for the safety analysis and tests of EECs, including Full Authority
Digital Electronic Controls.

All systems which employ data buses and avionic equipment are subject to these
requirements. However, no test or design procedures for data buses or
integrated avionic equipment are directly mentioned in FAR Parts 23, 25, 27, and
29, section 1309 or section 25.581.

4.1.2 Bus-Integrated Avionic Systems and Advisory Circulars

To assist the manufacturer in meeting the requirements of certain FAR sections,
the FAA publishes ACs. ACs address specific sections of the FARs, and "describe
various acceptable means for showing compliance" with the FARs (AC 25.1309-lA,
1988). The ACs are not mandatory; manufacturers may opt to meet the FARs by
different means. This decision, however, requireB that the manufacturer's
techniques be validated by the FAA.

ACs 20-ll5A, 20-136, 21-16C, 23.1309-1, and 25.1309-lA were all published by the
FAA to help manufacturers comply with FAR Parts 23, 25, 27, and 29, section
1309, and section 25.581. A new AC is being developed which is also of
interest: AC-XX-XX, "Certification of Aircraft Elet::trical/Electronic Systems
for Operation in the High Intensity Radiated Fields (HIRF) Environment" (1991).
A user's manual will accompany the AC ("User's Manual for AC-XX-XX," 1992). A
similar user's manual is being developed for AC-20-136.

AC 20-115A describes how RTCAjD0-178A is used in connection with TSO, TC, and
STC authorizations. The AC says that since future avionic equipment will rely
heavily on software and microcomputer techniques, a manufacturer may use
RTCA/D0-178A to secure approval of computer software. The AC also says that if
other ACs, which better outline the relationship between the criticality level
and the software level, are published by the FAA, thoBe ACs take precedence over
RTCA/D0-178A. RTCA/D0-178A's primary use is to sati_sfy FAR Parts 21, 23, 25,
27, 29, and 33.

25

To help manufacturers satisfy all FAR Parts that address the need for lightning
protection, AC 20-136 was published, and an accompanying user's manual is under
development. The AC describes how a manufacturer can cope with the hazards
inherent in a lightning environment. Methods pointed out by the AC include the
following:

Determining the lightning strike zones for the aircraft

Establishing the external lightning environment for the zones

Establishing the internal lightning environment

Establishing transient control and design levels

Manufacturers who wish to achieve compliance with the FAA's lightning require
ments should begin by submitting a certification plan to the appropriate ACO.
An outline and explanation for the lightning effects certification plan are
presented on pages 5, 6, and 7 of AC 20-136. Once the plan is approved, the
manufacturer may begin analysis. Since RTCA/D0-160C contains test criteria for
evaluating the indirect effects of lightning, it may be employed in this step.

AC 21-16C describes how RTCA/D0-160C is used in conjunction with TSO authoriza
tions. RTCA/D0-160C describes environmental test procedures that can be used
to satisfy AC 25.1309-lA and AC 23.1309-1. RTCA/D0-160C also satisfies criteria
presented in FAR Part 25, section 1309. Since data buses and related digital
equipment are sometimes certified within a TSO, this document can be applied
during a certification procedure. No procedures or guidelines are pointed out
in this document; it only states that RTCA/D0-160C should be considered.

AC 25.1309-lA describes design procedures and failure analyses for meeting the
requirements of FAR section 25.1309. Techniques such as redundancy, isolation,
and error tolerance improve the safety of the system (more techniques are listed
on page 3 of the AC). Usually, at least two of these techniques are needed.
Also included in AC 25.1309-lA is the FAA's Fail-Safe Design Concept, as follows:

"In any system or subsystem, the failure of any single element,
component, or connection during any one flight should be assumed.
Such failures should not prevent continued safe flight and landing,
or reduce the capability of the airplane or crew to cope with the
resulting failure conditions." (AC 25.1309-lA, 1988).

Examples of failure condition analysis and design procedures are provided in
appendix A of this report.

The ultimate goal of AC 25.1309-lA is to ensure that all failure conditions for
all systems are considered. AC 23.1309-1 discusses similar, scaled down
procedures for meeting the requirements in FAR Part 23, section 1309.

4.1.3 Bus-Integrated Avionic Systems and Special Conditions

Requests for SCs are submitted to the FAA in accordance with FAR Parts 11 and
21. One purpose of an SC can be to supplement the FARs when the FARs do not

26

explicitly define adequate safety measures for "novel and unusual design
features on aircraft" (SC 23-ACE-49, 1990). This section does not discuss why
SCs are adopted; it merely states what an SC is and gives examples of SCs which
have been applied to integrated avionic equipment. ~Cs for one aircraft can be
considered for another aircraft, if the other aircraft uses similar components
or systems.

Initially, an SC is published under the Federal Register's "Proposed Rules"
category. While the SC remains in this category, it is subjected to public
scrutiny. After some time, the FAA reviews comments ~rhich were submitted by the
public and decides if the comments should be incorporated into the SC. When the
FAA is satisfied that all areas in the SC have been covered, they may adopt the
SC as a rule. If an SC is to be considered a rule, it is published under the
Federal Register's "Rules and Regulations" category. In this fashion, the SC
goes from being a general idea to an accepted rule.

SCs which are published for integrated avionic systems usually do not mention
data buses. However, because data buses can be a part of the system that
requires the SC, buses are implicitly subject to the SC's criteria.

SC 25-ANM-35 (1990) includes two special conditions, each with two subparts,
that concern the McDonnell-Douglas MD-11 aircraft. Following is a summary of
each subpart:

Lightning

Each electronic system that performs flight-critical functions must be
designed and installed to ensure that the operation of these functions is
not affected when the airplane is exposed to lightning.

Each essential function, carried out by neu or modified electronic
equipment, must be protected to ensure timely recovery of the function
after a lightning strike.

Systems that perform essential functions must be protected to ensure that
failures, due to a lightning strike, will not result in an unacceptable
cockpit crew workload.

Protection from Unwanted Effects of RF Fields

Electronic systems that perform flight-critical functions must be designed
and installed to ensure that the operation of these functions is not
adversely affected when the airplane is exposed to High Energy Radio
Frequency (HERF) fields.

SC 25-ANM-35 is meant to supplement the FARs because the FARs do not contain
adequate safety standards for protection from lightning and the unwanted effects
of RF fields.

To meet the requirements of SC 25-ANM-35, the MD··ll must undergo specific
analyses for lightning and RF fields. (One such analysis is presented in

27

RTCA/D0-160C, section 22.0.) A need for lightning effects analysis is pointed
out in FAR Part 23, section 1309.

The subparts of SC 25-ANM-35, discussed above, can be indirectly applied to data
buses. If the bus were to be exposed to lightning effects or RF fields it could
lose data, produce erroneous data, or fail completely. The bus could also act
as a path for current, and that current could adversely affect LRUs connected
to the bus.

SC 23-ACE-49 (1990) is similar to SC 25-ANM-35, and is published on the SOCATA
Model TBM-700 Series aircraft. The TBM-700 aircraft is required to meet SC
23-ACE-49 because it contains an Electronic Attitude Director Indicator and an
Electronic Horizontal Situation Indicator, in place of the original mechanical
and electromechanical displays. SC 23-ACE-49 contains the same special
conditions as SC 25-ANM-35, but adds a special condition which requires failure
analysis.

SC 23-ACE-49 amends the FARs on the installation of electronic displays which
could be adversely affected by a single failure or malfunction. It also
provides requirements for verifying that these flight-critical systems are
adequately designed.

This SC is similar to the one issued for the MD-11 airplane. The following
special conditions are issued as part of the type certification basis for the
SOCATA TBM-700 airplane:

Electronic Flight Instrument Display (EFID)

The systems using EFIDs must be examined separately, and in relation to
other airplane systems, to determine if the airplane is dependant on the
system's function for safe flight and landing. If so, the system must
satisfy the following requirements (SC 23-ACE-49, 1990):

"It must be shown that there will be no single failure or probable
combination of failures under any foreseeable condition that would
prevent the continued safe flight and landing of the airplane, or it
must be shown that such failures are extremely improbable."

"It must be shown that there will be no single failure or probable
combination of failures under any foreseeable condition that would
significantly reduce the capability of the airplane or the ability of
the crew to cope with adverse operating conditions, or it must be
shown that such failures are improbable."

"Warning information must be provided to alert the crew to unsafe
system operating conditions and to enable them to take appropriate
corrective action. Systems, controls, and associated monitoring and
warning means must be designed to minimize initiation of crew action
that would create additional hazards."

28

Electronic Flight Instrument System (EFIS) Light:ning and HERF Protection

"Each system that performs critical functions must be designed and
installed to ensure that the operation anc. operational capabilities
of these critical functions are not adv~rsely affected when the
airplane is exposed to: (1) lightning and (2) high energy radiated
electromagnetic fields external to the airplane."

"Each essential function of the system mu:~t be protected to ensure
that the essential function can be recovered after the airplane has
been exposed to lightning."

The descriptions above show how integrated digita:_ avionic systems can be
addressed by SCs. They also show how guidelines like RTCA/D0-160C could be used
to satisfy the SCs, and indirectly, FAR Parts 23, 25, 27, and 29, section 1309,
as well as FAR Part 33, sections 75 and 91.

4.2 Relevance of Informal Guidelines to Federal Regulations

This section shows what documents are used by data bus and integrated avionic
equipment manufacturers to meet the requirements of FAR Parts 23, 25, 27, and
29, section 1309. For the purpose of this section, 1:hese documents are termed
"informal guidelines."

The FAA has informally adopted RTCA/D0-160 as a means of complying with the
environmental requirements of FAR Parts 23, 25, 27, and 29, section 1309. For
example, in 1978, systems using the ARINC 429 data bus were submitted to the
tests in RTCA/D0-160A. Today, systems that use the ARINC 429 bus are still
subject to RTCA/D0-160, now called RTCA/D0-160C. Integrated systems and data
buses that need to satisfy FAR Parts 23, 25, 27, and 29, section 1309, usually
meet the requirements in RTCA/D0-160C.

If a data bus or an avionic system involves software, the software can be
validated using the procedures in RTCA/D0-178. RTCA/D0-178 was published in
1982 specifically for the purpose of assisting with certification of complex
avionic software. It was updated in 1985 and renamed RTCA/D0-178A. Again, data
bus software and avionic software are usually submitted to the procedures in
RTCA/D0-178.

Another informal guideline is the SAE's ARP 1834. It defines fault and failure
analysis (F /FA) techniques for digital hardware. Hnce digital systems are
fault prone, the FAA has decided that fault analysis should be employed during
the certification process. FAR Parts 23, 25, 27, and 29, section 1309, and AC
25.1309-lA express the need for fault analysis, and ARP 1834 has provided a
means for conducting such an analysis.

Even though FARs do not specifically mention these :.nformal guidelines, their
procedures are useful to manufacturers during the design of their systems.
These informal guidelines address the appropriate regulations and have been well
researched by organizations such as ARINC, SAE, and the FAA. Manufacturers may

29

------- --~--- --------------- --~--------~~----------~------~-~-----~--~---- --- ------~--~~-------

use the informal guidelines to evaluate complex parts within their systems, like
data buses and their associated circuitry.

A data bus system must undergo many tests and analyses to meet the FARs. These
tests are designed to ensure integrity and quality; help define redundancy and
back-ups; help isolate systems, components, and elements; verify reliability;
meet designed failure effect limits; and define error tolerance. Any document
that addresses tests of this nature may be used as an informal guideline to
satisfy the FARs. These include RTCA/D0-160, RTCA/D0-178A, and SAE ARP 1834.

4.2.1 Radio Technical Commission for Aeronautics D0-160C

Electromagnetic Emission and Susceptibility (EES) tests are conducted in
accordance with RTCA/D0-160 to determine if certain waveforms are maintained in
an electromagnetic interference environment. These tests were initially needed
to satisfy AC 25.1309-lA, which describes a means of complying with FAR section
25.1309. With the addition of section 22, the tests also address the require
ments of AC 20-136. EES testing should prove that certain environmental
conditions which can adversely affect the aircraft will not cause single-point
failures.

There are four sections in RTCA/D0-160C that may be used to satisfy FAR Parts
23, 25, 27, and 29, section 1309, and FAR Part 33, sections 75 and 91. Each
section is explained below. Although these tests can be used, others may be
developed. Any other test should yield results that parallel RTCA/D0-160C,
section 1, "Applicable Equipment Performance Standards." Further information
about EES tests can be found in RTCA/D0-160C, or acquired from RTCA Special
Committee 135.

4.2.1.1 Section 19 - Induced Signal Susceptibility

RTCA/D0-160C, section 19, provides guidelines for testing equipment and testing
interconnecting cables for failure due to magnetic and electric fields and
induced current and voltage spikes. The magnetic and electric fields are
limited to those generated by other on-board equipment, as defined in section
19.

A test is used to analyze the effects of magnetic fields enveloping equipment
and interconnecting wire bundles. The test requires placing each wire bundle
50 millimeters above the ground plane, and subjecting the bundle to a magnetic
field. The field strength should be as given in RTCA/D0-160C, table 19-1. Any
connections to or from other equipment should be adequately simulated. Also,
no synchronization between the field power source and the equipment should be
observed. The configuration is shown in RTCA/D0-160C, figure 19-2.

Another test is used to analyze the effects of electric fields that envelop the
interconnecting cables. This test follows the same procedure as above, except
that it uses an electric field instead of a magnetic field. The test
configuration is shown in RTCA/D0-160C, figure 19-3.

30

Voltage and current spikes induced into interconn4~cting cables from other
equipment must also be analyzed. Similar procedure:> are followed. The test
configuration is shown in RTCA/D0-160C, figure 19-4.

4.2.1.2 Section 20 - Radio Frequency Susceptibility. Radiated and Conducted

RTCA/D0-160C, section 20, provides information for testing RF susceptibility.
These tests determine whether equipment and its interconnecting wiring are
susceptible to RF interference. Test set-ups are described in RTCA/D0-160C,
sections 20.3 (a) and (b). Usually, circuitry and connectors are exposed
simultaneously, but unique circumstances may warrant different testing
procedures.

Equipment should be categorized to determine m~nurum acceptable RF suscep
tibility levels. If a category is not denoted in the equipment specification,
the manufacturer should "design, test, and qualify the equipment" to the
appropriate category level (RTCA/D0-160C, section 20.1). Variations should be
specified by the manufacturer and approved by the Fru\.

RTCA/D0-160C, section 20, contains the most importan~: tests for data buses and
integrated avionic equipment. Since each test is very detailed, one should
refer to section 20 to ensure that all requirements are met.

The first test determines the conducted susceptibility of cables and connectors
to RFs between 10 kilohertz and 400 megahertz. The lnterconnecting wiring may
be tested separately or as a group, but the bundles must be tested connector by
connector. See RTCA/D0-160C, section 20, for a complete description.

The next test involves radiated susceptibility in equipment and interconnecting
cables to RFs from 30 megahertz to 18 gigahertz. Once the antenna, sensor
locations, and test equipment are properly estabLished, the circuitry is
submitted to the frequency ranges specified in RTCA/)0-160C, figure 20-7. The
threshold of susceptibility should be determined.

4.2.1.3 Section 21 - Emission of Radio Frequency Energy

RTCA/D0-160C, section 21, presents tests for determining the emission of RF
energy. These tests ensure that the system does no:: emit unacceptable levels
of RF noise. Equipment should be categorized as in section 20.

Conducted RF interference is a voltage level generated by equipment and systems,
and should not exceed values given by RTCA/D0-160C, figure 21-1. In addition,
the voltage levels cannot appear on any power line connected to an aircraft bus.
Test arrangements are given in RTCA/D0-160C, "figures 21-4 and 21-5.

As with conducted interference, radiated interference should not be emitted by
the equipment or interconnecting wires in excess of the values shown in RTCA/D0-
160C, figures 21-6 and 21-7. This includes control, pulse, video, antenna
transmission, and power cables. Radiated interference is described as
oscillator radiation, spurious emanations, and broadband interference. The test
arrangement is shown in RTCA/D0-160C, figure 21-8.

31

4.2.1.4 Section 22 - Lightning Induced Transient Susceptibility

RTCA/D0-160C, section 22, explains tests which determine the susceptibility of
equipment to induced lightning transients. Lightning strikes become a problem
for digital equipment because of the high currents involved, and the fact that
the polarity of the strike cannot be determined before the strike. Calibrations
and test procedures are shown after each test in section 22.

One test involving lightning susceptibility is a long wave test. This test is
necessary because voltage differences caused by lightning can be present at
ground references, and cause a current to flow into equipment which is connected
to those ground references. The setup for this test is shown in RTCA/D0-160C,
figure 22-2. The waveforms to be applied to each system are shown in RTCA/D0-
160C, figure 22-1.

Another test involving lightning is the short wave test. This test is
applicable because a lightning strike on an aircraft could set up a magnetic
field around a bus or its equipment. The setup for this test is shown in
RTCA/D0-160C, figure 22-3. The waveforms to be applied to each system are shown
in RTCA/D0-160C, figure 22-1.

The final test that addresses lightning in RTCA/D0-160C is called the damped
sinusoidal wave test. The waveform used in the test is shown by RTCA/D0-160C,
figure 22-1. The wave is sinusoidal in nature and can be categorized by its
frequency. If lightning strikes an aircraft, it could excite the resonance of
nearby electrical components. This test deals strictly with two frequencies:
1 and 10 megahertz. Other frequencies might have to be considered for proper
comprehensive testing of different installations.

4.2.2 Radio Technical Commission for Aeronautics D0-178A

Avionic systems that utilize software should be subjected to the procedures in
RTCA/D0-178A, "Software Considerations in Airborne Systems and Equipment
Certification." This document was developed by the European Organization for
Civil Aviation Electronics, Working Group 12, and helps satisfy the FARs and
ACs. RTCA/DO-l78A presents procedures which verify that software failures in
digital equipment and systems will not affect the aircraft in which they are
installed. RTCA/D0-178A also shows specific methods and techniques to help the
designer with software design, testing, configuration, and documentation.
Alternative methods £or complying with RTCA/D0-178A can be used if the
manufacturer shows that the techniques are parallel to the ones in RTCA/D0-178A.

It is beyond the scope of this paper to explain every aspect of RTCA/D0-178A.
This s·ection only covers procedures which can be used with FAR Parts 23, 25, 27,
and 29, section 1309, and their associated ACs, AC User's Manuals, and SCs, as
well as FAR Part 33, sections 75 and 91. The procedures are discussed below;
only a brief description of each is provided since most are system dependant.

32

4.2.2.1 Developing a System which is Software Based

Two steps should be followed when defining a system that is to be certified and
is software based. First, establish the system's criticality category; second,
translate the criticality category to the software l·~vel.

To determine a system's criticality category, the manufacturer should assess the
system's application and all failures which cou:.d result from a system
malfunction. Flight-critical, flight-essential, and flight-nonessential are
the accepted categories. A system is defined by its most critical function.
The manufacturer may use simulations, similarity testH, ground and flight tests,
and/or other appropriate methods to ascertain this i~~formation.

Software levels adopted by RTCA/D0-178A are Levels 1, 2, and 3. Generally,
Level 1 corresponds to software used in flight-critical functions, Level 2 to
that in flight-essential functions, and Level 3 to flight-nonessential
functions. Once the software level is established, system development can
begin.

System development begins with extracting the software requirements from the
system requirements. This involves defining what the software should do, rather
that how it should do it. Since this section of the development process is
unique to the system, the manufacturer must be sure that the system requirements
are well understood.

After software requirements are extracted and defined, software development can
continue. See RTCA/D0-178A, section 5, for more information.

4.2.2.2 Software Development. Verification, and Validation

Once the software requirements are established, the mc.nufacturer should develop,
verify, and validate the system's software. The fi1~st part of this procedure
requires that the manufacturer submit a software development plan to the
regulatory agency. The plan should define the software functions; the
criticality of each function and software level; hardware and software
interfaces; microprocessor characteristics; built-in test (BIT) and monitoring
requirements; what functional losses could occur as a result of software
failure; and timing, test, and partitioning requirements (RTCA/D0-178A, 1985).
An approach to help formulate the software development plan is shown in
RTCA/D0-178A, figure 6-1.

After the software is developed according to the approved plan, the manufacturer
can begin to verify the software through testing. Di1:cus sed in RTCA/DO -17 SA are
module tests, module integration tests, and hardware and software integration
tests. Because these tests can be lengthy and are all system dependent, only
an explanation of module testing is provided below. Hodule integration testing,
hardware and software integration testing, and assurance of each are described
on pages 24 through 30 of RTCA/D0-178A.

Module tests include logic and computation tests which verify that the module
performs its intended function. Logic testing is used to detect illogical
sequences and constructs. Typical errors that logic tests detect are halted

33

execution, executions trapped in a loop, incorrect logic decisions, lack of
logic to handle certain input conditions, and missing input data.

Computation tests are used to detect errors. The errors can appear in a
computational sequence or numerical algorithm. A computational test may
consider an algorithm's reaction to data within a specified range, data outside
a specified range, and data that is on the border of a specified range. For
example, an altitude-measuring algorithm may produce results based on digital
data from a flight computer. If, for some reason, the algorithm receives data
that is not within the specified range, should the algorithm assume a zero value
or should the algorithm repeat its function again with the next data? These are
typical questions which a computational test should address.

Many types of computational tests can be selected since they are dependant on
the system's parameters. It remains the responsibility of the manufacturer to
properly define and execute these tests.

For flight-critical systems, all verification results must be retained and all
problems logged. For flight-essential systems, only a Statement of Compliance
is required as a summary of the verification process. No documentation is
required for nonessential systems.

Once a system's development and verification tests are complete, the system's
validation may begin. System validation usually includes an evaluation and
testing process, and may be done in accordance with system verification and
development testing. System validation should demonstrate the following:

System requirements comply with the appropriate regulations. (This can be
confirmed by simulations or environmental and performance analyses.)

The system functions properly under adverse operating and failure
conditions.

As with system development and verification, system validation will vary in
complexity and extent depending on the system's characteristics and criticality
category.

4.2.2.3 Software Configuration Management and Software Quality Assurance

Systems involving software must also undergo SCM and SQA. These methods
describe how to improve identification, control, and auditing of software. SCM
and SQA methods in RTCA/D0-178A are drawn directly from proven methods of
hardware control.

As with software verification, SCM requires the use of an SCM plan. This plan
may be part of the overall SQA plan. The SCM plan includes a description of how
SCM will be implemented and followed throughout the system's certification
process. It should further discuss how SCM will be applied during the service
life of the equipment.

34

The SCM should include docwnentation, identification, and change control and
status accounting. Docwnents which satisfy the doc~mentation part of the SCM
are included in RTCA/D0-178A, section 8.

If the system under consideration contains LRUs, each must be properly
identified. This can be accomplished by placing a part nwnber on the outside
of each LRU. The part nwnber must define the LRU's interchangability status,
but is not required to define its internal configurations. The part nwnber may
also define the system's hardware and software ca)abilities. Any type of
functional change requires a unique part nwnber. It remains the responsibility
of the manufacturer to determine the part nwnbering eonvention.

Change control and status accounting involve any post-certification software
change. If a software change is made that does not affect interchangeability
or the certification basis, it may be called a software status change. If a
software change is made which does affect the intercl1angeability or certifica
tion basis, the system will require a new part nwnbe:r. Each of these changes
should be accompanied by appropriate docwnentation.

The SQA plan should identify and evaluate quality proclems and ensure corrective
action (RTCA/D0-178A, 1985). An SQA plan should include the purpose; quality
assurance functions; docwnentation; policies, procedUJ~es, and practices; reviews
and audits; configuration management; mediwn control; testing; supplier control;
and appropriate records. A brief description of each is provided on pages 39
and 40 of RTCA/D0-178A.

SCM and SQA procedures are interrelated. Therefote, their plans should be
coordinated to eliminate unnecessary redundancy. The procedures outlined above
are fully explained in RTCA/D0-178A.

4.2.3 Society of Automotive Engineers ARP 1834

Failure analysis on data buses and integrated c:.vionic equipment can be
accomplished using procedures in ARP 1834, "Fault/Failure Analysis for Digital
Systems and Equipment" (1986). The need for failure analysis techniques is
pointed out in AC 25.1309-lA and FAR Parts 23, 25, 27, and 29, section 1309, and
is implied by FAR Part 33, section 75. ARP 1834 has been adopted as an informal
guideline for meeting these requirements. ARP 1834's analyses are specifically
meant to identify digital equipment hardware faults. The following paragraphs
will briefly describe the selection, approach, and performance of some F/FA
techniques.

ARP 1834 is not an exhaustive or universally accepted method for applying F/FA.
It is used merely to present cost effective, indu:~try acceptable means for
identifying failure modes and failure effects.

Manufacturers who wish to use ARP 1834 as a certification guideline should
discuss their reasoning with the regulatory agency e.irly in the process. This
is because variations of approaches presented in ARP 1834 will need to be
employed under different circwnstances. For system~: that are flight-critical
or flight-essential in nature, one approach might be to develop design

35

techniques for a fault tolerant system. Design techniques most often employed
in this situation are as follows:

Similar or dissimilar redundancy, signal consolidation, and hardware
functional partitioning.

,_,

Fault detection and isolation that uses comparison monitoring of redundant
elements, along with in-line tests, monitoring, and reasonableness checks.

Fault response with system reconfiguration and shutdown, and operational
mode changing.

It is the system designer's responsibility to establish the system's objective.

When selecting an F/FA, one' must decide whether to employ a top-down or
bottom-up approach. The top-down approach begins at the system level and
proceeds down to the component design. Here, the failures that produce a
particular system malfunction effect can be found (SAE ARP 1834, 1986). Fault
Tree Analysis (FTA) is an example of the top-down approach.

The bottom-up approach begins at the part or component level, and moves upward
to the system level. This allows failure effects on the next higher level to
be identified. Failure Mode and Effects Analysis (FMEA) is an example of the
bottom-up approach.

Other factors that help the manufacturer select an F/FA approach are furnished
on page 14 of ARP 1834. Descriptions, as well as applications to top-down and
bottom-up approaches, are provided. For evaluating flight-critical or
flight-essential functions, both top-down and bottom-up approaches should be
used.

For systems employing Small Scale Integration (SSI) ICs, stuck-at faults used
to be the most prominent failure condition. A stuck-at fault is one in which
a logic gate remains at a "0" or a "1." Now, however, Medium Scale Integration
(MSI) and Large Scale Integration (LSI) devices (like the ones used by digital
data buses) have introduced ma11y failure modes other than stuck-at faults. ARP
1834, table 3-1, shows a partial list of potential failure modes.

Certifying a digital avionic system for flight-critical or flight-essential
operation could require an F/FA such as FTA and FMEA. This is pointed out in
ARP 1834, but procedures for F'TA or FMEA are not given. The paragraphs below
briefly describe these methods, and are based on chapter 4 of the Digital
Avionics Systems (Spitzer 1987), as well as chapter 3 (Curd 1989) of the Digital
System Validation Handbook. Volume II.

FTA is meant to be applied at the printed circuit board level, and utilizes
diagrams similar to flowcharts. When used correctly, it will identify the
critical modes of the critical functions, verify that fault detection and
recovery schemes are adequate, and ensure that no single component can cause the
entire system to fail (Spitzer 1987). The main concept of FTA is that failure
modes can be reduced to what are called Minimum Cut Sets (MCSs) through boolean

36

algebra. An MCS can be described as the smallest combination of events that
could cause a single failure to occur. An MCS is determined by changing the FTA
diagram to a boolean expression and reducing that expression using boolean
algebra. MCSs make up part of the qualitative FTA results. Other qualitative
yresults include qualitative importance and common cause potentials (Spitzer
1987). Further descriptions of FTA are available in section 5. 4. 4 of this
report and in the Fault Tree Handbook (NUREG-0492, 1981).

FMEA addresses a failure at the pin or component level first, before defining
what errors could result from that one cause. For example, a stuck-at fault
might result in an erroneous data word being sent to an LRU. FMEA would isolate
that fault first, and then state how the LRU might react. To apply this
procedure accurately, each cause should be tabulated and considered by more than
one person. This allows for a more thorough FMEA. MIL-STD-1629A presents steps
for a military FMEA, from which procedures can be drawn to satisfy AC
25.1309-lA.

Another concept that must be realized during an FMEA is that failure effects
and detection are just as important as the causes of the failure. Effects can
be described as local, next higher level, and end effects, while failure
detection covers the crew's ability to notice failures via warning lights and
indicators (Spitzer 1987).

There is one major drawback with FMEA: thorough FMEA is practically impossible
for the newer types of microelectronic circuits. ARP 1834 suggests that
redundancy is best for satisfying these situations. Further discussion of FMEA
is presented in section 5.4.4 of this report, and in MIL-STD-1629A.

Although ARP 1834 does not discuss FTA and FMEA, it does point out basic methods
of F /FA, and mentions special methods for analyzing digital, processor-based
systems. Pages 30 through 37 of ARP 1834 show a dE! tailed F /FA procedure for
these systems. Special methods include fault insertion using hardware,
emulation, and computer simulation. These are also discussed in section 5.4.4
of this report. Appendices A, B, and C of ARP 183L contain examples of top
down, bottom-up, and emulation F/FA approaches, respectively.

4.3 Relevance of Manufacturer Testing to Federal Regulations

Most every manufacturer who produces data buses or integrated avionic equipment
follows RTCA/D0-160, and forms of RTCA/D0-178 and SAE ARP 1834. This is because
the FAA has dubbed them "acceptable means for showing, compliance" with the FARs
(AC 25.1309-lA, 1988). When manufacturers run acrcss something that has not
been addressed in the informal guidelines, they must develop their own
validation techniques to show compliance. These validation techniques are
usually chosen to satisfy FAR Parts 23, 25, 27, and 29, section 1309, as well
as FAR Part 33, sections 75 and 91.

This process was followed for the ARINC 429 data bu:>. Environmental tests on
the original bus were conducted by the BCAC in accordance with RTCA/DO-l60A.
In addition to the test procedures in RTCA/D0-160A, BCAC conducted other tests
on the bus's components. This was necessary because RTCA/D0-160A did not
address all aspects of the data bus. The tests are outlined in ARINC Specifica-

37

-- -------------------~--------------- -----------------------------~-----------

tion 429-12. Honeywell's Sperry Commercial Flight Systems Group and Rockwell's
Collins Division (both in conjunction with GAMA) have adopted similar procedures
for the CSDB and ASCB, respectively.

Other tests (like those performed by BCAC) are developed to address bus
requirements that the informal guidelines miss. For the purpose of this
section, these tests are broken into two categories: external and internal.
External tests could be either laboratory tests or computer simulations, while
internal tests are used by components to check themselves (e.g., verify data
words, labels, or characters). Internal tests include monitoring, error
detection, and synchronization, and may go down to the bit level.

External and internal tests are not defined by the FARs, but are considerations
that help ensure that the bus performs its intended function. Without them the
bus may still function, but its integrity would be significantly decreased.

The following four sections discuss how the informal guideline tests and these
manufacturer's tests are applied to avionic data buses. Because there are many
of these tests, and some are proprietary to the manufacturer, only brief
discussions are provided.

4.3.1 ARINC 429 Data Bus

The ARINC 429 bus is a digital broadcast data bus made up of a transmitter,
receivers, and wire. It was developed by the Airlines Electronic Engineering
Committee's (AEEC) Systems Architecture and Interfaces (SAl) subcommittee. The
AEEC, which is sponsored by ARINC, released the first publication of ARINC
Specification 429 in 1978. At that time, the specification contained the basic
philosophy of the bus, as well as data transfer and format characteristics.

Included in the original specification were tests of the bus and its interface
circuitry. Environmental testing was conducted in accordance with RTCA/D0-160
(this was the only informal guideline in this section that the ARINC 429 bus
satisfied). The ARINC 429 bus also underwent external tests such as receiver
data detection techniques, laboratory tests, and computer simulations to prove
that the bus was fully operational.

Laboratory tests and computer simulations were used to assess pulse distortions
on the data bus. For the laboratory tests, the bus was configured with Number
20 American Wire Gauge cable in a typical Boeing 747. A pulse was generated by
an ARINC 429 bus transmitter and viewed at the outputs of the transmitter and
at a receiver. The results were viewed with an oscilloscope. Computer
simulations modeled the whole bus, with the bus's model being drawn from the
wire characteristics. The computer simulation included analyzing voltage
waveforms and transmitter impedance. More detailed descriptions of these tests
are provided in appendix 1 of ARINC Specification 429-12.

Internal tests are done by the bus on itself (these are included in ARINC
Specification 429-12). The tests include data word counts, parity checks, and
cyclic redundancy checks (CRCs).

38

Word counts are used by ARINC 429 LR.Us to verify that the number of words at
the receiver is the number of words expected. If the number of words does not
match, the receiver notifies the transmitter within a. specified amount of time.

Parity checks use one bit of the 32-bit ARINC 429 data word. Odd parity was
chosen as the accepted scheme for ARINC 429-compatible LR.Us. If a receiving LRU
detects odd parity in a data word, it continues to process that word. If the
LRU detects even parity, it ignores the data word. (Parity checks are described
in detail in section 5.1 of this report).

CRCs are used by ARINC 429 LR.Us to verify groups of data words or data strings.
A description of the CRC is given in section 5.1.

This section described how some external and internal tests were used to verify
the ARINC 429 bus's operation, and, indirectly, sati.sfy FAR Parts 23, 25, 27,
and 29, section 1309. Today, many similar tests are being developed and
executed on the ARINC 429 data bus.

4.3.2 Commercial Standard Data Bus

The CSDB is GA' s ARINC 429 bus. It connects avior,ic LR.Us point-to-point to
provide an asynchronous broadcast method of transmission. More information
about the bus's operating characteristics is contained in the standard, which
is available through GAMA.

Before the bus could be used in an avionic environment, it was put through
validation tests similar to those used on the other buses. These included the
environmental tests presented in RTCA/D0-160 and failure analyses_ Most
environmental tests were done transparently on the bus after it was installed
in an aircraft.

As with the other buses, Rockwell's Collins Division had to develop external
tests to show that the bus satisfied specifications in the standard. Test
procedures of this nature are not included.

Internal bus tests that the CSDB standard describes include a checksum test and
a parity check. Both of these are used to ensure t:he integrity of the bus's
data. Care should be taken when using these tests because their characteristics
do not allow them to be used in systems of all criticality levels. Further
information about both tests is provided in section 5.1.

These are not the only external and internal tests ~hat the CSDB manufacturer
can perform. Many more characteristics which may recuire testing are presented
in the CSDB specification. Again, it remains the manufacturer's responsibility
to prove that exhaustive validation testing (VT) of the bus and its related
equipment has met all the requirements of the FARs.

4.3.3 ARINC 629 Data Bus

The ARINC 629 data bus is a high-speed, bidirectional data bus, which uses a bus
protocol that supports both periodic and aperiodic data. It was developed by
BCAC prior to 1981.

39

Much information has been published on the ARINC 629 bus over the last 10 years.
The data bus has been the focus of many technical papers and symposiums.
ARINC's SAl subcommittee, which published part one of the bus standard, is
currently working on parts two, three, and four. These drafts are called the
Applications Guide, Data Standards, and Test Plan, respectively. Each of these
parts has been distributed by ARINC in draft form.

Part four of the Test Plan contains a "complete" set of external tests for ARINC
629 bus components, or for groups of components within the data link and
physical layers of the bus. It also contains a section explaining the
environmental tests considered for the ARINC 629 bus.

External tests in the Test Plan address the bus's components. The Current Mode
Coupler (CMC), Serial Interface Module (SIM), and terminal are all components
considered by the Test Plan. The Test Plan also states that each of these
components will be subjected to different tests. A list of the component tests
is included in Attachment 1 of the Test Plan. Once the single units complete
their testing, they should be tied together and tested in conjunction with one
another. This hierarchial approach makes general test cases easier to identify.
No formal external test procedures are presented here because they are not
specified in the draft of the Test Plan.

Internal tests used by the ARINC 629 bus range from simple ones that verify
parity to complicated ones that ensure a bus user, or terminal, will not
broadcast out of turn. Since there are many internal tests which can be
performed, only a few examples are given.

One internal test involves monitoring performed by a BIU. There are three types
of terminal monitoring: receive data monitoring, transmission monitoring, and
protocol checking. Only the protocol check is discussed here.

A protocol check is used by a BIU subsequent to transmission. The purpose of
this check is to ensure that a transmitter will not place data on the bus at the
wrong time. In this way, orderly periodic and aperiodic transmission occurs
between terminals. The protocol check requires the transmitter to satisfy the
following three conditions between two transmissions (if these conditions are
not met, transmission is inhibited [Shaw and Sutcliffe 1988]):

A Transmit Interval (TI) must have passed.
terminals on the bus.

This TI is common to all

• A quiet period called the Synchronization Gap (SG) must have passed. This
SG is also common to all terminals.

• A quiet period called the Terminal Gap (TG) must have passed since the SG
and since the end of any other terminal's transmission. This TG is unique
to each ARINC 629 terminal.

Other internal tests that the ARINC 629 bus performs are parity checking, data
format, and modulation. These tests are performed in the data link layer, and
are done on each label and data word. Parity checking on the ARINC 629 bus

40

parallels the ARINC 429 bus's parity checking. The ARINC 629 bus parity check
is accompanied by a modulation check.

Two other internal tests that are performed are checksum and CRC. Since these
discussions parallel the one given in section 4.3.1, they are not restated here.

Many more external and internal tests are required for the ARINC 629 bus because
it is a complicated bus. They are pointed out in the ARINC specification,
technical papers, and symposiums. BCAC and associated manufacturers will
continue this type of testing long after the ARINC 629 bus specification is
complete. However, the point of the tests remains unchanged; both internal and
external tests are required to show the FAA that the ARINC 629 bus can be
reliably implemented.

4.3.4 Avionics Standard Communications Bus

The ASCB is primarily used on GA aircraft, such as business jets and commuter
turboprop aircraft. Because integrated avionic systems in these aircraft still
need to satisfy the FAA's requirements for airworthiness, testing similar to the
other buses must be performed.

There are three versions of the ASCB: A, B, and C. Version A was designed for
use in flight-nonessential systems, Version B for fltght-essential systems, and
Version C for flight-critical systems. Only Versio:~s A and B are implemented
on aircraft and covered in the current GAMA specification. Version C is
currently under development.

As with the ARINC 429 bus, the ASCB had to undergo tests outlined in
RTCA/D0-160, as well as others defined by the manufacturers. These tests are
more detailed than those of the ARINC 429 bus because the ASCB uses a
bidirectional (half-duplex) architecture. Tests tha·: address the ASCB's BC and
waveform tests are examples of external tests that: can be performed by the
manufacturer.

The ASCB is controlled by a BC. Because the BC provides central bus control,
the ASCB incorporates a redundant BC in case the prir~ary BC fails. An external
test that involves these BCs should verify that cont1:ol is properly transferred
from one BC to the other in the amount of time specified by the standard, and
that the primary BC will relinquish control in the event of a failure (e.g.,
power interruption).

A waveform test should also be performed on the ASCB. Here, combinations of
stub lengths and- unterminated stubs are subjected to bit-errors and signal
alterations. This external test shows whether buH data is affected by the
medium's characteristics.

Internal tests, like those pointed out for the ARINC 429 bus, are performed by
the BIU. These are applied to ensure that the bus conforms to the standard.
Tests of this nature include CRCs and Transmission Validation.

The tests discussed above are not the only external and internal tests that can
be performed by the manufacturer. Many more bus characteristics that require

41

------~------~----- - --

testing are presented in the ASCB specification and throughout various technical
papers. Whether a test is conceived by the manufacturer or drawn from another
document, an ASCB manufacturer must prove to the FAA that the bus and its
related equipment has met all of the requirements of the FARs.

4.3.5 Summary

Chapter 4 showed which FARs and ACs are applicable to the certification of data
buses and integrated avionic systems. It then discussed SCs and their
relationship to the FARs. Appendix A lists the FARs and ACs addressed in this
chapter.

After the federal regulations were defined, chapter 4 discussed the informal
guidelines that showed what documents are used by data bus and integrated
avionic equipment manufacturers to meet the requirements of FAR Parts 23, 25,
27,. and 29, section 1309, and FAR Part 33, sections 75 and 91. Tests presented
in these informal guidelines are designed to ensure the system's integrity and
quality; verify reliability; help specify redundancy and back-ups; help isolate
systems, components, and elements; and help define error tolerance. Documents
presented in this chapter included RTCA/D0-160C, RTCA/D0-178A, and SAE ARP 1834.
Other documents may be used (as informal guidelines) to satisfy the FARs if
their procedures meet the same ends.

If manufacturers run across something not addressed by the informal guidelines,
they must develop their own validation techniques to show compliance. These
validation techniques are usually chosen to comply with FAR Parts 23, 25, 27,
and 29, section 1309, as well as FAR Part 33, sections 75 and 91.

Developing proper validation techniques should be a main concern of the
integrated avionic system manufacturer. These techniques must consider all
failure modes of the system, even ones that are unique and infrequent. Failure
to do this could result in hazardous conditions, even if the system is mature.
Lessons can be drawn from the MIL-STD-1553 data bus and its associated equipment
(Earhart 1991).

For example, the MIL-STD-1553 has undergone extensive tests over the last
decade. Throughout this time period, the MIL-STD-1553 has been accepted as the
data bus for most military equipment. Even with all the testing and validation,
there is still some apprehension about validating MIL-STD-1553 and its
associated electronics. Much of this apprehension is the result of poor VT.

One reason errors occur is because some manufacturers feel that total system VT
is not necessary. Total validation requires testing single components first,
and then testing them in conjunction with each other. A manufacturer who tests
only the single components could easily overlook system-wide errors.

Another reason errors occur is because some manufacturers only test a system
once and use the results for subsequent systems. Just because a system
functioned properly throughout the first tests does not mean that each similar
system will yield the same results. This is especially true if the system is
to be installed on a different aircraft or controlled by different software or

42

firmware. Some MIL-STD-1553 terminals tested by Test Systems of Phoenix,
Arizona, have been found to contain incorrect transformers and transceivers.

VT should also verify that operating LRUs satisfy the bus's standard. Just
because an LRU works in a system does not mean it meets the bus's standard.
Tests like this should be presented in each LRU' s t:est plan; this plan helps
manufacturers verify results and defines the LRU' s er:~or margins and tolerances.
Tests should also check margins and tolerances that: are not considered under
normal operation or operational testing (Earhart 1991).

The above example shows how poor VT could impact c~~rtification of well-known
products. Often, proper tests for digital avionic equipment are not established
until unique failure conditions appear. This is one reason that implementation
of complex avionic systems usually follows years of design. Although the ARINC
429 data bus was developed prior to 1978, it has taken years to achieve the
current level of reliability. On the other hand, t:he ARINC 629 data bus was
developed prior to 1980 and is still not being used in production aircraft. To
breach this design barrier, the avionic system's manufacturer should collaborate
with the FAA early in the design process and thoroughly validate all aspects of
their systems. This type of process will represent: a challenge for both the
system expert and the FAA.

43

5. BUS-INTEGRATED SYSTEMS TECHNOLOGY

This chapter focuses on technical issues related to the use of data buses in
avionic systems. Particular emphasis is placed on issues specific to the
integration of systems using data buses.

Section 5.1 introduces data bus architectures and examines the integration
issues. Concerns relating to avionic system and BIU interaction are examined
in Section 5. 2, Bus Hardware-Software Interactior.. Methods for protocol
development and verification are presented in Section 5.3, Protocol Specifica
tion and Verification Methods. Finally, the guidelines used for bus integration
are identified and examined in Section 5.4, Bus Integration Standards,
Guidelines, and Techniques.

5.1 System Inte~ration Concerns

Factors such as weight, power consumption, maintainability, reliability,
flexibility, and the cost of ownership are just a few of the general concerns
when evaluating a system design. This section examines the specific concerns
relating to the use and integration of avionic da.ta buses. Different bus
architectures and protocols are addressed first, then particular integrity
issues, and, finally, the issues of data bus monitoring and maintenance.

Data buses used in aircraft have distinct advantages (IVer point-to-point wiring.
One advantage is the reduction in the number of 111ires and connectors, and
another is the flexibility gained when adding, deleting, or modifying the
system.

There are two basic types of data buses: unidirectional and bidirectional.
Although there are many areas of concern common to both types, a bidirectional
bus has additional areas of concern. These are related to the data bus access
protocol. This determines when and how often a transmitter may gain control of
the bus. A discussion of access protocols is conta:~ned in section 5 .1. 2. In
a unidirectional data bus, which has only one transmitter, there is no need for
control to be relinquished, hence, there is no concern over an access protocol.

Following are four major areas of concern that have been identified as relating
to bus interfaces (Hecht and Hecht 1985):

Address errors

Internal inconsistencies

Denial of access

"Babbling" transmitters

Address errors are a corruption of the address field of a transmitted message.
On bidirectional buses there may be address fields in a message for both the
source and destination. This is especially true if the protocol requires an
acknowledgement message to be returned to the sender. In this case, an error

45

which occurs in a source address field will be easily detected since the
acknowledgement will not be received.

An internal inconsistency exists when the data passed between bus users fails
to adhere to the predefined format. These formats are given in detail by the
particular bus specification and should be tested by the receiver for conform
ity. Data words may contain fields for error checking, sign bit, status bits,
address bits, data bits, etc. The receiver typically uses one or more forms of
error detection, such as a CRC or a parity check, as a basis for message
acceptance or rejection. A rejected message may be retransmitted, or a default
value or alternate data source used.

Denial of access is a problem associated with bidirectional buses that needs
careful attention during the design, implementation, and operation of a bus.
A bus user is denied access when the user has information to send but the bus
is not available due to an error. One such error could be another bus user
failing to terminate its bus transmission. A failure in this area renders the
bus useless to one or more bus users. Therefore, access protocols and bus
interface hardware need to be carefully designed.

Babbling transmitters are those that fail to abide by the access protocol rules.
Due to a failure of bus interface hardware or software, the transmitter is
activated during another transmitter's access time. If not terminated, this
type of failure denies all other users access to the bus.

These four concerns are not only data bus interface concerns, but specific
integration concerns as well. New bus users must be tested to ensure that if
they are incorrectly addressed because of an address error, they discard the
message. They must follow the predefined format of the data bus specification.
Users not in compliance due to an internal inconsistency problem will either
generate errors or not detect them when they occur. Denial of access can become
a problem for bidirectional data buses when new users are added. This can
happen if not enough bus capacity is allowed for new users. Babbling may occur
if new users are not configured with the correct protocol parameters.

Another concern is that of specification completeness. Integration of equipment
on the same data bus may involve equipment from separate manufacturers. When
this occurs, certain parameters which may be undefined or incompletely defined
in the bus specification are subject to differing interpretations. This
difference of interpretation may later cause a bus failure. This concern is
specifically addressed in section 5.3.

The areas of concern are addressed in the following sections as appropriate.
Protocols, although defined as part of a system architecture, are examined in
a separate section that deals more specifically with protocol concerns.

5.1.1 Architecture Related Concerns

To understand data bus integration problems it is helpful to first understand
the different data bus architectures used. Data buses are increasingly referred
to as networks by those who work with and around them. There are fundamental

46

differences between avionic data bus networks and computer networks.
differences are generally dictated by the intended use of the network.

These

Computer networks are designed for purposes such as database access, integrated
voice and data transmission, resource sharing, file transfer, process control,
and general communication. On the other hand, avionic data buses werE} viewed
only as a way to save wiring and weight and enhance system performance by
sharing common resources. The function of the bu:> was to transfer certain
variables from one bus user to another at a fixed ~'date rate. With enhance
ments in protocols and advancements in IC densities, data bus performance has
risen. So has the interest in usi~g the data bus for purposes that resemble
computer networks. For example, ARINC Specificati•)ns 429-12 and 629 define
protocols for transferring files among bus users.

Networks use many different architectures. Some network architectures are
defined on the basis of response time; others are defined on the basis of
security, reliability, cost, or a combination of these. Where data buses are
used in flight-essential or flight-critical applicac:ions, the architecture is
designed with throughput and reliability as key factors.

5.1.1.1 Basic Bus Architectures

One technique useful in defining a bus architecture is the physical layout. The
physical arrangement of bus users in a network is called a topology. Various
methods have been used to connect bus users with data buses. Some common
topologies are illustrated in figure 5 .1-1. In a linear topology, LRUs are
added by sequentially attaching them to the data bu:>. All LRUs can listen to
any transmission on the bus. For a ring topology, ·:he ring must be broken to
add new LRUs. Messages are passed sequentially from one LRU to the next. In
the star topology, the LRUs are connected to a central hub. A message from an
LRU passes through the hub to any or all other LRUs on the hub.

Some of the possible topologies for connecting one data bus to another are shown
in figure 5.1-2. When one data bus is controlled by another it is called a
hierarchical topology. This is common in a military data bus topology, which
uses the MIL-STD-1553 bus. In civilian aircraft, it is common for buses to be
equal and share data as required ("MIL-STD-1553 Designer's Guide," 1982).

Redundancy is used in a data bus architecture to pro,•ide continued operation on
one data bus if there is a failure on another, regardless of the cause of
failure and whether or not the error is a recover:1ble type. Redundancy is
implemented both physically and functionally. Physical redundancy requires two
or more of the same item. If one fails, the other is used. For this type of
redundancy to work successfully, a means of failure detection and system
reconfiguration is required. Functional redundancy requires that the function
be duplicated, but in a dissimilar way. The implementation of redundancy is
vital in systems that provide flight-critical functions. Redundant designs
require careful attention by the system designer.

47

LRU1 LRU2 LRU3

•

LRU5 LRU4

LINEAR

LRU 1 LRU 1

LRU6 LRU2
.......... _/

LRU4 LRU2 HUB

v " LRU5 LRU3

LRU3

LRU4

RING

STAR

FIGURE 5.1-1. COMMON DATA BUS TOPOLOGIES

48

LRU 1 LRU2 LRU3

COMPUTER

SINGLE BUS TOPOLOGY

LRUl LRU2 LRU3

I l I

l
COMPUTER

SINGLE BUS TOPOLOGY WITH
REDUNDANCY

LRUl LRU2 LRU3

COMPUTER

LRU4 LRU5 LRU6

MULTIPLE BUS TOPOLOGY

LRUl LRU2 LRU3

L 1 I --
1

COMPUTER

1 -
I T I

LRU4 LRU5 LRU6

MULTIPLE BUS TOPOLOGY WITH
REDUNDANCY

FIGURE 5.1-2. LINEAR DATA BUS TOPOLOGIES

49

5.1.1.2 Control Architectures

How a data bus is controlled has an affect on the bus architecture. There are
two types of control which dominate avionic data bus systems: distributed and
centralized. With centralized control, a single controller directs all the
activity of the data bus. There are no transmissions from any bus user unless
directed by the BC. This controller will have a list of the addresses of all
the bus users and will transmit a command to each user at the designated rate,
giving each user a chance to access the bus and send any data required by other
bus users. The ASCB and MIL-STD-1553 bus use centralized control.

Distributed control refers to a system that is not centrally controlled.
Instead of the access control being contained in a central controller, it is
programmed into each device which is connected to the data bus. Each user has
been programmed to follow an identical set of access rules without variation.
The ARINC 629 bus uses distributed control.

