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As multiple digital avionic systems were introduced irtto aircraft, there arose 
a need for digital communications between systems. I·rt the early 1970s, many 
different digital data bus designs were used to provi·:ie this communication. 
Because these digital systems proved to be reliable .and cost effective, their 
popularity increased. Proliferation led to standardi~ation, particularly in 
the air transport category of aircraft, which allowed communications between 
line replaceable units (LRUs) to become more complex. The LRUs began to rely 

-more heavily on each other to reduce the amount of equipment required. Sensor 
data and systems data could be shared among multiple :;ystems, rather than each 
system requiring its own private source. 

Integrated digital avionics are increasingly being us~~d to implement essential 
and critical functions that cannot be sufficiently reproduced by conventional 
means. The safety of such aircraft is highly dependent upon the computer 
software, hardware, and data buses connecting the systems. The newest 
concerns relate to the problems that are unique to highly integrated systems. 
There is no standard with which to assess the possibln impact of these bus
based systems on aircraft safety. These and other advanced avionic systems 
will result in specific safety assessment problems whEm the appropriate data 
packages are submitted to the Federal Aviation Adminintration during the 
certification process. 
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1. INTRODUCTION 

1.1 Background 

Fixed and rotary wing civilian aircraft have used digital flight control and 
avionic systems since the late 1960s. One of the earliest digital systems was 
the Inertial Navigation System. Subsequently, other digital systems were added 
(Spradlin 1983). As multiple systems were introduced into aircraft there arose 
a need for digital communications between systems. In the early 1970s, many 
different digital data bus designs were used to provide this communication. 
Because these digital systems proved to be reliable and cost effective, their 
popularity increased. 

Proliferation led to standardization, particularly in the air transport category 
of aircraft. In 1976, the air transport industry approved the Aeronautical 
Radio, Incorporated, (ARINC) Mark 33 Digital Information Transfer System (DITS) 
for digital data bus communications between Line Replaceable Units (LRUs) that 
conformed to the ARINC 500-Series Equipment characteristics. In the early 
1980s, the General Aviation (GA) industry began using two data bus standards 
unique to its requirements. 

Standardization of digital communications allowed communications between LRUs 
to become more complex. LRUs began to rely more heavily on each other to reduce 
the amount of equipment required. Sensor data and systems data could be shared 
among multiple systems, rather than each system requiring its own private 
source. The tighter coupling of systems led to the introduction of systems that 
were previously too complex or too cumbersome to produce. Complete Automatic 
Flight Control and Flight Management systems we:re implemented. Cockpits 
produced in the 1980s consisted of flight contro:_ electronics and avionics 
composed primarily of digital systems. 

Although today' s aircraft primarily use digital sy~:tems, the issue of whether 
digital systems can be relied upon for the safety of the aircraft, crew, and 
passengers has been avoided. Modern aircraft are c':!rtificated as safe for air 
transport use based on the assumption that any computer system may fail without 
producing a life threatening hazard. This is true because modern aircraft 
continue to rely on conventional mechanical, hydraulic, and analog electronic 
back-up systems to provide the minimum performancB necessary to ensure safe 
flight and landing. 

Civilian aircraft presently being developed can no longer be certificated on 
this basis. Complex digital systems are being used to implement essential and 
critical functions that cannot be sufficiently reproduced by conventional means. 
The X-29 military aircraft, with forward swept wings, is an example of what lies 
ahead for commercial aircraft. This aircraft is an inherently unstable design 
that requires computer control to keep it stable; a pilot could not fly it by 
standard means. It would be pointless to provide conventional back-up systems. 

The safety of such aircraft is highly dependent upon the computer software, 
hardware, and the data buses connecting the systems. These aspects of digital 
systems have undergone, individually, much study and improvement over the years. 
The newest concerns relate to the problems that arB unique to complex, highly 
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integrated, systems. In particular, the modern bidirectional data buses will 
be heavily relied upon, yet at the same time, become more complex. There is no 
standard with which to assess the possible impact of these bus-based systems on 
aircraft safety. These and other advanced flight control and avionic systems 
will result in specific safety assessment problems when the appropriate data 
packages are submitted to the Federal Aviation Administration (FAA) during the 
certification process. 

1.2 Scope 

This technical report addresses the concerns related to reliable communication 
on the serial digital data buses used to integrate digital systems in civilian 
aircraft. The reliability needed for buses used in essential and critical 
systems is particularly addressed. The communication on the parallel backplane 
buses used within LRUs is not addressed. Topics discussed include the 
following: 

The process followed by the FAA to certify that aircraft digital systems 
are safe. 

The formal and informal regulations that aircraft digital systems must 
satisfy: 

• Safety concerns related to system integration based on current avionic data 
bus standards for air transport and GA aircraft. 

Safety concerns related to system integration based on new avionic data bus 
standards for air transport and GA aircraft. 

How data bus software-hardware interaction relates to aircraft safety. 

Data bus protocol specification and verification methods for ensuring 
proper operation. 

The extent to which data bus integration is controlled by data bus 
standards. 

Safety lessons that can be learned from current and new avionic data bus 
standards for military aircraft. 

The relationship of data bus standards to the certification process and 
regulatory standards. 

This technical report is provided to serve as a guide to Certification Engineers 
(CEs). It should help the CEs evaluate the material submitted for review when 
they are asked to approve bus-integrated systems. 
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2. BUS-INTEGRATED AVIONIC SYSTEMS 

2.1 Avionic System Architectures 

An avionic system may perform a major cockpit funetion, like flight control, 
flight management, navigation, communications, autopilot, or autoland. Each 
system consists of a suite of electronic units that each perform a particular 
function needed by the system. These electronic untts are usually called LRUs. 
(Entire systems are not considered replaceable units under routine maintenance.) 
LR.Us typically transfer digital information among themselves and other systems 
on serial data buses. Each LRU, or bus user, usually consists of a host Central 
Processing Unit (CPU) interfaced to the bus by a BuB Interface Unit (BIU). The 
configuration is shown in figure 2.1-1. 

Host CPU 
LR U or 

BIU Bu .s User 

Bus Stub 

Serial Digital Data Bus 

FIGURE 2.1-1. DATA BUS COMPONENTS 

There are two primary types of bus- integrated avior.ic systems: those based on 
unidirectional data buses and those based on bidirectional data buses. A 
typical unidirectional bus architecture is sho"n in figure 2.1-2. The 
transmitting LRU controls the bus protocol and provides the bus message data. 
The protocol is very simple; it primarily consists of a standard message format. 
When the transmitting LRU broadcasts its messages onto the data bus, each of the 
other LR.Us connected to the bus monitors the bro.sdcast messages in order to 
detect and read the messages required. 

LRU 3 

Transmitting LRU 

Receiving LRU LJ 
FIGURE 2.1-2. UNIDIRECTIONAL BUS pgCHITECTURE 

3 



When unidirectional data buses are used to integrate a system, the bus network 
is usually complex and requires large amounts of wire. Every LRU that needs to 
transmit data must have a unique data bus for its messages. Each LRU may need 
to have several bus interfaces to receive messages from multiple buses. For 
example, the navigation system shown in figure 2.1-3 requires five buses. 

I Air Data System I 

VOR Navigation 

DME 

II Graphics Processor I Displ~ 

FIGURE 2.1-3. AVIONIC SYSTEM USING UNIDIRECTIONAL BUSES 
(Hitt 1986) 

Since each required message is made available by a direct connection, a system 
level design of the data bus network is unnecessary. The final bus network in 
an aircraft could be simply the configuration that results after every LRU has 
individually satisfied its information requirements. 

A typical bidirectional data bus architecture is shown in figure 2.1-4. All 
LRUs can transmit and/or listen on one bus. Messages are time multiplexed. 
Each LRU only needs to have one bus interface and the bus network is reduced to 
a single data bus. 

Transmitting and 
Receiving LRU 

FIGURE 2.1-4. BIDIRECTIONAL BUS ARCHITECTURE 
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When bidirectional data buses are used, the physical network is usually simple, 
as shown in figure 2.1-5. On the other hand, the bus control is quite complex. 
The protocol must not only provide standard messageB, but also arbitrate data 
bus transmissions to ensure that only one LRU transmits at a time and that 
listeners are listening at the proper time. The communication for LRUs 
integrated into a single system by a bidirectional data bus requires a system 
level design for successful operation. If each LRU attempted to independently 
satisfy its information requirements, the bus communications would never work. 

Air Data System ll 
Navigation 

VOR 

DME 

II Graphics Processor I Displays II 

FIGURE 2.1-5. AVIONIC SYSTEM USING A BIDIRECTIONAL BUS 

Because bus control is much more complex for bidirectional data buses, many 
different architectures may be employed for bus con1:rol. The two fundamental 
approaches in these architectures are central and distributed control. Figure 
2.1-6 shows the bus control provided by a central Bus Controller (BC). The BIU 
portion of each LRU is explicitly shown. 

Bus 

I 
BIU 

Transmitting and 
Receiving LRU 

BIU 

1 

Controller 

~ 

BIU 

Receiving LRU 

BIU~ 
T --

I 

[ BIU 

Receiving LRU Transmitting LRU 

-

I 

FIGURE 2.1-6. BIDIRECTIONAL BUS ARCHITECTURE, CENTRAL CONTROL 
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The main advantage of central bus control is that only one bus component ever 
has control of the bus operation. All data bus users can only use the bus as 
directed by the BC. The controller can be a tightly coupled system, with 
minimal interaction with outside influences. Another advantage is that when the 
data bus configuration changes, only the BC must be changed to support the new 
configuration. Other LRUs usually remain unaffected. Furthermore, system 
integration issues are necessarily addressed explicitly when the BC is designed. 
The main disadvantage of a bus which is centrally controlled is that the BC 
represents a single point of failure. Advanced designs attempt to solve this 
problem by using redundant controllers and redundant data buses. 

Figure 2.1-7 shows a bidirectional data bus that relies on distributed control. 
The BIU of each transmitting LRU must recognize when it is its turn to control 
the bus. It then transmits its messages and relinquishes control. 

I 

Transmitting and 
Receiving LRU Receiving LRU 

BIU/BC I BIU 

I f - --
t I 

I 

BIU 

I 

BIU/BC 

Receiving LRU Transmitting LRU 

FIGURE 2.1-7. BIDIRECTIONAL BUS ARCHITECTURE, DISTRIBUTED CONTROL 

Typically, a bus that uses distributed control has the primary advantage that, 
if an LRU controls the bus improperly, the remainder of the bus users can 
continue to communicate unaffected. However, distributed control is weak on 
the very points that are advantages for central control. Since every BIU is a 
BC, bus control must be coordinated among LRUs. Also, changes to the bus 
configuration may require a change to every BIU. Distributed control can cause 
the designer of a BIU to take a narrow approach, concentrating on bus control 
during the window available to the one LRU. System design becomes an independ
ent task that must be delegated, rather than an inescapable task, as it is for 
central control. 

The implications of these architectural variations for the safety of data bus
integrated systems is discussed in detail in subsequent chapters. 
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2.2 Avionic Data Buses 

Currently, three digital data buses predominate in civilian aircraft. One is 
used in the large transport aircraft and two in the smaller business and private 
GA aircraft. 

Transport category aircraft primarily use the unidire,:tional data bus standard
ized by ARINC. It is defined in ARINC Specification 429, "Mark 33 DITS" (1990). 
Data on the Mark 33 DITS are transmitted, at a bit rate of either 12.5 or 100 
kilobits per second, to up to 20 LRUs monitoring the bus messages. Nearly every 
transport aircraft has a large network of ARINC 429 data buses connecting 
avionics within and between the major systems. 

GA aircraft use the unidirectional Commercial Standard Data Bus (CSDB), 
developed by the Collins General Aviation Division cf Rockwell International, 
and the bidirectional Avionics Standard Communications Bus (ASCB), developed by 
Honeywell, Incorporated. The bus used in a particular aircraft is determined 
by which company the airframe manufacturer chooses to supply the avionics. Both 
companies are major contributors to avionics today. However, in 1989, only 
about one-third of the GA fleet used guidance and corttrol avionics that likely 
used data buses ("Avionics Market Data," 1991). 

A CSDB can be either a low- or high-speed bus. Data are transmitted at a bit 
rate of 12.5 kilobits per second on a low-speed bus ~md 50 kilobits per second 
on a high-speed bus. Up to 10 receivers can be attached to one bus. 

The ASCB is a centrally controlled, bidirectional bus. The basic configuration 
consists of one BC directing the operation of two, ctherwise isolated, buses. 
Each bus can support up to 48 users. Data are transferred at a bit rate of two
thirds of a megabit per second. LRUs may transmit on one bus and listen to 
either bus. This isolation allows less critical systems to receive data from 
more critical systems without being able to affect their operation. The BC 
synchronizes the activity of the LRUs on both buses. The ASCB pair may also be 
fitted with a standby controller whose operation is coordinated with the active 
controller. 

In military aircraft, one data bus predominates. Since about 1970, military 
aircraft have used the MIL-STD-1553 Digital Time Division Command/Response 
Multiplex Data Bus. Because the bus has been used ex~ensively for so long, and 
in critical systems, many important lessons have be·,m learned that should be 
applied to data buses used in civilian aircraft. This data bus is being fully 
relied upon in fly-by-wire aircraft, like the X-29. It has found its way into 
civilian aircraft only in isolated cases. 

The MIL-STD-1553 data bus is a bidirectional, centrally controlled data bus. 
This bus can support 31 users and data are transmitted at a bit rate of 1 
megabit per second. Many implementations use it in a dual, fully redundant, 
configuration. All activity can be replicated on eit:her bus since each bus is 
controlled by identical controllers. 

A fiber optic implementation of the MIL-STD-1553 bus has been defined. It is 
the MIL-STD-1773 (1983) bus. It has not been used irt commercial aircraft. 
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The predominant data buses in use are summarized in table 2.2-1. These buses 
are analyzed in this report with regard to their use in integrating digital 
systems. 

TABLE 2.2-1. CURRENT AVIONIC DATA BUSES 

Data Bus Usage 

ARINC Specification 429-12, "Mark 33 Digital Air Transport 
Information Transfer System (DITS)" 

Commercial Standard Data Bus (CSDB) General Aviation 

Avionics Standard Communications Bus (ASCB) General Aviation 

MIL-STD-1553, "Digital Time Division Command/Response Military 
Multiplex Data Bus" 

MIL-STD-1773, "Fiber Optics Mechanization of an Military 
Aircraft Internal Time Division Command/Response 
Multiplex Data Bus" 

Some recent experimental air transport aircraft have used a new data bus 
developed by the Boeing Commercial Airplane Company (BCAC). The BCAC version 
is known as the Digital Autonomous Terminal Access Communication (DATAC) data 
bus. This bus has been made an air transport standard under ARINC Specification 
629, Part 1 (1990). It will be used in the Airbus 340 and Boeing 777, as well 
as subsequent air transports. 

The ARINC 629 bus is a bidirectional bus utilizing distributed control. This 
bus can support up to 120 users. Data are transmitted at a bit rate of 2 
megabits per second. It supports the higher data rate and large message 
transfers needed in highly integrated digital systems. It is intended that this 
bus will be relied upon in essential and critical systems. 

Two other data buses are being developed and standardized, primarily for 
military aircraft. They are targeted to be the primary buses used in military 
aircraft, replacing the MIL-STD-1553 bus. Because they are very high- speed 
buses, they may also find application in civilian aircraft that require a 
greater data bus throughput than an ARINC 629 bus can supply. These buses are 
the Society of Automotive Engineers (SAE) AS4074.1 Linear Token Passing Bus 
(LTPB) and the AS4074.2 High Speed Ring Bus (HSRB). Both transfer data at a bit 
rate of 50 megabits per second. They are multi-transmitter buses that operate 
under distributed control. Messages can be sent bidirectionally, but not in the 
conventional sense. 
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The LTPB is a linear bus and bus users can either transmit or receive, but 
messages are passed in a logical ring. The HSRB is configured in both a 
physical and logical ring. Bus users can either transmit or receive, but 
messages are passed around the ring until they reach their destination. 

The prominent data buses being newly used or developed are summarized in table 
2.2-2. These buses are also analyzed in this report with regard to their use 
for integrating digital systems. 

TABLE 2.2-2. NEW AVIONIC DATA BUSES 

Data Bus Usage 

ARINC Specification 629, "Multi-Transmitter Data Bus" Air Transport 

SAE AS4074.1, Linear Token Passing Bus (LTPB) Military 

SAE AS4074.2, High Speed Ring Bus (HSRB) Military 

2.3 Aircraft Implementations 

This section gives a sample of the mix of data buses and the aircraft in which 
they are installed. The list in table 2. 3-1 is not ·~omprehensive. 
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TABLE 2.3-1. DATA BUSES, LISTED BY AIRCRAFT 

Aircraft Data Bus Reference 

Airbus A310/A320 ARINC 429 Shaw and Sutcliffe 1988 
Clifton 

Airbus A330/A340 ARINC 629 ARINC Specification 629 
(being developed) Part 3, 1989 

Bell Helicopter ARINC 429 Clifton 

Boeing 727 CSDB has been used in Rockwell International 
retrofits (Collins Division) 

Boeing 737 ARINC 429 Clifton 

DATAC was retrofitted to Shaw and Sutcliffe 1988 
the NASA TSRV 737 Holmes 1986 

CSDB has been used in Rockwell International 
retrofits (Collins Division) 

Boeing 747 ARINC 429 Clifton 

Boeing 757 ARINC 429 Shaw and Sutcliffe 1988 

Boeing 767 ARINC 429 Shaw and Sutcliffe 1988 

Boeing 777 ARINC 629 Bailey 1990 
(being developed) 

Cessna Citation ASCB FAA, Atlanta AGO 

Dassault Falcon 900 ASCB FAA, Atlanta AGO 

DeHavilland- 8 ASCB FAA, Atlanta AGO 

Gulfstrearn IV ASCB FAA, Atlanta AGO 

McDonnell-Douglas DC-8 CSDB has been used in Rockwell International 
retrofits (Collins Division) 

McDonnell-Douglas MD-11 ARINC 429 Spitzer1 1986 
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3. CERTIFICATION PROCEDURES FOR BUS-INTEGRATED SYSTEMS 

Certification is the process of obtaining FAA approval for the design, 
manufacture, and/or sale of a part, subsystem, system, or aircraft, by 
establishing that it complies with all applicable government regulations. The 
purpose of certification is to demonstrate and record that the total aircraft 
is suitable and safe for civilian use. The FAA does this by requiring that 
aircraft products (aircraft, engines, and propellers) be Type Certificated 
(TCed). Major avionic systems that are to be manufactured for use in an aircraft 
are certificated individually under an aircraft type certification program. The 
requirements for the certification of avionic systems are covered in the Federal 
Aviation Regulations (FARs), as follows: 

• Part 21, "Certification Procedures for Products and Parts" 

Part 23, "Airworthiness Standards: Normal, Utility, and Acrobatic Category 
Airplanes" 

Part 25, "Airworthiness Standards: Transport Category Airplanes" 

Part 27, "Airworthiness Standards: Normal Cate~;ory Rotorcraft" 

Part 29, "Airworthiness Standards: Transport Category Rotorcraft" 

Part 33, "Airworthiness Standards: Aircraft En~;ines" 

Part 91, "General Operating and Flight Rules" 

Part 121, "Certification and Operation: Domestic, Flag, and Supplemental 
Air Carriers and Commercial Operators of Large 1\ircraft" 

Part 135, "Air Taxi Operators and Commercial Ope!rators of Small Aircraft" 

Data buses, on the other hand, are not explicitly certificated because they have 
been viewed simply as the connectors of the systems. Certification procedures 
need to be expanded to include reviews and tests for data buses used by digital 
systems. 

There are two approaches to approving an avionic system, depending on whether 
the system is an original design or an independent design of a previously 
approved product. When a major design effort is required to develop a system, 
the integrity of the aircraft into which it will be installed is in question. 
Thus, one of two "type certification" processes must be followed to receive a 
certificate. For totally new designs, or changes that are so extensive as to 
require a complete reinvestigation of the design, the developer must follow the 
process required to obtain a TC for the aircraft. For major changes (as defined 
in FAR Part 21, section 93) to a system previously approved under a TC, the 
developer can follow a simpler process to obtain a Supplemental Type Certificate 
(STC). In either case, after the certificate is issued, the manufacturer may 
also obtain a Production Certificate approval to manufacture additional systems, 
whose type certification is based on conformity to the type design, rather than 
tests of each system. 
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When a manufacturer wishes to produce modification or replacement parts (i.e., 
parts not previously approved by a TC or an STC) for sale or installation on a 
TCed aircraft, simpler approvals are sufficient. The manufacturer who holds 
the TC or STC for the design can request an amendment to their certificate. A 
manufacturer who wishes to produce such a part for an aircraft, but does not 
hold the TC or STC, can obtain a Parts Manufacturer Approval (PMA). Such a 
second party manufacturer can also apply for a Technical Standard Order (TSO) 
Authorization. The FAA publishes TSOs that establish the minimum performance 
requirements for such interchangeable parts. Any manufacturer can obtain this 
specification and build a part that satisfies it. If the manufacturer is given 
a TSO Authorization, the parts may be stamped with the TSO number, showing 
compliance with the requirements of the TSO. The parts can then be legally sold 
or installed in aircraft. It is the responsibility of the installer to ensure 
that they are used in an application that does not exceed performance require
ments. 

The system to be certificated can be a component or several components. It can 
be simple or complex. The FARs stipulate which process must be followed in each 
case. Although the manufacturer may refer to the FARs to decide which approval 
should be sought, often a CE recommends which application the manufacturer 
should submit. The authority for determining whether a change constitutes a 
modification or a redesign, and whether a redesign is minor or major, rests with 
the Ai~craft Certification Office (ACO). 

By way of example, the all new Boeing 777 is being developed under a TC program. 
On the other hand, the FAA has required that the entire fleet of commercial 
aircraft (all aircraft that operate under FAR Part 121 rules) be retrofitted 
with a Traffic Alert and Collision Avoidance System (TCAS). This system was 
developed under STC programs. 

Whenever an applicant presents a situation that is not covered by the existing 
rules, the ACO can request direction from the Directorate by using an Issue 
Paper. The Directorate may need to rule on an issue because the applicant 
believes they are in compliance, but the ACO does not. In this case, the 
Directorate gives their conclusion on the Issue Paper, sustaining the ACO' s 
position, overruling the AGO's position, or presenting an alternative position. 

The ACO submits an Issue Paper when an applicant claims to provide an equivalent 
level of safety by means other than provided in the regulations. If the claim 
is substantiated, the FAA Directorate issues a Finding of Equivalent Safety. 

An Issue Paper may also be presented when an applicant's design is sufficiently 
new that no regulation seems to apply. In this case, the request for action by 
the Directorate results in a Special Condition (SC) being issued. 

The application and approval process for each of the methods of aircraft 
certification that might be followed for data bus-based avionics are described 
in the following sections. 
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3.1 Applying for a Type Certificate 

Generally, only aircraft being newly developed require a TC program. The steps 
to obtaining a TC are as follows (FAA Order 8110.4, 1985; Improving Aircraft 
Safety, 1980): 

1. The company submits a completed FAA Form 8110 ·12, Application for Type 
Certificate, Production Certificate, or SupplemE!ntal Type Certificate, to 
the FAA AGO having jurisdiction in their area. The application includes 
a proposed certification plan which lists the regulations that must be met 
and how the applicant intends to show compliancE! with them. 

2. The AGO's Type Certification Board (TCB) assigns a project engineering team 
to become familiar with the application. 

3. A preliminary meeting between the TCB and the applicant is held to first 
establish the need for the TC, and then to appro·~e the certification plan. 
Based on the regulations and the applicant's plan, the board develops a 
test and inspection plan to substantiate the claims that the system is safe 
and functions properly. A schedule for complet:Lng the type certification 
program is established. 

4. The company proceeds with the development, submitting descriptions, 
analyses, test plans, and test results to the FAl. for review by the project 
team. As prescribed, some of the hardware, soft:ware, and system tests or 
prototypes will be witnessed or inspected by t:he FAA or its designated 
representatives. 

5. The progress is reviewed at an interim meeting between the company and the 
TCB. If all items of significance have been shown to comply, the board 
issues an FAA Form 8110-1, Type Inspection Authorization (TIA). The TIA 
is issued to the manufacturer by a letter of r.otification which clearly 
states the status of the project so that there will be no questions 
concerning what remains to be accomplished t:o receive the TC. The 
authorization inaugurates the official ground inspection and flight tests. 

6. During the inspection period, the FAA oversees ground and flight tests, as 
necessary to determine compliance. A pilot who holds an appropriate pilot 
certificate makes the flight tests required in FAR Part 21. The company 
submits the test results to the Certification Manager. 

7. The FAA issues an FAA Form 8110-5 (8110-4 for rotorcraft), Type Inspection 
Report, detailing the results of the inspection:;. 

8. A final meeting is held with the TCB to finalize the TC data sheet items, 
the airplane flight manual items, and the status of any other outstanding 
technical data. The issuance of the TC is dependent upon satisfactory 
disposition of all outstanding items. 

Upon successful 
to the company. 
the limitations 

completion of the process, the FAA awards a TC, FAA Form 8110-9, 
The completed TC data sheet is part of the TC; it sets forth 

prescribed by the applicable airwortl1iness regulations and any 
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other limitations found necessary for type certification (FAA Order 8110.4, 
1985). 

After an aircraft prototype has been TCed, the manufacturer may apply for a 
Production Certificate. This allows the company to produce multiple copies of 
the aircraft without having to substantiate every copy. The procedures for 
applying for a Production Certificate are explained in section 3.2. Once an 
aircraft is produced, the company can apply for an Airworthiness Certificate. 
This certificate shows that a particular aircraft has been built to the design 
specifications of the TC and is in a condition for safe operation. An FAA 
inspector issues this certificate, which is then posted in the airplane. 

As an avionic system is developed, the manufacturer submits various documents 
to the FAA. The documents later become part of the Certification Package. The 
number of documents filed depends on the nature of the system being certifi
cated. Complex systems, involving several pieces of hardware and accompanying 
software, require more documentation, while simpler systems require less. 

A Certification Package may contain the following: 

A Certification Plan outlining the regulations and documents that apply to 
the system being certificated. This plan establishes the agreement between 
the FAA and the applicant on the procedures that will be followed to 
certificate the system. A compliance checklist, listing every rule to 
which the manufacturer must comply, may be included. 

• A Type Design data package consisting of drawings and specifications 
necessary to define the configuration and design features of the product 
which was shown to comply with FAR Part 21, Subpart C. It also contains 
information on dimensions, materials, and processes necessary to define the 
structural strength of the product. The Airworthiness Limitations section 
of the Instructions for Continued Airworthiness are part of this data 
package as well. 

Ground and flight test procedures and test results of the component or 
system to be certificated. 

If the system contains software, the Certification Package should also include 
the documentation stipulated in Radio Technical Commission for Aeronautics 
(RTCA)/D0-178A. The types of documents required depend on the criticality of 
the software. Documents that may be required include system requirements; 
Software Configuration Management (SCM) plan and configuration index; Software 
Quality Assurance (SQA) plan; Verification and Validation (V&V) plans, 
procedures, and results; and an accomplishment summary. A sample schedule for 
submitting documents in the certification process is shown in table 3.1-1. 

Type certification is a closely watched process. The FAA is involved in the 
process, from guiding development to witnessing testing. Designated Engineering 
Representatives (DERs) are vital in this area. DERs are company employees who 
are designated to be FAA representatives. The FAA delegates engineering tasks 
to them. They are allowed to approve certain data for the government (FAA Order 
8110.4, 1985). 
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TABLE 3.1-1. CERTIFICATION PROCESS SAMPLE SCHEDULE 

Action Date 

Submit System Requirements 09/05/89 

Submit Certification Plan 11/01/89 

Submit Design Data Package 12/07/89 

Submit Verification Plan 12/07/89 

Submit Software Quality Assurance Plan 01/20/90 

Submit Software Configuration Management Plan 01/20/90 

Submit Verification Procedures and Result::; 02/15/90 

Submit Unit Configuration Index 02/15/90 

Submit Accomplishment Summaries 02/15/90 

3.2 Applying for a Production Certificate 

A Production Certificate allows a manufacturer who balds a TC or an STC for a 
aircraft to build a component system and obtain approval for installation on 
certificated aircraft. It also allows the manufactu:cer to issue an Airworthi
ness Certificate for each aircraft built, without fu:cther demonstration to the 
FAA. Following is the procedure necessary to apply fer a Production Certificate 
(Improving Aircraft Safety, 1980; FAR Part 21, Subpa:ct G): 

1. The manufacturer submits a completed FAA Form 8L0-12 to the FAA ACO having 
jurisdiction in the area. 

2. The manufacturer must show that a quality control system has been 
established for the product to be produced. 

3. The manufacturer must submit a description of "the inspection and test 
procedures necessary to ensure that each articl•:! produced conforms to the 
type design and is in a condition for safe oper.:ttion." (FAR Part 21). 

4. The manufacturer must allow FAA investigators "to make any inspection and 
tests necessary to determine compliance." (FAR !'art 21). 

5. The FAA Production Certification Board (composed of a team of experts from 
the ACO and a Manufacturing Inspection District Office) reviews the 
applicant's manufacturing process. and quality C·)ntrol procedures. 
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6. Upon satisfactory fulfillment of all requirements, the FAA awards the 
Production Certificate. 

Once the certificate is granted, the government assigns inspectors to monitor 
the production process and verify, by formal record, that each system meets the 
TC design. The manufacturer has the option of submitting qualified employees 
to be considered as Designated Manufacturing Inspection Representatives (DMIRs). 

The DMIRs may perform the same functions as the FAA inspector. However, the FAA 
usually delegates assisting roles to these representatives. A DMIR may conduct 
inspections and submit results to the FAA inspector. The inspector, in turn, 
reviews these results and may or may not use them. 

Company representatives and federal inspectors collaborate to ensure that the 
systems continuously meet company and federal quality control standards. The 
FAA inspector is charged with the broader responsibility of ensuring that the 
quality control program is carried out in accordance with the approved plan 
submitted to the FAA. The inspector reviews the company's quality control 
program and the tools used to test the systems (Improving Aircraft Safety, 
1980). 

3.3 Applying for a Supplemental Type Certificate 

The FAA grants STCs for major design changes to TCed products, provided the 
changes are not extensive enough to warrant applying for a new TC (FAR Part 21, 
section 19). For example, a new TC would be required for an aircraft design 
that changed the number of engines, whereas an STC could be granted if the type 
of engine were to be changed. 

An applicant for an STC can be anyone other than the original manufacturer. An 
original manufacturer who wants to change the design would apply for an Amended 
Type Design Change, and follow procedures similar to those for the STC. 

Following is the procedure for obtaining an STC for a digital system containing 
a data bus (FAA Order 8110.4, 1985): 

1. The applicant submits a completed FAA Form 8110-12 to the FAA ACO having 
jurisdiction in the area. With this application, the applicant submits 
drawings, data, test plans, and test reports to show that the modified 
avionic equipment meets the applicable regulations. If the applicant 
employs a DER, that portion of the data which the DER approves or 
recommends for approval should be submitted with an FAA Form 8110-3. 

2. The ACO's Aircraft Modification section reviews the documents to determine 
if the design still complies with all of the airworthiness standards that 
were applicable to obtain the TC. 

3. The FAA performs a Compliance Inspection of the prototype modification, if 
necessary, to fully establish compliance with the airworthiness standards. 

4. The FAA performs a Conformity Inspection to verify that the modification 
conforms to the technical data. The results are published on FAA Form 
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8100-1, Conformity Inspection Report. If the prototype conforms, the 
applicant must submit FAA Form 317, Statement c·f Conformity, to the FAA 
prior to the start of official FAA tests. 

5. The FAA conducts ground and flight tests, as necessary. 

Upon successful completion of the process, the FAA awards an STC (FAA Form 
8110-2) to the company. If STCs need to be changed t:o cover new models or to 
show revised data, the STC is amended. The original number is kept, and both 
the original and revised issue dates appear on the certificate. 

After an STC has been awarded, the holder must obtai::1 approval to install the 
system in a TCed aircraft. If the STC has been awarded for a particular 
aircraft, the holder may apply for an Airworthiness Certificate. 

3.4 Applying for a Parts Manufacturer Approval 

PMAs are government approvals allowing another manufacturer to produce a 
substitute part for a system that already has a TC or an STC. For example, 
consider an STCed digital avionics system that uses an Analog/Digital converter. 
Another developer has an identically designed converter they want to produce and 
sell for use in the same digital system. The developer would apply for a PMA 
using the following procedure (FAR Part 21, Subpart R): 

1. The company sends the manager of the AGO an application that includes the 
following information: 

• "The identity of the product on which the part will be installed." 

The name and address of the manufacturing facility where the part will 
be produced. 

• Design specifications for the part. 

"Test reports and computations necessary to show that the design meets 
the airworthiness requirements applicable . . . to the product on which 
the part is to be installed." 