5.1.1.3 Functionally Partitioned Architectures

Another technique used in defining the bus architecture is functional partition
ing. This means that data buses are defined by functions which they perform and
are grouped accordingly. For example, in the ARINC 629 bus implementation
(planned for use on the Boeing 777) systems are partitioned according to their
function, such as fly- by-wire, system, and display functions (Bailey 1990).
Data sharing among bus users is more easily accomplished when the users
requiring the data are on the same bus as the users supplying the data. When
this is not done, some method of linking the data buses together is required.
This can be accomplished with gateways and bridges.

5.1.1.4 Multiple Bus Architectures

The use of gateways and bridges is another facet of integration concerns
associated with a data bus architecture. Avionic systems that are required to
share data may use different data bus protocols. A gateway is used to connect
two or more data buses so that a user on a bus using protocol X may communicate
with a user of another data bus, which uses protocol Y. A gateway may be a
standalone interface or part of an LRU. The gateway functions as a protocol
converter, converting data packets, wordstrings, or frames from one format to
another. A gateway used between two buses is req~ired to perform two data
conversions, protocol X to protocol Y, and protocol Y to protocol X.

When it is necessary to share information between data buses which use the same
protocol but must remain isolated, a bus bridge is used. Figure 5.1-3 shows
examples of how buses may be connected by gateways and bridges.

so

SENSOR A SENSORB ~<SORC SENSORD

GATEWAY

COMPUfER COMPUfER

ARINC 629 BUS ARINC 429 BUS

SENSOR A SENSORB ~~SORC SENSORD

BRIDGE

COMPUfER COMPUfER

ARINC 629 BUS ARINC 629 BUS

FIGURE 5.1-3. GATEWAY AND BRIDGE USED IN AVIONIC SYSTEMS

51

If a gateway is required to perform conversions between two data buses, it will
perform a conversion from bus A to B and from bus B to A. If there are three
data buses, A, B, and C, connected to the gateway, then the gateway will be
required to do six conversions: A to B, A to C, B to A, B to C, C to A, and C
to B. The complexity of the gateway increases rapidly as the number of
interfaces increases. Avionic data bus gateways generally interface between two
data buses and, hence, require only two conversions. If data are required in
only one direction, then only one data conversion is necessary.

An example of an avionic device which fits the gateway definition is found in
ARINC Specification 429-12, appendix 2, where it is referred to as a "data
exchange buffer." The specification describes an interface between the
MIL-STD-1553 command/response data bus and the ARINC 429 broadcast data bus.
Some of the possible conversions between these two buses could be changing the
destination label or address, changing the ordering of bits, or generating and
testing the error checking mechanism used on the particular bus.

One possible implementation of a gateway may require a conversion from parity
error detection to a CRC detection technique requiring the generation of a CRC
check word. A gateway may implement this conversion in hardware or software and
will have a throughput delay based on the particular implementation chosen. In
general, a software technique would produce a lower cost with a higher delay,
and a hardware technique would produce a lower delay, but at a higher cost.

A gateway is more complex than the user bus interface since it needs to. deal
with protocols for two different buses and their associated data formats. Data
latency is increased in a configuration which uses gateways, due to the time it
takes a variable to pass from one bus to another through the gateway. If the
gateway or bridge causes data to be "momentarily stored" (ARINC Specification
429-12, appendix 2, 1990), then the system performance could be affected due to
a "stale data" condition. As shown in figure 5.1-4, the end-to-end delay can
be measured as T8 + Tb + Tc + Td + T8 • The values represented by these parameters
are as follows:

Ta - Transfer from host CPU and bus access delay
Tb - Data transfer time plus propagation delay for data bus A
tc - Gateway delay
Td - Data transfer time plus propagation delay for data bus B
Te - Bus access delay and transfer to host CPU

Tc may be composed of the time required for serial to parallel conversion,
protocol conversion, and parallel to serial conversion. It should be the goal
of any gateway design to keep Tc small in relation to the other time parameters.

52

HOST CPU HOST CPU

BIU GATEWAY BUSA BUS B BIU

FIGURE 5.1-4. DATA BUS DELAY WITH A GATEWAY

~

......

~ T
e

Careful consideration should be given not only to the data latency problem but
also to the handling of bus errors through the gate1~ay. Should an error that
was detected by the ARINC 429 bus interface be passed through the gateway to the
MIL-STD-1553 bus so that the intended receiver will detect it and take
appropriate action? Should there be a bit reserved in the data format to handle
this situation? Should the old data be stored in the gateway and used until a
correct error free update is received? The particular error recovery method
that is used should be consistent with the particular· standard and have minimal
impact on system operation.

A protocol that uses an acknowledgement response from the receiver for verifying
correct receipt of data, will have additional constraints when used in a system
containing a gateway. If the protocol at the receiving end is not required to
issue an acknowledgement, but the sender requires it, then the end-to-end
integrity is broken at the gateway interface. If an 8.cknowledgement is required
by both the sender and receiver, then the timeout value for the sender should
take into account the round trip delay introduced by the gateway.

Periodicity is an attribute which may be affected by a gateway implementation.
A periodic bus is one in which data arrive at the receiver at regular time
intervals. Different protocols meet at the gateway. Each protocol by itself
may be periodic, but when linked to another protoco:_ the result appears as an
aperiodic bus. This is due to the fact that the two protocols are not
synchronous. A wordstring that arrives at the gatew<q from bus X may have just
missed the transmission for bus Y. A later transmission from bus X may be just
in time for bus Y. Operation in this manner means that at certain unspecified
times the data will be fresh and at other times it will be stale. Systems that
require information to be updated at certain rates need to be analyzed closely
to determine if the introduction of a gateway will degrade the system operation.

53

In addition to the problems mentioned above, hardware-software interaction
problems, discussed in section 5.2, also apply. This is because, to each bus
the gateway resembles an LRU with a bus interface and host CPU.

5.1.2 Protocol Related Concerns

Multiple transmitters can use one bus by using time-based multiplexing. This
multiplexing requires that a bus access protocol be defined to ensure that, at
any one time, only one user is transmitting. The bus access protocol is a set
of rules by which all bus users must abide to access the bus and ensure its
specified operation. The basic types of access protocols which could be
considered for use with bidirectional data buses are as follows:

Contention

Time slot allocation

Command/response

Token passing

With the contention protocol any bus user may transmit on the bus at any time
after the bus becomes idle. If two bus users start transmitting at the same
time, a collision of data occurs and the data are corrupted. Collisions are a
normal event with this type of protocol. This protocol works well under light
use but tends to collapse under heavy loading due to numerous collisions.

The time slot allocation protocol assigns a unique, predefined time slot during
which each bus user may access the bus. Each user listens to the bus for a
period of inactivity. When the assigned time occurs for a particular bus user,
it may take control of the bus. Access to the bus is not attempted again until
the necessary time passes, which allows all other users to access the bus.

In a command/response protocol no bus user may transmit without receiving
permission from the BC. There is only one BC active at any time. The failure
of one BC should cause the activation of an alternate BC.

A token passing protocol allows a bus user to transmit only after it receives
the unique bit pattern, referred to as the "token." It receives the token,
sends any waiting message(s), and passes the token on to the next user.

There are also variations of these protocols that make the differences between
them unclear. For instance, a command/response protocol can operate with a
single central controller using a redundant standby controller for recovery.
Under the same command/response protocol there can be a large number of BCs
attached to a bus and all but one will be in the inactive state. Control of the
bus can be passed from one controller to the next as each requires bus use.
This technique closely resembles the operation of the token passing bus with a
distributed control architecture. This is a more complex protocol.

Certain attributes have been identified as being highly desireable for avionic
data bus protocols. These are fault tolerance, efficiency, simplicity, data

54

integrity, support of synchronous and asynchronous data transfer, and predict
ability (Rich et al. 1983). Though they are not the only desireable features
for a protocol, they do identify areas where major concerns have been expressed.

Fault tolerance describes the ability of a protocol to handle errors. Some
protocols simply identify the fact that an error occurred; others are able to
recover, possibly by a retransmission of the same data. Another recovery
technique is a bus user isolating itself from the bus after detecting self
generated errors. A failure of the protocol should he identified by bus users
and the reestablishment of order should be possible 111ith little delay.

With respect to data transfer, efficiency is a measu:=e of how much useful data
are transmitted on the bus compared to the total number of bits transmitted.
A large amount of overhead required for operation decreases the capability of
the bus.

Simplicity is a measure of how understandable the protocol is. An easily
understood protocol will benefit all areas of development, testing, and
operation.

Data integrity depends on how well errors are detected to ensure that correct
transmissions are made on the bus. The use of some form of error detection is
necessary to achieve data integrity. Various methods are available to implement
this feature and each differs in the types of errors which it will detect. The
efficiency of the protocol is usually affected by th'~ particular method used.

Most avionic data buses were designed to handle data that is synchronous. The
handling of control inputs, along with more recent applications, such as on the
Boeing 777 where the data bus may function as a general-purpose computer
network, require that the data bus be able to handle asynchronous demands as
well. This requirement necessitates that the overall throughput have the
capacity to handle the uncontrolled load of aperiodi<:: devices.

A deterministic protocol is one which is highly predictable. The specification
states exactly how it will perform under all foreseeable conditions, and it can
be verified that it does act according to this predetermined behavior.
Asynchronous transfers detract from this characteristic and the truly random
access protocols based on collision detection are no:~deterministic. Protocols
for avionic use are chosen because they are highly predictable.

A protocol which has the capability to deny acces~: to a bus user is not a
deterministic protocol. Even for a protocol that does not deny access, there
may be errors that have the same effect as access denial. For example, a
transmitter hardware failure may cause the transmitt~r to babble continuously,
thereby denying other transmitters access to the bus.

In the following sections, some of the basic protocols are discussed and
evaluated with respect to these preferred attributes.

55

5.1.2.1 Contention Protocols

A contention protocol in its pure form is nondeterministic. The term Carrier
Sense Multiple Access (CSMA) describes the predominant form of this protocol.
Multiple users are listening to the bus. When one has a message to send, it
waits for the bus to be not busy and makes a transmission. From this simple
description of CSMA operation one can easily see potential problems. This
uncoordinated access protocol cannot guarantee that a message will ever be
successfully transmitted. Therefore, many modifications have been made to this
protocol in order to increase its reliability.

One particular modification, Collision Detection (CD), can be used to enhance
this protocol. In CD, the users monitor their own transmissions for collisions
by checking the bus data, bit-by-bit, against the stored BIU message. When the
corrupted data that results from a collision is detected, the two users wait
for a random period of time before attempting to access the bus again. Doing
this will increase the availability of the bus to all users since they do not
have to wait for the entire corrupted message to be transmitted before the bus
returns to the idle state. When CSMA is used with CD, it is called the CSMA/CD
protocol.

One variation to CSMA/CD is referred to as "!-persistent" CSMA. A bus user
wishing to transmit will listen to the bus. When the bus is not busy it will
make a transmission. If a collision occurs, the sender waits for a randomly
generated delay time and tries again. It is called "!-persistent" because when
a collision occurs, the transmitter will retransmit the message with a
probability of "one" as soon as an idle bus is detected (Tanenbaum 1981).

A problem exists with this method. Assume that two users with data to send are
both waiting for a third user to stop transmitting. As soon as both users sense
that the bus is free, they will begin transmitting, resulting in a collision.
This leads to poor bus utilization and severe throughput problems under heavy
loading.

Propagation delays are critical in CSMA protocols. When one user just begins
transmitting, another may still detect no signal. The second user may then
start transmitting with a collision resulting. As the propagation d~lay

increases, so will the probability of a collision. Even if the propagation time
is zero, collisions can still occur since there is no mechanism to prevent two
bus users from sensing the bus at the same moment.

Another variation of the protocol is called "non-persistent" CSMA. Users
wishing to transmit, upon detecting a busy bus, will delay a random amount of
time and, if the bus is not busy, send its message. If the bus is busy, the
user again starts a random wait and repeats this process until the bus is free
and it can make a transmission (Tanenbaum 1981). CD can be used to enhance this
protocol as well.

As more users are added to the bus, the CSMA protocol suffers from an increasing
number of collisions during the contention period and, hence, wasted bandwidth.
Unless some variation is made to this protocol to avoid contention, it will be
plagued with poorer performance as new users are added.

56

Since this protocol is not deterministic, it is not u:;ed in flight-essential or
flight-critical avionic applications.

5.1.2.2 Time Slot Allocation Protocols

In a time slot allocation protocol, each user is giveTI. a preallocated time slot.
The ARINC 629 bus uses a time slot allocation protocol that also accommodates
asynchronous transmission. As with other bidirectional data bus protocols, this
protocol uses CD, but collisions are not normal events as in a contention
protocol.

The Time Division Multiple Access (TDMA) approach is t:he simplest form of a time
slot allocation protocol. In pure TDMA, the time of occurrence and the duration
of each user's time slot are predetermined. When one user's time has tran
spired, another user is given access to the bus. A more advanced form allows
users to determine the time of access based on bm: activity. The standard
implementation is called the Dynamic Time Slot Allocation (DTSA) protocol.
Although it is not an avionic data bus protocol, it is included to help
understand the ARINC 629 bus. The details of the DTSA operation are given in
appendix B of this report. The ARINC 629 bus implements a special form of DTSA.

In contrast to CSMA, which is based on a random aecess method, a time slot
protocol relies on a unique and predefined access method for each user. Each
user is guaranteed that, during its time slot under error-free conditions, it
has sole access to the bus. This access method lends itself to a high bus
efficiency, even under heavy loading conditions. fhroughput under the CSMA
protocol, however, rapidly deteriorates with increa1=ing access demands by its
users.

5.1.2.2.1 ARINC 629 Bus

ARINC Specification 629, Part 1, defines a TG coun<: which is similar to the
count duration, Tc, for DTSA. It defines a unique value for each user based on
a delay count. Bus access is permitted only after this count is satisfied.
Another DTSA parameter, the Frame Time, TF, is similar to the Minor Frame of the
ARING 629 bus specification in that it defines the cycle time of one user, from
the start of transmission x to the start of tran1=mission x+l. For either
protocol, if transmission lengths are allowed to vary then the sequence of user
accesses is maintained, but not the periodicity.

TDMA protocols operate in a cyclic fashion with the transmission of any user
being predictable as far as the time slot is conCE!rned. The ARINC 629 bus
cycle, however, is more complex because three timers must be satisfied for bus
access. Also, variations such as aperiodic transmissions are permitted.

ARINC Specification 629, Part 1, defines two basic modes of protocol operation.
One is the Basic Protocol (BP), where transmissions may be periodic or
aperiodic. Normal transmissions on the bus are periodic, but a condition such
as bus overloading may force the protocol into an aperiodic mode. Transmission
lengths are fairly constant, but can vary somewhat without causing aperiodic

57

operation if sufficient overhead is allowed. In the Combined Protocol (CP) mode
transmissions are divided into three groups for scheduling:

Level 1 is periodic data (highest priority)

Level 2 is aperiodic data (mid-priority)

Level 3 is aperiodic data (lowest priority)

Level one data are sent first, followed by level two and level three. Periodic
data are sent in level one in a continuous stream until finished, after which
there should be time available for transmission of aperiodic data.

With this protocol there are three conditions which must be satisfied for proper
operation. They are the occurrence of a Transmit Interval (TI), the occurrence
of an SG, and the occurrence of a TG. These values are based on bus quiet time
and are implemented as timers in each bus user. Figure 5.1-5 shows the access
timing when the bus is operating in the periodic mode.

FOR TERMINAL B: GO AHEAD
(A)

!

GO AHEAD
(B)

!

._--------------TI(B)---------------.

TI is the controlling parameter.
TG prevents collisions due to clock drift.
SG is not a factor.

FIGURE 5.1-5. PERIODIC ACCESS FOR THREE BUS USERS
("ARINC 629 Symposium View Foils," 1991)

The TI defines the m1n1mum period that a user must wait to access the bus. It
is set to the same value for all users. In the periodic mode, it defines the
update rate of every bus user. The SG is also set to the same value for all
users and is defined as a bus quiet time greater than the largest TG value. The
SG can take on four different values and is set larger than the greatest TG
value. Every user is guaranteed bus access once every TI period. The TI and
SG times are not reset by bus activity. The TG is a bus quiet time which
corresponds to the unique address of a bus user. The TG, however, is reset by
any bus activity. Once all three timers have expired for a user, it may access
the bus.

58

When a bus user or users exceed the time required fo1: all transmissions to fit
within the TI value, the protocol becomes aperiodic. During this overload
condition, transmissions still continue but periodicity is not maintained.
Figure 5.1-6 shows the access timing when the bus is •)perating in the aperiodic
mode.

FOR TERMINAL B:

~------~TI--------•

TG and SG are the controlling parameters.
TI is not a factor.

1-.---

A

-
FIGURE 5.1-6. APERIODIC ACCESS FOR THREE BUS USERS

("ARINC 629 Symposium View Foils," 1991)

GO AHEAD
(B)

!

-TG(B)

Since the TI value is exceeded, it is no longer the controlling parameter for
bus access. The SG and TG now become the controlling factors and the TI is not
a factor. This operation ensures all users bus access, although not at regular
intervals.

According to Part 1 of the ARINC 629 bus specificati.on, the system integrator
is tasked with the selection of values for the TI, SG, and TG. Once the number
of users is known, the range of TG values can be assigned and the SG and TI
values determined. The TI is given by the following formula (ARINC Specifica
tion 629, Part 1, 1990):

TI = O.S(Binary Value of TG) 10 + 0.5005625 ms

When adding users to the bus it becomes necessary to review these bus parameters
step-by-step, as was done in the initial design. Even if the bus capacity is
not a problem, the values of the TG and SG may require modification if many
users are added to the system. A recalculation of all timing parameters, along
with changes in the hardware straps and Programmable Read-Only Memories (PROMs)
for each user, may be required. The PROMs of all LRUs will also require
updating if new labels are added to the bus.

Additionally, when more users are added, bus efficiency is reduced because of
the increase in the TG required to address the new user. Adding user 126 to a
bus consumes almost 128 microseconds every TI, where~s the addition of user 10
consumes only about 12 microseconds. One way to avoid problems when adding
users is to maintain unassigned TGs with low values for this very purpose. If
utilization of these TGs is planned from inception, then the integration impact

59

will be minimal. Also, the SG value may need to increase when new users are
added if the largest TG value approaches the value of the SG.

In a TDMA-based protocol with fixed time slots, overload of the bus is not
possible since all users have access to the bus only in their own time slots.
If variable length transmissions are permitted and a bus user sends data longer
than is allotted, bus overload occurs. The data bus is still fully in use, but
it becomes asynchronous and established update times for periodic variables are
not met. This shift to the aperiodic mode is not detected by the bus hardware
and needs to be implemented at a higher level for detection.

The ARINC 629 bus specification allows the use of variable length wordstrings
and, therefore, the aperiodic mode is also defined in the specification. An
ample amount of free time should be provided in the initial design to allow for
integration of new users.

For the ARINC 629 bus, bus inactive time is measured and used by LRUs as a
parameter in the access protocol. When a protocol is based on the bus inactive
time, and the difference in inactive periods (which represent addresses)
approaches bus propagation time, care must be exercised in the physical layout
and address assignment of the individual users. Otherwise, a conflict may arise
due to two users responding at the same time, both assuming they have access to
the bus. To deal with this problem, section 4.2.1.3 of the specification states
the following:

"In general, for wire meclia, the total media length (stub/bus/stub)
between terminals [bus users] with consecutive TGs should not exceed
60 meters." (ARINC Specification 629, Part 1, 1990).

This requires that LRUs and unassigned TGs be physically grouped so that this
requirement is not violated. Also, any physical changes to the data bus that
affect propagation parameters need to be considered carefully.

The ARINC 629 system designer or system integrator is tasked with many decisions
concerning integration and operation of all the systems. The selection of the
particular protocol mode, BP or CP, is one decision which must be made and which
affects protocol complexity. If the CP mode is selected, then all LRUs must
conform to whatever standard is proposed for that mode. If undefined areas
exist in the bus specification, such as using the bus for file transfer, then
the system designer is essentially tasked with completing the undefined sections
and developing, testing, and implementing them as well.

5.1.2.3 Command/Response Protocols

A command/response protocol is one in which a central controller manages all
transmissions on the data bus. Bus users needing to send data are periodically
addressed by the controller and given permission to access the bus for a
specified message. No transmissions may be initiated without this permission.

There are two types of control which may be utilized under this and other
protocols: stationary and nonstationary. With stationary control there may be
one or more BCs. However, only one operates in the active mode; the others are

60

in standby mode. If a failure of the active controller occurs, then an inactive
controller takes over control of the bus, To work reliably, the controllers
need to distinguish between errors originating from a BC and errors generated
by bus noise or a faulty bus user. The controllers also should do a thorough
self-test to detect internal faults and watchdog timers need to be used to
provide an additional level of checking. The controllers should communicate
between themselves, not only through the bus but also through an independent
link, in case there is a problem with the bus medium or bus interface hardware
between the two controllers.

With nonstationary bus control, control is continually passed from one BC to the
next according to a predetermined sequence. At any given moment only one
controller is active. Two methods are normally used for passing control between
BCs. One method uses a fixed ordering of bus control where control is passed
from one controller to the next according to a predetermined table of addresses.
Each BC retains control of the bus until it has fininhed its last transmission
and then passes control to the next listed controlle1~. This is referred to as
"round-robin" control. The other method allocates a limited amount of time for
each BC to be active. When this time expires, control is passed to the next bus
user in the list. Under this latter method of control, the bus operates in a
synchronous manner at the expense of efficiency. If the controller does not
utilize its allocated time completely, then the bus will remain idle for the
rest of the period. With the round-robin approach, the bus is fully utilized
since a controller passes control to the next potential controller as soon as
it is finished. This method does not give the periodicity that may be required
by a bus user.

Another possible control method is to pass control based on a priority scheme.
At the end of a cycle for a particular BC, an arbitration period ensues where
the controller assesses the needs of all the other potential BCs and passes
control to the one with the greatest need. This arbitration period always
precedes the assignment of a BC. An advantage of th:_s method is that messages
high in priority are delivered first. This method of control, however, is more
complex and not synchronous in operation. The difficulty of monitoring and
testing such a protocol is greater than a synchronou!; protocol.

An advantage of the centrally controlled architecture is that integration
changes are carried out only in the active and standby controllers. Users do
not require modification unless they are involved in the change.

5.1.2.3.1 High-Level Data Link Control Protocol

The High-Level Data Link Control (HDLC) protocol can operate in a com
mand/response mode and is the basis of the ASCB data bus operation. HDLC was
defined by the International Standards Organization (ISO) for the purpose of
replacing character-oriented protocols.

HDLC is a bit-oriented protocol where data appears .as a continuous stream of
"ones" and "zeros." The beginning and end of the data bit stream are defined
by using a flag at the beginning and end of the bit sequence. Once this is done
it is referred to as a frame. Any information sent using the HDLC protocol uses
the format shown in figure 5.1-7.

61

------ ----------- -

FLAG ADDRESS CONTROL DATA CRC FLAG

FIGURE 5.1-7. HDLC FRAME FORMAT

Operation of the HDLC protocol is described in terms of the capabilities of the
bus users, or stations, and their cooperation. Intelligent stations can be
connected to several very simple stations. The management of the bus, which
requires more capabilities, is usually located in the more intelligent station.
This station is called a primary station while the others are called secondary
stations (Meijer and Peeters 1982). When there is a primary station with more
than one secondary station, it is referred to as an unbalanced configuration.

There are two modes by which the stations interact under the HDLC protocol:
Normal Response Mode and the Asynchronous Response Mode. The Normal Response
Mode specifies that the only time a secondary station can transmit is in
response to a command or poll from the primary station. The Asynchronous
Response Mode specifies that a station may transmit any time the bus is
inactive. This applies to both primary and secondary stations. Operation in
this mode means that collisions on the bus will be a normal occurrence.

In certain configurations it is necessary for all stations to have the same
capabilities. In this case, each station will have the capacity to function as
a primary or secondary station. This type of configuration is referred to as
a balanced configuration.

Based on the bus user capabilities and response modes there are three classes
of procedures defined in HDLC:

Unbalanced Asynchronous Configuration (UAC)

Unbalanced Normal Configuration (UNC)

Balanced Asynchronous Configuration (BAG)

Further details of the HDLC protocol are given in appendix C of this report.

5.1.2.3.2 Avionics Standard Communications Bus

The ASCB is a centrally controlled, unbalanced implementation of the HDLC
protocol using the Normal Response Mode. This configuration is the UNC. The
ASCB message frame uses the leading flag, address, data, CRC, and terminating
flag fields defined by the HDLC standard. Added to this are a checksum on the
data field and "SYNC" and "MARK" fields at the beginning and end of the message,
respectively. Figure 5.1-8 shows the frame format for the ASCB message.

62

SYNC FlAG ADDRESS DATA CHECKSUM CRC FlAG MARK

FIGURE 5.1-8. ASCB FRAME FOR~T

The ASCB eliminates the control byte, as defined in HDLC, from both the send and
receive messages. The ASCB specification, however, defines a control word and
a counter field in the control word (GAMA ASCB, section V, paragraph 4.3.1,
1987):

"Three bits are reserved in the control word of Eoach user to implement
a ... counter. This counter is incremented by the user each time it
transmits."

This counter is used to verify that the data received. is a new transmission and
not the same data as the last transmission. Under HDLC, this field would be
used in a store-and-forward network where a messa.?;e may be broken up into
smaller packets and sent to the destination, possibly over differing routes.
The receiver would then be required to reconstruct the message in the order in
which it was sent by using the three-bit counter field for correct ordering.
Since there is only one route defined for ASCB userH, this field is used as a
data update indicator.

By not using the full implementation of the counter field as defined by HDLC,
the ASCB protocol avoids the complexity of returning an acknowledgement frame
to the sender for every message received. This is an important difference
because, by doing this, the protocol is greatly simplified and proper operation
is more easily verified and monitored. With the elimination of the control
field, the HDLC information frames, supervisory frames, and unnumbered frames
are also eliminated.

Since no acknowledgement is returned, there must be a way to recover from errors
on the bus where data are lost and, therefore, nonrecoverable. Assuming all
transmission errors are detectable, there are three ·~asic ways to handle them:

Use the last data received

Request retransmission

• Use a stored or simulated value

Since retransmission is not a mode of operation for the ASCB, the system
designer must choose one of the other methods for er~or handling.

63

Transmissions on the bus are considered valid messages by users if they contain
a valid flag and address at the beginning and a valid flag and mark at the end.
Anything else which appears on the bus is to be ignored by all bus users.

It may be difficult to make significant additions of users to an avionic system
that uses the ASCB bus, since the message lengths are predefined and must fit
within a 25 milliseconds cycle time. The use of a central controller, however,
minimizes the difficulty since only the controller, and not all of the users,
need to be updated when this is done. Since users only respond when they are
addressed by the central controller, only the controller and any redundant
controllers need their user lists updated.

There is no provision in the ASCB for separate handling of high priority data
or messages. All transmissions are treated the same. If certain information
on the bus is in higher demand by a bus user, the designer should ensure that
it appears on the bus more frequently than other data. This can be accomplished
by having a particular message sent every cycle time, as opposed to every other
cycle time. Since the ASCB uses a predefined cycle time, which is 25 mil
liseconds, the possibility of bus overload is nonexistent for this protocol.

5.1.2.4 Token Passing Protocols

This protocol is based on a token, or special bit pattern, which circulates
around a ring bus to each user. When a user receives the token it has exclusive
access to the bus. When no users have messages to send, the ring is idle and
the token circulates freely.

When a user wants to send a message, it waits until it receives the token. It
functionally removes the token from the bus by altering the bit pattern. The
message is then sent on its way around the ring along with the modified token,
which is called a "connector."

If the tokens or messages were completely received and retransmitted by each
user to the next user, it would be an inefficient protocol. The time to
circulate a message around the loop would be the product of the time for one
complete transfer multiplied by the number of users. Instead, the message is
retransmitted bit-by-bit; each user only introduces a one-bit delay. This
reduces the retransmission overhead to only one bit-time multiplied by the
number of users.

When the number of users connected to the ring is large, the one-bit delay and
propagation time become significant. If the ring is small, then the number of
users is limited by the number of bits contained in the token. There must be
enough users to allow the entire token to be placed on the ring. Another factor
which requires consideration is when a user is removed from the ring. The
number of users remaining active needs to equal or exceed the number of bits in
the token. If a user is removed, it may be necessary for the interface logic
to remain attached to the ring so that a one-bit delay is maintained.

A token ring user switches from the receive to the transmit mode in one bit
time when there is a message to be sent. This is because as soon as the last
bit of the token is recognized, the next bit transmitted must be the first bit

64

of the sender's message. Buffering of messages in the user is required so that
they can be sent without delay. There is no possibil:~ty of host CPU interaction
for building a message once the token is received since there is only one bit
time to respond.

In a token ring, it is necessary to control the bits propagating around the ring
so that old messages can be removed and new ones added. The message originator
does this by removing the message from the ring and placing the token back in
circulation. The received message can then be compared to the sent message for
an integrity check, and the results of this check passed to the host system.
The user then returns immediately to the receive mode to support the operation
of the loop.

The token ring avoids contention by the use of the 1:oken. Under light usage,
the token circulates freely around the loop in a seq~ential fashion waiting to
be used by a user. When bus traffic is heavy, the token ring escapes the chaos
common to contention type protocols. Each user may send a message every time
it receives a token, regardless of how busy the bu:; becomes. It avoids the
single point of failure which is characteristic of the centrally controlled
protocols and allows equality among all users in the loop.

When a token ring operates as described above, and meE:sage lengths are constant,
periodicity can be maintained for all users. Even if there is a message build
up in the host system and the bus is at 100 percent ·.1tilization, this protocol
acts predictably. The predictability of the protocol, however, will be reduced
if variable length transmissions are permitted. Transmissions will cease to be
periodic and the designer will need to ensure that the minimum update rates for
all users are met.

A problem associated with this protocol is that if the token is ever lost, for
instance by a noise burst modifying the token pattern, operation will cease.
Users can monitor for this condition and, after a period of inactivity, start
a token circulating again. If variable length me::;sages are permitted, the
timeout period needs to satisfy the worst case scenario, of all bus users
transmitting the maximum length message, to avoid having more than one token in
circulation.

Two avionic data buses that may be classified in the category of token rings are
the LTPB and the HSRB. The LTPB uses a linear topology with token passing for
access control. The HSRB uses a ring topology with ·:oken passing. Both buses
operate at high data rates (SO megabits per second) •md are designed primarily
for military aircraft.

5.1.2.4.1 Linear Token Passing Bus

The LTPB is a recently defined data bus. Two types of media are defined for use
by the LTPB. They are fiber optic and wire media. Bus lengths of up to 1000
meters can be accommodated by the LTPB. Some of the bus characteristics are
listed in table 5.1-1.

65

TABLE 5.1-1. LTPB CHARACTERISTICS

Media Fiber Optic or Wire

Word Size 16 Bits

Message Size 0 to 4096 Words

Number of Physical Addresses 128

Priority Levels 4

Topology Linear

Although the physical bus is linear, the protocol uses a token which is cyclicly
addressed to each bus user, in sequence, around a logical ring. The token is
a Token frame which consists of an address field and a frame check field. The
address field contains the address of the BIU for which the token is intended.
The frame check field is a CRC which ensures token integrity. The BIU that
receives the token is granted access to the bus.

Since the token contains the destination address, any BIU may alter the sequence
of BIUs by modifying this field. This feature allows a ring to easily
reconfigure itself when an individual BIU becomes inactive. At power-up, or
when the token is corrupt, the logical ring sequence is established by a
predefined contention method.

If a BIU does not respond in a reasonable amount of time to a token passed to
it, the sending BIU will again send the token to the same bus user. If there
is no response, the sending BIU increments the destination address field of the
token and again transmits it on the bus. This process continues until a
successor is found or the destination address wraps around and equals the
sending address (AS4074.1, 1988).

The addition of new members to the ring and reentering bus users that were
momentarily dropped from the ring is accomplished by the Ring Admittance Timer
(RAT). Each BIU maintains a RAT. When the timer expires, the BIU attempts to
pass the token to a bus user with an address between its own and that of its
current successor. A token is sent to the succeeding address two times. If no
response is received, the address is increased by one and a new token is issued.
This process continues until a successor is established. If the current
successor already has the next physical address, the RAT is ignored. A RAT
should be used only on a lightly loaded bus. The throughput of a moderately
loaded bus would be significantly decreased (AS4074.1, 1988).

The LTPB allows message prioritizing. There are four categories of messages:
priority 0 through priority 3. Priority 0 messages are the highest in priority,
priority 3 messages are the lowest.

66

When a BIU receives the token, it sends all priority 0 messages first. A Token
Holding Timer (THT) is maintained by the BIU to cont:rol the maximum amount of
time the token may be held. It is reset upon reception of a token. The token
is passed on to the next user when the THT expires, ·~ven if there are messages
remaining to be sent.

Before the THT expires, Token Rotation Timers (TRTs) determine the window for
sending messages with priorities of 1 through 3. Ea.:h BIU maintains a TRT for
each of the three priority levels. After priority 0 n:essages are sent, priority
1 messages are sent until finished or until expiration of the priority 1 TRT.
This procedure is followed for each message priority level. If all of the
lowest priority messages are sent, the token is passed to the next bus user.
The TRT and THT ensure small latencies for high priority messages (AS4074 .1,
1988).

5.1.2.4.2 High Speed Ring Bus

The HSRB is another recently defined data bus. It is a unidirectional ring bus
that sequentially passes the token from one bus user to the next to control bus
access. The BIU that receives the token modifies the token, originates a
message, removes the message when it returns around the loop, and then emits a
new token. All other BIUs in the ring simply repeat n.essages that they receive.
In the normal mode of operation, the BIU holding the token sends only one
message before issuing a new token. Some of the bus characteristics are listed
in table 5.1-2.

TABLE 5.1-2. HSRB CHARACTERISTICS

Media Fiber Ot>tic or Wire

Word Size 16 Bits

Message Size 1 to 40~6 Words

Number of Physical Addresses 128

Priority Levels 8

Topology Ring

A BIU connected to the HSRB has two functional parts: the Ring Interface Unit
(RIU) and the Ring Interface Module (RIM). The RIM interfaces to the medium and
either allows the RIU to be connected to the bus or isolates the RIU from the
bus. The RIM has a mechanism to maintain ring contir.uity in the event of a bus
user failure. The RIU interfaces with the host CPU and performs the many
protocol related tasks associated with the token passing protocol.

67

A maximum delay of six bit-times is permitted between the input and output of
a RIU. All BIUs repeat the received messages, except the transmitting BIU which
removes its own message from the ring and reissues the token.

The normal configuration for the HSRB is a
ring is active and the other is inactive.
transmitted on both rings, but the message
ignored.

dual ring configuration where one
Each message is simultaneously

on the inactive ring is normally

There are three types of frames defined for the HSRB: Token, Message, and
Beacon. Token frames are used for access control, Message frames pass
information among bus users, and Beacon frames transmit control information
during start-up or reconfiguration.

5.1.2.4.2.1 Token Frame

The protocol uses a token which is continually passed from one BIU to the next
around the physical ring. The token is a Token frame which consists of a Token
Starting Delimiter Field (TSDF), a Control field, and a Token Frame Ending
Delimiter Field (TFEDF). The TSDF and TFEDF establish the start and end of the
Token frame. The Control field consists of five sub-fields relating to the
network operation. This token, with no message attached, is called a free
token. Only the BIU that receives a free token can access the bus. Refer to
AS4074.2 (1988) for more detail.

5.1.2.4.2.2 Message Frame

A Message frame is the vehicle used to transfer information from one bus user
to another. It consists of a Claimed Token sub-frame, which is the free token
with the Token Ending Delimiter stripped off, followed by a Preamble field,
various address and message control fields, an Information field, and a Frame
Status field (Aerospace Information Report [AIR} 4289, 1990).

With the exception of the Information field, all other fields in the Message
frame are considered. overhead. They are used to ensure error free message
delivery to the destination and correct protocol operation.

If a bus user wishes to send a message, it may wait for a free token and then
claim it, as long as it has higher priority messages to send than may be
reserved. Otherwise, the user can make a reservation in the Claimed Token sub
frame of a message already circulating around the ring.

Reserving a free token is done by setting the appropriate priority bits in the
Control field of the Token frame according to the priority of the message the
bus user wishes to send (AS4074.2, 1988). If the field is already set to a
lower priority, the bus user replaces the previous reservation with its higher
priority reservation. If the field is already set to a higher priority, then
the bus user wishing to place a reservation for a lower priority message must
wait until the priority field of a Claimed Token is lower than its message
priority level.

68

After the message is passed completely around the ri:~g. the sender removes the
message from the ring and issues a free token with thH priority field set to the
priority of the Claimed Token which it removed (AIR 4~~89, 1990). The first user
that has a message of that priority or higher may clal.m the reserved free token.

The bus standard allows for an option where it does not require the last issued
Claimed Token to be received by the sending bus user before it issues a new free
token. Operation in this manner allows multiple short messages on the ring
simultaneously. This mode of operation does not guarantee that the highest
priority message will be serviced first. Therefore, the bus standard limits the
number of consecutive short messages to 16.

5.1.2.4.2.3 Beacon Frame

The Beacon frame is used during ring reconfiguration to transmit control
information to all BIUs. Reconfiguration occurs after the application of power,
or during error recovery, and establishes the master station. The master
station issues the first free token after reconfigur~tion. The master station
is normally the highest addressed bus user. There is only one master station,
the rest are slaves. All bus users, however, must have master capability. The
reconfiguration also determines the number of participating bus users.

Since the ring allows reconfiguration at power-up, rtew bus users can be added
simply by attaching them to the ring and applying power. This assumes that the
required loading analysis has already been performed, the addresses of receiving
or transmitting BIUs have been implemented in the, new BIU, and any other
required changes have been made.

A bus user may be a bus bridge, as in any network. A bridge functions as a
receiving BIU on the ring which originates the message and as a transmitting
BIU on the ring which is to receive the message. The bridge completely receives
the message, verifies its correctness, and acknowladges receipt, before the
message is passed to the receiving BIU. The HSRB standard includes examples of
bridge implementations and guidelines for the designer, along with guidelines
on handling the protocol acknowledgement through the bridge.

5.1.3 Data Integrity Concerns

The integrity of data in an integrated digital avionic system is a key concern
of the use . Hence, it needs to be a key concern of the designer and systems
integrator. Problems arise in the use of data buses '\lrhen they are pushed beyond
their desi ned limits, causing a bus overload condition. Another cause of
concern is due to bus faults induced by internal or external sources. An
internal s urce may be a faulty bus user, while c:.n external source may be
radiated n Some issues relating to data integrity are examined in the
following ections. Applications to avionic data buses are made.

5.1.3.1

Bus capaci y deals with the ability of a data bus to handle its load. A data
bus is used to deliver information in a safe and timely manner. If data are not
available or a computation when they are needed, the system requiring the data

69

will yield results that are less than desireable. Since avionic systems are
becoming increasingly complex and more integrated, there is a growing need to
pass more variables between systems on a particular data bus. This need is
driven by various factors such as cost savings, performance improvements, and
pilot workload reduction.

When an avionic system is designed, the designers and system integrators ensure
that there is ample free time on the data bus to handle all of the bus traffic
during the worst case condition. Draft 1 of ARINC Specification 629, Part 2,
section 4.1 (1989), states the following:

" ... bus capacity is a finite resource and should be utilized in a
conservative manner. Therefore, it is recommended that the system
designer exercise diligence in the design process."

When new LRUs are added to an existing system at a later date, is the designed
worst case loading known? If it is, is it accounted for in the modified system?
Does the new integrated system meet the original design specification and update
rate for all variables?

In practice, the theoretical maximum bus capacity is limited by several factors:

Bit rate

• Message format

Protocol

Architecture

The bit rate, or clock rate, of a data bus is only one factor relating to bus
capacity. It quantifies the number of bits per second that are transferred
across a data bus. If the clock rate of a data bus is 1 megabit per second,
and the ward size is 20 bits, then the theoretical throughput is 50,000 words
per second. An increase in the bit rate will yield an increase in throughput.
There are physical limitations, however, that dictate the maximum bit rates for
a given configuration. The maximum bit rate depends on factors such as the
following:

Bus medium used (wire/fiber optic)

• Physical characteristics of the medium

Bus interface logic device speed

The message format has a pronounced affect on bus capacity. Error detection and
correction bits add overhead to the basic data word. In addition, if more data
bits are defined than are necessary for a particular variable, or if fields in
a wordstring are defined but not used, then overhead is increased, which reduces
the data bus capacity.

70

The particular protocol used also has an effect on the bus capacity. When a
protocol which requires an acknowledgement is used, the response time of the
receiver and the transmission time of the acknowledgement must be accounted for.
If the response time of the receiver varies, the wor:;t case response should be
specified and used in the calculation of throughput.

In an acknowledgement type protocol, consideration should be given to the
additional load created by error correction. Upo::1 detection of an error,
retransmission may be requested. Retransmissions may force the bus to become
aperiodic. Hence, it is necessary to plan for a cer1:ain amount of retransmis
sions in an acknowledgement-based protocol.

A protocol that bases bus access on a delay time also influences throughput.
In effect, a certain delay time becomes the unique usE:r address. The higher the
number of users on the bus, the lower the overall bu:> capacity.

Bus architecture has an influence on bus capacity. If a system contains
gateways or bridges, the resulting delays need to be accounted for. These
delays may be in the form of error checking, protocol conversion, data format
conversion, or other operations on the data performed in a gateway or bridge.
Figure 5.1-4 illustrated the delays that need to be accounted for in an
architecture using gateways or bridges.

Not considered in this section, but significant to o'rerall system performance,
are buffer availability in the receiver; the processing capability of the
receiver; the ability of the sender to maintain the required update rate; and
other areas not directly relat:ed to bus throughput, such as hardware- software
interaction. It should be recognized that due to pt·oblems in these areas bus
performance may be degraded, but that the cause is not the data bus.

5.1.3.1.1 ARINC 429 Bus Capacity

The ARINC 429 bus uses a word length of 32 bits. There are two transmission
rates: low-speed, which is defined as being in t-:1e range of 12.0 to 14.5
kilobits per second; and high-speed, which is 100 kilobits per second.

There are two modes of operation in the ARINC 429 bus protocol: character
oriented mode and bit-oriented mode. In the character-oriented mode, periodic
updates of each variable are maintained on the data bus. These periodic rates
are specified in Attachment 2 of the specification, along with the message
labels, equipment identifiers (IDs), and other essen·:ial information. Knowing
the bit rate and the essential update information from Attachment 2, a
determination of bus capacity can be made.

For the bit-oriented mode, the determination of throughput is complex and is
based on numerous protocol related variables. The bit rate specified is the
same as for the character-oriented protocol and can be either low- or high
speed. Bus capacity is difficult to determine when the bit-oriented mode is
used, and no guidelines are given in the specification for making this
determination.

71

Bus utilization remains constant during operation of the character-oriented
protocol. The system designer defines the load based on the LRU messages and
update rates required for all LRUs and selects the appropriate bus speed to
support the update rate required. No guidance is given in the specification for
overhead allowance.

Since the ARINC 429 bus is a broadcast bus, no access protocol is used by
transmitters on the bus. Bus availability is not a problem for a bus with a
single transmitter. There is, therefore, no access protocol overhead limiting
bus capacity. There is a message format overhead, but it is minimal.

Out of the 32-bit word length used, a typical usage of the bits would be as
follows:

• Eight bits for the label

Two bits for the Source/Destination Identifier

Twenty-one data bits

One parity bit

Thus, the information bit-rate for the ARINC 429 bus is typically a factor of
twenty-one thirty-seconds of the clocked bit-rate. An information bit-rate of
65,625 bits per second is the maximum obtainable rate with the given overhead.

5.1.3.1.2 Commercial Standard Digital Bus Capacity

The CSDB is similar to the ARINC 429 data bus in that it is an asynchronous
broadcast bus and operates as a character-oriented protocol. Two bus speeds are
defined in the CSDB specification. A low-speed bus operates at 12,500 bits per
second and a high-speed bus operates at 50,000 bits per second.

Data are sent as frames consisting of a synchronization block followed by a
number of message blocks. A particular frame is defined from the start of one
synchronization block to the start of the next synchronization block. A message
block contains an address byte, a status byte, and a variable number of data
bytes. The typical byte consists of one start bit, eight data bits, a parity
bit, and a stop bit.

The theoretical bus data rate for the CSDB operating at 50,000 bits per second,
with an 11-bit data byte, is 4,545 bytes per second. The update rate is reduced
by the address byte and synchronization block overhead required by the standard.

The CSDB Interblock and Interbyte times also reduce the throughput of the bus.
According to the specification, there are no restrictions on these idle times
for the data bus. These values, however, are restrained by the defined update
rate chosen by the designer. If the update rate needs to be faster, the
Interblock time and the Interbyte time can be reduced as required.

72

5.1.3.1.3 ARINC 629 Bus Capacity

The current draft of ARINC Specification 629, Part 2, section 4, is entitled
"Bus Performance Analysis." The draft treats "Bus Loading" and will also
include sections on "Response Times" and "Data Laten·~Y."

Bus loading is discussed for the CP protocol. There are three levels of bus
data traffic defined in the CP protocol. The fi:rst level consists of all
periodic transmissions. Loading due to periodic t:raffic is evaluated before
level two and level three traffic. The specification states the following:

"Normally a worst case estimate can be obtained by simply summing the
maximum bus loads, after balancing has been attempted, of all
terminals [bus users] attached to the bus." (ARINC Specification 629,
Part 2, section 4, 1989).

The standard recommends that bus traffic be balanced before computing the bus
loading. This means that the designer should attempt to even out the traffic
load to minimize the worst case load. After this, a simple summation of the
maximum loads presented by each LRU will give the level one bus loading.

In contrast to level one loading, level two and level three loading is much more
difficult to ascertain. Aperiodic traffic depends on the flight phase or the
mode in which the aircraft is operating. According to the specification, the
designer will need to make several evaluations:

The average load presented by the identified traffic.

A worst case assessment, if transmission of lev·~l two messages within one
TI is to be guaranteed.

A less severe case, where transactions are trig,?;ered by some event.

A statistical evaluation of bus loading.

Level three traffic is aperiodic and lowest in priority. For this level, the
specification requires that the designer make the following assessments:

The average load presented by the identified tr3.ffic.

A worst case assessment, taking into account tha1: some transfers may result
in closely spaced bus accesses and may use a file transfer protocol.

Since the ARINC 629 bus protocol is based on bus qui~t times for operation, it
suffers throughput degradation when high periodic update rates are required with
a large number of users. Three factors which contribute to this degradation are
the Interstring Gap (IG), the TG, and the SG.

!Gs are required time intervals inserted between contiguous messages. A TG is
a unique time interval for each bus user which must ·:>e satisfied for a user to
access the bus. The SG is a time interval greater than the largest TG that must
be satisfied for each user before a user can access the bus.

73

Another factor contributing to throughput degradation is a small number of data
words per message. The larger the message, the more efficient the data transfer
becomes. However, to allow periodicity for all users means that some trade
offs must be made between the frame rate for all users and the number of words
per label. A large number of users and high periodic update rate also detract
from the protocol performance.

On the other hand, greater performance can be realized if the following
guidelines are followed:

Use as many words per label as is practical.

• Choose reasonable values for the periodic update rate and the number of
users.

• Keep the TG values sequential and choose the smallest set possible.

• Place the most used data words in a message closest to the label to enhance
receiver performance.

Concerning the initially designed bus capacity, section 4.4.6 of ARINC
Specification 629, Part 1 (1990), states the following:

"During initial development, bus loading should not exceed 50% of its
capacity in order to allow for growth during the system's operational
life."

The designer is cautioned that capacity is a finite resource and should be used
conservatively.

5.1.3.1.4 Avionics Standard Communications Bus Capacity

Data are sent on the ASCB as a series of eight frames, each with a duration of
25 milliseconds. There are no retransmissions or complicating protocol factors.
The computation of bus capacity is straightforward. The messages transmitted
in each frame are predetermined for a particular application, and there is no
deviation once the operation is established.

The ASCB standard gives the following information for computing the bus
capacity:

Bus clock rate = 2/3 MHz = 0.0016 msjbit

• Zero insertion factor = 6/5 x 0.0016 = 0.0018 msjbit (The HDLC component
automatically inserts a "zero" to prevent six consecutive "ones." The
receiving HDLC component automatically removes the inserted "zeros.")

8 bitsjbyte x 0.0018 ms/bit = 0.0144 msjbyte, or 69,444 bytes/second

Bus utilization remains constant for ASCB during operation. The system designer
defines the throughput based on the LR.Us and update rates required for all

74

systems, and based on the byte rate defined above. Overhead is also added to
allow for future expansion. For a typical application, the ASCB utilizes
approximately 80 percent of the available frame time (Jennings 1986).

5.1.3.1.5 MIL-STD-1553 Bus Capacity

For the MIL-STD-1553 bus, messages are passed between a BC and remote terminal
(RT) , which is a bus user, one RT and another RT, or one BC and another BC.
Calculating bus capacity is viewed as a fairly simple task. According to the
"MIL-STD-1553 Designer's Guide" (1982), the following are required for the
computation:

A hand-held calculator

System data

• Decisions on the implementation of MIL-STD-1553

The "MIL-STD-1553 Designer's Guide" (1982) suggests the following values be used
when computing bus loading:

20N + 68 value for each BC to RT message

20N + 116 value for each RT to RT message

20N + 40 value for each BC to RT broadcas·:: message

• 20N + 88 value for each RT to RT broadcas·:: message

68 value for each mode code (MC) me:>sage without data word

88 value for each MC message with data word

40 value for each MC broadcast message without data word

60 value for each MC broadcast message with data word

The value "N" represents the number of words in the message and the values
calculated are in milliseconds. The average bus loading is given by the
following:

Bus Loading = (S I F) x 100 percent

where S is the sum of the message type values and F is the frequency, 1. 0
megahertz.

The "MIL-STD-1553 Designer's Guide" (1982), section I. paragraph 3.8, also makes
the following recommendation concerning bus capacity:

"A system should not exceed 40% bus loading at initial design and 60%
at fielding, in order to provide time for error recovery/automatic
retry and to allow growth during the system's life."

75

----------- -----------

5.1.3.1.6 Linear Token Passing Bus Capacity

Before a determination of the bus capacity can be made, it is necessary to
calculate the token rotation time and categorize the traffic into message types
and priorities. Clear and ample direction for these determinations is given in
the LTPB user's handbook (AIR 4288, 1991). In addition, the handbook gives
examples to aid the system designer or integrator in this task.

The token rotation time is calculated as follows (AS4074.1, 1988):

where

T N (Bus Length / Propagation Speed
+ Token Receiving Time
+ Token Transmitting Time)

T is token rotation time in seconds
N is the number of BIUs in the configuration
Bus Length is the distance from the transmitting BIU to the receiving BIU

The Token Receiving Time and Token Transmitting Time are equal since they both
contain the same number of bits and have the same clock rate. This time is
given by the following (AS4074.1, 1988):

(Preamble Size + Token Length) * Bit Time

The preamble is a bit pattern created by the transmitting BIU. It is used by
the receiver to synchronize its receive clock to the clock of the transmitting
BIU. The system designer has the liberty to set this value according to the
requirements of the receiving hardware. It must be accounted for in computing
the bus capacity.

There are four important characteristics of the bus traffic to quantify: types
of messages, data message size, peak frequency, and latency. The message type
describes a unique combination of message size and frequency. The data message
size is the number of 16-bit words associated with the message type. The peak
frequency defines the update rate for a message type. Latency is derived from
the peak frequency and is used as a basis for a message's priority. Table 5.1-3
gives an example of how messages may be characterized.

76

TABLE 5.1-3. LTPB MESSAGE CHARACTERISTICS
(AIR 4288, 1991)

Message Data Message Size Peak Frequency Latency
Type (Words) (Hz) (ms)

A 20 100 10
B 50 75 10
c 50 50 20
D 150 50 20
E 20 25 40
F 225 25 40
G 1025 15 66
H 1000 12.5 80
I 150 12.5 80
J 2000 10 100

The messages need to be assigned priority. The LTPB user's handbook suggests,
for simplification, that the larger latencies be multiples of the smallest
latency. Using this criterion, table 5.1-4 gives the priority breakdown, using
the data from table 5.1-3.

TABLE 5.1-4. LTPB MESSAGE PRIORITIES

M. ~:Jpe Priority Latency ~ ·o·

A 0 10
B 0 10
c 1 20
D 1 20
E 2 40
F 2 40
G 2 40
H 3 80
I 3 80
J 3 80

The time for a single transmission of all messages for each priority category
is calculated from the following equation:

dij (Number of priority i words· * 16 bits/word
+ Message overhead bits * Number of priority i messages)
* Bit time

77

----~ --------~ ~--- -----·-~--~-~·-~~--~-

In table 5.1-3, priority 0 messages have 70 words. If an overhead of 27 bits
exists, and the bit rate is .02 microseconds per bit, then the transmission time
for priority 0 messages is as follows:

(70 * 16 + 27 * 2) * .02 = 23.48 microseconds

The calculated values for priority 0 through priority 3 messages are 23.48
microseconds, 65.08 microseconds, 408.02 microseconds, and 1009.62 microseconds,
respectively. Since there are 10 bus users, the total transmission time for
each priority group becomes 234.8 microseconds, 650. 8 microseconds, 4080.2
microseconds, and 10096.2 microseconds, respectively.

Next, the number of token rotations necessary to service the messages for each
priority level of bus traffic is used to determine the expected bus loading.
It is assumed that in one token rotation, all priority 0 traffic will be passed;
in two, all priority 1 traffic will be passed; in three, all priority 2 traffic
will be passed; and in four, all priority 3 traffic will be passed. The
expected bus loading is then calculated by dividing the total transmission time
for priority "i" messages by the number of token rotations necessary to pass
priority "i" messages. Using the same data, the values of 234.8 microseconds,
325.4 microseconds, 1360.07 microseconds, and 2524.05 microseconds are obtained
(AIR 4288, 1991).

If the total bus loading for priority 0 through priority 3 traffic, plus the
token rotation time, is less than the required priority 0 latency, then
sufficient bandwidth exists to support the network operation. In this example,
the time for 10 bus users to pass their expected traffic is 4444.32 microseconds
(234.8 + 325.4 + 1360.07 + 2524.05). If the token rotation time (45.5
microseconds for this example) is added, then the total becomes 4489.82
microseconds. Since the priority 0 latency requirement is 10 milliseconds, or
10,000 microseconds, this bus configuration is adequate and allows ample
bandwidth for growth.

It is possible to enhance bus performance by requiring that successive bus users
be located adjacent to each other. This will reduce the token passing time and
the time for detection of the successor. Since the performance increase is
proportional to the bus medium length, the effect is more dramatic in larger
configurations (AIR 4288, 1991).

5.1.3.1.7 High Speed Ring Bus Capacity

The HSRB handbook includes a section on "Performance Calculation" for the HSRB.
To proceed with this analysis, it is first necessary to compute the Ring
Rotation Time (RRT). This is given by the following (AIR 4289, 1990):

78

where

and

RRT Media Transmission Delay
+ Bus User Bit Delay
+ Bus User Modulation and Demodulation Delay

Media Transmission Delay = L / V
Bus User Bit Delay = [(N - 1) * Sb + Mb] / C~c
Bus User Modulation and Demodulation Delay = N ~r (Tm + Td)

Length of medium
Transmission velocity of medium
Number of bus users on ring
Number of delay bits in a slave station BIU
Number of delay bits in a master station BIU
Clock rate
Modulation delay in a BIU
Demodulation delay in a BIU

The HSRB standard specifies Sb and Mb to be 6 bits .:md 40 bits, respectively,
and Ck as 50 Megabits per second when using wire mec.l.a. Using a value of 150
meters/microsecond for V, 0.05 microseconds for Tm + Td, 64 for N, and 300 meters
for L, then the RRT can be computed as follows:

RRT 300 I 150 + [(64 - 1) * 6 + 40] I 51
) + 64 (0.05)

13.56 microseconds

The Message Length (ML) is also necessary for the performancecomputation. This
is computed in the following manner (AIR 4289, 1990):

ML

where

Overhead bits + Information bits
170 + 20 * Ln + 40 * INT(In/256) + 20 * In

Number of logical address words (equal to one if physical
addressing is used)

Number of Information words

If we use a value of Ln = 1, then ML may be calculated over the range of
information words as shown in table 5.1-5.

79

TABLE 5.1-5. HSRB MESSAGE LENGTH VERSUS INFORMATION WORDS

Information Words Overhead Bits Information Bits Message Length

1 190 20 210
1024 350 20480 20830
2048 510 40960 41470
3072 670 61440 62110
4096 830 81920 82750

Once the ML is known the Message Time (MT) can be calculated as follows:

The corresponding MTs for 1, 1024, 2048, 3072, and 4096 Information words are
4.2, 416.6, 829.4, 1242.2, and 1655 microseconds.

For the case of a single bus user transmitting a message, the worst case
transmission time, which occurs when the BIU has just missed claiming the token,
is given by the following:

Worst case transmission time for single transmitter = RRT + MT

The percent efficiency of the ring is now calculated as follows:

Efficiency - 100 * Information Time I Total Time

where the Information Time is computed as follows:

Information Time - Number of Information Bits (Ib) I Ck

Table 5.1-6 shows the relationship between the number of Information words and
the efficiency of the ring. Note the dramatic loss of efficiency with a small
number of Information words.

TABLE 5.1-6. HSRB EFFICIENCY VERSUS INFORMATION WORDS

In Ib MT RRT Efficiency
(words) (bits) (iJS) (IJS) (%)

1 20 4.2 13.56 2.25
1024 20480 416.6 13.56 95.20
2048 40960 829.4 13.56 97.20
3072 61440 1242.2 13.56 97.90
4096 81920 1655.0 13.56 98.20

80

5.1.3.2 Data Bus Fault Tolerance

Fault tolerance deals with the ability of a system to operate in the presence
of errors. Of primary importance here is that err•)rs are detected. Once an
error is detected, it may be dealt with in numerous ways. In this section,
methods of error detection and correction, bus monitoring, and bus reconfigura
tion are examined along with specific examples from the data bus standards.
Fault tolerant techniques relating to the hardware-software interface are
discussed in section 5.2.

5.1.3.2.1 Bit Error Detection and Correction

Errors on any transmission medium are a fact of life. They are caused by events
beyond our control or that are too expensive to control. In either case, the
designer is faced with how to handle errors induced by sources outside the
system as well as internal sources, such as equipment and transmission medium
failure. If the designer has some knowledge of the nature of the errors that
will likely occur, then the task of implementing erro~ detection becomes precise
and efficient.

There are four common methods for detecting bit errors in data: a parity check,
CRC, Checksum, and Hamming code. The Hamming code not only detects errors but
can be used to correct errors.

5.1.3.2.1.1 Parity

If data failures are randomly occurring, short burst:; contained within one bit
time, then one effective method of error detection is to add a parity bit to
each word transmitted on the bus. Parity is implem·:mted as odd or even. For
odd parity the number of "one" bits in a data word are counted and, if the
number is even, the parity bit is set to "one" to mak·~ the total number of "one"
bits odd. As an example, for the ASCII character "H," which is represented in
binary as 1001000, the number of "one" bits is even. To create odd parity the
parity bit is set to "one." This yields 10010001 when the parity bit is placed
at the end of the word. If even parity is used, the u·ord would be 10010000 with
the parity bit set to zero to maintain an even number of "one" bits.

The ability to detect errors using a parity bit is not impressive. All even bit
errors are undetected while all odd bit errors are detected. From the example
above, if the even parity form of "H" were put on c. bus and a burst of noise
caused the first bit to be inverted, the resulting :)attern would be 00010000.
An error is indicated since the bit stream no long~r has even parity. If a
burst of noise caused the first two bits to be inverted, the resulting pattern
would be 01010000; no error is indicated. The resulting parity is still even.
Thus, all even bit errors are undetected by this method and the probability of
detecting any error is 0. 5, assuming even and odd disturbances are equally
likely.

This probability can be improved if a block of data is sent as a matrix, n bits
wide (n-1 data bits plus parity) and k bits high. An additional row, composed
of the parity of each column is added at row k+l. A block of data and check

81

bits arranged in this manner is called an array code. Figure 5.1-9 shows an
array code configuration.

D D D D D D D D p

D D D D D D D D p

D D D D D D D D p

D D D D D D D D p

D D D D D D D D p

D D D D D D D D p

D D D D D D D D p

D D D D D D D D p

B B B B B B B B B

FIGURE 5.1-9. ARRAY CODES

D represents data bits, P represents the parity on each row of data D, and B
represents the block parity bit formed on each column of the array. The
receiver checks the parity on each row as it is received. If an error is
detected, a block parity check is performed. The bit in error is indicated by
the intersection of the row with bad parity and the column with bad parity
(Hecht and Hecht 1985).

Using this method, single bit errors may be detected as well as corrected. For
array codes, a burst of noise up to 2n-l bits long can be detected with a
probability of one.

5.1.3.2.1.2 Cyclic Redundancy Check

The CRC is widely used for error detection in digital communication systems.
It uses a polynomial code applied to a bit string. A message of k bits is
represented as xk- 1 + xk-2 + ... x 0 , where the coefficient of each term is given
by the value· of the associated bit, either one or zero. The term xk- 1 is
associated with the most significant bit and the term x 0 with the least
significant bit. The polynomial represented by the five-bit binary value,
11101, is x 4 + x 3 + x2 + x 0 . Thus, it is called a polynomial code.

A polynomial code is called the generator polynomial, G(x), when it is used to
divide the message string, M(x). G(x) must be chosen so that the most
significant and least significant bits are "one." Both the sender and receiver
know the value of G(x) beforehand, and the sender will append the CRC code at
the end of the message. When sent, the CRC coded message, taken as a binary
value, will be divisible by G(x) with no remainder. The receiver performs a CRC
by dividing the message string, M(x) (which must be at least as long as G(x)),
by the generator code G(x). If there has been a transmission error, the
receiver will find a remainder when it performs the check. Generation of the
CRC coded message is as follows (Tanenbaum 1981):

82

..

1. Let "r" be the degree of the G(x) polynomial and "m" the length of the
message in bits. Append "r" zero bits to the low·· order end of the message,
so it now contains m+r bits and corresponds to the polynomial x~(x).

2. Divide the bit string corresponding to x~(x) by t:he bit string correspond
ing to G(x) using modulo 2 division.

3. Subtract the remainder (which is always "r" or fewer bits) from the bit
string corresponding to x~(x) using modulo 2 subtraction. The result is
the message to be transmitted.

A sample calculation of the CRC code for a short message and G(x)
is given in figure 5.1-10.

x 4 + x + 1

The CRC detects most burst errors of a length, in bits, greater than the degree
of G(x); all burst errors of a length less than or equal to the degree of G(x);
all one- or two-bit errors; and all odd number of bit errors.

Message:
Generator:

1 1 0 1 0 1 1 0 1 1
1 0 0 1 1

Message after appending 4 zero bits: 1 1 0 1 0 1 1 0 1 1 0 0 0 0

1 0 0 1 1

Transmitted message:

1 1 0 0 0 0 1 0 1 0

11 1 0 1 0 1 1 0 1 1 0 0 0 0

1 0 0 1 1 + J
1 0 0 1 1
1 0 0 1 1

0 0 0 0 1
0 0 0 0 0

0 0 0 1 0
0 0 0 0 0

0 0 1 0 1
0 0 0 0 0

0 1 0 1 1
0 0 0 0 0

1 0 1 1 0
1 0 0 1 1

0 1 0 1 0
0 0 0 0 0

1 0 1 0 0
1 0 0 1 1

0 1 1 1 0
0 0 0 0 0

1 1 1 0._----.Remainder

1 1 0 1 0 1 1 0 1 1 1 1 1 0

FIGURE 5.1-10. CALCULATION OF A CRC
(Tanenbaum 1981)

83

5.1.3.2.1.3 Checksum

A checksum is a method of error detection used with short messages. It affords
more detection capability'than parity, but less than that provided by the CRC.
It is formed by adding all the data words to be included in the check, ignoring
any carry produced by the binary addition, and appending this word to the end
of the message. In some implementations, the checksum is also complemented by
the sender.

The receiver performs the same operation on the data and compares the received
checksum with the calculated checksum to verify the message integrity. The
checksum is able to detect bit errors of length n or smaller with a probability
of one, where "n" is the number of bits in the data words. Since the checksum
is simply a sequence of additions performed by the host CPU, and it yields
reasonable data integrity, it is commonly used.

5.1.3.2.1.4 Hammin~ Code

Detecting errors by using parity or a Hamming code depends on a factor called
the Hamming distance, which is defined as the number of bit positions by which
two binary words differ. For instance, if a single bit of a transmitted word
is inverted due to interference on the bus, the received word differs from the
transmitted word in only one bit position. The Hamming distance between the two
words is one.

Consider a binary code where every possible bit configuration is considered a
valid code. For any single bit error in a transmitted code, another valid code
is produced. Thus all codes that are a Hamming distance of one from the
transmitted word are also valid codes. The receiver cannot tell that an error
occurred. It can only assume that the code received is that sent. No error
detection is possible.

Now, consider a binary code where not all possible bit configurations are
considered valid. If the valid codes are chosen so that all single bit changes
produce an invalid combination, then single bit errors are detectable. In this
case, the valid values would all differ from each other in at least two bit
positions; they are all separated by a Hamming distance of two. For example,
given the following sequence of binary values:

000 001 010 011 100 101 110 111

If the values 000, 011, 101, and 110 are defined as valid codes, then the codes,
001, 010, 100, and 111 are invalid. Note that each code of the invalid set
differs from at least one code in the valid set in only one bit position. Error
detection requires, therefore, that each valid code differ in at least two bit
positions from all other valid codes.

The bit pattern for the ASCII character "H" is represented in binary as 1001000,
but an error in the least significant bit produces the pattern, 1001001, which
is the ASCII character "I." The distance between the two words is given by the

84

"EXCLUSIVE OR" function, which identifies the number of differing bits, as
follows (Tanenbaum 1981):

ASCII "H"
ASCII "I"

EXCLUSIVE OR

1001000
1001001

0000001 Distance d=l, no error detection

Since only one bit is different, the distance is one and error detection cannot
be applied; all values are valid. With the addition of a parity bit the
distance increases to two bits. Error detection ean then be implemented.
Consider the previous example, but with even parity:

ASCII "H"
ASCII "I"

EXCLUSIVE OR

Parity
Bit

1001000 0
1001001 1

0000001 1 Distance d-2, can ietect a one-bit error

In this case, when the single bit error occurs an "I" code results, but the
original "0" parity bit is retained. The resulting code, 10010010, is an
invalid code since parity is no longer even.

It can be shown, in general, that if "d" errors arE~ to be detected, then a
distance of d+l is required.

The Hamming code is used for both error detection and correction. This
technique uses check bits in the bit positions, which are powers of two with the
data bits filled in between them. These check bits reflect the parity of
certain combinations of the bits of the word which .is being coded. For the
ASCII character "H," which is represented in binary as 1001000, the codeword is
formed as follows:

Bit Position

1 2 3 4 5 6 7 8 9 10 Ll

X X 1 X 0 0 1 X 0 0 I)

The check bits, which have not yet been computed, occupy bit positions 1, 2, 4,
and 8 and the ASCII character "H" occupies bit positions 3, 5, 6, 7, 9, 10, and
11. Each bit that is a "one" is now represented by its binary value in the
codeword. Only bits three and seven are "ones" so they are represented by their
weights as X1 + X2 and X1 + X2 + X4 , respectively. If ·~ven parity is used, then
the check bits are set to produce even parity in each column as follows:

85

Check Bit Weight

1 2 4 8

Bit 3 Weights 1 1 0 0
Bit 7 Weights 1 1 1 0

Check Bits 0 0 1 0

When the result is placed in the corresponding check bits of the codeword, the
following codeword results:

Bit Position

1 2 3 4 5 6 7 8 9 10 11

0 0 1 1 0 0 1 0 0 0 0

When the receiver examines the codeword for errors, the reverse process takes
place. All the "one" bits that are not check bits are represented by their
respective binary weights. The parity of these weights is then compared against
the corresponding check bits for errors. For example, if an error occurs which
causes bit 11 to be inverted, then the parity of the check bits will not
correspond to the sum of the weights of the "one" bits of the codeword. Adding
the weights of the incorrect word will reveal the incorrect bit, as follows:

Bit Position

1 2 3 4 5 6 7 8 9 10 11

0 0 1 1 0 0 1 0 0 0 1 (bit 11 inverted)

Check Bit Weight

1 2 4 8

Bit 3 Weights 1 1 0 0
Bit 7 Weights 1 ~ 1 0
Bit 11 Weights 1 1 0 1

Check Bits 1 1 1 1

This result indicates that the check bits for this codeword should be all
"ones." Since check bit positions one, two, and eight do not compare with the·
check bits sent, bit 11 is indicated incorrect. By inverting bit 11 the
receiver now has the codeword as the transmitter sent it.

86

5.1.3.2.1.5 Bit-Error Detection and Correction Summ<~

Whatever method or methods are used by a data bu::; for error detection or
correction, it is important that the bus standard be precisely observed.
Designers and integrators should ensure that all tl:'ansmitters and receivers
agree on the format of error detection (odd/even parity, CRC polynomial
generator, etc.) and that the specified checking is implemented. Error checking
implemented in data bus hardware is only the firHt step in ensuring data
integrity. The application software in the host CPU must respond to the
detected error or else the hardware checking is uselE!SS.

As mentioned in section 5.1, address errors are a major concern for systems
using data buses. An address field error caused by data bus induced noise, for
example, can have a more profound affect on system operation than an error in
the data field. A corrupt address field could cause an LRU to receive a message
or command that was intended for another LRU. Although it is possible to
"smooth over" errors in a data field by filtering, such an operation does
nothing to protect the address field. The address field should also be
protected by a high integrity check.

Additionally, since standards are very specific in defining each bit for the
data word, all defined fields of a word should be checked to ensure that they
are both valid and reasonable. Spare bits should be defined and fixed as either
ones or zeros and checked by the receiver. A data bit field that has additional
constraints placed on it by the standard should be d.ecked by the receiver for
compliance. For instance, when a field of eight bits may have only one bit in
the logic "one" state at a time, all the rest should be tested to see if they
are "zero."

5.1.3.2.1.6 ARINC 429 Bus Error Detection and Correction Methods

ARINC Specification 429-12, section 1.3.1 (1990), states the following:

"A parity bit is transmitted as part of each data word to permit
simple error checks to be performed by the sinks"

This data bus relies on parity bit error detection with each data word. By
itself, this amount of protection does not seem adequate. In a data word of 32
bits, bit errors may occur in any even number of bit:s up to 32 without being
detected by the parity technique. However, experience has shown that the high
integrity of the twisted and shielded wire transmission medium and the slow
signaling rate have ensured reliable bus transmissions.

An additional technique referred to in the standard is the "data reasonableness"
check. This means that the host computer at the data destination must have
information about the data it expects to receive. If no errors are indicated
by the data bus hardware, the CPU tests the data to ensure that it is within
anticipated reasonable bounds. This type of checking can be performed at the
host CPU as an additional integrity check on data that is passed over the data
bus.

87

Data filtering is also used to reduce the effects of data that may be within
reasonable bounds but is incorrect. The incorrect value is smoothed out by
averaging it with the preceding and following values.

ARINC Specification 429-12 also defines a bit-oriented protocol used for file
data transfer. This protocol uses "handshaking" between communicating users,
and also defines a CRC to be used for the file transfer. The use of the CRC
ensures that a certain amount of errors occurring in the data will be detected.
Since the file data are not refreshed regularly or continuously as are other
data, reasonableness checks and filtering are not possible. Thus, the CRC was
added to ensure additional data integrity. The generator polynomial used is as
follows:

5.1.3.2.1.7 CSDB Error Detection and Correction Methods

Two methods of error detection are referenced in the standard. They are the use
of parity and checksums.

A parity bit is appended after each byte of data in a CSDB transmission. In
section 2.1.4 of the standard, three types of transmission are defined:

Continuous repetition

Noncontinuous repetition

"Burst" transmissions

The "burst" transmission makes use of the checksum for error detection, as the
specification states:

"It is expected that the receiving unit will accept as a valid message
the first message block which contains a verifiable checksum." (GAMA
CSDB, 1986).

5,1.3.2.1.8 ARINC 629 Bus Error Detection and Correction Methods

ARINC Specification 629, Part 1 (1990), recommends multiple levels of error
detection. At the lowest level, parity is defined as part of the 20-bit data
word definition. Section 4.4.2 of the specification states the following:

"The last bit of each label and data word should be encoded such that
word parity is rendered odd."

Section 6.5.1 of the specification allows two other options for error detection.
They are the use of the checksum and CRC. The checksum is a 16-bit word formed
by adding, without carry, the 16 least significant bits of all the data words
prior to the check word.

The other option is to use a CRC. The same generator polynomial used by the
ARINC 429 bus is recommended.

88

Although the checksum and CRC may be calculated by the host CPU, the time used
to perform these calculations differs. The CRC i.s more complex than the
checksum and the standard suggests that "dedicated hardware" may be required for
this calculation. Calculation of the checksum, however, is relatively simple
and is usually performed by software.

5 .1. 3. 2 .1. 9 ASCB Error Detection and Correction Metl-.ods

Transmissions on the ASCB are initiated by a central eontroller. The ASCB uses
both the CRC and the checksum. Each transmission of the ASCB has the CRC code
appended to it by the HDLC hardware. This CRC is the same one used by the ARINC
429 bus. A checksum computed by the host CPU is added to every transmission and
is sent as part of the user's data transmission (Jenr.ings 1986).

5.1.3.2.1.10 MIL-STD-1553 Bus Error Detection and Ccrrection Methods

This bus makes use of various error detection schemes. The command, data, and
status words are checked using a parity bit in position 20. In addition, the
"MIL-STD-1553 Designer's Guide" (1982) states the following:

" the
applied.

traditional methods of computer data protection can be
These include checksums and cycle redundancy checks."

If further error protection is required, the "Multiplex Applications Handbook"
(MIL-HDBK-1553A, 1988) recommends the use of a Hamming code protection method.
The recommended method allows for data correction of llp to three bits per word.

5.1.3.2.1.11 Linear Token Passin& Bus Error Detection and Correction Methods

A Frame Check Sequence (FCS) is used on the LTPB for error detection. It is a
CRC applied to Token frames and Message frames. The Token Frame Check Sequence
(TFCS) is applied to the token and ensures that a bus user will not accept a
token that has been corrupted. The Message Frame Check Sequence (MFCS) is
applied to a message and ensures that a bus user will not accept a corrupt
message. When a message with a CRC error is received, the receive buffers are
cleared and the host is not notified of the message or the error (AIR 4288,
1991).

The LTPB uses a CRC generator polynomial of x8 + x 4 + :x 2 + x + 1 for the TFCS and
a CRC generator polynomial of x16 + x 12 + x5 + 1 for tl-e MFCS.

5.1.3.2.1.12 Hi&h Speed Ring Bus Error Detection and Correction Methods

An FCS is used on the HSRB for error detection; it i:; a CRC applied to Beacon
frames and Message frames. The Token frame does not have bit error detection
applied to it as it does for the LTPB. However, when a host claims a token, the
Token frame is modified and becomes part of the header of the Message frame.
The Message frame has a field called the Message Control Frame Check Sequence
(MCFCS), which is applied to the entire header of the Message frame. The
Information field of the Message frame has its own FGS, the Information. Frame
Check Sequence (IFCS), applied to it to ensure that a bus user will not accept

89

-----·-~-·~-----~---~-

corrupt data. The Beacon Frame Check Sequence (BFCS) field is used to provide
bit error detection for the Beacon Control field (AIR 4289, 1990).

The MCFCS, IFCS, and BFCS use the same CRC generator polynomial, x16 + x12 + x5

+1.

5.1.3.2.2 Bus Monitoring

Bus monitoring is a necessary function. The requirement for monitoring
increases with bus complexity. Old methods of locating faults in analog systems
will not work for digital data transmission. Placing an oscilloscope on a
transmission line will indicate only that there is activity on that line. It
will not indicate the origin of the activity or if the activity is correct.

One of the motivating factors behind bus monitoring is data integrity. When the
designers are finished, the simulations are all run, and the firmware programmed
and running in the target system, how can the functional system be validated
against the requirements? If the system is working correctly under the present
configuration, will it work the same under a slightly different configuration?
Under normal use, how can the state of the system be determined?

There are two types of bus monitoring to consider. One type is performed by the
data bus users to ensure bus communications. The other is usually performed by
a dedicated bus monitor for the purpose of collecting maintenance data.

5.1.3.2.2.1 Bus User Monitoring

User monitoring is performed by the bus interface of each user and should make
the following checks:

Protocol checking

Received data monitoring

Transmit data monitoring

• Host system interaction monitoring

BIU hardware checking

The a~ount of bus monitoring used for integrity purposes by avionic buses varies
greatly. With some data buses only a minimal implementation is made. Bus
standards should clearly define integrity issues and what parameters are to be
monitored to ensure integrity. For instance, if a standard does not specify
that buffer overrun errors shall be detected by all users, IC manufacturers or
system designers might implement this checking due to cost factors. Monitoring
should be planned at the beginning of the design, not added as an afterthought.
It will exist only if it is intentionally planned and designed.

For data buses used in essential or critical systems, the designers should
implement monitoring of any integrity related parameter. With current

90

technology this is not a burdensome task. The follmdng list contains some of
the parameters which should be monitored by a bus user:

Physical layer signal monitoring (Manchester modttlation, parity, synchron
ization patterns, voltage margins, frequency of bad data due to collisions,
HERF noise, or other interference)

Local protocol monitoring (acknowledgements, timeouts, access denial, etc.)

• Self-monitoring for transmission validation (:orrect address, correct
message format, "babbling" transmitter)

Received data transmissions

Transfer of data to and from host CPU

In addition to monitoring these parameters, prov~s1ons need to be made for
reporting any errors to the host CPU. Without the capability to report an
error, the ability of the user to detect it is useless.

5.1.3.2.2.2 ARINC 429 Bus User Monitoring

Since the ARINC 429 bus is older and unidirectional, the amount of bus
monitoring by the user hardware is significantly less than the newer, bidirec
tional data buses. Additionally, being a unidirectional bus there are fewer
parameters for the bus interface to monitor.

For periodic messages the specification requires simple parity checks, not so
much for integrity as for compatibility with the hardware requirements (ARINC
Specification 429-12, 1990).

" ... the parity bit was added to the BCD word fo:c reasons related to
BCD/BNR transmitter hardware commonality, not because a need for it
existed for error detection."

The bit-oriented protocol requires that a CRC check be made on transfers. Other
higher level protocol parameters should be monitored by the host CPU. Further
checks may be performed by the host CPU only if the bus interface hardware
includes the functional capability to do so. For example, if buffer overrun
detection is not implemented in the hardware, the ho~;t CPU cannot detect this
error.

5.1.3.2.2.3 Commercial Standard Digital Bus User Monitoring

Although many parameters are defined in the CSDB specification, there is no
suggestion that they be monitored by receivers. The bus frame, consisting of
the synchronization block and message block, may be ehecked for proper format
and content. A typical byte, consisting of start, stop, data, and parity bits,
may be checked for proper format.

The bus hardware should include the functional capability to monitor these
parameters. Parity, frame errors, and buffer oven~un errors are typically

91

---------------- ---- -------- ----- -----

monitored in the byte format of the character-oriented protocols. The message
format can be checked and verified by the CPU if the hardware does not perform
these checks.

5.1.3.2.2.4 ARINC 629 Bus User Monitoring

Since this data bus is an autonomous access bus, self-monitoring becomes an even
more important function for bus users. There are three distinct areas of
monitoring defined for a user: protocol monitoring, received data monitoring,
and transmission monitoring.

For received data, the user monitors the data for three conditions: a valid
synchronization pattern, valid Manchester II modulation, and proper parity.

Transmission monitoring consists of monitoring the same parameters as for the
received data when the user is sending. The synchronization pattern, Manchester
II modulation, and parity are checked by the sending user on every transmission.
An error causes the transmission to terminate. Other parameters which are
monitored by the user are excessive message or wordstring length, undefined
labels, and babbling conditions.

Protocol monitoring is performed by the user hardware also. This involves
checking a number of protocol related timing parameters, such as the TG and SG.
The protocol is implemented by dual hardware circuits. Each pair of protocol
parameters is checked for differences. Excessive deviation will cause the
transmitter to cease operation.

An error register is provided for the host CPU. Errors that are detected are
indicated by particular bits being set in this register. The host CPU should
monitor this register to ensure that any data bus errors receive appropriate
action.

It is also possible to monitor "handshaking" between the user hardware and the
memory. The ARINC 629 bus is designed to directly write and read the host
memory without the intervention of the host CPU. Since this is the case, the
CPU should check if these transfers were successful. The user hardware will set
a bit in the error register if the correct handshake sequence does not occur.

5.1.3.2.2.5 Avionics Standard Communications Bus User Monitoring

The HDLC protocol used by the ASCB defines message delimiters and a CRC which
the users monitor to determine message validity. In addition, other checks are
performed by the hardware.

A Driver Enable Timer (DET) is implemented in the BCs and users to prevent
babbling. If an LRU attempts to send a message longer than its preallocated
time slot, the bus line driver is disabled by the DET. A checksum is added to
each message. In addition, a data counter, which indicates data "freshness,"
is included. The host CPU must check these parameters to determine the status
of each message.

92

The standby BC looks for invalid messages or a la~k of messages from the
operating controller and also monitors itself for corrE!Ct operation. The active
BC monitors itself for correct timing and transmissio1~s. Upon detection of an
error in one of the controllers, the controller will ·reconfigure to maintain a
functional controller. Controllers do not, however, monitor user transmissions
(Jennings 1986).

An HDLC protocol IC provides numerous parameters relating to bus operation that
the host processor can monitor. It provides CRC, overrun error, transmit
underrun, and other parameters in its receiver status register.

5.1.3.2.2.6 MIL-STD-1553 Bus User Monitorin&

This bidirectional data bus relies on several checks Clf data integrity. At the
physical interface, each message is checked by the bus user for a valid
synchronization pattern and correct parity, and each bit of the word is checked
for valid Manchester II modulation.

Other items are monitored by bus users for detecting errors on a data bus.
Message formats are checked and undefined formats ar·~ rejected. For example,
users reject noncontiguous messages, which have a gap between the command and
data words.

Users also implement hardware timers to prevent babbling from its transmitter.
If a user attempts to transmit for more than 800 microseconds, a hardware timer
circuit will disable the transmission.

Upon detection of one of these errors in a data word, the user will set the
error bit of the status word to a logic one. Also, no:cmal sending of the status
word is suppressed by the user. The BC will be alerted to a problem when the
user response is not detected within the period of time it has to respond.

5.1.3.2.2.7 Linear Token Passing Bus User Monitorine;

Monitoring is a requirement for all LTPB bus users. An LTPB BIU monitors its
own transmissions and checks for various types of errors. Upon detection of an
error, the host CPU is notified and action is require,d.

Specific transmission activities that are monitored for failure are Token claim
activity, Token frame transmission, Message frame tra1~smission, and a transmit
ter's detection of its own bus activity. Any d•~tected error causes the
transmitter to isolate itself from the bus and notify the host CPU of the error
condition.

In each BIU there are many monitoring functions that .support bus activity whose
failure can impact the bus as a whole. These take the form of registers,
generators, timers, a bus activity detector, and other hardware functions. The
combination of all these functions is called the Self Monitor Function (SMF).
A fault detected with any SMF requires corrective action and notification of the
host CPU (AIR 4288, 1991).

93

-----·------ ----~·---··--~ ·---~--------~----------~------------- ----------- . -··--------·

Other activities that do not affect the bus operation but do affect the BIU and
host system are not included in the SMF. These include tests such as Power-On
Self-Test or Periodic Self-Test (AIR 4288, 1991).

5.1.3.2.2.8 High Speed Ring Bus User Monitoring

Monitoring is a requirement for all HSRB bus users. The master station monitors
its own transmissions, checking for various types of errors. Upon detection of
an error the host CPU is notified and action is required.

Monitoring is performed to detect Information field errors, message control
errors, Token status errors, starting delimiter errors, Token format errors, and
Token priority errors. Occurrence of these errors requires that the host be
notified and, possibly, that it take corrective action.

Other errors may occur that require no explicit recovery action. In these cases
it is not necessary to notify the host. These errors are reservation bits set
too high, reservation bits set too low, and short message count errors.

There are also timers and counters implemented at each BIU on the ring. These
timers ensure the correct operation of the protocol and guard against token loss
and uncontrolled transmitters. Another timer ensures that a Beacon frame is
received within a specified time (AS4074.2, 1988).

5.1.3.2.2.9 Maintenance Monitoring

Bus monitoring for maintenance purposes is a long-term data integrity issue.
Monitoring is performed by a bus user that is specifically designed for this
purpose. Data are gathered and stored so that analysis can be done at a later
time. Tasks performed by the monitor should include the following areas:

Check for faulty LRUs

Check for faulty transmissions

Check global protocol

Record and report any error during flight

Check general bus performance

Defective LRUs may be detected by a bus monitor that has sufficient information
concerning the data bus implementation. If addresses of all users are known,
then the monitor will detect a particular LRU which fails to respond when
addressed. For access protocols based on TDMA, faulty transmissions may be
associated with a particular LRU based on a time slot allocation table.

In addition to monitoring the operation of the LRUs attached to the data bus,
there is a need to check the operation of the global protocol. Individual bus
users may only verify that their own bus accesses obey the rules of the
protocol. This does not guarantee that the overall protocol is functioning
correctly. Data buses that implement higher level protocols, such as the bit-

94

oriented protocols of the ARINC 429 and the ARINC 629 buses, need to be
monitored for protocol violations at a level higher than a user would check.
Unless the higher layers of the protocol are implemented in the user hardware,
the host CPU or a dedicated communication processor mu~:t perform this monitoring
function.

Monitored parameters can be used for both short-term and long-term performance
evaluation. Short-term monitoring will yield information on bus quality, LRU
failures, and the success of repairs. In the long-term, failure trends, mean
time between failure (MTBF), mean time to repair (MTTR;, performance trends, and
cost of ownership can be ascertained.

Monitoring can be used to record serious errors that occur during flight and
landing. While it is important that the pilot is not bothered by messages that
are of little consequence, the pilot must be made a\\'are of data bus failures
that may affect flight safety. Failures of this nature should be detected by
a bus monitor and reported to the cockpit so that appropriate action may be
taken.

Maintenance monitoring needs to be planned for from the start of'a design. One
of the design goals should be ease of use. This means that the designer should
keep the user in mind. The human interface needs to be simple and the messages
informative. Messages can be stored in complete Bentences. Today, large
amounts of information can be stored in nonvolatile memory. Some of the
information which might be stored in this memory and used for maintenance
purposes is as follows:

Reports of all monitorable data bus parameters

• Explanations of corrective measures to be taken for any given failure

Diagnostic information, such as BIT status for all systems

System diagrams

• System specifications

5.1.3.2.3 Reconfiguration

Reconfiguration is a fault tolerance technique that is used in some data bus
implementations. The ASCB and MIL- STD-1553 bus define it in the data bus
specifications. In a centrally controlled data bus tlte integrity of the bus is
based on the ability to not only detect a malfunctior1ing controller, but also
remove such a controller from operation and resume operation with a standby
controller. The MIL-STD-1553 bus implements this function by making use of the
following ("MIL-STD-1553 Designer's Guide," 1982):

External wiring between controllers

Internal self tests by the controllers

Status and health messages between controllers

95

Data bus synchronization using clocks or mode codes

Another type of reconfiguration is to remove a defective user from the bus. In
a centrally controlled data bus, the controller can monitor the response of any
user and determine whether or not it is operating correctly. If the user does
not respond within a specified time, or if it responds incorrectly, the
controller can then proceed with a predefined error handling routine which may
involve the removal of the user from the polling sequence.

The ASCB uses a redundant bus architecture with dual buses. Bus users transmit
on only one of the buses and listen to both, while controllers can transmit on
either bus. If one of the buses becomes unusable, the users have the ability
to switch receivers to the other bus until valid transmissions from the BC are
again received on the failed bus.

When a data bus operates under autonomous control, there is not a single source
designated to monitor all users and take corrective action, as in the centrally
controlled bus. It is necessary, therefore, for each user to monitor itself.
Upon detection of an error, the user should execute an error handling routine
which may involve the user isolating itself from the data bus. The ARINC 629
data bus is one in which a user will remove itself when an unbroken sequence of
seven transmit errors is detected by the user's bus monitoring hardware.

5.2 Bus Hardware-Software Interaction

Constant breakthroughs in microelectronics make it difficult for a CE to address
the hardware-software interaction between a digital data bus and an avionic
system. Very Large Scale Integration (VLSI) ICs and multiversion software,
which make up digital systems, often contribute to the CE's dilemma. With these
advancements come new failure modes which need to be evaluated before a system
can be considered airworthy. Section 5.2 helps the CE understand the failure
modes at the hardware-software interface of a digital data bus and avionic
system.

First, the hardware-software interface is identified. Next, data integrity
problems that may arise when the bus and avionic system interact through
hardware and software are identified. Finally, analyses of the error detection
and recovery schemes for the data integrity problems are presented.

This section reviews the interaction of avionic systems with the ARINC 429 bus,
ARINC 629 bus, ASCB, and MIL-STD-1553 bus. Although the MIL-STD-1553 bus is
used for military applications, problems due to hardware-software interaction
resemble those of bidirectional data buses used in civilian aircraft.

5.2.1 Bus Interface Units and Central Processing Units

Figure 5.2-1 illustrates how avionic systems are connected to a data bus through
a BIU, and shows the point of hardware-software interaction. Although the ARINC
429 bus, ARINC 629 bus, ASCB, and MIL-STD-1553 bus are different, their point
of hardware-software interaction remains the same. Each data bus uses a BIU to
communicate data between a bus medium and a CPU within the avionic system.

96

The main part of each LRU is the avionic system. It exchanges data with other
avionic systems over the bus medium. An avionic syste:m may be a flight control
computer (FCC), a display computer (DC), an autopilot, or any other system which
processes digital data during a flight. Avionic systems are usually constructed
with complex hardware, but always contain a CPU under software control to carry
out the system's repetitive functions. The CPU software is the software of
interest in this section.

The CPU software allows the CPU to perform the system's application specific
tasks. The CPU software may also be responsible for establishing communication
between the CPU and BIU. For example, for the ARINC L29 bus, the ASCB, and the
MIL-STD-1553 data bus, the CPU software receives data from, and sends data to,
its BIU. For ARINC 629 bus operations, a CPU's soft'llare merely tells the CPU
how to respond to signals initiated by the ARINC 629 BIU.

Two entities are needed to transfer digital data between avionic systems: the
bus medium and the BIU. The bus medium connects the BIUs and carries digital
data. The media are typically bundled in groups and c;.ttach systems, like those
in figure 5.2-1, throughout an aircraft.

Flight Computer Host Display Computer Avionic System
(CPU 1) HW and SW (CPU 2) (CPU n)

--- --- HW-SW --- --- --- ---
Interaction

I BIU 1
1

Bus l BIU 2 I HW and sw I BIU n I

LRU 1 LRU 2 LRU n

Bus Medium

FIGURE 5.2-1. DATA BUS HARDWARE-SOFTWMtE INTERFACE

The BIU connects the avionic system to the bus medium. This unit performs all
bus related tasks (e.g., bus timing, conversions, transmissions, receptions)
under control of its own software, or the CPU's soft:ware. For example, data
coding is accomplished by a circuit within the BIU, while transmission and
reception could be controlled by software executed in the CPU. The actual
functions are usually implemented in hardware and will vary, depending on the
type of data bus and application.

A BIU interfaces to a CPU through the BIU' s internal registers and the CPU's
Random Access Memory (RAM). The registers are memory locations in the BIU that

97

- ----------------------------- ----- - - ---

a CPU can directly access. Status registers within a BIU notify the CPU of
conditions within the BIU, while control registers set up hardware operations
of the data bus. Again, registers and their uses will vary depending on the
design and application of the system.

The CPU's memory stores data pertaining to operations of the aircraft.
example, before altitude data can be passed from one LRU to another (i.e.,
an FCC to a DC), the first LRU' s CPU must send the data to the BIU.
transaction is accomplished as follows:

For
from
This

• An LRU receives altitude data from its sensors, and the CPU processes the
data according to its software.

The CPU then stores the processed data in memory for the BIU.

• At this point, the BIU is instructed to access the data and codes it into
a format which is usable by other BIUs.

• The coded data are sent to other BIUs via the bus medium.

Once data are received by other BIUs, the procedure is reversed so that the
receiving LRU can use the data for its dedicated purposes. All data transfers
between a BIU and CPU are accomplished using address, data, and control lines.

The hardware-software interaction between the BIU and the avionic system's CPU
should be an area of concern for the CE since failures at this interface can
impact the entire system. The type of data bus, as well as the system
manufacturer, determine how a BIU and CPU perform this interaction. For
example, an ARINC 429 BIU may be either totally or partially controlled by the
system's CPU, as previously described. In ARINC 629 bus applications, each BIU
uses personality PROMs to regulate the hardware-software interaction.

The ARINC 429 bus, ARINC 629 bus, ASCB, and MIL-STD-1553 bus employ ICs to
realize various proportions of the BIU. In most cases, the IC can implement
all of the operating modes for a specific data bus (e.g., a MIL-STD-1553 BIU IC
can be configured as aBC, an RT, or a bus monitor). However, interaction with
a CPU is of the same form, regardless of mode. This section looks at one BIU
IC for each bus (table 5. 2-1) and examines how improper hardware-software
interaction between the BIU IC and the avionic system's CPU can inhibit data
integrity.

A BIU IC does not perform all of a standard BIU's functions. It is beyond the
scope of section 5.2 to discuss the hardware-software interactions of the non
integrated portions of BIU circuitry. Only interaction between the BIU IC and
the CPU software are discussed.

98

TABLE 5.2-1. BUS INTERFACE UNIT INTEGRATED CIRCUITS

Data Bus BIU IC

ARINC 429 Harris Semiconductor's
HS-3282, ARINC Bus Interface Circuit

ARINC 629 National Semiconductor Corporation's
XD15U9AIC, ARINC 629 IC

ASCB Intel Corporation's
Intel 8274, Multi-Protocol Serial
Controller (MPSC)

MIL-STD-1553 Digital Device Corporatic•n' s
BUS-61553, MIL-STD-1553 Advanced
Integrated MUX (AIM) Hybrid

5.2.1.1 Data Transfer Techniques

When either a BIU or CPU is requested to send data to an external location, it
must use certain techniques to ensure that the data are successfully received.
Since all units perform this task, the techniques m\:.st be flexible enough to
adapt to many environments. For data buses, memory mapping and Direct Memory
Addressing (DMA) are used to move data between a BIU and CPU.

Memory mapping may involve putting BIU registers at specific CPU memory
addresses. The CPU could then access the register as a memory location rather
than as an input/output (I/O) device. For example, the CPU's software could
execute a memory instruction, rather than an I/0 instruction, to write data to
the BID's register. MOV is a typical memory instruction, and IN and OUT are
typical I/0 instructions that a CPU uses to transfer data.

DMA is used by systems for high-speed block or packet data transfer between two
memories. In a standard DMA configuration, the memory address and control lines
are directly controlled by the sending device, rather ~han the CPU. The sending
device uses a DMA controller.

The DMA controller must be initialized by a CPU's software. This is ac
complished by writing data to registers in the controller. A DMA controller's
registers are similar to the registers in a BIU in tha1: they tell the controller
how to operate.

The major difference between DMA and memory mapped I/0 is that a CPU does not
control the transfer of the data during a DMA operation.

Memory mapped I/0 and DMA processes can both be aceomplished through Shared
Interface RAM (SIR), also called dual-port memory. With data buses, such as the

99

----- ---------- ------- ---------------~-~

ASCB and MIL-STD-1553, this is a common technique. SIR means that both the CPU
and BIU share the same memory. An illustration is provided in figure 5.2-2.

Avionic
System CPUir--------41

t
SIR

Address and Data Lines

FIGURE 5.2-2. SHARED INTERFACE RAM

With this configuration, both the CPU's and BIU IC's address and data lines are
directly connected to shared RAM. Access to the SIR by the two units is
controlled by an arbitrator circuit. This type of shared memory provides the
benefit of isolating the BIU from the CPU (i.e. , no synchronization is
required). Furthermore, the data transfer rate is increased since neither
device has to wait for the other.

Although the ARINC 429 bus, ARINC 629 bus, ASCB, and MIL-STD-1553 bus are
different, each uses registers and memory during their operations. Registers
hold data pertaining to operations of the BIU IC and can be either written or
read by the CPU. Memory other than registers is used to hold data during
communication between a BIU and CPU. Through these registers and memory,
hardware-software interaction takes place.

5.2.2 Hardware-Software Interaction Faults

Two types of data are passed between the BIU and CPU: bus configuration data
and flight data. Bus configuration data are only sent to BIU IC registers,
while flight data (e. g., altitude, heading) is shared with other avionic
systems. If either type of data were to become corrupt, an error could result.
Since the CPU (controlled by software) interacts with the BIU IC's registers and
memory, the CPU's software has the capability to disrupt both types of data and
affect hardware operations.

If the host CPU writes faulty bus configuration data to the BIU IC registers,
the BIU could be set up for an improper mode, reset, or shut down. On the other
hand, if the BIU puts faulty flight data in the CPU's memory, the CPU would
propagate an error. Also, if external noise or an adverse environmental
condition causes data in either location to become corrupt (i.e., an inverted
bit), the entire system could be affected. These situations will vary depending
on the type of system used and the conditions under which the system is
operating.

Typical errors that affect the hardware-software interaction of a BIU and CPU
are presented in table 5. 2-2. Column (a) of table 5. 2-2 represents errors
common to all data buses; column (b) lists errors unique to certain buses.
These errors can be present in bus configuration data or flight data. It is
beyond the scope of this report to discuss every failure mode which could cause

100

these errors. Therefore, a generic description of the errors is provided in the
following sections and, where possible, their trigger events defined.

TABLE 5.2-2. DATA BUS HARDWARE-SOFTWARE INTE~CTION PROBLEMS

Errors Common to all Data Buses Bus Spe:ific Errors
(a) (b)

Parity Errors Timing Errors

Overrun Errors Interrupt Handling Errors

Synchronization Errors

5.2.2.1 Parity and Overrun Faults

Parity and overrun errors are common to all buses and ·~an occur in all cases of
data transfer (e.g., CPU to BIU or BIU to CPU). Parity errors may occur when
digital data are either transmitted or received with an incorrect number of
binary "l"s.

Depending on the system, parity errors can be triggered in many ways. For
example, lightning or another environmental condition can cause data to become
corrupt while it is passing through the bus medium. As a result, a unit
receiving the data may detect a parity error. Section 5.1 provides a more
detailed discussion of parity errors.

Overrun errors can occur at many levels of the data bu:>, as with parity errors.
An overrun error means that current data was not used before new data was put
in ·the same memory location or register. This error r:!sults in the loss of the
old data. Overrun errors which affect the hardware-software interaction can
occur in memory shared between the BIU and CPU and in the BIU during reception
of data from the bus medium. This type of error can be caused by a babbling
BIU that improperly transmits data on the bus or a timing flaw in a CPU's
software that causes it to write data to a memory location at the wrong time.

A MIL-STD-1553 bus using a BUS-61553 IC is subject to •)Verrun errors because it
shares memory with a CPU. Alt:hough sharing memory offloads some of the CPU's
tasks and allows for DMA operations, overrun errors can easily occur because
both the BUS-61553 IC and CPU are able to access the same memory. For example,
when data are placed in the shared memory by a BIU (or CPU), it must notify the
CPU (or BIU) that the data are available. The CPU (or BIU) then reads the
appropriate location in memHP LaserJet Series IIHPI.ASEII. PRSry. If this
situation occurs, the updated data are written over the original data.

The HS-3282 IC is susceptible to overrun errors during reception of data from
the bus medium. Data from the line receiver is placed into the HS-3282 IC's
shift register. When the data are valid, a signal is generated by the HS-3282

101

The HS-3282 IC is susceptible to overrun errors during reception of data from
the bus medium. Data from the line receiver is placed into the HS-3282 IC's
shift register. When the data are valid, a signal is generated by the HS-3282
IC telling the CPU that data are available in the register. If the data are not
read by the CPU at this time, new data words being received by the HS-3282 IC
will overwrite the data in the register.

Similarly, the MPSC is vulnerable to overrun errors. The MPSC stores flight
data from the bus medium in receive registers. If the CPU neglects the data,
the next data word coming into the receive registers will overwrite the previous
data word.

5.2.2.2 Synchronization Faults

Synchronization is used between LRUs to correlate serial data transmissions and
receptions. When one LRU has data to send to another LRU, its BIU may first
send a synchronization pattern to the receiving LRU. This allows the receiving
LRU to recognize the first bit of the message. Synchronization patterns may
also be sent to announce the end of the data. The ASCB uses both of these
patterns in LRU to LRU messages (Jennings 1986).

A framing error is a form of synchronization error that can occur during a write
or read instruction by an LRU. A framing error means that an appropriate number
of framing, or synchronization, bits around the data word were not detected by
the receiving unit.

Figure 5.2-3 shows an eight-bit serial data word that could be sent by an LRU
through its BIU. As defined by the system's protocol, the receiving LRU knows
what type of synchronization pattern to expect. If the data word shown in
figure 5.2-3 is supposed to be surrounded by synchronization patterns made up
of all digital "l"s, but digital "O"s show up in these patterns, a framing error
occurs. These errors could be the result of line noise entering the bus medium
during data transfer between two' LRUs. Regardless of the cause, if data
possessing framing errors are passed on to the CPU, the system could be
affected.

Data Word

1 o 11 11 11 1 o 1 o 11. .. 11

t Fram~ng Bits

FIGURE 5.2-3. DATA FRAMING

The MPSC employs framing when it is used in ASCB applications. Before
information from the CPU is sent by the transmitting BIU, the information is
framed as shown in figure 5.2-3. These framing bits allow the receiving syste~

102

to temporarily synchronize with the transmitting sy~:tem and eliminate timing
skews between the two systems.

Besides using synchronization between two BIUs, a CPU and its BIU may also need
to be synchronized. This would be required if the CPU was responsible for
initiating data transfer between LRUs. In this case, if the CPU does not know
when the BIU is ready, it cannot properly instruct the BIU to send or receive
data.