2. The company establishes and maintains a fabricatlon inspection system that 
ensures the part conforms to the design, and that it is safe for installa
tion on the applicable TCed products (FAR Part n). 

3. The company submits a statement to the FAA certifying that these facilities 
were created. 

4. The FAA may make any inspection or test necessary to determine compliance 
with the FARs. They may check the design to ensure that it is identical 
to the existing part in the certificated system. They also may inspect 
the manufacturing facility where the part will he produced. 

5. Upon satisfactory fulfillment of the requiremen1:s, the FAA issues the PMA 
I 

to the company, allowing the company to manufac<:ure the part. 
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6. FAA field inspectors authorize the ~art to be installed. 

PMAs allow different manufacturers to produce identical components for 
certificated systems, and to sell these components directly to an operator. 
Because the original design specifications already exist (the original 
manufacturer has them), an applicant simply needs to obtain these specifications 
and build the part to conform to them. 

An original manufacturer who wants to change an existing product applies for an 
amended TC, an STC, or an amended type design change, per FAR Part 21. 

3.5 Applyin& for a Technical Standard Order Authorization 

A TSO Authorization is an FAA design and production approval issued to a 
manufacturer of a part which has been found to meet a specific TSO. The part 
is specified and approved independent of an aircraft (FAR Part 21). The FAA 
does not consider whether the part is suitable for specific aircraft. 

TSOs are government standards that prescribe the minimum performance standard 
a part must meet. These standards include requirements for the hardware 
performance, the environmental conditions the hardware must meet, and the V&V 
of the software. Major systems, such as the Electronic Flight Instrumentation 
System (EFIS), may have satisfied several TSOs. The steps to obtain a TSO 
Authorization are as follows (FAR Part 21, Subpart 0): 

1. The manufacturer sends the ACO an application for a TSO Authorization. The 
application consists of a cover letter, a Statement of Conformance 
(certifying that the applicant has met the requirements for a TSO 
Authorization and that the component meets the applicable TSO), a copy of 
the technical data required in the TSO, and a description of the quality 
control system used for the component. 

2. The FAA determines whether the applicant complies with the TSO Authoriza
tion regulations and whether the parts can be reproduced per the TSO 
requirements. If so, a TSO Authorization is issued to the manufacturer. 
It is this authorization that allows the manufacturer to produce the parts 
and label them with the TSO number. 

To make minor changes to an existing TSOed piece of equipment, an applicant 
writes a Minor Change Letter to the FAA. The FAA reviews the letter and, if 
the CE agrees that the changes are minor, stamps it with an approval statement 
similar to the following: 

MINOR TSO CHANGES ACCEPTED 
REFERENCE DATA ON FILE 
FAA AIRCRAFT CERTIFICATION OFFICE 
CITY, STATE 

Date: Branch: Initial: 
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If the manufacturer has substantial changes, or want:s to authorize additional 
versions of equipment under an existing TSO, the company must submit an 
application letter along with supporting documents, such as environmental forms 
and test reports. If the changes are accepted, the :?AA sends an authorization 
letter to the manufacturer. 

Once a manufacturer receives a TSO Authorization, installation approval must be 
applied for through the TC or STC process, or by filling out FAA Form 337, Major 
Alterations and Repair. FAA Form 337 is used only when the change does not 
impact the design. 

3.6 Conducting Certification Testing 

In the past, to certificate an airplane, inspectors and engineers had to 
understand avionics based on analog electronic sy::;tems driving mechanical, 
pneumatic, and/or hydraulic systems. Today's digital systems are more complex. 
Data buses within these systems perform their own functions and could be 
considered separate systems, not simply wires. Existing requirements do not 
cover the expanded functions that data buses perform. 

The environmental tests described in "Environmental Conditions and Test 
Procedures for Airborne Equipment" (RTCA/D0-160C, 1989) address electronic 
component tests, such as magnetic effects, voltage spikes, and induced voltages. 
These general tests can be performed on any electronic component. For example, 
the ARINC 429 bus has been subjected to these tests because it has been used to 
connect electronic components. While these tests ar·e necessary, they are not 
sufficient. Bidirectional data buses require new test:s that should be addressed 
in RTCA/D0-178. The ASCB, for example, allows signals to be both transmitted 
and received over the same wire. This two-way communication requires complex 
digital electronics to control bus transmissions. BCs, software in the 
controllers, and protocols must now be tested. 

The FAA relies on the manufacturer to conduct testir.g. 
bus tests, the manufacturer must comply with them. 
compliance with the FARs, a component must be subjected 
software tests, and failure analyses. 

If the FAA adopts new 
In general, to show 

to environmental tests, 

For certificating systems containing data buses, the manufacturer should test 
the bus to ensure that it is reliable and performs its intended function. If 
the bus relies on a back-up system, it also should be tested. 

FAR Part 25, section 1309, shows the objectives the c:ests are 
for transport category airplanes. The airplane systems 
components considered separately and in relation ':o other 
designed to ensure that the following conditions are met: 

designed to meet 
and associated 

sys terns must be 

The occurrence of any failure condition which would prevent the continued 
safe flight and landing of the airplane is extremely improbable. 

The occurrence of any other failure condition which would reduce the 
capability of the airplane or the ability of the crew to cope with adverse 
operating conditions is improbable. 
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For electrical systems and equipment design (and thus for the subset of digital 
avionic systems containing data buses) critical environmental conditions must 
be considered. Digital avionic equipment must comply with this section, unless 
the equipment is already covered by TSOs that include environmental test 
procedures and test designs for meeting the two requirements above. 

Section 4 addresses related standards for testing, as provided in the Advisory 
Circulars (ACs) and SCs published by the FAA. These documents address testing 
for lightning and High Intensity Radiated Frequency (HIRF) susceptability. 

3.6.1 Approaches to Bus Reliability 

For certificating systems that will be used for flight-critical functions, 
designers can take one of two approaches. The first approach, "safe-life," 
means the component is designed to keep its strength and integrity throughout 
its life. The second method, "fail-safe," means safety is assured by having a 
redundant or back-up part that will work if the first component fails (Improving 
Aircraft Safety, 1980). 

The fail-safe approach has been adopted for digital avionic systems containing 
data buses. Because of the risk of applying complex technology to critical or 
essential functions, data buses used to support either category usually consist 
of a pair of redundant buses, and the entire digital system has a back-up. 

In the Gulfstream IV airplane, for example, the ASCB ties together a sophisti
cated navigation system that drives navigation displays and provides steering 
inputs to a digital autopilot. The ASCB is controlled by redundant BCs (Jennings 
1986). For this aircraft, the controllers are built into the two fault warning 
computers. By design, if one computer fails the other takes control, so the 
system still operates correctly. The entire digital system is backed up by an 
electromechanical system. 

Eventually, if redundancy can ensure that the probability of an unsafe event 
occurring is acceptable (not greater than lxl0-9 for critical functions), digital 
systems may supersede older ones and may not need mechanical back-ups. In the 
new F-16C and F-16D, the current Advanced Fighter Technology Integration F-16's 
triple-redundant digital computers, each with analog back-up, will be replaced 
by quadruple-redundant digital computers (Spitzer1 1986) without back-up. Pilots 
will rely solely on the digital systems in the cockpit. Hence, redundancy 
becomes more important, and testing the redundant systems to ensure that they 
will operate as intended becomes critical. 

3.6.2 Testing Data Buses 

A manufacturer who plans to use an existing data bus differently, or would like 
to certificate equipment that uses a new bus, should thoroughly document any new 
tests. For example, while the ASCB has been in the field for over a decade, it 
has not been used on flight-critical systems. Also, in many cases, it has not 
been used to its fullest capability, i.e., bidirectionally. This function may 
need to be tested during integration testing. When no regulations and standards 

20 



exist to create the tests, the manufacturer must devise them and submit them in 
the test plan. 

As data buses are being designed to carry more functions than in the past, 
low-level considerations, such as the message formats, become important. Also, 
depending on the architecture of the data bus, other components may need to be 
tested. For example, National Semiconductor is de".reloping a bus controller 
Integrated Circuit (IC) that will be installed in the BIU of an ARINC 629 data 
bus user. The controller interfaces a linear, set·ial bus with a parallel, 
16-bit subsystem bus. The manufacturer must develop tests for the IC using 
RTCA/D0-178A and RTCA/D0-160C for guidance. In addition to normal factory tests 
of the IC, the ARINC 629 BIU, data buses, and connected equipment should all be 
tested as a system at a validation or simulation facility. 

3.7 Certification Concerns 

The TSO Authorization method of approving components was developed to allow 
manufacturers to substitute equivalent components "off-the-shelf" without 
jeopardizing the existing TC. Since a TSO Authorization request must be 
processed within 30 days and does not require integration testing, manufacturers 
use this method rather than Type Certification whene·.rer possible. 

In the days of simpler aircraft design, TSO Authorizations were adequate. Now, 
however, digital avionics systems are more complex and require involved 
integration testing procedures. In some cases, if a manufacturer substitutes 
one black box for another (by using the TSO method), the FAA risks having a 
system certificated with potential safety risks. - WfLile the new black box may 
function perfectly in a laboratory setting, it may not have the required 
protocol to interact effectively with the rest of the digital system. Hence, 
this failure could result in a system failure. 

To improve the TSO approval process, ACOs are becoming more involved in 
approving new digital systems. They are reviewing V~V plans for TSO packages, 
and are working more closely with the manufacturers. The ACOs are suggesting 
that system integration test plans be required for sQbstitutions in integrated 
digital systems. Additionally, sections of RTCA/D0-178A addressing certifica
tion issues are being rewritten to address these integrated systems. 

As data buses become more complex, the manufacturer must ensure that the data 
bus will function as intended within its operating environment. Manufacturers' 
validation facilities will play a greater role in establishing the requirements 
for integration testing, since the functions of digital avionic systems will be 
simulated there. The certification requirements wi:_l expand for such systems 
to reflect the FAA's concern that they safely perform their functions once the 
systems are installed in an aircraft. 
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4 I RElATED REGUlATIONS AND STANDARDS 

The CE's job has become more complex due to rapid gro~th in the microelectronics 
industry. Breakthroughs in hardware and software technology have made it 
difficult for CEs to determine what avionic data bus standards are permissible. 
For example, the CE must ensure that both the data bus and the method for testing 
the bus (e. g., simulation, fault analysis) meet pred,~termined regulations. 

Because few specific certification procedures exist, the CE has only a general 
approach for certificating new and upgraded digital data buses. As a result, 
the CE must consult many sources for certification information. 

Fortunately, associations like the American Institute of Aeronautics and 
Astronautics (AIAA) and the Institute of Electrical and Electronics Engineers 
(IEEE) hold conferences and produce publications addre:;sing certification issues. 
These publications often state requirements that a specific data bus should meet. 
Other articles presented by aircraft associations list standards, guidelines, 
and test procedures which may be adopted by individual manufacturers or federal 
agencies. 

ARINC and the General Aviation Manufacturers Association (GAMA) publish data bus 
standards. They include descriptions of specific bus topologies and protocols. 
Subcommittees within these associations often publish guidelines that an avionic 
system manufacturer can follm1, like ARINC Project Papers 617 (1990) and 651 
(1990). Although these two guidelines have not been formally accepted by the 
FAA and are currently in draft form, manufacturers may refer to them for guidance 
during a system's design process. 

Associations like the SAE and RTCA publish analysis and test procedures. They 
address failure analyses (SAE Aerospace Recommended Practice [ARP] 1834) and 
environmental testing (RTCA/D0-160C). These procedures are used by manufac
turers to demonstrate their system's reliability and functionality. 

Before the above standards are applied in certificati.on, they are compared with 
federal regulations. The only regulations applicablE~ to digital data buses and 
integrated avionic systems are the FARs, ACs, and S<::s. The relevant FARs are 
Parts 23, 25, 27, 29, and 33, while ACs and SCs are nteans of showing compliance 
with the FARs. 

4.1 Relevance of Formal Guidelines to Bus-Inte&rated Systems 

The following sections present FARs applicable to the certification of data 
buses and integrated avionic systems. Additional F~ sections, which address 
HIRF requirements, are forthcoming. When they take effect, they should also be 
considered. ACs and SCs, and their relationship to the FARs, are then discussed. 
(Appendix A lists and describes each FAR and AC referred to in this chapter.) 

4.1.1 Bus-Inte&rated Avionic Systems and Federal A,·iation Re&ulations 

FARs are published by the U.S. Government to regulate civil aviation activities. 
They range from Part 1, "Definitions and Abbreviations," to Part 189, "Use of 
Federal Aviation Communication Systems." Each Fl\R part is separated into 
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sections. Within some of these sections are rules that avionic system 
manufacturers must follow during a system's design process. 

FAR Parts 23, 25, 27, and 29 contain requirements for manufacturers of integrated 
avionic systems. Section 1309, of these parts, and section 25.581 provide 
guidelines for integrated avionic equipment and data buses. 

FAR Parts 23, 25, 27, and 29, section 1309, require that systems and equipment 
be designed to perform their intended functions under any foreseeable operating 
conditions. These sections also address failure conditions by defining how many 
failures are allowed throughout a specified time period. A failure is any 
condition that could inhibit the continued safe flight and landing of the 
aircraft. As stated in section 23.1309: 

and 

"The occurrence of any failure condition, that would prevent the 
continued safe flight and landing of the aircraft must be extremely 
improbable," 

"the occurrence of any other failure condition that would reduce the 
capability of the aircraft or the ability of the crew to cope with 
adverse operating conditions is improbable." 

An AC provides the failure rates for these requirements. Extremely improbable 
failures have a probability of lxl0-9 or less. Improbable failures have a 
probability of lxlo-s or less, but greater than lxl0-9

• 

FAR Parts 25 and 29, section 1309, state similar requirements for their related 
aircraft. FAR Part 27, section 1309, however, does not go into as much detail; 
this section merely states that "the equipment, systems, and installations of 
a multi-engine rotorcraft must be designed to prevent hazards to the rotorcraft 
in the event of a probable malfunction or failure," and "equipment, systems, and 
installations of a single-engine rotorcraft must be designed to minimize hazards 
to the rotorcraft in the event of a probable malfunction or failure." 

These requirements have a direct impact on the design of data buses and avionic 
equipment because the manufacturer must develop a scheme to satisfy them. 
Usually, manufacturers employ laboratory, ground, flight, and simulator tests 
to meet section 1309. 

FAR Parts 23, 25, 27, and 29, section 1309, also contain short statements of how 
to comply with certain requirements in those FARs. Section 25.1309 states that 
one must use environmental tests to evaluate the electrical system's design and 
installation, except when the component is authorized under a TSO. Part 23 also 
states that environmental testing must be used for compliance, and additionally, 
that it should include analyses for radio frequency (RF) energy and lightning 
effects. In addition to environmental, laboratory, ground, flight, and 
simulator tests, manufacturers can show compliance by referencing previous 
comparable service experience on other aircraft. 
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FAR Part 25, section 581, also must be considered during the avionic system 
design process. It expresses a need for lightning protection, and is more 
specific than FAR Part 23, section 1309. Part 25, section 581, states that 
equipment should be designed so that a lightning st1~ike will not endanger the 
aircraft. It also suggests eliminating the threat of lightning damage by 
diverting the electrical current. FAR Parts 27 and 29, section 610, describe 
lightning requirements for transport and normal category rotorcraft. Both parts 
recount the same requirements as FAR Part 25, section 581. 

Electronic Engine Controls (EECs) using data buses are addressed differently. 
FAR Part 33, section 75, requires a safety analysis to determine that no 
probable failure or improper operation of an engine can cause an engine to catch 
fire, burst, generate excessive loads, or lose its ability to be shut down. 
EECs certainly require this analysis. Furthermore, section 33. 9la requires 
additional tests for those components for which reliable operation cannot be 
adequately substantiated by the endurance tests of section 33.82. The FAA has 
followed the recommended Notice of Proposed Rulemaking, No. 85-6 (1985), as 
guidance for the safety analysis and tests of EECs, including Full Authority 
Digital Electronic Controls. 

All systems which employ data buses and avionic equipment are subject to these 
requirements. However, no test or design procedures for data buses or 
integrated avionic equipment are directly mentioned in FAR Parts 23, 25, 27, and 
29, section 1309 or section 25.581. 

4.1.2 Bus-Integrated Avionic Systems and Advisory Circulars 

To assist the manufacturer in meeting the requirements of certain FAR sections, 
the FAA publishes ACs. ACs address specific sections of the FARs, and "describe 
various acceptable means for showing compliance" with the FARs (AC 25.1309-lA, 
1988). The ACs are not mandatory; manufacturers may opt to meet the FARs by 
different means. This decision, however, requireB that the manufacturer's 
techniques be validated by the FAA. 

ACs 20-ll5A, 20-136, 21-16C, 23.1309-1, and 25.1309-lA were all published by the 
FAA to help manufacturers comply with FAR Parts 23, 25, 27, and 29, section 
1309, and section 25.581. A new AC is being developed which is also of 
interest: AC-XX-XX, "Certification of Aircraft Elet::trical/Electronic Systems 
for Operation in the High Intensity Radiated Fields (HIRF) Environment" (1991). 
A user's manual will accompany the AC ("User's Manual for AC-XX-XX," 1992). A 
similar user's manual is being developed for AC-20-136. 

AC 20-115A describes how RTCAjD0-178A is used in connection with TSO, TC, and 
STC authorizations. The AC says that since future avionic equipment will rely 
heavily on software and microcomputer techniques, a manufacturer may use 
RTCA/D0-178A to secure approval of computer software. The AC also says that if 
other ACs, which better outline the relationship between the criticality level 
and the software level, are published by the FAA, thoBe ACs take precedence over 
RTCA/D0-178A. RTCA/D0-178A's primary use is to sati_sfy FAR Parts 21, 23, 25, 
27, 29, and 33. 
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To help manufacturers satisfy all FAR Parts that address the need for lightning 
protection, AC 20-136 was published, and an accompanying user's manual is under 
development. The AC describes how a manufacturer can cope with the hazards 
inherent in a lightning environment. Methods pointed out by the AC include the 
following: 

Determining the lightning strike zones for the aircraft 

Establishing the external lightning environment for the zones 

Establishing the internal lightning environment 

Establishing transient control and design levels 

Manufacturers who wish to achieve compliance with the FAA's lightning require
ments should begin by submitting a certification plan to the appropriate ACO. 
An outline and explanation for the lightning effects certification plan are 
presented on pages 5, 6, and 7 of AC 20-136. Once the plan is approved, the 
manufacturer may begin analysis. Since RTCA/D0-160C contains test criteria for 
evaluating the indirect effects of lightning, it may be employed in this step. 

AC 21-16C describes how RTCA/D0-160C is used in conjunction with TSO authoriza
tions. RTCA/D0-160C describes environmental test procedures that can be used 
to satisfy AC 25.1309-lA and AC 23.1309-1. RTCA/D0-160C also satisfies criteria 
presented in FAR Part 25, section 1309. Since data buses and related digital 
equipment are sometimes certified within a TSO, this document can be applied 
during a certification procedure. No procedures or guidelines are pointed out 
in this document; it only states that RTCA/D0-160C should be considered. 

AC 25.1309-lA describes design procedures and failure analyses for meeting the 
requirements of FAR section 25.1309. Techniques such as redundancy, isolation, 
and error tolerance improve the safety of the system (more techniques are listed 
on page 3 of the AC). Usually, at least two of these techniques are needed. 
Also included in AC 25.1309-lA is the FAA's Fail-Safe Design Concept, as follows: 

"In any system or subsystem, the failure of any single element, 
component, or connection during any one flight should be assumed. 
Such failures should not prevent continued safe flight and landing, 
or reduce the capability of the airplane or crew to cope with the 
resulting failure conditions." (AC 25.1309-lA, 1988). 

Examples of failure condition analysis and design procedures are provided in 
appendix A of this report. 

The ultimate goal of AC 25.1309-lA is to ensure that all failure conditions for 
all systems are considered. AC 23.1309-1 discusses similar, scaled down 
procedures for meeting the requirements in FAR Part 23, section 1309. 

4.1.3 Bus-Integrated Avionic Systems and Special Conditions 

Requests for SCs are submitted to the FAA in accordance with FAR Parts 11 and 
21. One purpose of an SC can be to supplement the FARs when the FARs do not 
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explicitly define adequate safety measures for "novel and unusual design 
features on aircraft" (SC 23-ACE-49, 1990). This section does not discuss why 
SCs are adopted; it merely states what an SC is and gives examples of SCs which 
have been applied to integrated avionic equipment. ~Cs for one aircraft can be 
considered for another aircraft, if the other aircraft uses similar components 
or systems. 

Initially, an SC is published under the Federal Register's "Proposed Rules" 
category. While the SC remains in this category, it is subjected to public 
scrutiny. After some time, the FAA reviews comments ~rhich were submitted by the 
public and decides if the comments should be incorporated into the SC. When the 
FAA is satisfied that all areas in the SC have been covered, they may adopt the 
SC as a rule. If an SC is to be considered a rule, it is published under the 
Federal Register's "Rules and Regulations" category. In this fashion, the SC 
goes from being a general idea to an accepted rule. 

SCs which are published for integrated avionic systems usually do not mention 
data buses. However, because data buses can be a part of the system that 
requires the SC, buses are implicitly subject to the SC's criteria. 

SC 25-ANM-35 (1990) includes two special conditions, each with two subparts, 
that concern the McDonnell-Douglas MD-11 aircraft. Following is a summary of 
each subpart: 

Lightning 

Each electronic system that performs flight-critical functions must be 
designed and installed to ensure that the operation of these functions is 
not affected when the airplane is exposed to lightning. 

Each essential function, carried out by neu or modified electronic 
equipment, must be protected to ensure timely recovery of the function 
after a lightning strike. 

Systems that perform essential functions must be protected to ensure that 
failures, due to a lightning strike, will not result in an unacceptable 
cockpit crew workload. 

Protection from Unwanted Effects of RF Fields 

Electronic systems that perform flight-critical functions must be designed 
and installed to ensure that the operation of these functions is not 
adversely affected when the airplane is exposed to High Energy Radio 
Frequency (HERF) fields. 

SC 25-ANM-35 is meant to supplement the FARs because the FARs do not contain 
adequate safety standards for protection from lightning and the unwanted effects 
of RF fields. 

To meet the requirements of SC 25-ANM-35, the MD··ll must undergo specific 
analyses for lightning and RF fields. (One such analysis is presented in 
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RTCA/D0-160C, section 22.0.) A need for lightning effects analysis is pointed 
out in FAR Part 23, section 1309. 

The subparts of SC 25-ANM-35, discussed above, can be indirectly applied to data 
buses. If the bus were to be exposed to lightning effects or RF fields it could 
lose data, produce erroneous data, or fail completely. The bus could also act 
as a path for current, and that current could adversely affect LRUs connected 
to the bus. 

SC 23-ACE-49 (1990) is similar to SC 25-ANM-35, and is published on the SOCATA 
Model TBM-700 Series aircraft. The TBM-700 aircraft is required to meet SC 
23-ACE-49 because it contains an Electronic Attitude Director Indicator and an 
Electronic Horizontal Situation Indicator, in place of the original mechanical 
and electromechanical displays. SC 23-ACE-49 contains the same special 
conditions as SC 25-ANM-35, but adds a special condition which requires failure 
analysis. 

SC 23-ACE-49 amends the FARs on the installation of electronic displays which 
could be adversely affected by a single failure or malfunction. It also 
provides requirements for verifying that these flight-critical systems are 
adequately designed. 

This SC is similar to the one issued for the MD-11 airplane. The following 
special conditions are issued as part of the type certification basis for the 
SOCATA TBM-700 airplane: 

Electronic Flight Instrument Display (EFID) 

The systems using EFIDs must be examined separately, and in relation to 
other airplane systems, to determine if the airplane is dependant on the 
system's function for safe flight and landing. If so, the system must 
satisfy the following requirements (SC 23-ACE-49, 1990): 

"It must be shown that there will be no single failure or probable 
combination of failures under any foreseeable condition that would 
prevent the continued safe flight and landing of the airplane, or it 
must be shown that such failures are extremely improbable." 

"It must be shown that there will be no single failure or probable 
combination of failures under any foreseeable condition that would 
significantly reduce the capability of the airplane or the ability of 
the crew to cope with adverse operating conditions, or it must be 
shown that such failures are improbable." 

"Warning information must be provided to alert the crew to unsafe 
system operating conditions and to enable them to take appropriate 
corrective action. Systems, controls, and associated monitoring and 
warning means must be designed to minimize initiation of crew action 
that would create additional hazards." 
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Electronic Flight Instrument System (EFIS) Light:ning and HERF Protection 

"Each system that performs critical functions must be designed and 
installed to ensure that the operation anc. operational capabilities 
of these critical functions are not adv~rsely affected when the 
airplane is exposed to: (1) lightning and (2) high energy radiated 
electromagnetic fields external to the airplane." 

"Each essential function of the system mu:~t be protected to ensure 
that the essential function can be recovered after the airplane has 
been exposed to lightning." 

The descriptions above show how integrated digita:_ avionic systems can be 
addressed by SCs. They also show how guidelines like RTCA/D0-160C could be used 
to satisfy the SCs, and indirectly, FAR Parts 23, 25, 27, and 29, section 1309, 
as well as FAR Part 33, sections 75 and 91. 

4.2 Relevance of Informal Guidelines to Federal Regulations 

This section shows what documents are used by data bus and integrated avionic 
equipment manufacturers to meet the requirements of FAR Parts 23, 25, 27, and 
29, section 1309. For the purpose of this section, 1:hese documents are termed 
"informal guidelines." 

The FAA has informally adopted RTCA/D0-160 as a means of complying with the 
environmental requirements of FAR Parts 23, 25, 27, and 29, section 1309. For 
example, in 1978, systems using the ARINC 429 data bus were submitted to the 
tests in RTCA/D0-160A. Today, systems that use the ARINC 429 bus are still 
subject to RTCA/D0-160, now called RTCA/D0-160C. Integrated systems and data 
buses that need to satisfy FAR Parts 23, 25, 27, and 29, section 1309, usually 
meet the requirements in RTCA/D0-160C. 

If a data bus or an avionic system involves software, the software can be 
validated using the procedures in RTCA/D0-178. RTCA/D0-178 was published in 
1982 specifically for the purpose of assisting with certification of complex 
avionic software. It was updated in 1985 and renamed RTCA/D0-178A. Again, data 
bus software and avionic software are usually submitted to the procedures in 
RTCA/D0-178. 

Another informal guideline is the SAE's ARP 1834. It defines fault and failure 
analysis (F /FA) techniques for digital hardware. Hnce digital systems are 
fault prone, the FAA has decided that fault analysis should be employed during 
the certification process. FAR Parts 23, 25, 27, and 29, section 1309, and AC 
25.1309-lA express the need for fault analysis, and ARP 1834 has provided a 
means for conducting such an analysis. 

Even though FARs do not specifically mention these :.nformal guidelines, their 
procedures are useful to manufacturers during the design of their systems. 
These informal guidelines address the appropriate regulations and have been well 
researched by organizations such as ARINC, SAE, and the FAA. Manufacturers may 
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use the informal guidelines to evaluate complex parts within their systems, like 
data buses and their associated circuitry. 

A data bus system must undergo many tests and analyses to meet the FARs. These 
tests are designed to ensure integrity and quality; help define redundancy and 
back-ups; help isolate systems, components, and elements; verify reliability; 
meet designed failure effect limits; and define error tolerance. Any document 
that addresses tests of this nature may be used as an informal guideline to 
satisfy the FARs. These include RTCA/D0-160, RTCA/D0-178A, and SAE ARP 1834. 

4.2.1 Radio Technical Commission for Aeronautics D0-160C 

Electromagnetic Emission and Susceptibility (EES) tests are conducted in 
accordance with RTCA/D0-160 to determine if certain waveforms are maintained in 
an electromagnetic interference environment. These tests were initially needed 
to satisfy AC 25.1309-lA, which describes a means of complying with FAR section 
25.1309. With the addition of section 22, the tests also address the require
ments of AC 20-136. EES testing should prove that certain environmental 
conditions which can adversely affect the aircraft will not cause single-point 
failures. 

There are four sections in RTCA/D0-160C that may be used to satisfy FAR Parts 
23, 25, 27, and 29, section 1309, and FAR Part 33, sections 75 and 91. Each 
section is explained below. Although these tests can be used, others may be 
developed. Any other test should yield results that parallel RTCA/D0-160C, 
section 1, "Applicable Equipment Performance Standards." Further information 
about EES tests can be found in RTCA/D0-160C, or acquired from RTCA Special 
Committee 135. 

4.2.1.1 Section 19 - Induced Signal Susceptibility 

RTCA/D0-160C, section 19, provides guidelines for testing equipment and testing 
interconnecting cables for failure due to magnetic and electric fields and 
induced current and voltage spikes. The magnetic and electric fields are 
limited to those generated by other on-board equipment, as defined in section 
19. 

A test is used to analyze the effects of magnetic fields enveloping equipment 
and interconnecting wire bundles. The test requires placing each wire bundle 
50 millimeters above the ground plane, and subjecting the bundle to a magnetic 
field. The field strength should be as given in RTCA/D0-160C, table 19-1. Any 
connections to or from other equipment should be adequately simulated. Also, 
no synchronization between the field power source and the equipment should be 
observed. The configuration is shown in RTCA/D0-160C, figure 19-2. 

Another test is used to analyze the effects of electric fields that envelop the 
interconnecting cables. This test follows the same procedure as above, except 
that it uses an electric field instead of a magnetic field. The test 
configuration is shown in RTCA/D0-160C, figure 19-3. 
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Voltage and current spikes induced into interconn4~cting cables from other 
equipment must also be analyzed. Similar procedure:> are followed. The test 
configuration is shown in RTCA/D0-160C, figure 19-4. 

4.2.1.2 Section 20 - Radio Frequency Susceptibility. Radiated and Conducted 

RTCA/D0-160C, section 20, provides information for testing RF susceptibility. 
These tests determine whether equipment and its interconnecting wiring are 
susceptible to RF interference. Test set-ups are described in RTCA/D0-160C, 
sections 20.3 (a) and (b). Usually, circuitry and connectors are exposed 
simultaneously, but unique circumstances may warrant different testing 
procedures. 

Equipment should be categorized to determine m~nurum acceptable RF suscep
tibility levels. If a category is not denoted in the equipment specification, 
the manufacturer should "design, test, and qualify the equipment" to the 
appropriate category level (RTCA/D0-160C, section 20.1). Variations should be 
specified by the manufacturer and approved by the Fru\. 

RTCA/D0-160C, section 20, contains the most importan~: tests for data buses and 
integrated avionic equipment. Since each test is very detailed, one should 
refer to section 20 to ensure that all requirements are met. 

The first test determines the conducted susceptibility of cables and connectors 
to RFs between 10 kilohertz and 400 megahertz. The lnterconnecting wiring may 
be tested separately or as a group, but the bundles must be tested connector by 
connector. See RTCA/D0-160C, section 20, for a complete description. 

The next test involves radiated susceptibility in equipment and interconnecting 
cables to RFs from 30 megahertz to 18 gigahertz. Once the antenna, sensor 
locations, and test equipment are properly estabLished, the circuitry is 
submitted to the frequency ranges specified in RTCA/)0-160C, figure 20-7. The 
threshold of susceptibility should be determined. 

4.2.1.3 Section 21 - Emission of Radio Frequency Energy 

RTCA/D0-160C, section 21, presents tests for determining the emission of RF 
energy. These tests ensure that the system does no:: emit unacceptable levels 
of RF noise. Equipment should be categorized as in section 20. 

Conducted RF interference is a voltage level generated by equipment and systems, 
and should not exceed values given by RTCA/D0-160C, figure 21-1. In addition, 
the voltage levels cannot appear on any power line connected to an aircraft bus. 
Test arrangements are given in RTCA/D0-160C, "figures 21-4 and 21-5. 

As with conducted interference, radiated interference should not be emitted by 
the equipment or interconnecting wires in excess of the values shown in RTCA/D0-
160C, figures 21-6 and 21-7. This includes control, pulse, video, antenna 
transmission, and power cables. Radiated interference is described as 
oscillator radiation, spurious emanations, and broadband interference. The test 
arrangement is shown in RTCA/D0-160C, figure 21-8. 
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4.2.1.4 Section 22 - Lightning Induced Transient Susceptibility 

RTCA/D0-160C, section 22, explains tests which determine the susceptibility of 
equipment to induced lightning transients. Lightning strikes become a problem 
for digital equipment because of the high currents involved, and the fact that 
the polarity of the strike cannot be determined before the strike. Calibrations 
and test procedures are shown after each test in section 22. 

One test involving lightning susceptibility is a long wave test. This test is 
necessary because voltage differences caused by lightning can be present at 
ground references, and cause a current to flow into equipment which is connected 
to those ground references. The setup for this test is shown in RTCA/D0-160C, 
figure 22-2. The waveforms to be applied to each system are shown in RTCA/D0-
160C, figure 22-1. 