When an ARINC 429 BIU that uses the HS-3282 IC is e:{ecuting the Bit-Oriented
Communications Protocol (BOCP), this synchronization can occur. In the BOCP,
the transmitting LRU broadcasts a Request To Send (RTS) message to the receiving
system prior to transmission of flight data on the ARINC 429 bus medium.
Immediately after the receiving system gets the RTS message, it must respond
within a predetermined amount of time with a Clear To Send (CTS) message, a Not
Clear To Send (NCTS) message, or a Destination Busy (BUSY) message (ARINC
Speci,fication 429-12, 1990). Since the HS-3282 IC does not have the logic to
produce these messages, it is the CPU's responsibili·:y to undertake the task.
Improper use of these messages by a CPU could caus1~ the HS-3282 IC to miss
transmission or reception of data.

The types of errors presented above are common to all data buses. Parity, as
well as overrun errors, can happen at the bus medium to BIU interface, as well
as the BIU to CPU interface. Synchronization and framing errors only occur at
the bus medium to BIU interface. However, they can be triggered by a condition
within the BIU or CPU.

5.2.2.3 Timing Faults

A timing problem can arise when a CPU does not complet·~ its data transfer to the
bus before its access time to the bus expires. Timi.ng errors of this nature
are common in a time-multiplexed environment. A typical timing problem between
a CPU and an ARINC 629 BIU can occur while the CPU i:3 sending data to the bus
medium.

The problem arises from the fact that BCAC's Integrated Avionic Computer System
(lACS) integrates many avionic systems on a number of central CPUs and uses
autonomous ARINC 629 BIUs. The CPUs perform several functions which share the
CPU memory. The functions are partitioned to prevent hardware and software
failures in one function from affecting another partition's functions. All of
the CPUs within the lACS are controlled by a software algorithm known as the
Real-Time Executive (RTE).

The RTE controls transmit and receive timing between the LRUs. To ensure that
all transmissions and receptions are coordinated, the RTE gives each LRU a
specific amount of time in which to complete its message transmission. To
accomplish a transmission, an ARINC 629 BIU must obtain processed data from the
CPU and completely transmit the data on the bus medium in a predetermined amount
of time. Since the RTE controls when the ARINC 629 3IU obtains data, the RTE
could instruct an ARINC 629 BIU to interrupt a CPU before all of the CPU's data
are ready to be transmitted. The ARINC 629 BIU acces~:es the data without first

103

checking if the CPU is done with its process. When this occurs, the ARINC 629
BIU could transmit partially updated or otherwise erroneous data to other LRUs.

A similar timing problem arises with the MIL-STD-1553 data bus. If periodic
data are to be processed by a CPU's software, the MIL-STD-1553 BIU must notify
the CPU that data are available and ready to be processed. In a MIL-STD-1553
bus application, a specific signal is used to annunciate this condition.

Once the signal is generated, the CPU has a certain amount of time to ac
knowledge the signal and process the data. (Recall that the time is designated
by aBC, and the BUS-61553 IC is capable of performing BC operations.) If the
CPU takes more time to process data than the BC allows, the BC must either
terminate the CPU's access to the bus, or wait for the CPU to complete its task.
If the BC elects to terminate the CPU's access to the bus, an error similar to
the ARINC 629 bus timing problem could result. The transmitting BIU could get
erroneous or old data and send it to other LRUs. On the other hand, if a CPU
is constantly allowed to overshoot its allotted time, the entire network will
"jitter in its periodicity" ("MIL-STD-1553 Designer's Guide," 1982). These two
descriptions show how both a distributed control and a centrally controlled bus
can be exposed to similar timing errors.

5.2.2.4 Interrupt Handling Faults

Interrupts are a standard method of initiating data transfer between a BIU and
CPU. For example, when a BIU places data in SIR the BIU must send a signal on
an interrupt line to the CPU to announce that the data are available. This
signal is called an interrupt.

If a BIU generates an interrupt to the CPU, the CPU may respond with an
acknowledge signal and, either suspend what it is doing in the main part of the
program and read the data, or continue to process until some later time.

Interrupt handling problems can arise when more than one interrupt is generated
at one time. For example, if a CPU is already servicing one interrupt and its
BIU initiates another interrupt, which one should get priority and how will
throughput of the bus be affect:ed? Avionic system manufacturers must deal with
these conditions.

The MPSC uses interrupts to notify the CPU when one of 14 conditions occur. If
all of these conditions happen within a short period of time, they could cause
the CPU to be so tied up with interrupts that it cannot maintain the required
application processing. Furt.hermore, the CPU may not be able to promptly
service all of the interrupts. This would also affect the operation of the LRU.

5.2.3 Fault Detection

If not detected, all of the errors discussed in section 5.2.2 have the potential
to cause a bus failure. To recognize these types of errors, BIUs and CPUs can
employ bit-level detection schemes during data transmission and reception.
Using these schemes, the BIU or CPU can spot faulty data before it leaves or
enters the unit's boundaries. For both BIUs and CPUs, bit-level detection
schemes include parity checks, CRCs, checksums, and Hamming codes. Each check

104

is valid for detecting certain types of bit errors. The checks, and which buses
use which checks, are detailed in section 5.1.

When a BIU is responsible for error detection, it should be able to annunciate
results of the data checks so that corrective action can be taken when
necessary. In most of today's avionic BIUs, this notification is performed by
setting or resetting a specific bit in the BIU' s sta1:us register. Once a bit
has been appropriately set, either the BIU can interrt:.pt the CPU and report the
error, or the CPU's software can periodically access the BIU's register and read
the error.

If the BIU is incapable of performing any checks, the CPU may be responsible
for error detection. In this case, the CPU checks bus configuration or flight
data which enters or leaves its bounds and flight dc:.ta entering the BIU from
the bus medium. Error detection routines within the CPU include ones previously
mentioned and may be implemented as a routine in the CPU's software. A CPU's
detection responsibilities will vary depending on each application and must be
defined by the system's designer.

Monitoring and voting are other methods that can be us«~d to ensure that failures
at the BIU to CPU interface do not go undetected. These are also discussed.

5.2.3.1 Bus Interface Units and Fault Detection

The MPSC contains 21 registers which a CPU can access. These registers are
split between two redundant channels: A and B. Of tt.e 21 registers, 10 belong
to channel A, and 11 belong to channel B. Channel A registers include Write
Registers (WRs) zero though seven (WRO-WR7) and Read Registers (RRs) zero and
one (RRO and RRl). Channel B registers are the sarr.e, except that channel B
includes an extra register used to service interrupts: RR2. This register
either contains the interrupt vector programmed into \ffi2 or holds the vector of
the highest pending interrupt within the MPSC.

When the MPSC receives a data word from the bus, the MPSC checks the data for
integrity. If a parity, framing, or CRC error is detected by the receiving
circuitry, the MPSC sets a specific bit in the appropriate read register
("Microcommunications," 1990). The system's CPU can c·1.eck for errors by polling
the MPSC, or by an MPSC interrupt.

The BUS-61553 IC uses similar methods to inform its CPU of parity, overrun, and
synchronization errors. Within the BUS-61553 IC are three internal registers
that the CPU can access: the Configuration Regi1;ter, the Interrupt Mask
Register (IMR), and the Start/Reset Register ("MIL-STD-1553 Designer's Guide,"
1982). Each has different applications.

The IMR can be read or written by the CPU. Upon reception of a data word from
the bus medium, the BUS-61553 IC checks the data to ensure that it does not
violate the MIL-STD-1553 bus formats. If a parity, o'·errun, or synchronization
error is detected, the "message error bit" within the IMR will be set ("MIL
STD-1553 Designer's Guide," 1982). The CPU can then read the IMR and take
appropriate action. Other errors that the BUS-61553 :CC can detect include loop
test failures, coding errors, and time-out errors.

105

--- ~----~ -~-------- ~-- ----------~-----

A Hamming code is another detection scheme that the BUS-61553 IC can use. The
IC uses this code to detect and correct up to three erroneous bits in a flight
data word. Detection is accomplished by sending a protection word immediately
after each 16-bit data word. If blocks of data are to be checked, the
protection word would follow each consecutive 16-bit data word in the block.
Section 80 of the "Multiplex Applications Handbook" (MIL-HDBK-1553A, 1988)
discusses this error detection scheme. In addition, a general description of
Hamming codes is provided in section 5.1 of this report.

The ARINC 629 IC transfers bit-level errors, as well as diagnostic information,
to a CPU via an error register. The error register is 16 bits wide. Each bit
represents a different error condition. Twelve of the 16 bit~ are latched
("ARINC 629 Communication Integrated Circuit," 1990). "When an error occurs, a
corresponding bit is set in the error register. The other four bits in the
error register reflect the ARINC 629 IC's current status.

The HS-3282 IC does not hold error information for its CPU. Instead, the HS-
3282 IC passes error detection responsibility directly to its CPU or another
external device. The HS-3282 IC does, however, use a configuration register to
distribute internal control signals. One of these signals directs the HS-3282
IC to check its transmission for proper parity. To accomplish the parity check,
the configuration register is loaded by the CPU. The register tells a parity
check circuit within the HS-3282 IC whether the outgoing flight data should
possess even or odd parity. In ARINC 429 bus applications, all flight data
should be transmitted with odd parity.

From the above discussion, it is apparent that BIUs are capable of annunciating
many types of errors to a CPU through internal registers. The errors include
ones previously discussed, like parity and overrun, but may also include others
like coding and loop-test failures. Each BIU and data bus manufacturer must
develop their own method to inform the avionic system of hardware-software
interaction errors while keeping within the bounds of the data bus's standard.
Even though this is a job for the BIU and data bus manufacturer, the CPU
programmer and system integrator must design the system to utilize all
information provided by the BIUs.

5.2.3.2 Monitoring

Monitoring can be performed at many levels
monitoring discussion details only processes
hardware-software interface.

in a data bus.
that apply to

However, this
errors at the

Besides a BIU annunciating faults to the CPU using interrupts, most BIUs can be
monitored by a CPU's software. As with the other forms of error detection, this
allows the CPU to take appropriate corrective action in the event of an error.
Software monitoring by a CPU may mean periodically polling a register or memory
location in an LRU, or may require a dedicated algorithm in the CPU's software
to oversee the operation of the entire BIU. As with detection methods in BIUs,
monitoring techniques will vary from one application to another.

106

The MPSC provides a good example of how software mor:itoring can be employed.
When the MPSC is configured for the polled mode of operation, the CPU can
monitor conditions by reading bits in the MPSC' s RRO and RRl. Data available,
status, and error information are apparent in RRO and RRl for both channels of
the MPSC.

An example of an algorithm that a CPU can use to monitor the MPSC is discussed
in "Microcommunications" (1990) and is called MPSC$fOLL$RCV$CHARACTER. This
algorithm tells the MPSC to get data from the bus medium and wait until the
"character available" flag in RRO is set. After this flag is set, the CPU
checks RRl for parity, synchronization, and overrun errors. If errors are
detected, the receive buffer must be read and another algorithm, RECEIVE$ERROR,
must be called. This algorithm processes errors received by the previous
algorithm. However, the RECEIVE$ERROR procedure is application dependant. The
RECEIVE$ERROR algorithm requires the address of the affected MPSC channel and
the contents of RRl to operate. Both algorithms are ,:;hown in Application Note
Number 134 ("Microcommunications," 1990).

If a CPU is incapable of monitoring the BIU at thi:; level, or the software
overhead required for the task is not permitted, monitoring can also be done by
a dedicated LRU. For example, the MIL-STD-1553 bus employs bus monitors and the
ASCB implements a similar, special purpose monitor called a Listen Only User.
These monitors are separate LRUs. They are attached to the bus medium as shown
in figure 5. 2-1.

The MIL-STD-1553 bus monitor listens to all data on the bus and "extracts
selected information to be used at a later time" ("MIL-STD-1553 Designer's
Guide," 1982). A typical bus monitor performs no transfers on the bus, but bus
monitors usually have the capability to become a MlL-STD-1553 bus RT under
request from the BC. Applications of the bus monitoJ: include data collection
and monitoring the overall system for status information.

In some cases, a bus monitor can be configured as a back-up BC. When this
occurs, the bus monitor collects data, watches transmissions, and performs the
same jobs as the current BC, with the exception of issuing commands on the bus.
This way, the bus monitor is continuously aware of the operation of the overall
system and subsystems, and is available to serve as a back-up BC if an error
between the hardware and software takes down the o:r iginal BC ("MIL- STD -1553
Designer's Guide," 1982).

The ASCB BC is also capable of being used as a self-monitor, as stated in the
ASCB Specification:

"In the active control mode, the bus controller sr.all self-monitor its
own bus control operation. If bus control perfo~mance, as described
in this specification, is not being performed properly, the bus
controller shall remove itself from bus control operations and assume
the standby mode. Monitoring techniques shall provide coverage for
both hardware faults and software errors. In addition, the monitor
shall verify proper content and timing of all control sequences being
transmitted." (GAMA ASCB, 1987).

107

The monitors used in both the ASCB and MIL-STD-1553 buses must watch for single
points of failure at the BC and associated BIUs. This environment helps ensure
that hardware-software interaction errors will not cause the simultaneous
failure of the BC and other BIUs on the bus.

5.2.3.3 Voting

Voting is another fault detection method that can be used by LRUs. Although
this technique is usually applied at the system level, it can be utilized at the
BIU to CPU interface. Voting is typically done at either the input or output
of a system.

Voting requires at least three redundant units. Although in most applications
a single CPU interacts with a single BIU, either of these units can be made
redundant to incorporate voting. For example, an LRU may contain three CPUs
which process data.

Input voting can be done on data from the bus medium before it reaches the CPU,
while output voting can be done on data between redundant CPUs and the BIU.
(The definition of input and output voting will vary depending on the reference
point in the system.) In both cases, a circuit within an LRU compares the
values from triply redundant CPUs or BIUs and passes on a refined value. Thus,
erratic data from any of the redundant units will be detected. Figures 5.2-4
and 5.2-5 illustrate the concepts of input and output voting.

LRU

r--[BIU 11
I

Data Bus

: I I
~a IBIU 21 Voter

~~Bru 31 I
Redundant BIUs

FIGURE 5.2-4. INPUT VOTING

108

LRU

ICPU 11 I
~-------~~~ Data Bus

lcPU 21 l::I~j BIU it----tt---

1 CPU 311------'
Redundant CPUs

FIGURE 5.2-5. OUTPUT VOTING

The extent of the voting architecture depends on whi~h component failures are
to be compensated. Input and output voting can be used to create systems that
have a high level of fault tolerance.

5.2.4 Fault Correction

Previous sections presented typical errors which occur during data transmission
and reception between a BIU and CPU. Also discussed were different methods used
to detect the errors. The errors addressed, however, are not the only ones that
can occur, nor are the detection schemes the only ones that can be used.
Nevertheless, it is the system designer's job to er..sure that no hardware or
software errors between an avionic system and its data bus cause a flight
critical or flight-essential system to fail.

The correction methods described in the following sections apply to the faults
presented in section 5. 2. 2. Retransmission is a star,dard method of correction
for errors that have already occurred. Multiple bt:.ffering is a method that
prevents certain errors from occurring. Besides these methods, fault tolerant
bus architectures that rely on redundancy for error correction are presented.
Although these architectures are not usually incorporated by the buses discussed
in this report, they are valid solutions to many hardware-software interaction
problems.

5.2.4.1 Retransmission and Default Data

Once a parity error has been detected by a BIU or CFU, retransmission and use
of default data are correction methods that can be ust~d. Retransmission simply
means sending the same message again, and default data are values automatically
used unless other values are specified. For correctton purposes, default data
could be used in place of data which has been verified to be unusable. These
simple schemes can effectively correct parity errors ::hat result from transient
interferences.

109

------~-·~----------- -------~-----------------------------~~

Most data bus systems are capable of using software to request retransmission
if a parity error occurs. Consider an ASCB using the MPSC. The CPU can monitor
the MPSC's status by testing appropriate bits in the MPSC's RRs. If a parity
error is detected within the MPSC, the data are discarded, and the CPU runs the
MPSC$POLL$RCV$CHARACTER algorithm. Depending on the application, the algorithm
could be set up to request retransmission from the sending unit.

The ARINC 429 data bus, under the BOCP, is also capable of using retransmission
in the event of a parity error. Prior to flight data transmission on the ARINC
429's bus medium, the transmitting system sends an RTS message to a receiving
system. If the RTS message is accepted and the transmitting system is allowed
to transmit its data, it sends a Start of Transmission message, followed by the
data, to the receiving system. Immediately after the receiving system gets the
data, its CPU can test it for parity errors. If a parity error is detected by
the receiving system, it sends a Not Acknowledge message back to the transmit
ting system. When this message is received, the transmitting system could be
configured to retransmit its data.

Retransmission is useful for correcting synchronization errors. As pointed out
in section 5.2.2, framing bits can be used to synchronize data during recep
tions. If the framing bits become inverted due to an error, the BIU may not be
able to recognize when a reception is completed. In this case, the BIU or CPU
could request a retransmission from its source.

A system that uses the ARINC 429 data bus under the BOCP and uses an HS-3282 IC,
employs retransmission in the event of a synchronization error. If a transmit
ting system's RTS message is ignored, or if the receiving system sends a message
which prevents the transmitting system from broadcasting its data (NCTS or
BUSY), the sending unit retransmits its RTS message within a time defined by the
ARINC 429 bus specification. If the second RTS message is ignored, the
transmitting unit should keep trying until five RTS messages have gone
unacknowledged. If, however, the sending unit receives a BUSY message, it may
repeat its RTS message up to 20 times. ARINC Specification 429-12 (1990)
states:

"The actual number of attempts a source should make before giving up,
or taking some different course of action, when the limit is exceeded
depends on the application."

Using default data is another way to recover from parity, overrun, and
synchronization errors. For example, if a BIU receives data with bad parity
from the bus medium, the CPU may elect to use default data for the next process.
Even though this method keeps errors from tying up a system, the designer must
ensure that using default data will not upset the operations of a flight
critical or flight-essential system.

5.2.4.2 Interlocks

Interlocks are a method of preventing timing errors during data transmission on
serial data buses. Interlocks, which are usually constructed with hardware,
prevent BIUs from transmitting at inappropriate times.

110

An ASCB BIU is capable of using an interlock to prevent timing problems during
transmission, as stated in the ASCB specification:

"Each user which transmits on the bus, has an interlock to prevent
erroneous transmissions longer than its allocated time on the bus.
A separate, dedicated hardware timing circuit, is used to enable the
transmitter, in each of the users, only when the specific request is
received." (GAMA ASCB, 1987).

This interlock is provided by the DET which ensures that an ASCB user will not
transmit out of its time frame. This DET logically ANDs an independent hardware
clock (set up for each BIU's timing specifications) with the BIU's power and
transmit enable lines. If any one signal is not enabled, transmission will not
occur. The DET is part of the ASCB BIU, not the MPSC.

5.2.4.3 Multiple Buffering

Although overrun errors are as common as parity and synchronization errors, they
are more complicated since a receiving system may not be aware that an overrun
error has occurred. One method for preventing ovHrrun errors is a memory
management scheme called multiple buffering. Besides keeping data from being
overwritten, multiple buffering prevents partially updated data from being read
by the CPU or sent to the BIU. Both the ARINC 629 bm: and the MIL- STD-1553 bus
use multiple buffering.

To employ the multiple buffering scheme, a BIU and CPU must share memory. The
memory is segregated into several areas which are sws.pped by the CPU or BIU at
appropriate times. The key to this scheme is that the CPU and BIU are only
allowed to access one area of shared memory at a time.

MIL-STD-1553 applications using the BUS-61553 IC employ multiple buffering to
prevent overrun errors by assigning two or more areas of memory for each address
shared by the CPU and BIU. Each area is 32 bits wide. Control information,
contained in another part of memory, specifies which area is to be used by the
CPU and which area is to be used by the BUS-61553 IC.

When the BUS-61553 IC is to receive information, it writes data in one area,
while the CPU reads previous data from the other area. Upon completion and
validation of the received message, circuitry within the BUS-61553 IC toggles
the two areas, making the newly received data available to the CPU. During
transmit operations from the CPU to the BIU, the scheme is reversed. The CPU
writes data to one area, while the BIU reads data from another area. When the
CPU completes its write, the CPU swaps the two areas of memory and allows the
BIU to access the new data. All memory swaps occur totally between the reads
or writes ("MIL-STD-1553 Designer's Guide," 1982).

Multiple buffering is a valid solution to the ARINC 629 bus timing problem. A
partition within BCAC's lACS could be set up to write to a different buffer than
the ARINC 629 IC reads. As described above, the read and write buffers could
be swapped, preventing the ARINC 629 IC from reading a buffer that is currently
being written.

111

5.2.4.4 Grace Periods

A correction method for the timing error presented in section 5. 2. 2 can be
implemented in either hardware or software. A hardware solution utilizes a
multiple buffering technique as described in section 5. 2.4. 3, while a grace
period is a software correction method used for both the MIL-STD-1553 and ARINC
629 bus timing problems. A grace period can be implemented within the lACS's
RTE, or the MIL-STD-1553 BC's software.

Recall that an lACS's RTE is capable of instructing each LRU when to obtain
data. Therefore, if the RTE knew when an LRU's CPU was done with processing,
the problem would be resolved.

To correct the timing problem, each of an ARINC 629 LRU's tasks are completed
under a software subroutine within the RTE. In this subroutine, the RTE
monitors whether an LRU has completed its process. If one LRU's process is not
completed when the RTE wants to switch to another LRU, the RTE allows an LRU
extra time (a grace period) in which it can finish its job. A MIL-STD-1553
application uses similar correction methods for the timing problem; the BC
provides a grace period (equal to one minor frame) to the LRU.

Another method that the ARINC 629 bus could use to correct the timing problem
requires the functions within the LRUs to transmit and receive data at the
beginning of their time frame. Furthermore, each LRU' s time frame must be
longer than any of the transmissions or receptions could possibly take.
Although this solution eliminates the timing problem, processing completed while
an LRU is in a current time frame would not be made available until the next
time frame (Bakken 1988). The advantage to this solution is that it requires
less CPU overhead than the grace period solution.

The use of grace periods merely increases the time to complete a task. If
transmissions exceed the grace period, an error would be announced and
corrective steps would need to be taken as if the grace period was never
implemented. It is the system designer's responsibility to decide what solution
would be best for a situation.

5.2.4.5 Prioritizing

A BIU or CPU can employ prioritizing to eliminate incorrect handling of
interrupts. The purpose of prioritizing is to decide which interrupt is more
critical.

The MPSC uses priority in both a vectored and nonvectored mode to decide which
interrupt deserves attention. In the vectored mode, the MPSC sends the location
of the interrupt's service routine to the CPU along with the interrupt
condition. In the nonvectored mode, the CPU is responsible for determining the
location of the interrupt's service routine. In either mode of operation, the
14 interrupt conditions are categorized by the MPSC into three different
interrupt requests for each channel. This means that there are six interrupt
requests generated by the MPSC ("Microcommunications," 1990).

112

Correct handling of these six requests can be accomplished by a priority
resolution circuit. In the vectored mode of operation, a circuit within the
MPSC decides which interrupt deserves priority. In the nonvectored mode, a
circuit contained in an external device, such as Intel's 8259A Programmable
Interrupt Controller, may prioritize the interrupts.

A system that uses the BUS-61553 IC requires the CPU to determine which
interrupt should have priority. The BUS-61553 IC cotltains an IMR which holds
information about interrupt conditions for the CPU. The interrupt conditions
may be the ones explained in the BUS-61553 IC's data sheet or others defined for
a specific system. If any of these interrupt conditions occur, the BUS-61553
IC sends an interrupt request signal to the CPU. The CPU responds with an
acknowledge message and reads the IMR to determine which interrupts have
occurred. The CPU then selects the highest priority interrupt and runs the
appropriate service routine.

The 8088 CPU uses an Interrupt Vector Table (IVT) when establishing the priority
of interrupts. Interrupt vectors, which point to the beginning of the service
routines for a BIU, are put in this table. The 8088 CPU uses the position of
the interrupt vector in the IVT to decide which interrupt deserves priority.
Other processors, like Zilog's Z80, can be set up in the same manner to service
interrupts and eliminate interrupt handling errors.

5.2.4.6 Redundancy

Because so many errors are application dependant, having a back-up system is a
good method of correction. Redundancy is the most. widely used method for
prevention and correction of all data bus errors resulting from hardware
software interaction. Most avionic systems implementing flight-essential and
flight-critical applications use at least one form of redundancy to meet
requirements for certification.

Redundancy employs either similar or dissimilar hardware and software to m1m1c
operations of a primary system. These redundancy techniques can be applied at
all levels of the system including CPUs, BIUs, and the bus medium. All of the
BIU ICs employ a form of redundancy within their bounds. The HS-3282, ARINC
629, BUS-61553, and MPSC ICs all are capable of transmitting or receiving data
on one of two channels. However, all of these BIU ICs have only one interface
to the CPU.

When choosing a redundant technique at the hardware or software level, the
designer must decide whether to employ similar or dissimilar redundancy.
Similar redundancy makes the whole system easy to de.:;ign and verify, but does
not guard against generic errors. Dissimilar redundan:y does protect the system
from these errors, but takes more time to design, is more expensive, and is
harder to evaluate during certification.

Redundant techniques that use both hardware and sof·:ware include Honeywell's
Self-Checking Pair (SCP) (Driscoll 1983), triplication and voting (Spitzer2

1986), and the Fault Tolerant Multi-Processor (FTMP) Architecture (Lala 1983).
Although these techniques are not designed by the data bus manufacturers, they
provide valuable techniques that can be used by data bus manufacturers when

113

--- --~ - --~---------- - ----

designing the bus hardware-software interface. See chapter 5 of the "Handbook
- Volume I" (Hitt 1983) for further discussion on this topic.

5.2.4.6.1 The Self-Checking Pair

Figure 5.2-6 shows a diagram of two SCPs. The SCP includes identical halves
made up of application processors (APs) and BIUs. The transmitting and
receiving LRUs are each an SCP. Notice that the only differences between this
diagram and figure 5.2-1 are that external monitors watch each input and output,
and each CPU and BIU has a back-up.

The monitors on the transmit (output) side and the receive (input) side of the
SCP are the key to the system. Assuming that both transmit CPUs process the
same data, the BIUs' outputs to the monitors (and bus medium) should be
identical. If, for some reason, data to both output monitors is not consistent,
the monitors are able to switch the faulty system offline. Input monitors
function in the same way. If a faulty output monitor or bus error causes bad
data to be passed to the receiving system, the input monitors should catch the
error and prevent it from being passed to the receiving system.

The SCP is applicable to both unidirectional and bidirectional data bus
networks. An SCP could be placed in one LRU of a bidirectional network, or
transmit and receive SCPs could be placed at the ends of a unidirectional bus.
To enhance the performance of these networks, the SCP CPUs could be programmed
using dissimilar software.

5.2.4.6.2 Triplication and Voting

The previous section described how a dual redundant SCP was able to address the
issue of fault correction in a digital system. It also mentioned that the CPUs
in the SCP could be programmed with dissimilar software to enhance the operation
of the SCP. In 1984, the Sperry Corporation developed a fault tolerant system
which employed multiversion programming, voting, and monitoring for error
detection and reconfiguration for error correction.

This particular architecture uses three redundant CPUs in two identical FCCs.
Two of the CPUs within each FCC share memory and are programmed with identical
software, while the other CPU is programmed with dissimilar software and has
its own memory. The output of the paired CPUs, as well as the single CPU, go
to separate data buses.

Each FCC uses one of the paired CPUs to perform both flight-critical and
flight-essential functions, while the other two CPUs perform flight-critical
functions only. The outputs of the paired and single CPUs are compared by two
monitors. If a monitor detects a failure at any CPU's output, the system is
gracefully reconfigured so that one FCC is always engaged. A diagram and
discussion of how the system reconfigures itself in the event of an error is
presented in Digital Avionics Systems (Spitzer 1987).

114

..

TRANSMIT LRU RECEIVE LRU

.-------------------------, .-------------------------,

AP

BIU BIU 1

OK OK'

INPUT
MONITORS

BIU 1

---- --------------- ----~

FIGURE 5.2-6. SELF-CHECKING PAIRS
(Driscoll 1983)

115

""----~----"------------------

5.2.4.6.3 Fault Tolerant Multi-Processors

In a fault tolerant environment, multiple CPUs are used to process similar data
and monitor transactions taking place on the bus. These CPUs typically share
a central memory and communicate over one or more redundant data buses. This
configuration allows a back-up CPU to immediately take over the process of a
failed CPU. One method of employing multiple CPUs in flight control applica
tions is called FTMP.

The FTMP architecture uses both hardware and software to detect and correct
errors in an avionic system. Hardware within an LRU is used to accomplish fault
detection and error masking. Ten LRUs, each made up of CPUs, memory modules,
and BIUs, are organized in triads to form three groups of three LRUs and a spare
LRU. Any three CPUs, BIUs, or memory modules may be organized as a triad.
Communication between LRUs is accomplished over four, triply redundant,
bidirectional buses called the transmit, receive, polling, and clock buses.
Each triply redundant bus is backed up by two spares, making the total number
of bus connections 20. During a data transfer operation, the CPUs send data to
the shared memory modules from which the BIUs can obtain the data and send it
across the buses to other LRUs.

When a fault is detected at an LRU, a System Configuration Controller (SCC)
ensures that all CPUs are aware of the fault and have the same information about
the fault. The sec is merely an algorithm run within an LRU triad that reads
error information from all 10 LRUs.

Some faults can be immediately isolated and detected by the SCC. For faults not
so easily identified, the FTMP executes a reconfiguration routine to isolate
the source of the fault. This routine swaps LRU triads (depending on the nature
of the fault) between the redundant data buses until the fau,lty LRU is
identified (Lala 1983).

After a fault has been isolated, the FTMP implements techniques to recover from
the condition. These technique~include using the spares of each unit. Recall
that there are three triads and one spare of each CPU, memory module, and BIU.
To reconfigure from a failure of a CPU, first the spare CPU would be brought
online. If the spare CPU was already online and another fault occurred, the
FTMP would remove the entire LRU triad, operate from the other triads, and use
the remaining two CPUs in the failed triad as spares for the remaining LRUs.
A similar recovery method is used for memory module or BIU failures.

Even though the FTMP was designed for use with MIL-STD-1553 data buses, it is
acceptable for commercial aircraft. FTMP is capable of masking single faults
in a system by reconfiguring each faulty node with redundant spares.

5.2.4.7 N-Version Programming and Recovery Blocks

N-version programming and recovery blocks are software based methods usually
employed in redundant systems containing three or more CPUs. These are valid
means of dealing with certain hardware-software interaction problems, and are
presented in chapter 9 (Hecht 1989) of the Digital Systems Validation Handbook,
Volume II.

116

5.2.5 Summary

All of the discussions in section 5.2 are meant to help the CE better understand
the hardware-software interaction between a data bus and its avionic system.
This interface is important because many situations 1:hat affect the integrity
of a bus or an avionic system may arise at this point and can easily be
overlooked during the certification process.

Because new technology constantly changes the way avi~nic systems communicate,
it is hard for aCE to evaluate hardware-software interaction during a system's
certification process. To help the CE with this problem, appendix D provides
a hardware and software analysis checklist for failures in bus related hardware
and software. The checklist is not specific to any particular failure mode.
It is a general approach to evaluating bus related hardware and software
failures which could impact the operation of fli.ght-critical or flight
essential systems.

5.3 Bus Protocol Specification and Verification Meth~ds

Development work in the area of data buses is progressing rapidly due to the
requirement for higher throughput and reliability. Along with this development
comes the need for new comprehensive methods of evaluation and testing. New
data buses must be analyzed to ensure that they will function properly under all
foreseeable conditions.

One area that requires careful attention from the designer is the communication
protocol. In a system of distributed computers that are required to communicate
with each other, rules must be developed and implemented to avoid chaos when
messages are exchanged. The complete set of ruleB is referred to as the
protocol. The protocol should ensure safe and timely delivery of data or
control messages from one user of a data bus to another. The fact that the
protocol may be implemented in a single high-density IC is all the more reason
to subject the protocol to rigorous analysis.

Specification techniques are used to model and define protocols while verifica
tion techniques demonstrate that the protocol satisfies the specification.
Protocols having different characteristics require different specification and
verification techniques. No single method is suited to every existing protocol
(Merlin 1979). The following sections describe some cf the formal methods used
to specify and verify communication protocols. Techniques such as state machine
analysis and Petri nets are examined, along with examples and applications to
current data buses.

5.3.1 A Protocol Specification Guideline

Recently, the ISO adopted ISO 7498 (1983), "Informa·:ion Processing Systems -
Open Systems Interconnection - Basic Reference Model." This standard was
designed to facilitate the interconnection of systems from different network
manufacturers. It is the IEEE standard model for the "Open Systems Interconnec
tion" (OSI) architecture.

117

Organizations responsible for developing protocol standards increasingly make
use of the Basic Reference Model. The ARINC 429 DITS has been modified to make
use of the model, and the ARINC 629 bus totally reflects its philosophy. The
Basic Reference Model aids the designer in developing a protocol without
imposing unnecessary constraints upon its design. When a protocol is function
ally layered, as the model requires, it is more easily understood by those who
wish to study it. The use of the model also clarifies the purposes and
capabilities of the protocol.

In the ISO 7498 standard, a communications architecture is described as a
hierarchy of protocol layers in which a given layer, n, communicates with layers
n+l and n-1. Each layer provides a different service. A definition of the
service provided by a given layer is referred to as a Service Specification.
The Service Specification describes the input and output behavior of a layer
based on a set of Service Primitives. For example, since it is the function of
the Transport Layer to establish and terminate bus communication, the primi
tives, Connect and Disconnect, comprise the Layer's function.

The service primitives must be executed in an orderly and logical manner in each
layer. Before data can be sent from one module to another at the Transport
Layer, a connection must be established, followed by the data transfer and a
disconnection. This ordering can be described by "states" which undergo changes
due to operations in the layer. The entire network, or smaller portions of it,
may be analyzed by state analysis.

In a layered architecture, the modules or processes, which implement a given
layer, communicate with each other through the services of the next lower layer.
The actual protocol may be defined as the interaction between two corresponding
entities in response to an action initiated from an upper or lower layer, or
from an internal timer. Protocols must be specified so that compatibility among
all entities of a layer is assured (without dictating exactly how to do it).
Implementations of modules or processes may vastly differ, but communication
between them occurs due to strict adherence to the protocol specification.

Before examining the protocol specification, it is helpful
purpose of each layer of the OS! Basic Reference Model.
defined by the OS! Basic Reference Model. Figure 5.3-1
structure of this model.

to understand the
Seven layers are

shows the defined

The Physical Layer is the lowest layer in the hierarchy. This layer is
responsible for the transmission of bits over the physical medium. It may
operate in different modes, such as full duplex or half duplex. It must deliver
bits to the receiver in the same order in which they came from the sender.
There are four main areas which should be defined in the Physical Layer:

Mechanical

Electrical

Functional

Procedural

118

UNIT
LAYER EXCHANGED

APPLICATION - Application ... APPLICATION
Protocol

7 ~essage

~ A~ , ,lr

PRESENTATION - Presentation ... PRESENTATION
Protocol

6 ~essage

'~ ~ ,, ,

SESSION ... Session . SESSION - Protocol -5 ~essage

A~ J

,lr ,
TRANSPORT

Transport
TRANSPORT -- Protocol --

4 ~essage

~ A~ , ,,
- Network ..

NETWORK - Protocol - NETWORK 3 Packet

A~

' 11r

- Data Link ..
DATA LINK Protocol

r DATA LINK 2 Frame

A~ A~

11r ,

PHYSICAL - Physical ..
PHYSICAL - Protocol

r 1 Bh

FIGURE 5.3-1. OSI BASIC REFERENCE MODEL

119

Mechanical specifications deal with plug and connector dimensions and types, pin
allocation, etc. Electrical specifications give voltage or current require
ments. A functional specification is concerned with what a particular voltage
or current means. A procedural specification defines the rules or sequences
that may apply to the functions.

The Data Link Layer provides a buffer, or shield, between the Physical Layer and
the Network Layer. Although errors occur on the Physical Layer due to noise,
collisions, and other phenomena, the Data Link Layer provides an error-free
service to the higher layers. The Data Link Layer provides error detection and,
possibly, error correction.

On the transmission medium the data appear as one continuous bit stream. The
start and end should be clearly defined. The Data Link Layer provides the
creation and recognition of frame boundaries at the Physical Layer interface.

Flow control is also handled at the Data Link Layer. If a transmitter is able
to send data at a rate which is faster than the receiver can handle, then some
mechanism is implemented in this layer to control the flow.

The Data Link Layer also has the responsibility for delivering frames in their
proper sequence, as is done in the HDLC protocol. Error recovery for the
Network Layer is also handled in this layer. This involves handling duplicate
frames, lost or damaged frames, and frame retransmission.

The Network Layer works with a unit of data referred to as a packet. The
Network Layer is responsible for acting as a buffer for the Transport Layer,
which is generally the host-network interface, and for providing source-to-des
tination routing information for the packets. The host CPU does not care how
the network is physically configured. It only cares that the data arrives
safely at the destination. The Network Layer also controls congestion because
it determines the particular path on which packets are to be routed.

The Transport Layer handles the end-to-end quality of information by ensuring
that the best possible use is made of underlying resources. If a particular
network connection cannot maintain reliable and efficient data transfer, then
the Transport Layer may disconnect from that network access point and establish
a more reliable connection. Data are accepted from the Session Layer and
assembled or disassembled. It is then sent over the network to the Session
Layer of another network entity by the Transport Layer.

One main function of the Session Layer is to allow a user of one machine to make
use of another machine on the network. The interfacing of systems at the
Session Layer is referred to as binding. During binding, the Session Layer
establishes communication parameters. Also, the session-to-session connection
is managed so that the actions of this layer are transparent to the Presentation
Layer.

A connection which is unreliable is managed at the Session Layer. If a critical
transfer of data is taking place, the Session Layer will ensure that all data
arrives safely at its destination before being transferred to the application.

120

This ensures that partial updates, such as to a database, do not occur and that
complete data message delivery will occur.

The function of the Presentation Layer is to make the data meaningful and
presentable to the Application Layer. This may require converting code from
one format to another. Any special, commonly-used functions may be implemented
at this level to make the application task easier to perform.

The Application Layer is the highest level defined in ':he Basic Reference Model.
Various application protocols exist at this level based on the requirements of
the system. Management functions as well as user applications reside in this
level. It is the function of the lower layers to m!ike the network resources
transparent to this layer (Meijer and Peeters 1982).

5.3.2 Protocol Specification Content

The use of formal techniques for specifying and validating protocols has
increased due to the rise in protocol complexity and 1:he need for reliable data
transmission in distributed systems. A list of ·general guidelines used in
specifying protocols is given in table 5.3-1.

TABLE 5.3-1. PROTOCOL SPECIFICATION GUIDELINES
(Bachmann and Sunshine 1980)

1. A general description of the purpose of the layer and the services
that the layer provides.

2. A precise specification of the service to be provided by the layer.

3. A precise specification of the service provided by the layer below and
required for the correct and efficient operation of the protocol.

4. The internal structure of the layer in terms of entities and their
corresponding relations.

5. A description of the protocol(s) used between t:he entities, including:

a. An informal description of the operation of the entities.

b. A protocol specification which includes:

(1) A list of the types and formats of meHsages exchanged between
the entities.

(2) A list of rules governing the reaction of each entity to user
commands, messages from other entitieH, and internal events.

c. Any additional details, not included above, such as considerations
for improving the efficiency, suggestions ::or implementation
choices, or a detailed description which may come close to an
implementation.

121

---~~--------------

Although item 1 in table 5.3-1 is important in understanding the protocol, it
is not required. If any of the other elements of the specification are lacking,
the specification is deemed incomplete.

5.3.3 Protocol Specification Methods

Protocol specifications must be both concise and easy to understand. In complex
protocols these two goals are in conflict. A natural language description may
appear to be easily understood, but leads to lengthy and informal specifications
which often contain ambiguities and are difficult to check for completeness and
correctness (Bochmann and Sunshine 1980).

Formal techniques and their variations are used for protocol specification. The
major methods are the use of Petri nets, state diagrams, high-level computer
languages, and various grammars designed for this particular application. State
diagrams, Petri nets, and grammars are used to model the responses to data
transfers at a layer interface or an internal timer. This type of modeling is
event or transition driven. A particular drawback of this method is that
protocols using sequence numbers become quite cumbersome to model. If an eight
bit sequence field is used, then a separate state would exist for every possible
combination of the eight bits.

High-level programming languages are used to model protocols and have the
advantage of being easily understood since they appear more like natural
language. The problem of representing sequence numbers in the state diagram is
easily handled by the use of a variable to represent all combinations of that
number. This method differs little from an -':lctual implementation of the
protocol. However, certain unique characteristics of the programming language
which may be nonessential to the protocol model could hinder the implementation.

5.3.3.1 The Finite State Machine

The Finite State Machine (FSM) concept has been a key element in protocol
specification. It can be used to model the global state of the protocol over
an entire network, or one state machine may be used for each entity in a layer.
At a given time, the state machine may be in only one of the defined states.

For complex protocols it is tedious and time consuming to generate a state
diagram of all the possible states. When this is the case, one approach to
simplify the protocol representation is to group together a large number of
states. Since some states consume a relatively small amount of time in relation
to other states, these states may be regarded as transient and grouped together
as one state for purposes of analysis. Since states are defined to be cases
where the FSM is waiting for the next event to occur, the number of states may
be represented by 2n, where n is the number of bits needed to represent the
variables which cause the transitions.

In a given state there are zero or more transitions to other states which happen
when a designated event occurs. Typical events which cause transitions in the
FSM are when an internal timer triggers, when a message is received, when a
message is transmitted, or when an interrupt occurs. If the bus medium, or
link, is modeled separately from the sending and receiving protocol, then the

122

transitions that may cause the link FSM to change states are a message entering
the link, a message leaving the link, or loss of data in the link.

In figure 5.3-2, a sender-receiver topology is modeled in a simple fashion with
an FSM model. There are four distinct global ::;tates and four distinct
transitions between the states given in this FSM. The action of an entity
sending data forces a state transition to the "Wait for Data" state. Upon
receiving new data the "Process Data" state is entered. When "Process Data" is
finished, the "ACK" status is sent and the "Wait :for Acknowledge" state is
entered. Finally, when the "ACK" is received the network returns to the "Idle"
state, clearing the way for new data to be sent. The advantage of this model
is that the global characteristics of the network can be directly checked. If
the protocol is complex the FSM model will be ·~omplex and difficult to
construct.

Receive
ACK

Send
ACK

IDLE

(

Send
Data

Receive
Data

PROCESS
DATA

/

FIGURE 5.3-2. STATE MACHIN~
(Merlin 1979)

Another method of representing a protocol is to use multiple FSMs. Figure 5.3-3
represents a simple protocol modeled by multiple, coupled FSMs. The receiver
moves from the "Receiver Ready" to the "Receiver Busy" state on the transition
caused by data reception. It moves back to "Receiver Ready" after processing
is completed and the "ACK" is returned. The Link FSM shows the delivery of data
from the source to the destination. It models the data transfer and the
acknowledgement of the data. If the delay in the link is not significant, then
the Link FSM may not be necessary and the model can eliminate this FSM. Like
the receiver, the sender moves between the "Sender Enabled" and "Sender
Disabled" states based on data being sent and the corresponding acknowledgement

123

being received. This model has the advantage of allowing implementation of each
entity without the problem of having to decompose a single FSM description into
the different entities. A complex FSM can be implemented more easily when it
is divided into concise functional elements and modeled so that all correspond
ing interactions are apparent.

Transitions modeled by the FSM are considered to be instantaneous. The "Send
ACK" event of the receiver occurs at the same moment as the "LINK RECEIVES ACK."

Receive Send
ACK Data

SENDER

Link
Sends
Data

Link
Receives

Data

Link
Sends
ACK

LINK

Link
Receives

ACK

FIGURE 5.3-3. COUPLED STATE MACHINES
(Merlin 1979)

Send Receive
ACK Data

RECEIVER

An example of a simple protocol implementation is given in figure 5.3-4. This
protocol is written in Pascal and represents a positive acknowledgement/
retransmission protocol implementation for a single-sender and single-receiver
topology at the Data Link Layer. This protocol introduces the concept of the
sequence number in the header information of a transmitted frame. The
assumption here is that the information being sent from the transmitter to the
receiver is sometimes too large to be included in one frame. Therefore, the
information must be separated into smaller packets at the sender and sent
sequentially to the receiver. Also, if one of the frames does not arrive intact
at the receiver, some method of distinguishing between a new frame and a
retransmitted frame is required. A sequence number included in the header of
each frame gives the receiver the ability to distinguish this.

In the protocol shown in figure 5.3-4, a one-bit sequence number is used to
distinguish between frame n-1 and frame nor between frame n+l and frame n. At
any given time the receiver expects a particular sequence number. An arriving

124

type Evtype- (FrameArrival, CksumErr, TimeOut);

procedure sender
var NextFrameToSend: SequenceNr;

s:frame;
buffer:message
event: EvType;

begin
NextFrameToSend:-0;
FromHost(buffer);
repeat
s.info:=buffer;
s.seq:=NextFrameToSend;
sendf(s);
StartTimer(s.seq);
wait(event);
if event - FrameArrival then
begin

FromHost(buffer);
inc(NextFrameToSend);

end
until doomsday

end; {sender)

procedure receiver;
var FrameExpected:SequenceNr;
r,s:frame;
event: EvType;

begin
FrameExpected:=O;
repeat
wait(event);
if event = FrameArrival then
begin
getf(r);
if r.seq = FrameExpected then
begin
ToHost(r. info);
inc(FrameExpected)

end;
sendf(s)

end
until doomsday

end; {receiver)

{sequence number of next outgoing frame)
{scratch variable)
{buffer for outbound message)

{initialize outbound sequence numbers)
(fetch first mes:;age)

{construct frame for transmission)
{insert sequence number in frame)
{send it on its 1.:ray)
{if answer takes too long, time out)
{possible: FrameA.rrival ,CksumErr ,TimeOut)

(an acknowledgem·~nt has arrived intact)
(fetch the next 4)ne to send)
{invert NextFram.::!ToSend)

{FrameExpected = 0 or 1)
{scratch variabl·~s)

(possible: FrameA.rrival, CksumErr)

{a valid frame h:~.s arrived)
{accept inbound frame)

{this is what we have been waiting for)
{pass the data tJ the host)
(next time expect other sequence nr)

{none of the fields are used!)

FIGURE 5.3-4. POSITIVE ACKNOWLEDGEMENT/RETRI~SMISSION PROTOCOL
(Tanenbaum 1981)

125

- -~~-- -------- ----

frame with a sequence number out of sequence is rejected as invalid. An in
sequence frame is accepted, acknowledged, and passed to the host CPU. The
sequence number is then incremented modulo 2 to anticipate the next sequence
number that will be received.

This protocol transmits data in only one direction. It handles lost or
corrupted frames by an internal timeout in the sender. If the timeout is set
at too low a value the sender will transmit a duplicate frame to the receiver
before the previous acknowledgement arrives. When this occurs the sender will
assume that this acknowledgement was for the message just sent. If a new frame
is sent and it becomes lost, but the pending acknowledgement is then received
by the sender, this lost frame will not be retransmitted and the protocol fails.

Both the sender and receiver update variables for maintaining the proper message
sequence. These are "NextFrameToSend" for the sender and "FrameExpected" for
the receiver. Before the main loop of the protocol is entered, these variables
are initialized to a common predefined state. Upon reception of an acknowledge
ment or message, these variables are incremented. Thus, these variables are set
to the sequence number expected with the next acknowledgement or message.

Furthermore, when a new frame is transmitted by the sender an internal timer is
started. The timer interval is set to take into account propagation time to
and from the receiver and worst case handling time by the receiver.

In response to a transmitted frame there are three possible results: a valid
acknowledgement is received, an invalid or damaged acknowledgement is received,
or the timer expires. In the latter two cases, the response of the sender is
the same; simply send the buffer contents again without changing the sequence
number. For the former case, the sequence number is modified and the buffer is
written with new contents from the host computer. If this timer expires before
an acknowledgement is received for it, the message is presumed lost and is
transmitted again. When a valid frame arrives at the receiver, the sequence
number is checked against the expected value and, if correct, the message is
passed to the host CPU. If the arriving frame number or sequence number is
incorrect the message is discarded and no acknowledgement is generated. This
protocol is modeled as an FSM in figure 5.3-5.

Both the high-level language protocol implementation and the FSM are global in
nature and, in this respect, model the sender and receiver as well as the
physical channel. The channel can have four states: empty, sending a zero
sequence number frame, sending a one-sequence number frame, and returning the
acknowledgement. The receiver and sender can each have two states, sending or
receiving frame zero and sending or receiving frame one. In order to completely
model this protocol it would be necessary to show all 16 possible states. In
the figure, only 10 states are shown for simplicity since these are the normally
anticipated states.

One important consideration for any protocol is the initial state. All members
connected to the channel should be initialized in an orderly manner to a known
and predetermined state to ensure the protocol starts correctly. From this
state all other defined states should be reachable based on the occurrence of
a certain event or combination of events in a specific sequence.

126

E

B D

0 7

A

4 2

F

0 8

J I

FIGURE 5. 3-5. STATE DIAGRAM FOR THE POSITIV:~ ACKNOWLEDGEMENT/
RETRANSMISSION PROTOCOL (Tanenbawn 1981)

127

The initial state for the FSM of figure 5.3-5 is given as (XYZ) = (000). X is
1 or 0 corresponding to the sender transmitting a one or zero frame; Y is 1 or
0 corresponding to the receiver accepting a one or zero frame; and Z, the state
of the channel, is 1, 0, A, or empty (-) corresponding to a one frame, a zero
frame, an acknowledge frame, or an empty channel.

From the initial state the normal sequence of transitions is 1, 2, 3, and 4, as
long as the protocol experiences no errors. Errors identified in the transition
table are "frame lost" and "timeout." When the sender transmits a frame and it
is lost in the channel, the recovery process is simply to send the lost frame
again in response to the timeout condition. This involves two states since only
the sender is aware of this condition. However, if the acknowledgement from the
receiver is lost in the channel, the protocol is more complex. Both the
receiver and transmitter are now involved in the recovery process. The sender
will time out, as before, but the receiver has already accepted the message and
passed it on to the CPU. Hence from state (O,l,A) the transitions 0, 7, and 5
are necessary to recover from this type of error. Note that the difference
between transitions 5 and 1 is that in 5 there is no message passed to the host
CPU since it has already occurred in transition 1 (Tanenbaum 1981).

State transitions may also be represented by decision tables. The Positive
Acknowledgement/Retransmission Protocol of figure 5. 3-4 is represented by a
decision table in table 5.3-2 based on the state machine representation of
figure 5.3-5. The present states are given in the left column, the transition
conditions are given across the top, and the next state and output are given in
the corresponding table position. This table depicts a fairly simple protocol
which is modeled globally with some simplifications made to the table for
reducing the total number of states represented. Not all of the 40 states shown
are reachable. For instance, if the FSM is in state J the action of a "0" frame
being accepted does not occur under normal circumstances. It is not a specified
action and its occurrence would be an error condition.

Table 5.3-2 shows that it is possible to start at any state, such as state A,
and move through the table to any other state, given the proper input condition.
For complex protocols with a correspondingly high number of states, representa
tion using decision tables becomes quite cumbersome.