Another test involving lightning is the short wave test. This test is 
applicable because a lightning strike on an aircraft could set up a magnetic 
field around a bus or its equipment. The setup for this test is shown in 
RTCA/D0-160C, figure 22-3. The waveforms to be applied to each system are shown 
in RTCA/D0-160C, figure 22-1. 

The final test that addresses lightning in RTCA/D0-160C is called the damped 
sinusoidal wave test. The waveform used in the test is shown by RTCA/D0-160C, 
figure 22-1. The wave is sinusoidal in nature and can be categorized by its 
frequency. If lightning strikes an aircraft, it could excite the resonance of 
nearby electrical components. This test deals strictly with two frequencies: 
1 and 10 megahertz. Other frequencies might have to be considered for proper 
comprehensive testing of different installations. 

4.2.2 Radio Technical Commission for Aeronautics D0-178A 

Avionic systems that utilize software should be subjected to the procedures in 
RTCA/D0-178A, "Software Considerations in Airborne Systems and Equipment 
Certification." This document was developed by the European Organization for 
Civil Aviation Electronics, Working Group 12, and helps satisfy the FARs and 
ACs. RTCA/DO-l78A presents procedures which verify that software failures in 
digital equipment and systems will not affect the aircraft in which they are 
installed. RTCA/D0-178A also shows specific methods and techniques to help the 
designer with software design, testing, configuration, and documentation. 
Alternative methods £or complying with RTCA/D0-178A can be used if the 
manufacturer shows that the techniques are parallel to the ones in RTCA/D0-178A. 

It is beyond the scope of this paper to explain every aspect of RTCA/D0-178A. 
This s·ection only covers procedures which can be used with FAR Parts 23, 25, 27, 
and 29, section 1309, and their associated ACs, AC User's Manuals, and SCs, as 
well as FAR Part 33, sections 75 and 91. The procedures are discussed below; 
only a brief description of each is provided since most are system dependant. 
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4.2.2.1 Developing a System which is Software Based 

Two steps should be followed when defining a system that is to be certified and 
is software based. First, establish the system's criticality category; second, 
translate the criticality category to the software l·~vel. 

To determine a system's criticality category, the manufacturer should assess the 
system's application and all failures which cou:.d result from a system 
malfunction. Flight-critical, flight-essential, and flight-nonessential are 
the accepted categories. A system is defined by its most critical function. 
The manufacturer may use simulations, similarity testH, ground and flight tests, 
and/or other appropriate methods to ascertain this i~~formation. 

Software levels adopted by RTCA/D0-178A are Levels 1, 2, and 3. Generally, 
Level 1 corresponds to software used in flight-critical functions, Level 2 to 
that in flight-essential functions, and Level 3 to flight-nonessential 
functions. Once the software level is established, system development can 
begin. 

System development begins with extracting the software requirements from the 
system requirements. This involves defining what the software should do, rather 
that how it should do it. Since this section of the development process is 
unique to the system, the manufacturer must be sure that the system requirements 
are well understood. 

After software requirements are extracted and defined, software development can 
continue. See RTCA/D0-178A, section 5, for more information. 

4.2.2.2 Software Development. Verification, and Validation 

Once the software requirements are established, the mc.nufacturer should develop, 
verify, and validate the system's software. The fi1~st part of this procedure 
requires that the manufacturer submit a software development plan to the 
regulatory agency. The plan should define the software functions; the 
criticality of each function and software level; hardware and software 
interfaces; microprocessor characteristics; built-in test (BIT) and monitoring 
requirements; what functional losses could occur as a result of software 
failure; and timing, test, and partitioning requirements (RTCA/D0-178A, 1985). 
An approach to help formulate the software development plan is shown in 
RTCA/D0-178A, figure 6-1. 

After the software is developed according to the approved plan, the manufacturer 
can begin to verify the software through testing. Di1:cus sed in RTCA/DO -17 SA are 
module tests, module integration tests, and hardware and software integration 
tests. Because these tests can be lengthy and are all system dependent, only 
an explanation of module testing is provided below. Hodule integration testing, 
hardware and software integration testing, and assurance of each are described 
on pages 24 through 30 of RTCA/D0-178A. 

Module tests include logic and computation tests which verify that the module 
performs its intended function. Logic testing is used to detect illogical 
sequences and constructs. Typical errors that logic tests detect are halted 
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execution, executions trapped in a loop, incorrect logic decisions, lack of 
logic to handle certain input conditions, and missing input data. 

Computation tests are used to detect errors. The errors can appear in a 
computational sequence or numerical algorithm. A computational test may 
consider an algorithm's reaction to data within a specified range, data outside 
a specified range, and data that is on the border of a specified range. For 
example, an altitude-measuring algorithm may produce results based on digital 
data from a flight computer. If, for some reason, the algorithm receives data 
that is not within the specified range, should the algorithm assume a zero value 
or should the algorithm repeat its function again with the next data? These are 
typical questions which a computational test should address. 

Many types of computational tests can be selected since they are dependant on 
the system's parameters. It remains the responsibility of the manufacturer to 
properly define and execute these tests. 

For flight-critical systems, all verification results must be retained and all 
problems logged. For flight-essential systems, only a Statement of Compliance 
is required as a summary of the verification process. No documentation is 
required for nonessential systems. 

Once a system's development and verification tests are complete, the system's 
validation may begin. System validation usually includes an evaluation and 
testing process, and may be done in accordance with system verification and 
development testing. System validation should demonstrate the following: 

System requirements comply with the appropriate regulations. (This can be 
confirmed by simulations or environmental and performance analyses.) 

The system functions properly under adverse operating and failure 
conditions. 

As with system development and verification, system validation will vary in 
complexity and extent depending on the system's characteristics and criticality 
category. 

4.2.2.3 Software Configuration Management and Software Quality Assurance 

Systems involving software must also undergo SCM and SQA. These methods 
describe how to improve identification, control, and auditing of software. SCM 
and SQA methods in RTCA/D0-178A are drawn directly from proven methods of 
hardware control. 

As with software verification, SCM requires the use of an SCM plan. This plan 
may be part of the overall SQA plan. The SCM plan includes a description of how 
SCM will be implemented and followed throughout the system's certification 
process. It should further discuss how SCM will be applied during the service 
life of the equipment. 
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The SCM should include docwnentation, identification, and change control and 
status accounting. Docwnents which satisfy the doc~mentation part of the SCM 
are included in RTCA/D0-178A, section 8. 

If the system under consideration contains LRUs, each must be properly 
identified. This can be accomplished by placing a part nwnber on the outside 
of each LRU. The part nwnber must define the LRU's interchangability status, 
but is not required to define its internal configurations. The part nwnber may 
also define the system's hardware and software ca)abilities. Any type of 
functional change requires a unique part nwnber. It remains the responsibility 
of the manufacturer to determine the part nwnbering eonvention. 

Change control and status accounting involve any post-certification software 
change. If a software change is made that does not affect interchangeability 
or the certification basis, it may be called a software status change. If a 
software change is made which does affect the intercl1angeability or certifica
tion basis, the system will require a new part nwnbe:r. Each of these changes 
should be accompanied by appropriate docwnentation. 

The SQA plan should identify and evaluate quality proclems and ensure corrective 
action (RTCA/D0-178A, 1985). An SQA plan should include the purpose; quality 
assurance functions; docwnentation; policies, procedUJ~es, and practices; reviews 
and audits; configuration management; mediwn control; testing; supplier control; 
and appropriate records. A brief description of each is provided on pages 39 
and 40 of RTCA/D0-178A. 

SCM and SQA procedures are interrelated. Therefote, their plans should be 
coordinated to eliminate unnecessary redundancy. The procedures outlined above 
are fully explained in RTCA/D0-178A. 

4.2.3 Society of Automotive Engineers ARP 1834 

Failure analysis on data buses and integrated c:.vionic equipment can be 
accomplished using procedures in ARP 1834, "Fault/Failure Analysis for Digital 
Systems and Equipment" (1986). The need for failure analysis techniques is 
pointed out in AC 25.1309-lA and FAR Parts 23, 25, 27, and 29, section 1309, and 
is implied by FAR Part 33, section 75. ARP 1834 has been adopted as an informal 
guideline for meeting these requirements. ARP 1834's analyses are specifically 
meant to identify digital equipment hardware faults. The following paragraphs 
will briefly describe the selection, approach, and performance of some F/FA 
techniques. 

ARP 1834 is not an exhaustive or universally accepted method for applying F/FA. 
It is used merely to present cost effective, indu:~try acceptable means for 
identifying failure modes and failure effects. 

Manufacturers who wish to use ARP 1834 as a certification guideline should 
discuss their reasoning with the regulatory agency e.irly in the process. This 
is because variations of approaches presented in ARP 1834 will need to be 
employed under different circwnstances. For system~: that are flight-critical 
or flight-essential in nature, one approach might be to develop design 
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techniques for a fault tolerant system. Design techniques most often employed 
in this situation are as follows: 

Similar or dissimilar redundancy, signal consolidation, and hardware 
functional partitioning. 

,_, 

Fault detection and isolation that uses comparison monitoring of redundant 
elements, along with in-line tests, monitoring, and reasonableness checks. 

Fault response with system reconfiguration and shutdown, and operational 
mode changing. 

It is the system designer's responsibility to establish the system's objective. 

When selecting an F/FA, one' must decide whether to employ a top-down or 
bottom-up approach. The top-down approach begins at the system level and 
proceeds down to the component design. Here, the failures that produce a 
particular system malfunction effect can be found (SAE ARP 1834, 1986). Fault 
Tree Analysis (FTA) is an example of the top-down approach. 

The bottom-up approach begins at the part or component level, and moves upward 
to the system level. This allows failure effects on the next higher level to 
be identified. Failure Mode and Effects Analysis (FMEA) is an example of the 
bottom-up approach. 

Other factors that help the manufacturer select an F/FA approach are furnished 
on page 14 of ARP 1834. Descriptions, as well as applications to top-down and 
bottom-up approaches, are provided. For evaluating flight-critical or 
flight-essential functions, both top-down and bottom-up approaches should be 
used. 

For systems employing Small Scale Integration (SSI) ICs, stuck-at faults used 
to be the most prominent failure condition. A stuck-at fault is one in which 
a logic gate remains at a "0" or a "1." Now, however, Medium Scale Integration 
(MSI) and Large Scale Integration (LSI) devices (like the ones used by digital 
data buses) have introduced ma11y failure modes other than stuck-at faults. ARP 
1834, table 3-1, shows a partial list of potential failure modes. 

Certifying a digital avionic system for flight-critical or flight-essential 
operation could require an F/FA such as FTA and FMEA. This is pointed out in 
ARP 1834, but procedures for F'TA or FMEA are not given. The paragraphs below 
briefly describe these methods, and are based on chapter 4 of the Digital 
Avionics Systems (Spitzer 1987), as well as chapter 3 (Curd 1989) of the Digital 
System Validation Handbook. Volume II. 

FTA is meant to be applied at the printed circuit board level, and utilizes 
diagrams similar to flowcharts. When used correctly, it will identify the 
critical modes of the critical functions, verify that fault detection and 
recovery schemes are adequate, and ensure that no single component can cause the 
entire system to fail (Spitzer 1987). The main concept of FTA is that failure 
modes can be reduced to what are called Minimum Cut Sets (MCSs) through boolean 
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algebra. An MCS can be described as the smallest combination of events that 
could cause a single failure to occur. An MCS is determined by changing the FTA 
diagram to a boolean expression and reducing that expression using boolean 
algebra. MCSs make up part of the qualitative FTA results. Other qualitative 
yresults include qualitative importance and common cause potentials (Spitzer 
1987). Further descriptions of FTA are available in section 5. 4. 4 of this 
report and in the Fault Tree Handbook (NUREG-0492, 1981). 

FMEA addresses a failure at the pin or component level first, before defining 
what errors could result from that one cause. For example, a stuck-at fault 
might result in an erroneous data word being sent to an LRU. FMEA would isolate 
that fault first, and then state how the LRU might react. To apply this 
procedure accurately, each cause should be tabulated and considered by more than 
one person. This allows for a more thorough FMEA. MIL-STD-1629A presents steps 
for a military FMEA, from which procedures can be drawn to satisfy AC 
25.1309-lA. 

Another concept that must be realized during an FMEA is that failure effects 
and detection are just as important as the causes of the failure. Effects can 
be described as local, next higher level, and end effects, while failure 
detection covers the crew's ability to notice failures via warning lights and 
indicators (Spitzer 1987). 

There is one major drawback with FMEA: thorough FMEA is practically impossible 
for the newer types of microelectronic circuits. ARP 1834 suggests that 
redundancy is best for satisfying these situations. Further discussion of FMEA 
is presented in section 5.4.4 of this report, and in MIL-STD-1629A. 

Although ARP 1834 does not discuss FTA and FMEA, it does point out basic methods 
of F /FA, and mentions special methods for analyzing digital, processor-based 
systems. Pages 30 through 37 of ARP 1834 show a dE! tailed F /FA procedure for 
these systems. Special methods include fault insertion using hardware, 
emulation, and computer simulation. These are also discussed in section 5.4.4 
of this report. Appendices A, B, and C of ARP 183L contain examples of top
down, bottom-up, and emulation F/FA approaches, respectively. 

4.3 Relevance of Manufacturer Testing to Federal Regulations 

Most every manufacturer who produces data buses or integrated avionic equipment 
follows RTCA/D0-160, and forms of RTCA/D0-178 and SAE ARP 1834. This is because 
the FAA has dubbed them "acceptable means for showing, compliance" with the FARs 
(AC 25.1309-lA, 1988). When manufacturers run acrcss something that has not 
been addressed in the informal guidelines, they must develop their own 
validation techniques to show compliance. These validation techniques are 
usually chosen to satisfy FAR Parts 23, 25, 27, and 29, section 1309, as well 
as FAR Part 33, sections 75 and 91. 

This process was followed for the ARINC 429 data bu:>. Environmental tests on 
the original bus were conducted by the BCAC in accordance with RTCA/DO-l60A. 
In addition to the test procedures in RTCA/D0-160A, BCAC conducted other tests 
on the bus's components. This was necessary because RTCA/D0-160A did not 
address all aspects of the data bus. The tests are outlined in ARINC Specifica-
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tion 429-12. Honeywell's Sperry Commercial Flight Systems Group and Rockwell's 
Collins Division (both in conjunction with GAMA) have adopted similar procedures 
for the CSDB and ASCB, respectively. 

Other tests (like those performed by BCAC) are developed to address bus 
requirements that the informal guidelines miss. For the purpose of this 
section, these tests are broken into two categories: external and internal. 
External tests could be either laboratory tests or computer simulations, while 
internal tests are used by components to check themselves (e.g., verify data 
words, labels, or characters). Internal tests include monitoring, error 
detection, and synchronization, and may go down to the bit level. 

External and internal tests are not defined by the FARs, but are considerations 
that help ensure that the bus performs its intended function. Without them the 
bus may still function, but its integrity would be significantly decreased. 

The following four sections discuss how the informal guideline tests and these 
manufacturer's tests are applied to avionic data buses. Because there are many 
of these tests, and some are proprietary to the manufacturer, only brief 
discussions are provided. 

4.3.1 ARINC 429 Data Bus 

The ARINC 429 bus is a digital broadcast data bus made up of a transmitter, 
receivers, and wire. It was developed by the Airlines Electronic Engineering 
Committee's (AEEC) Systems Architecture and Interfaces (SAl) subcommittee. The 
AEEC, which is sponsored by ARINC, released the first publication of ARINC 
Specification 429 in 1978. At that time, the specification contained the basic 
philosophy of the bus, as well as data transfer and format characteristics. 

Included in the original specification were tests of the bus and its interface 
circuitry. Environmental testing was conducted in accordance with RTCA/D0-160 
(this was the only informal guideline in this section that the ARINC 429 bus 
satisfied). The ARINC 429 bus also underwent external tests such as receiver 
data detection techniques, laboratory tests, and computer simulations to prove 
that the bus was fully operational. 

Laboratory tests and computer simulations were used to assess pulse distortions 
on the data bus. For the laboratory tests, the bus was configured with Number 
20 American Wire Gauge cable in a typical Boeing 747. A pulse was generated by 
an ARINC 429 bus transmitter and viewed at the outputs of the transmitter and 
at a receiver. The results were viewed with an oscilloscope. Computer 
simulations modeled the whole bus, with the bus's model being drawn from the 
wire characteristics. The computer simulation included analyzing voltage 
waveforms and transmitter impedance. More detailed descriptions of these tests 
are provided in appendix 1 of ARINC Specification 429-12. 

Internal tests are done by the bus on itself (these are included in ARINC 
Specification 429-12). The tests include data word counts, parity checks, and 
cyclic redundancy checks (CRCs). 
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Word counts are used by ARINC 429 LR.Us to verify that the number of words at 
the receiver is the number of words expected. If the number of words does not 
match, the receiver notifies the transmitter within a. specified amount of time. 

Parity checks use one bit of the 32-bit ARINC 429 data word. Odd parity was 
chosen as the accepted scheme for ARINC 429-compatible LR.Us. If a receiving LRU 
detects odd parity in a data word, it continues to process that word. If the 
LRU detects even parity, it ignores the data word. (Parity checks are described 
in detail in section 5.1 of this report). 

CRCs are used by ARINC 429 LR.Us to verify groups of data words or data strings. 
A description of the CRC is given in section 5.1. 

This section described how some external and internal tests were used to verify 
the ARINC 429 bus's operation, and, indirectly, sati.sfy FAR Parts 23, 25, 27, 
and 29, section 1309. Today, many similar tests are being developed and 
executed on the ARINC 429 data bus. 

4.3.2 Commercial Standard Data Bus 

The CSDB is GA' s ARINC 429 bus. It connects avior,ic LR.Us point-to-point to 
provide an asynchronous broadcast method of transmission. More information 
about the bus's operating characteristics is contained in the standard, which 
is available through GAMA. 

Before the bus could be used in an avionic environment, it was put through 
validation tests similar to those used on the other buses. These included the 
environmental tests presented in RTCA/D0-160 and failure analyses_ Most 
environmental tests were done transparently on the bus after it was installed 
in an aircraft. 

As with the other buses, Rockwell's Collins Division had to develop external 
tests to show that the bus satisfied specifications in the standard. Test 
procedures of this nature are not included. 

Internal bus tests that the CSDB standard describes include a checksum test and 
a parity check. Both of these are used to ensure t:he integrity of the bus's 
data. Care should be taken when using these tests because their characteristics 
do not allow them to be used in systems of all criticality levels. Further 
information about both tests is provided in section 5.1. 

These are not the only external and internal tests ~hat the CSDB manufacturer 
can perform. Many more characteristics which may recuire testing are presented 
in the CSDB specification. Again, it remains the manufacturer's responsibility 
to prove that exhaustive validation testing (VT) of the bus and its related 
equipment has met all the requirements of the FARs. 

4.3.3 ARINC 629 Data Bus 

The ARINC 629 data bus is a high-speed, bidirectional data bus, which uses a bus 
protocol that supports both periodic and aperiodic data. It was developed by 
BCAC prior to 1981. 
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Much information has been published on the ARINC 629 bus over the last 10 years. 
The data bus has been the focus of many technical papers and symposiums. 
ARINC's SAl subcommittee, which published part one of the bus standard, is 
currently working on parts two, three, and four. These drafts are called the 
Applications Guide, Data Standards, and Test Plan, respectively. Each of these 
parts has been distributed by ARINC in draft form. 

Part four of the Test Plan contains a "complete" set of external tests for ARINC 
629 bus components, or for groups of components within the data link and 
physical layers of the bus. It also contains a section explaining the 
environmental tests considered for the ARINC 629 bus. 

External tests in the Test Plan address the bus's components. The Current Mode 
Coupler (CMC), Serial Interface Module (SIM), and terminal are all components 
considered by the Test Plan. The Test Plan also states that each of these 
components will be subjected to different tests. A list of the component tests 
is included in Attachment 1 of the Test Plan. Once the single units complete 
their testing, they should be tied together and tested in conjunction with one 
another. This hierarchial approach makes general test cases easier to identify. 
No formal external test procedures are presented here because they are not 
specified in the draft of the Test Plan. 

Internal tests used by the ARINC 629 bus range from simple ones that verify 
parity to complicated ones that ensure a bus user, or terminal, will not 
broadcast out of turn. Since there are many internal tests which can be 
performed, only a few examples are given. 

One internal test involves monitoring performed by a BIU. There are three types 
of terminal monitoring: receive data monitoring, transmission monitoring, and 
protocol checking. Only the protocol check is discussed here. 

A protocol check is used by a BIU subsequent to transmission. The purpose of 
this check is to ensure that a transmitter will not place data on the bus at the 
wrong time. In this way, orderly periodic and aperiodic transmission occurs 
between terminals. The protocol check requires the transmitter to satisfy the 
following three conditions between two transmissions (if these conditions are 
not met, transmission is inhibited [Shaw and Sutcliffe 1988]): 

A Transmit Interval (TI) must have passed. 
terminals on the bus. 

This TI is common to all 

• A quiet period called the Synchronization Gap (SG) must have passed. This 
SG is also common to all terminals. 

• A quiet period called the Terminal Gap (TG) must have passed since the SG 
and since the end of any other terminal's transmission. This TG is unique 
to each ARINC 629 terminal. 

Other internal tests that the ARINC 629 bus performs are parity checking, data 
format, and modulation. These tests are performed in the data link layer, and 
are done on each label and data word. Parity checking on the ARINC 629 bus 
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parallels the ARINC 429 bus's parity checking. The ARINC 629 bus parity check 
is accompanied by a modulation check. 

Two other internal tests that are performed are checksum and CRC. Since these 
discussions parallel the one given in section 4.3.1, they are not restated here. 

Many more external and internal tests are required for the ARINC 629 bus because 
it is a complicated bus. They are pointed out in the ARINC specification, 
technical papers, and symposiums. BCAC and associated manufacturers will 
continue this type of testing long after the ARINC 629 bus specification is 
complete. However, the point of the tests remains unchanged; both internal and 
external tests are required to show the FAA that the ARINC 629 bus can be 
reliably implemented. 

4.3.4 Avionics Standard Communications Bus 

The ASCB is primarily used on GA aircraft, such as business jets and commuter 
turboprop aircraft. Because integrated avionic systems in these aircraft still 
need to satisfy the FAA's requirements for airworthiness, testing similar to the 
other buses must be performed. 

There are three versions of the ASCB: A, B, and C. Version A was designed for 
use in flight-nonessential systems, Version B for fltght-essential systems, and 
Version C for flight-critical systems. Only Versio:~s A and B are implemented 
on aircraft and covered in the current GAMA specification. Version C is 
currently under development. 

As with the ARINC 429 bus, the ASCB had to undergo tests outlined in 
RTCA/D0-160, as well as others defined by the manufacturers. These tests are 
more detailed than those of the ARINC 429 bus because the ASCB uses a 
bidirectional (half-duplex) architecture. Tests tha·: address the ASCB's BC and 
waveform tests are examples of external tests that: can be performed by the 
manufacturer. 

The ASCB is controlled by a BC. Because the BC provides central bus control, 
the ASCB incorporates a redundant BC in case the prir~ary BC fails. An external 
test that involves these BCs should verify that cont1:ol is properly transferred 
from one BC to the other in the amount of time specified by the standard, and 
that the primary BC will relinquish control in the event of a failure (e.g., 
power interruption). 

A waveform test should also be performed on the ASCB. Here, combinations of 
stub lengths and- unterminated stubs are subjected to bit-errors and signal 
alterations. This external test shows whether buH data is affected by the 
medium's characteristics. 

Internal tests, like those pointed out for the ARINC 429 bus, are performed by 
the BIU. These are applied to ensure that the bus conforms to the standard. 
Tests of this nature include CRCs and Transmission Validation. 

The tests discussed above are not the only external and internal tests that can 
be performed by the manufacturer. Many more bus characteristics that require 
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testing are presented in the ASCB specification and throughout various technical 
papers. Whether a test is conceived by the manufacturer or drawn from another 
document, an ASCB manufacturer must prove to the FAA that the bus and its 
related equipment has met all of the requirements of the FARs. 

4.3.5 Summary 

Chapter 4 showed which FARs and ACs are applicable to the certification of data 
buses and integrated avionic systems. It then discussed SCs and their 
relationship to the FARs. Appendix A lists the FARs and ACs addressed in this 
chapter. 

After the federal regulations were defined, chapter 4 discussed the informal 
guidelines that showed what documents are used by data bus and integrated 
avionic equipment manufacturers to meet the requirements of FAR Parts 23, 25, 
27,. and 29, section 1309, and FAR Part 33, sections 75 and 91. Tests presented 
in these informal guidelines are designed to ensure the system's integrity and 
quality; verify reliability; help specify redundancy and back-ups; help isolate 
systems, components, and elements; and help define error tolerance. Documents 
presented in this chapter included RTCA/D0-160C, RTCA/D0-178A, and SAE ARP 1834. 
Other documents may be used (as informal guidelines) to satisfy the FARs if 
their procedures meet the same ends. 

If manufacturers run across something not addressed by the informal guidelines, 
they must develop their own validation techniques to show compliance. These 
validation techniques are usually chosen to comply with FAR Parts 23, 25, 27, 
and 29, section 1309, as well as FAR Part 33, sections 75 and 91. 

Developing proper validation techniques should be a main concern of the 
integrated avionic system manufacturer. These techniques must consider all 
failure modes of the system, even ones that are unique and infrequent. Failure 
to do this could result in hazardous conditions, even if the system is mature. 
Lessons can be drawn from the MIL-STD-1553 data bus and its associated equipment 
(Earhart 1991). 

For example, the MIL-STD-1553 has undergone extensive tests over the last 
decade. Throughout this time period, the MIL-STD-1553 has been accepted as the 
data bus for most military equipment. Even with all the testing and validation, 
there is still some apprehension about validating MIL-STD-1553 and its 
associated electronics. Much of this apprehension is the result of poor VT. 

One reason errors occur is because some manufacturers feel that total system VT 
is not necessary. Total validation requires testing single components first, 
and then testing them in conjunction with each other. A manufacturer who tests 
only the single components could easily overlook system-wide errors. 

Another reason errors occur is because some manufacturers only test a system 
once and use the results for subsequent systems. Just because a system 
functioned properly throughout the first tests does not mean that each similar 
system will yield the same results. This is especially true if the system is 
to be installed on a different aircraft or controlled by different software or 
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firmware. Some MIL-STD-1553 terminals tested by Test Systems of Phoenix, 
Arizona, have been found to contain incorrect transformers and transceivers. 

VT should also verify that operating LRUs satisfy the bus's standard. Just 
because an LRU works in a system does not mean it meets the bus's standard. 
Tests like this should be presented in each LRU' s t:est plan; this plan helps 
manufacturers verify results and defines the LRU' s er:~or margins and tolerances. 
Tests should also check margins and tolerances that: are not considered under 
normal operation or operational testing (Earhart 1991). 

The above example shows how poor VT could impact c~~rtification of well-known 
products. Often, proper tests for digital avionic equipment are not established 
until unique failure conditions appear. This is one reason that implementation 
of complex avionic systems usually follows years of design. Although the ARINC 
429 data bus was developed prior to 1978, it has taken years to achieve the 
current level of reliability. On the other hand, t:he ARINC 629 data bus was 
developed prior to 1980 and is still not being used in production aircraft. To 
breach this design barrier, the avionic system's manufacturer should collaborate 
with the FAA early in the design process and thoroughly validate all aspects of 
their systems. This type of process will represent: a challenge for both the 
system expert and the FAA. 
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5. BUS-INTEGRATED SYSTEMS TECHNOLOGY 

This chapter focuses on technical issues related to the use of data buses in 
avionic systems. Particular emphasis is placed on issues specific to the 
integration of systems using data buses. 

Section 5.1 introduces data bus architectures and examines the integration 
issues. Concerns relating to avionic system and BIU interaction are examined 
in Section 5. 2, Bus Hardware-Software Interactior.. Methods for protocol 
development and verification are presented in Section 5.3, Protocol Specifica
tion and Verification Methods. Finally, the guidelines used for bus integration 
are identified and examined in Section 5.4, Bus Integration Standards, 
Guidelines, and Techniques. 

5.1 System Inte~ration Concerns 

Factors such as weight, power consumption, maintainability, reliability, 
flexibility, and the cost of ownership are just a few of the general concerns 
when evaluating a system design. This section examines the specific concerns 
relating to the use and integration of avionic da.ta buses. Different bus 
architectures and protocols are addressed first, then particular integrity 
issues, and, finally, the issues of data bus monitoring and maintenance. 

Data buses used in aircraft have distinct advantages (IVer point-to-point wiring. 
One advantage is the reduction in the number of 111ires and connectors, and 
another is the flexibility gained when adding, deleting, or modifying the 
system. 

There are two basic types of data buses: unidirectional and bidirectional. 
Although there are many areas of concern common to both types, a bidirectional 
bus has additional areas of concern. These are related to the data bus access 
protocol. This determines when and how often a transmitter may gain control of 
the bus. A discussion of access protocols is conta:~ned in section 5 .1. 2. In 
a unidirectional data bus, which has only one transmitter, there is no need for 
control to be relinquished, hence, there is no concern over an access protocol. 

Following are four major areas of concern that have been identified as relating 
to bus interfaces (Hecht and Hecht 1985): 

Address errors 

Internal inconsistencies 

Denial of access 

"Babbling" transmitters 

Address errors are a corruption of the address field of a transmitted message. 
On bidirectional buses there may be address fields in a message for both the 
source and destination. This is especially true if the protocol requires an 
acknowledgement message to be returned to the sender. In this case, an error 
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which occurs in a source address field will be easily detected since the 
acknowledgement will not be received. 

An internal inconsistency exists when the data passed between bus users fails 
to adhere to the predefined format. These formats are given in detail by the 
particular bus specification and should be tested by the receiver for conform
ity. Data words may contain fields for error checking, sign bit, status bits, 
address bits, data bits, etc. The receiver typically uses one or more forms of 
error detection, such as a CRC or a parity check, as a basis for message 
acceptance or rejection. A rejected message may be retransmitted, or a default 
value or alternate data source used. 

Denial of access is a problem associated with bidirectional buses that needs 
careful attention during the design, implementation, and operation of a bus. 
A bus user is denied access when the user has information to send but the bus 
is not available due to an error. One such error could be another bus user 
failing to terminate its bus transmission. A failure in this area renders the 
bus useless to one or more bus users. Therefore, access protocols and bus 
interface hardware need to be carefully designed. 

Babbling transmitters are those that fail to abide by the access protocol rules. 
Due to a failure of bus interface hardware or software, the transmitter is 
activated during another transmitter's access time. If not terminated, this 
type of failure denies all other users access to the bus. 

These four concerns are not only data bus interface concerns, but specific 
integration concerns as well. New bus users must be tested to ensure that if 
they are incorrectly addressed because of an address error, they discard the 
message. They must follow the predefined format of the data bus specification. 
Users not in compliance due to an internal inconsistency problem will either 
generate errors or not detect them when they occur. Denial of access can become 
a problem for bidirectional data buses when new users are added. This can 
happen if not enough bus capacity is allowed for new users. Babbling may occur 
if new users are not configured with the correct protocol parameters. 

Another concern is that of specification completeness. Integration of equipment 
on the same data bus may involve equipment from separate manufacturers. When 
this occurs, certain parameters which may be undefined or incompletely defined 
in the bus specification are subject to differing interpretations. This 
difference of interpretation may later cause a bus failure. This concern is 
specifically addressed in section 5.3. 

The areas of concern are addressed in the following sections as appropriate. 
Protocols, although defined as part of a system architecture, are examined in 
a separate section that deals more specifically with protocol concerns. 

5.1.1 Architecture Related Concerns 

To understand data bus integration problems it is helpful to first understand 
the different data bus architectures used. Data buses are increasingly referred 
to as networks by those who work with and around them. There are fundamental 
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differences between avionic data bus networks and computer networks. 
differences are generally dictated by the intended use of the network. 

These 

Computer networks are designed for purposes such as database access, integrated 
voice and data transmission, resource sharing, file transfer, process control, 
and general communication. On the other hand, avionic data buses werE} viewed 
only as a way to save wiring and weight and enhance system performance by 
sharing common resources. The function of the bu:> was to transfer certain 
variables from one bus user to another at a fixed ~'date rate. With enhance
ments in protocols and advancements in IC densities, data bus performance has 
risen. So has the interest in usi~g the data bus for purposes that resemble 
computer networks. For example, ARINC Specificati•)ns 429-12 and 629 define 
protocols for transferring files among bus users. 

Networks use many different architectures. Some network architectures are 
defined on the basis of response time; others are defined on the basis of 
security, reliability, cost, or a combination of these. Where data buses are 
used in flight-essential or flight-critical applicac:ions, the architecture is 
designed with throughput and reliability as key factors. 

5.1.1.1 Basic Bus Architectures 

One technique useful in defining a bus architecture is the physical layout. The 
physical arrangement of bus users in a network is called a topology. Various 
methods have been used to connect bus users with data buses. Some common 
topologies are illustrated in figure 5 .1-1. In a linear topology, LRUs are 
added by sequentially attaching them to the data bu:>. All LRUs can listen to 
any transmission on the bus. For a ring topology, ·:he ring must be broken to 
add new LRUs. Messages are passed sequentially from one LRU to the next. In 
the star topology, the LRUs are connected to a central hub. A message from an 
LRU passes through the hub to any or all other LRUs on the hub. 

Some of the possible topologies for connecting one data bus to another are shown 
in figure 5.1-2. When one data bus is controlled by another it is called a 
hierarchical topology. This is common in a military data bus topology, which 
uses the MIL-STD-1553 bus. In civilian aircraft, it is common for buses to be 
equal and share data as required ("MIL-STD-1553 Designer's Guide," 1982). 

Redundancy is used in a data bus architecture to pro,•ide continued operation on 
one data bus if there is a failure on another, regardless of the cause of 
failure and whether or not the error is a recover:1ble type. Redundancy is 
implemented both physically and functionally. Physical redundancy requires two 
or more of the same item. If one fails, the other is used. For this type of 
redundancy to work successfully, a means of failure detection and system 
reconfiguration is required. Functional redundancy requires that the function 
be duplicated, but in a dissimilar way. The implementation of redundancy is 
vital in systems that provide flight-critical functions. Redundant designs 
require careful attention by the system designer. 
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5.1.1.2 Control Architectures 

How a data bus is controlled has an affect on the bus architecture. There are 
two types of control which dominate avionic data bus systems: distributed and 
centralized. With centralized control, a single controller directs all the 
activity of the data bus. There are no transmissions from any bus user unless 
directed by the BC. This controller will have a list of the addresses of all 
the bus users and will transmit a command to each user at the designated rate, 
giving each user a chance to access the bus and send any data required by other 
bus users. The ASCB and MIL-STD-1553 bus use centralized control. 

Distributed control refers to a system that is not centrally controlled. 
Instead of the access control being contained in a central controller, it is 
programmed into each device which is connected to the data bus. Each user has 
been programmed to follow an identical set of access rules without variation. 
The ARINC 629 bus uses distributed control. 

5.1.1.3 Functionally Partitioned Architectures 

Another technique used in defining the bus architecture is functional partition
ing. This means that data buses are defined by functions which they perform and 
are grouped accordingly. For example, in the ARINC 629 bus implementation 
(planned for use on the Boeing 777) systems are partitioned according to their 
function, such as fly- by-wire, system, and display functions (Bailey 1990). 
Data sharing among bus users is more easily accomplished when the users 
requiring the data are on the same bus as the users supplying the data. When 
this is not done, some method of linking the data buses together is required. 
This can be accomplished with gateways and bridges. 

5.1.1.4 Multiple Bus Architectures 

The use of gateways and bridges is another facet of integration concerns 
associated with a data bus architecture. Avionic systems that are required to 
share data may use different data bus protocols. A gateway is used to connect 
two or more data buses so that a user on a bus using protocol X may communicate 
with a user of another data bus, which uses protocol Y. A gateway may be a 
standalone interface or part of an LRU. The gateway functions as a protocol 
converter, converting data packets, wordstrings, or frames from one format to 
another. A gateway used between two buses is req~ired to perform two data 
conversions, protocol X to protocol Y, and protocol Y to protocol X. 

When it is necessary to share information between data buses which use the same 
protocol but must remain isolated, a bus bridge is used. Figure 5.1-3 shows 
examples of how buses may be connected by gateways and bridges. 
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SENSOR A SENSORB ~<SORC SENSORD 

GATEWAY 

COMPUfER COMPUfER 

ARINC 629 BUS ARINC 429 BUS 

SENSOR A SENSORB ~~SORC SENSORD 
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COMPUfER COMPUfER 

ARINC 629 BUS ARINC 629 BUS 

FIGURE 5.1-3. GATEWAY AND BRIDGE USED IN AVIONIC SYSTEMS 
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If a gateway is required to perform conversions between two data buses, it will 
perform a conversion from bus A to B and from bus B to A. If there are three 
data buses, A, B, and C, connected to the gateway, then the gateway will be 
required to do six conversions: A to B, A to C, B to A, B to C, C to A, and C 
to B. The complexity of the gateway increases rapidly as the number of 
interfaces increases. Avionic data bus gateways generally interface between two 
data buses and, hence, require only two conversions. If data are required in 
only one direction, then only one data conversion is necessary. 

An example of an avionic device which fits the gateway definition is found in 
ARINC Specification 429-12, appendix 2, where it is referred to as a "data 
exchange buffer." The specification describes an interface between the 
MIL-STD-1553 command/response data bus and the ARINC 429 broadcast data bus. 
Some of the possible conversions between these two buses could be changing the 
destination label or address, changing the ordering of bits, or generating and 
testing the error checking mechanism used on the particular bus. 

One possible implementation of a gateway may require a conversion from parity 
error detection to a CRC detection technique requiring the generation of a CRC 
check word. A gateway may implement this conversion in hardware or software and 
will have a throughput delay based on the particular implementation chosen. In 
general, a software technique would produce a lower cost with a higher delay, 
and a hardware technique would produce a lower delay, but at a higher cost. 

A gateway is more complex than the user bus interface since it needs to. deal 
with protocols for two different buses and their associated data formats. Data 
latency is increased in a configuration which uses gateways, due to the time it 
takes a variable to pass from one bus to another through the gateway. If the 
gateway or bridge causes data to be "momentarily stored" (ARINC Specification 
429-12, appendix 2, 1990), then the system performance could be affected due to 
a "stale data" condition. As shown in figure 5.1-4, the end-to-end delay can 
be measured as T8 + Tb + Tc + Td + T8 • The values represented by these parameters 
are as follows: 

Ta - Transfer from host CPU and bus access delay 
Tb - Data transfer time plus propagation delay for data bus A 
tc - Gateway delay 
Td - Data transfer time plus propagation delay for data bus B 
Te - Bus access delay and transfer to host CPU 

Tc may be composed of the time required for serial to parallel conversion, 
protocol conversion, and parallel to serial conversion. It should be the goal 
of any gateway design to keep Tc small in relation to the other time parameters. 
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Careful consideration should be given not only to the data latency problem but 
also to the handling of bus errors through the gate1~ay. Should an error that 
was detected by the ARINC 429 bus interface be passed through the gateway to the 
MIL-STD-1553 bus so that the intended receiver will detect it and take 
appropriate action? Should there be a bit reserved in the data format to handle 
this situation? Should the old data be stored in the gateway and used until a 
correct error free update is received? The particular error recovery method 
that is used should be consistent with the particular· standard and have minimal 
impact on system operation. 

A protocol that uses an acknowledgement response from the receiver for verifying 
correct receipt of data, will have additional constraints when used in a system 
containing a gateway. If the protocol at the receiving end is not required to 
issue an acknowledgement, but the sender requires it, then the end-to-end 
integrity is broken at the gateway interface. If an 8.cknowledgement is required 
by both the sender and receiver, then the timeout value for the sender should 
take into account the round trip delay introduced by the gateway. 

Periodicity is an attribute which may be affected by a gateway implementation. 
A periodic bus is one in which data arrive at the receiver at regular time 
intervals. Different protocols meet at the gateway. Each protocol by itself 
may be periodic, but when linked to another protoco:_ the result appears as an 
aperiodic bus. This is due to the fact that the two protocols are not 
synchronous. A wordstring that arrives at the gatew<q from bus X may have just 
missed the transmission for bus Y. A later transmission from bus X may be just 
in time for bus Y. Operation in this manner means that at certain unspecified 
times the data will be fresh and at other times it will be stale. Systems that 
require information to be updated at certain rates need to be analyzed closely 
to determine if the introduction of a gateway will degrade the system operation. 
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In addition to the problems mentioned above, hardware-software interaction 
problems, discussed in section 5.2, also apply. This is because, to each bus 
the gateway resembles an LRU with a bus interface and host CPU. 

5.1.2 Protocol Related Concerns 

Multiple transmitters can use one bus by using time-based multiplexing. This 
multiplexing requires that a bus access protocol be defined to ensure that, at 
any one time, only one user is transmitting. The bus access protocol is a set 
of rules by which all bus users must abide to access the bus and ensure its 
specified operation. The basic types of access protocols which could be 
considered for use with bidirectional data buses are as follows: 

Contention 

Time slot allocation 

Command/response 

Token passing 

With the contention protocol any bus user may transmit on the bus at any time 
after the bus becomes idle. If two bus users start transmitting at the same 
time, a collision of data occurs and the data are corrupted. Collisions are a 
normal event with this type of protocol. This protocol works well under light 
use but tends to collapse under heavy loading due to numerous collisions. 

The time slot allocation protocol assigns a unique, predefined time slot during 
which each bus user may access the bus. Each user listens to the bus for a 
period of inactivity. When the assigned time occurs for a particular bus user, 
it may take control of the bus. Access to the bus is not attempted again until 
the necessary time passes, which allows all other users to access the bus. 

In a command/response protocol no bus user may transmit without receiving 
permission from the BC. There is only one BC active at any time. The failure 
of one BC should cause the activation of an alternate BC. 

A token passing protocol allows a bus user to transmit only after it receives 
the unique bit pattern, referred to as the "token." It receives the token, 
sends any waiting message(s), and passes the token on to the next user. 

There are also variations of these protocols that make the differences between 
them unclear. For instance, a command/response protocol can operate with a 
single central controller using a redundant standby controller for recovery. 
Under the same command/response protocol there can be a large number of BCs 
attached to a bus and all but one will be in the inactive state. Control of the 
bus can be passed from one controller to the next as each requires bus use. 
This technique closely resembles the operation of the token passing bus with a 
distributed control architecture. This is a more complex protocol. 

Certain attributes have been identified as being highly desireable for avionic 
data bus protocols. These are fault tolerance, efficiency, simplicity, data 
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integrity, support of synchronous and asynchronous data transfer, and predict
ability (Rich et al. 1983). Though they are not the only desireable features 
for a protocol, they do identify areas where major concerns have been expressed. 

Fault tolerance describes the ability of a protocol to handle errors. Some 
protocols simply identify the fact that an error occurred; others are able to 
recover, possibly by a retransmission of the same data. Another recovery 
technique is a bus user isolating itself from the bus after detecting self
generated errors. A failure of the protocol should he identified by bus users 
and the reestablishment of order should be possible 111ith little delay. 

With respect to data transfer, efficiency is a measu:=e of how much useful data 
are transmitted on the bus compared to the total number of bits transmitted. 
A large amount of overhead required for operation decreases the capability of 
the bus. 

Simplicity is a measure of how understandable the protocol is. An easily 
understood protocol will benefit all areas of development, testing, and 
operation. 

Data integrity depends on how well errors are detected to ensure that correct 
transmissions are made on the bus. The use of some form of error detection is 
necessary to achieve data integrity. Various methods are available to implement 
this feature and each differs in the types of errors which it will detect. The 
efficiency of the protocol is usually affected by th'~ particular method used. 

Most avionic data buses were designed to handle data that is synchronous. The 
handling of control inputs, along with more recent applications, such as on the 
Boeing 777 where the data bus may function as a general-purpose computer 
network, require that the data bus be able to handle asynchronous demands as 
well. This requirement necessitates that the overall throughput have the 
capacity to handle the uncontrolled load of aperiodi<:: devices. 

A deterministic protocol is one which is highly predictable. The specification 
states exactly how it will perform under all foreseeable conditions, and it can 
be verified that it does act according to this predetermined behavior. 
Asynchronous transfers detract from this characteristic and the truly random 
access protocols based on collision detection are no:~deterministic. Protocols 
for avionic use are chosen because they are highly predictable. 

A protocol which has the capability to deny acces~: to a bus user is not a 
deterministic protocol. Even for a protocol that does not deny access, there 
may be errors that have the same effect as access denial. For example, a 
transmitter hardware failure may cause the transmitt~r to babble continuously, 
thereby denying other transmitters access to the bus. 

In the following sections, some of the basic protocols are discussed and 
evaluated with respect to these preferred attributes. 
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5.1.2.1 Contention Protocols 

A contention protocol in its pure form is nondeterministic. The term Carrier 
Sense Multiple Access (CSMA) describes the predominant form of this protocol. 
Multiple users are listening to the bus. When one has a message to send, it 
waits for the bus to be not busy and makes a transmission. From this simple 
description of CSMA operation one can easily see potential problems. This 
uncoordinated access protocol cannot guarantee that a message will ever be 
successfully transmitted. Therefore, many modifications have been made to this 
protocol in order to increase its reliability. 

One particular modification, Collision Detection (CD), can be used to enhance 
this protocol. In CD, the users monitor their own transmissions for collisions 
by checking the bus data, bit-by-bit, against the stored BIU message. When the 
corrupted data that results from a collision is detected, the two users wait 
for a random period of time before attempting to access the bus again. Doing 
this will increase the availability of the bus to all users since they do not 
have to wait for the entire corrupted message to be transmitted before the bus 
returns to the idle state. When CSMA is used with CD, it is called the CSMA/CD 
protocol. 

One variation to CSMA/CD is referred to as "!-persistent" CSMA. A bus user 
wishing to transmit will listen to the bus. When the bus is not busy it will 
make a transmission. If a collision occurs, the sender waits for a randomly 
generated delay time and tries again. It is called "!-persistent" because when 
a collision occurs, the transmitter will retransmit the message with a 
probability of "one" as soon as an idle bus is detected (Tanenbaum 1981). 

A problem exists with this method. Assume that two users with data to send are 
both waiting for a third user to stop transmitting. As soon as both users sense 
that the bus is free, they will begin transmitting, resulting in a collision. 
This leads to poor bus utilization and severe throughput problems under heavy 
loading. 

Propagation delays are critical in CSMA protocols. When one user just begins 
transmitting, another may still detect no signal. The second user may then 
start transmitting with a collision resulting. As the propagation d~lay 

increases, so will the probability of a collision. Even if the propagation time 
is zero, collisions can still occur since there is no mechanism to prevent two 
bus users from sensing the bus at the same moment. 

Another variation of the protocol is called "non-persistent" CSMA. Users 
wishing to transmit, upon detecting a busy bus, will delay a random amount of 
time and, if the bus is not busy, send its message. If the bus is busy, the 
user again starts a random wait and repeats this process until the bus is free 
and it can make a transmission (Tanenbaum 1981). CD can be used to enhance this 
protocol as well. 

As more users are added to the bus, the CSMA protocol suffers from an increasing 
number of collisions during the contention period and, hence, wasted bandwidth. 
Unless some variation is made to this protocol to avoid contention, it will be 
plagued with poorer performance as new users are added. 
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Since this protocol is not deterministic, it is not u:;ed in flight-essential or 
flight-critical avionic applications. 

5.1.2.2 Time Slot Allocation Protocols 

In a time slot allocation protocol, each user is giveTI. a preallocated time slot. 
The ARINC 629 bus uses a time slot allocation protocol that also accommodates 
asynchronous transmission. As with other bidirectional data bus protocols, this 
protocol uses CD, but collisions are not normal events as in a contention 
protocol. 

The Time Division Multiple Access (TDMA) approach is t:he simplest form of a time 
slot allocation protocol. In pure TDMA, the time of occurrence and the duration 
of each user's time slot are predetermined. When one user's time has tran
spired, another user is given access to the bus. A more advanced form allows 
users to determine the time of access based on bm: activity. The standard 
implementation is called the Dynamic Time Slot Allocation (DTSA) protocol. 
Although it is not an avionic data bus protocol, it is included to help 
understand the ARINC 629 bus. The details of the DTSA operation are given in 
appendix B of this report. The ARINC 629 bus implements a special form of DTSA. 

In contrast to CSMA, which is based on a random aecess method, a time slot 
protocol relies on a unique and predefined access method for each user. Each 
user is guaranteed that, during its time slot under error-free conditions, it 
has sole access to the bus. This access method lends itself to a high bus 
efficiency, even under heavy loading conditions. fhroughput under the CSMA 
protocol, however, rapidly deteriorates with increa1=ing access demands by its 
users. 

5.1.2.2.1 ARINC 629 Bus 

ARINC Specification 629, Part 1, defines a TG coun<: which is similar to the 
count duration, Tc, for DTSA. It defines a unique value for each user based on 
a delay count. Bus access is permitted only after this count is satisfied. 
Another DTSA parameter, the Frame Time, TF, is similar to the Minor Frame of the 
ARING 629 bus specification in that it defines the cycle time of one user, from 
the start of transmission x to the start of tran1=mission x+l. For either 
protocol, if transmission lengths are allowed to vary then the sequence of user 
accesses is maintained, but not the periodicity. 

TDMA protocols operate in a cyclic fashion with the transmission of any user 
being predictable as far as the time slot is conCE!rned. The ARINC 629 bus 
cycle, however, is more complex because three timers must be satisfied for bus 
access. Also, variations such as aperiodic transmissions are permitted. 

ARINC Specification 629, Part 1, defines two basic modes of protocol operation. 
One is the Basic Protocol (BP), where transmissions may be periodic or 
aperiodic. Normal transmissions on the bus are periodic, but a condition such 
as bus overloading may force the protocol into an aperiodic mode. Transmission 
lengths are fairly constant, but can vary somewhat without causing aperiodic 
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operation if sufficient overhead is allowed. In the Combined Protocol (CP) mode 
transmissions are divided into three groups for scheduling: 

Level 1 is periodic data (highest priority) 

Level 2 is aperiodic data (mid-priority) 

Level 3 is aperiodic data (lowest priority) 

Level one data are sent first, followed by level two and level three. Periodic 
data are sent in level one in a continuous stream until finished, after which 
there should be time available for transmission of aperiodic data. 

With this protocol there are three conditions which must be satisfied for proper 
operation. They are the occurrence of a Transmit Interval (TI), the occurrence 
of an SG, and the occurrence of a TG. These values are based on bus quiet time 
and are implemented as timers in each bus user. Figure 5.1-5 shows the access 
timing when the bus is operating in the periodic mode. 

FOR TERMINAL B: GO AHEAD 
(A) 

! 

GO AHEAD 
(B) 

! 

._--------------TI(B)---------------. 

TI is the controlling parameter. 
TG prevents collisions due to clock drift. 
SG is not a factor. 

FIGURE 5.1-5. PERIODIC ACCESS FOR THREE BUS USERS 
("ARINC 629 Symposium View Foils," 1991) 

The TI defines the m1n1mum period that a user must wait to access the bus. It 
is set to the same value for all users. In the periodic mode, it defines the 
update rate of every bus user. The SG is also set to the same value for all 
users and is defined as a bus quiet time greater than the largest TG value. The 
SG can take on four different values and is set larger than the greatest TG 
value. Every user is guaranteed bus access once every TI period. The TI and 
SG times are not reset by bus activity. The TG is a bus quiet time which 
corresponds to the unique address of a bus user. The TG, however, is reset by 
any bus activity. Once all three timers have expired for a user, it may access 
the bus. 
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When a bus user or users exceed the time required fo1: all transmissions to fit 
within the TI value, the protocol becomes aperiodic. During this overload 
condition, transmissions still continue but periodicity is not maintained. 
Figure 5.1-6 shows the access timing when the bus is •)perating in the aperiodic 
mode. 

FOR TERMINAL B: 

~------~TI--------• 

TG and SG are the controlling parameters. 
TI is not a factor. 

1-.---

A 

-
FIGURE 5.1-6. APERIODIC ACCESS FOR THREE BUS USERS 

("ARINC 629 Symposium View Foils," 1991) 

GO AHEAD 
(B) 

! 

-TG(B) 

Since the TI value is exceeded, it is no longer the controlling parameter for 
bus access. The SG and TG now become the controlling factors and the TI is not 
a factor. This operation ensures all users bus access, although not at regular 
intervals. 

According to Part 1 of the ARINC 629 bus specificati.on, the system integrator 
is tasked with the selection of values for the TI, SG, and TG. Once the number 
of users is known, the range of TG values can be assigned and the SG and TI 
values determined. The TI is given by the following formula (ARINC Specifica
tion 629, Part 1, 1990): 

TI = O.S(Binary Value of TG) 10 + 0.5005625 ms 

When adding users to the bus it becomes necessary to review these bus parameters 
step-by-step, as was done in the initial design. Even if the bus capacity is 
not a problem, the values of the TG and SG may require modification if many 
users are added to the system. A recalculation of all timing parameters, along 
with changes in the hardware straps and Programmable Read-Only Memories (PROMs) 
for each user, may be required. The PROMs of all LRUs will also require 
updating if new labels are added to the bus. 

Additionally, when more users are added, bus efficiency is reduced because of 
the increase in the TG required to address the new user. Adding user 126 to a 
bus consumes almost 128 microseconds every TI, where~s the addition of user 10 
consumes only about 12 microseconds. One way to avoid problems when adding 
users is to maintain unassigned TGs with low values for this very purpose. If 
utilization of these TGs is planned from inception, then the integration impact 
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will be minimal. Also, the SG value may need to increase when new users are 
added if the largest TG value approaches the value of the SG. 

In a TDMA-based protocol with fixed time slots, overload of the bus is not 
possible since all users have access to the bus only in their own time slots. 
If variable length transmissions are permitted and a bus user sends data longer 
than is allotted, bus overload occurs. The data bus is still fully in use, but 
it becomes asynchronous and established update times for periodic variables are 
not met. This shift to the aperiodic mode is not detected by the bus hardware 
and needs to be implemented at a higher level for detection. 

The ARINC 629 bus specification allows the use of variable length wordstrings 
and, therefore, the aperiodic mode is also defined in the specification. An 
ample amount of free time should be provided in the initial design to allow for 
integration of new users. 

For the ARINC 629 bus, bus inactive time is measured and used by LRUs as a 
parameter in the access protocol. When a protocol is based on the bus inactive 
time, and the difference in inactive periods (which represent addresses) 
approaches bus propagation time, care must be exercised in the physical layout 
and address assignment of the individual users. Otherwise, a conflict may arise 
due to two users responding at the same time, both assuming they have access to 
the bus. To deal with this problem, section 4.2.1.3 of the specification states 
the following: 

"In general, for wire meclia, the total media length (stub/bus/stub) 
between terminals [bus users] with consecutive TGs should not exceed 
60 meters." (ARINC Specification 629, Part 1, 1990). 

This requires that LRUs and unassigned TGs be physically grouped so that this 
requirement is not violated. Also, any physical changes to the data bus that 
affect propagation parameters need to be considered carefully. 

The ARINC 629 system designer or system integrator is tasked with many decisions 
concerning integration and operation of all the systems. The selection of the 
particular protocol mode, BP or CP, is one decision which must be made and which 
affects protocol complexity. If the CP mode is selected, then all LRUs must 
conform to whatever standard is proposed for that mode. If undefined areas 
exist in the bus specification, such as using the bus for file transfer, then 
the system designer is essentially tasked with completing the undefined sections 
and developing, testing, and implementing them as well. 

5.1.2.3 Command/Response Protocols 

A command/response protocol is one in which a central controller manages all 
transmissions on the data bus. Bus users needing to send data are periodically 
addressed by the controller and given permission to access the bus for a 
specified message. No transmissions may be initiated without this permission. 

There are two types of control which may be utilized under this and other 
protocols: stationary and nonstationary. With stationary control there may be 
one or more BCs. However, only one operates in the active mode; the others are 
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in standby mode. If a failure of the active controller occurs, then an inactive 
controller takes over control of the bus, To work reliably, the controllers 
need to distinguish between errors originating from a BC and errors generated 
by bus noise or a faulty bus user. The controllers also should do a thorough 
self-test to detect internal faults and watchdog timers need to be used to 
provide an additional level of checking. The controllers should communicate 
between themselves, not only through the bus but also through an independent 
link, in case there is a problem with the bus medium or bus interface hardware 
between the two controllers. 

With nonstationary bus control, control is continually passed from one BC to the 
next according to a predetermined sequence. At any given moment only one 
controller is active. Two methods are normally used for passing control between 
BCs. One method uses a fixed ordering of bus control where control is passed 
from one controller to the next according to a predetermined table of addresses. 
Each BC retains control of the bus until it has fininhed its last transmission 
and then passes control to the next listed controlle1~. This is referred to as 
"round-robin" control. The other method allocates a limited amount of time for 
each BC to be active. When this time expires, control is passed to the next bus 
user in the list. Under this latter method of control, the bus operates in a 
synchronous manner at the expense of efficiency. If the controller does not 
utilize its allocated time completely, then the bus will remain idle for the 
rest of the period. With the round-robin approach, the bus is fully utilized 
since a controller passes control to the next potential controller as soon as 
it is finished. This method does not give the periodicity that may be required 
by a bus user. 

Another possible control method is to pass control based on a priority scheme. 
At the end of a cycle for a particular BC, an arbitration period ensues where 
the controller assesses the needs of all the other potential BCs and passes 
control to the one with the greatest need. This arbitration period always 
precedes the assignment of a BC. An advantage of th:_s method is that messages 
high in priority are delivered first. This method of control, however, is more 
complex and not synchronous in operation. The difficulty of monitoring and 
testing such a protocol is greater than a synchronou!; protocol. 

An advantage of the centrally controlled architecture is that integration 
changes are carried out only in the active and standby controllers. Users do 
not require modification unless they are involved in the change. 

5.1.2.3.1 High-Level Data Link Control Protocol 

The High-Level Data Link Control (HDLC) protocol can operate in a com
mand/response mode and is the basis of the ASCB data bus operation. HDLC was 
defined by the International Standards Organization (ISO) for the purpose of 
replacing character-oriented protocols. 

HDLC is a bit-oriented protocol where data appears .as a continuous stream of 
"ones" and "zeros." The beginning and end of the data bit stream are defined 
by using a flag at the beginning and end of the bit sequence. Once this is done 
it is referred to as a frame. Any information sent using the HDLC protocol uses 
the format shown in figure 5.1-7. 
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------ ----------- -

FLAG ADDRESS CONTROL DATA CRC FLAG 

FIGURE 5.1-7. HDLC FRAME FORMAT 

Operation of the HDLC protocol is described in terms of the capabilities of the 
bus users, or stations, and their cooperation. Intelligent stations can be 
connected to several very simple stations. The management of the bus, which 
requires more capabilities, is usually located in the more intelligent station. 
This station is called a primary station while the others are called secondary 
stations (Meijer and Peeters 1982). When there is a primary station with more 
than one secondary station, it is referred to as an unbalanced configuration. 

There are two modes by which the stations interact under the HDLC protocol: 
Normal Response Mode and the Asynchronous Response Mode. The Normal Response 
Mode specifies that the only time a secondary station can transmit is in 
response to a command or poll from the primary station. The Asynchronous 
Response Mode specifies that a station may transmit any time the bus is 
inactive. This applies to both primary and secondary stations. Operation in 
this mode means that collisions on the bus will be a normal occurrence. 

In certain configurations it is necessary for all stations to have the same 
capabilities. In this case, each station will have the capacity to function as 
a primary or secondary station. This type of configuration is referred to as 
a balanced configuration. 

Based on the bus user capabilities and response modes there are three classes 
of procedures defined in HDLC: 

Unbalanced Asynchronous Configuration (UAC) 

Unbalanced Normal Configuration (UNC) 

Balanced Asynchronous Configuration (BAG) 

Further details of the HDLC protocol are given in appendix C of this report. 

5.1.2.3.2 Avionics Standard Communications Bus 

The ASCB is a centrally controlled, unbalanced implementation of the HDLC 
protocol using the Normal Response Mode. This configuration is the UNC. The 
ASCB message frame uses the leading flag, address, data, CRC, and terminating 
flag fields defined by the HDLC standard. Added to this are a checksum on the 
data field and "SYNC" and "MARK" fields at the beginning and end of the message, 
respectively. Figure 5.1-8 shows the frame format for the ASCB message. 
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SYNC FlAG ADDRESS DATA CHECKSUM CRC FlAG MARK 

FIGURE 5.1-8. ASCB FRAME FOR~T 

The ASCB eliminates the control byte, as defined in HDLC, from both the send and 
receive messages. The ASCB specification, however, defines a control word and 
a counter field in the control word (GAMA ASCB, section V, paragraph 4.3.1, 
1987): 

"Three bits are reserved in the control word of Eoach user to implement 
a ... counter. This counter is incremented by the user each time it 
transmits." 

This counter is used to verify that the data received. is a new transmission and 
not the same data as the last transmission. Under HDLC, this field would be 
used in a store-and-forward network where a messa.?;e may be broken up into 
smaller packets and sent to the destination, possibly over differing routes. 
The receiver would then be required to reconstruct the message in the order in 
which it was sent by using the three-bit counter field for correct ordering. 
Since there is only one route defined for ASCB userH, this field is used as a 
data update indicator. 

By not using the full implementation of the counter field as defined by HDLC, 
the ASCB protocol avoids the complexity of returning an acknowledgement frame 
to the sender for every message received. This is an important difference 
because, by doing this, the protocol is greatly simplified and proper operation 
is more easily verified and monitored. With the elimination of the control 
field, the HDLC information frames, supervisory frames, and unnumbered frames 
are also eliminated. 

Since no acknowledgement is returned, there must be a way to recover from errors 
on the bus where data are lost and, therefore, nonrecoverable. Assuming all 
transmission errors are detectable, there are three ·~asic ways to handle them: 

Use the last data received 

Request retransmission 

• Use a stored or simulated value 

Since retransmission is not a mode of operation for the ASCB, the system 
designer must choose one of the other methods for er~or handling. 

63 



------------------------------

Transmissions on the bus are considered valid messages by users if they contain 
a valid flag and address at the beginning and a valid flag and mark at the end. 
Anything else which appears on the bus is to be ignored by all bus users. 

It may be difficult to make significant additions of users to an avionic system 
that uses the ASCB bus, since the message lengths are predefined and must fit 
within a 25 milliseconds cycle time. The use of a central controller, however, 
minimizes the difficulty since only the controller, and not all of the users, 
need to be updated when this is done. Since users only respond when they are 
addressed by the central controller, only the controller and any redundant 
controllers need their user lists updated. 

There is no provision in the ASCB for separate handling of high priority data 
or messages. All transmissions are treated the same. If certain information 
on the bus is in higher demand by a bus user, the designer should ensure that 
it appears on the bus more frequently than other data. This can be accomplished 
by having a particular message sent every cycle time, as opposed to every other 
cycle time. Since the ASCB uses a predefined cycle time, which is 25 mil
liseconds, the possibility of bus overload is nonexistent for this protocol. 

5.1.2.4 Token Passing Protocols 

This protocol is based on a token, or special bit pattern, which circulates 
around a ring bus to each user. When a user receives the token it has exclusive 
access to the bus. When no users have messages to send, the ring is idle and 
the token circulates freely. 

When a user wants to send a message, it waits until it receives the token. It 
functionally removes the token from the bus by altering the bit pattern. The 
message is then sent on its way around the ring along with the modified token, 
which is called a "connector." 

If the tokens or messages were completely received and retransmitted by each 
user to the next user, it would be an inefficient protocol. The time to 
circulate a message around the loop would be the product of the time for one 
complete transfer multiplied by the number of users. Instead, the message is 
retransmitted bit-by-bit; each user only introduces a one-bit delay. This 
reduces the retransmission overhead to only one bit-time multiplied by the 
number of users. 

When the number of users connected to the ring is large, the one-bit delay and 
propagation time become significant. If the ring is small, then the number of 
users is limited by the number of bits contained in the token. There must be 
enough users to allow the entire token to be placed on the ring. Another factor 
which requires consideration is when a user is removed from the ring. The 
number of users remaining active needs to equal or exceed the number of bits in 
the token. If a user is removed, it may be necessary for the interface logic 
to remain attached to the ring so that a one-bit delay is maintained. 

A token ring user switches from the receive to the transmit mode in one bit
time when there is a message to be sent. This is because as soon as the last 
bit of the token is recognized, the next bit transmitted must be the first bit 
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of the sender's message. Buffering of messages in the user is required so that 
they can be sent without delay. There is no possibil:~ty of host CPU interaction 
for building a message once the token is received since there is only one bit
time to respond. 

In a token ring, it is necessary to control the bits propagating around the ring 
so that old messages can be removed and new ones added. The message originator 
does this by removing the message from the ring and placing the token back in 
circulation. The received message can then be compared to the sent message for 
an integrity check, and the results of this check passed to the host system. 
The user then returns immediately to the receive mode to support the operation 
of the loop. 

The token ring avoids contention by the use of the 1:oken. Under light usage, 
the token circulates freely around the loop in a seq~ential fashion waiting to 
be used by a user. When bus traffic is heavy, the token ring escapes the chaos 
common to contention type protocols. Each user may send a message every time 
it receives a token, regardless of how busy the bu:; becomes. It avoids the 
single point of failure which is characteristic of the centrally controlled 
protocols and allows equality among all users in the loop. 