128

TABLE 5.3-2. DECISION TABLE FOR THE POSITIVE ACKNOWLEDGEMENT/
RESPONSE PROTOCOL

Transition Condition:;

Present "ACK" "0" "1"
State Frame Lost Frame Accepted Frame Aceepted Frame Accepted

Next Output Next Output Next Output Next Output
State Action State Action State Action State Action

A B - A - c (R)A A -

B A (S)O B - B - B -

c D - F (S)l c - c -

D E (S)O D - D - D -

E D - E - c (R)A E -

F G - F - F - H (R)A

G F (S)l G - G - G -

H I - A (S)O H - H -

I J (S)l I - I - I -

J I - J - J - H (R)A

(S) = Sender Runs (R) - Receiver Runs - = No Action

5.3.3.2 Petri Nets

Petri nets use four basic elements to represent a protocol: places, transition
bars, arcs, and tokens. Places represent states in which the protocol may exist
at any given moment. Directed arcs connect transitions to the places and the
places to the transitions. The transition bars are t:ransitions which may have
zero or more input and output arcs. Input places of a transition are those
which originate at a place and arrive at the transition. Output places of a
transition are those which originate at a transition and arrive at the place.
A token is indicated by a dot inside a place. (This token is not to be confused
with the token in a token passing network architecture.) The following rules
are given by Danthine (1977) for the operation of a transition:

• A transition is said to be enabled or fireable if each of its input places
contains at least one token.

129

The firing of an enabled transition consists of removing one token from
each of its input places and adding one token to each of its output places.

• The firing of an enabled transition may not occur instantaneously. Firing
may be considered as depending on an outside authority.

Representation of the Petri net is often done in an algebraic form resembling
a grammar. Each transition contributes a rule to the grammar (Tanenbaum 1981).
If a defined state of a Petri net consists of places A, C, and G, which contain
tokens while the other places are empty, this state is represented as ACG. If
a transition causes the tokens to move to new places such as A, D, and F,· then
CG ~ DF represents this action and is a rule for this Petri net. Since the
place A is common to both states, it is eliminated from both sides of the rule.

A simple Petri net is shown in figure 5.3-6, with four places, four transitions,
one token, and directed arcs between the places and transition bars. The token
that initially resides at place A causes transition 1 to fire. When this
happens the token is removed from A and put at B. This sequence continues
through B, C, D, and finally back to A again. There is no starting point or
terminating point in this model; it simply continues forever in a loop.

A B
1

...

....

3
D C

FIGURE 5.3-6. PETRI NET WITH FOUR STATES AND FOUR TRANSITION BARS

An example of a transition with more than one input place and more than one
output place is given in figure 5.3-7.

130

... c
A I

D

B

E
Input Places

Output Places

BEFORE FIRING

A I c

D

B

E
Input Places

AFTER FIRING Output Places

FIGURE 5.3-7. PETRI NET FIRING PRINCIPLE

131

Note that there may be multiple tokens in one place. When the transition fires,
one token is removed from each input arc and one token is placed in each output
arc. Notice that in place A there is a token left over since only one is
removed when transition bar 1 fires.

Petri nets may be used to model protocols in the same way that state machines
are used. However, Petri nets have broader application in some cases. Certain
resources, such as a receiver with multiple buffers, are better represented by
Petri nets than state machines. Each buffer allocation can be handled by a
separate set of tokens being added to the net. Events which occur in an
arbitrary order are also easily represented by the Petri net. The Petri net
represented in figure 5.3-8 is an example of a net that would be difficult to
represent by a state machine since any transition may fire at any time. This
Petri net, which contains 16 labeled places, actually represents 256 individual
states.

4 x 4 x 4 x 4 = 256 states

in 4 x 4 Matrix

FIGURE 5.3-8. A PETRI NET DIFFICULT TO REPRESENT BY A STATE MACHINE

An example of a Petri net model of a protocol will now be examined. The state
machine for the Positive Acknowledgement/Retransmission Protocol of figure 5.3-4
was given in figure 5.3-5. Figure 5.3-9 models this protocol as a Petri net.
These state machine and Petri net figures model the global state, which consists
of the actions of the sender, receiver, and channel. These actions are modeled
separately in the Petri net, as opposed to the composite states of the FSM.

132

EmitO

Wait
for
AckO

Emit 1

Wait
for
Ack 1

C: Seq 0 on the line

D: Ack on the line

E: Seq 1 on the line

Expect 1

Process 1

ExpectO

Sender's state Channel Receiver's state

FIGURE 5.3-9. PETRI NET FOR THE POSITIVE ACKNOWLEDGEMENT/
RETRANSMISSION PROTOCOL (Tanenbawn 1981)

133

The normal states of the receiver are "Expect a Zero Frame" and "Expect a One
Frame." Correspondingly, the states of the sender are "Wait for ACK 0" and
"Wait for ACK 1." Actions of the sender are in the transitions "Emit 0" and
"Emit 1." Note that for this Petri net to function properly the tokens must be
conserved. Sender timeouts and receiver rejections must replace the token from
the place it was lost to conserve the present state.

If the initial state of the protocol is ACG, then the normal sequence is as
shown in table 5.3-3.

State

ACG
ADF
BEF
BDG
ACG

TABLE 5.3-3. NORMAL PROTOCOL STATES FOR THE POSITIVE
ACKNOWLEDGEMENT/RETRANSMISSION PROTOCOL

Sender Channel Receiver Next Transition

Wait for Ack 0 0 in Channel Expect 0 10
Wait for Ack 0 Ack in Channel Expect 1 3
Wait for Ack 1 1 in Channel Expect 1 11
Wait for Ack 1 Ack in Channel Expect 0 1
Wait for Ack 0 0 in Channel Expect 0 10

If the initial state of the protocol is ACG and the sequence-zero message in the
channel is lost, then the sequence is as shown in table 5.3-4.

TABLE 5.3-4. PROTOCOL STATES WITH A LOST SEQUENCE-ZERO MESSAGE

State Sender Channel Receiver Next Transition

ACG Wait for Ack 0 0 in Channel Expect 0 5
AG Wait for Ack 0 Channel empty Expect 0 2
ACG Wait for Ack 0 0 in Channel Expect 0 10

Only one state is necessary for recovery since the receiver did not receive and
process the message which was lost in the channel. For the case of the
acknowledgement being lost in the channel, the recovery takes two states since
the sender does not know that the receiver has already processed the message it
must send again. Also, the receiver must know that this particular message has
been passed to the host processor and to discard it. This sequence is as shown
in table 5.3-5.

134

TABLE 5.3-5. PROTOCOL STATES WITH A LOST ,\CKNOWLEDGEMENT

State Sender Channel Receiver Next Transition

ADF Wait for Ack 0 Ack in Channel Expect. 1 6
AF Wait for Ack 0 Channel empty Expect. 1 2
ACF Wait for Ack 0 0 in Channel Expect 1 8
ADF Wait for Ack 0 Ack in Channel Expect 1 3

If all possible states of the Petri net and their associated transitions were
drawn as a single graph, the resulting graph for 1:he Positive Acknowledge
ment/Retransmission Protocol would be similar to figure 5. 3-10. This particular
representation of the Petri net is referred to as a t:oken machine.

5.3.3.3 Other Methods of Protocol Representation

FSMs and Petri nets are common methods for protocol n~presentation, but not the
only ones. High-level programming languages and grammars are used to model
protocols and have the advantage of being easily understood since they appear
more like natural language. Advantages of using a high-level language include
ease of representing counters, data, and variables. Complex control structures,
on the other hand, are difficult to represent and ur.derstand when represented
by a high-level language.

The use of a high-level programming language to model a protocol by its very
nature comes close to an actual implementation of the protocol. Also, the
unique characteristics of the programming language, which may be nonessential
to the protocol model, will be obvious in the implementation.

5.3.4 Protocol Verification Methods

With a shift from unidirectional to bidirectional data buses, the access
protocol assumes an added degree of complexity. As complexity increases, so
should the concerns that relate to protocol verification. Verification involves
demonstrating that the interactions of distributed protocol modules satisfy the
service specification of the protocol (Sunshine 1979). A protocol may logically
meet all the requirements of the specification, but this does not guarantee that
a particular implementation is correct.

Also a particular protocol of layer, n, may meet the requirements but its
correct operation is based on the service provided to it by the n-1 layer. For
example, if the Network Layer is not operating correctly, the cause may be in
the physical or Data Link Layer which the Network Layer relies on.

135

5

2

10

6

1 8

7

4

6

9

FIGURE 5.3-10. TOKEN MACHINE FOR THE POSITIVE ACKNOWLEDGEMENT/
RETRANSMISSION PROTOCOL

136

Certain general properties of any protocol may be checked. Areas which should
be checked are as follows (Merlin 1979):

• Deadlock Freeness

Liveness

• Tempo-Blocking Freeness

• Starvation Freeness

Recovery from Failures

• Self Synchronization

Correct Execution of the Purpose of the Protocol

Deadlock Freeness means that the protocol will not terminate. There should
exist no states in the protocol design or implementation which are terminal.
Liveness shows that from a given reachable state, any other state can be
reached. Tempo-Blocking Freeness simply checks that there is no infinite
looping. Starvation Freeness means that no process will forever be prevented
from acquiring an available resource. Recovery from Failures states that when
a failure occurs, the protocol operation will return to the normal execution
within a finite number of states. Self Synchroniz3.tion means that from any
abnormal state the protocol will recover within a finite number of states.
Correct Execution of the Purpose of the Protocol mear.s that a protocol is doing
what it was designed to do.

5.3.4.1 Global State Generation

These are the particular properties that are checked for a protocol, but the
method used to apply these checks varies. In a pro1:ocol modeled by an FSM or
a Petri net, one of the more common methods of verification is called global
state generation. This method is often implementE!d using a token machine.
Figure 5.3-10 is an example of global state generat:~on using a token machine.
Global state generation is implemented by starting uith a given initial state
and identifying all possible transitions from that state to another state. Each
of the new states is examined until no new transitions are identified. Some
transitions may lead back to a state already eneountered. When this is
complete, all possible outcomes of the protocol are known and observations may
be made concerning the properties listed above.

There are only four normal states for this protocol ACG, ADF, BEF, and BDG.
States used for error recovery in the case of a loHt acknowledgement or data
frame are AG, AF, ACF, BF, BG, and BEG. From figure 5.1-9 it can be seen that
the protocol will not terminate in any state and, therefore, exhibits the
Deadlock Freeness quality. It is also easily seen that from a given reachable
state, any other state can be reached, verifying the Liveness property. The
Tempo-Blocking Freeness property is evident since all looping involves proper
execution of the protocol or error recovery. It can be verified by inspection
that Recovery from Failures occurs after executing a maximum of two states. If

137

the receiver is viewed as a resource from the view point of the sender then the
property of Starvation Freeness is readily apparent.

Only transient errors will temporarily impede the progress of the protocol. Due
to the simplicity of the protocol, it is also easy to see that it satisfies the
property of Correct Execution of the Purpose of the Protocol. As protocols
increase in complexity it becomes more difficult to prove that they are doing
what they were designed to do. The property of Self Synchronization cannot be
shown by this simple model.

The Petri net of figure 5.3-9 can be represented in algebraic form. Table 5.3-6
contains the complete set of rules which can be deduced from the figure. Note
that when algebraic rules are applied, the common factors are eliminated. A
transition from state ACG to ADG is not represented as ACG ~ ADF, but as CG ~
DF since place A is common. In addition, the loss of a token, as in transition
5 from state ACG to AG, is shown as C ~ 1 and its corresponding introduction in
transition 2 is given as 1 ~ C.

TABLE 5.3-6. ALGEBRAIC REPRESENTATION OF A PETRI NET

Normal Operational Rules

Action Rule Number Description

CG ~ DF 10 Process Sequence 0 message
AD ~ BE 3 Emit Sequence 1 message
EF ~ DG 11 Process Sequence 1 message
BD ~ AC 1 Emit Sequence 0 message

Error Recovery Rules

Action Rule Number Description

c ~ 1 5 Token lost at C
1 ~ c 2 Token replaced at c
D ~ 1 6 Loss of Ack
c ~ D 8 Rejection of duplicate Sequence 0
E ~ 1 7 Token lost at E
1 ~ E 4 Token replaced at E
E ~ D 9 Rejection of duplicate Sequence 1

These rules are the direct consequence of the state transitions of the complete
token machine. Other rules may be deduced from the sequence of state transi
tions. For example, if transition bar 6 fires, there are only two allowable
sequences for correct operation. These are 6, 2, 8 or 6, 4, 9. Also,
transition bar 2 may fire only after transition bar 5 or 6. Any other sequence
would indicate an error condition and failure of the protocol.

138

Time constraints may also be placed upon the protoco:. and modeled by the Petri
net with some variations. Notice what happens if 1:he sender timeout is too
short, causing transition bar 2 to fire prematurely. Figure 5.3-11 shows the
new undefined states that result due to this problem.

FIGURE 5.3-11. PROTOCOL FAILURE DUE TO PREMATURE SENDER TIMEOUT

A faulty implementation of a protocol, such as too short a value for the sender
timeout, leads to undefined states, violation of the protocol rules, and
eventual failure of the protocol.

This method of global state generation has a limitation. It may only be used
on protocols that can be represented with a finiee number of states. An
advantage of this technique is that it may be easil:r mechanized for automatic
testing of certain properties.

5.3.4.2 Assertion Provin&

Assertion proving is another technique for verification. This is applied to the
protocol and its description as though they were para.llel programs. Assertions
are made about certain variables based on the description. If the protocol and
description compare at predetermined points, then the proof holds. The
assertion proving method is commonly used with protocols that have many states.
Assertion proving requires special considerations for implementation.
Therefore, it does not lend itself to automation as the method of global state
generation does.

139

5.3.4.3 Other Verification Methods

Two other methods in use are "induction over the topology" and "adherence to
sufficient conditions." In the first method, the holding of a property or
occurrence of an event is proven by showing that certain conditions will
propagate throughout the topology (Merlin 1979). If a certain property holds
for a system with x entities, then it will also hold for a system of x+l
entities. The latter method uses constructive design rules that automatically
result in correct protocols. For instance, for every send transition imple
mented by the designer, the design rules specify the corresponding receive
transition of the peer entity (Bochmann and Sunshine 1980). At each step in the
design, the protocol is checked to ensure that it satisfies the properties it
specifies.

There is no one method that can be applied easily to all protocols. Depending
on the complexity and the topology, one method may be preferred over another.
In cases where the state explosion becomes a problem, such as for complex
protocols, it is sometimes necessary to make simplifications of the model for
the purpose of verification.

5.3.5 Application To Avionic Data Buses

Protocols may be implemented in hardware as well as in software. Most of the
hardware used in avionic data buses, such as the ARINC 629 bus, ASCB, and MIL
STD-1553 bus, has been implemented in a single high-density IC or a combination
of several high-density !Cs. When this is done, the protocol is not accessible
to examination and scrutiny as is a software-implemented protocol. As avionic
systems using data buses increase in complexity, so do the protocols and the bus
hardware used to implement the protocol.

A protocol may be implemented in any of the seven layers of the OS! Basic
Reference Model, from the Physical Layer to the Application Layer. The
complexity of a protocol is not the same from one level to the next. At the
Data Link Layer a protocol may be straightforward, but at the Network Layer
become highly complex and, therefore, difficult to model.

As seen in the ARINC 429 bus standard, a more complex bit-oriented protocol is
added on top of the previously defined physical and Data Link Layers. This can
be done with any data bus, whether it is unidirectional or bidirectional. Since
protocols may be layered in this manner, some data bus standards, such as ARINC
Specifications 429-12 and 629, have defined protocol transactions which can be
used at the higher layers.

Although a data bus may be implemented strictly in hardware, it should not be
treated any differently in the areas of specification and analysis than a
software-implemented protocol. Hardware-implemented protocols should be
subjected to rigorous analysis, like that specified in RTCA/D0-178 for avionic
software.

140

5.3.5.1 ARINC 429 Bus

The ARINC 429 DITS is a unidirectional broadcast type bus with only one
transmitter. Access to the bus by the transmitter is not a matter of conten
tion. Another factor contributing to the simplicity of this protocol is that
it was originally designed to handle "open loop" data transmission. In this
mode there is no required response from the receiver when it accepts a
transmission from the sender. The system simply depends on the integrity of the
shielded twisted pair of transmission lines, a data ir.tegrity test using parity,
and data reasonableness checks by the host processor.

With an increasing need for more functions to be handled by the data bus, a new
protocol was developed and has been incorporated into the standard. This
protocol is bit-oriented, as described in section 2.5 of ARINC Specification
429-12, and is used along with the previously defined character-oriented
protocol. It is intended to be used for the transfer of data files from one bus
member to another using techniques that are commor. to computer networks to
ensure safe and orderly delivery of data files. Four layers of the OSI Basic
Reference Model are described for use with the bit-oriented protocol:
Physical, Data Link, Network, and Transport Layer·s. Labels, timing, and
protocol transactions are described as well. The protocol transactions specify
an orderly and controlled transfer making use of closed-loop control. Commands
such as RTS and CTS are used along with timeouts, ·;.rhich are required on all
transactions.

The use of a data bus in this manner can be modeled with a Petri net and tested
for all the properties a protocol should have, such as Deadlock Freeness,
Liveness, Recovery From Failures, etc. It is beyond the scope of this report
to attempt to model this protocol, but such analysis should be done by a
developer for verification purposes.

5.3.5.2 ARINC 629 Bus

The ARINC 629 bus is a bidirectional bus with multiple transmitters and
receivers. Access to the bus by all transmitters mu.3t conform to a thoroughly
tested integration standard.

At the lower levels, the access protocol is implemented in hardware. The
protocol at this level may be analyzed by an FSl< or a Petri net method.
Included in Attachment 7 of the ARINC 629 bus specification is a state diagram
of the overall access protocol. The purpose is to give an overview of how a
terminal accesses the bus for a particular operation8l mode. Some of the other
functions of the hardware that could be modeled for verification are self
monitoring, interaction with the host CPU, the data bus, various timers, and
error checking and handling. If the complete acti.ons of the hardware were
modeled, the state diagram would be quite complex.

The state diagram of the CP is included for reference in figure 5.3-12. The
diagram shows the general actions of the access pr·:>tocol based on the three
defined levels of access: Ll, L2, and L3. The conditions for transition to the
next state are also shown. In the ARINC 629 bus specification, each of the

141

three levels of access are expanded to one complete page in Attachments 7c, 7d,
and 7e, respectively.

Figure 5.3-12 shows, in a general manner, how a terminal acquires the bus for
a transmission when using the CP. The three levels of access and the various
timers are explained in section 5.1 of this report.

As with the ARINC 429 DITS, this standard also
the layers of the OSI Basic Reference Model.
as a broadcast bus, but it is also intended to
as stated in ARINC Specification 629, Part 1,

defines the data bus in terms of
Not only is it designed for use
be used as a closed-loop system,
section 6.3.1 (1990):

"Directed messages may or may not be used to direct information
between two systems so that handshaking protocols may be established
for message checking capability."

In this closed-loop mode it is necessary to define a complete protocol which
utilizes the services provided by the lower protocol layers (the ARINC 629 data
bus). This protocol should define parameters that may be used for directed data
transfer such as an acknowledgement response, some form of flow control, the
data transfer and data structures, and timeout conditions. When all of the
necessary parameters are specified, along with the rules governing their
interactions, it is possible to subject the protocol to analysis as previously
defined in section 5.3.

5.3.5.3 ASCB and MIL-STD-1553 Bus

A data bus that uses a form of central control can be examined using the
analysis techniques presented in this section. When a command is issued on the
bus, a response is anticipated from the addressed terminal. Whether the
response occurs or not, the timeout conditions, the number of retries, and the
error handling can all be modeled for the interaction with the terminal. A
global network model can be created and checked against the specification for
correct operation. When redundant central controllers are used, there needs to
be a clear definition of the interaction between them for detecting and handling
controller error conditions. Modeling can provide this clarity.

The ASCB is implemented as an open-ended protocol where the response from the
terminals is not checked by the BC. Therefore, no end-to-end interaction may
be modeled for the ASCB specification.

The MIL-STD-1553 is a candidate for analysis by use of formal techniques. The
interactions can be formally examined for any problems using the guidelines
previously set forth in section 5.3.

142

INITIALIZATION

.---------------~.. Tl Started, PSG Reset -,

WAIT

PSG Elapsed --------------------· ---------·--------------,.
BA Elapsed WAIT FOR BA OR Tl Elapsed

,.
OTHER TERMINAL

ACCESS

ASGElapsed

TIELAPSED

E;T TERMINAL
ACCESS

ASGE'apsed

Ll

--------------------· ---------·--------------1,
AT Elapsed

L2ACCESS
L2

ASGElapsed --------------------. ~---------·--------------
AT Elapsed

AT Elapsed or No
Further l3 Transmission

1r

L3BACKLOG
ACCESS

ASGElapsed

1r '
L3NEW&

REPEAT ACCESS

ASGElapsed

FIGURE 5.3-12. ACCESS PROTOCOL OVERVIEW FOR ARINC 629 BUS
(ARINC Specification 629, Part 1, Attachment 7b, 1990)

143

L3

------- ____________ " _______________ _

5.3.6 Summary

A data bus specification should address integration problems by defining the
hardware as completely as possible. A data bus specification addressing a
software protocol should also be complete to avoid future integration problems.
Questions need to be asked concerning these protocol specifications and
implementations, such as the following:

Is the protocol implementation correct according to the specification?

Is the protocol specification complete?

Do all systems have the same timeout values for every timeout condition?

• Do all systems have the same retry value?

How can the protocol parameters be tested under every possible condition?

Have all the properties of the protocol been checked?

The fundamental question that needs to be addressed on this topic is "Has the
protocol been completely specified and verified by the use of formal methods?"
When formal methods are used, the implementor may have more confidence in the
protocol.

5.4 Bus Integration Standards. Guidelines, and Techniques

A typical avionics system consists of several subsystem boxes that are connected
in a unique arrangement to input sensors, output devices, and each other to
produce the functionality required for a particular aircraft. The intercom
munication is provided by one or more digital data buses, as well as some analog
data buses and point-to-point wiring.

Each subsystem is typically designed independently of the others. They may even
come from different manufacturers. This section describes the standards,
guidelines, and techniques used to ensure that data buses reliably integrate
the subsystems that they interconnect. This section also addresses how these
integration aids relate to the certification of aircraft. For additional
information, integration aids for buses that are used primarily in military
applications are included. A list of some of these documents is given in table
5.4-1. For more detail, refer to the bibliography.

144

TABLE 5.4-1. INTEGRATION STANDARDS AND GUIDELINES, BY BUS
(PART 1 OF 2)

Document Name

ARINC 429 Bus
ARINC Specification 429-12
ARINC 429 Supplement
ARINC 429 Receiver/Transmitter
ARINC 429 Bus Interface Circuit
ARINC 429 Bus Interface Line Driver Circuit
Application Note No. 400

ARINC 629 Bus
ARINC 629 Part 1, Technical Description
ARINC 629 Part 1, Supplement 1
ARINC 629 Part 1, Supplement 2
ARINC 629 Part 2, Applications Guide
ARINC 629 Part 3, Data Standards
ARINC 629 Part 4, Test Plan
ARINC 629 User's Manual
ARINC 629 Terminal Device
ARINC 629 Communication IC
ARINC 629 Serial Interface Module
ARINC 629 Current Mode Coupler
ARINC 629 Serial Interface Module
ARINC 629 Current Mode Coupler

GAMA CSDB
GAMA CSDB
EIA RS-422-A

GAMA ASCB
GAMA ASCB
EIA RS-422-A
WD193X Synchronous Data Link Controller
ASCB Data Link Coupler

MIL-STD-1553 Bus
MIL-STD-1553-B Standard
MIL-HDBK-1553-A Handbook
SAE AE-12 Systems Integration Handbook
SAE AS4112 RT Production Test Plan
SAE AS4113 BC Validation Test Plan
SAE AS4114 BC Production Test Plan
SAE AS4115 System Test Plan
Multiplex Applications Handbook
Multiplex Applications Handbook Addendum
MIL-STD-1553 Designer's Guide

145

ARINC
GAMA

Publisher

W·~stern Digital
Harris Semiconductor
Harris Semiconductor
Harris Semiconductor

AUNC
AUNC Draft
AUNC Draft
AUNC Draft
AUNC Draft
AUNC Draft
B:;AC
LSI Logic
National Semiconductor
s:;I Technology
~:;I Technology
A~P/Dallas Semiconductor
A~P/Dallas Semiconductor

G!\MA
EIA

G!\MA
EIA
Western Digital
SCI Technology

Military Standard
Military Standard
SA.E
SA.E
SA.E
SA.E
SA.E
AFSC
AFSC
Data Devices Corporation

TABLE 5.4-1. INTEGRATION STANDARDS AND GUIDELINES, BY BUS
(PART 2 OF 2)

Document Name Publisher

SAE LTPB
AS4074.1 Standard SAE
AIR 4288 Handbook SAE Draft
AS4290 Test and Validation Plan SAE Draft

SAE HSRB
AS4074.2 Standard SAE
AIR 4289 Handbook SAE Draft
AIR 4291 Test and Validation Plan SAE Draft

5.4.1 Levels of Inte~ration

There are several levels at which reliable integration of subsystems must be
ensured. The lowest level is the physical integration of the hardware.
Physical integration includes mechanical and electrical aspects. For the
subsystem hardware to be properly integrated, the pieces must be mechanically
compatible and the bus interface of each subsystem must obey the bus standards
for voltage levels, signal encoding, signal timing, and other electrical
characteristics. These specifications must not be exceeded for any configura
tion that the system might take on, and for any environment in which the system
might be placed. Integration at this level is essential for bus messages to be
generated and received.

The logical integration of the hardware is the next level of integration. The
hardware protocol defines the sequence of bits that constitutes the smallest
unit of data that can be transferred on the bus as a legal message. Bus
messages form the building blocks for all higher level transfers of information.
The subsystems must obey the bus standard for the timing, sequence, and polarity
of each bit in a bus message. This ensures that all messages are encoded and
decoded into the proper sequence of synchronization bits, start-of-message bits,
control bits, address bits, data bits, status bits, error detection bits, error
correction bits, and/or end-of-message bits. The patterns of many of these
groups of bits must obey certain rules. If there are exceptions, the hardware
produces a bus message error signal. Integration at this level also is
essential for bus messages to be generated and received.

The logical integration of the software is the next level of integration.
Although the hardware protocol usually permits all possible permutations of
control, address, data, and status bits, a particular system usually supports
only a few of the possibilities. The software protocol determines the legal
field formats and message sequences. The subsystems must obey the software
protocol standards to be integrated into a reliable system. Otherwise, legal
bus messages might not reach their proper destination or might not be properly
interpreted.

146

The final level of integration occurs at the functional level. The function
that each subsystem is to perform in response to a received message must be
consistent with the intent of the subsystem geneJ:ating the message. The
application programs must all use the same data definitions. At this level, the
content of the messages becomes important. The subsystems must obey the system
standard for legal communications at this level to be integrated into a reliable
system.

The first three levels of integration are clearly bus-dependent integrations.
It would appear that functional integration is not a bus integration issue. It
is primarily the concern of the system specification, rather than a bus
standard. However, since every LRU which communicates on a bus must use the
same data definitions, the job of standardizing the definitions has been
relegated, in many cases, to the bus standard. In fact, not only do the bus
standards define the acceptable data words, but many of the protocols accept no
other data types. Many of the buses do not transparer,tly transfer whatever data
the LRUs wish to transmit.

5.4.2 The Ideal Bus Integration Standard

Certainly a bus integration standard requires that, a1: a minimum, the bus medium
and the LRUs satisfy a bus standard which specifies it:ems such as the following:

Bus medium

Bus connectors

Electrical characteristics that all signals on the bus must satisfy

Logical characteristics that elementary message.; on the bus must satisfy

Electrical characteristics that each LRU must sa.tisfy

Logical charaGteristics that each LRU must sati.;fy

Environmental conditions under which the equipm,:lnt must operate

Electromagnetic requirements that all of the equipment must meet

LRU test procedure

But this is not sufficient because problems that are unique to a particular
system configuration are uncontrolled by such a bus standard. For instance, the
bus standards do not specify the interactions of multiple LRUs in a system.
That is left for the system specification. A bus in~egration standard that is
designed to control the integration of LRUs must also specify the following
integration specific items:

Physical layout of the bus

Control, address, and status words that are allowed on the bus

147

Interpretation of the allowed control, address, and status words

Data words that are allowed on the bus

Interpretation of the allowed data words

Integration test procedure

Where possible, control of these items should be accomplished by precise
specification. Where greater flexibility is required, the standard should use
formal guidelines. These must consist of precise definitions with formulas,
tables, rules, or flowcharts that constrain the system designer to produce
working configurations.

None of the avionic data bus standards qualify as bus integration standards by
these criteria. Some of these integration-specific topics are either not
addressed at all or are only discussed, as opposed to specified. Furthermore,
no generic bus integration standard was discovered by these researchers for
avionic buses.

5.4.3 Bus Integration Standards and Guidelines

The standards that address system integration by data buses consist of the data
bus standards and the data bus test standards. These standards regulate the
integration of subsystems to varying degrees. Generally, they do not address
the integration-specific topics directly.

All of the data bus standards specify, to some extent, the physical makeup of
the bus conductors. They generally do not specify the physical layout of the
system. That is unique to each system. Nevertheless, some of the bus standards
at least address the effects that the system layout has on the electrical
characteristics of the bus. All of the bus standards specify the electrical and
logical hardware requirements for each LRU attached to the bus. They do not all
address the electrical and logical characteristics of multiple LRUs interacting
on the bus. All of the bus standards also address the software protocol that
each LRU must obey. Howeve~, they cannot specify the content of the control,
address, data, and status words for a particular system. These are unique to
each LRU and system.

The following subparagraphs delineate the strengths and weaknesses of each set
of bus standards as they apply to subsystem integration. Guidelines are also
discussed, whether they are part of the standard or not.

5.4.3.1 ARINC 429 Bus

ARINC Specification 429, "Mark 33 DITS," defines a linear broadcast bus which
connects one transmitting LRU to multiple (usually) receiving LRUs. Any
responses to the output of the transmitting LRU that the receiving LRUs are to
generate are passed back on other ARINC 429 buses. As a result, integration
problems are few, but they do exist.

148

.J

..

The physical integration of ARINC 500-Series LRUs is partially addressed in
ARINC Specification 600. All ARINC 500-series LRUs must fit into slots of a
specific size in standardized equipment shelves and 1:acks. The connector to be
used for the connection of LRUs to the data bus is also specified. The
complete list of environmental requirements is given In part, this specifica
tion sets forth the following:

"The definition, guidance, and appraisal for de~:ign and acceptance of
the mechanical, electrical, and environmental interfaces between LRUs
and the racks or cabinets in which they are installed." (ARINC
Specification 600-7, 1987).

The bus medium and the electrical characteristics of the network are specified
in Attachment 4 of ARINC Specification 429-12. However, the physical layout of
the bus for a particular system is not addressed at all, either in ARINC
Specification 600 or ARINC Specification 429-12. That is left to the system
designer. Similarly, although the DITS specificati•m requires each LRU to be
tolerant of bus faults and to isolate the bus from it:s own faults, no standards
or guidelines are given for achieving this.

Each LRU in a Mark 33 DITS must satisfy the electrical signal levels and bit
timing that are specified in ARINC Specification 429-12. The degradation
allowed anywhere on a particular system is also specified (ARINC Specification
429-12, Attachments 3, 7, and 8, 1990).

The logical integration of the hardware is controlled by the specification that
all messages are to be 32-bit-word messages, separat•~d by a m~n~mum gap of four
bit-times. How each receiving LRU is to respond to partial messages is left to
the systems integrator.

The use of an interface IC can increase the standardization and compatibility
of LRUs connected by ARINC 429 buses. However, the circuit, control registers,
and software must be set up for ARINC 429 bus operat.ion.

The Western Digital publication, "WD1993 ARINC 429 Receiver/Transmitter and
Multi-Character Receiver/Transmitter" (1983), is a iata sheet for their ARINC
429 Receiver/Transmitter. WD1993 is a general purpose IC, capable of many
different configurations. It must be controlled b~r a microprocessor via two
control registers and a status register. Using this IC would standardize some
of the details, but it adds IC-specific details that: are not standardized.

The Harris "CMOS ARINC Bus Interface Circuit" (1989) data sheet tells how the
HS-3282 IC implements the ARINC 429 bus protocol. It uses a single control
register to support options that are part of the ARINC bus standard. The Harris
"ARINC 429 Bus Interface Line Driver Circuit" data sheet explains how to use the
ARINC 429 line driver with their protocol chip. This chip provides the output
impedance, voltages, and rise/fall times required by the ARINC 429 bus standard.
The Harris Application Note 400 (Clifton) describes how to interface a
microprocessor to their HS-3282 IC. It includes notes on lightning protection,
an appropriate circuit for hardware control, and a flowchart for the appropriate
software control. Each of these notes fills in details that are not present in

149

the standard. To the extent that designers use these documents, operation of
ARINC 429 bus LRUs would be more consistent.

The software integration is not fully specified. Although the specification is
very thorough in defining the sequence of labels, data bits, sign/status bits,
and/or parity bit that compose each authorized word, not all words are available
in a given system. Few guidelines are given for the design of a particular
system. The tables of data needed to support a system design are provided, but
the system designer must generate the design. An additional parameter, the
Source/Destination Identifier, is defined but uncontrolled. The specification
of this parameter is left to the system designer.

The ARINC 429 bus specification provides much of the data needed for functional
integration. The data standards (ARINC Specification 429-12, Attachments 2 and
9, 1990) give the interpretation of each of the labels, status bits, and data
words. Given that a particular message is broadcast, the specification
completely defines the proper interpretation of the message. However, the
determination of which messages are sent and the sequence of these messages is
unspecified. The "ARINC 429 General Aviation Subset" (GAMA, 1986) is GAMA' s
publication of the information in attachment 9 of the ARINC 429 bus standard.
It includes additional detail and guidance for GA applications.

In the final analysis, the designer of a subsystem within a particular system
must find out which LRU is generating the data that the subsystem needs, on
which bus each datum is transmitted, and at what interval. The designer must
also ensure that the subsystem provides the data required by other LRUs. The
system designer needs to coordinate this information accurately and comprehen
sively. The system design must also control the data latencies that may result
as data are passed from bus to bus as required by various LRUs. All testing is
left to the system designer.

5.4.3.2 Commercial Standard Digital Bus

The CSDB is a linear broadcast bus, like the ARINC 429 bus. Each bus has only
one LRU that is capable of transmitting with (usually) multiple LRUs receiving
the transmission. Thus, the CSDB has few inherent subsystem integration
problems. However, the standard does not address them. The preface to the CSDB
standard clearly states its position concerning systems integration:

"This specification pertains only to the implementation of CSDB as
used in an integrated system. Overall systems design, integration,
and certification remain the responsibility of the systems in
tegrator." (GAMA CSDB, 1986).

Although this appears to be a problem for the reliability of CSDB-integrated
systems, the GA scenario is quite different from the air transport market. The
ARINC standards are written to allow any manufacturer to independently produce
a compatible LRU. In contrast, the GAMA standard states the following in the
preface:

"This specification ... is intended to provide the reader with a basic
understanding of the data bus and its usage." (GAMA CSDB, 1986).

150

The systems integrator for all CSDB installations is the Collins General
Aviation Division of Rockwell International. That which is not published in the
standard is still standardized and controlled because the CSDB is a sole source
item.

The physical integration of LRUs on the CSDB is addressed by the standardization
of the bus medium and connectors. These must conform to the Electronic
Industries Association (EIA) Recommended Standard (RS) -422-A (1978), "Electrical
Characteristics of Balanced Voltage Digital Interface Circuits." The CSDB
standard provides for the integration of up to 10 receivers on a single bus,
which can be up to 50 meters long. No further constr.~ints or guidelines on the
physical layout of the bus are given.

Each LRU on a CSDB must satisfy the electrical signa:.s and bit timing that are
specified in the EIA RS-422-A. The logic sense, signaling rate, risejfall
times, and electrical loads are given in the CSDB standard. However, to ensure
successful integration, the electrical load specification must be applied to a
fully integrated system, even if the initial design does not include a full
complement of receivers. As a result, additional receivers can be integrated
at a later time without upsetting the electrical cha:~acteristics of the bus.

The standard is open to a particular integration problem in this scenario. It
allows the receiver capacitances to be increased by a total of 600 picofarads
for each receiver less than 10. Exercising this option keeps the system
capacitance at its maximum. No further LRUs could be added without possibly
requiring the redesign of every one of the others. The system designer must
also be sure to specify to users the signaling rate of each bus, since two rates
are permissible.

The logical integration of the hardware is controlled by the CSDB standard,
which establishes the bit patterns that initiate a message block and the start
bit, data bits, parity bit, and stop bit pattern that comprises each byte of the
message. The system designer, however, must control 1:he number of bytes in each
message and ensure that all the messages on a particular bus are of the same
length.

The software integration is not fully specified. The standard is very thorough
in defining the authorized messages and in constraining their signaling rate and
update rate. The synchronization message that begitts a new frame of messages
is also specified. However, the determination of whieh messages are sent within
a frame for a particular bus is unspecified. Also, there are no guidelines
given for choosing the message sequence or frame loading. The frame design is
left to the system designer.

In general, the sequencing of the messages does not present an integration
problem since receivers are to recognize messages by the message address, not
by the sequence. However, this standard does not disallow an LRU from depending
on the message sequence for some other purpose. The system designer must be
aware of whether any LRU is depending on the sequence for something other than
message recognition since once the sequence is cho~.en, it is fixed for every
frame.

151

The bus frame loading is more crucial. There are three types of messages that
can occur within a frame: continuous repetition, noncontinuous repetition, and
burst transmissions. The system designer must specify which type of transmis
sion to use for each message and ensure that the worst maximum coincidence of
the three types within one frame does not exhaust the frame time. The tables
of data needed to support this system design are provided, but the system
designer must generate the design.

The CSDB standard provides much of the data needed for functional integration.
The detailed message block definitions give the interpretation of the address,
status byte, and data words for each available message. Given that a particular
message is broadcast, the standard completely defines the proper interpretation
of the message. The standard even provides a system definition, consisting of
a suite of predefined buses which satisfy the integration needs of a typical GA
avionics system.

If this predefined system is applicable, most of the system integration
questions are already answered. But if there is any variation from the
standard, the designer of a subsystem in a CSDB integrated system must inquire
to find out which LRUs are generating the messages that the subsystem needs, on
which bus each message is transmitted, at what bus speed the messages are
transmitted, and the type of transmission. The designer must also ensure that
the subsystem provides the messages required by other LRUs. The system designer
needs to coordinate this information accurately and comprehensively. The system
design must ensure that all the messages on a particular bus are of the same
length. It must also control the data latencies that may result as data are
passed from bus to bus by various LRUs. All testing is left to the system
designer.

There are no additional guidelines published for the CSDB. Whatever problems
are unaddressed by the standard are addressed by Collins during system
integration. Furthermore, Collins has not found the need to formalize their
integration and testing in internal documents since the work is done by CSDB
experienced engineers.

5.4.3.3 ARINC 629 Bus

ARINC Specification 629, "Multi-Transmitter Data Bus, Part 1, Technical
Description," defines a linear bus which connects multiple LRUs, each of which
may either transmit or receive. It is a bidirectional bus. On.such a bus, all
responses to the output of the transmitting LRU that the receiving LRUs are to
generate can be passed on the same bus at a later time. This greatly simplifies
the network of buses. A single bus could provide all the required interconnec
tions. However, since any LRU may need to transmit at any time, asynchronously
from all others, it greatly complicates the message handling on a bus.

The specification must define a protocol which ensures that no transmitters are
tra~smitting simultaneously and that the remaining LRUs are all listening to
each transmission. As a result, there are numerous integration problems.
Possibly because of this potential for more problems, the ARINC 629 bus standard
will be published in four parts, which will provide the additional help of an

152

applications guide and a test plan. Furthermore, a ·~ser' s manual is available
from the BCAC ("ARINC 629 User's Manual," 1990).

The physical integration of ARINC 629 LRUs is partially addressed in ARINC
Specification 600. It specifies the mechanical intE!gration of all ARINC 500-
Series LRUs. ARINC 629 LRUs must meet the same meehanical and environmental
requirements as ARINC 429 LRUs, discussed in section 5.4.3.1. However, ARINC
629 bus connections are specified by the bus specification, rather than by ARINC
Specification 600.

The bus medium and the electrical characteristics of the network are specified
as the physical layer in ARINC Specification 629, Part 1. Specifications are
provided for transmission over a shielded, twisted pair cable with a CMC
connection (ARINC Specification 629, Part 1, Attachme:nts la, li, and lj, 1990).
The physical layout of the bus for a particular system is limited to 120
terminals on a 100-meter bus, with up to 15 meter E:tubs. Additional general
guidelines are given, both to minimize damage to the bus and optimize the
electrical characteristics of the bus. The details are left to the system
designer.

Each terminal on an ARINC 629 bus must satisfy the electrical signal levels and
bit timing that are specified in ARINC Specification 629, Part 1, Attachments
ld, lf, lg, and lh. These levels and timing must be met for the environmental
conditions specified in RTCA/D0-160. Furthermore, irl Part 4, the specification
will supply a test plan for validating terminal, SIM, stub, and coupler
combinations.

The logical integration of the hardware, the data link layer, is controlled by
the specification that the elemental transmission iH a 20-bit-word, comprised
of a sequence of three synchronization bits, 16 da::a bits, and a parity bit
(ARINC Specification 629, Part 1, Attachment 4, 1990). Illegal transmissions
are monitored by the transmitter. If synchronization, modulation, or parity
errors occur, the transmission is halted. If seven consecutive bad transmis
sions occur, the transmitter is permanently inhibited (ARINC Specification 629,
Part 1, Attachment 5, 1990). Receiving terminals are to detect these same
errors, thus recognizing the faulty transmission. Their response is not
specified. Additionally, a transmission is terminated if illegal labels or
Channel IDs are detected or if wordstrings or messages overrun their specified
length. Although it is not specified that they mus1:, receiving terminals can
also detect these errors. How they respond to these partial messages and other
terminal-to-terminal errors is left to the system designer. The use of checksum
and CRC error checking is also left to the system design.

Additional specifications ensure that the hardware does not produce bus
contention. The hardware provides the production and detection of the bus time
delays between transmissions by different terminals (ARINC Specification 629,
Part 1, Attachment 3, 1990). The assignment of the TG for each terminal and the
system SG and TI is left to the system designer. The process to follow when
choosing a consistent set is specified. These can V8.ry from bus to bus, making
a terminal bus-specific. Nevertheless, these parameters are easily reprogrammed
for any LRU.

153

The software integration, addressed in the network and higher layers, is defined
but not fully specified. The various types of words are combined into
wordstrings. Each wordstring follows a predefined format, identified by the
label word at the beginning. Wordstring structure is well defined, but the
actual wordstring definitions are left to the system designer. Once the
wordstrings are defined, they will be incorporated into ARINC Specification 629,
Part 3, but not all wordstrings are available in a given system.

The specification also defines periodic, aperiodic, and CPs, but a particular
bus can obey any one of them. With the periodic protocol, the orderly
sequencing is determined by the bus initialization. How this is done is not
specified. Also, periodic messages need not be sent every bus cycle, but can
be assigned multirating factors that allow them to skip up to 31 cycles. Once
these are assigned, the transmission schedule in the Transmit Personality PROM
(XPP) must be programmed so that each message is scheduled in either the
independent mode or the block mode. In addition, if the receiving LRU wants an
interrupt, the transmitter must produce the interrupt and the required interrupt
vector.

Aperiodic messages can include message priority, which adds further complica
tions to the system coordination. Messages can be sent as either broadcast or
directed messages. Directed messages can be commands, requests for information,
or file transfers, each with or without acknowledgement. The number of retries
must be set and fit in with the rest of the bus load. Bulk data can be
transferred in either a block structure or file structure, depending on the
structure of the data and the required integrity of transfer. These are all
implemented at the discretion of the system designer. Guidelines are given for
the design of a particular system. ARINC Specification 629, Part 2, will
provide an applications guide for system design. The data needed to support a
system design are provided in ARINC Specification 629, Part 1, but the system
designer must generate the design.

After all these system design decisions are finalized, they are encoded into the
XPP, the Receive Personality PROMs (RPPs), and the binary value pins. Any
mistakes in the encoding can cause these high-level protocols to fail. Consider
the replacement of an LRU on a periodic bus with a supposedly plug-compatible
one from another manufacturer. This manufacturer mistakenly programs an illegal
message in the XPP. Since the message is thought to be legal, the RPP is
programmed to recognize the message as legal. Thus, the transmitter will
continue to transmit the undefined message, since its monitoring function finds
the message defined as legal from its RPP. The RPPs in the receiving LRUs,
however, recognize the message as illegal and ignore it, but they cannot remove
the babbling transmitter. The babbling could affect the communications of other
LRUs since the illegal message could cause the LRU to exceed its allotted time.

ARINC Specification 629, Part 3, will provide the data needed for functional
integration into real systems. The data standards will give the definition and
interpretation of each of the authorized wordstrings, data words, parameters,
buses, and terminals. Given that a particular wordstring is broadcast, the
specification will completely define the proper interpretation of the word
string. However, the determination of which wordstrings are sent, their

154

composition, the bus upon which to send them, and the sequence in which to send
them is unspecified.

The use of the System Status Word, Function Status Word (FSW), and Parameter
Validity Word to control data validity is defined. The assigning of functions
to the various levels in the FSW is left to the system designer. This
assignment must be followed by all LRUs on the bus and will certainly not be
standard from bus to bus. The data types are carefully and completely defined,
but when the data are finally put into the subsystem memory they will be misread
if the subsystem uses a different format. The subsystem would need to convert
the data.

Many of the topics and problems not addressed by the standard are made more
clear in comprehensive guides available from BCAC and National Semiconductor.
They both provide a fairly complete description of the bus operation and of each
bus component. The BCAC "ARINC 629 User's Manual" (1990) describes the
protocol; the operation of the transmitter, receiver, and monitor; and the
design of the personality PROMs and the subsystem interface. The National
Semiconductor book, "ARINC 629 Communication Integrated Circuit" (1990), covers
many of these same topics and includes application no1:es. Some of the component
data sheets include helpful design guidelines. The data sheet on the AMP/Dallas
Semiconductor SIM ("Serial Interface Module (SIM) for ARINC 629/DATAC," 1990)
discusses the details of fault management, coupler testing, and receiver
threshold settj.ng. The data sheet for their CMC ("DATAC Current Mode Coupler,"
1991) details the coupler dimensions and the stub and bus connections.

In the final analysis, the designer of a subsystem ~vithin a particular system
must find out which LRU is generating the data that the subsystem needs, on
which bus each datum is transmitted, and at what in1:erval. The designer must
also ensure that the subsystem provides the data required by other LRUs. The
system designer needs to coordinate this information accurately and comprehen
sively. The system design must control assignment:> of the timing gaps, the
protocol to be used, and the data latencies that may result as data are passed
from bus to bus, as required by various LRUs. Doct~entation is available to
assist with most of these decisions, but no structu:~ed methodology is promul
gated. Systems integration testing is not addressed at all.

5.4.3.4 Avionics Standard Communications Bus

The ASCB is a bidirectional linear bus used primarily in GA aircraft. Like the
ARINC 629 bus, each LRU on the bus can transmit or receive data on the same bus.
Thus, it has the same advantage as the ARINC 629 bu::; for reducing the network
complexity. It also has the same increased complexity of transmission control.
Again, the standard must define a protocol which en:mres that no transmitters
are transmitting simultaneously and that the remain:~ng LRUs are all listening
to each transmission. As a result there is the potential for numerous
integration problems. Recognizing this, the preface to the ASCB specification
states its position concerning systems integration:

"This specification pertains only to the implementation of ASCB as
used in an integrated system; overall systems de~:ign; and integration.

155

Certification remains the responsibility of the systems integrator."
(GAMA ASCB, 1987).

Furthermore, the ASCB is controlled like the CSDB. The systems integrator for
all ASCB installations is the Business and Commuter Aviation Systems Division
of Honeywell, Incorporated. That which is not published in the standard is
still standardized and controlled because the ASCB is a sole source item.

The physical integration of LRUs on the ASCB is addressed by the standardization
of the bus medium, by the recommendation of circuits for controllers and user
interfaces, and by a recommended bus configuration. Even the use of a bus
bridge is addressed. However, the bus couplers and connectors are not fully
specified by the standard. Nevertheless, a standard coupler with connectors
does exist, as provided by SCI Technologies. The ASCB standard provides for the
integration of up to 48 users on a single bus, which can be up to 125 feet long
with 18.4 inch stubs. Many further constraints and guidelines on the physical
layout of the bus are given.

The driver and receiver components of each LRU on an ASCB must conform to the
EIA RS-422-A, "Electrical Characteristics of Balanced Voltage Digital Interface
Circuits." The logic sense, signaling rate, rise/fall times, and electrical
loads are given in the ASCB specification. The specification provides
recommended circuits that satisfy the requirements, as well as a complete table
of specifications for custom-built circuits. The test configuration for which
the specifications apply is provided. All components must comply with RTCA/D0-
160 for environmental and RF interference considerations.

The logical integration of the hardware is controlled by the ASCB specification,
which establishes the bit patterns for each of four types of standard messages
that may be transmitted on the bus. For each message, the synchronization bits,
delay bits, start-of-message flag bits, CRC bits, end-of-message flag bits, and
mark bits that start and end a message are specified. This structure is a
variation of the HDLC protocol. Industry standard ICs can be used to implement
it. This does not, however, ensure successful integration at this level, since
many of these chips are more general than the HDLC protocol. They must be
properly configured to produce the desired protocol. This issue is addressed
to some extent in the data sheets for the IC, like the "WD193X Synchronous Data
Link Controller" (1983) data sheet. In addition to the protocol, address and
data fields in each message are defined. The system designer, however, must
control the addresses used, the data used, and the length of each message.

The bus architecture does much to address the integration problems. The
standard configuration requires two buses, controlled by a dedicated controller,
with multiple standby controllers. The two buses provide isolation of functions
so that if one bus were to be rendered inoperable, the entire system would not
be disabled. Since LRUs can listen to both buses, only the transmissions of one
bus are lost. Although this is an important feature, no specifications or
guidelines for the distribution of LRUs on the two buses are given. This
configuration eliminates one of the main integration problems with bidirectional
buses. Since control is centralized, the controller has complete control of all
bus activity. All transmissions are initiated at its command. Thus, there is

156

no bus contention under normal circumstances. The only thing left to coordinate
in real-time is the switchover to a standby controllE!r.

Controller interaction is also addressed. The standard requires that all
controllers monitor the control messages. The active controller must disable
itself if it detects any error in the content or timing of control messages,
whether due to software errors or hardware faults. A standby controller must
perform the same monitoring. If it detects that sucl1 faults are followed by a
lack of bus activity, it must take control of the h.1s. An interlock must be
provided to ensure that only one controller contJ~ols the bus at a time.
Although there are many safeguards defined, the standard makes no attempt to
control the specifics about how to implement the controller functions. For
example, should a controller disable itself in mid-message, mid- frame, mid
cycle, or only at the end of one of them? At what part of the frame or cycle
should the other controller start? On the other hand, the standard does require
that a controller be sufficiently generic that it cottld control any bus simply
by reprogramming the cycle definition. Thus, in praetice, controller behavior
could be made quite standard, though not controlled by the standard.