When a token ring operates as described above, and meE:sage lengths are constant, 
periodicity can be maintained for all users. Even if there is a message build
up in the host system and the bus is at 100 percent ·.1tilization, this protocol 
acts predictably. The predictability of the protocol, however, will be reduced 
if variable length transmissions are permitted. Transmissions will cease to be 
periodic and the designer will need to ensure that the minimum update rates for 
all users are met. 

A problem associated with this protocol is that if the token is ever lost, for 
instance by a noise burst modifying the token pattern, operation will cease. 
Users can monitor for this condition and, after a period of inactivity, start 
a token circulating again. If variable length me::;sages are permitted, the 
timeout period needs to satisfy the worst case scenario, of all bus users 
transmitting the maximum length message, to avoid having more than one token in 
circulation. 

Two avionic data buses that may be classified in the category of token rings are 
the LTPB and the HSRB. The LTPB uses a linear topology with token passing for 
access control. The HSRB uses a ring topology with ·:oken passing. Both buses 
operate at high data rates (SO megabits per second) •md are designed primarily 
for military aircraft. 

5.1.2.4.1 Linear Token Passing Bus 

The LTPB is a recently defined data bus. Two types of media are defined for use 
by the LTPB. They are fiber optic and wire media. Bus lengths of up to 1000 
meters can be accommodated by the LTPB. Some of the bus characteristics are 
listed in table 5.1-1. 
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TABLE 5.1-1. LTPB CHARACTERISTICS 

Media Fiber Optic or Wire 

Word Size 16 Bits 

Message Size 0 to 4096 Words 

Number of Physical Addresses 128 

Priority Levels 4 

Topology Linear 

Although the physical bus is linear, the protocol uses a token which is cyclicly 
addressed to each bus user, in sequence, around a logical ring. The token is 
a Token frame which consists of an address field and a frame check field. The 
address field contains the address of the BIU for which the token is intended. 
The frame check field is a CRC which ensures token integrity. The BIU that 
receives the token is granted access to the bus. 

Since the token contains the destination address, any BIU may alter the sequence 
of BIUs by modifying this field. This feature allows a ring to easily 
reconfigure itself when an individual BIU becomes inactive. At power-up, or 
when the token is corrupt, the logical ring sequence is established by a 
predefined contention method. 

If a BIU does not respond in a reasonable amount of time to a token passed to 
it, the sending BIU will again send the token to the same bus user. If there 
is no response, the sending BIU increments the destination address field of the 
token and again transmits it on the bus. This process continues until a 
successor is found or the destination address wraps around and equals the 
sending address (AS4074.1, 1988). 

The addition of new members to the ring and reentering bus users that were 
momentarily dropped from the ring is accomplished by the Ring Admittance Timer 
(RAT). Each BIU maintains a RAT. When the timer expires, the BIU attempts to 
pass the token to a bus user with an address between its own and that of its 
current successor. A token is sent to the succeeding address two times. If no 
response is received, the address is increased by one and a new token is issued. 
This process continues until a successor is established. If the current 
successor already has the next physical address, the RAT is ignored. A RAT 
should be used only on a lightly loaded bus. The throughput of a moderately 
loaded bus would be significantly decreased (AS4074.1, 1988). 

The LTPB allows message prioritizing. There are four categories of messages: 
priority 0 through priority 3. Priority 0 messages are the highest in priority, 
priority 3 messages are the lowest. 
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When a BIU receives the token, it sends all priority 0 messages first. A Token 
Holding Timer (THT) is maintained by the BIU to cont:rol the maximum amount of 
time the token may be held. It is reset upon reception of a token. The token 
is passed on to the next user when the THT expires, ·~ven if there are messages 
remaining to be sent. 

Before the THT expires, Token Rotation Timers (TRTs) determine the window for 
sending messages with priorities of 1 through 3. Ea.:h BIU maintains a TRT for 
each of the three priority levels. After priority 0 n:essages are sent, priority 
1 messages are sent until finished or until expiration of the priority 1 TRT. 
This procedure is followed for each message priority level. If all of the 
lowest priority messages are sent, the token is passed to the next bus user. 
The TRT and THT ensure small latencies for high priority messages (AS4074 .1, 
1988). 

5.1.2.4.2 High Speed Ring Bus 

The HSRB is another recently defined data bus. It is a unidirectional ring bus 
that sequentially passes the token from one bus user to the next to control bus 
access. The BIU that receives the token modifies the token, originates a 
message, removes the message when it returns around the loop, and then emits a 
new token. All other BIUs in the ring simply repeat n.essages that they receive. 
In the normal mode of operation, the BIU holding the token sends only one 
message before issuing a new token. Some of the bus characteristics are listed 
in table 5.1-2. 

TABLE 5.1-2. HSRB CHARACTERISTICS 

Media Fiber Ot>tic or Wire 

Word Size 16 Bits 

Message Size 1 to 40~6 Words 

Number of Physical Addresses 128 

Priority Levels 8 

Topology Ring 

A BIU connected to the HSRB has two functional parts: the Ring Interface Unit 
(RIU) and the Ring Interface Module (RIM). The RIM interfaces to the medium and 
either allows the RIU to be connected to the bus or isolates the RIU from the 
bus. The RIM has a mechanism to maintain ring contir.uity in the event of a bus 
user failure. The RIU interfaces with the host CPU and performs the many 
protocol related tasks associated with the token passing protocol. 
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A maximum delay of six bit-times is permitted between the input and output of 
a RIU. All BIUs repeat the received messages, except the transmitting BIU which 
removes its own message from the ring and reissues the token. 

The normal configuration for the HSRB is a 
ring is active and the other is inactive. 
transmitted on both rings, but the message 
ignored. 

dual ring configuration where one 
Each message is simultaneously 

on the inactive ring is normally 

There are three types of frames defined for the HSRB: Token, Message, and 
Beacon. Token frames are used for access control, Message frames pass 
information among bus users, and Beacon frames transmit control information 
during start-up or reconfiguration. 

5.1.2.4.2.1 Token Frame 

The protocol uses a token which is continually passed from one BIU to the next 
around the physical ring. The token is a Token frame which consists of a Token 
Starting Delimiter Field (TSDF), a Control field, and a Token Frame Ending 
Delimiter Field (TFEDF). The TSDF and TFEDF establish the start and end of the 
Token frame. The Control field consists of five sub-fields relating to the 
network operation. This token, with no message attached, is called a free 
token. Only the BIU that receives a free token can access the bus. Refer to 
AS4074.2 (1988) for more detail. 

5.1.2.4.2.2 Message Frame 

A Message frame is the vehicle used to transfer information from one bus user 
to another. It consists of a Claimed Token sub-frame, which is the free token 
with the Token Ending Delimiter stripped off, followed by a Preamble field, 
various address and message control fields, an Information field, and a Frame 
Status field (Aerospace Information Report [AIR} 4289, 1990). 

With the exception of the Information field, all other fields in the Message 
frame are considered. overhead. They are used to ensure error free message 
delivery to the destination and correct protocol operation. 

If a bus user wishes to send a message, it may wait for a free token and then 
claim it, as long as it has higher priority messages to send than may be 
reserved. Otherwise, the user can make a reservation in the Claimed Token sub
frame of a message already circulating around the ring. 

Reserving a free token is done by setting the appropriate priority bits in the 
Control field of the Token frame according to the priority of the message the 
bus user wishes to send (AS4074.2, 1988). If the field is already set to a 
lower priority, the bus user replaces the previous reservation with its higher 
priority reservation. If the field is already set to a higher priority, then 
the bus user wishing to place a reservation for a lower priority message must 
wait until the priority field of a Claimed Token is lower than its message 
priority level. 
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After the message is passed completely around the ri:~g. the sender removes the 
message from the ring and issues a free token with thH priority field set to the 
priority of the Claimed Token which it removed (AIR 4~~89, 1990). The first user 
that has a message of that priority or higher may clal.m the reserved free token. 

The bus standard allows for an option where it does not require the last issued 
Claimed Token to be received by the sending bus user before it issues a new free 
token. Operation in this manner allows multiple short messages on the ring 
simultaneously. This mode of operation does not guarantee that the highest 
priority message will be serviced first. Therefore, the bus standard limits the 
number of consecutive short messages to 16. 

5.1.2.4.2.3 Beacon Frame 

The Beacon frame is used during ring reconfiguration to transmit control 
information to all BIUs. Reconfiguration occurs after the application of power, 
or during error recovery, and establishes the master station. The master 
station issues the first free token after reconfigur~tion. The master station 
is normally the highest addressed bus user. There is only one master station, 
the rest are slaves. All bus users, however, must have master capability. The 
reconfiguration also determines the number of participating bus users. 

Since the ring allows reconfiguration at power-up, rtew bus users can be added 
simply by attaching them to the ring and applying power. This assumes that the 
required loading analysis has already been performed, the addresses of receiving 
or transmitting BIUs have been implemented in the, new BIU, and any other 
required changes have been made. 

A bus user may be a bus bridge, as in any network. A bridge functions as a 
receiving BIU on the ring which originates the message and as a transmitting 
BIU on the ring which is to receive the message. The bridge completely receives 
the message, verifies its correctness, and acknowladges receipt, before the 
message is passed to the receiving BIU. The HSRB standard includes examples of 
bridge implementations and guidelines for the designer, along with guidelines 
on handling the protocol acknowledgement through the bridge. 

5.1.3 Data Integrity Concerns 

The integrity of data in an integrated digital avionic system is a key concern 
of the use . Hence, it needs to be a key concern of the designer and systems 
integrator. Problems arise in the use of data buses '\lrhen they are pushed beyond 
their desi ned limits, causing a bus overload condition. Another cause of 
concern is due to bus faults induced by internal or external sources. An 
internal s urce may be a faulty bus user, while c:.n external source may be 
radiated n Some issues relating to data integrity are examined in the 
following ections. Applications to avionic data buses are made. 

5.1.3.1 

Bus capaci y deals with the ability of a data bus to handle its load. A data 
bus is used to deliver information in a safe and timely manner. If data are not 
available or a computation when they are needed, the system requiring the data 
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will yield results that are less than desireable. Since avionic systems are 
becoming increasingly complex and more integrated, there is a growing need to 
pass more variables between systems on a particular data bus. This need is 
driven by various factors such as cost savings, performance improvements, and 
pilot workload reduction. 

When an avionic system is designed, the designers and system integrators ensure 
that there is ample free time on the data bus to handle all of the bus traffic 
during the worst case condition. Draft 1 of ARINC Specification 629, Part 2, 
section 4.1 (1989), states the following: 

" ... bus capacity is a finite resource and should be utilized in a 
conservative manner. Therefore, it is recommended that the system 
designer exercise diligence in the design process." 

When new LRUs are added to an existing system at a later date, is the designed 
worst case loading known? If it is, is it accounted for in the modified system? 
Does the new integrated system meet the original design specification and update 
rate for all variables? 

In practice, the theoretical maximum bus capacity is limited by several factors: 

Bit rate 

• Message format 

Protocol 

Architecture 

The bit rate, or clock rate, of a data bus is only one factor relating to bus 
capacity. It quantifies the number of bits per second that are transferred 
across a data bus. If the clock rate of a data bus is 1 megabit per second, 
and the ward size is 20 bits, then the theoretical throughput is 50,000 words 
per second. An increase in the bit rate will yield an increase in throughput. 
There are physical limitations, however, that dictate the maximum bit rates for 
a given configuration. The maximum bit rate depends on factors such as the 
following: 

Bus medium used (wire/fiber optic) 

• Physical characteristics of the medium 

Bus interface logic device speed 

The message format has a pronounced affect on bus capacity. Error detection and 
correction bits add overhead to the basic data word. In addition, if more data 
bits are defined than are necessary for a particular variable, or if fields in 
a wordstring are defined but not used, then overhead is increased, which reduces 
the data bus capacity. 
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The particular protocol used also has an effect on the bus capacity. When a 
protocol which requires an acknowledgement is used, the response time of the 
receiver and the transmission time of the acknowledgement must be accounted for. 
If the response time of the receiver varies, the wor:;t case response should be 
specified and used in the calculation of throughput. 

In an acknowledgement type protocol, consideration should be given to the 
additional load created by error correction. Upo::1 detection of an error, 
retransmission may be requested. Retransmissions may force the bus to become 
aperiodic. Hence, it is necessary to plan for a cer1:ain amount of retransmis
sions in an acknowledgement-based protocol. 

A protocol that bases bus access on a delay time also influences throughput. 
In effect, a certain delay time becomes the unique usE:r address. The higher the 
number of users on the bus, the lower the overall bu:> capacity. 

Bus architecture has an influence on bus capacity. If a system contains 
gateways or bridges, the resulting delays need to be accounted for. These 
delays may be in the form of error checking, protocol conversion, data format 
conversion, or other operations on the data performed in a gateway or bridge. 
Figure 5.1-4 illustrated the delays that need to be accounted for in an 
architecture using gateways or bridges. 

Not considered in this section, but significant to o'rerall system performance, 
are buffer availability in the receiver; the processing capability of the 
receiver; the ability of the sender to maintain the required update rate; and 
other areas not directly relat:ed to bus throughput, such as hardware- software 
interaction. It should be recognized that due to pt·oblems in these areas bus 
performance may be degraded, but that the cause is not the data bus. 

5.1.3.1.1 ARINC 429 Bus Capacity 

The ARINC 429 bus uses a word length of 32 bits. There are two transmission 
rates: low-speed, which is defined as being in t-:1e range of 12.0 to 14.5 
kilobits per second; and high-speed, which is 100 kilobits per second. 

There are two modes of operation in the ARINC 429 bus protocol: character
oriented mode and bit-oriented mode. In the character-oriented mode, periodic 
updates of each variable are maintained on the data bus. These periodic rates 
are specified in Attachment 2 of the specification, along with the message 
labels, equipment identifiers (IDs), and other essen·:ial information. Knowing 
the bit rate and the essential update information from Attachment 2, a 
determination of bus capacity can be made. 

For the bit-oriented mode, the determination of throughput is complex and is 
based on numerous protocol related variables. The bit rate specified is the 
same as for the character-oriented protocol and can be either low- or high
speed. Bus capacity is difficult to determine when the bit-oriented mode is 
used, and no guidelines are given in the specification for making this 
determination. 
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Bus utilization remains constant during operation of the character-oriented 
protocol. The system designer defines the load based on the LRU messages and 
update rates required for all LRUs and selects the appropriate bus speed to 
support the update rate required. No guidance is given in the specification for 
overhead allowance. 

Since the ARINC 429 bus is a broadcast bus, no access protocol is used by 
transmitters on the bus. Bus availability is not a problem for a bus with a 
single transmitter. There is, therefore, no access protocol overhead limiting 
bus capacity. There is a message format overhead, but it is minimal. 

Out of the 32-bit word length used, a typical usage of the bits would be as 
follows: 

• Eight bits for the label 

Two bits for the Source/Destination Identifier 

Twenty-one data bits 

One parity bit 

Thus, the information bit-rate for the ARINC 429 bus is typically a factor of 
twenty-one thirty-seconds of the clocked bit-rate. An information bit-rate of 
65,625 bits per second is the maximum obtainable rate with the given overhead. 

5.1.3.1.2 Commercial Standard Digital Bus Capacity 

The CSDB is similar to the ARINC 429 data bus in that it is an asynchronous 
broadcast bus and operates as a character-oriented protocol. Two bus speeds are 
defined in the CSDB specification. A low-speed bus operates at 12,500 bits per 
second and a high-speed bus operates at 50,000 bits per second. 

Data are sent as frames consisting of a synchronization block followed by a 
number of message blocks. A particular frame is defined from the start of one 
synchronization block to the start of the next synchronization block. A message 
block contains an address byte, a status byte, and a variable number of data 
bytes. The typical byte consists of one start bit, eight data bits, a parity 
bit, and a stop bit. 

The theoretical bus data rate for the CSDB operating at 50,000 bits per second, 
with an 11-bit data byte, is 4,545 bytes per second. The update rate is reduced 
by the address byte and synchronization block overhead required by the standard. 

The CSDB Interblock and Interbyte times also reduce the throughput of the bus. 
According to the specification, there are no restrictions on these idle times 
for the data bus. These values, however, are restrained by the defined update 
rate chosen by the designer. If the update rate needs to be faster, the 
Interblock time and the Interbyte time can be reduced as required. 
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5.1.3.1.3 ARINC 629 Bus Capacity 

The current draft of ARINC Specification 629, Part 2, section 4, is entitled 
"Bus Performance Analysis." The draft treats "Bus Loading" and will also 
include sections on "Response Times" and "Data Laten·~Y." 

Bus loading is discussed for the CP protocol. There are three levels of bus 
data traffic defined in the CP protocol. The fi:rst level consists of all 
periodic transmissions. Loading due to periodic t:raffic is evaluated before 
level two and level three traffic. The specification states the following: 

"Normally a worst case estimate can be obtained by simply summing the 
maximum bus loads, after balancing has been attempted, of all 
terminals [bus users] attached to the bus." (ARINC Specification 629, 
Part 2, section 4, 1989). 

The standard recommends that bus traffic be balanced before computing the bus 
loading. This means that the designer should attempt to even out the traffic 
load to minimize the worst case load. After this, a simple summation of the 
maximum loads presented by each LRU will give the level one bus loading. 

In contrast to level one loading, level two and level three loading is much more 
difficult to ascertain. Aperiodic traffic depends on the flight phase or the 
mode in which the aircraft is operating. According to the specification, the 
designer will need to make several evaluations: 

The average load presented by the identified traffic. 

A worst case assessment, if transmission of lev·~l two messages within one 
TI is to be guaranteed. 

A less severe case, where transactions are trig,?;ered by some event. 

A statistical evaluation of bus loading. 

Level three traffic is aperiodic and lowest in priority. For this level, the 
specification requires that the designer make the following assessments: 

The average load presented by the identified tr3.ffic. 

A worst case assessment, taking into account tha1: some transfers may result 
in closely spaced bus accesses and may use a file transfer protocol. 

Since the ARINC 629 bus protocol is based on bus qui~t times for operation, it 
suffers throughput degradation when high periodic update rates are required with 
a large number of users. Three factors which contribute to this degradation are 
the Interstring Gap (IG), the TG, and the SG. 

!Gs are required time intervals inserted between contiguous messages. A TG is 
a unique time interval for each bus user which must ·:>e satisfied for a user to 
access the bus. The SG is a time interval greater than the largest TG that must 
be satisfied for each user before a user can access the bus. 
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Another factor contributing to throughput degradation is a small number of data 
words per message. The larger the message, the more efficient the data transfer 
becomes. However, to allow periodicity for all users means that some trade
offs must be made between the frame rate for all users and the number of words 
per label. A large number of users and high periodic update rate also detract 
from the protocol performance. 

On the other hand, greater performance can be realized if the following 
guidelines are followed: 

Use as many words per label as is practical. 

• Choose reasonable values for the periodic update rate and the number of 
users. 

• Keep the TG values sequential and choose the smallest set possible. 

• Place the most used data words in a message closest to the label to enhance 
receiver performance. 

Concerning the initially designed bus capacity, section 4.4.6 of ARINC 
Specification 629, Part 1 (1990), states the following: 

"During initial development, bus loading should not exceed 50% of its 
capacity in order to allow for growth during the system's operational 
life." 

The designer is cautioned that capacity is a finite resource and should be used 
conservatively. 

5.1.3.1.4 Avionics Standard Communications Bus Capacity 

Data are sent on the ASCB as a series of eight frames, each with a duration of 
25 milliseconds. There are no retransmissions or complicating protocol factors. 
The computation of bus capacity is straightforward. The messages transmitted 
in each frame are predetermined for a particular application, and there is no 
deviation once the operation is established. 

The ASCB standard gives the following information for computing the bus 
capacity: 

Bus clock rate = 2/3 MHz = 0.0016 msjbit 

• Zero insertion factor = 6/5 x 0.0016 = 0.0018 msjbit (The HDLC component 
automatically inserts a "zero" to prevent six consecutive "ones." The 
receiving HDLC component automatically removes the inserted "zeros.") 

8 bitsjbyte x 0.0018 ms/bit = 0.0144 msjbyte, or 69,444 bytes/second 

Bus utilization remains constant for ASCB during operation. The system designer 
defines the throughput based on the LR.Us and update rates required for all 
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systems, and based on the byte rate defined above. Overhead is also added to 
allow for future expansion. For a typical application, the ASCB utilizes 
approximately 80 percent of the available frame time (Jennings 1986). 

5.1.3.1.5 MIL-STD-1553 Bus Capacity 

For the MIL-STD-1553 bus, messages are passed between a BC and remote terminal 
(RT) , which is a bus user, one RT and another RT, or one BC and another BC. 
Calculating bus capacity is viewed as a fairly simple task. According to the 
"MIL-STD-1553 Designer's Guide" (1982), the following are required for the 
computation: 

A hand-held calculator 

System data 

• Decisions on the implementation of MIL-STD-1553 

The "MIL-STD-1553 Designer's Guide" (1982) suggests the following values be used 
when computing bus loading: 

20N + 68 value for each BC to RT message 

20N + 116 value for each RT to RT message 

20N + 40 value for each BC to RT broadcas·:: message 

• 20N + 88 value for each RT to RT broadcas·:: message 

68 value for each mode code (MC) me:>sage without data word 

88 value for each MC message with data word 

40 value for each MC broadcast message without data word 

60 value for each MC broadcast message with data word 

The value "N" represents the number of words in the message and the values 
calculated are in milliseconds. The average bus loading is given by the 
following: 

Bus Loading = ( S I F ) x 100 percent 

where S is the sum of the message type values and F is the frequency, 1. 0 
megahertz. 

The "MIL-STD-1553 Designer's Guide" (1982), section I. paragraph 3.8, also makes 
the following recommendation concerning bus capacity: 

"A system should not exceed 40% bus loading at initial design and 60% 
at fielding, in order to provide time for error recovery/automatic 
retry and to allow growth during the system's life." 

75 



----------- -----------

5.1.3.1.6 Linear Token Passing Bus Capacity 

Before a determination of the bus capacity can be made, it is necessary to 
calculate the token rotation time and categorize the traffic into message types 
and priorities. Clear and ample direction for these determinations is given in 
the LTPB user's handbook (AIR 4288, 1991). In addition, the handbook gives 
examples to aid the system designer or integrator in this task. 

The token rotation time is calculated as follows (AS4074.1, 1988): 

where 

T N (Bus Length / Propagation Speed 
+ Token Receiving Time 
+ Token Transmitting Time) 

T is token rotation time in seconds 
N is the number of BIUs in the configuration 
Bus Length is the distance from the transmitting BIU to the receiving BIU 

The Token Receiving Time and Token Transmitting Time are equal since they both 
contain the same number of bits and have the same clock rate. This time is 
given by the following (AS4074.1, 1988): 

(Preamble Size + Token Length) * Bit Time 

The preamble is a bit pattern created by the transmitting BIU. It is used by 
the receiver to synchronize its receive clock to the clock of the transmitting 
BIU. The system designer has the liberty to set this value according to the 
requirements of the receiving hardware. It must be accounted for in computing 
the bus capacity. 

There are four important characteristics of the bus traffic to quantify: types 
of messages, data message size, peak frequency, and latency. The message type 
describes a unique combination of message size and frequency. The data message 
size is the number of 16-bit words associated with the message type. The peak 
frequency defines the update rate for a message type. Latency is derived from 
the peak frequency and is used as a basis for a message's priority. Table 5.1-3 
gives an example of how messages may be characterized. 
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TABLE 5.1-3. LTPB MESSAGE CHARACTERISTICS 
(AIR 4288, 1991) 

Message Data Message Size Peak Frequency Latency 
Type (Words) (Hz) (ms) 

A 20 100 10 
B 50 75 10 
c 50 50 20 
D 150 50 20 
E 20 25 40 
F 225 25 40 
G 1025 15 66 
H 1000 12.5 80 
I 150 12.5 80 
J 2000 10 100 

The messages need to be assigned priority. The LTPB user's handbook suggests, 
for simplification, that the larger latencies be multiples of the smallest 
latency. Using this criterion, table 5.1-4 gives the priority breakdown, using 
the data from table 5.1-3. 

TABLE 5.1-4. LTPB MESSAGE PRIORITIES 

M. ~:Jpe Priority Latency ~ ·o· 

A 0 10 
B 0 10 
c 1 20 
D 1 20 
E 2 40 
F 2 40 
G 2 40 
H 3 80 
I 3 80 
J 3 80 

The time for a single transmission of all messages for each priority category 
is calculated from the following equation: 

dij (Number of priority i words· * 16 bits/word 
+ Message overhead bits * Number of priority i messages) 
* Bit time 
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In table 5.1-3, priority 0 messages have 70 words. If an overhead of 27 bits 
exists, and the bit rate is .02 microseconds per bit, then the transmission time 
for priority 0 messages is as follows: 

(70 * 16 + 27 * 2 ) * .02 = 23.48 microseconds 

The calculated values for priority 0 through priority 3 messages are 23.48 
microseconds, 65.08 microseconds, 408.02 microseconds, and 1009.62 microseconds, 
respectively. Since there are 10 bus users, the total transmission time for 
each priority group becomes 234.8 microseconds, 650. 8 microseconds, 4080.2 
microseconds, and 10096.2 microseconds, respectively. 

Next, the number of token rotations necessary to service the messages for each 
priority level of bus traffic is used to determine the expected bus loading. 
It is assumed that in one token rotation, all priority 0 traffic will be passed; 
in two, all priority 1 traffic will be passed; in three, all priority 2 traffic 
will be passed; and in four, all priority 3 traffic will be passed. The 
expected bus loading is then calculated by dividing the total transmission time 
for priority "i" messages by the number of token rotations necessary to pass 
priority "i" messages. Using the same data, the values of 234.8 microseconds, 
325.4 microseconds, 1360.07 microseconds, and 2524.05 microseconds are obtained 
(AIR 4288, 1991). 

If the total bus loading for priority 0 through priority 3 traffic, plus the 
token rotation time, is less than the required priority 0 latency, then 
sufficient bandwidth exists to support the network operation. In this example, 
the time for 10 bus users to pass their expected traffic is 4444.32 microseconds 
(234.8 + 325.4 + 1360.07 + 2524.05). If the token rotation time (45.5 
microseconds for this example) is added, then the total becomes 4489.82 
microseconds. Since the priority 0 latency requirement is 10 milliseconds, or 
10,000 microseconds, this bus configuration is adequate and allows ample 
bandwidth for growth. 

It is possible to enhance bus performance by requiring that successive bus users 
be located adjacent to each other. This will reduce the token passing time and 
the time for detection of the successor. Since the performance increase is 
proportional to the bus medium length, the effect is more dramatic in larger 
configurations (AIR 4288, 1991). 

5.1.3.1.7 High Speed Ring Bus Capacity 

The HSRB handbook includes a section on "Performance Calculation" for the HSRB. 
To proceed with this analysis, it is first necessary to compute the Ring 
Rotation Time (RRT). This is given by the following (AIR 4289, 1990): 
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where 

and 

RRT Media Transmission Delay 
+ Bus User Bit Delay 
+ Bus User Modulation and Demodulation Delay 

Media Transmission Delay = L / V 
Bus User Bit Delay = [ ( N - 1 ) * Sb + Mb ] / C~c 
Bus User Modulation and Demodulation Delay = N ~r ( Tm + Td ) 

Length of medium 
Transmission velocity of medium 
Number of bus users on ring 
Number of delay bits in a slave station BIU 
Number of delay bits in a master station BIU 
Clock rate 
Modulation delay in a BIU 
Demodulation delay in a BIU 

The HSRB standard specifies Sb and Mb to be 6 bits .:md 40 bits, respectively, 
and Ck as 50 Megabits per second when using wire mec.l.a. Using a value of 150 
meters/microsecond for V, 0.05 microseconds for Tm + Td, 64 for N, and 300 meters 
for L, then the RRT can be computed as follows: 

RRT 300 I 150 + [ (64 - 1) * 6 + 40 ] I 51
) + 64 (0.05) 

13.56 microseconds 

The Message Length (ML) is also necessary for the performancecomputation. This 
is computed in the following manner (AIR 4289, 1990): 

ML 

where 

Overhead bits + Information bits 
170 + 20 * Ln + 40 * INT(In/256) + 20 * In 

Number of logical address words (equal to one if physical 
addressing is used) 

Number of Information words 

If we use a value of Ln = 1, then ML may be calculated over the range of 
information words as shown in table 5.1-5. 
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TABLE 5.1-5. HSRB MESSAGE LENGTH VERSUS INFORMATION WORDS 

Information Words Overhead Bits Information Bits Message Length 

1 190 20 210 
1024 350 20480 20830 
2048 510 40960 41470 
3072 670 61440 62110 
4096 830 81920 82750 

Once the ML is known the Message Time (MT) can be calculated as follows: 

The corresponding MTs for 1, 1024, 2048, 3072, and 4096 Information words are 
4.2, 416.6, 829.4, 1242.2, and 1655 microseconds. 

For the case of a single bus user transmitting a message, the worst case 
transmission time, which occurs when the BIU has just missed claiming the token, 
is given by the following: 

Worst case transmission time for single transmitter = RRT + MT 

The percent efficiency of the ring is now calculated as follows: 

Efficiency - 100 * Information Time I Total Time 

where the Information Time is computed as follows: 

Information Time - Number of Information Bits (Ib) I Ck 

Table 5.1-6 shows the relationship between the number of Information words and 
the efficiency of the ring. Note the dramatic loss of efficiency with a small 
number of Information words. 

TABLE 5.1-6. HSRB EFFICIENCY VERSUS INFORMATION WORDS 

In Ib MT RRT Efficiency 
(words) (bits) (iJS) (IJS) (%) 

1 20 4.2 13.56 2.25 
1024 20480 416.6 13.56 95.20 
2048 40960 829.4 13.56 97.20 
3072 61440 1242.2 13.56 97.90 
4096 81920 1655.0 13.56 98.20 
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5.1.3.2 Data Bus Fault Tolerance 

Fault tolerance deals with the ability of a system to operate in the presence 
of errors. Of primary importance here is that err•)rs are detected. Once an 
error is detected, it may be dealt with in numerous ways. In this section, 
methods of error detection and correction, bus monitoring, and bus reconfigura
tion are examined along with specific examples from the data bus standards. 
Fault tolerant techniques relating to the hardware-software interface are 
discussed in section 5.2. 

5.1.3.2.1 Bit Error Detection and Correction 

Errors on any transmission medium are a fact of life. They are caused by events 
beyond our control or that are too expensive to control. In either case, the 
designer is faced with how to handle errors induced by sources outside the 
system as well as internal sources, such as equipment and transmission medium 
failure. If the designer has some knowledge of the nature of the errors that 
will likely occur, then the task of implementing erro~ detection becomes precise 
and efficient. 

There are four common methods for detecting bit errors in data: a parity check, 
CRC, Checksum, and Hamming code. The Hamming code not only detects errors but 
can be used to correct errors. 

5.1.3.2.1.1 Parity 

If data failures are randomly occurring, short burst:; contained within one bit
time, then one effective method of error detection is to add a parity bit to 
each word transmitted on the bus. Parity is implem·:mted as odd or even. For 
odd parity the number of "one" bits in a data word are counted and, if the 
number is even, the parity bit is set to "one" to mak·~ the total number of "one" 
bits odd. As an example, for the ASCII character "H," which is represented in 
binary as 1001000, the number of "one" bits is even. To create odd parity the 
parity bit is set to "one." This yields 10010001 when the parity bit is placed 
at the end of the word. If even parity is used, the u·ord would be 10010000 with 
the parity bit set to zero to maintain an even number of "one" bits. 

The ability to detect errors using a parity bit is not impressive. All even bit 
errors are undetected while all odd bit errors are detected. From the example 
above, if the even parity form of "H" were put on c. bus and a burst of noise 
caused the first bit to be inverted, the resulting :)attern would be 00010000. 
An error is indicated since the bit stream no long~r has even parity. If a 
burst of noise caused the first two bits to be inverted, the resulting pattern 
would be 01010000; no error is indicated. The resulting parity is still even. 
Thus, all even bit errors are undetected by this method and the probability of 
detecting any error is 0. 5, assuming even and odd disturbances are equally 
likely. 

This probability can be improved if a block of data is sent as a matrix, n bits 
wide (n-1 data bits plus parity) and k bits high. An additional row, composed 
of the parity of each column is added at row k+l. A block of data and check 
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bits arranged in this manner is called an array code. Figure 5.1-9 shows an 
array code configuration. 

D D D D D D D D p 

D D D D D D D D p 

D D D D D D D D p 

D D D D D D D D p 

D D D D D D D D p 

D D D D D D D D p 

D D D D D D D D p 

D D D D D D D D p 

B B B B B B B B B 

FIGURE 5.1-9. ARRAY CODES 

D represents data bits, P represents the parity on each row of data D, and B 
represents the block parity bit formed on each column of the array. The 
receiver checks the parity on each row as it is received. If an error is 
detected, a block parity check is performed. The bit in error is indicated by 
the intersection of the row with bad parity and the column with bad parity 
(Hecht and Hecht 1985). 

Using this method, single bit errors may be detected as well as corrected. For 
array codes, a burst of noise up to 2n-l bits long can be detected with a 
probability of one. 

5.1.3.2.1.2 Cyclic Redundancy Check 

The CRC is widely used for error detection in digital communication systems. 
It uses a polynomial code applied to a bit string. A message of k bits is 
represented as xk- 1 + xk-2 + ... x 0 , where the coefficient of each term is given 
by the value· of the associated bit, either one or zero. The term xk- 1 is 
associated with the most significant bit and the term x 0 with the least 
significant bit. The polynomial represented by the five-bit binary value, 
11101, is x 4 + x 3 + x2 + x 0 . Thus, it is called a polynomial code. 

A polynomial code is called the generator polynomial, G(x), when it is used to 
divide the message string, M(x). G(x) must be chosen so that the most 
significant and least significant bits are "one." Both the sender and receiver 
know the value of G(x) beforehand, and the sender will append the CRC code at 
the end of the message. When sent, the CRC coded message, taken as a binary 
value, will be divisible by G(x) with no remainder. The receiver performs a CRC 
by dividing the message string, M(x) (which must be at least as long as G(x)), 
by the generator code G(x). If there has been a transmission error, the 
receiver will find a remainder when it performs the check. Generation of the 
CRC coded message is as follows (Tanenbaum 1981): 

82 

.. 



1. Let "r" be the degree of the G(x) polynomial and "m" the length of the 
message in bits. Append "r" zero bits to the low·· order end of the message, 
so it now contains m+r bits and corresponds to the polynomial x~(x). 

2. Divide the bit string corresponding to x~(x) by t:he bit string correspond
ing to G(x) using modulo 2 division. 

3. Subtract the remainder (which is always "r" or fewer bits) from the bit 
string corresponding to x~(x) using modulo 2 subtraction. The result is 
the message to be transmitted. 

A sample calculation of the CRC code for a short message and G(x) 
is given in figure 5.1-10. 

x 4 + x + 1 

The CRC detects most burst errors of a length, in bits, greater than the degree 
of G(x); all burst errors of a length less than or equal to the degree of G(x); 
all one- or two-bit errors; and all odd number of bit errors. 

Message: 
Generator: 

1 1 0 1 0 1 1 0 1 1 
1 0 0 1 1 

Message after appending 4 zero bits: 1 1 0 1 0 1 1 0 1 1 0 0 0 0 

1 0 0 1 1 

Transmitted message: 

1 1 0 0 0 0 1 0 1 0 

11 1 0 1 0 1 1 0 1 1 0 0 0 0 

1 0 0 1 1 + J 
1 0 0 1 1 
1 0 0 1 1 

0 0 0 0 1 
0 0 0 0 0 

0 0 0 1 0 
0 0 0 0 0 

0 0 1 0 1 
0 0 0 0 0 

0 1 0 1 1 
0 0 0 0 0 

1 0 1 1 0 
1 0 0 1 1 

0 1 0 1 0 
0 0 0 0 0 

1 0 1 0 0 
1 0 0 1 1 

0 1 1 1 0 
0 0 0 0 0 

1 1 1 0._----.Remainder 

1 1 0 1 0 1 1 0 1 1 1 1 1 0 

FIGURE 5.1-10. CALCULATION OF A CRC 
(Tanenbaum 1981) 
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5.1.3.2.1.3 Checksum 

A checksum is a method of error detection used with short messages. It affords 
more detection capability'than parity, but less than that provided by the CRC. 
It is formed by adding all the data words to be included in the check, ignoring 
any carry produced by the binary addition, and appending this word to the end 
of the message. In some implementations, the checksum is also complemented by 
the sender. 

The receiver performs the same operation on the data and compares the received 
checksum with the calculated checksum to verify the message integrity. The 
checksum is able to detect bit errors of length n or smaller with a probability 
of one, where "n" is the number of bits in the data words. Since the checksum 
is simply a sequence of additions performed by the host CPU, and it yields 
reasonable data integrity, it is commonly used. 

5.1.3.2.1.4 Hammin~ Code 

Detecting errors by using parity or a Hamming code depends on a factor called 
the Hamming distance, which is defined as the number of bit positions by which 
two binary words differ. For instance, if a single bit of a transmitted word 
is inverted due to interference on the bus, the received word differs from the 
transmitted word in only one bit position. The Hamming distance between the two 
words is one. 

Consider a binary code where every possible bit configuration is considered a 
valid code. For any single bit error in a transmitted code, another valid code 
is produced. Thus all codes that are a Hamming distance of one from the 
transmitted word are also valid codes. The receiver cannot tell that an error 
occurred. It can only assume that the code received is that sent. No error 
detection is possible. 

Now, consider a binary code where not all possible bit configurations are 
considered valid. If the valid codes are chosen so that all single bit changes 
produce an invalid combination, then single bit errors are detectable. In this 
case, the valid values would all differ from each other in at least two bit 
positions; they are all separated by a Hamming distance of two. For example, 
given the following sequence of binary values: 

000 001 010 011 100 101 110 111 

If the values 000, 011, 101, and 110 are defined as valid codes, then the codes, 
001, 010, 100, and 111 are invalid. Note that each code of the invalid set 
differs from at least one code in the valid set in only one bit position. Error 
detection requires, therefore, that each valid code differ in at least two bit 
positions from all other valid codes. 

The bit pattern for the ASCII character "H" is represented in binary as 1001000, 
but an error in the least significant bit produces the pattern, 1001001, which 
is the ASCII character "I." The distance between the two words is given by the 
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"EXCLUSIVE OR" function, which identifies the number of differing bits, as 
follows (Tanenbaum 1981): 

ASCII "H" 
ASCII "I" 

EXCLUSIVE OR 

1001000 
1001001 

0000001 Distance d=l, no error detection 

Since only one bit is different, the distance is one and error detection cannot 
be applied; all values are valid. With the addition of a parity bit the 
distance increases to two bits. Error detection ean then be implemented. 
Consider the previous example, but with even parity: 

ASCII "H" 
ASCII "I" 

EXCLUSIVE OR 

Parity 
Bit 

1001000 0 
1001001 1 

0000001 1 Distance d-2, can ietect a one-bit error 

In this case, when the single bit error occurs an "I" code results, but the 
original "0" parity bit is retained. The resulting code, 10010010, is an 
invalid code since parity is no longer even. 

It can be shown, in general, that if "d" errors arE~ to be detected, then a 
distance of d+l is required. 

The Hamming code is used for both error detection and correction. This 
technique uses check bits in the bit positions, which are powers of two with the 
data bits filled in between them. These check bits reflect the parity of 
certain combinations of the bits of the word which .is being coded. For the 
ASCII character "H," which is represented in binary as 1001000, the codeword is 
formed as follows: 

Bit Position 

1 2 3 4 5 6 7 8 9 10 Ll 

X X 1 X 0 0 1 X 0 0 I) 

The check bits, which have not yet been computed, occupy bit positions 1, 2, 4, 
and 8 and the ASCII character "H" occupies bit positions 3, 5, 6, 7, 9, 10, and 
11. Each bit that is a "one" is now represented by its binary value in the 
codeword. Only bits three and seven are "ones" so they are represented by their 
weights as X1 + X2 and X1 + X2 + X4 , respectively. If ·~ven parity is used, then 
the check bits are set to produce even parity in each column as follows: 
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Check Bit Weight 

1 2 4 8 
----------

Bit 3 Weights 1 1 0 0 
Bit 7 Weights 1 1 1 0 

----------
Check Bits 0 0 1 0 

When the result is placed in the corresponding check bits of the codeword, the 
following codeword results: 

Bit Position 

1 2 3 4 5 6 7 8 9 10 11 

0 0 1 1 0 0 1 0 0 0 0 

When the receiver examines the codeword for errors, the reverse process takes 
place. All the "one" bits that are not check bits are represented by their 
respective binary weights. The parity of these weights is then compared against 
the corresponding check bits for errors. For example, if an error occurs which 
causes bit 11 to be inverted, then the parity of the check bits will not 
correspond to the sum of the weights of the "one" bits of the codeword. Adding 
the weights of the incorrect word will reveal the incorrect bit, as follows: 

Bit Position 

1 2 3 4 5 6 7 8 9 10 11 

0 0 1 1 0 0 1 0 0 0 1 (bit 11 inverted) 

Check Bit Weight 

1 2 4 8 
----------

Bit 3 Weights 1 1 0 0 
Bit 7 Weights 1 ~ 1 0 
Bit 11 Weights 1 1 0 1 

----------
Check Bits 1 1 1 1 

This result indicates that the check bits for this codeword should be all 
"ones." Since check bit positions one, two, and eight do not compare with the· 
check bits sent, bit 11 is indicated incorrect. By inverting bit 11 the 
receiver now has the codeword as the transmitter sent it. 
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5.1.3.2.1.5 Bit-Error Detection and Correction Summ<~ 

Whatever method or methods are used by a data bu::; for error detection or 
correction, it is important that the bus standard be precisely observed. 
Designers and integrators should ensure that all tl:'ansmitters and receivers 
agree on the format of error detection (odd/even parity, CRC polynomial 
generator, etc.) and that the specified checking is implemented. Error checking 
implemented in data bus hardware is only the firHt step in ensuring data 
integrity. The application software in the host CPU must respond to the 
detected error or else the hardware checking is uselE!SS. 

As mentioned in section 5.1, address errors are a major concern for systems 
using data buses. An address field error caused by data bus induced noise, for 
example, can have a more profound affect on system operation than an error in 
the data field. A corrupt address field could cause an LRU to receive a message 
or command that was intended for another LRU. Although it is possible to 
"smooth over" errors in a data field by filtering, such an operation does 
nothing to protect the address field. The address field should also be 
protected by a high integrity check. 

Additionally, since standards are very specific in defining each bit for the 
data word, all defined fields of a word should be checked to ensure that they 
are both valid and reasonable. Spare bits should be defined and fixed as either 
ones or zeros and checked by the receiver. A data bit field that has additional 
constraints placed on it by the standard should be d.ecked by the receiver for 
compliance. For instance, when a field of eight bits may have only one bit in 
the logic "one" state at a time, all the rest should be tested to see if they 
are "zero." 

5.1.3.2.1.6 ARINC 429 Bus Error Detection and Correction Methods 

ARINC Specification 429-12, section 1.3.1 (1990), states the following: 

"A parity bit is transmitted as part of each data word to permit 
simple error checks to be performed by the sinks" 

This data bus relies on parity bit error detection with each data word. By 
itself, this amount of protection does not seem adequate. In a data word of 32 
bits, bit errors may occur in any even number of bit:s up to 32 without being 
detected by the parity technique. However, experience has shown that the high 
integrity of the twisted and shielded wire transmission medium and the slow 
signaling rate have ensured reliable bus transmissions. 

An additional technique referred to in the standard is the "data reasonableness" 
check. This means that the host computer at the data destination must have 
information about the data it expects to receive. If no errors are indicated 
by the data bus hardware, the CPU tests the data to ensure that it is within 
anticipated reasonable bounds. This type of checking can be performed at the 
host CPU as an additional integrity check on data that is passed over the data 
bus. 
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Data filtering is also used to reduce the effects of data that may be within 
reasonable bounds but is incorrect. The incorrect value is smoothed out by 
averaging it with the preceding and following values. 

ARINC Specification 429-12 also defines a bit-oriented protocol used for file 
data transfer. This protocol uses "handshaking" between communicating users, 
and also defines a CRC to be used for the file transfer. The use of the CRC 
ensures that a certain amount of errors occurring in the data will be detected. 
Since the file data are not refreshed regularly or continuously as are other 
data, reasonableness checks and filtering are not possible. Thus, the CRC was 
added to ensure additional data integrity. The generator polynomial used is as 
follows: 

5.1.3.2.1.7 CSDB Error Detection and Correction Methods 

Two methods of error detection are referenced in the standard. They are the use 
of parity and checksums. 

A parity bit is appended after each byte of data in a CSDB transmission. In 
section 2.1.4 of the standard, three types of transmission are defined: 

Continuous repetition 

Noncontinuous repetition 

"Burst" transmissions 

The "burst" transmission makes use of the checksum for error detection, as the 
specification states: 

"It is expected that the receiving unit will accept as a valid message 
the first message block which contains a verifiable checksum." (GAMA 
CSDB, 1986). 

5,1.3.2.1.8 ARINC 629 Bus Error Detection and Correction Methods 

ARINC Specification 629, Part 1 (1990), recommends multiple levels of error 
detection. At the lowest level, parity is defined as part of the 20-bit data 
word definition. Section 4.4.2 of the specification states the following: 

"The last bit of each label and data word should be encoded such that 
word parity is rendered odd." 

Section 6.5.1 of the specification allows two other options for error detection. 
They are the use of the checksum and CRC. The checksum is a 16-bit word formed 
by adding, without carry, the 16 least significant bits of all the data words 
prior to the check word. 

The other option is to use a CRC. The same generator polynomial used by the 
ARINC 429 bus is recommended. 
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Although the checksum and CRC may be calculated by the host CPU, the time used 
to perform these calculations differs. The CRC i.s more complex than the 
checksum and the standard suggests that "dedicated hardware" may be required for 
this calculation. Calculation of the checksum, however, is relatively simple 
and is usually performed by software. 

5 .1. 3. 2 .1. 9 ASCB Error Detection and Correction Metl-.ods 

Transmissions on the ASCB are initiated by a central eontroller. The ASCB uses 
both the CRC and the checksum. Each transmission of the ASCB has the CRC code 
appended to it by the HDLC hardware. This CRC is the same one used by the ARINC 
429 bus. A checksum computed by the host CPU is added to every transmission and 
is sent as part of the user's data transmission (Jenr.ings 1986). 

5.1.3.2.1.10 MIL-STD-1553 Bus Error Detection and Ccrrection Methods 

This bus makes use of various error detection schemes. The command, data, and 
status words are checked using a parity bit in position 20. In addition, the 
"MIL-STD-1553 Designer's Guide" (1982) states the following: 

" the 
applied. 

traditional methods of computer data protection can be 
These include checksums and cycle redundancy checks." 

If further error protection is required, the "Multiplex Applications Handbook" 
(MIL-HDBK-1553A, 1988) recommends the use of a Hamming code protection method. 
The recommended method allows for data correction of llp to three bits per word. 

5.1.3.2.1.11 Linear Token Passin& Bus Error Detection and Correction Methods 

A Frame Check Sequence (FCS) is used on the LTPB for error detection. It is a 
CRC applied to Token frames and Message frames. The Token Frame Check Sequence 
(TFCS) is applied to the token and ensures that a bus user will not accept a 
token that has been corrupted. The Message Frame Check Sequence (MFCS) is 
applied to a message and ensures that a bus user will not accept a corrupt 
message. When a message with a CRC error is received, the receive buffers are 
cleared and the host is not notified of the message or the error (AIR 4288, 
1991). 

The LTPB uses a CRC generator polynomial of x8 + x 4 + :x 2 + x + 1 for the TFCS and 
a CRC generator polynomial of x16 + x 12 + x5 + 1 for tl-e MFCS. 

5.1.3.2.1.12 Hi&h Speed Ring Bus Error Detection and Correction Methods 

An FCS is used on the HSRB for error detection; it i:; a CRC applied to Beacon 
frames and Message frames. The Token frame does not have bit error detection 
applied to it as it does for the LTPB. However, when a host claims a token, the 
Token frame is modified and becomes part of the header of the Message frame. 
The Message frame has a field called the Message Control Frame Check Sequence 
(MCFCS), which is applied to the entire header of the Message frame. The 
Information field of the Message frame has its own FGS, the Information. Frame 
Check Sequence (IFCS), applied to it to ensure that a bus user will not accept 

89 



-----·-~-·~-----~---~-

corrupt data. The Beacon Frame Check Sequence (BFCS) field is used to provide 
bit error detection for the Beacon Control field (AIR 4289, 1990). 

The MCFCS, IFCS, and BFCS use the same CRC generator polynomial, x16 + x12 + x5 

+1. 

5.1.3.2.2 Bus Monitoring 

Bus monitoring is a necessary function. The requirement for monitoring 
increases with bus complexity. Old methods of locating faults in analog systems 
will not work for digital data transmission. Placing an oscilloscope on a 
transmission line will indicate only that there is activity on that line. It 
will not indicate the origin of the activity or if the activity is correct. 

One of the motivating factors behind bus monitoring is data integrity. When the 
designers are finished, the simulations are all run, and the firmware programmed 
and running in the target system, how can the functional system be validated 
against the requirements? If the system is working correctly under the present 
configuration, will it work the same under a slightly different configuration? 
Under normal use, how can the state of the system be determined? 

There are two types of bus monitoring to consider. One type is performed by the 
data bus users to ensure bus communications. The other is usually performed by 
a dedicated bus monitor for the purpose of collecting maintenance data. 

5.1.3.2.2.1 Bus User Monitoring 

User monitoring is performed by the bus interface of each user and should make 
the following checks: 

Protocol checking 

Received data monitoring 

Transmit data monitoring 

• Host system interaction monitoring 

BIU hardware checking 

The a~ount of bus monitoring used for integrity purposes by avionic buses varies 
greatly. With some data buses only a minimal implementation is made. Bus 
standards should clearly define integrity issues and what parameters are to be 
monitored to ensure integrity. For instance, if a standard does not specify 
that buffer overrun errors shall be detected by all users, IC manufacturers or 
system designers might implement this checking due to cost factors. Monitoring 
should be planned at the beginning of the design, not added as an afterthought. 
It will exist only if it is intentionally planned and designed. 

For data buses used in essential or critical systems, the designers should 
implement monitoring of any integrity related parameter. With current 
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technology this is not a burdensome task. The follmdng list contains some of 
the parameters which should be monitored by a bus user: 

Physical layer signal monitoring (Manchester modttlation, parity, synchron
ization patterns, voltage margins, frequency of bad data due to collisions, 
HERF noise, or other interference) 

Local protocol monitoring (acknowledgements, timeouts, access denial, etc.) 

• Self-monitoring for transmission validation ( :orrect address, correct 
message format, "babbling" transmitter) 

Received data transmissions 

Transfer of data to and from host CPU 

In addition to monitoring these parameters, prov~s1ons need to be made for 
reporting any errors to the host CPU. Without the capability to report an 
error, the ability of the user to detect it is useless. 

5.1.3.2.2.2 ARINC 429 Bus User Monitoring 

Since the ARINC 429 bus is older and unidirectional, the amount of bus 
monitoring by the user hardware is significantly less than the newer, bidirec
tional data buses. Additionally, being a unidirectional bus there are fewer 
parameters for the bus interface to monitor. 

For periodic messages the specification requires simple parity checks, not so 
much for integrity as for compatibility with the hardware requirements (ARINC 
Specification 429-12, 1990). 

" ... the parity bit was added to the BCD word fo:c reasons related to 
BCD/BNR transmitter hardware commonality, not because a need for it 
existed for error detection." 

The bit-oriented protocol requires that a CRC check be made on transfers. Other 
higher level protocol parameters should be monitored by the host CPU. Further 
checks may be performed by the host CPU only if the bus interface hardware 
includes the functional capability to do so. For example, if buffer overrun 
detection is not implemented in the hardware, the ho~;t CPU cannot detect this 
error. 

5.1.3.2.2.3 Commercial Standard Digital Bus User Monitoring 

Although many parameters are defined in the CSDB specification, there is no 
suggestion that they be monitored by receivers. The bus frame, consisting of 
the synchronization block and message block, may be ehecked for proper format 
and content. A typical byte, consisting of start, stop, data, and parity bits, 
may be checked for proper format. 

The bus hardware should include the functional capability to monitor these 
parameters. Parity, frame errors, and buffer oven~un errors are typically 
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monitored in the byte format of the character-oriented protocols. The message 
format can be checked and verified by the CPU if the hardware does not perform 
these checks. 

5.1.3.2.2.4 ARINC 629 Bus User Monitoring 

Since this data bus is an autonomous access bus, self-monitoring becomes an even 
more important function for bus users. There are three distinct areas of 
monitoring defined for a user: protocol monitoring, received data monitoring, 
and transmission monitoring. 

For received data, the user monitors the data for three conditions: a valid 
synchronization pattern, valid Manchester II modulation, and proper parity. 

Transmission monitoring consists of monitoring the same parameters as for the 
received data when the user is sending. The synchronization pattern, Manchester 
II modulation, and parity are checked by the sending user on every transmission. 
An error causes the transmission to terminate. Other parameters which are 
monitored by the user are excessive message or wordstring length, undefined 
labels, and babbling conditions. 

Protocol monitoring is performed by the user hardware also. This involves 
checking a number of protocol related timing parameters, such as the TG and SG. 
The protocol is implemented by dual hardware circuits. Each pair of protocol 
parameters is checked for differences. Excessive deviation will cause the 
transmitter to cease operation. 

An error register is provided for the host CPU. Errors that are detected are 
indicated by particular bits being set in this register. The host CPU should 
monitor this register to ensure that any data bus errors receive appropriate 
action. 

It is also possible to monitor "handshaking" between the user hardware and the 
memory. The ARINC 629 bus is designed to directly write and read the host 
memory without the intervention of the host CPU. Since this is the case, the 
CPU should check if these transfers were successful. The user hardware will set 
a bit in the error register if the correct handshake sequence does not occur. 

5.1.3.2.2.5 Avionics Standard Communications Bus User Monitoring 

The HDLC protocol used by the ASCB defines message delimiters and a CRC which 
the users monitor to determine message validity. In addition, other checks are 
performed by the hardware. 

A Driver Enable Timer (DET) is implemented in the BCs and users to prevent 
babbling. If an LRU attempts to send a message longer than its preallocated 
time slot, the bus line driver is disabled by the DET. A checksum is added to 
each message. In addition, a data counter, which indicates data "freshness," 
is included. The host CPU must check these parameters to determine the status 
of each message. 
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The standby BC looks for invalid messages or a la~k of messages from the 
operating controller and also monitors itself for corrE!Ct operation. The active 
BC monitors itself for correct timing and transmissio1~s. Upon detection of an 
error in one of the controllers, the controller will ·reconfigure to maintain a 
functional controller. Controllers do not, however, monitor user transmissions 
(Jennings 1986). 

An HDLC protocol IC provides numerous parameters relating to bus operation that 
the host processor can monitor. It provides CRC, overrun error, transmit 
underrun, and other parameters in its receiver status register. 

5.1.3.2.2.6 MIL-STD-1553 Bus User Monitorin& 

This bidirectional data bus relies on several checks Clf data integrity. At the 
physical interface, each message is checked by the bus user for a valid 
synchronization pattern and correct parity, and each bit of the word is checked 
for valid Manchester II modulation. 

Other items are monitored by bus users for detecting errors on a data bus. 
Message formats are checked and undefined formats ar·~ rejected. For example, 
users reject noncontiguous messages, which have a gap between the command and 
data words. 

Users also implement hardware timers to prevent babbling from its transmitter. 
If a user attempts to transmit for more than 800 microseconds, a hardware timer 
circuit will disable the transmission. 

Upon detection of one of these errors in a data word, the user will set the 
error bit of the status word to a logic one. Also, no:cmal sending of the status 
word is suppressed by the user. The BC will be alerted to a problem when the 
user response is not detected within the period of time it has to respond. 

5.1.3.2.2.7 Linear Token Passing Bus User Monitorine; 

Monitoring is a requirement for all LTPB bus users. An LTPB BIU monitors its 
own transmissions and checks for various types of errors. Upon detection of an 
error, the host CPU is notified and action is require,d. 

Specific transmission activities that are monitored for failure are Token claim 
activity, Token frame transmission, Message frame tra1~smission, and a transmit
ter's detection of its own bus activity. Any d•~tected error causes the 
transmitter to isolate itself from the bus and notify the host CPU of the error 
condition. 

In each BIU there are many monitoring functions that .support bus activity whose 
failure can impact the bus as a whole. These take the form of registers, 
generators, timers, a bus activity detector, and other hardware functions. The 
combination of all these functions is called the Self Monitor Function (SMF). 
A fault detected with any SMF requires corrective action and notification of the 
host CPU (AIR 4288, 1991). 
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Other activities that do not affect the bus operation but do affect the BIU and 
host system are not included in the SMF. These include tests such as Power-On 
Self-Test or Periodic Self-Test (AIR 4288, 1991). 

5.1.3.2.2.8 High Speed Ring Bus User Monitoring 

Monitoring is a requirement for all HSRB bus users. The master station monitors 
its own transmissions, checking for various types of errors. Upon detection of 
an error the host CPU is notified and action is required. 

Monitoring is performed to detect Information field errors, message control 
errors, Token status errors, starting delimiter errors, Token format errors, and 
Token priority errors. Occurrence of these errors requires that the host be 
notified and, possibly, that it take corrective action. 

Other errors may occur that require no explicit recovery action. In these cases 
it is not necessary to notify the host. These errors are reservation bits set 
too high, reservation bits set too low, and short message count errors. 

There are also timers and counters implemented at each BIU on the ring. These 
timers ensure the correct operation of the protocol and guard against token loss 
and uncontrolled transmitters. Another timer ensures that a Beacon frame is 
received within a specified time (AS4074.2, 1988). 

5.1.3.2.2.9 Maintenance Monitoring 

Bus monitoring for maintenance purposes is a long-term data integrity issue. 
Monitoring is performed by a bus user that is specifically designed for this 
purpose. Data are gathered and stored so that analysis can be done at a later 
time. Tasks performed by the monitor should include the following areas: 

Check for faulty LRUs 

Check for faulty transmissions 

Check global protocol 

Record and report any error during flight 

Check general bus performance 

Defective LRUs may be detected by a bus monitor that has sufficient information 
concerning the data bus implementation. If addresses of all users are known, 
then the monitor will detect a particular LRU which fails to respond when 
addressed. For access protocols based on TDMA, faulty transmissions may be 
associated with a particular LRU based on a time slot allocation table. 

In addition to monitoring the operation of the LRUs attached to the data bus, 
there is a need to check the operation of the global protocol. Individual bus 
users may only verify that their own bus accesses obey the rules of the 
protocol. This does not guarantee that the overall protocol is functioning 
correctly. Data buses that implement higher level protocols, such as the bit-

94 



oriented protocols of the ARINC 429 and the ARINC 629 buses, need to be 
monitored for protocol violations at a level higher than a user would check. 
Unless the higher layers of the protocol are implemented in the user hardware, 
the host CPU or a dedicated communication processor mu~:t perform this monitoring 
function. 

Monitored parameters can be used for both short-term and long-term performance 
evaluation. Short-term monitoring will yield information on bus quality, LRU 
failures, and the success of repairs. In the long-term, failure trends, mean 
time between failure (MTBF), mean time to repair (MTTR;, performance trends, and 
cost of ownership can be ascertained. 

Monitoring can be used to record serious errors that occur during flight and 
landing. While it is important that the pilot is not bothered by messages that 
are of little consequence, the pilot must be made a\\'are of data bus failures 
that may affect flight safety. Failures of this nature should be detected by 
a bus monitor and reported to the cockpit so that appropriate action may be 
taken. 

Maintenance monitoring needs to be planned for from the start of'a design. One 
of the design goals should be ease of use. This means that the designer should 
keep the user in mind. The human interface needs to be simple and the messages 
informative. Messages can be stored in complete Bentences. Today, large 
amounts of information can be stored in nonvolatile memory. Some of the 
information which might be stored in this memory and used for maintenance 
purposes is as follows: 

Reports of all monitorable data bus parameters 

• Explanations of corrective measures to be taken for any given failure 

Diagnostic information, such as BIT status for all systems 

System diagrams 

• System specifications 

5.1.3.2.3 Reconfiguration 

Reconfiguration is a fault tolerance technique that is used in some data bus 
implementations. The ASCB and MIL- STD-1553 bus define it in the data bus 
specifications. In a centrally controlled data bus tlte integrity of the bus is 
based on the ability to not only detect a malfunctior1ing controller, but also 
remove such a controller from operation and resume operation with a standby 
controller. The MIL-STD-1553 bus implements this function by making use of the 
following ("MIL-STD-1553 Designer's Guide," 1982): 

External wiring between controllers 

Internal self tests by the controllers 

Status and health messages between controllers 
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Data bus synchronization using clocks or mode codes 

Another type of reconfiguration is to remove a defective user from the bus. In 
a centrally controlled data bus, the controller can monitor the response of any 
user and determine whether or not it is operating correctly. If the user does 
not respond within a specified time, or if it responds incorrectly, the 
controller can then proceed with a predefined error handling routine which may 
involve the removal of the user from the polling sequence. 

The ASCB uses a redundant bus architecture with dual buses. Bus users transmit 
on only one of the buses and listen to both, while controllers can transmit on 
either bus. If one of the buses becomes unusable, the users have the ability 
to switch receivers to the other bus until valid transmissions from the BC are 
again received on the failed bus. 

When a data bus operates under autonomous control, there is not a single source 
designated to monitor all users and take corrective action, as in the centrally 
controlled bus. It is necessary, therefore, for each user to monitor itself. 
Upon detection of an error, the user should execute an error handling routine 
which may involve the user isolating itself from the data bus. The ARINC 629 
data bus is one in which a user will remove itself when an unbroken sequence of 
seven transmit errors is detected by the user's bus monitoring hardware. 

5.2 Bus Hardware-Software Interaction 

Constant breakthroughs in microelectronics make it difficult for a CE to address 
the hardware-software interaction between a digital data bus and an avionic 
system. Very Large Scale Integration (VLSI) ICs and multiversion software, 
which make up digital systems, often contribute to the CE's dilemma. With these 
advancements come new failure modes which need to be evaluated before a system 
can be considered airworthy. Section 5.2 helps the CE understand the failure 
modes at the hardware-software interface of a digital data bus and avionic 
system. 

First, the hardware-software interface is identified. Next, data integrity 
problems that may arise when the bus and avionic system interact through 
hardware and software are identified. Finally, analyses of the error detection 
and recovery schemes for the data integrity problems are presented. 

This section reviews the interaction of avionic systems with the ARINC 429 bus, 
ARINC 629 bus, ASCB, and MIL-STD-1553 bus. Although the MIL-STD-1553 bus is 
used for military applications, problems due to hardware-software interaction 
resemble those of bidirectional data buses used in civilian aircraft. 

5.2.1 Bus Interface Units and Central Processing Units 

Figure 5.2-1 illustrates how avionic systems are connected to a data bus through 
a BIU, and shows the point of hardware-software interaction. Although the ARINC 
429 bus, ARINC 629 bus, ASCB, and MIL-STD-1553 bus are different, their point 
of hardware-software interaction remains the same. Each data bus uses a BIU to 
communicate data between a bus medium and a CPU within the avionic system. 
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The main part of each LRU is the avionic system. It exchanges data with other 
avionic systems over the bus medium. An avionic syste:m may be a flight control 
computer (FCC), a display computer (DC), an autopilot, or any other system which 
processes digital data during a flight. Avionic systems are usually constructed 
with complex hardware, but always contain a CPU under software control to carry 
out the system's repetitive functions. The CPU software is the software of 
interest in this section. 

The CPU software allows the CPU to perform the system's application specific 
tasks. The CPU software may also be responsible for establishing communication 
between the CPU and BIU. For example, for the ARINC L29 bus, the ASCB, and the 
MIL-STD-1553 data bus, the CPU software receives data from, and sends data to, 
its BIU. For ARINC 629 bus operations, a CPU's soft'llare merely tells the CPU 
how to respond to signals initiated by the ARINC 629 BIU. 

Two entities are needed to transfer digital data between avionic systems: the 
bus medium and the BIU. The bus medium connects the BIUs and carries digital 
data. The media are typically bundled in groups and c;.ttach systems, like those 
in figure 5.2-1, throughout an aircraft. 

Flight Computer Host Display Computer Avionic System 
(CPU 1) HW and SW (CPU 2) (CPU n) 

--- --- HW-SW --- --- --- ---
Interaction 

I BIU 1 
1 

Bus l BIU 2 I HW and sw I BIU n I 

LRU 1 LRU 2 LRU n 

Bus Medium 

FIGURE 5.2-1. DATA BUS HARDWARE-SOFTWMtE INTERFACE 

The BIU connects the avionic system to the bus medium. This unit performs all 
bus related tasks (e.g., bus timing, conversions, transmissions, receptions) 
under control of its own software, or the CPU's soft:ware. For example, data 
coding is accomplished by a circuit within the BIU, while transmission and 
reception could be controlled by software executed in the CPU. The actual 
functions are usually implemented in hardware and will vary, depending on the 
type of data bus and application. 

A BIU interfaces to a CPU through the BIU' s internal registers and the CPU's 
Random Access Memory (RAM). The registers are memory locations in the BIU that 
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a CPU can directly access. Status registers within a BIU notify the CPU of 
conditions within the BIU, while control registers set up hardware operations 
of the data bus. Again, registers and their uses will vary depending on the 
design and application of the system. 