The configuration also introduces a new problem. LIWs only listen on one bus
at a time. The standard does not specify how to ensure that each LR.U is
listening to each transmission, regardless of which bus it is on. Coordination
could become complex if the buses can be active simultaneously or can be
unsynchronized. While the standard does not specify this, the application
presented gives only one cycle definition. It implies that the two buses are
always synchronized, with no simultaneous transmissions. The standard
specifically addresses switching the listening from one bus to the other only
as it concerns controller switchover.

The software integration is not fully specified. The eight-frame cycle is
carefully defined, and the length of the cycle and each frame is precisely
specified. The frame start and control messages provide the necessary
initialization for each frame. The specification thoroughly defines the
authorized messages for each ASCB product, and constrains their order and update
rates for a particular application. For new applications, however, the
determination of which LR.Us should transmit within a frame for a particular bus
is unspecified. No guidelines are given for choosing the transmission sequence
or update rate. The cycle and frame design is left to the system designer.

In general, the sequencing of the messages does n•)t present an integration
problem since receivers are to recognize messages by the message address, not
by the sequence. However, this specification does not disallow an LR.U from
depending on the message sequence for some other purpose. The system designer
must be aware of whether any LR.U is depending on the sequence for something
other than message recognition, since once the sequence is chosen, it is fixed
for every cycle.

The bus frame loading is more crucial. The messages must be preplanned to fit
within the 25 millisecond frames. Once the duration of the transmission of each
LRU is set, the DETs are designed to keep the transmissions from exceeding the
planned duration. Even if an LRU keeps babbling, the DET disables the driver,
keeping the continued transmission from getting to tho:! bus. The system designer

157

must specify the length of each message of an LRU's transmission, and which LRUs
will transmit in each frame, to determine whether all the messages fit within
one frame. The formulas and tables of data needed to support this system design
are provided, but the system designer needs to generate the design.

The software protocol is not fully specified because it allows users to engage
in nonstandardized communications between legal messages. Any such communica
tion increases the risk of system integration problems. The systems integrator
and users must be sure that the communications are compatible with both the
published standard and the specific interface specifications for each nonstan
dard communication.

The ASCB specification provides much of the data needed for functional
integration. The detailed data format specifications give the interpretation
of the addresses and data words for each available message. Given that a
particular message is broadcast, the specification completely defines the proper
interpretation of the message. The standard also defines a counter for tagging
data items, but it does not specify the details of its use. "Data valid,"
"master valid," and "composite valid" flags are defined, but their use is not
specified. These details, as well as the use of a checksum, appear as part of
the specification for a particular application.

The standard provides a system definition, consisting of a suite of avionic
subsystems that satisfy the integration needs of a specific GA avionics system.
If the predefined system is applicable, most of the system integration questions
are already answered.

In general, for a new ASCB-based system the designer of an ASCB subsystem must
find out which LRUs are generating the messages that the subsystem needs, and
on which bus and in which frame each message is transmitted. The designer must
also ensure that the subsystem provides the messages required by other LRUs, in
the proper frames, and of the proper duration. The system designer needs to
coordinate this information accurately and comprehensively. The system design
must control the data latencies that may result as data are passed from bus to
bus as required by various LRUs. All testing is left to the system designer.

There are no additional guidelines published for the ASCB. Whatever problems
are unaddressed by the standard are addressed by Honeywell during system
integration. Honeywell has not found the need to formalize their integration
in internal documents since the work is done by ASCB-experienced engineers.
However, they do have an internal document that describes a detailed ASCB test
plan.

5.4.3.5 MIL-STD-1553 Bus

The MIL-STD-1553 Digital Time Division Command/Response Multiplex Data Bus is
another bidirectional linear bus. It is used predominately in military
applications. The ASCB is a derivative of this bus. Thus, the MIL-STD-1553 bus
is also a centrally controlled bus with communications among LRUs controlled and
initiated by the BC. LRUs are attached to RTs that perform the bus communica
tions. To ensure the integrity of the communications, emphasis is placed on a

158

two-way communication for every transmission sequence~. Broadcast messages are
not recommended.

The standard does not ensure successful systems integration, but it does address
it. The standard states, "It is intended that this s::andard be used to support
rather than to supplant the system design process." (MIL-STD-1553B, 1986). At
the same time, the foreword states the following:

"Even with the use of this standard, differences may exist between
multiple data buses in different system applications due to particular
application requirements and the designer options allowed in this
standard. The system designer must recognize this fact and design the
multiplex bus controller hardware and software to accommodate such
differences." (MIL-STD-1553B, 1986).

Everything that is required is carefully and fully specified. The optional
features are the primary source of integration problems with this bus.
Furthermore, unlike the GA buses, there are many different manufacturers
producing MIL-STD-1553 bus-based avionics.

Although the manufacturers have freedom in selecting options, the MIL-STD-1553
bus standard is backed by extensive guidance documentation. A MIL-STD-1553 bus
handbook is itself a military standard (MIL-HDBK-1553A, 1988). This handbook
specifically addresses numerous concerns on each point of bus medium design,
terminal design, and system design. Design aids, like formulas and graphs, are
provided to help the system designer produce a workin~; and reliable system. The
handbook also includes six example systems and guidelines for data word and
message format design. The SAE also publishes a handbook, Document AE-12 (MIL
STD-1553 Databus Systems Integration Handbook, 1991). AE-12 consists of 24
articles, many of which define successful implementations of the MIL-STD-1553
bus optional features. Since these implementations are published, many of the
options are effectively standardized. The "MIL-S~~D-1553 Designer's Guide"
(1982) covers much of the same design information as the MIL-HDBK-1553 and also
includes application examples. The Air Force Systems Command (AFSC) also
published a MIL-STD-1553 handbook ("Multiplex Applications Handbook," 1980).
It contains much of the same material as the MIL-HDBK-1553, as well as some
additional information.

The physical integration of RTs on a MIL- STD-1553 bus is addressed by the
standardization of the bus medium, stubs, couple:rs, and shielding. The
connectors are not specified. MIL-STD-1553 provides for the integration of up
to 31 users on a single bus. They are connected to 1:he bus by one-foot direct
coupled stubs or 20-foot transformer coupled stubs. Many further constraints
and guidelines on the physical conductor and stubs are given. The AE-12
handbook contains an article on adapting the physical bus network to topological
constraints.

The electrical characteristics of the bus are thoroughly addressed. The bit
encoding, logic sense, and transmission frequency are each carefully specified.
The standard also specifies the values and tolerances for parameters like
rise/fall times, droop, noise rejection, and electrical loads that must be
satisfied throughout the range of environmental condit:ions. The test configura-

159

------ _, __________ --------------------

tion for which the specifications apply is provided. Some test descriptions are
also included. No environmental conditions or tests are given. The wiring and
cabling must provide the electromagnetic capability specified by the standard,
MIL-E-6051. The AE-12 handbook adds detail on the topic of transceiver
selection.

MIL-HDBK-1553 emphasizes that it is essential for a bus network to be simulated
to ensure hardware integration. It explains how to do a hardware simulation and
a computer simulation. A computer simulation program is available. MIL-HDBK-
1553 provides an example of a simulation that uses the program.

The logical integration of the hardware is completely specified by the MIL-STD-
1553. It establishes the bit pattern for the standard 20-bit-word that may be
transmitted on the bus. For each word, three synchronization bits, 16
information bits, and a parity bit are specified. There are no variations.

The central controller eliminates one of the main integration problems with
bidirectional buses. Since control is centralized, the controller has complete
control of all bus activity. All transmissions are initiated at its command.
Thus, there is no bus contention under normal circumstances. However, if a
redundant bus configuration is used, the interaction between controllers is
poorly defined in the standard. This lack is covered by an AE-12 article, which
specifically addresses the handshaking between the two controllers.

The software integration is also carefully specified. The standard defines
three types of words that compose all bus message sequences. It specifies the
legal command and status words and the interpretation of each. Data words are
defined. Based on these words, the standard specifies a set of 10 message
sequences that can be initiated by the BC. The contents of these messages are
fully specified, except for the mode commands.

One type of legal command is the mode command. Two of the mode commands are
used to define some general purpose optional command modes. Many of the
definitions only describe the information that can be transferred. The actual
data are not defined. These command modes are considered optional, but in some
of the definitions, it is not clear whose option it is. Since all messages are
broadcast messages, the optional modes should be selected on a bus basis. Then
the BC and each RT need not keep track of which RTs broadcast messages that
support a particular optional mode. The variability in mode command implementa
tion has also been addressed by AE-12. One article presents the possible
implementations and describes a methodology to ensure that each is addressed in
a particular design. Another article explains how RTs should respond to
nonimplemented mode commands.

Furthermore, addi tiona! message sequences may be defined. Thirty of the
subaddressjmode codes are available for each RT to use with a custom definition.
These message sequences must be composed of some sequence of command, status,
and/or data words, up to a total length of 32 words. No other bus communication
is defined or allowed. The custom definition is guided by an article in AE-12,
on the utilization of subaddresses. However, the timing and sequence of RT
messages is not addressed. No guidelines are given for choosing the transmis-

160

sion sequence or update rate. The custom message design and the message
schedule design are left to the system designer.

In general, the sequencing of the messages does not present an integration
problem since receivers are to recognize messages by the message address, not
by the sequence. However, this standard does not disa.llow an LRU from depending
on the message sequence for some other purpose. Since once the sequence is
chosen, it is usually repeated, the system designer must be aware of any LRU
depending on the sequence for its proper operation.

The number and repetition of messages to transmit is more crucial. The messages
must be preplanned to meet the response time needed by every LRU. Once the
duration of the transmission of an RT is set, a hard1.rare timeout is set on the
RT to keep the transmission from exceeding the planned duration. Even if an RT
keeps babbling, the timeout disables the driver, keeping the continued
transmission from getting to the bus. The system designer must specify the
length of each message that the RTs need to transmit, and the order in which the
RTs will transmit, to determine whether all the messages are delivered on time.
The standard provides no formulas or tables of dat:a to support this system
design. AE-12, however, has two articles on the toplc.

Most of these issues are addressed in MIL-HDBK-1553, AE-12, and the "MIL-STD-
1553 Designer's Guide." In addition, there are RT a:1.d BC test plans published
that give step-by-step tests for the validation and production testing of these
units. The RT validation test plan is published :~n MIL-HDBK-1553. The RT
production test plan is published by the SAE as AS4112, and is contained in the
"MIL-STD-1553 Designer's Guide." The BC validation and production test plans
are published by the SAE as AS4113 and AS4114, respe:::tively. These test plans
ensure that the units meet the hardware and software standards on an individual
basis, thus accomplishing the most basic level of integration. The U.S. Air
Force (USAF) has a validation testing facility to perform these tests. It is
operated by the Systems Engineering Avionics Facility (SEAFAC), which serves as
the Office of Primary Responsibility for the MIL· STD-1553 bus (Thorpe and
Vakkalanka 1982). The SAE also publishes a system tast plan which specifies a
step-by-step test for reliable communications, systent-wide. Very little of the
bus communications design is left unspecified or ung~ided.

The MIL-STD-1553 bus standard provides no data for f~nctional integration. No
addresses or data formats are specified. Bit packing of data is allowed, but
undefined. Several types of errors are defined and flag bits provided, but
their use is optional. The optional nature present:> problems. For instance,
RTs have the individual option of checking for unsupported commands. Thus, if
no illegal commands are flagged in a bus test, the te~:ter should not necessarily
conclude that the BC issued only legal commands. If more extensive error
checking or correction is required, the standard suggests two methods that could
be used. The system designer could use a software handshake to verify each
transmission, word-by-word, or integrate some form of error checking data into
the data stream. If any RT requires a response more often than the controller
polls it, interrupts can be used, but this is not defined.

Despite the lack of standards for functional integration, the system designer
is not left unguided, particularly in the area of word and message formats.

161

MIL-HDBK-1553 gives a flowchart for word design, along with standard formats and
Interface Control Document (!CD) presentation sheets. It also includes tables
of predefined words. Similarly, the handbook explains how to design messages
and provides standard message formats and !CD presentation sheets.

In general, for a new MIL-STD-1553 bus based system, the designer of a MIL-STD-
1553 RT must find out which RTs are generating the messages the subsystem needs
and when each is transmitted. The system designer has to ensure that each
subsystem provides the messages required by other LRUs, at. the proper time, and
for the proper duration. The system designer needs to coordinate this
information accurately and comprehensively. The system design must control the
data latencies that may result as data are passed from bus to bus, as required
by various LRUs. The MIL-STD-1553 bus standard does not specify all of these
items, but is thoroughly backed by guidance material to help the system designer
specify them with confidence. The options selected are listed and defined in
the !CD. Thus, if the !CD is well written, the RT designer should get a precise
specification of the information needed from the system's !CD. This topic is
addressed in AE-12.

5.4.3.6 SAE Linear Token Passing Bus

The LTPB is one of two modern high-speed buses designed to meet the needs of the
military for this decade and beyond. It is anticipated that they will fill the
place that the MIL-STD-1553 bus has had in integrated flight-critical systems
and also support the much higher data rates required by increased integration.
The LTPB is a bidirectional linear bus capable of 50 megabits per second
operation. The bus users are called stations. LTPB station interaction is
controlled by a token passing protocol, where the stations are configured in a
logical ring. Only one station can hold a valid token at a time. Once a
station receives a valid token, it has control of the bus. All other stations
respond to its requests, as necessary.

The standards and guidelines for this bus follow the pattern of the MIL-STD-
1553 bus documentation. When complete, the LTPB documentation will consist of
a bus standard, a test and validation standard, and a formally published
handbook. The basic standard is released as SAE AS4074.1. It specifies the
bus structure and protocols. The test and validation plan will define a step
by-step test procedure for validation of stations. The handbook will take a
designer through the bus design, step-by-step, providing the formulas, tables,
and graphs necessary to produce a solution compatible with the standard.

The AS4074.1 standard is a precise and complete specification of the physical
and logical aspects of an LTPB. The "send message" process is precisely
flowcharted. The state diagram of the bus operation is explicitly shown and
discussed. The BIU initialization sequence is specified. The standard also
specifies BITs that each station must perform and statistics that must be kept.
Following the bus specification, the standard specifies a Quality Assurance (QA)
plan. This plan includes a test plan for performing engineering test and
evaluation, qualification testing, reliability and maintainability testing,
operational testing, and acceptance testing. A cross-reference shows the
coverage of the bus specifications that is accomplished by the specified tests.
The method of testing to be used is specified for each stage. Most of these

162

items go above and beyond the specifications of the
standard tightly specifies a bus of high integrity.
an individual station to the bus standard is highly

other bus standards. This
Furthermore, compliance of
assured.

SAE AS4290, containing the test and validation pl~Ln, will
sequence to support the test plan. Besides specifying a test
specified by the standard, the draft includes a comprehensive
assess error handling capability through error injection.
incomplete as of this writing.

provide the test
for each function
set of tests that

The draft is

The handbook will be published by the SAE as an AIR. The draft discusses the
theory of the bus medium design and the protocol configuration. It describes
the concerns that must be addressed as the bus network is integrated. It then
presents three step-by-step sequences that may be followed to customize a
particular bus. A sample design is included. A list:_ng of a BASIC program that
can be used in the analysis is given in an appendix. In the final section, the
bus state machine is discussed in detail. A cross-reference between each
paragraph of the handbook and the standard is given.

The designer of an LTPB-based system can design LTPB-compatible stations by
following the SAE documentation. Furthermore, the designer can design the
system with confidence that all of the issues necessary for system integration
have been addressed. Nevertheless, the integration design and testing is
ultimately left to the system designer.

5.4.3.7 SAE High-Speed Ring Bus

The HSRB is the other of two modern high-speed buses designed to meet the needs
of the military for this decade and beyond. The HSRB is a point-to-point ring
bus capable of 50 megabits per second operation. The bus users are called
stations. HSRB station interaction is controlled by a token passing protocol.
Only one station can hold a valid token at a time. Once it does, it may place
a message onto the bus. The message is passed from station to station around
the ring. Other stations can then respond to its request, as necessary.

The standards and guidelines for this bus follow tre pattern of the LTPB bus
documentation. When complete, the HSRB documentation will consist of a bus
standard, a formal test and validation plan, and a fcrmally published handbook.
The basic standard is released as SAE AS4074.2. It specifies the bus structure
and protocols. The test and validation plan will define a step-by-step test
procedure for validation of stations. The handbook will take a designer through
the bus design, step-by-step, providing the formulas, tables, and graphs
necessary to produce a solution compatible with the standard.

The AS4074. 2 standard is a precise and complete spe<~ification of the physical
and logical aspects of an HSRB. The state diagram of the bus operation is
explicitly shown and discussed. Following the bus specification, the standard
specifies a QA plan which defines the methods of testing to verify the bus
operation. A cross-reference shows the method to u:>e for each bus specifica
tion. Most of these items go above and beyond the specifications of the other
bus standards. This standard specifies a bus of high integrity, but not as
tightly as the LTPB standard.

163

~-- ------------------ --~-----------~·-------------------- ------

SAE AIR 4291, containing the test and validation plan, will provide the test
sequence to support the test plan. It will specify the test requirements for
verifying that HSRB stations meet the requirements of the bus standard. The
draft is incomplete as of this writing.

The handbook will be published by the SAE as an AIR. The draft discusses the
theory of the bus medium design and the protocol configuration. It discusses
the application specific variations that should be considered and some
implementation specifics. Most of the AIR sections have little to do with
integration. However, one section specifically addresses ·interoperability
issues. It states that the standard guarantees interoperability at the physical
layer. The AIR then points out how compatibility is affected by stations
implementing optional features. It also indicates which optional features need
to be addressed by the system designer. In general, optional features are _,
designed to have no impact on compatibility.

The handbook draft then gives the step-by-step process that the system designer
should follow to calculate the main system design parameters: throughput,
message latency, and message traffic flow. Some examples are provided. Design
graphs are also provided. The graphs help the system designer see the tradeoffs
being made when choosing the parameters. Finally, the elements of a station
self-test and background test are specified.

The designer of an HSRB-based system can design HSRB-compatible stations by
following the SAE documentation. The integration design and testing is left to
the system designer, but informal guidelines are provided.

5.4.4 Bus Integration Techniques

The complexity of the interactions among LR.Us on bidirectional buses has
motivated many data bus designers to use various design analysis techniques when
designing and certificating systems that use data buses. Typically, convention
al computer system design techniques are adapted to the unique requirements of
data bus development. These techniques use mathematical or otherwise logical
constructs to represent the system being designed. The representation is then
exercised and tested to determine if the real system most likely has, or will
have, the desired characteristics. Each technique emphasizes a particular
characteristic. The goal of these techniques is usually to increase .the
confidence that the system will always satisfy the requirements for it. Using
these techniques could give the developer confidence that an aircraft is worth
building, or give a CE confidence that a built aircraft should be TCed.

Some of these techniques are described and their application to data bus design
and analysis presented. Their use in certification will be addressed later.
A list of the techniques documents is given in table 5.4-2.

164

..

TABLE 5.4-2. INTEGRATION TECHNIQUES DOCUMENTS

I Document Name Reference

Computer Resources Handbook for Flight Hecht and Hecht
Critical Systems 1985

Fault/Failure Analysis for Digital Systems ARP 1834
and Equipment

Procedures for Performing a Failure Mode, MIL-STD-1629A
Effects and Criticality Analysis

Fault Tree Handbook Vesely et al.
1981

Some of the techniques described below are recommended or required by the data
bus documentation. Specifically, MIL-HDBK-1553 sta1:es, "It is essential that
a proposed network be simulated before the design is finalized." (MIL-HDBK-
1553A, 1988). The HSRB test plan requires that the station tester emulate the
host and all other bus stations. Similarly, both thE! LTPB and the HSRB specify
the use of analysis in their QA plan. Some of the analysis techniques are
recommended in the certification documentation. In AC 25.1309-lA, the
Functional Hazards Assessment, FMEA, and FTA are all offered as acceptable means
of showing compliance with RTCA/D0-178. Other techr.iques are commonly used by
developers simply as good engineering practice.

5.4.4.1 Modeling

Modeling consists of creating a system of mathematical equations that formulates
all the significant behavior of the system being modeled. The reliability of
the system is a common behavior of interest.

In unidirectional broadcast buses, the bus is little more than a transmission
medium, since all of the communications control is embedded in the LRU software.
For these buses, modeling is used only to analyze the behavior of the electrical
signals on the bus. The standards specify this behavior for an ideal bus.
Modeling is necessary to confirm that a particular implementation, with multiple
LRUs, specific bus lengths, and specific LRU separations, conforms to the ideal.
This means that a particular layout of a bus must be sufficiently characterized
so that the shape of the signal waveform can be calculated for any point on the
bus at any time in the sequence of transmissions. This was done for the Mark
33 DITS, for various configurations, to confirm tha<: distortions remain within
the permissible limits of the waveform. The waveforms are presented in appendix
1 of ARINC Specification 429-12. The ARINC 629 bu~: standard provides for the
use of this kind of analysis also. Although ARINC 629 bus operation has been
established for lengths up to 100 meters, "A systems designer may extend the bus
length if proper analysis demonstrates that there is no loss of bus integrity."
(ARINC Specification 629, Part 1, 1990).

165

A model of the electrical characteristics of a bus network is usually used to
aid the engineer when developing a design. A tentative layout for integrating
multiple LRUs can be set up in the model, and the electrical behavior checked
for unanticipated problems. As various layouts are checked, the iterative
process guides the designer toward a trouble-free solution. This technique
turns trial and error learning into a convergent engineering design process.

For bidirectional buses, bus communication is controlled by a computer system
of its own. Bus transmissions are controlled by a state machine, implemented
with hardware and software, that serves no function for the LRU except to
control bus communication. This computer system can be quite complex, involving
a protocol that controls numerous unique interactions in an environment that
requires fail-safe operation. The reliability required of a bus used in
critical avionics may be provided by a fault tolerance scheme that is dis
tributed across hardware and software features and even across LRUs. The design
of such a system is greatly dependent upon the use of modeling.

The Computer Resources Handbook for Flight Critical Systems (Hecht and Hecht
1985) presents a simple analytic model for assessing the reliability, availabil
ity, and fault tolerance of a system. An analytic model allows the designer to
evaluate the likely outcomes of system design decisions and gives insight into
the behavior of the design.

A thesis from the Naval Postgraduate School gives a good example of how modeling
is applied to a complex data bus network (Nelson 1986). In that study, a
computer architecture that uses advanced hardware-software reliability
techniques is modeled for the purpose of determining a design that can meet FAA
safety requirements for critical systems. Conventional reliability analysis is
inadequate, since it is based on hardware reliability alone. In this case, the
reliability was based on the reliability of the components of the system, and
the capability of the system to identify correctly both the occurrence of a
fault and its precise location within the system configuration. (This is
exactly what is done in the bidirectional bus protocols as they try to ensure
that no two transmitters attempt to operate simultaneously.) A Semi-Markov
analysis computer program was used to create the model. This model was used to
generate a configuration that met the safety requirements.

Such a model makes an implicit claim that all significant effects were modeled.
This is not necessarily so. Furthermore, models often include simplifying
assumptions, which may or may not be true. For instance, Nelson made a
conjecture that significantly reduced the model, but he did not completely prove
the conjecture (Nelson 1986).

After finding four simple techniques inadequate for complex systems, Veatch et
al. (1985) present a reliability analysis methodology appropriate to a system
that relies on system structure for its fault tolerance, as in dynamic
reconfigurability. The Mission Reliability Model (MIREM) computer program
produces a structural, rather than a component model of a system. It was used
to determine the Mean Time Between Critical Failures for such a complex computer
system. They noted, "A major advantage of MIREM as a design tool is its ability
to evaluate the impact of proposed design changes." (Veatch et al. 1985). It

166

..

is particularly useful early in the design phase. T"clis methodology may prove
to be useful for bidirectional buses, since they rely on system structure for
their fault tolerance. The evaluation of changes could be very helpful when
another LRU is added onto a working bus.

In another study, an engineering model was produced fo·r the Advanced Information
Processing System (AlPS). T"his model was used to evaluate the design of the I/0
System Services of this system, which included two TDMA contention buses. In
this case, the design was evaluated by testing to see if the AlPS model properly
handled a sample set of I/0 requests (Masotto and Alger 1989). Similar tests
could be performed to see if bus- integrated LRUs would properly handle their
intercommunications.

MORE is another program used to assess computer system designs (Munoz 1988).
It is used to compare competing designs, rather than to create designs. The
modeling teams follow a strict methodology to partition the architecture into
a hierarchy of subsystems that communicate by a consi3tent set of interfaces to
produce the system behavior. The methodology address·~s some important modeling
concerns:

"Because we are modeling systems that do not exist, it is not possible
to validate the model against its real-world analogy, and yet it was
recognized that some sort of validation must take place if any
credibility is to be applied to the results obtained. Wherever
possible, results were presented and discussed with experts in the
field and/or with results obtained from similar systems that have been
implemented." (Munoz 1988).

The methodology also relies on peer review for validating the models. The use
of "best engineering judgment" is defined for fillin;~ in lacking information.

T"he Hybrid Automated Reliability Predictor (HARP) embodies yet another approach
to the modeling of computer systems that use advanced reliability techniques
(Bavuso et al. 1987). It addresses a weakness of tha structural decomposition
method, discussed above. In order to do a structural decomposition, the fault
tolerant behavior of a system must be able to be partitioned along with the
mutually independent subsystems. T"his often is not t:he case. The HARP program
uses behavioral decomposition instead. Bavuso et al. applied the method to two
flight control systems as examples.

Some models are more general purpose. Parhami (1979) developed an approach to
modeling bus redundancy. The model can be used to assess the tradeoff between
increased redundancy and increased complexity for single and multiple bus
systems.

5.4.4.2 Simulation

Simulation is very similar to modeling. Simulation consists of creating a
system of mathematical equations that formulates all significant contributions
to the behavior of the system being modeled. Simulat:ion, however, assumes that
the system exists. A simulation usually combines a computer program emulation
of most of the functions of the system (before they are implemented) with some

167

of the actual hardware. Simulations that rely heavily on emulation are
sometimes called emulations.

Since real, rather than proposed, behavior is modeled by a simulation, the model
can be, and should be, validated. The response of the simulation to a
particular real-life scenario is compared against the response of the real
system. Once the simulation is validated, it is used to do analyses which would
be too costly in time, money, or risk to perform on a real system.

The ARINC 629 bus, MIL-STD-1553 bus, LTPB, and HSRB all rely on simulation for
the validation of a particular bus network. The LTPB handbook includes a
program listing that can be used to simulate the priority scheme of the
protocol. This simulation aids the system designer in choosing protocol
parameters while the bus design is still only on paper. The HSRB test procedure
requires a simulator that can emulate a host and all other stations. Simulators
are also used to test and evaluate ARINC 429 buses.

The USAF Aeronautical Systems Division defined guidelines for the development
of computer programs used in digital flight control systems. Sylvester and Hung
(1982) present the concepts for V&V of these systems that require extreme
reliability. They found that,

"The key to the development approach leading to V&V is the consistent
and integrated use of models and simulations. The verification of
such simulations with ground and flight test information leads to
validation of flight control system concepts and implementation."
(Sylvester and Hung 1982).

They proceed to present a conceptual framework where the problem of design and
test of highly reliable systems may be studied. The aesign process should start
with a functional simulation, validated against experimental data and analysis.
As it continues, the simulation should evolve into a simulation test facility
which uses as much of the prototype hardware as possible. In the testing phase,
flight tests should be instrumented to gather data to confirm that the earlier
simulations were valid. Sylvester and Hung also describe an entire system of
simulation plans and reports, and a cross-reference index for the integration
of simulation into the design process.

The need for early validation of complex computer systems is also addressed by
Karmarker and Clark (1982):

"Few automated or semi-automated techniques, however, have been
developed to address the verification of the very early development
stages, namely system requirements and system design. Instead modern
practice relies on formal and informal reviews, and analytical studies
and trade-off analyses of various aspects of the system design."

They present a tool and a development methodology for using a system level
emulation to perform this early validation. They have applied the technique to
a flight control system.

168

•

The National Aeronautics and Space Administration has also investigated using
emulation as a technique for validation, rather than relying only on analytical
modeling. Becher writes, "ways must be found to reduee the risk caused by these
new technologies" (Becher 1987). Becher developed an algorithm to emulate the
hardware of complex integrated computer systems as lcgic gates, flip-flops, and
tri-state devices. The emulations are used as general reliability analysis
tools in the Avionics Integration Research Laboratory (AIRLAB). Such an
emulation also lends itself to using fault injection to determine the response
of the system to faults.

Petrichenko (1988) writes on some lessons learned f:rom doing simulation. The
article gives a good introduction to some of the basics of simulation tech
niques, particularly for hardware-in-the-loop simulation. He observed that an
added benefit of creating a simulator is that it functions as an independent
development of the same function as the system bein?; simulated. As a result,
when the logic of the two differ, often the system logic may be found to be
faulty.

Hecht and Hecht (1985) address the simulation of reliability models. They point
out that simulation allows complex models to be evaluated for the system failure
modes. Furthermore, a simulation can be tailored to '~oncentrate on the unlikely
problem areas that are of particular interest in critical systems. They discuss
some general-purpose simulation programs that can be used. Bannister et al.
(1982) also address the evaluation of which design is best for a particular
application. They state, "Simulation and analytical tools are the time-proven
means for the precise evaluation of a given design." They then discuss some
software tools that can be used for this purpose.

Simulation is taken one step further with the ARINC ·~29, CSDB, and MIL-STD-1553
buses. Manufacturers make black box testers that are used to simulate an LRU
connection to the bus. They are made to generate and evaluate messages
according to the electrical and logical standards for the bus. They consist of
a general purpose computer connected to bus interface cards. The simplest ones
may simulate a single LRU transmitting or receiving. The most complex ones may
be able to simulate multiple LRUs simultaneously, as well as a BC, where
applicable (McCartney and Phillips 1981).

These simulators are invaluable for system integration in highly integrated
systems. In such systems, a single LRU cannot be tested without the entire
system being present. Testing should not be held o:ff that long. Furthermore,
the correctness of the data bus itself must be checked before LRUs can be
installed (Sawtell and Dawson 1988). These simulators provide a solution to
both problems; they can be used to verify bus operation and to simulate the
other LRUs in the system. Fitzgerald and Polivka (1982) also point out the
usefulness of a system tester that can be used in data bus system development
and integration testing.

Although simulation can be used to detect many integration problems, a
simulation cannot be run for the many hours required to prove that a system will
not have a critical failure more often than 10-9 per flight-hour. VanBaal (1985)
states it well:

169

"To put this figure into perspective, it should be realized that the
total accumulated number of flight-hours on turbo-jet powered
airplanes since their introduction in 1957 is estimated to be in (sic)
the order of 3 x 108 . It is thus easily seen that proof of such low
probabilities by means of ... simulation is highly impractical."

As a result, more analytical techniques should be used to support simulation.
Some of these techniques are discussed in the following sections.

5.4.4.3 Fault/Failure Analysis

F/FA is a general term for analysis techniques used to identify systematically
and, possibly, quantify the effects of hardware failures on a system. Modern
data bus interfaces are sufficiently complex to warrant such an analysis. The
techniques usually implied are those of the formal F/FA process defined by ARP
926A. The application of these basic techniques to processor-based digital
electronics is presented in ARP 1834.

ARP 1834 discusses, in detail, the purposes of F/FA, the types ofF/FA, and the
considerations to be made in choosing which techniques to use and how thorough
an analysis to perform. The desired effect is to produce a credible statement
of the possible faults and their effects in the most cost effective manner. The
analysis techniques fall into two classes. Those that analyze the faults from
the top-down and those that analyze from the bottom-up.

In the first case, the analyst postulates the undesirable system effects and
deduces from them what subsystem faults could produce such an effect. The
analyst asks the question, "How can this failure occur?" Each subsystem fault
is then analyzed to determine what lower level fault would cause the subsystem
fault. Each of these branches is expanded until they are terminated by faults
considered to be sufficiently controllable or sufficiently unlikely. Top-down
analysis has an advantage in that it can be performed on design models. A
disadvantage is that it does not guarantee that every possible fault is
identified. ARP 1834 covers the use of FTA for a top-down approach. An example
is given in appendix 2 of the ARP.

In the bottom-up method, the system components and their relationships are
known. The analyst identifies every possible failure mode of each component at
the level of interest and then deduces the effect each failure would have on the
next higher level. This procedure answers the question, "What failures are
possible?" This method is exhaustive. It covers all the bases, but it can
become unmanageable for complex systems. A bottom-up analysis of IC-based
circuits must be initiated at some level higher than the component level to be
feasible. The process defined in ARP 1834 covers FMEA for a bottom-up approach.

The two approaches tend to be complementary. The F/FA process provides for
using both approaches. Since both approaches rely on the ability of the analyst
to think of failure modes and their implications, it is essential that a well
coordinated team effort be used to conduct a correct and comprehensive survey
of all system faults and their effects (Vesely et al. 1981). Failure Mode,
Effects, and Criticality Analysis (FMECA) and fault insertion are also presented
as available methods. Each of the techniques incorporated by ARP 1834 is

170

defined apart from that document and can be used independently of it. For this
reason, they are discussed individually in subsequent paragraphs. Additional
discussion is presented in chapter 3 (Curd 1989) of the Digital Systems
Validation Handbook. Volume II.

5.4.4.4 Fault Tree Analysis

FTA is a method that helps ensure that decisions aboU1: a system are based on all
known pertinent information on the system. In particular, a decision about the
likelihood of a certain undesirable event occurring should take into account the
implications of all credible ways in which the event can occur. FTA does this
by providing a directed, disciplined process for identifying the failure
producing faults. Furthermore, the analysis recogn:.zes that a complex system
is more than the sum of its parts. Component interac1:ions determine much of the
character of a system. Thus, FTA is particularly appropriate for analyzing bus
integrated avionics for problems that are peculiar to the system interactions.
FTA is usually used for analyzing hardware faults, bU1: application has been made
to software and computer systems (Hecht and Hecht 1985).

FTA is recommended by ARP 1834 as a component in an F/FA. FTA of hardware is
defined, explained, and demonstrated in the Fault Tree Handbook (Vesely et al.
1981). They explain,

"Fault Tree Analysis is a deductive failure analysis which focuses on
one particular undesired event. The undesired event constitutes the
top event in a fault tree diagram. Careful choice of the top event
is important to the success of the analysis. If it is too general,
the analysis becomes unmanageable; if it is too :>pecific, the analysis
does not provide a sufficiently broad view of the system. Fault tree
analysis can be an expensive and time-consuming exercise and its cost
must be measured against the cost associated with the occurrence of
the undesired event." (Vesely et al. 1981).

Because fault trees can easily become unmanageable, Hecht and Hecht (1985)
suggest that FTA be used to identify the critical events at the subsystem level,
then use FMECA to determine the potential causes of these events.

A typical fault tree is shown in figure 5.4-1.

171

-- -- ----------~ ·-----~-----------·--- ----- ---------- ------------

The computer
stops working

I
OR I

I
I I I

I
The hard disk Someone tripped The fuse

crashed on the cord blew out

I
AND I

I I
I I

The cord was A person
left exposed walked by

FIGURE 5.4-1. TYPICAL FAULT TREE

The fault tree is produced by a directed qualitative process. However, once the
tree is produced, a quantitative probability of the undesirable event occurring
can be calculated. The FTA can be used for either purpose: simply to identify
the causes so that they can be controlled, or to calculate the probability given
the set of causes.

A quantitative analysis is shown in figure 5.4-2. It is calculated as follows:

2.3 X 10-4 z 5. 7 X 10-5 + (7 X 10-4)(0.2) + 2.9 X 10-5

where it is assumed that every person that walks by will trip on the cord.

A particular fault tree only accounts for the effects of the most credible
attributing faults, as thought of and assessed by the analyst. It is not a
model of all possible system failures or all possible causes for system failure.
To accomplish that, the analyst must identify every possible system failure and
develop the fault trees for each of them.

172

On

The computer
stops working

Two times per year
(2.3 X 10-4

OR I
I I

I I
The hard disk Someone tripped The fuse

blew out crashed on the cord

ce every two years 1.2 times per year Once every four years
(5. 7 X 10-5)

I
The cord was
left exposed

Six hours a year
(7 X 10-4)

J

(1.4 X 10-4) (2.9 X 10-5)

AND I
l

I
A per:
walke~ ~o~y I

Once per flve hours
(0.2)

FIGURE 5.4-2. QUANTITATIVE FAULT TF.EE ANALYSIS

5.4.4.5 "Parts Count" Failure Analysis

If it is assumed that the failure of any single component in a system will cause
a system failure, the probability of system failure is simply the sum of the
individual failure probabilities. The analyst eounts the number of each
component, multiplies each of these by the probability that the component will
fail, and then adds these together. This probability is the most conservative
estimate, since all dependencies are covered. Thus, if the system or subsystem
failure probability is sufficiently low using the parts count method, then it
will be found to be sufficiently low by any more refi.ned method. The additional
detail of those methods would be unnecessary. Some of these more refined
methods are discussed in the following paragraphs.

5.4.4.6 Failure Mode and Effects Analysis

FMEA is a systematic analysis of failures and their effects, that uses an
inductive, bottom-up approach. It is one of the techniques recommended by ARP
1834 for an F/FA of digital systems.

In a purely qualitative analysis, the analyst identifies every significant
failure imaginable at a certain subsystem level and then describes the effects
that result as the impact of the failure ripples up to the system level. A