The CPU's memory stores data pertaining to operations of the aircraft. 
example, before altitude data can be passed from one LRU to another (i.e., 
an FCC to a DC), the first LRU' s CPU must send the data to the BIU. 
transaction is accomplished as follows: 

For 
from 
This 

• An LRU receives altitude data from its sensors, and the CPU processes the 
data according to its software. 

The CPU then stores the processed data in memory for the BIU. 

• At this point, the BIU is instructed to access the data and codes it into 
a format which is usable by other BIUs. 

• The coded data are sent to other BIUs via the bus medium. 

Once data are received by other BIUs, the procedure is reversed so that the 
receiving LRU can use the data for its dedicated purposes. All data transfers 
between a BIU and CPU are accomplished using address, data, and control lines. 

The hardware-software interaction between the BIU and the avionic system's CPU 
should be an area of concern for the CE since failures at this interface can 
impact the entire system. The type of data bus, as well as the system 
manufacturer, determine how a BIU and CPU perform this interaction. For 
example, an ARINC 429 BIU may be either totally or partially controlled by the 
system's CPU, as previously described. In ARINC 629 bus applications, each BIU 
uses personality PROMs to regulate the hardware-software interaction. 

The ARINC 429 bus, ARINC 629 bus, ASCB, and MIL-STD-1553 bus employ ICs to 
realize various proportions of the BIU. In most cases, the IC can implement 
all of the operating modes for a specific data bus (e.g., a MIL-STD-1553 BIU IC 
can be configured as aBC, an RT, or a bus monitor). However, interaction with 
a CPU is of the same form, regardless of mode. This section looks at one BIU 
IC for each bus (table 5. 2-1) and examines how improper hardware-software 
interaction between the BIU IC and the avionic system's CPU can inhibit data 
integrity. 

A BIU IC does not perform all of a standard BIU's functions. It is beyond the 
scope of section 5.2 to discuss the hardware-software interactions of the non
integrated portions of BIU circuitry. Only interaction between the BIU IC and 
the CPU software are discussed. 
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TABLE 5.2-1. BUS INTERFACE UNIT INTEGRATED CIRCUITS 

Data Bus BIU IC 

ARINC 429 Harris Semiconductor's 
HS-3282, ARINC Bus Interface Circuit 

ARINC 629 National Semiconductor Corporation's 
XD15U9AIC, ARINC 629 IC 

ASCB Intel Corporation's 
Intel 8274, Multi-Protocol Serial 
Controller (MPSC) 

MIL-STD-1553 Digital Device Corporatic•n' s 
BUS-61553, MIL-STD-1553 Advanced 
Integrated MUX (AIM) Hybrid 

5.2.1.1 Data Transfer Techniques 

When either a BIU or CPU is requested to send data to an external location, it 
must use certain techniques to ensure that the data are successfully received. 
Since all units perform this task, the techniques m\:.st be flexible enough to 
adapt to many environments. For data buses, memory mapping and Direct Memory 
Addressing (DMA) are used to move data between a BIU and CPU. 

Memory mapping may involve putting BIU registers at specific CPU memory 
addresses. The CPU could then access the register as a memory location rather 
than as an input/output (I/O) device. For example, the CPU's software could 
execute a memory instruction, rather than an I/0 instruction, to write data to 
the BID's register. MOV is a typical memory instruction, and IN and OUT are 
typical I/0 instructions that a CPU uses to transfer data. 

DMA is used by systems for high-speed block or packet data transfer between two 
memories. In a standard DMA configuration, the memory address and control lines 
are directly controlled by the sending device, rather ~han the CPU. The sending 
device uses a DMA controller. 

The DMA controller must be initialized by a CPU's software. This is ac
complished by writing data to registers in the controller. A DMA controller's 
registers are similar to the registers in a BIU in tha1: they tell the controller 
how to operate. 

The major difference between DMA and memory mapped I/0 is that a CPU does not 
control the transfer of the data during a DMA operation. 

Memory mapped I/0 and DMA processes can both be aceomplished through Shared 
Interface RAM (SIR), also called dual-port memory. With data buses, such as the 
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ASCB and MIL-STD-1553, this is a common technique. SIR means that both the CPU 
and BIU share the same memory. An illustration is provided in figure 5.2-2. 

Avionic 
System CPUir--------41 

t 
SIR 

Address and Data Lines 

FIGURE 5.2-2. SHARED INTERFACE RAM 

With this configuration, both the CPU's and BIU IC's address and data lines are 
directly connected to shared RAM. Access to the SIR by the two units is 
controlled by an arbitrator circuit. This type of shared memory provides the 
benefit of isolating the BIU from the CPU (i.e. , no synchronization is 
required). Furthermore, the data transfer rate is increased since neither 
device has to wait for the other. 

Although the ARINC 429 bus, ARINC 629 bus, ASCB, and MIL-STD-1553 bus are 
different, each uses registers and memory during their operations. Registers 
hold data pertaining to operations of the BIU IC and can be either written or 
read by the CPU. Memory other than registers is used to hold data during 
communication between a BIU and CPU. Through these registers and memory, 
hardware-software interaction takes place. 

5.2.2 Hardware-Software Interaction Faults 

Two types of data are passed between the BIU and CPU: bus configuration data 
and flight data. Bus configuration data are only sent to BIU IC registers, 
while flight data (e. g., altitude, heading) is shared with other avionic 
systems. If either type of data were to become corrupt, an error could result. 
Since the CPU (controlled by software) interacts with the BIU IC's registers and 
memory, the CPU's software has the capability to disrupt both types of data and 
affect hardware operations. 

If the host CPU writes faulty bus configuration data to the BIU IC registers, 
the BIU could be set up for an improper mode, reset, or shut down. On the other 
hand, if the BIU puts faulty flight data in the CPU's memory, the CPU would 
propagate an error. Also, if external noise or an adverse environmental 
condition causes data in either location to become corrupt (i.e., an inverted 
bit), the entire system could be affected. These situations will vary depending 
on the type of system used and the conditions under which the system is 
operating. 

Typical errors that affect the hardware-software interaction of a BIU and CPU 
are presented in table 5. 2-2. Column (a) of table 5. 2-2 represents errors 
common to all data buses; column (b) lists errors unique to certain buses. 
These errors can be present in bus configuration data or flight data. It is 
beyond the scope of this report to discuss every failure mode which could cause 
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these errors. Therefore, a generic description of the errors is provided in the 
following sections and, where possible, their trigger events defined. 

TABLE 5.2-2. DATA BUS HARDWARE-SOFTWARE INTE~CTION PROBLEMS 

Errors Common to all Data Buses Bus Spe:ific Errors 
(a) (b) 

Parity Errors Timing Errors 

Overrun Errors Interrupt Handling Errors 

Synchronization Errors 

5.2.2.1 Parity and Overrun Faults 

Parity and overrun errors are common to all buses and ·~an occur in all cases of 
data transfer (e.g., CPU to BIU or BIU to CPU). Parity errors may occur when 
digital data are either transmitted or received with an incorrect number of 
binary "l"s. 

Depending on the system, parity errors can be triggered in many ways. For 
example, lightning or another environmental condition can cause data to become 
corrupt while it is passing through the bus medium. As a result, a unit 
receiving the data may detect a parity error. Section 5.1 provides a more 
detailed discussion of parity errors. 

Overrun errors can occur at many levels of the data bu:>, as with parity errors. 
An overrun error means that current data was not used before new data was put 
in ·the same memory location or register. This error r:!sults in the loss of the 
old data. Overrun errors which affect the hardware-software interaction can 
occur in memory shared between the BIU and CPU and in the BIU during reception 
of data from the bus medium. This type of error can be caused by a babbling 
BIU that improperly transmits data on the bus or a timing flaw in a CPU's 
software that causes it to write data to a memory location at the wrong time. 

A MIL-STD-1553 bus using a BUS-61553 IC is subject to •)Verrun errors because it 
shares memory with a CPU. Alt:hough sharing memory offloads some of the CPU's 
tasks and allows for DMA operations, overrun errors can easily occur because 
both the BUS-61553 IC and CPU are able to access the same memory. For example, 
when data are placed in the shared memory by a BIU (or CPU), it must notify the 
CPU (or BIU) that the data are available. The CPU (or BIU) then reads the 
appropriate location in memHP LaserJet Series IIHPI.ASEII. PRSry. If this 
situation occurs, the updated data are written over the original data. 

The HS-3282 IC is susceptible to overrun errors during reception of data from 
the bus medium. Data from the line receiver is placed into the HS-3282 IC's 
shift register. When the data are valid, a signal is generated by the HS-3282 
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The HS-3282 IC is susceptible to overrun errors during reception of data from 
the bus medium. Data from the line receiver is placed into the HS-3282 IC's 
shift register. When the data are valid, a signal is generated by the HS-3282 
IC telling the CPU that data are available in the register. If the data are not 
read by the CPU at this time, new data words being received by the HS-3282 IC 
will overwrite the data in the register. 

Similarly, the MPSC is vulnerable to overrun errors. The MPSC stores flight 
data from the bus medium in receive registers. If the CPU neglects the data, 
the next data word coming into the receive registers will overwrite the previous 
data word. 

5.2.2.2 Synchronization Faults 

Synchronization is used between LRUs to correlate serial data transmissions and 
receptions. When one LRU has data to send to another LRU, its BIU may first 
send a synchronization pattern to the receiving LRU. This allows the receiving 
LRU to recognize the first bit of the message. Synchronization patterns may 
also be sent to announce the end of the data. The ASCB uses both of these 
patterns in LRU to LRU messages (Jennings 1986). 

A framing error is a form of synchronization error that can occur during a write 
or read instruction by an LRU. A framing error means that an appropriate number 
of framing, or synchronization, bits around the data word were not detected by 
the receiving unit. 

Figure 5.2-3 shows an eight-bit serial data word that could be sent by an LRU 
through its BIU. As defined by the system's protocol, the receiving LRU knows 
what type of synchronization pattern to expect. If the data word shown in 
figure 5.2-3 is supposed to be surrounded by synchronization patterns made up 
of all digital "l"s, but digital "O"s show up in these patterns, a framing error 
occurs. These errors could be the result of line noise entering the bus medium 
during data transfer between two' LRUs. Regardless of the cause, if data 
possessing framing errors are passed on to the CPU, the system could be 
affected. 

Data Word 

1 o 11 11 11 1 o 1 o 11. .. 11 

t Fram~ng Bits 

FIGURE 5.2-3. DATA FRAMING 

The MPSC employs framing when it is used in ASCB applications. Before 
information from the CPU is sent by the transmitting BIU, the information is 
framed as shown in figure 5.2-3. These framing bits allow the receiving syste~ 
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to temporarily synchronize with the transmitting sy~:tem and eliminate timing 
skews between the two systems. 

Besides using synchronization between two BIUs, a CPU and its BIU may also need 
to be synchronized. This would be required if the CPU was responsible for 
initiating data transfer between LRUs. In this case, if the CPU does not know 
when the BIU is ready, it cannot properly instruct the BIU to send or receive 
data. 

When an ARINC 429 BIU that uses the HS-3282 IC is e:{ecuting the Bit-Oriented 
Communications Protocol (BOCP), this synchronization can occur. In the BOCP, 
the transmitting LRU broadcasts a Request To Send (RTS) message to the receiving 
system prior to transmission of flight data on the ARINC 429 bus medium. 
Immediately after the receiving system gets the RTS message, it must respond 
within a predetermined amount of time with a Clear To Send (CTS) message, a Not 
Clear To Send (NCTS) message, or a Destination Busy (BUSY) message (ARINC 
Speci,fication 429-12, 1990). Since the HS-3282 IC does not have the logic to 
produce these messages, it is the CPU's responsibili·:y to undertake the task. 
Improper use of these messages by a CPU could caus1~ the HS-3282 IC to miss 
transmission or reception of data. 

The types of errors presented above are common to all data buses. Parity, as 
well as overrun errors, can happen at the bus medium to BIU interface, as well 
as the BIU to CPU interface. Synchronization and framing errors only occur at 
the bus medium to BIU interface. However, they can be triggered by a condition 
within the BIU or CPU. 

5.2.2.3 Timing Faults 

A timing problem can arise when a CPU does not complet·~ its data transfer to the 
bus before its access time to the bus expires. Timi.ng errors of this nature 
are common in a time-multiplexed environment. A typical timing problem between 
a CPU and an ARINC 629 BIU can occur while the CPU i:3 sending data to the bus 
medium. 

The problem arises from the fact that BCAC's Integrated Avionic Computer System 
(lACS) integrates many avionic systems on a number of central CPUs and uses 
autonomous ARINC 629 BIUs. The CPUs perform several functions which share the 
CPU memory. The functions are partitioned to prevent hardware and software 
failures in one function from affecting another partition's functions. All of 
the CPUs within the lACS are controlled by a software algorithm known as the 
Real-Time Executive (RTE). 

The RTE controls transmit and receive timing between the LRUs. To ensure that 
all transmissions and receptions are coordinated, the RTE gives each LRU a 
specific amount of time in which to complete its message transmission. To 
accomplish a transmission, an ARINC 629 BIU must obtain processed data from the 
CPU and completely transmit the data on the bus medium in a predetermined amount 
of time. Since the RTE controls when the ARINC 629 3IU obtains data, the RTE 
could instruct an ARINC 629 BIU to interrupt a CPU before all of the CPU's data 
are ready to be transmitted. The ARINC 629 BIU acces~:es the data without first 
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checking if the CPU is done with its process. When this occurs, the ARINC 629 
BIU could transmit partially updated or otherwise erroneous data to other LRUs. 

A similar timing problem arises with the MIL-STD-1553 data bus. If periodic 
data are to be processed by a CPU's software, the MIL-STD-1553 BIU must notify 
the CPU that data are available and ready to be processed. In a MIL-STD-1553 
bus application, a specific signal is used to annunciate this condition. 

Once the signal is generated, the CPU has a certain amount of time to ac
knowledge the signal and process the data. (Recall that the time is designated 
by aBC, and the BUS-61553 IC is capable of performing BC operations.) If the 
CPU takes more time to process data than the BC allows, the BC must either 
terminate the CPU's access to the bus, or wait for the CPU to complete its task. 
If the BC elects to terminate the CPU's access to the bus, an error similar to 
the ARINC 629 bus timing problem could result. The transmitting BIU could get 
erroneous or old data and send it to other LRUs. On the other hand, if a CPU 
is constantly allowed to overshoot its allotted time, the entire network will 
"jitter in its periodicity" ("MIL-STD-1553 Designer's Guide," 1982). These two 
descriptions show how both a distributed control and a centrally controlled bus 
can be exposed to similar timing errors. 

5.2.2.4 Interrupt Handling Faults 

Interrupts are a standard method of initiating data transfer between a BIU and 
CPU. For example, when a BIU places data in SIR the BIU must send a signal on 
an interrupt line to the CPU to announce that the data are available. This 
signal is called an interrupt. 

If a BIU generates an interrupt to the CPU, the CPU may respond with an 
acknowledge signal and, either suspend what it is doing in the main part of the 
program and read the data, or continue to process until some later time. 

Interrupt handling problems can arise when more than one interrupt is generated 
at one time. For example, if a CPU is already servicing one interrupt and its 
BIU initiates another interrupt, which one should get priority and how will 
throughput of the bus be affect:ed? Avionic system manufacturers must deal with 
these conditions. 

The MPSC uses interrupts to notify the CPU when one of 14 conditions occur. If 
all of these conditions happen within a short period of time, they could cause 
the CPU to be so tied up with interrupts that it cannot maintain the required 
application processing. Furt.hermore, the CPU may not be able to promptly 
service all of the interrupts. This would also affect the operation of the LRU. 

5.2.3 Fault Detection 

If not detected, all of the errors discussed in section 5.2.2 have the potential 
to cause a bus failure. To recognize these types of errors, BIUs and CPUs can 
employ bit-level detection schemes during data transmission and reception. 
Using these schemes, the BIU or CPU can spot faulty data before it leaves or 
enters the unit's boundaries. For both BIUs and CPUs, bit-level detection 
schemes include parity checks, CRCs, checksums, and Hamming codes. Each check 
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is valid for detecting certain types of bit errors. The checks, and which buses 
use which checks, are detailed in section 5.1. 

When a BIU is responsible for error detection, it should be able to annunciate 
results of the data checks so that corrective action can be taken when 
necessary. In most of today's avionic BIUs, this notification is performed by 
setting or resetting a specific bit in the BIU' s sta1:us register. Once a bit 
has been appropriately set, either the BIU can interrt:.pt the CPU and report the 
error, or the CPU's software can periodically access the BIU's register and read 
the error. 

If the BIU is incapable of performing any checks, the CPU may be responsible 
for error detection. In this case, the CPU checks bus configuration or flight 
data which enters or leaves its bounds and flight dc:.ta entering the BIU from 
the bus medium. Error detection routines within the CPU include ones previously 
mentioned and may be implemented as a routine in the CPU's software. A CPU's 
detection responsibilities will vary depending on each application and must be 
defined by the system's designer. 

Monitoring and voting are other methods that can be us«~d to ensure that failures 
at the BIU to CPU interface do not go undetected. These are also discussed. 

5.2.3.1 Bus Interface Units and Fault Detection 

The MPSC contains 21 registers which a CPU can access. These registers are 
split between two redundant channels: A and B. Of tt.e 21 registers, 10 belong 
to channel A, and 11 belong to channel B. Channel A registers include Write 
Registers (WRs) zero though seven (WRO-WR7) and Read Registers (RRs) zero and 
one (RRO and RRl). Channel B registers are the sarr.e, except that channel B 
includes an extra register used to service interrupts: RR2. This register 
either contains the interrupt vector programmed into \ffi2 or holds the vector of 
the highest pending interrupt within the MPSC. 

When the MPSC receives a data word from the bus, the MPSC checks the data for 
integrity. If a parity, framing, or CRC error is detected by the receiving 
circuitry, the MPSC sets a specific bit in the appropriate read register 
( "Microcommunications," 1990). The system's CPU can c·1.eck for errors by polling 
the MPSC, or by an MPSC interrupt. 

The BUS-61553 IC uses similar methods to inform its CPU of parity, overrun, and 
synchronization errors. Within the BUS-61553 IC are three internal registers 
that the CPU can access: the Configuration Regi1;ter, the Interrupt Mask 
Register (IMR), and the Start/Reset Register ("MIL-STD-1553 Designer's Guide," 
1982). Each has different applications. 

The IMR can be read or written by the CPU. Upon reception of a data word from 
the bus medium, the BUS-61553 IC checks the data to ensure that it does not 
violate the MIL-STD-1553 bus formats. If a parity, o'·errun, or synchronization 
error is detected, the "message error bit" within the IMR will be set ("MIL
STD-1553 Designer's Guide," 1982). The CPU can then read the IMR and take 
appropriate action. Other errors that the BUS-61553 :CC can detect include loop 
test failures, coding errors, and time-out errors. 
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A Hamming code is another detection scheme that the BUS-61553 IC can use. The 
IC uses this code to detect and correct up to three erroneous bits in a flight 
data word. Detection is accomplished by sending a protection word immediately 
after each 16-bit data word. If blocks of data are to be checked, the 
protection word would follow each consecutive 16-bit data word in the block. 
Section 80 of the "Multiplex Applications Handbook" (MIL-HDBK-1553A, 1988) 
discusses this error detection scheme. In addition, a general description of 
Hamming codes is provided in section 5.1 of this report. 

The ARINC 629 IC transfers bit-level errors, as well as diagnostic information, 
to a CPU via an error register. The error register is 16 bits wide. Each bit 
represents a different error condition. Twelve of the 16 bit~ are latched 
("ARINC 629 Communication Integrated Circuit," 1990). "When an error occurs, a 
corresponding bit is set in the error register. The other four bits in the 
error register reflect the ARINC 629 IC's current status. 

The HS-3282 IC does not hold error information for its CPU. Instead, the HS-
3282 IC passes error detection responsibility directly to its CPU or another 
external device. The HS-3282 IC does, however, use a configuration register to 
distribute internal control signals. One of these signals directs the HS-3282 
IC to check its transmission for proper parity. To accomplish the parity check, 
the configuration register is loaded by the CPU. The register tells a parity 
check circuit within the HS-3282 IC whether the outgoing flight data should 
possess even or odd parity. In ARINC 429 bus applications, all flight data 
should be transmitted with odd parity. 

From the above discussion, it is apparent that BIUs are capable of annunciating 
many types of errors to a CPU through internal registers. The errors include 
ones previously discussed, like parity and overrun, but may also include others 
like coding and loop-test failures. Each BIU and data bus manufacturer must 
develop their own method to inform the avionic system of hardware-software 
interaction errors while keeping within the bounds of the data bus's standard. 
Even though this is a job for the BIU and data bus manufacturer, the CPU 
programmer and system integrator must design the system to utilize all 
information provided by the BIUs. 

5.2.3.2 Monitoring 

Monitoring can be performed at many levels 
monitoring discussion details only processes 
hardware-software interface. 

in a data bus. 
that apply to 

However, this 
errors at the 

Besides a BIU annunciating faults to the CPU using interrupts, most BIUs can be 
monitored by a CPU's software. As with the other forms of error detection, this 
allows the CPU to take appropriate corrective action in the event of an error. 
Software monitoring by a CPU may mean periodically polling a register or memory 
location in an LRU, or may require a dedicated algorithm in the CPU's software 
to oversee the operation of the entire BIU. As with detection methods in BIUs, 
monitoring techniques will vary from one application to another. 
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The MPSC provides a good example of how software mor:itoring can be employed. 
When the MPSC is configured for the polled mode of operation, the CPU can 
monitor conditions by reading bits in the MPSC' s RRO and RRl. Data available, 
status, and error information are apparent in RRO and RRl for both channels of 
the MPSC. 

An example of an algorithm that a CPU can use to monitor the MPSC is discussed 
in "Microcommunications" (1990) and is called MPSC$fOLL$RCV$CHARACTER. This 
algorithm tells the MPSC to get data from the bus medium and wait until the 
"character available" flag in RRO is set. After this flag is set, the CPU 
checks RRl for parity, synchronization, and overrun errors. If errors are 
detected, the receive buffer must be read and another algorithm, RECEIVE$ERROR, 
must be called. This algorithm processes errors received by the previous 
algorithm. However, the RECEIVE$ERROR procedure is application dependant. The 
RECEIVE$ERROR algorithm requires the address of the affected MPSC channel and 
the contents of RRl to operate. Both algorithms are ,:;hown in Application Note 
Number 134 ("Microcommunications," 1990). 

If a CPU is incapable of monitoring the BIU at thi:; level, or the software 
overhead required for the task is not permitted, monitoring can also be done by 
a dedicated LRU. For example, the MIL-STD-1553 bus employs bus monitors and the 
ASCB implements a similar, special purpose monitor called a Listen Only User. 
These monitors are separate LRUs. They are attached to the bus medium as shown 
in figure 5. 2-1. 

The MIL-STD-1553 bus monitor listens to all data on the bus and "extracts 
selected information to be used at a later time" ( "MIL-STD-1553 Designer's 
Guide," 1982). A typical bus monitor performs no transfers on the bus, but bus 
monitors usually have the capability to become a MlL-STD-1553 bus RT under 
request from the BC. Applications of the bus monitoJ: include data collection 
and monitoring the overall system for status information. 

In some cases, a bus monitor can be configured as a back-up BC. When this 
occurs, the bus monitor collects data, watches transmissions, and performs the 
same jobs as the current BC, with the exception of issuing commands on the bus. 
This way, the bus monitor is continuously aware of the operation of the overall 
system and subsystems, and is available to serve as a back-up BC if an error 
between the hardware and software takes down the o:r iginal BC ("MIL- STD -1553 
Designer's Guide," 1982). 

The ASCB BC is also capable of being used as a self-monitor, as stated in the 
ASCB Specification: 

"In the active control mode, the bus controller sr.all self-monitor its 
own bus control operation. If bus control perfo~mance, as described 
in this specification, is not being performed properly, the bus 
controller shall remove itself from bus control operations and assume 
the standby mode. Monitoring techniques shall provide coverage for 
both hardware faults and software errors. In addition, the monitor 
shall verify proper content and timing of all control sequences being 
transmitted." (GAMA ASCB, 1987). 
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The monitors used in both the ASCB and MIL-STD-1553 buses must watch for single 
points of failure at the BC and associated BIUs. This environment helps ensure 
that hardware-software interaction errors will not cause the simultaneous 
failure of the BC and other BIUs on the bus. 

5.2.3.3 Voting 

Voting is another fault detection method that can be used by LRUs. Although 
this technique is usually applied at the system level, it can be utilized at the 
BIU to CPU interface. Voting is typically done at either the input or output 
of a system. 

Voting requires at least three redundant units. Although in most applications 
a single CPU interacts with a single BIU, either of these units can be made 
redundant to incorporate voting. For example, an LRU may contain three CPUs 
which process data. 

Input voting can be done on data from the bus medium before it reaches the CPU, 
while output voting can be done on data between redundant CPUs and the BIU. 
(The definition of input and output voting will vary depending on the reference 
point in the system.) In both cases, a circuit within an LRU compares the 
values from triply redundant CPUs or BIUs and passes on a refined value. Thus, 
erratic data from any of the redundant units will be detected. Figures 5.2-4 
and 5.2-5 illustrate the concepts of input and output voting. 

LRU 

r--[BIU 11 
I 

Data Bus 

: I I 
~a IBIU 21 Voter 

~~Bru 31 I 
Redundant BIUs 

FIGURE 5.2-4. INPUT VOTING 
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Redundant CPUs 

FIGURE 5.2-5. OUTPUT VOTING 

The extent of the voting architecture depends on whi~h component failures are 
to be compensated. Input and output voting can be used to create systems that 
have a high level of fault tolerance. 

5.2.4 Fault Correction 

Previous sections presented typical errors which occur during data transmission 
and reception between a BIU and CPU. Also discussed were different methods used 
to detect the errors. The errors addressed, however, are not the only ones that 
can occur, nor are the detection schemes the only ones that can be used. 
Nevertheless, it is the system designer's job to er..sure that no hardware or 
software errors between an avionic system and its data bus cause a flight
critical or flight-essential system to fail. 

The correction methods described in the following sections apply to the faults 
presented in section 5. 2. 2. Retransmission is a star,dard method of correction 
for errors that have already occurred. Multiple bt:.ffering is a method that 
prevents certain errors from occurring. Besides these methods, fault tolerant 
bus architectures that rely on redundancy for error correction are presented. 
Although these architectures are not usually incorporated by the buses discussed 
in this report, they are valid solutions to many hardware-software interaction 
problems. 

5.2.4.1 Retransmission and Default Data 

Once a parity error has been detected by a BIU or CFU, retransmission and use 
of default data are correction methods that can be ust~d. Retransmission simply 
means sending the same message again, and default data are values automatically 
used unless other values are specified. For correctton purposes, default data 
could be used in place of data which has been verified to be unusable. These 
simple schemes can effectively correct parity errors ::hat result from transient 
interferences. 
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Most data bus systems are capable of using software to request retransmission 
if a parity error occurs. Consider an ASCB using the MPSC. The CPU can monitor 
the MPSC's status by testing appropriate bits in the MPSC's RRs. If a parity 
error is detected within the MPSC, the data are discarded, and the CPU runs the 
MPSC$POLL$RCV$CHARACTER algorithm. Depending on the application, the algorithm 
could be set up to request retransmission from the sending unit. 

The ARINC 429 data bus, under the BOCP, is also capable of using retransmission 
in the event of a parity error. Prior to flight data transmission on the ARINC 
429's bus medium, the transmitting system sends an RTS message to a receiving 
system. If the RTS message is accepted and the transmitting system is allowed 
to transmit its data, it sends a Start of Transmission message, followed by the 
data, to the receiving system. Immediately after the receiving system gets the 
data, its CPU can test it for parity errors. If a parity error is detected by 
the receiving system, it sends a Not Acknowledge message back to the transmit
ting system. When this message is received, the transmitting system could be 
configured to retransmit its data. 

Retransmission is useful for correcting synchronization errors. As pointed out 
in section 5.2.2, framing bits can be used to synchronize data during recep
tions. If the framing bits become inverted due to an error, the BIU may not be 
able to recognize when a reception is completed. In this case, the BIU or CPU 
could request a retransmission from its source. 

A system that uses the ARINC 429 data bus under the BOCP and uses an HS-3282 IC, 
employs retransmission in the event of a synchronization error. If a transmit
ting system's RTS message is ignored, or if the receiving system sends a message 
which prevents the transmitting system from broadcasting its data (NCTS or 
BUSY), the sending unit retransmits its RTS message within a time defined by the 
ARINC 429 bus specification. If the second RTS message is ignored, the 
transmitting unit should keep trying until five RTS messages have gone 
unacknowledged. If, however, the sending unit receives a BUSY message, it may 
repeat its RTS message up to 20 times. ARINC Specification 429-12 (1990) 
states: 

"The actual number of attempts a source should make before giving up, 
or taking some different course of action, when the limit is exceeded 
depends on the application." 

Using default data is another way to recover from parity, overrun, and 
synchronization errors. For example, if a BIU receives data with bad parity 
from the bus medium, the CPU may elect to use default data for the next process. 
Even though this method keeps errors from tying up a system, the designer must 
ensure that using default data will not upset the operations of a flight
critical or flight-essential system. 

5.2.4.2 Interlocks 

Interlocks are a method of preventing timing errors during data transmission on 
serial data buses. Interlocks, which are usually constructed with hardware, 
prevent BIUs from transmitting at inappropriate times. 
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An ASCB BIU is capable of using an interlock to prevent timing problems during 
transmission, as stated in the ASCB specification: 

"Each user which transmits on the bus, has an interlock to prevent 
erroneous transmissions longer than its allocated time on the bus. 
A separate, dedicated hardware timing circuit, is used to enable the 
transmitter, in each of the users, only when the specific request is 
received." (GAMA ASCB, 1987). 

This interlock is provided by the DET which ensures that an ASCB user will not 
transmit out of its time frame. This DET logically ANDs an independent hardware 
clock (set up for each BIU's timing specifications) with the BIU's power and 
transmit enable lines. If any one signal is not enabled, transmission will not 
occur. The DET is part of the ASCB BIU, not the MPSC. 

5.2.4.3 Multiple Buffering 

Although overrun errors are as common as parity and synchronization errors, they 
are more complicated since a receiving system may not be aware that an overrun 
error has occurred. One method for preventing ovHrrun errors is a memory 
management scheme called multiple buffering. Besides keeping data from being 
overwritten, multiple buffering prevents partially updated data from being read 
by the CPU or sent to the BIU. Both the ARINC 629 bm: and the MIL- STD-1553 bus 
use multiple buffering. 

To employ the multiple buffering scheme, a BIU and CPU must share memory. The 
memory is segregated into several areas which are sws.pped by the CPU or BIU at 
appropriate times. The key to this scheme is that the CPU and BIU are only 
allowed to access one area of shared memory at a time. 

MIL-STD-1553 applications using the BUS-61553 IC employ multiple buffering to 
prevent overrun errors by assigning two or more areas of memory for each address 
shared by the CPU and BIU. Each area is 32 bits wide. Control information, 
contained in another part of memory, specifies which area is to be used by the 
CPU and which area is to be used by the BUS-61553 IC. 

When the BUS-61553 IC is to receive information, it writes data in one area, 
while the CPU reads previous data from the other area. Upon completion and 
validation of the received message, circuitry within the BUS-61553 IC toggles 
the two areas, making the newly received data available to the CPU. During 
transmit operations from the CPU to the BIU, the scheme is reversed. The CPU 
writes data to one area, while the BIU reads data from another area. When the 
CPU completes its write, the CPU swaps the two areas of memory and allows the 
BIU to access the new data. All memory swaps occur totally between the reads 
or writes ("MIL-STD-1553 Designer's Guide," 1982). 

Multiple buffering is a valid solution to the ARINC 629 bus timing problem. A 
partition within BCAC's lACS could be set up to write to a different buffer than 
the ARINC 629 IC reads. As described above, the read and write buffers could 
be swapped, preventing the ARINC 629 IC from reading a buffer that is currently 
being written. 
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5.2.4.4 Grace Periods 

A correction method for the timing error presented in section 5. 2. 2 can be 
implemented in either hardware or software. A hardware solution utilizes a 
multiple buffering technique as described in section 5. 2.4. 3, while a grace 
period is a software correction method used for both the MIL-STD-1553 and ARINC 
629 bus timing problems. A grace period can be implemented within the lACS's 
RTE, or the MIL-STD-1553 BC's software. 

Recall that an lACS's RTE is capable of instructing each LRU when to obtain 
data. Therefore, if the RTE knew when an LRU's CPU was done with processing, 
the problem would be resolved. 

To correct the timing problem, each of an ARINC 629 LRU's tasks are completed 
under a software subroutine within the RTE. In this subroutine, the RTE 
monitors whether an LRU has completed its process. If one LRU's process is not 
completed when the RTE wants to switch to another LRU, the RTE allows an LRU 
extra time (a grace period) in which it can finish its job. A MIL-STD-1553 
application uses similar correction methods for the timing problem; the BC 
provides a grace period (equal to one minor frame) to the LRU. 