173


~~~~--------- ~~~-~--------------e 

simple qualitative FMEA is shown in table 5.4-3. A more detailed worksheet is 
provided in MIL-STD-1629. 

TABLE 5.4-3. FMEA QUALITATIVE ANALYSIS REPORT 

Component Failure Mode Failure Effects 

Bus Line Driver Open circuit 1. LRU can no longer transmit. 
2. Bus impedance is changed. 

Short Circuit 1. Bus transmission disabled 
until driver timeout. 

2. Bus impedance is changed. 

Once the effects are identified, a quantitative analysis can be performed to 
find the likelihood of system failure based on the combined contributions of the 
various unrelated failures. Table 5. 4-4 shows a typical quantitative FMEA 
report. The probability of a critical system failure is 2 x 10-4 , which is the 
sum of the four critical effect probabilities. 

Component 

A 

B 

TABLE 5.4-4. FMEA QUANTITATIVE ANALYSIS REPORT 
(Vesely et al. 1981) 

Percent Critical 
Failure Failure Failure Effect 

Probability Mode by Mode Probability 

1 x 10-3 Open 90 
Short 5 5 X lo-s 
Other 5 5 X lo-s 

1 X 10-3 Open 90 
Short 5 5 X lo-s 
Other 5 5 X lo-s 

Noncritical 
Effect 

X 

X 

FMEA is generally used to provide an analysis of hardware, but MIL-STD-1629 
defines both a strict hardware approach and a functional approach in its 
procedures for performing FMEA on hardware. Extending FMEA further, VanBaal 
(1985) found that no special treatment is required when the software elements 
of a system are included in the analysis. He concluded, "an FMEA of a system 
containing software can be performed and yields useful results with regard to 
system safety" (VanBaal 1985). However, the quality of the software has to be 
ensured by following good software engineering practices. Thus, FMEA can be 

174 



used to address data bus integration issues associated with processor-based bus 
interfaces. 

A quantitative FMEA requires that failure rate data be available for all the 
components. This is not usually available for software or for new and novel 
hardware components or subsystems. Warr (1984) describes a special method of 
FMEA that could be applied in these situations. A multifunctional team of 
design engineers defines the relative rankings and relative weights for each 
product and its failure modes. The relative risk associated with each failure 
mode can be calculated from these weights. This method might prove to be 
especially useful for certificating new and novel bus- integrated systems for 
which no earlier counterpart exists. Hecht (1986) also addresses some of the 
unique requirements for applying FMEA to digital avi•Jnics. 

FMEA is called out as the recommended means of analysis by one of the bus 
standards. An ARINC 629 bus is to be made of a single, unspliced cable. If a 
splice is made, the standard recommends that an FHEA be completed for each 
splice. 

5.4.4.7 Failure Mode. Effects. and Criticality Anal·rsis 

FMECA is recommended by ARP 1834 for use in F/FA of digital systems. The 
technique is defined by the U.S. Department of Defense in MIL-STD-1629. The 
purpose of an FMECA is the early identification of all critical failure 
possibilities so that they can be eliminated or minimized in the system design. 
The standard establishes the following procedures: 

"to systematically evaluate the potential impact of each functional 
or hardware failure on mission success ... Each potential failure is 
ranked by the severity of its effect in order that appropriate 
corrective actions may be taken to eliminate or control the high risk 
items." (MIL-STD-1629A, 1984). 

FMECA is very similar to an FMEA, but the criticality of the failure is analyzed 
in greater detail and controls are described for limit:ing the likelihood of each 
failure. An FMECA worksheet might look like thc:.t shown in table 5. 4-5. 
MIL-STD-1629 contains a more detailed worksheet. 

TABLE 5.4-5. FMECA ANALYSIS REPORT 

Failure Mode Failure Effects Control Net Effects 

Bus line driver LRU cannot trans- LRU switches to One transmis-
open circuits dur- mit redundant bus sion is lost 
ing transmission 

The standard defines a two-step process, beginning with an FMEA and followed by 
a more detailed Criticality Analysis (CA). The pur:Jose of the CA is to rank 

175 



each potential failure mode according to the combined influence of its severity 
and likelihood, i.e., according to risk. 

The CA can be a qualitative categorization of the failures into five probability 
categories, or a quantitative calculation based on the hardware component 
failure rate data in MIL~HDBK-217. MIL-STD-1629 contains a detailed worksheet 
that is used for a quantitative analysis. Concerning the use of MIL-HDBK-217, 
Hecht and Hecht (1985) write, 

"While the overall failure rate of an LRU can be computed fairly 
readily from the part failure rate information, the failure probabil
ity in a specific mode pertinent to the aircraft level depends almost 
entirely on judgement. Thus, a considerable subjective component 
enters into this approach as well." 

FMECA requires a team approach, since the analyst who understands the effects 
at the component level will probably not properly assess the criticality of the 
effects at the system level. 

5.4.4.8 Fault Insertion 

Fault Insertion is suggested by ARP 1834 as a special technique for F/FA of 
digital systems. Because the system response to a failure may be time, mode, 
or data dependent, the analytical prediction of the response to a specified 
failure may be nearly impossible via the basic methods previously described (ARP 
1834, 1986). Important considerations for fault insertion, taken from ARP 1834, 
are summarized below. 

Rather than trying to deduce the response of a system to each failure, fault 
insertion consists of purposely inserting faults to observe the effects. This 
is most effective when it can be done in the actual system. Rather than alter 
a standard part, usually an LRU or a BC is emulated in a software based tester 
in which faults are easily generated. For verifying designs, a computer can be 
used to simulate bus components in a tester that includes fault generation. 

Fault insertion into the actual system is the most realistic, but has the 
disadvantage that only simple faults can be generated easily. Faults internal 
to an IC cannot be generated at all. Furthermore, the F/FA cannot be performed 
until the system is built. On the other hand, faults can be generated at any 
point in an emulation or a simulation; but they provide less realism. In 
addition, a simulation allows F/FA to be performed on a system design, long 
before any part of the system is fabricated. The main disadvantage of emulation 
and simulation is that they must be validated against the system they claim to 
reflect. For additional discussions on this topic, see chapters 3 (Curd 1989) 
and 5 (Cooley 1989) of the Digital Systems Validation Handbook. Volume II. 

5.4.4.9 System Safety Assessment 

System Safety Assessment (SSA) is a systematic and analytical methodology for 
assessing the safety of software controlled digital avionic systems. It is 
formulated for meeting the analysis requirements for civil aircraft airworthi
ness regulations. The methodology is summarized in table 5.4-6. 

176 

.. 



• 

TABLE 5. 4-6. SYSTEM SAFETY ANALYSIS :'IETHODOLOGY 
(VanBaal 1985) 

1. Prepare a safety plan: 

Goal 
• Function safety plan in SSA 

Limits of the system and the SSA 
Techniques and analysis methods 
Safety criteria 
Time-schedule, organization 

2. Prepare a system description: 

System components (hardware and software) 
Functions of the system 
Architecture 
Interfaces (other systems, crew, environment) 
Requirements 
Safety-related measures already foreseen 

3. Perform a hazard analysis: 

A qualitative, top-down analysis of deductive character 

4. Perform a failure mode and effects analysis: 

A bottom-up analysis of inductive character; initially, only of a 
qualitative nature 

5. Perform other analyses, where necessary. Some options are as follows: 

Zonal analysis 
• Fault tree analysis 

Sneak circuit analysis 
Common cause failure analysis 
Change analysis 

The analysis begins with a Hazard Analysis (HA), whic:h identifies the functions 
whose failure could lead to dangerous situations. The emphasis is on the 
effects that system failure has on things other 1:han the system, like the 
airplane or the crew. VanBaal shows the HA worksheet:; it is reproduced here in 
figure 5. 4-3. An FMEA is then performed on the parts of the system that 
contribute to the functions identified by the HA. .~dditional analyses can be 
conducted as needed to demonstrate airworthiness. The options are listed in 
table 5.4-6. 

177 



HAZARD ANALYSIS !Primary System: !Aircraft: loate: I Page: of 

Most 
Function, Failure Condition Possible Critical Hazard Hazard Hazard 

# (Effects on Aircraft and Flight) Causes Flight Class Limited By Increased By Remarks 
Phase 

FIGURE 5.4-3. HAZARD ANALYSIS WORKSHEET HEADER 
(VanBaal 1985) 

5.4.4.10 Preliminary Hazard Analysis 

The Fault Tree Handbook (Vesely et al. 1981) describes a Preliminary Hazard 
Analysis that is very similar to the HA. The "preliminary" emphasizes that this 
analysis should be conducted as early in the development cycle as possible to 
identify system safety requirements. Whereas the other methods focus on the 
effect of failures on system operation, this procedure assesses the potential 
hazards posed to system users and bystanders. The process consists of 
identifying hazardous situations and the events that could place the system in 
that situation. The likelihood of the enabling events must be assessed so that 
the need for preventative measures can be determined. This establishes the 
system safety requirements. 

5.4.4.11 Sneak Circuit Analysis 

The Computer Resources Handbook for Flight Critical Systems (Hecht and Hecht 
1985) describes the sneak circuit analysis referred to in the SSA. It is a 
systematic way of detecting unintentional behavior in a system. A logic tree 
is developed for the logic of the system, regardless of whether the system is 
implemented in hardware or software. A software tool analyzes this tree to find 
all the conditions that can cause a given output, all conditions that are 
necessary to prevent a given output, and all conditions that can cause a 
combination of outputs. An analyst then examines these lists to ensure that 
there are no violations of the system requirements. 

5.4.4.12 Petri Net Safety Analysis 

Petri nets are a special form of state diagram that can be used to model and 
analyze system behavior, both hardware and software. From a Petri net, an 
analyst can identify all possible states of the system and, particularly, the 
terminal states into which the logic may lock up. Leveson and Stolzy (1987) 
give several references for this type of conventional Petri net analysis. 

Leveson and Stolzy, however, address the use of Time Petri net modeling and 
analysis techniques in the safety analysis of real-time computer systems, like 
those in aircraft. They developed a Petri net variation which includes a time 
element, noting that "basically correct software actions which are too early or 
too late can lead to unsafe conditions" (Leveson and Stolzy 1987). From the 
analysis, they can determine "the timing constraints of the final system 
necessary to avoid high-risk states and the watch-dog timers needed to detect 

178 



,. 

critical timing failures" (Leveson and Stolzy 198:'). They also develop a 
procedure for analyzing how failures affect the timi":1g and reachability of the 
system states. This technique is appropriate for analyzing the complex state 
transitions of the bus communications in integrated avionics systems. It can 
be applied early in the design stage. 

5.4.4.13 Testing Techniques 

After all the design analysis, modeling, prototyping, and simulation, the real 
product finally needs to be tested. For transport aircraft, manufacturers use 
a Systems Integration Laboratory to test the data bus integrated avionics, since 
testing time on the prototype aircraft is much too eKpensive. This laboratory 
is also called a "hot-bench." The hot-bench allows the integrated system to be 
tested, but with simulated aircraft inputs. Simple bus bench testers only 
simulate generic bus communications. For GA aircraft, this system integration 
is often done in the actual airplane. 

As all the pieces of the aircraft are manufactured, testing may be done on an 
"iron-bird" configuration. In this test configuration, the avionics are 
connected to a cockpit mockup that can be "flown" on the ground by test pilots. 
This provides a realistic, real-time environment in which to test the bus 
integrated avionics. 

The final testing technique used is the flight test. The prototype airplane is 
actually flown in increasingly more demanding flight patterns to verify proper 
operation. While no bus integration problems are explicitly tested during this 
phase, it is still a very important part of the bus integration techniques. The 
real-time data that is collected is used to validate all of the previous 
simulations that were performed. If the small set of documented real flight 
behavior matches that of the simulations of the same behavior, then the 
simulations of all other unverified activity can be r·~lied upon. For additional 
discussion on this topic, refer to chapters 8 and 9 of the "Handbook - Volume 
I" (Hitt 1983). 

5.4.5 FAA Certification and Bus Integration 

FAR Part 21 defines the general process that avionic~: manufacturers must follow 
for the FAA to certify that avionic systems meet the airworthiness standards and 
are in safe condition for flight. In other words, FAR Part 21 defines the 
requirements for the process, and Parts 23, 25, 27, 29, and 33 define the 
requirements for the product. To what extent do the certification process and 
airworthiness standards ensure that complex bus-integrated avionics are 
correctly integrated? Consider the four certification processes presented in 
chapter 3. 

5.4.5.1 Type Certification and Bus Integration 

Type certification requires the most thorough demonstration of compliance to 
the standards. One of the strengths of type certification is it requires that 
systems meet a standard of what constitutes airwor1:hiness. The manufacturer 
who develops systems under a TC must (Part 21, subpa1:t B) perform the following 
steps: 

179 



Submit a plan for the development, production, and verification of the 
product. 

"Make all inspections and tests necessary to determine compliance with the 
applicable airworthiness requirements" and to determine that the 
materials, parts, and processes conform to those specified in the type 
design. 

• Perform flight tests, as required by the FAA, to determine the reliability 
and proper functioning of the system to be approved. 

• Submit "the type design, test reports, and computations necessary to show 
that the product to be certificated meets the applicable airworthiness ... 
requirements." 

Allow FAA investigators to make any inspections, ground tests, and flight 
tests necessary for them to determine compliance with the requirements of 
the FARs. 

Submit a statement of conformity certifying that each product manufactured 
under the TC conforms to the type design. 

A TCed product cannot escape this process. 

Since the TC process assures that products are checked for compliance with the 
airworthiness standards, the strength of the type certification depends on the 
quality of the airworthiness standards. All four standards include the same 
general requirements for equipment in aircraft (Subpart F, section 1301): 

"Each item of installed equipment must -
(a) Be of a kind and design appropriate to its intended function; 
(b) Be labeled as to its identification, function, or operating 
limitations, or any applicable combination of these factors; 
(c) Be installed according to limitations specified for that 
equipment; and 
(d) Function properly when installed." 

This general requirement is comprehensive in requLrLng proper functioning. From 
design and installation to operation, it requires that a bus-integrated system 
be properly integrated. However, it makes no attempt to define proper 
functioning and specifies no form of assurance or demonstration that a product 
meets this requirement. 

What constitutes proper functioning is more specifically defined in section 1309 
of each airworthiness standard. To varying degrees, proper functioning means 
that the equipment "perform its intended function under any foreseeable 
operating condition" and, generally, hazards that could result from probable 
malfunction or failure must be minimized or prevented. Parts 23, 25, and 29 
specifically state that this latter requirement take into account the relation 
of systems to one another. This makes these regulations strong on integration. 
But Part 27, for normal category rotorcraft, does not state this. However, the 

180 



primary weakness of Part 27 lies in the requireme·ats for demonstration and 
analysis. 

Part 27, the airworthiness standard for normal category rotorcraft, does not 
require any specific use of analysis, inspections, or tests beyond that required 
to show compliance with the requirements. This leaves a lot of room for 
interpretation when establishing whether a bus-integrated avionic system meets 
the general requirement that it function properly when installed. It certainly 
does not point the developer in the direction of using integration techniques 
or following bus standards and guidelines. A stronger section 1309 is in order 
for more critical systems (Swihart 1984). Howev·~r, even if section 1309 
referred directly to the bus standards, these standal'ds are weak on integration 
issues. Thus, successful integration of bus communications is not assured for 
normal category rotorcraft by the current type certif:~cation and bus integration 
documents. 

Section 1309 of Parts 23, 25, and 29 specifies analysis and testing for the 
purpose of demonstrating compliance with the requirements for the probability 
of failure and for environmental conditions. They also specifically list that 
an analysis must consider possible failure modes, nultiple failures, failure 
effects, and fault detection. These requirements do much to ensure that 
integration concerns will be addressed and that integration techniques will be 
employed. For transport category aircraft, these activities are assured, since 
Parts 25 and 29 both require such analysis. For norrr.al category airplanes, the 
analysis is only suggested as an acceptable means of showing compliance. This 
is a weaker regulation; but in practice, developers m:ually follow the suggested 
means for showing compliance. Although these airworthiness standards are more 
specific about the use of analysis and testing than Part 27, the integration of 
bus communications still is not ensured, since the bus standards give insuffi
cient guidance on the integration issues. 

5.4.5.2 Supplemental Type Certification and Bus Inte~ration 

Supplemental type certification involves the second ntost thorough regulation of 
the manufacture and installation of avionic systems. The basic tenet of this 
certification process is that the redesigned system must satisfy all the same 
requirements as the TCed product into which it will be installed. Thus, similar 
to the TC process, the manufacturer of a system that is to receive an STC must 
perform the following steps (Part 21, subpart E): 

"Make all inspections and tests necessary to det:ermine compliance with the 
applicable airworthiness requirements" and to determine that the 
materials, parts, and processes conform to th)se specified in the type 
design. 

Allow FAA investigators to make any inspections, ground tests, and flight 
tests necessary for them to determine compliance with the requirements of 
the FARs. 

Submit a statement of conformity certifying that: each product manufactured 
under the STC conforms to the type design. 

181 



Although an STCed product cannot escape this process, the STC process does not 
go as far in checking compliance to the airworthiness standards as did the TC 
checking. In particular, the manufacturer is not required to repeat the flight 
tests. Since an applicant for an STC is not the manufacturer who holds the TC 
for the original product, relaxing the requirements is unjustified. One 
manufacturer who is changing another's design must be sure to understand the 
design at least as well as the original design team. Changing a design after 
the fact is a more demanding process than working out a new design. Despite 
this, the process tends to move the focus from requiring the applicant to 
substantiate the entire design to substantiating the compliance of just the 
redesigned system, where it is assumed that the rest of the product is not 
affected. 

Like the TC process, the STC process ensures that products are checked for 
compliance with the airworthiness standards. The strength of the supplemental 
type certification also depends on the quality of the airworthiness standards, 
as previously discussed. But the fundamental weakness of the STC process for 
bus-integrated avionics is that it seems to underestimate the ramifications of 
a second party altering a TCed product. 

5.4.5.3 Parts Manufacturer Approval and Bus Integration 

A PMA gives a manufacturer approval to produce aircraft parts for sale or 
installation on the basis that they conform to another manufacturer's TC or STC. 
This is a reasonable regulation, however, it allows an owner or operator of an 
aircraft to manufacture parts for use on their aircraft without obligation to 
this regulation of aircraft part manufacture. In this case, installation 
approval (FAA Form 337) is all that is required. Although an installation 
approval requires that the part being installed is the one required by design, 
no investigation is required to verify the design. This seems to be a major 
weakness in the process of ensuring safe aircraft. An operating airline may 
manufacture a bus LRU according to the type design and then be given permission 
to install it, without any requirement that anyone perform inspections and 
tests. This is not an acceptable regulation of the production of complex 
digital bus-integrated avionics. Detailed accountability is a necessity. 

When the parts are to be sold, the manufacturer's ability to build reliable 
parts is carefully examined. The regulations require that the manufacturer who 
desires to sell a part must perform the following steps (Part 21, subpart K): 

Identify the "product on which the part is to be installed." 

Submit the information necessary to show the design of the part. 

Submit the "test reports and computations necessary to show that the design 
of the part meets the airworthiness requirements" or that the design is 
identical to the original TCed part. 

• "Establish and maintain a fabrication inspection system." 

Allow FAA investigators to make any inspections or tests necessary for them 
to determine compliance with the FARs. 

182 

• 



• 

"Make all inspections and tests necessary to determine compliance with the 
applicable airworthiness requirements" and to determine that the materials, 
parts, and processes conform to those specified in the type design. 

"Determine that each completed part conforms to the design data and is safe 
for installation." 

These requirements are commensurate with those required to ensure that bus
integrated avionics are properly produced. They are almost as strict as those 
for type certification. The first point avoids the pr~blem that LRUs in digital 
systems are not 100 percent interchangeable, since thB single intended point of 
installation must be specified. In general, these requirements also do not 
assume that the new design produces the same result .s.s the type design. Thus, 
the manufacturer's design is reviewed and compared to the airworthiness 
standards, independent of the fact that the new design was to meet the type 
design. 

The PMA is weak because no flight tests are required, even though the part is 
a new design; no specific inspections and tests are suggested; and the 
airworthiness requirements can be avoided by showing the new part is identical 
in design to the original. If the airworthiness requirements are used as the 
standard, the weaknesses of the PMA are limited primarily to those associated 
with the airworthiness standards, as previously discussed (except for the lack 
of a required flight test). But, if the manufacturer chooses to only show that 
the design of the part is identical to the type design, a more serious problem 
is allowed to occur for bus- integrated avionics. An identical design would 
likely be limited to the requirements set forth by th3 bus standard. Since the 
bus standards generally do not sufficiently cover bus integration, too much 
leeway is allowed in determining whether a design is equivalent. 

5.4.5.4 Technical Standard Order Authorization and Hus Integ;ration 

A TSO Authorization gives a manufacturer approval to produce an aircraft part 
for sale or installation on the basis that it conforns to the minimum perform
ance standard for the part, as specified by a TSO. J~ manufacturer who desires 
to produce parts under a TSO Authorization must pe-rform the following steps 
(Part 21, subpart 0): 

Issue a statement of conformance to the FAR and the TSO. 

Submit the technical data required by the TSO. 

Submit a description of the quality control sys~:em. 

"Conduct all required tests and inspections anc. establish and maintain a 
quality control system." 

Allow FAA investigators to witness tests and inspect parts, processes, 
facilities, and files. 

183 



-~~~~---~-- ----- ----

This process is the weakest of the four. The TSO concept, that a part can be 
specified apart from its application, is contradictory to the design of parts 
that compose bus-integrated avionics. Furthermore, the bus standards do not 
provide a sufficient forum for producing a reliable TSO. In general, they do 
not provide an integration standard. Even apart from the integration issues, 
the bus standards leave too many requirements unspecified. A TSO that 
incorporates something like the ICDs published for a MIL-STD-1553 bus system 
could possibly provide the necessary integration criteria. 

The TSO Authorization is weak on checking that the manufacturer's design truly 
satisfies the minimum performance standard of the TSO. All that is required is 
a statement of conformance. The FAA investigators may request analysis, 
inspections, and tests, but none are specified as a matter of course. It is 
unreasonable to expect the new design to fulfill the requirements without a 
systematic engineering approach. As pointed out earlier, most of the bus 
standards are open to interpretation. There is no guarantee that two designs 
for the same bus-integrated avionics would produce the same result. 

The airworthiness issue is also inadequately addressed. It is left unaddressed 
by the TSO Authorization. The manufacturer need not be concerned with the 
airworthiness issue or the flight tests needed to substantiate it. The parts 
need only conform to a TSO. It is left to the installation process (FAA Form 
337) to determine whether a part with a TSO number may be installed. Yet, 

"when a system is installed in an aircraft it's often the first time 
TSO approved components can be tested for proper integration. This 
point in the certification process is often too late for the type of 
testing which would be required to demonstrate all combinations of 
system operation." (Williams 1989). 

Nevertheless, as pointed out before, the installation process does not 
investigate the design of the part and certainly not its impact on airworthi
ness. 

The FAA has responded to this problem by issuing ACs on some of the advanced 
integrated systems, like autopilot, TCAS, and multisensor navigation systems. 
The ACs require an additional approval, the Preliminary Installation Approval, 
under certain circumstances. This approval is achieved through an STC program 
for the integration of the system into a specific aircraft. The manufacturer 
must obtain the STC before producing the system for sale. The AC further 
specifies the conditions under which the purchaser must either undergo an STC 
evaluation or simpl~ apply for an installation approval. 

Another problem with the TSO Authorization is that manufacturers with a TSO 
Authorization are given substantial freedom for changing the design. The 
manufacturer may make minor changes to the design being used without any further 
approval from the FAA. This could be reasonable, depending on what is 
considered a minor change. However, it is left to the manufacturer to make the 
determination. The manufacturer can of course solicit an unofficial opinion 
from the ACO. If too much latitude is taken, the FAA will discover this in the 
next audit of the manufacturer's activity. In this case, the manufacturer risks 
the possibility of being fined by the FAA. 

184 



The manufacturer can also request a deviation from the requirements of the TSO. 
To be granted a deviation, the manufacturer must s'ttow that the deviation is 
compensated for by factors or design features that provide an equivalent level 
of safety. The means of showing compliance to this level of safety is 
unspecified. 

5.4.6 Summary 

Until bus standards are standardized in addressing the complete development 
process, it is not sufficient for a developer to claim that a developed bus 
satisfies the bus standard. Even when bus standards and guidelines are 
followed, the extent to which reliable communication has been achieved depends 
on the particular bus documentation. Some stan::lards barely address the 
integration problems. 

Furthermore, bus standards will never be able to ensure that any particular 
design is proper. The standards must, necessarily, leave room for application 
specific variations. Thus, CEs should expect that bus communications be 
developed and validated through a methodology wh:_ch includes most of the 
following techniques (Ashmore 1982, Bannister et al. 1982, Carter 1986, Earhart 
1982, Hitt and Eldredge 1983, Shimmin 1989, Spradlin 1983, VanBaal 1985, and 
Verdi 1980): 

Requirements Capture - Use a system that ensures that each requirement is 
captured by the design. A cross-reference mat1~ix to identify where each 
system requirement is satisfied in the system specification should result. 

Configuration Control - Use a system that tracks exactly what revision of 
which components constitute the latest approved configuration. 

Design Modeling - Model the design for the put·pose of choosing the best 
one for the system specification. 

Hazards Analysis - Determine the effect of system failures. 

F/FA - Determine the probability of each failure occurrence. 

Hot Bench Simulation Perform laboratory testing of LR.Us based on 
simulation of the environment. 

Iron Bird Simulation Perform testing of real-time operation on a 
simulation that uses as much as possible of the actual avionics and 
airframe. 

Flight Testing - Perform testing during actual flight of the aircraft. 

If levels of performance are set for specific tect.niques, such a systematic 
development can ensure proper operation for any application. Certification 
procedures and airworthiness standards need to go further to ensure that bus 
integration is accomplished according to a systematic engineering process 
involving analytical techniques. 

185 



6. CONCLUSIONS 

The data communication on serial data buses in aircraft has been analyzed from 
several different angles. The certification procedures have been reviewed to 
determine the certification activity that is performed on data buses. The 
regulations have been analyzed to identify the stipulations that avionic data 
buses must satisfy. The technology has been addres~:ed from several points of 
view to determine the areas that require careful att•~ntion, regulation, and/or 
certification. What are the main areas of concer~. for using data buses in 
aircraft? To what extent are these areas addressed by the current regulations 
and certification procedures? What improvements ar·a needed? The answers to 
these questions are summarized in this chapter. 

6.1 Certification Procedures for Bus- Integrated Sys·~ems 

The TC and STC processes are sufficiently robust to accommodate the complexities 
of current and emerging serial data bus technologiE~s. However, they do not 
currently address these technologies as specifically as necessary. The 
procedures leave the manufacturer and ACO free to mutually determine the 
specific analysis, tests, and documentation required to substantiate the safety 
of the aircraft being designed. They are even free to categorically accept data 
buses as safe, treating them as "simply a piece of wire." Data buses, however, 
are more than just wire and have failure modes that cannot be exercised by 
system level tests. Communications on bidirectional c.ata buses are sufficiently 
complex that the methods of demonstration should be carefully thought out, 
documented, and standardized by data bus experts. A standard that functions 
like RTCA/D0-178 does for software, is needed for Type Certification of bus
integrated systems. 

The Production Certificate situation is similar. The procedure appropriately 
requires the manufacturer to establish an approved production inspection and 
test system to ensure that each manufactured part: meets the type design. 
However, the procedure is not specific about what inspections and tests to use. 
This is inadequate, since manufacturers implement Vc.rious amounts of testing. 
For example, Earhart (1991) explains that, although MIL-STD-1553 buses have been 
designed and implemented for nearly 20 years, testing of LRUs is often 
insufficient because of fundamental misconceptions, :>uch as the following: 

"Validation testing is not necessary if validated components are used to 
build the RT." 

"Because the [bus J interface board was validat.ad in one LRU, validation 
testing isn't necessary on subsequent LRUs." 

"Validation testing is not necessary because the LRU has been operating in 
the system." 

A formal bus testing standard should be adopted by the industry for each avionic 
bus to ensure that tested systems truly are reliable. Furthermore, the 
reliability of integrated systems is not ensured by tasts of system components. 
Installation approvals need to include integration testing. 

187 



------------ --------------- -- -------- ----------------

The procedure specified for a TSO Authorization inadequately addresses approval 
of bus-integrated systems, since it allows approval of a component independent 
of the system into which it will be installed. The FAA is making interim 
provisions through special ACs. For the long term, either the procedure should 
be formally made more robust, or integrated systems should not be eligible for 
this approval. 

The current certification procedures have successfully supported the certifica
tion of nonessential systems using data buses. They have also been used to 
support the certification of bus-based essential systems backed up by conven
tional means. Most of this experience is with unidirectional buses, but some 
of it involves bidirectional buses used to a limited extent. To date, no 
civilian aircraft accidents are known to be due to data bus failure. 

As bidirectional data buses 
relied upon in fly-by-wire 
identify the steps necessary 

are used for essential and critical systems and 
aircraft, the procedures need to specifically 

for ensuring reliable data bus operation. 

6.2 Related Regulations and Standards 

There is no specific approach for certificating systems containing digital data 
buses and integrated avionic equipment. As a result, the CE must consult many 
sources for information concerning any affects a data bus might have on a 
flight-critical or flight-essential system. To further complicate the problem, 
the sources must be related to broad federal regulations. 

The AIAA, IEEE, and other organizations produce publications which address 
technical requirements for avionic systems integrated with data buses. Since 
current certification methods do not consider systems at the bus's level, these 
publications could be useful for establishing new certification procedures. 
Test procedures within the publications may ensure that particular interactions 
between a system and a data bus are not overlooked during a system's certifica
tion. 

RTCA and SAE committees work towards making an avionics system easier to 
certify. Standards produced by these organizations may be used as part of the 
manufacturer's design process, or as informal guidelines to meet specific FARs, 
ACs, or SCs. 

ARINC and GAMA also work with manufacturers to produce standards for avionic 
equipment and data buses. The standards include specifications of data bus 
topologies and protocols, as well as tests which data bus manufacturers can use 
during the development process. Because the standards contain specific 
technical information about data buses, they are also useful for system 
certification. 

Chapter 4 related current FARs to procedures defined by the above organizations. 
It is also useful for developing a certification process applicable to 
integrated avionic equipment and data buses. The new procedure for certifica
tion should consider information from a variety of sources and treat every 
integrated system separately. Whether a new certification process is developed, 

188 



or current methods refined, a successful procedure shl)uld perform a thorough V&V 
on all aspects of flight-critical and flight-essential systems. 

6.3 Bus-Integrated Systems Technology 

6.3.1 System Integration Concerns 

There is no one factor that can satisfy all of the requirements for data buses 
used in flight-critical systems. The accurate and ti.mely delivery of data from 
the source to the destination demands that the data bus exhibit a mixture of 
attributes. The architecture needs to control data latency. Physical 
redundancy needs to be carefully considered and implemented. Protocols must 
ensure periodic, deterministic, simple, error-free, and efficient communication. 
Other attributes, such as maintenance and monitoring, are implemented at the 
discretion of the designers and system integrators. This implementation 
requires careful and detailed consideration in the design phase and should not 
be treated as an afterthought. 

The system designer or system integrator is tasl<:ed with many integration 
decisions. Using standards that are not completely specified, or are unclear 
in certain areas, creates problems which might escape detection. Seeking to 
resolve any ambiguity at an early stage will ensure a more successful integra
tion period. 

The system integrator should not merely be concerned with having an operational 
system, but a system that operates correctly under all conditions. Exhaustive 
monitoring, recording, and reporting of data bus activity is the only way to 
ensure that data bus integrity is maintained. 

6.3.2 Bus Hardware-Software Interaction 

Hardware-software interaction between a BIU and an ~rionic system can be easily 
overlooked during a system's certification process. Integration has taken data 
buses to a new level, sometimes concealing what functions are implemented with 
hardware and what functions are implemented with software. Section 5. 2 
discussed hardware-software interaction between digital data buses and avionic 
systems. Special attention was given to the BIU IC and the host system CPU's 
interface. 

To analyze hardware-software interaction at this level, section 5.2 discussed 
data integrity problems that arise when a bus and avionic system pass data. 
Common errors which occur during bus hardware-software interaction include 
parity, framing, and overrun errors. Other errors more specific to certain 
buses, are timing and interrupt handling errors. All of these errors could 
result from dynamic conditions within the BIU or CPU, or from the system's 
design. 

Regardless of the type, any undetected error can ha,•e a catastrophic effect on 
its system. For this reason, section 5.2 presented methods of error detection 
and correction. These methods included monitoring, voting, retransmission for 
after the fact correction, prevention, and redundancy. Any of the methods can 
be applied at the hardware-software interface. 

189 



------------------------------

Practical solutions for hardware-software interaction problems were presented 
in the final part of section 5.2. Although some of the solutions were designed 
by manufacturers of military aircraft, they are applicable to civilian aircraft 
as well. Detection and correction methods are a key part of the solutions. 
Section 5.2 demonstrated how some of the solutions are implemented. 

6.3.3 Bus Protocol Specification and Analysis 

One particular area that requires careful attention from the designer is the 
communication protocol. Since protocol specifications must be both concise and 
easy to understand, formal techniques are used for protocol specification. 
Formal techniques should be used to model and define protocols and to analyze 
the correctness and proper operation of the protocol. 

With a shift from unidirectional to bidirectional data buses, the access 
protocol assumes an added degree of complexity. Since protocols may be 
implemented in hardware rather than software, the protocol should be subjected 
to rigorous scrutiny before it becomes "buried" in the hardware. The protocol 
specification and analysis should be performed as carefully as it is for a 
software-implemented protocol. 

6.3.4 Bus Integration Standards. Guidelines. and Techniques 

The integration of LRUs from various sources to form a system implies that there 
exists a central specification to which each manufacturer can design. The 
digital data buses provide this specification. The buses used to integrate the 
various LRUs on the market are designed according to a published industry 
standard for each bus. However, these standards primarily specify the operation 
of a single bus interface, rather than an entire integrated system. The system 
integration is mostly left in the hands of the system designer. As a result, 
when these systems are certificated, there is no standard by which to judge the 
applicant's claim that the system meets the airworthiness standards. 

The airworthiness standards require analysis and testing, but bus integration 
standards need to be formally published by the industry to provide direction on 
these topics. These standards should specify the values and tolerances of all 
constant parameters. 

Bus integration guidelines should be published to control the flexible aspects 
of a bus. These guidelines should provide formulas or formal procedures for 
deriving reliable values for variable parameters. In addition, these standards 
need to specify component and system tests designed to exercise the full scope 
of significant failure modes. Some of the bus standards specify component 
tests, but none address system tests. 

The standards, guidelines, and test procedures that have been developed for the 
MIL-STD-1553 bus come close to providing a model for bus standards and 
integration guidelines. The standard for individual LRUs is flexible, yet 
specific. Numerous integration guidelines are provided. The documents for 
civilian avionic buses would be greatly improved if their specifications and 

190 



procedures were patterned after those of the military bus; and would be complete 
if integration standards were added. 

Techniques for systematic, analytical design and analysis also need to be 
formally incorporated into the certification requirements. Techniques exist 
which can improve the reliability of bus-based digital systems, but they are not 
presently part of the bus standards or the certification procedures. These 
should be formally recommended in these documents for the development of bus
based systems. 

6.3.5 FAA Certification and Bus Integration 

The buses associated with integrated avionics currently in use have been 
certificated implicitly as part of the system that uses them. Thus, they are 
naturally certificated in an integrated environment. This has been sufficient 
for unidirectional and bidirectional buses used in nonessential systems. As 
bidirectional buses are fully used in essential and critical systems, the bus 
integration issues will need to be explicitly analyzed and tested. 

The airworthiness standard for normal category rotorcraft, as specified in FAR 
Part 27, is particularly weak on bus integration issues since it does not 
require any specific analysis and testing, as do the other airworthiness 
standards. Although the other standards (Parts 22, 25, and 29) do require 
specific analysis, the industry provides very few guidelines on how to perform 
the bus analysis and testing required. Thus, even though the certification 
requirements are fairly strong for these categories of aircraft, there is no 
guarantee that the implementation is meaningful. The TC and STC procedures, 
which rely on these airworthiness standards, need to specify standards and 
guidelines that may be followed as an acceptable means for showing compliance 
to the airworthiness standards. This may be done either by reference or 
inclusion. 

The STC procedure is weakened even further on integration concerns, since it 
allows a manufacturer to make a change to another's design without resubstan
tiating the entire design. Only the changed aspectB need to be shown to meet 
the airworthiness standard. This would be a reasonable allowance to make for 
the manufacturer who designed it, but not for another·. Another manufacturer is 
more likely to overlook the full ramifications of a change than would the 
original designer. This situation needs to be closHly examined to see if the 
development of a bus- integrated system is adequately examined under an STC 
approval. 

The PMA covers the production of bus-integrated systems fairly well, but it 
relies heavily on the completeness of design specifications for ensuring that 
manufactured parts are reliable. Currently, the bus Btandards are too ambiguous 
for that to be a safe approach. Integration analysis, ground tests, and/or 
flight tests should be considered for every installation of a bus-integrated 
system. Alternatively, bus integration standards could be developed that are 
sufficiently specific that successful integration of a manufactured part could 
be more easily ensured. 

191 



--------~ 

The TSO Authorization regulations currently do not address integration at all. 
The regulations assume that systems developed under a TSO Authorization are 
interchangeable. This is not realistic for complex bus architectures and 
protocols. The FAA is taking steps to rectify this situation. 

To sufficiently address the integration of systems with data buses, the industry 
needs to develop a comprehensive suite of documentation on each data bus. This 
documentation needs to include a thorough standard that includes test procedures 
and criteria for single LRUs and an integration standard that includes system 
specifications, tests, and guidelines. In addition, the FAA regulations need 
to adopt these standards as specifying an acceptable means for showing 
compliance with the airworthiness requirements for safe operation. 

6.4 Summary 

Improvements needed to support the certification of flight-essential and 
flight-critical systems that use data buses have been identified, as follows: 

The certification procedures of FAR Part 21 need to consistently require 
that integrated systems, rather than components, be certificated. 

The airworthiness standards of FAR Parts 23, 25, 27, 29, and 33 need to 
consistently require analysis and testing of equipment, systems, and 
installations, particularly in an integrated configuration. 

ACs should be published to establish formal guidelines for the specifica
tion, design, analysis, and testing of bus protocols and hardware. 

Bus standards need to be adopted by ACs as informal guidelines, specifying 
an acceptable means for showing compliance to the FARs. 

Bus standards need to specify a complete system engineering methodology for 
the specification, design, analysis, and testing of bus protocols and 
hardware, from the component to the system level. 

Specific analysis techniques need to be adopted by ACs as informal 
guidelines for bus analysis. 

192 

,. 



APPENDIX A - FEDERAL REGULATIONS SUMMARY 

Avionic system manufacturers consult the Federal Aviation Regulations (FARs) 
during a system's design process. The FARs specify requirements that must be 
met by the manufacturer before the system is considered airworthy. Military 
aircraft do not have to meet these requirements. FAR Part 23 gives standards 
for normal, utility, and acrobatic category airplan~s. while Part 25 contains 
standards for transport category airplanes. Part 27 contains standards for 
normal category rotorcraft, and Part 29 contains standards for transport 
category rotorcraft. FAR sections 23.1309, 25.581, 25.1309, 27.1309, 29.1309, 
33.75, and 33.91 are of primary concern for data buses and integrated avionic 
equipment. 

Table A-1 lists FAR sections and Advisory Circulars (ACs) discussed in section 
4.2, along with their titles. Key points of each are presented in the following 
sections. 

TABLE A-1. FEDERAL REGULATIONS APPLICABLE TO DIGITAL AVIONIC EQUIPMENT 

1 Regulation Title 

Section 23.1309 Equipment, Systems, and Installc:.tions 

Section 25.581 Lightning Protection 

Section 25.1309 Equipment, Systems, and Installc:.tions 

Section 27.1309 Equipment, Systems, and Installations 

Section 29.1309 Equipment, Systems, and Installations 

Section 33.75 Safety Analysis 

Section 33.91 Engine Component Tests 

AC 20-115A RTCA/D0-178A 

AC 20-136 Protection of Aircraft Electrical/Electronic 
Systems Against the Indirect Effects of Lightning 

AC 21-16C RTCA/D0-160C 

AC 23.1309-1 Equipment, Systems, and Installations in Part 23 
Airplanes 

AC 25.1309-lA System Design and Analysis 

193 



A.l Federal Aviation Regulation Section 25.581 

FAR Part 25, section 581, is devoted to lightning protection. 
part does not go into much detail, it expresses concerns 
lightning effects on integrated avionic equipment, as follows: 

Although this 
about indirect 

FAR 25.58l(b)(2) states that equipment should be designed so a strike will 
not endanger the airplane. 

FAR 25.58l(c)(2) states that compliance may be accomplished by "incorpor
ating acceptable means of diverting the resulting electrical -current so as 
not to endanger the airplane." 

For data buses and their associated components, direct lightning effects are not 
a concern. FAR Parts 27 and 29, section 610, state the same lightning 
requirements for transport and normal category rotorcraft. 

A.2 Federal Aviation Regulation Sections 23.1309, 25.1309, 27.1309, and 29.1309 

These sections address equipment, systems, and installations. They point out 
the requirements each should meet. Section 23.1309 addresses normal, utility, 
and acrobatic airplanes and section 25.1309 addresses transport category 
airplanes. 

FAR 23.1309(b)(l) states that each item of equipment, each system, and each 
installation must be designed so it performs its intended function under 
any foreseeable operating condition. 

FAR 25.1309(a) contains a similar statement for transport category 
airplanes. 

These particular FARs also discuss failure conditions which could inhibit the 
continued safe flight and landing of the aircraft. 

FAR 23 .1309(b) (2) (i) and 25.1309 (b) (1) state "the occurrence of any failure 
condition that would prevent the continued safe flight and landing of the 
airplane must be extremely improba?le." 

FAR 23.1309(b)(2)(ii) and 25.1309(b)(2) state "the occurrence of any other 
failure condition that would (significantly [Part 23 only]) reduce the 
capability of the airplane or the ability of the crew to cope with adverse 
operating conditions must be improbable." 

Requirements of this nature can be met by analysis, and ground, flight, and 
simulator tests. Sections 23.1309(e) and 25.1309(g) further explain how to 
comply with the requirements of Parts 23 and 25. 

FAR 23.1309(e) states that "in showing compliance with this section with 
regard to the electrical power system and to equipment design and 
installation, critical environmental and atmospheric conditions, including 

194 



radio frequency energy and the effects (both direct and indirect) of 
lightning strikes, must be considered." 

FAR 25.1309(g) states that in showing compliance with the requirements for 
equipment, systems, and installation design, "critical environmental 
conditions must be considered." Consideration includes design analysis or 
reference to previous comparable service on othe:r aircraft. All equipment, 
except that which is covered by a Technical Standard Order (TSO), is 
subject to these requirements. 

Both FAR Parts, section 1309, mention that compliance can be shown by referenc
ing previous comparable service experience on other aircraft. 

FAR Parts 27 and 29 contain the same type of requirements for normal and 
transport category rotorcraft. All systems employing data buses are subject to 
these requirements. 

ACs 20-115A, 20-136, 21-16C, 23.1309-1, and 25.13051 -lA were published by the 
Federal Aviation Administration (FAA) to help the manufacturer comply with FAR 
sections 25.1309(b), (c), and (d), and FAR section 23.1309. 

A.3 Advisory Circular 20-115A 

AC 20-115A describes how Radio Technical Commission for Aeronautics (RTCA)/D0-
178A is used in connection with TSO, Type Certific.:~.te, and Supplemental Type 
Certificate authorizations. Since data bus systems may utilize software, and 
can be transparently certificated under these authorizations, this AC is 
applicable. No procedures or guidelines are pointE!d out in this AC; it only 
says that RTCA/D0-178A may be used as a means of securing FAA approval of 
systems which contain digital computer software. RTCA/D0-178A can be used to 
satisfy FAR Parts 23, 25, 27, and 29 for software. 

A.4 Advisory Circular 20-136 

AC 20-136 was published by the FAA to help the manufacturer satisfy FAR Parts 
23, 25, 27, and 29; sections .581, .610, .867, .901, .903, .954, .1301, .1309, 
and .1431. It shows how a manufacturer can deal with the hazards of a lightning 
environment. 

The AC points out lightning hazards that indirectly affect external and internal 
equipment. Manufacturers who wish to achieve compliance with the FAA's 
lightning requirements should note AC 20-136, figure 2. This figure is a 
flowchart, and shows the manufacturer generally what they have to do to satisfy 
the lightning requirements. 

A.5 Advisory Circular 21-16C 

AC 21-16C shows the relevance of RTCA/DO -160C for satisfying environmental 
conditions for TSO authorizations. Since digital equipment is sometimes 
certified under TSOs, this AC is applicable to the (:.ertification procedure for 
data buses. No procedures or guidelines are pointe:d out in this document; it 

195 



only states that RTCA/D0-160C may be used in lieu of the corresponding TSO 
conditions and procedures under certain conditions. 

A.6 Advisory Circulars 23.1309-1 and 25.1309-lA 

AC 23.1309-1 and AC 25.1309-lA give specific failure analyses procedures for 
meeting the requirements of FAR sections 23.1309 and 25.1309(b), (c), and (d). 
Also included in AC 25.1309-lA, is the FAA's fail-safe design concept, as 
follows: 

• "In any system or subsystem, the failure of any single element, component, 
or connection during any one flight ... should be assumed ... Such single 
failures should not prevent continued safe flight and landing, or 
significantly reduce the capability of the airplane or the ability of the 
crew to cope with the resulting failure conditions." (AC 25.1309-lA, 1988). 

Failure condition analysis and design procedures are also presented in AC 
25.1309-lA. Brief examples of each are presented below: 

Functional Hazard Assessment (FHA) This technique identifies and 
classifies potentially hazardous failure conditions. FHA describes the 
failure conditions in functional and operational terms. FHA is often used 
by manufacturers as a tool to help determine the acceptability of a design 
concept or design changes, identify potential problem areas, or determine 
the need and scope of any additional analyses. 

Latent Failure Detection - "A latent failure is one which is inherently 
undetected when it occurs. A significant latent failure is one which 
would, in combination with one or more other specific failures or events, 
result in a hazardous failure condition." (AC 25 .1309-lA, 1988). The 
frequency with which a device is checked for latent failures directly 
affects the probability of latent failures and should always be kept in 
mind. Failure monitoring and warning systems assist with latent failure 
detection. 

• Analysis of Minor Failure Conditions - An FHA is complete if it shows that 
system failures would cause only minor failure conditions. If the system 
contains only minor failure conditions, the design practice is to 
physically and functionally isolate the system from other systems. 

Analysis of Major Failure Conditions - Major failure conditions must be 
shown to be improbable. Failures that are more severe than others should 
have smaller probabilities than those that are less severe. Analysis of 
major failure conditions, as described in AC 25.1309-lA, paragraph 7f, is 
usually sufficient. Qualitative compliance may be shown by a Failure Mode 
and Effects Analysis. A quantitative analysis may be necessary for a more 
severe failure condition. 

Analysis of Catastrophic Failure Conditions Catastrophic failure 
conditions must be shown to be extremely improbable. Here, a very thorough 
safety analysis is necessary. Considerations in AC 25.1309-lA, paragraphs 

196 



7c and 7e, should always be taken into accoun·~. The assessment usually 
includes both qualitative and quantitative analysis. 

An assessment to identify and classify failure conditions is usually qualita
tive. An analysis may range from a report that i.nterprets test results or 
compares two systems, to an analysis that includes runnerical probabilities. In 
any case, the analysis should show that the system and its installation can 
tolerate failures to the extent that major failure conditions are improbable and 
catastrophic failure conditions are extremely improbable. AC 23.1309-1 
discusses similar procedures for normal, utility, and acrobatic category 
airplanes. 

197 



APPENDIX B - DYNAMIC TIME SLOT ALLOCATION PROTOCOL 

The operation of the Dynamic Time Slot Allocation (:)TSA) protocol is based on 
time allocations being preassigned to all bus users. Each user is guaranteed 
that during its time slot, under error-free conditions, it will have an 
opportunity to access the bus. This access method lends itself to a high bus 
efficiency, even under heavy loading conditions. A simple state diagram for the 
DTSA protocol is given in figure B-1. 

MESSAGE ARRIVES 
AND COUNT IS NOT 

COMPLETED 

MESSAGE IS 
COMPLETELY 

RECEIVED 

COU'ITIS 
COMPLETED 
AND BUS IS 
AVAILABLE 

MESSAGE IS 
COMFLETELY 

TRAN!)MITTED 

FIGURE B-1. DTSA ACCESS PROTOCOL STATE DIAGRAM 

Under normal operation, one bus user will be in the 1:ransmit state and all other 
bus users will be in the receive state. After the transmitting user is 
finished, it and all the receiving users go into a count state to determine 
which can access the bus next. The amount of time each user must wait to send 
a message is determined by the following relationship (Porter, Couch, and 
Schelin 1983): 

where 

if n>m 

if ~m 

wait time for user m 
count duration (based on maximum propagation delay) 
address of user performing computatton 
original address of last transmission 
maximum number of users 

199 



As seen in the state diagram, each user fluctuates between the "count" state 
and "receive" state, or the "count" state and the "transmit" state. When a 
transmission is received from the bus, the user switches from the "count" to the 
"receive" state and then back to the "count" state when reception is complete. 
When a new transmission is received, each user decrements its counter. If user 
number four is in the count mode and then receives a transmission from user 
number two, user number four computes the time until it can originate a 
transmission, Tc = n-m, or two units of time. The sequence for four users is 
given in table B-1. 

TABLE B-1. DTSA USER ACCESS SEQUENCE 
(Porter, Couch, and Schelin 1983) 

Address of Address of Number of Tc Times 
Terminal Performing Last Terminal in Terminal Must Wait in 

Calculation Transmit Mode Count Mode Before 
(n) (m) Transmitting 

n - m if n > m 
N + n - m if n ~ m 

1 1 4 
2 1 1 
3 1 2 
4 1 3 

1 2 3 
2 2 4 
3 2 1 
4 2 2 

1 3 2 
2 3 3 
3 3 4 
4 3 1 

1 4 1 
2 4 2 
3 4 3 
4 4 4 

SEQUENCE REPEATS 

If a user does not have data to send when its count duration decrements to zero, 
the bus interface simply sends a status message without involving the host 
central processing unit. This maintains a constant timing and access sequence 
for the protocol. 

200 



The timing diagram for different numbers of active users is given in figure B-2. 
Note that the frame time, TF, which is defined as the time from the start of user 
number one time slot to the next start of user number one time slot, varies 
based on the number of active users and the length of messages being sent on the 
bus. 

As seen by examination of the DTSA, time slot protocols exhibit greater 
throughput and shorter wait times during periods of heavy loading than does a 
Carrier- Sense, Multiple Access protocol. Also, for cases where the average 
access times of both protocols are approximately the same, DTSA provides the 
shortest maximum wait time (Porter, Couch, and Schelin 1983). 

ACI'IVE ~ TF ~ .....j ~ Tc 
TERMINALS 

I L I I Ct It 1 1 1 
!ONLY I I I I I I 

~ 
T .....j F 

I 1 I I 2 I 1 l I 2 
1AND2 I I I I 

~ TF .. ~ 
I 1 I I 2 I I 3 I, I 1 I I 2 

1, 2,AND3 

~ TF .....j 

I 1 I I 2 II 3 I [ 4 I I 1 
1, 2, 3, AND4 

FIGURE B-2. DTSA ACCESS PROTOCOL USER TIMING 

201 



APPENDIX C - HIGH-LEVEL DATA LINK CONTROL PROTOCOL 

The High-Level Data Link Control (HDLC) protocol was defined by the Internation
al Standards Organization for the purpose of replacing character-oriented 
protocols. It is a bit-oriented protocol which may be broken into three main 
categories for better understanding: 

• The bit stream 

• Transmission format 

Station-to-Station cooperation 

C.l The Bit Stream 

Since HDLC is a bit-oriented protocol, data at the physical layer of the Open 
Systems Interconnect Basic Reference Model appears simply as part of the bit 
stream. This bit stream includes information which may be added by a higher 
layer (e.g., network or transport layer). It is then necessary to define t~e 
beginning and end of the data bit stream. This is clone by using a flag at th) 
beginning and end of the sequence. The entire bit stream is referred to as a 
frame. 

The bit sequence that defines an HDLC frame is 0 1 1 1 1 1 1 0. This unique bit 
sequence appears only at the beginning and end of the frame. When data are sent 
using the HDLC protocol, the transmitter will te:st for the occurrence of 
consecutive ones. When five ones in a row are found, the transmitter will 
automatically insert a zero for the next bit. At the receiver, if there is a 
bit stream of five ones detected, the sixth bit is dropped. 

C.2 Transmission Format 

Any information sent using the HDLC protocol uses the format shown in figure 
5.1-7 of this report. Normally, the address and control fields are each eight 
bits in length. The address field may contain thn address of the sender or 
receiver, depending on the particular configuration. A broadcast mode is 
implemented by using all ones in this field. Groups of users, or stations, may 
be assigned a particular address to which they ar~~ to respond, called group 
addresses. Extended addressing may be used by se1:ting the last bit in this 
field to a zero. In this case, the address field can be extended by multiples 
of eight bits. 

There are three kinds of frames defined for HDL<;: Information frames (I 
frames), Supervisory frames (S frames), and Unnumbered frames (U frames). The 
formats of these frames are given in table C-1. I frames are used in data 
transfer to maintain a sequential flow of related information; S frames are used 
for data control, to acknowledge or reject messages from the sender; and U 
frames are used for control purposes. They are used to implement initializa
tion, disconnection, polling, and other functions (ranenbaum 1981). 

203 



Frame Type 

I 

s 

u 

TABLE C-1. HDLC CONTROL FRAMES 
(Meijer and Peeters 1982) 

MSB Bit Significance 

8 I 7 I 6 5 4 I 3 

Receive Count N(R) P/F Send Count 

Supervisory 
Receive Count N(R) P/F Type S 

Modifier Ml P/F Modifier M2 

LSB 

2 1 

N(S) 0 

0 1 

1 1 

In table C-1, N(R) and N(S) refer to the number of I frames which are received 
or sent, respectively. All stations maintain counters for these variables. 
They are used to keep the frames in proper sequence. The sender increases the 
N(S) bit field by one for each I frame it sends, and the receiver increases the 
N(R) field by one for each I frame it acknowledges. These three-bit fields 
allow for only seven unacknowledged frames (Meijer and Peeters 1982). 

When a sender polls another bus user, the sender sets this Poll bit. The 
receiver replies with a response frame and sets the F, or Final, bit. The S bit 
field indicates different types of supervisory frames. Ml and M2 are modifier 
bits for the Unnumbered frames. These bits are used to define the various 
control commands used by the HDLC protocol (Tanenbaum 1981). 

The Frame Check Sequence field in figure 5.1-7 of this report is a method for 
checking the validity of the received frame. It is actually a Cyclic Redundancy 
Check (CRC) inserted in the message by the sender based on the generator 
polynomial X16 + X12 + X5 + 1. If a CRC error is detected by the receiver, the 
entire frame is discarded and some form of error recovery should be exercised. 

Combined stations can send both command frames and response frames. The 
difference between the two types of frames will be in the address bit field. 
If the address is the station's own, then the frame is a response frame; 
otherwise it is a command frame. In unbalanced operation, a frame sent by a 
primary station is always a command frame, and that sent by a secondary station 
is always a response frame. 

204 



APPENDIX D - CHECKLIST FOR ANALYSIS OF DATA BUS HARDWARE AND SOFTWARE 

Avionic manufacturers who wish to evaluate their systems may use the checklist 
provided in table D-1. The checklist should not he the only means used to 
evaluate these systems. It is merely a starting poittt for ensuring that single 
failures are adequately addressed. The checklist could be used in conjunction 
with a Failure Mode and Effects Analysis or other m:=!thod described in section 
5.4 of this report. 

I 

I 

TABLE D-1. CHECKLIST FOR ANALYSIS OF BUS HMtDWARE AND SOFTWARE 
(Bunce 1980) 

System Failure Mode 

Is the failure detected by the system, LRU, CPU, or YES [ l NO 
BIU? 

Does the CPU's software detect this failure? YES [ l NO 

Does the BIU's hardware annunciate this failure to YES [ l NO 
the CPU's software? 

Does the CPU's software provide effective methods for YES [ l NO 
dealing with this failure? 

If the CPU's software cannot correct the error, will YES [ l NO 
other hardware within the BIU or LRU? 

Will the failure cause either HW or SW to overload YES [ l NO 
the other? 

If the failure mode is introduced into other sw YES [ l NO 
logic, will other functions be affected? 

Is the system able to handle more than one of these YES [ l NO 
failures at a time? 

Is reconfiguration of the system, by either the YES [ l NO 
system itself or the crew, necessary? 

Explanations/Comments: 

Necessary Changes: 

205 

[ l 

[ l 

[ l 

[ l 

[ l 

[ l 

[ l 

[ l 

[ l 

I 



BIBLIOGRAPHY 

"Addendum to the MIL-STD-1553 Multiplex Application Handbook," Air Force Systems 
Command, Wright-Patterson Air Force Base, OH, M.:1rch 1983. 

Advisory Circular No. 21-16C, "Radio Technical Commission for Aeronautics 
Document No. D0-160C," U.S. Department of Transportation, Federal Aviation 
Administration, February 14, 1990. 

Advisory Circular No. 21-303 .lA, "Certification Procedures for Products and 
Parts," U.S. Department of Transportation, Feder.sl Aviation Administration, 
August 10, 1972. 

Advisory Circular No. 23-1309.1, "Equipment, Systems and Installations in Part 
23 Airplanes," U.S. Department of Transpor·:ation, Federal Aviation 
Administration, September 19, 1989. 

Advisory Circular No. 25-1309.1A, "System Design and Analysis," U.S. Department 
of Transportation, Federal Aviation Administrat:Lon, June 21, 1988. 

Advisory Circular No. XX-XX, "Certification of Aircraft Electrical/Electronic 
Systems for Operation in the High Intensity Radiated Fields (HIRF) 
Environment," U.S. Department of Transportation, Federal Aviation 
Administration, Draft 14, December 10, 1991. 

AE-12, MIL-STD-1553 Databus Systems Integration Handb~ok, Society of Automotive 
Engineers, Warrendale, PA, 1991. 

AGARD Conference Proceedings, "Design for Tactical P..vionics Maintainability," 
AGARD-CP-361, Advisory Group for Aerospace Research and Development, 
Neuilly Sur Seine, France, October 1984. 

AGARD Conference Proceedings, "Fault Tolerant Design Concepts for Highly 
Integrated Flight Critical Guidance and Control Systems," AGARD-CP-456, 
Advisory Group for Aerospace Research and Development, Neuilly Sur Seine, 
France, April 1990. 

AGARD Conference Proceedings, "Tactical Airborne I:istributed 
Networks," AGARD-CP-303, Advisory Group for Aerospace 
Development, Neuilly Sur Seine, France, October 1981. 

Computing and 
Research and 

AGARD Lecture Series, "Computing Systems Configuratj_on for Highly Integrated 
Guidance and Control Systems," AGARD-LS-158, Advisory Group for Aerospace 
Research and Development, Neuilly Sur Seine, Fr.snce, June 1988. 

AGARD Lecture Series, "Systems Engineering," AGARD-LS-164, Advisory Group for 
Aerospace Research and Development, Neuilly Sur Seine, France, May 1989. 

207 



AIR 1189, Airborne Internal Interface Standards for Moderate Bit Rate Digital 
Time Division-Multiplex Systems, Society of Automotive Engineers, 
Warrendale, PA, March 1972. 

AIR 1207, A Primer of Aircraft Multiplexing, Society of Automotive Engineers, 
Warrendale, PA, January 1972. 

AIR 4271, Handbook of System Data Communications, Society of Automotive 
Engineers, Warrendale, PA, November 1, 1989. 

AIR 4288, Linear Token Passing Multiplex Data Bus User's Handbook, Draft 4 of 
Issue 1, Society of Automotive Engineers, Warrendale, PA, April 1991. 

AIR 4289, Handbook for the SAE AS4074.2 High Speed Ring Bus, Issue 5, Society 
of Automotive Engineers, Warrendale, PA, April 1990. 

AIR 4291, Test and Validation Plan for the SAE AS4074.2 High Speed Ring Bus 
Interface Module, Issue 1, Draft 3, Society of Automotive Engineers, 
Warrendale, PA, April 1991. 

American National Standard for Information Systems, "Fiber Distributed Data 
Interface (FDDI) - Token Ring Media Access Control (MAC)," ANSI X3 .139-
1987, American National Standards Institute, New York, NY, 1987. 

American National Standard for Microprocessor Bus Structures, "IEEE Standard for 
Multiplexed High-Performance Bus Structure: VSB," ANSI/IEEE 1096-1988, 
Institute of Electrical and Electronics Engineers, New York, NY, 1989. 

ANSI/ISA-RP55 .1, "Hardware Testing of Digital Process Computers," Instrument 
Society of America, Research Triangle Park, NC, May 5, 1983. 

ARD 50004, Open System Interconnection (OSI) and Other Reference Models User 
Perspectives for Real Time Applications, Society of Automotive Engineers, 
Warrendale, PA, September 25, 1989. 

"ARINC 429 Bus Interface Line Driver Circuit," HS-3182 Data Sheet, Harris 
Semiconductor, Melbourne, FL. 

"ARINC 629 Communication Integrated Circuit," National Semiconductor Corpora
tion, Sunnyvale, CA, October 24, 1990. 

"ARINC 629 Symposium View Foils," Boeing Commercial Airplane Company, Seattle, 
WA, March 23, 1991. 

"ARINC 629 User's Manual," Boeing Commercial Airplane Company, Seattle, WA, July 
26, 1990. 

ARINC Project Paper 617, "Guidance for Avionic Certification and Configuration 
Control," Draft 4, Aeronautical Radio, Inc. , Annapolis, MD, December 12, 
1990. 

208 



ARINC Project Paper 629, "Multi-Transmitter Data Bus, Part 2 - Applications 
Guide," Draft 1, Aeronautical Radio, Inc., Annapolis, MD, January 26, 1989. 

ARINC Project Paper 629, "Multi-Transmitter Data Bus, Part 3 -Data Standards," 
Draft 4, Aeronautical Radio, Inc. , Annapolis, MD, March 10, 1989. 

ARINC Project Paper 651, "Design Guidance for Integrated Modular Avionics," 
Draft 5, Aeronautical Radio, Inc., Annapolis, MD, August 1, 1990. 

ARINC Specification 429-12, "Mark 33 Digital Information Transfer System 
(DITS)," Aeronautical Radio, Inc., Annapolis, MD, July 1, 1990. 

ARINC Specification 600-7, "Air Transport Avionics Equipment Interfaces," 
Aeronautical Radio, Inc., Annapolis, MD, January 1987. 

ARINC Specification 607, "Design Guidance for Avioni·~ Equipment," Aeronautical 
Radio, Inc., Annapolis, MD, February 17, 1986. 

ARINC Specification 607, "Design Guidance for Avionic Equipment," Supplement 1, 
Aeronautical Radio, Inc., Annapolis, MD, July n, 1987. 

ARINC Specification 617, "Guidance for Avionic Certification and Configuration 
Control," Draft 4, Aeronautical Radio, Inc., Annapolis, MD, December 12, 
1990. 

ARINC Specification 629, "Multi-Transmitter Data Bus, Part 1 Technical 
Description," Aeronautical Radio, Inc., Annapolls, MD, March 7, 1990. 

ARINC Specification 629, "Multi-Transmitter Data Bus, Part 1 Technical 
Description," Draft 1 of Supplement 2, Aeronautical Radio, Inc., Annapolis, 
MD, October 24, 1990. 

ARINC Specification 629, "Multi-Transmitter Data Bus, Part 1 Technical 
Description," Draft 3 of Supplement 1, Aeronautical Radio, Inc., Annapolis, 
MD, January 21, 1991. 

ARINC Strawman Material for Project Paper 629, "Multi-Transmitter Data Bus, Part 
4- Test Plan," Draft, Aeronautical Radio, Inc., Annapolis, MD, September 
14, 1990. 

ARINC Strawman Material for Project Paper 659, "Ba:kplane Data Bus," Draft, 
Aeronautical Radio, Inc., Annapolis, MD, Janua:ry 29, 1991. 

ARP 926A, Fault/Failure Analysis Procedure, Society of Automotive Engineers, 
Warrendale, PA, September 1985. 

ARP 1834, Fault/Failure Analysis for Digital Systems and Equipment, Society of 
Automotive Engineers, Warrendale, PA, August 7, 1986. 

AS4074 .1, Linear Token Passing Multiplex Data Bu:a, Society of Automotive 
Engineers, Warrendale, PA, September 7, 1988. 

209 



AS4074.2, High Speed Ring Bus, Society of Automotive Engineers, Warrendale, PA, 
August 29, 1988. 

AS4113, Validation Test Plan for the Digital Time Division Command/Response 
Multiplex Data Bus Controllers, Society of Automotive Engineers, Warren
dale, PA, January 11, 1989. 

AS4115, Test Plan for the Digital Time Division Command/Response Multiplex Data 
Bus System, Society of Automotive Engineers, Warrendale, PA, January 11, 
1989. 

AS4290, Test and Validation Plan for the AS4074.1 Linear Token Passing Multiplex 
Data Bus, Draft 8 of Issue 1, Society of Automotive Engineers, Warrendale, 
PA, April 8, 1991. 

Ashmore, A. S., "Certification of Digital Systems for Civil Aircraft," 
Certification of Avionic Systems: Proceedings of the Symposium, Royal 
Aeronautical Society, London, United Kingdom, April 1982. 

"Avionics Market Data," Avionics, July 1991. 

Bailey, John, "Honeywell Joins 777," Flight International, December 1990. 

Bakken, David ,E., "Inter-Partition Data Integrity in the Asynchronous DATAC 
Environment," Proceedings of the AIAA/IEEE 8th Digital Avionics Systems 
Conference, American Institute of Aeronautics and Astronautics, Washington, 
DC, 1988. 

Bannister, J. A. et al., "Problems Related to the Integration of Fault-Tolerant 
Aircraft Electronic Systems," NASA-CR-165926, NASA Langley Research Center, 
Hampton, VA, June 1982. 

Bavuso, Salvatore J. et al., "Applications of the Hybrid Automated Reliability 
Predictor," NASA-TP-2760, NASA Langley Research Center, Hampton, VA, 
December 1987. 

Becher, Bernice, "Diagnostic Emulation: Implementation and User's Guide," 
NASA-CR-178391, NASA Langley Research Center, Hampton, VA, December 1987. 

Benson, J. W., "Hardware Fault Insertion and Instrumentation System: Mechaniza
tion and Validation," DOT/FAA/CT-86/31, U.S. Department of Transportation, 
Federal Aviation Administration, March 1987. 

Bermingham, W. J., E. A. Alfonsi, and W. A. Rosen, "A High Speed Fiber Optic 
Data Bus for Avionics Applications," IEEE 1987 National Aerospace and 
Electronics Conference (NAECON), Institute of Electrical and Electronics 
Engineers, New York, NY, 1987. 

Bachmann, G. and C. Sunshine, "Formal Methods in Communication Protocol Design," 
IEEE Transactions on Communications, Volume COM-28, No. 4, Institute of 
Electrical and Electronics Engineers, New York, NY, April 1980. 

210 



Bondy, Jon and Richard Weaver, "Bus Schedule Change Issues in the On-Board 
Distributed Data System (ODDS)," Proceedings of the IEEE/AIAA 5th Digital 
Avionics Systems Conference, Institute of Electrical and Electronics 
Engineers, New York, NY, 1983. 

Bunce, W. L., "Hardware and Software: An Analytical Approach," Proceedings of 
~t~h~e~~A~n~n~u~a~l~~R~e~l~i~a~b~i~l~i~t~y--~a~n~d~-M~a~i~n~t~a~i~n~a~b~i~l~i~t~Y~-~S~ym~o~o~s~i~um~, Institute of 
Electrical and Electronics Engineers, New York, NY, 1980. 

Card, M. Ace, "Evolution of the Digital Avionic Bus," Proceedings of the 
IEEE/AIAA 5th Digital Avionics Systems Conferen·~e, Institute of Electrical 
and Electronics Engineers, New York, NY, 1983. 

Carter, W. C., "System Validation- Putting the Pieces Together," Proceedings 
of the IEEE/AIAA 7th Digital Avionics Systems Conference, Institute of 
Electrical and Electronics Engineers, New York, NY, 1986. 

Clarke, Clifton A. and William E. Larsen, "Aircraft Electromagnetic Com
patibility," DOT/FAA/CT-86/40, U.S. Department of Transportation, Federal 
Aviation Administration, June 1987. 

Clifton, Daniel B., "Using the HS-3282 ARINC Bus InteJ~face Circuit," Application 
Note No. 400, Harris Semiconductor, Melbourne, FL. 

"CMOS ARINC Bus Interface Circuit," HS-3282-8 Data Sheet, Harris Semiconductor, 
Melbourne, FL, November 1989. 

Cohn, Marc D., "A Proposed Local Area Network for Next-Generation Avionic 
Systems," Proceedings of the IEEE 1988 National Aerospace and Electronics 
Conference (NAECON), Institute of Electrical and Electronics Engineers, 
New York, NY, 1988. 

Cooley, William W. , "Advanced Fault Insertion and Sirrulation Methods," Digital 
Systems Validation Handbook. Volume II, Chapter 5, DOT/FAA/CT-88/10, U.S. 
Department of Transportation, Federal Aviation Administration, February 
1989. 

Curd, Hardy P., "Integrated Assurance Assessment," )igital Systems Validation 
Handbook. Volume II, Chapter 3, DOT/FAA/CT-88/10, U.S. Department of 
Transportation, Federal Aviation Administration, February 1989. 

Daley, E., "An Update on Experience on the Fly by Wtre Jaguar Equipped with a 
Full-Time Digital Flight Control System," AGARD Conference Proceedings -
Active Control Systems - Review. Evaluation and Projections, AGARD-CP-384, 
Advisory Group for Aerospace Research and Development, Neuilly Sur Seine, 
France, March 1985. 

Danthine, A. A. S., "Petri Nets for Protocol Modelling and Verification," 
Proceedings of the Computer Networks and Telepro:essing Symposium, October 
1977. 

211 



Danthine, A. A. S., "Protocol Representation with Finite-State Models," IEEE 
Transactions on Communications, Volume COM-28, No. 4, Institute of 
Electrical and Electronics Engineers, New York, NY, April 1980. 

Dasaro, Joseph A., "The Impact of Future Avionics Technology on the Conduct of 
Air Warfare," AGARD Conference Proceedings Improvement of Combat 
Performance for Existing and Future Aircraft, AGARD-CP-409, Advisory Group 
for Aerospace Research and Development, Neuilly Sur Seine, France, December 
1986. 

"DATAC Current Mode Coupler," AMP/Dallas Semiconductor, January 21, 1991. 

Dekker, G. J., "Reliability Aspects of Software for Digital Avionics," National 
Aerospace Laboratory, Amsterdam, Holland, 1985. 

DelCoco, Robert J., Brian 'W. Kroeger, and John J. Kurtz, "A Comparison of the 
ANSI FDDI and SAE HSRB Token Ring LANs," FOC/LAN '87 and MFOC-WEST 
Proceedings: The Eleventh Annual International Fiber Optic Communications 
and Local Area Networks Exposition, Information Gatekeepers, Boston, MA, 
October 1987. 

Denery, D. G. et al., "A Demonstration Advanced Avionics System for General 
Aviation," Business Aircraft Meeting and Exposition, SAE 790569, Society 
of Automotive Engineers, Warrendale, PA, 1979. 

"Designing for ARINC 429," Avionics, March 1991. 

Driscoll, Kevin, "Multi-MicroProcessor Flight Control System," Proceedings of 
the IEEE/AIAA 5th Digital Avionics Systems Conference, Institute of 
Electrical and Electronic Engineers, New York, NY, 1983. 

Earhart, Leroy, "MIL-STD-1553: Testing and Test Equipment," Proceedings of the 
2nd AFSC Standardization Conference, Air Force Systems Command, Wright
Patterson Air Force Base, OH, -November 1982. 

Earhart, Leroy, "Testing MIL-STD-1553," Avionics, March 1991. 

Eldredge, Donald and Ellis F. Hitt, "Digital System Bus Integrity," DOT/FAA/CT-
86/44, U.S. Department of Transportation, Federal Aviation Administration, 
March 1987. 

Eldredge, Donald and Susan Mangold, "Digital Data Buses for Aviation Applica
tions," Digital Systems Validation Handbook. Volume II, Chapter 6, 
DOT/FAA/CT-88/10, U.S. Department of Transportation, Federal Aviation 
Administration, February 1989. 

Evans, Daniel B., "Fault Tolerant High-Speed Switched Data Network," Proceedings 
of the IEEE/AIAA 7th Digital Avionics Systems Conference, Institute of 
Electrical and Electronics Engineers, New York, NY, 1986. 

FAA Order 8110.4, "Type Certification," U.S. Department of Transportation, 
Federal Aviation Administration, June 1985. 

212 



Federal Aviation Regulation, Part 21, "Certification Procedures for Products and 
Parts," October 25, 1989. 

Federal Aviation Regulation, Part 23, "Airworthiness Standards: Normal, 
Utility, Acrobatic, and Commuter Category Airplanes," February 4, 1991. 

Federal Aviation Regulation, Part 25, "Airworthiness Standards: Transport 
Category Airplanes," September 10, 1990. 

Federal Aviation Regulation, Part 27, "Airworthiness Standards: Normal Category 
Rotorcraft," October 22, 1990. 

Federal Aviation Regulation, Part 29, "Airworthiness Standards: Transport 
Category Rotorcraft," October 22, 1990. 

Federal Aviation Regulation, Part 33, "Aircraft Engines," January 12, 1983. 

Fitzgerald, Gary L. and C. F. Polivka, "Design Considerations for a MIL-STD-
1553 System Tester," 1982 IEEE International Automatic Testing Conference, 
1982. 

"Flight Deck Automation: Promises and Realities," NASA-CP-10036, NASA Ames 
Research Center, Moffett Field, CA, 1989. 

GAMA, "ARINC 429 General Aviation Subset," General Aviation Manufacturers 
Association, Washington, DC, June 16, 1986. 

GAMA, "Avionics Standard Communications Bus (ASCB)," General Aviation Manufac
turers Association, Washington, DC, October 15, 1987. 

GAMA, "Commercial Standard Digital Bus (CSDB)," General Aviation Manufacturers 
Association, Washington, DC, June 10, 1986. 

Galli, E. , "Test Philosophy of the EH101 Integrated .1\vionic," AGARD Conference 
Proceedings - The Design. Development and Testing of Complex Avionics 
Systems, AGARD-CP-417, Advisory Group for Aerospace Research and Develop
ment, Neuilly Sur Seine, France, December 1987. 

Garbo, Dennis L., "Multiplex Data Bus Simulator," Proceedings of the IEEE/AIAA 
5th Digital Avionics Systems Conference, Ins1:itute of Electrical and 
Electronics Engineers, New York, NY, 1983. 

"Guide to Federal Aviation Administration Publications," FAA-APA-PG-12, U.S. 
Department of Transportation, Federal Aviation /,dministration, May 1990. 

Hassenpflug, W. and M. Baumker, "Navigation Systems for the New Generation of 
Combat and Transport Helicopters and Associated Flight Tests," AGARD 
Conference Proceedings - Advances in Guidance and Control Systems and 
Technology, AGARD-CP-411, Advisory Group for Aerospace Research and 
Development, Neuilly Sur Seine, France, July 1%7. 

213 



Hatzidakis, Fokion, "Multichannel Data Transmission through a Fiber Optic 
Cable," AD-Al93 842, Naval Post Graduate School, Monterey, CA, December 
1987. 

Hecht, Herbert, "Problems with Failure Modes and Effects Analysis for Digital 
Avionics," Proceedings of IEEE/AIAA 7th Digital Avionics Systems Con
ference, Institute of Electrical and Electronics Engineers, New York, NY, 
1986. 

Hecht, Herbert and Myron Hecht, Computer Resources Handbook for Flight Critical 
Systems, ASD-TR-85-5020, Air Force Systems Command, Wright-Patterson Air 
Force Base, OH, January 1985. 

Hecht, Myron, "Fault Tolerant Software," Digital Systems Validation Handbook, 
Volume II, Chapter 9, DOT/FAA/CT-88/10, U.S. Department of Transportation, 
Federal Aviation Administration, February 1989. 

Held, G., "Da.ta Communications Networking Devices," John Wiley and Sons, New 
York, NY, 1989. 

Henley, Gordon D. and Thomas F. Fiorino, "Avionics/Navigation Architectural 
Design Considerations," The National Telesystems Conference, Institute of 
Electrical and Electronics Engineers, New York, NY, 1982. 

Highland, David L., "CAML: Digital Avionics in a Real-Time Application," The 
National Telesystems Conference, Institute of Electrical and Electronics 
Engineers, New York, NY, 1982. 

Hitt, E. et al., Handbook - Volume I. Validation of Digital Systems in Avionics 
and Flight Control Applications, DOT/FAA/CT- 82/115, U.S. Department of 
Transportation, Federal Aviation Administration, July 1983. 

Hitt, Ellis F., "Digital Avionics Design for Validation," Proceedings of the 2nd 
AFSC Standardization Conference, Air Force Systems Command, Wright
Patterson Air Force Base, OH, November 1982. 

Hitt, Ellis F., "Real-Time Fault Tolerant Software in Distributed Avionics 
Systems Architectures Using Digital Data Buses," Proceedings of the 
IEEE/AIAA 7th Digital Avionics Systems Conference, Institute of Electrical 
and Electronics Engineers, New York, NY, 1986. 

Hitt, Ellis F. and Don Eldredge, "A Review and Application of Analytical Models 
in Fault Tolerant Avionics Validation," Proceedings of the IEEE/AIAA 5th 
Digital Avionics Systems Conference, Ipstitute of Electrical and Electron
ics Engineers, New York, NY, 1983. 

Holmes, David C. E., "Global System Data Bus Using the Digital Autonomous 
Terminal Access Communication Protocol," Proceedings of the IEEE/AIAA 7th 
Digital Avionics Systems Conference, Institute of Electrical and Electron
ics Engineers, New York, NY, 1986. 

214 



Hooper, Dean and James Leidy, "New Concept in Data Highway Technology," IEEE 
1981 IECI Proceedings, Institute of Electrical and Electronics Engineers, 
New York, NY, November 1981. 

Hubacek, Phil, "The Advanced Avionics Standard Communicatiot16 Bus," Business and 
Commuter Aviation Systems Division, Honeywell, Inc., Phoenix, Arizona, July 
10, 1990. 

Improving Aircraft Safety, National Academy of Sciences, Washington, DC, 1980. 

"Integrated Application of Active Controls (IAAC) Technology to an Advanced 
Subsonic Transport Project- ACT/Control/Guidanee System Study," Volume I, 
NASA-CR-165963, NASA Langley Research Center, Hampton, VA, December 1982. 

IS0-7498, "Information Processing Systems - Open Syst:em Interconnection - Basic 
Reference Model," American National Standards Institute, Inc., New York, 
NY, 1983. 

"Isolation of Faults in Air Force Weapons and Support Systems, Volume I," 
National Research Council, Washington, DC, April 1986. 

"Isolation of Faults in Air Force Weapons and Support Systems, Volume II," 
National Research Council, Washington, DC, July 1986. 

Jennings, Randle G., "Avionics Standard Communications Bus - Its Implementation 
And Usage," Proceedings of the IEEE/AIAA 7th Digital Avionics Systems 
Conference, Institute of Electrical and Electronics Engineers, New York, 
NY, 1986. 

Karmarker and Clark, Proceedings of the 1982 Summer Computer Simulation 
Conference, 1982. 

Kushnir, Alex and Yehuda Kasirer, "LAVI 1553B Communication System," Proceedings 
of the IEEE 1988 National Aerospace and Electrl)nics Conference (NAECON), 
Institute of Electrical and Electronics Engineers, New York, NY, 1988. 

Lala, J. H., "Fault Detection, Isolation, and Reconfi.guration in FTMP: Methods 
and Experimental Results," Proceedings of the IEEE/AIAA 5th Digital 
Avionics Systems Conference, Institute of Electrical and Electronic 
Engineers, New York, NY, 1983. 

Larsen, William E., "Digital Avionics Susceptibility to High Energy Radio 
Frequency Fields," Proceedings of the IEEE 1988 National Aerospace and 
Electronics Conference (NAECON), Institute of Electrical and Electronics 
Engineers, New York, NY, 1988. 

Larsen, William E., "Digital Avionics Systems - Overview of FAA/NASA/Industry
Wide Briefing," Proceedings of the IEEE/AIAA 7th Digital Avionics Systems 
Conference, Institute of Electrical and Electronics Engineers, New York, 
NY, 1986. 

215 



-·--------·- -------------

Leveson, Nancy G. and Janice L. Stolzy, "Safety Analysis Using Petri Nets," IEEE 
Transactions on Software Engineering, Volume SE-13, No. 3, Institute of 
Electrical and Electronics Engineers, New York, NY, March 1987. 

Lindsey, Rodger A., "General Purpose Bus Interface Unit (GPBIU) System Test 
Software Design," AFIT/GCS/EE/83D-64, Air Force Institute of Technology, 
Wright-Patterson Air Force Base, OH, December 1983. 

Longenecker, Timothy R., "Structured Methods: Specification of Real-Time 
Systems," Tutorial of the IEEE/AIAA 7th Digital Avionics Systems Con
ference, Institute of Electrical and Electronics Engineers, New York, NY, 
1986. 

Mackall, Dale A., "Development and Flight Test Experiences with a Flight
Crucial Digital Control System," NASA-TP-2857, NASA Dryden Flight Research 
Facility, Edwards, CA, November 1988. 

Masotto, Torn and Linda 
Input/Output System 
Center, Hampton, VA, 

Alger, "Advanced Information Processing 
Services," NASA-CR-181874, NASA Langley 

August 1989. 

System: 
Research 

McCartney, Richard I. and Randy E. Phillips, "A Modular Approach to MIL-STD-
1553 Simulation Support," Proceedings of the IEEE 1981 National Aerospace 
and Electronics Conference (NAECON), Institute of Electrical and Electron
ics Engineers, New York, NY, 1981. 

McConnell, Roger A., "Avionics System Design for High Energy Fields," DOT/FAA/ 
CT-87/19, U.S. Department of Transportation, Federal Aviation Administra
tion, July 1988. 

McGough, John, "Evaluation of Data Busses for Flight Critical Control Applica
tions," Proceedings of IEEE/AIAA 7th Digital Avionics Systems Conference, 
Institute of Electrical and Electronics Engineers, New York, NY, 1986. 

McManus, James C., "Logistics Engineering Analysis Techniques for Fault
Tolerant Avionics Systems," Air Force Human Resources Laboratory, Brooks 
Air Force Base, TX, November 1985. 

McSharry, Michael E., "Fault Tolerant Flight Control Avionics Integration Using 
MIL-STD-1553B," Proceedings of the IEEE/AIAA 5th Digital Avionics Systems 
Conference, Institute of Electrical and Electronics Engineers, New York, 
NY, 1983. 

Mehler, Leo, "Military Aircraft System Engineering," SAE 861690, SAE Transac
tions, Volume 95, Society of Automotive Engineers, Warrendale, PA, 1987. 

Meijer, Anton and Paul Peeters, Computer Network Architectures, Computer Science 
Press, Rockville, MD, 1982. 

216 



Mej zak, Richard S. , "New Technology Impact on Future Avionics Architectures," 
AGARD Conference Proceedings - Advanced Compute.r Aids in the Planning and 
Execution of Air Warfare and Ground Strike Operations, AGARD-CP-404, 
Advisory Group for Aerospace Research and Development, Neuilly Sur Seine, 
France, February 1987. 

Merlin, Philip M., "Specification and Validation of Protocols," IEEE Transac
tions on Communications, Volume COM-27, No. 11, [nstitute of Electrical and 
Electronics Engineers, New York, NY, November 1979. 

Meyer, John W., "SAE AE-9B Draft Standard High Speed Token Passing Data Bus for 
Avionics Applications," Proceedings of the IEEE/AIAA 7th Digital Avionics 
Systems Conference, Institute of Electrical and Electronics Engineers, New 
York, NY, 1986. 

"Microcommunications," INTEL Corporation, Order No. 231658-006, Mt. Prospect, 
IL, 1990. 

MIL-E-6051, "Electromagnetic Capability Requirements," February 26, 1988. 

MIL-HDBK-217E, "Reliability Prediction of Electronic Equipment," Notice 1 
Version, January 2, 1990. 

MIL-HDBK-1553A, "Multiplex Applications Handbook," November 1, 1988. 

"MIL-STD-1553 Designer's Guide," ILC Data Device Corporation, Bohemia, NY, 1982. 

MIL-STD-1553B: Applications. Developments. and Components - Seminar Proceed
ings, ERA Report No. 86-0237, ERA Technology Ltd., Leatherhead, United 
Kingdom, 1987. 

MIL-STD-1553B, "Digital Time Division Command/Response Multiplex Data Bus," 
Notice 2 Version, September 8, 1986. 

MIL-STD-1629A, "Procedures for Performing a Failure Mode, Effects, and 
Criticality Analysis," Notice 2 Version, Novembj~r 24, 1984. 

MIL-STD-1773, "Fiber Optics Mechanization of an Aircraft Internal Time Division 
Command/Response Multiplex Data Bus," May 20, 1983. 

Military Avionics Architecture for Today and Tomorrow- Seminar Proceedings, ERA 
Report No. 88-0437, ERA Technology Ltd., Leatherb.ead, United Kingdom, 1989. 

Mulcare, Dennis, "Specification, Design and Testing of Embedded Software," 
Tutorial of the IEEE/AIAA 8th Digital Avio·nics Systems Conference, 
Institute of Electrical and Electronics EngineeJ~s, New York, NY, 1986. 

"Multiplex Applications Handbook," Air Force Systems Command, Wright-Patterson 
Air Force Base, OH, May 1, 1980. 

217 



Munoz, Jose L., "Modeling for Architecture Assessment," Tools for the Simulation 
Profession 1988 - Proceedings of the 1988 Conferences: Tools for the 
Simulationist and Simulation Software, The Society for Computer Simulation, 
San Diego, CA, 1988. 

Nelson, Ronald J., 
A Reliability 
Design," Naval 

"The Synergistically Integrated Reliability Architecture: 
Analysis of an Ultra-Reliable Fault Tolerant Computer 
Postgraduate School, Monterey, CA, September 26, 1986. 

Nguyen, Viet H. et al., "Space Shuttle Descent Flight Verification by Simula
tion: A Challenge in Implementing Flight Control System Robustness," AGARD 
Conference Proceedings - Space Vehicle Flight Mechanics, AGARD-CP-489, 
Advisory Group for Aerospace Research and Development, Neuilly Sur Seine, 
France, June 1990. 

Notice of Proposed Rulemaking, No. 85-6, Federal Register, Volume 50, No. 31, 
February 14, 1985, pp. 6186-6188. 

Ostgaard, John C. and David A. Zann, "Network Communications for a Distributed 
Avionics System," AGARD Conference Proceedings - Advanced Concepts for 
Avionics/Weapon System Design. Development and Integration, AGARD-CP-343, 
Advisory Group for Aerospace Research and Development, Neuilly Sur Seine, 
France, October 1983. 

Papadopoulos, Gregory M., "Avionic Architectures for Fly-By-Wire Aircraft," The 
National Telesystems Conference, Institute of Electrical and Electronics 
Engineers, New York, NY, 1982. 

Parhami, Behrooz, "Interconnection Redundancy for Reliability Enhancement in 
Fault-Tolerant Digital Systems," Digital Processes, Volume 5; No. 3-4, 
Autumn-Winter 1979. 

Petrichenko, Jr., Nick, "Lessons Learned in Building a Hardware in the Loop 
Simulation," Tools for the Simulation Profession 1988- Proceedings of the 
1988 Conferences: Tools for the Simulationist and Simulation Software, 
The Society for Computer Simulation, San Diego, CA, 1988. 

Plice, William A., "Design for Reliability, Testability, Maintainability," 
Tutorial of the IEEE/AIAA 7th Digital Avionics Systems Conference, 
Institute of Electrical and Electronics Engineers, New York, NY, 1986. 

Porter, David R., Philip R. Couch, and Jean W. Schelin, "A High Speed Fiber 
Optic Data Bus for Local Data Communications," Journal on Selected Areas 
in Communications, Volume SAC-1, No. 3, April 1983. 

Proceedings of the IEEE 1985 National Aerospace and Electronics Conference 
(NAECON), Institute of Electrical and Electronics Engineers, New York, NY, 
1985. 

Proceedings of the IEEE 1986 National Aerospace and Electronics Conference 
(NAECON), Institute of Electrical and Electronics Engineers, New York, NY, 
1986. 

218 



Rich, B. A. et al., "Multibus Avionic Architecture Design Study (MAADS)," AFWAL
TR-83-1141, Air Force Systems Command, Wright-Pat:tersop Air Force Base, OH, 
October 1983. 

RS-422-A, "Electrical Characteristics of Balanced Voltage Digital Interface 
Circuits," Electronic Industries Association, Washington, DC, December 
1978. 

RTCA/D0-160C, "Environmental Conditions and Test Procedures for Airborne 
Equipment," Radio Technical Commission for Aeronautics, Washington, DC, 
December 1989. 

RTCA/D0-178A, "Software Considerations in Airborne Systems 'and Equipment 
Certification," Radio Technical Commission for Aeronautics, Washington, DC, 
March 1985. 

Runo, Steven C., "Gulfstream IV Flight Management System," Proceedings of the 
1990 AIAA/FAA Joint Symposium on General Avia·:ion Systems, DOT/FAA/CT-
90/11, U.S. Department of Transportation, Federal Aviation Administration, 
May 1990. 

Sawtell, R. M. and K. P. Dawson, "Avionic Systems Integration Using the BETA 
Box," GEC Review, Volume 4, No. 2, 1988. 

"Serial Interface Module (SIM) for ARINC 629/DATAC," AMP/Dallas Semiconductor, 
December 1990. 

Shapiro, Albert J., "The Design, Simulation and Dev~~lopmental Testing of the 
Space Shuttle Data Bus System," AGARD Conferenee Proceedings - Guidance 
and Control Techniques for Advanced Space Vehicles, AGARD-CP-350, Advisory 
Group for Aerospace Research and Development, Neuilly Sur Seine, France, 
January 1984. 

Shaw, John L., Hans K. Herzog, and 
Access Communication (DATAC)," 
Avionics Systems Conference, 
Engineers, New York, NY, 1986. 

Kenj i Okubo, "Digital Autonomous Terminal 
Proceedings of t:he IEEE/AIAA 7th Digital 
Institute of El,~ctrical and Electronics 

Shaw, John L. and Peter L. Sutcliffe, 
Avionics - The Future International 
Royal Aeronautical Society, London, 

"ARINC 629 Data Bus System," Civil 
Scene: Proceedings of the Symposium, 
United Kingdom, March 1988. 

Shimmin, J. A., "The Certification of the Avionic Systems on the ATP to JAR 25," 
European Forum: The Evolution of Regional Aircraft Technologies and 
Certification, DGLR-Bericht-89-02, German Society for Aeronautics and 
Astronautics, Bonn, Federal Republic of Germany, 1989. 

Singh, Avtar and Walter A. Triebel, The 8088 Microprocessor: Programming. 
Interfacing. Software. Hardware. and Applications," Prentice Hall, Inc., 
Englewood Cliffs, NJ, 1989. 

219 



~--~-------

Smith, Lawrence R., "Digital Bus Standardization for Business Aviation," SAE 
830757, Society of Automotive Engineers, Warrendale, PA, 1983. 

Snelling, K. S., "Certification Experience of the Jaguar Fly-By-Wire Demon
strator Aircraft Integrated Flight Control System," Flight Mechanics and 
System Design Lessons from Operational Experience, AGARD-CP-347, Advisory 
Group for Aerospace Research and Development, Neuilly Sur Seine, France, 
October 1983. 

Special Condition No. 23-ACE-49, Federal Register, Volume 55, No. 30, February 
13, 1990, pp. 4986-4991. 

Special Condition No. 25-ANM-35, Federal Register, Volume 55, No. 213, November 
2, 1990, pp. 46191-46196. 

Spieth, James E., "Simulation Model of a High-Speed Token-Passing Bus for 
Avionics Applications," AFIT/GCS/ENG/85D-15, Air Force Institute of 
Technology, Wright-Patterson Air Force Base, OH, December 1985. 

Spieth, James E. and Walter D. Seward, "Simulation Model of a High-Speed Token
Passing Bus for Avionics Applications," Proceedings of the IEEE/AIAA 7th 
Digital Avionics Systems Conference, Institute of Electrical and Electron
ics Engineers, New York, NY, 1986. 

Spitzer1 , Cary R., "All-Digital Jets Are Taking Off," IEEE Spectrum, Inst-itute 
of Electrical and Electronics Engineers, New York, NY, September 1986. 

Spitzer2 , Cary R., "Digital Avionics Architectures - Design and Assessment," 
Tutorial of the IEEE/AIAA 7th Digital Avionics Systems Conference, 
Institute of Electrical and Electronics Engineers, New York, NY, 1986. 

Spitzer, Cary R., Digital Avionics Systems, Prentice Hall, Englewood Cliffs, NJ, 
1987. 

Spitzer, Cary R., "Digital Avionics The Best is Yet To Come!!!," IEEE 
Transactions on Aerospace and Electronic Systems, Volume AES-20, No. 4, 
Institute of Electrical and Electronics Engineers, New York, NY, July 1984. 

Spradlin, Richard E., "Flight Management Systems: Where Are We Today and What 
Have We Learned?," Guidance and Control Conference, American Institute of 
Aeronautics and Astronautics, Gatlinburg, TN, August 1983. 

Sunshine, Carl A., "Formal Techniques for Protocol Specification and Verifica
tion," Computer, Volume 12, Institute of Electrical and Electronics 
Engineers, New York, NY, September 1979. 

Swihart, Jr. , J. D. , "Certification of Advanced Systems," NASA Ames Research 
Center Technical Workshop: Advanced Helicopter Cockpit Design Concepts, 
NASA CP 2351, Federal Aviation Administration, Fort Worth, TX, December 
1984. 

220 



Sylvester and Hung, Proceedings of the 1982 Summer Computer Simulation 
Conference, 1982. 

Tanenbaum, AndrewS., Computer Networks, Prentice Hall, Englewood Cliffs, NJ, 
1981. 

Thomas, Ronald E., "A Standardized Digital Bus For Business Aviation," 
Proceedings of the IEEE/AIAA 5th Digital Avionics Systems Conference, 
Institute of Electrical and Electronics Enginee:cs, New York, NY, 1983. 

Thorpe, Duane J. and Kumar V. Vakkalanka, "MIL-STD-1553B Validation Testing," 
Proceedings of the 2nd AFSC Standardization Conference, Air Force Systems 
Command, Wright-Patterson Air Force Base, OH, November 1982. 

"Tutorial: MIL-STD-1553 Multiplex Data Bus," Proeeedings of the 2nd AFSC 
Standardization Conference, Air Force Systems Command, Wright-Patterson 
Air Force Base, OH, November 1982. 

Van Baal, Jozef B. J., "Hardware/Software FMEA Applied to Airplane Safety," 1985 
Proceedings of the Annual Reliability and M9.intainability Symposium, 
Institute of Electrical and Electronics Engineers, New York, NY, 1985. 

Veatch, Michael H. et al., "Logistics Engineering Analysis Techniques for Fault
Tolerant Avionics Systems," Air Force Systems Command, Wright-Patterson Air 
Force Base, OH, November 1985. · 

"User's Manual for AC-XX-XX, High Intensity Radiated Fields (HIRF)," U.S. 
Department of Transportation, Federal Aviation Administration, Draft, 
January 15, 1992. 

Verdi, James S., "High Speed Multiplex Bus Protocol Study," NADC-81049-50, Naval 
Air Development Center, Warminster, PA, June 15, 1980. 

Vesely, W. E. et al., Fault Tree Handbook, NUREG-049~~. U.S. Nuclear Regulatory 
Commission, January 1981. 

Vorwerk, John, "Chips for ARINC 629," Avionics, March 1991. 

Warr, Robert E. , "Failure Modes and Effects Analysis Method for New Product 
Introductions," SAE 841600, Advances in Aerospace Propulsion, SP- 594, 
Society of Automotive Engineers, Warrendale, PA, December 1984. 

"WD193X Synchronous Data Link Controller," Western Digital Corporation, Irvine, 
CA, 1983 

"WD1931/WD1933 Compatibility Application Notes," Western Digital Corporation, 
Irvine, CA, 1983 

"WD1993 ARINC 429 Receiver/Transmitter and Multi-Character Receiver/Transmit
ter," Western Digital Corporation, Irvine, CA, 1983 

221 



Williams, James H., "Issues Concerning Certification of Integrated Cockpit 
Avionics," SAE Conference on General Aviation, Wichita, KS, April 12, 1989. 

Zempolich, Bernard A., "Integrated Digital Avionic Systems Promise and 
Threats," Astronautics and Aeronautics, Volume 21, October 1983. 

222 



-, 

GLOSSARY 

ACCESS. The process of a transmitting bus user obtaining control of a data bus 
in order to transmit a message. 

ADVISORY CIRCULAR. An external FAA publication consisting of nonregulatory 
material of a policy, guidance, and informational na1:ure. 

AIR TRANSPORT AIRCRAFT. Aircraft used in interstate, overseas, or foreign air 
transportation. 

AIRWORTHINESS STANDARDS. Parts 23, 25, 27, 29, and 33 of the Code of Federal 
Regulations, Title 14, Chapter 1, Subchapter C. 

ARCHITECTURE. The design and interaction of componertts of a computer system. 

ARRAY CODE. A sequence of bits that is interpreted as data arranged in a matrix 
with parity associated with each row and column. 

AVIONIC. Electronic equipment used in aircraft. 

BABBLING TRANSMITTER. A bus user that transmits out1::ide its allocated time. 

BALANCED CONFIGURATION. 
primary stations. 

BIDIRECTIONAL DATA BUS. 
transmitting. 

A bus using the HDLC protocol that connects only 

A data bus with more t::1an one user capable of 

BIT-ORIENTED PROTOCOL. A communication protocol where message frames can vary 
in length, with single bit resolution. 

BRIDGE. A BIU that is connected to more than one bus for the purpose of 
transferring bus messages from one bus to another, w·.:1ere all the buses follow 
the same protocol. 

BROADCAST DATA BUS. A data bus where all messages are transmitted to all bus 
users. 

BUFFER. Memory used to hold segments of the data tram:ferred between asynchron
ous processes. 

BUS. A conductor that serves as a common connection of a signal to multiple 
users. 

BUS CONTROLLER. The electronic unit that is designed to control the bus 
communication of all users for a centrally controlled bus. 

BUS INTERFACE UNIT. The electronics that interface 1:he host CPU of an LRU to 
a bus medium. 

223 



~~------------------~----~ 

BUS MESSAGE. 
users. 

A complete set of bits that can be transferred between two bus 

BUS NETWORK. The collection of all BIUs and bus media associated with one bus. 

BUS OVERLOAD. The condition that exists when the time it takes to transmit 
outstanding messages on a bus exceeds the time allotted for those transmissions. 

BUS USER. Any LRU attached to a bus. 

CENTRAL BUS CONTROL. The bus control approach where a single electronic unit 
attached to a bus controls all the communication of the bus users. 

CERTIFICATION. The process of obtaining FAA approval for the design, manufac
ture, andjor sale of aircraft and associated systems, subsystems, and parts. 

CHARACTER-ORIENTED PROTOCOL. A communication protocol where messages can vary 
in length, with single character resolution. 

CHECKSUM. An error detection code produced by performing a binary addition, 
without carry, of all the words in a message. 

CLOSED-LOOP. A system where the output is a function of the input and the 
system's previous output. 

COMMAND/RESPONSE DATA BUS. A data bus whose protocol initiates each data 
transfer with a command and terminates the transfer after a proper response is 
received. 

CONFIGURATION MANAGEMENT. The precise control and documentation of the 
configuration of an entity at any time during its development and deployment. 

CONTENTION PROTOCOL. A protocol that allows users to randomly access the bus 
at any time. When bus contention results, each user tries again to access the 
bus without contention. 

CONTROL REGISTER. A register in an IC controller that receives commands from 
a host processor. 

DATA BUS. A bus that carries electronic signals that represent information. 

DATA BUS PROTOCOL. The set of rules that governs the transfer of data between 
data bus users. 

DATA LATENCY. The delay in transferring data from its source to various users. 
This can result in using an old sample of data in a system after a new sample 
is available. 

DATA REASONABLENESS CHECK. A check performed to see if a value of data is 
within reasonable bounds for the given context. 

224 



,. 

DEFAULT DATA. An alternative value used for a parameter whenever the normal 
data is not supplied. 

DETERMINISTIC PROTOCOL. A protocol where all parame·:ers are known so that its 
various states are predictable in sequence and time. 

DIGITAL DATA BUS. A data bus that uses digital elec·:ronic signals. 

DISSIMILAR REDUNDANCY. The redundancy of systems that provide a redundancy of 
function, but by a different form. 

DISSIMILAR SOFTWARE. Redundant computer programs that provide a redundancy of 
function, but by a different form. 

DISTRIBUTED BUS CONTROL. The bus control approach where the total communication 
control job is distributed across the bus users, each controlling the communica
tions during its period of responsibility. 

EMULATION. The duplication of the behavior of a system with a different system. 

ERROR MASKING. The process of masking the presence of avionic errors, possibly 
by using an electronic voter to override an erroneou;; input with the values of 
substitute inputs. 

FAIL-SAFE. A design philosophy that ensures that any failure in a system does 
not result in an unsafe condition after the failure. 

FAULT TOLERANCE. The ability of a system to continu'~ operation after a fault, 
possibly in a degraded condition. 

FEDERAL AVIATION REGULATIONS. Subchapter C of the Code of Federal Regulations, 
Title 14, Chapter 1. 

FINITE STATE MACHINE. A state machine with a finite number of states. 

FLIGHT-CRITICAL FUNCTION. A function whose failure would contribute to or cause 
a failure condition that would prevent the continued safe flight and landing of 
the aircraft. 

FLIGHT-ESSENTIAL FUNCTION. A function whose failure would contribute to, or 
would cause, a hazardous failure condition that would significantly impact the 
safety of the aircraft or the ability of the flight crew to cope with adverse 
operating conditions. 

FLIGHT-NONESSENTIAL FUNCTION. A function whose failure could not significantly 
degrade aircraft capability or crew ability. 

FRAME. A formatted block of data words or bits that is used to construct 
messages. 

FUNCTIONAL PARTITIONING. The partitioning of system functions by placing each 
group of users, which share a common function, on different data buses. 

225 



GATEWAY. A bus user that is connected to more than one bus for the purpose of 
transferring bus messages from one bus to another, where the buses do not follow 
the same protocol. 

GENERAL AVIATION AIRCRAFT. The non-air transport civil aircraft. 

GENERATOR POLYNOMIAL. The polynomial code that is used to generate the 
remainder in the division of the CRC check. 

GLOBAL STATE. A state that represents the condition of the entire network being 
modeled, including senders, receivers, and the communication link. 

HALF-DUPLEX. Bidirectional communication between two entities on a single 
channel by each having a turn to control the channel. 

HAMMING CODE. 
distance. 

An error detection and correction code based on the Hamming 

HAMMING DISTANCE. The number of bit positions in which two binary words differ. 

HANDSHAKING. The reciprocal responses given by two electronic systems to 
sequence the steps of a transfer of data between them. 

HARDWARE-IN-THE-LOOP SIMULATION. A partial simulation of a system; part of the 
actual system is used in the simulation. 

INTEGRATED CIRCUIT CONTROLLER. An IC that contains state-machine logic of 
sufficient complexity that it controls the activity of other hardware. 

INTERRUPT VECTOR. The address that points to the beginning of the service 
routine for an interrupt. 

INTERRUPT VECTOR TABLE. 
serviced by a system. 

The table of interrupt vectors for all interrupts 

LINE REPLACEABLE UNIT. An electronics unit that is made to be replaced on the 
flight line, as opposed to one that requires the aircraft be taken to the shop 
for repair. 

LINEAR BUS. A bus where users are connected to the medium; one on each end, 
with the rest connected in between. 

MANCHESTER II MODULATION. A non-return to zero, bipolar modulation of a voltage 
that encodes bits based on the zero-crossing direction of the signal. 

MODELING. Creating a system of mathematical equations that formulate all the 
significant behavior of a system. 

MULTIVERSION PROGRAMMING. N-version programming. 

226 



•' 

N-VERSION PROGRAMMING. The independent coding of a number, N, of redundant 
computer programs that are run concurrently for the purpose of comparing their 
outputs. 

NONSTATIONARY BUS CONTROL. Bus control that is contLmally passed from bus user 
to bus user according to a predetermined sequence. 

OPEN-LOOP. A system where the output is a function of only the input. 

OVERHEAD. The message timing gaps, control bits, and error detection bits added 
to some data to satisfy the data bus protocol. 

PARITY. An error detection bit added to a data word based on whether the number 
of "one" bits is even or odd. 

PARTITIONED. Colocated hardware or software functions that are designed so that 
adverse interactions between them cannot occur. 

PETRI NET. A state analysis diagram that tracks the status of the state 
transition conditions of a state machine. 

POLLING. A method whereby a CPU monitors the s;:atus of a peripheral by 
periodically reading its status signals. 

POLYNOMIAL CODE. A sequence of bits that represent~: the coefficients of each 
term in a polynomial. 

PRIMARY STATION. An intelligent HDLC protocol user, usually used to manage the 
access of other bus users to the bus. 

PROPAGATION DELAY. The time it takes an electrical signal to travel from its 
source to its destination. 

PROTOCOL. The set of rules by which all bus users must abide to access the bus 
and ensure its specified operation. 

RECONFIGURATION. The process of a system reassignirg which hardware performs 
a particular function. 

RECOVERY BLOCK. A block of code executed upon detect:ion of a fault to recover 
from the erroneous condition that results. 

REGISTER. A single word of RAM located within an I::; controller that is used 
for transferring data and control information. 

REMOTE TERMINAL. The BIU portion of a MIL-STD-1553 bus user. 

RING BUS. A bus where users are connected only to tre two adjacent users in a 
continuous ring; each connected to the next and the last one connected to the 
first one. 

227 



---~- ------------ -- ------· 

ROUND-ROBIN CONTROL. Control that is passed from one bus user to the next, in 
sequence, after each user completes its messages. 

SAFE-LIFE. A design philosophy that treats a component or assembly as designed 
to retain its integrity throughout its useful life. 

SECONDARY STATION. A simple HDLC protocol user. 

SENSOR. Any transducer that converts the measurement of a physical quantity to 
an electrical signal. 

SERIAL DATA BUS. 
series. 

A data bus capable of sending only one bit at a time, in 

SERVICE PRIMITIVE. A primitive function of the service provided by a protocol 
layer. 

SERVICE SPECIFICATION. The specification of the service provided by a protocol 
layer. 

SIMULATION. An approximated representation of the behavior of a system with a 
similar system. 

SINGLE-POINT FAILURE. A failure of a component that, by itself, causes the 
failure of the system in which it is contained. 

SPECIAL CONDITION. A regulatory document that adds to, or otherwise alters, the 
airworthiness standards for particular aircraft. 

STATION. Bus user. 

STATIONARY BUS CONTROL. Bus control that is continually performed by a single 
bus controller, or by one of its backups. 

STATUS REGISTER. A register in an IC controller that holds the status of the 
state of certain controller functions. 

STUB. The short length of cable used to attach a single LRU to a data bus. 

SYSTEM INTEGRATOR. The developer who has the responsibility to integrate the 
various subsystems into a working system. 

TIME MULTIPLEXING. The technique of sharing a communication channel among 
several users by allowing each user a period of time to have sole access to the 
channel. 

TOKEN MACHINE. A state diagram that shows each state and transition represented 
by a Petri net. 

TOKEN PASSING PROTOCOL. A protocol that limits bus access to the user that has 
just received the token word. 

228 



UNBALANCED CONFIGURATION. A bus using the HDLC 1= rotocol that connects one 
primary and one or more secondary stations. 

UNIDIRECTIONAL DATA BUS. 
transmitting. 

A data bus with only one user that is capable of 

VALIDATION. The process of evaluating whether or not items, processes, 
services, or documents accomplish their intended purpose in their operating 
environment. 

VERIFICATION. The act of reviewing, inspecting, testing, checking, auditing, 
or otherwise establishing and documenting whether or not items, processes, 
services, or documents conform to specified requirements. 

WATCHDOG TIMER. A timer which, when it expires, warns the system that an event 
has not occurred within the proper time. 

229 



J.'S 
AC 
ACK 
ACO 
AEEC 
AFSC 
AIAA 
AIM 
AlPS 
AIR 
AIRLAB 
AP 
ARINC 
ARP 

_f. ASCB 
ASG 
AT 
BA 
BAC 
BC 
BCAC 
BCD 
BFCS 
BIT 
BIU 
BNR 
BOCP 
BP 
BUSY 
BV 
CA 
CD 
CE 
CMC 
CMOS 
CP 
CPU 
CRC 
CSDB 
CSMA 
CTS 
DATAC 
DC 
DER 
DET 
DITS 
DMA 
DME 

ACRONYMS AND ABBREVIATIONS 

Microsecond 
Advisory Circular 
Acknowledge 
Aircraft Certification Office 
Airlines Electronic Engineering Commit:tee 
Air Force Systems Command 
American Institute of Aeronautics and Astronautics 
Advanced Integrated MUX 
Advanced Information Processing Systent 
Aerospace Information Report 
Avionics Integration Research Laboratory 
Application Processor 
Aeronautical Radio Incorporated 
Aerospace Recommended Practice 
Avionics Standard Communications Bus 
Aperiodic Synchronization Gap 
Access Time-Out 
Bus Active 
Balanced Asynchronous Configuration 
Bus Controller 
Boeing Commercial Airplane Company 
Binary Coded Decimal 
Beacon Frame Check Sequence 
Built-In-Test 
Bus Interface Unit 
Binary 
Bit-Oriented Communications Protocol 
Basic Protocol 
Destination Busy 
Binary Value 
Criticality Analysis 
Collision Detection 
Certification Engineer 
Current Mode Coupler 
Complementary Metal-Oxide Semi-Conduct:or 
Combined Protocol 
Central Processing Unit 
Cyclic Redundancy Check 
Commercial Standard Data Bus 
Carrier Sense-Multiple Access 
Clear To Send 
Digital Autonomous Terminal Access Couwunication 
Display Computer 
Designated Engineering Representative 
Driver Enable Timer 
Digital Information Transfer System 
Direct Memory Addressing 
Distance Measuring Equipment 

231 



DMIR 
DTSA 
EEC 
EES 
EFID 
EFIS 
EIA 
F/FA 
FAA 
FAR 
FCC 
FCS 
FMEA 
FMECA 
FSM 
FSW 
FTA 
FTMP 
GA 
GAMA 
HA 
HARP 
HDLC 
HERF 
HIRF 
HSRB 
HW 
Hz 
1/0 
lACS 
IC 
ICD 
ID 
IEEE 
IFCS 
IMR 
ISO 
IVT 
LRU 
LSB 
LSI 
LTPB 
m 
MC 
MCFCS 
MCS 
MFCS 
MHZ 
MIL-HDBK 
MIL-STD 
MIREM 
ML 

Designated Manufacturing Inspection Representative 
Dynamic Time Slot Allocation 
Electronic Engine Control 
Electromagnetic Emission and Susceptibility 
Electronic Flight Instrument Display 
Electronic Flight Instrument System 
Electronic Industries Association 
Fault and Failure Analysis 
Federal Aviation Administration 
Federal Aviation Regulation 
Flight Control Computer 
Frame Check Sequence 
Failure Mode and Effects Analysis 
Failure Mode, Effects, and Criticality Analysis 
Finite State Machine 
Function Status Word 
Fault Tree Analysis 
Fault Tolerant Multi-Processor 
General Aviation 
General Aviation Manufacturers Association 
Hazard Analysis 
Hybrid Automated Reliability Predictor 
High-Level Data Link Control 
High Energy Radio Frequency 
High Intensity Radiated Frequency 
High Speed Ring Bus 
Hardware 
Hertz 
Input/Output 
Integrated Avionic Computer System 
Integrated Circuit 
Interface Control Document 
Identifier 
Institute of Electrical and Electronics Engineers 
Information Frame Check Sequence 
Interrupt Mask Register 
International Standards Organization 
Interrupt Vector Table 
Line Replaceable Unit 
Least Significant Bit 
Large Scale Integration 
Linear Token Passing Bus 
Original Address of Last Transmission 
Mode Code 
Message Control Frame Check Sequence 
Minimum Cut Set 
Message Frame Check Sequence 
megahertz 
Military Handbook 
Military Standard 
Mission Reliability Model 
Message Length 

232 



MPSC 
ms 
MSB 
MSI 
MT 
MTBF 
MTTR 
MUX 
n 
N 
NASA 
NCTS 
OSI 
PMA 
PROM 
PSG 
QA 
RAM 

! RAT 
RF 
RIM 
RIU 
RPP 
RR 
RRT 
RS 
RT 
RTCA 
RTE 
RTS 
SAE 
SAl 
sc 
sec 
SCM 
SCP 
SEAFAC 
SG 
SIM 
SIR 
SMF 
SQA 
SSA 
SSI 
STC 
sw 
Tc 
TC 
TCAS 
TCB 
TDMA 
TF 

Multi-Protocol Serial Controller 
millisecond 
Most Significant Bit 
Medium Scale Integration 
Message Time 
Mean Time Between Failure 
Mean Time to Repair 
Multiplexer 
Address of User Performing Computation 
Maximum Number of Users 
National Aeronautics and Space Administration 
Not Clear To Send 
Open Systems Interconnection 
Parts Manufacturer Approval 
Programmable Read-Only Memory 
Periodic Synchronization Gap 
Quality Assurance 
Random Access Memory 
Ring Admittance Timer 
Radio Frequency 
Ring Interface Module 
Ring Interface Unit 
Receive Personality PROM 
Read Register 
Ring Rotation Time 
Recommended Standard 
Remote Terminal 
Radio Technical Commission for Aerona1.ltics 
Real-Time Executive 
Request To Send 
Society of Automotive Engineers 
Systems Architecture and Interfaces 
Special Condition 
System Configuration Controller 
Software Configuration Management 
Self-Checking Pair 
Systems Engineering Avionics Facility 
Synchronization Gap 
Serial Interface Module 
Shared Interface RAM 
Self Monitor Function 
Software Quality Assurance 
System Safety Assessment 
Small Scale Integration 
Supplemental Type Certificate 
Software 
Count Duration 
Type Certificate 
Traffic Alert and Collision Avoidance System 
Type Certification Board 
Time Division Multiple Access 
Frame Time 

233 



-··------------------- -----

TFCS 
TFEDF 
TG 
THT 
TI 
TIA 
Tm 
TRT 
TSDF 
TSO 
UAC 
UNC 
USAF 
V&V 
VLSI 
VOR 
VT 
WR 
XPP 

Token Frame Check Sequence 
Token Frame Ending Delimiter Field 
Terminal Gap 
Token Holding Timer 
Transmit Interval 
Type Inspection Authorization 
Wait Time for User 
Token Rotation Timer 
Token Starting Delimiter Field 
Technical Standard Order 
Unbalanced Asynchronous Configuration 
Unbalanced Normal Configuration 
United States Air Force 
Verification and Validation 
Very Large Scale Integration 
VHF Omnidirectional Range 
Validation Testing 
Write Register 
Transmit Personality PROM 

234 
*u.S. GOVERNMENT I'RINTING OFFICE: 199Z- 604-061/60()(i7 