Another method that the ARINC 629 bus could use to correct the timing problem 
requires the functions within the LRUs to transmit and receive data at the 
beginning of their time frame. Furthermore, each LRU' s time frame must be 
longer than any of the transmissions or receptions could possibly take. 
Although this solution eliminates the timing problem, processing completed while 
an LRU is in a current time frame would not be made available until the next 
time frame (Bakken 1988). The advantage to this solution is that it requires 
less CPU overhead than the grace period solution. 

The use of grace periods merely increases the time to complete a task. If 
transmissions exceed the grace period, an error would be announced and 
corrective steps would need to be taken as if the grace period was never 
implemented. It is the system designer's responsibility to decide what solution 
would be best for a situation. 

5.2.4.5 Prioritizing 

A BIU or CPU can employ prioritizing to eliminate incorrect handling of 
interrupts. The purpose of prioritizing is to decide which interrupt is more 
critical. 

The MPSC uses priority in both a vectored and nonvectored mode to decide which 
interrupt deserves attention. In the vectored mode, the MPSC sends the location 
of the interrupt's service routine to the CPU along with the interrupt 
condition. In the nonvectored mode, the CPU is responsible for determining the 
location of the interrupt's service routine. In either mode of operation, the 
14 interrupt conditions are categorized by the MPSC into three different 
interrupt requests for each channel. This means that there are six interrupt 
requests generated by the MPSC ("Microcommunications," 1990). 
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Correct handling of these six requests can be accomplished by a priority 
resolution circuit. In the vectored mode of operation, a circuit within the 
MPSC decides which interrupt deserves priority. In the nonvectored mode, a 
circuit contained in an external device, such as Intel's 8259A Programmable 
Interrupt Controller, may prioritize the interrupts. 

A system that uses the BUS-61553 IC requires the CPU to determine which 
interrupt should have priority. The BUS-61553 IC cotltains an IMR which holds 
information about interrupt conditions for the CPU. The interrupt conditions 
may be the ones explained in the BUS-61553 IC's data sheet or others defined for 
a specific system. If any of these interrupt conditions occur, the BUS-61553 
IC sends an interrupt request signal to the CPU. The CPU responds with an 
acknowledge message and reads the IMR to determine which interrupts have 
occurred. The CPU then selects the highest priority interrupt and runs the 
appropriate service routine. 

The 8088 CPU uses an Interrupt Vector Table (IVT) when establishing the priority 
of interrupts. Interrupt vectors, which point to the beginning of the service 
routines for a BIU, are put in this table. The 8088 CPU uses the position of 
the interrupt vector in the IVT to decide which interrupt deserves priority. 
Other processors, like Zilog's Z80, can be set up in the same manner to service 
interrupts and eliminate interrupt handling errors. 

5.2.4.6 Redundancy 

Because so many errors are application dependant, having a back-up system is a 
good method of correction. Redundancy is the most. widely used method for 
prevention and correction of all data bus errors resulting from hardware
software interaction. Most avionic systems implementing flight-essential and 
flight-critical applications use at least one form of redundancy to meet 
requirements for certification. 

Redundancy employs either similar or dissimilar hardware and software to m1m1c 
operations of a primary system. These redundancy techniques can be applied at 
all levels of the system including CPUs, BIUs, and the bus medium. All of the 
BIU ICs employ a form of redundancy within their bounds. The HS-3282, ARINC 
629, BUS-61553, and MPSC ICs all are capable of transmitting or receiving data 
on one of two channels. However, all of these BIU ICs have only one interface 
to the CPU. 

When choosing a redundant technique at the hardware or software level, the 
designer must decide whether to employ similar or dissimilar redundancy. 
Similar redundancy makes the whole system easy to de.:;ign and verify, but does 
not guard against generic errors. Dissimilar redundan:y does protect the system 
from these errors, but takes more time to design, is more expensive, and is 
harder to evaluate during certification. 

Redundant techniques that use both hardware and sof·:ware include Honeywell's 
Self-Checking Pair (SCP) (Driscoll 1983), triplication and voting (Spitzer2 

1986), and the Fault Tolerant Multi-Processor (FTMP) Architecture (Lala 1983). 
Although these techniques are not designed by the data bus manufacturers, they 
provide valuable techniques that can be used by data bus manufacturers when 
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designing the bus hardware-software interface. See chapter 5 of the "Handbook 
- Volume I" (Hitt 1983) for further discussion on this topic. 

5.2.4.6.1 The Self-Checking Pair 

Figure 5.2-6 shows a diagram of two SCPs. The SCP includes identical halves 
made up of application processors (APs) and BIUs. The transmitting and 
receiving LRUs are each an SCP. Notice that the only differences between this 
diagram and figure 5.2-1 are that external monitors watch each input and output, 
and each CPU and BIU has a back-up. 

The monitors on the transmit (output) side and the receive (input) side of the 
SCP are the key to the system. Assuming that both transmit CPUs process the 
same data, the BIUs' outputs to the monitors (and bus medium) should be 
identical. If, for some reason, data to both output monitors is not consistent, 
the monitors are able to switch the faulty system offline. Input monitors 
function in the same way. If a faulty output monitor or bus error causes bad 
data to be passed to the receiving system, the input monitors should catch the 
error and prevent it from being passed to the receiving system. 

The SCP is applicable to both unidirectional and bidirectional data bus 
networks. An SCP could be placed in one LRU of a bidirectional network, or 
transmit and receive SCPs could be placed at the ends of a unidirectional bus. 
To enhance the performance of these networks, the SCP CPUs could be programmed 
using dissimilar software. 

5.2.4.6.2 Triplication and Voting 

The previous section described how a dual redundant SCP was able to address the 
issue of fault correction in a digital system. It also mentioned that the CPUs 
in the SCP could be programmed with dissimilar software to enhance the operation 
of the SCP. In 1984, the Sperry Corporation developed a fault tolerant system 
which employed multiversion programming, voting, and monitoring for error 
detection and reconfiguration for error correction. 

This particular architecture uses three redundant CPUs in two identical FCCs. 
Two of the CPUs within each FCC share memory and are programmed with identical 
software, while the other CPU is programmed with dissimilar software and has 
its own memory. The output of the paired CPUs, as well as the single CPU, go 
to separate data buses. 

Each FCC uses one of the paired CPUs to perform both flight-critical and 
flight-essential functions, while the other two CPUs perform flight-critical 
functions only. The outputs of the paired and single CPUs are compared by two 
monitors. If a monitor detects a failure at any CPU's output, the system is 
gracefully reconfigured so that one FCC is always engaged. A diagram and 
discussion of how the system reconfigures itself in the event of an error is 
presented in Digital Avionics Systems (Spitzer 1987). 
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5.2.4.6.3 Fault Tolerant Multi-Processors 

In a fault tolerant environment, multiple CPUs are used to process similar data 
and monitor transactions taking place on the bus. These CPUs typically share 
a central memory and communicate over one or more redundant data buses. This 
configuration allows a back-up CPU to immediately take over the process of a 
failed CPU. One method of employing multiple CPUs in flight control applica
tions is called FTMP. 

The FTMP architecture uses both hardware and software to detect and correct 
errors in an avionic system. Hardware within an LRU is used to accomplish fault 
detection and error masking. Ten LRUs, each made up of CPUs, memory modules, 
and BIUs, are organized in triads to form three groups of three LRUs and a spare 
LRU. Any three CPUs, BIUs, or memory modules may be organized as a triad. 
Communication between LRUs is accomplished over four, triply redundant, 
bidirectional buses called the transmit, receive, polling, and clock buses. 
Each triply redundant bus is backed up by two spares, making the total number 
of bus connections 20. During a data transfer operation, the CPUs send data to 
the shared memory modules from which the BIUs can obtain the data and send it 
across the buses to other LRUs. 

When a fault is detected at an LRU, a System Configuration Controller (SCC) 
ensures that all CPUs are aware of the fault and have the same information about 
the fault. The sec is merely an algorithm run within an LRU triad that reads 
error information from all 10 LRUs. 

Some faults can be immediately isolated and detected by the SCC. For faults not 
so easily identified, the FTMP executes a reconfiguration routine to isolate 
the source of the fault. This routine swaps LRU triads (depending on the nature 
of the fault) between the redundant data buses until the fau,lty LRU is 
identified (Lala 1983). 

After a fault has been isolated, the FTMP implements techniques to recover from 
the condition. These technique~include using the spares of each unit. Recall 
that there are three triads and one spare of each CPU, memory module, and BIU. 
To reconfigure from a failure of a CPU, first the spare CPU would be brought 
online. If the spare CPU was already online and another fault occurred, the 
FTMP would remove the entire LRU triad, operate from the other triads, and use 
the remaining two CPUs in the failed triad as spares for the remaining LRUs. 
A similar recovery method is used for memory module or BIU failures. 

Even though the FTMP was designed for use with MIL-STD-1553 data buses, it is 
acceptable for commercial aircraft. FTMP is capable of masking single faults 
in a system by reconfiguring each faulty node with redundant spares. 

5.2.4.7 N-Version Programming and Recovery Blocks 

N-version programming and recovery blocks are software based methods usually 
employed in redundant systems containing three or more CPUs. These are valid 
means of dealing with certain hardware-software interaction problems, and are 
presented in chapter 9 (Hecht 1989) of the Digital Systems Validation Handbook, 
Volume II. 
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5.2.5 Summary 

All of the discussions in section 5.2 are meant to help the CE better understand 
the hardware-software interaction between a data bus and its avionic system. 
This interface is important because many situations 1:hat affect the integrity 
of a bus or an avionic system may arise at this point and can easily be 
overlooked during the certification process. 

Because new technology constantly changes the way avi~nic systems communicate, 
it is hard for aCE to evaluate hardware-software interaction during a system's 
certification process. To help the CE with this problem, appendix D provides 
a hardware and software analysis checklist for failures in bus related hardware 
and software. The checklist is not specific to any particular failure mode. 
It is a general approach to evaluating bus related hardware and software 
failures which could impact the operation of fli.ght-critical or flight
essential systems. 

5.3 Bus Protocol Specification and Verification Meth~ds 

Development work in the area of data buses is progressing rapidly due to the 
requirement for higher throughput and reliability. Along with this development 
comes the need for new comprehensive methods of evaluation and testing. New 
data buses must be analyzed to ensure that they will function properly under all 
foreseeable conditions. 

One area that requires careful attention from the designer is the communication 
protocol. In a system of distributed computers that are required to communicate 
with each other, rules must be developed and implemented to avoid chaos when 
messages are exchanged. The complete set of ruleB is referred to as the 
protocol. The protocol should ensure safe and timely delivery of data or 
control messages from one user of a data bus to another. The fact that the 
protocol may be implemented in a single high-density IC is all the more reason 
to subject the protocol to rigorous analysis. 

Specification techniques are used to model and define protocols while verifica
tion techniques demonstrate that the protocol satisfies the specification. 
Protocols having different characteristics require different specification and 
verification techniques. No single method is suited to every existing protocol 
(Merlin 1979). The following sections describe some cf the formal methods used 
to specify and verify communication protocols. Techniques such as state machine 
analysis and Petri nets are examined, along with examples and applications to 
current data buses. 

5.3.1 A Protocol Specification Guideline 

Recently, the ISO adopted ISO 7498 (1983), "Informa·:ion Processing Systems -
Open Systems Interconnection - Basic Reference Model." This standard was 
designed to facilitate the interconnection of systems from different network 
manufacturers. It is the IEEE standard model for the "Open Systems Interconnec
tion" (OSI) architecture. 
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Organizations responsible for developing protocol standards increasingly make 
use of the Basic Reference Model. The ARINC 429 DITS has been modified to make 
use of the model, and the ARINC 629 bus totally reflects its philosophy. The 
Basic Reference Model aids the designer in developing a protocol without 
imposing unnecessary constraints upon its design. When a protocol is function
ally layered, as the model requires, it is more easily understood by those who 
wish to study it. The use of the model also clarifies the purposes and 
capabilities of the protocol. 

In the ISO 7498 standard, a communications architecture is described as a 
hierarchy of protocol layers in which a given layer, n, communicates with layers 
n+l and n-1. Each layer provides a different service. A definition of the 
service provided by a given layer is referred to as a Service Specification. 
The Service Specification describes the input and output behavior of a layer 
based on a set of Service Primitives. For example, since it is the function of 
the Transport Layer to establish and terminate bus communication, the primi
tives, Connect and Disconnect, comprise the Layer's function. 

The service primitives must be executed in an orderly and logical manner in each 
layer. Before data can be sent from one module to another at the Transport 
Layer, a connection must be established, followed by the data transfer and a 
disconnection. This ordering can be described by "states" which undergo changes 
due to operations in the layer. The entire network, or smaller portions of it, 
may be analyzed by state analysis. 

In a layered architecture, the modules or processes, which implement a given 
layer, communicate with each other through the services of the next lower layer. 
The actual protocol may be defined as the interaction between two corresponding 
entities in response to an action initiated from an upper or lower layer, or 
from an internal timer. Protocols must be specified so that compatibility among 
all entities of a layer is assured (without dictating exactly how to do it). 
Implementations of modules or processes may vastly differ, but communication 
between them occurs due to strict adherence to the protocol specification. 

Before examining the protocol specification, it is helpful 
purpose of each layer of the OS! Basic Reference Model. 
defined by the OS! Basic Reference Model. Figure 5.3-1 
structure of this model. 

to understand the 
Seven layers are 

shows the defined 

The Physical Layer is the lowest layer in the hierarchy. This layer is 
responsible for the transmission of bits over the physical medium. It may 
operate in different modes, such as full duplex or half duplex. It must deliver 
bits to the receiver in the same order in which they came from the sender. 
There are four main areas which should be defined in the Physical Layer: 

Mechanical 

Electrical 

Functional 

Procedural 
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Mechanical specifications deal with plug and connector dimensions and types, pin 
allocation, etc. Electrical specifications give voltage or current require
ments. A functional specification is concerned with what a particular voltage 
or current means. A procedural specification defines the rules or sequences 
that may apply to the functions. 

The Data Link Layer provides a buffer, or shield, between the Physical Layer and 
the Network Layer. Although errors occur on the Physical Layer due to noise, 
collisions, and other phenomena, the Data Link Layer provides an error-free 
service to the higher layers. The Data Link Layer provides error detection and, 
possibly, error correction. 

On the transmission medium the data appear as one continuous bit stream. The 
start and end should be clearly defined. The Data Link Layer provides the 
creation and recognition of frame boundaries at the Physical Layer interface. 

Flow control is also handled at the Data Link Layer. If a transmitter is able 
to send data at a rate which is faster than the receiver can handle, then some 
mechanism is implemented in this layer to control the flow. 

The Data Link Layer also has the responsibility for delivering frames in their 
proper sequence, as is done in the HDLC protocol. Error recovery for the 
Network Layer is also handled in this layer. This involves handling duplicate 
frames, lost or damaged frames, and frame retransmission. 

The Network Layer works with a unit of data referred to as a packet. The 
Network Layer is responsible for acting as a buffer for the Transport Layer, 
which is generally the host-network interface, and for providing source-to-des
tination routing information for the packets. The host CPU does not care how 
the network is physically configured. It only cares that the data arrives 
safely at the destination. The Network Layer also controls congestion because 
it determines the particular path on which packets are to be routed. 

The Transport Layer handles the end-to-end quality of information by ensuring 
that the best possible use is made of underlying resources. If a particular 
network connection cannot maintain reliable and efficient data transfer, then 
the Transport Layer may disconnect from that network access point and establish 
a more reliable connection. Data are accepted from the Session Layer and 
assembled or disassembled. It is then sent over the network to the Session 
Layer of another network entity by the Transport Layer. 

One main function of the Session Layer is to allow a user of one machine to make 
use of another machine on the network. The interfacing of systems at the 
Session Layer is referred to as binding. During binding, the Session Layer 
establishes communication parameters. Also, the session-to-session connection 
is managed so that the actions of this layer are transparent to the Presentation 
Layer. 

A connection which is unreliable is managed at the Session Layer. If a critical 
transfer of data is taking place, the Session Layer will ensure that all data 
arrives safely at its destination before being transferred to the application. 
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This ensures that partial updates, such as to a database, do not occur and that 
complete data message delivery will occur. 

The function of the Presentation Layer is to make the data meaningful and 
presentable to the Application Layer. This may require converting code from 
one format to another. Any special, commonly-used functions may be implemented 
at this level to make the application task easier to perform. 

The Application Layer is the highest level defined in ':he Basic Reference Model. 
Various application protocols exist at this level based on the requirements of 
the system. Management functions as well as user applications reside in this 
level. It is the function of the lower layers to m!ike the network resources 
transparent to this layer (Meijer and Peeters 1982). 

5.3.2 Protocol Specification Content 

The use of formal techniques for specifying and validating protocols has 
increased due to the rise in protocol complexity and 1:he need for reliable data 
transmission in distributed systems. A list of ·general guidelines used in 
specifying protocols is given in table 5.3-1. 

TABLE 5.3-1. PROTOCOL SPECIFICATION GUIDELINES 
(Bachmann and Sunshine 1980) 

1. A general description of the purpose of the layer and the services 
that the layer provides. 

2. A precise specification of the service to be provided by the layer. 

3. A precise specification of the service provided by the layer below and 
required for the correct and efficient operation of the protocol. 

4. The internal structure of the layer in terms of entities and their 
corresponding relations. 

5. A description of the protocol(s) used between t:he entities, including: 

a. An informal description of the operation of the entities. 

b. A protocol specification which includes: 

(1) A list of the types and formats of meHsages exchanged between 
the entities. 

(2) A list of rules governing the reaction of each entity to user 
commands, messages from other entitieH, and internal events. 

c. Any additional details, not included above, such as considerations 
for improving the efficiency, suggestions ::or implementation 
choices, or a detailed description which may come close to an 
implementation. 
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Although item 1 in table 5.3-1 is important in understanding the protocol, it 
is not required. If any of the other elements of the specification are lacking, 
the specification is deemed incomplete. 

5.3.3 Protocol Specification Methods 

Protocol specifications must be both concise and easy to understand. In complex 
protocols these two goals are in conflict. A natural language description may 
appear to be easily understood, but leads to lengthy and informal specifications 
which often contain ambiguities and are difficult to check for completeness and 
correctness (Bochmann and Sunshine 1980). 

Formal techniques and their variations are used for protocol specification. The 
major methods are the use of Petri nets, state diagrams, high-level computer 
languages, and various grammars designed for this particular application. State 
diagrams, Petri nets, and grammars are used to model the responses to data 
transfers at a layer interface or an internal timer. This type of modeling is 
event or transition driven. A particular drawback of this method is that 
protocols using sequence numbers become quite cumbersome to model. If an eight
bit sequence field is used, then a separate state would exist for every possible 
combination of the eight bits. 

High-level programming languages are used to model protocols and have the 
advantage of being easily understood since they appear more like natural 
language. The problem of representing sequence numbers in the state diagram is 
easily handled by the use of a variable to represent all combinations of that 
number. This method differs little from an -':lctual implementation of the 
protocol. However, certain unique characteristics of the programming language 
which may be nonessential to the protocol model could hinder the implementation. 

5.3.3.1 The Finite State Machine 

The Finite State Machine (FSM) concept has been a key element in protocol 
specification. It can be used to model the global state of the protocol over 
an entire network, or one state machine may be used for each entity in a layer. 
At a given time, the state machine may be in only one of the defined states. 

For complex protocols it is tedious and time consuming to generate a state 
diagram of all the possible states. When this is the case, one approach to 
simplify the protocol representation is to group together a large number of 
states. Since some states consume a relatively small amount of time in relation 
to other states, these states may be regarded as transient and grouped together 
as one state for purposes of analysis. Since states are defined to be cases 
where the FSM is waiting for the next event to occur, the number of states may 
be represented by 2n, where n is the number of bits needed to represent the 
variables which cause the transitions. 

In a given state there are zero or more transitions to other states which happen 
when a designated event occurs. Typical events which cause transitions in the 
FSM are when an internal timer triggers, when a message is received, when a 
message is transmitted, or when an interrupt occurs. If the bus medium, or 
link, is modeled separately from the sending and receiving protocol, then the 
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transitions that may cause the link FSM to change states are a message entering 
the link, a message leaving the link, or loss of data in the link. 

In figure 5.3-2, a sender-receiver topology is modeled in a simple fashion with 
an FSM model. There are four distinct global ::;tates and four distinct 
transitions between the states given in this FSM. The action of an entity 
sending data forces a state transition to the "Wait for Data" state. Upon 
receiving new data the "Process Data" state is entered. When "Process Data" is 
finished, the "ACK" status is sent and the "Wait :for Acknowledge" state is 
entered. Finally, when the "ACK" is received the network returns to the "Idle" 
state, clearing the way for new data to be sent. The advantage of this model 
is that the global characteristics of the network can be directly checked. If 
the protocol is complex the FSM model will be ·~omplex and difficult to 
construct. 

Receive 
ACK 

Send 
ACK 

IDLE 

( 

Send 
Data 

Receive 
Data 

PROCESS 
DATA 

/ 

FIGURE 5.3-2. STATE MACHIN~ 
(Merlin 1979) 

Another method of representing a protocol is to use multiple FSMs. Figure 5.3-3 
represents a simple protocol modeled by multiple, coupled FSMs. The receiver 
moves from the "Receiver Ready" to the "Receiver Busy" state on the transition 
caused by data reception. It moves back to "Receiver Ready" after processing 
is completed and the "ACK" is returned. The Link FSM shows the delivery of data 
from the source to the destination. It models the data transfer and the 
acknowledgement of the data. If the delay in the link is not significant, then 
the Link FSM may not be necessary and the model can eliminate this FSM. Like 
the receiver, the sender moves between the "Sender Enabled" and "Sender 
Disabled" states based on data being sent and the corresponding acknowledgement 
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being received. This model has the advantage of allowing implementation of each 
entity without the problem of having to decompose a single FSM description into 
the different entities. A complex FSM can be implemented more easily when it 
is divided into concise functional elements and modeled so that all correspond
ing interactions are apparent. 

Transitions modeled by the FSM are considered to be instantaneous. The "Send 
ACK" event of the receiver occurs at the same moment as the "LINK RECEIVES ACK." 

Receive Send 
ACK Data 

SENDER 

Link 
Sends 
Data 

Link 
Receives 

Data 

Link 
Sends 
ACK 

LINK 

Link 
Receives 

ACK 

FIGURE 5.3-3. COUPLED STATE MACHINES 
(Merlin 1979) 

Send Receive 
ACK Data 

RECEIVER 

An example of a simple protocol implementation is given in figure 5.3-4. This 
protocol is written in Pascal and represents a positive acknowledgement/ 
retransmission protocol implementation for a single-sender and single-receiver 
topology at the Data Link Layer. This protocol introduces the concept of the 
sequence number in the header information of a transmitted frame. The 
assumption here is that the information being sent from the transmitter to the 
receiver is sometimes too large to be included in one frame. Therefore, the 
information must be separated into smaller packets at the sender and sent 
sequentially to the receiver. Also, if one of the frames does not arrive intact 
at the receiver, some method of distinguishing between a new frame and a 
retransmitted frame is required. A sequence number included in the header of 
each frame gives the receiver the ability to distinguish this. 

In the protocol shown in figure 5.3-4, a one-bit sequence number is used to 
distinguish between frame n-1 and frame nor between frame n+l and frame n. At 
any given time the receiver expects a particular sequence number. An arriving 
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type Evtype- (FrameArrival, CksumErr, TimeOut); 

procedure sender 
var NextFrameToSend: SequenceNr; 

s:frame; 
buffer:message 
event: EvType; 

begin 
NextFrameToSend:-0; 
FromHost(buffer); 
repeat 
s.info:=buffer; 
s.seq:=NextFrameToSend; 
sendf(s); 
StartTimer(s.seq); 
wait(event); 
if event - FrameArrival then 
begin 

FromHost(buffer); 
inc(NextFrameToSend); 

end 
until doomsday 

end; {sender) 

procedure receiver; 
var FrameExpected:SequenceNr; 
r,s:frame; 
event: EvType; 

begin 
FrameExpected:=O; 
repeat 
wait(event); 
if event = FrameArrival then 
begin 
getf(r); 
if r.seq = FrameExpected then 
begin 
ToHost(r. info); 
inc(FrameExpected) 

end; 
sendf(s) 

end 
until doomsday 

end; {receiver) 

{sequence number of next outgoing frame) 
{scratch variable) 
{buffer for outbound message) 

{initialize outbound sequence numbers) 
(fetch first mes:;age) 

{construct frame for transmission) 
{insert sequence number in frame) 
{send it on its 1.:ray) 
{if answer takes too long, time out) 
{possible: FrameA.rrival ,CksumErr ,TimeOut) 

(an acknowledgem·~nt has arrived intact) 
(fetch the next 4)ne to send) 
{invert NextFram.::!ToSend) 

{FrameExpected = 0 or 1) 
{scratch variabl·~s) 

(possible: FrameA.rrival, CksumErr) 

{a valid frame h:~.s arrived) 
{accept inbound frame) 

{this is what we have been waiting for) 
{pass the data tJ the host) 
(next time expect other sequence nr) 

{none of the fields are used!) 

FIGURE 5.3-4. POSITIVE ACKNOWLEDGEMENT/RETRI~SMISSION PROTOCOL 
(Tanenbaum 1981) 
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frame with a sequence number out of sequence is rejected as invalid. An in
sequence frame is accepted, acknowledged, and passed to the host CPU. The 
sequence number is then incremented modulo 2 to anticipate the next sequence 
number that will be received. 

This protocol transmits data in only one direction. It handles lost or 
corrupted frames by an internal timeout in the sender. If the timeout is set 
at too low a value the sender will transmit a duplicate frame to the receiver 
before the previous acknowledgement arrives. When this occurs the sender will 
assume that this acknowledgement was for the message just sent. If a new frame 
is sent and it becomes lost, but the pending acknowledgement is then received 
by the sender, this lost frame will not be retransmitted and the protocol fails. 

Both the sender and receiver update variables for maintaining the proper message 
sequence. These are "NextFrameToSend" for the sender and "FrameExpected" for 
the receiver. Before the main loop of the protocol is entered, these variables 
are initialized to a common predefined state. Upon reception of an acknowledge
ment or message, these variables are incremented. Thus, these variables are set 
to the sequence number expected with the next acknowledgement or message. 

Furthermore, when a new frame is transmitted by the sender an internal timer is 
started. The timer interval is set to take into account propagation time to 
and from the receiver and worst case handling time by the receiver. 

In response to a transmitted frame there are three possible results: a valid 
acknowledgement is received, an invalid or damaged acknowledgement is received, 
or the timer expires. In the latter two cases, the response of the sender is 
the same; simply send the buffer contents again without changing the sequence 
number. For the former case, the sequence number is modified and the buffer is 
written with new contents from the host computer. If this timer expires before 
an acknowledgement is received for it, the message is presumed lost and is 
transmitted again. When a valid frame arrives at the receiver, the sequence 
number is checked against the expected value and, if correct, the message is 
passed to the host CPU. If the arriving frame number or sequence number is 
incorrect the message is discarded and no acknowledgement is generated. This 
protocol is modeled as an FSM in figure 5.3-5. 

Both the high-level language protocol implementation and the FSM are global in 
nature and, in this respect, model the sender and receiver as well as the 
physical channel. The channel can have four states: empty, sending a zero
sequence number frame, sending a one-sequence number frame, and returning the 
acknowledgement. The receiver and sender can each have two states, sending or 
receiving frame zero and sending or receiving frame one. In order to completely 
model this protocol it would be necessary to show all 16 possible states. In 
the figure, only 10 states are shown for simplicity since these are the normally 
anticipated states. 

One important consideration for any protocol is the initial state. All members 
connected to the channel should be initialized in an orderly manner to a known 
and predetermined state to ensure the protocol starts correctly. From this 
state all other defined states should be reachable based on the occurrence of 
a certain event or combination of events in a specific sequence. 
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RETRANSMISSION PROTOCOL (Tanenbawn 1981) 
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The initial state for the FSM of figure 5.3-5 is given as (XYZ) = (000). X is 
1 or 0 corresponding to the sender transmitting a one or zero frame; Y is 1 or 
0 corresponding to the receiver accepting a one or zero frame; and Z, the state 
of the channel, is 1, 0, A, or empty (-) corresponding to a one frame, a zero 
frame, an acknowledge frame, or an empty channel. 

From the initial state the normal sequence of transitions is 1, 2, 3, and 4, as 
long as the protocol experiences no errors. Errors identified in the transition 
table are "frame lost" and "timeout." When the sender transmits a frame and it 
is lost in the channel, the recovery process is simply to send the lost frame 
again in response to the timeout condition. This involves two states since only 
the sender is aware of this condition. However, if the acknowledgement from the 
receiver is lost in the channel, the protocol is more complex. Both the 
receiver and transmitter are now involved in the recovery process. The sender 
will time out, as before, but the receiver has already accepted the message and 
passed it on to the CPU. Hence from state (O,l,A) the transitions 0, 7, and 5 
are necessary to recover from this type of error. Note that the difference 
between transitions 5 and 1 is that in 5 there is no message passed to the host 
CPU since it has already occurred in transition 1 (Tanenbaum 1981). 

State transitions may also be represented by decision tables. The Positive 
Acknowledgement/Retransmission Protocol of figure 5. 3-4 is represented by a 
decision table in table 5.3-2 based on the state machine representation of 
figure 5.3-5. The present states are given in the left column, the transition 
conditions are given across the top, and the next state and output are given in 
the corresponding table position. This table depicts a fairly simple protocol 
which is modeled globally with some simplifications made to the table for 
reducing the total number of states represented. Not all of the 40 states shown 
are reachable. For instance, if the FSM is in state J the action of a "0" frame 
being accepted does not occur under normal circumstances. It is not a specified 
action and its occurrence would be an error condition. 

Table 5.3-2 shows that it is possible to start at any state, such as state A, 
and move through the table to any other state, given the proper input condition. 
For complex protocols with a correspondingly high number of states, representa
tion using decision tables becomes quite cumbersome. 
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TABLE 5.3-2. DECISION TABLE FOR THE POSITIVE ACKNOWLEDGEMENT/ 
RESPONSE PROTOCOL 

Transition Condition:; 

Present "ACK" "0" "1" 
State Frame Lost Frame Accepted Frame Aceepted Frame Accepted 

Next Output Next Output Next Output Next Output 
State Action State Action State Action State Action 

A B - A - c (R)A A -

B A (S)O B - B - B -

c D - F (S)l c - c -

D E (S)O D - D - D -

E D - E - c (R)A E -

F G - F - F - H (R)A 

G F (S)l G - G - G -

H I - A (S)O H - H -

I J (S)l I - I - I -

J I - J - J - H (R)A 

(S) = Sender Runs (R) - Receiver Runs - = No Action 

5.3.3.2 Petri Nets 

Petri nets use four basic elements to represent a protocol: places, transition 
bars, arcs, and tokens. Places represent states in which the protocol may exist 
at any given moment. Directed arcs connect transitions to the places and the 
places to the transitions. The transition bars are t:ransitions which may have 
zero or more input and output arcs. Input places of a transition are those 
which originate at a place and arrive at the transition. Output places of a 
transition are those which originate at a transition and arrive at the place. 
A token is indicated by a dot inside a place. (This token is not to be confused 
with the token in a token passing network architecture.) The following rules 
are given by Danthine (1977) for the operation of a transition: 

• A transition is said to be enabled or fireable if each of its input places 
contains at least one token. 
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The firing of an enabled transition consists of removing one token from 
each of its input places and adding one token to each of its output places. 

• The firing of an enabled transition may not occur instantaneously. Firing 
may be considered as depending on an outside authority. 

Representation of the Petri net is often done in an algebraic form resembling 
a grammar. Each transition contributes a rule to the grammar (Tanenbaum 1981). 
If a defined state of a Petri net consists of places A, C, and G, which contain 
tokens while the other places are empty, this state is represented as ACG. If 
a transition causes the tokens to move to new places such as A, D, and F,· then 
CG ~ DF represents this action and is a rule for this Petri net. Since the 
place A is common to both states, it is eliminated from both sides of the rule. 

A simple Petri net is shown in figure 5.3-6, with four places, four transitions, 
one token, and directed arcs between the places and transition bars. The token 
that initially resides at place A causes transition 1 to fire. When this 
happens the token is removed from A and put at B. This sequence continues 
through B, C, D, and finally back to A again. There is no starting point or 
terminating point in this model; it simply continues forever in a loop. 

A B 
1 

... 

.... 

3 
D C 

FIGURE 5.3-6. PETRI NET WITH FOUR STATES AND FOUR TRANSITION BARS 

An example of a transition with more than one input place and more than one 
output place is given in figure 5.3-7. 
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... c 
A I 

D 

B 

E 
Input Places 

Output Places 

BEFORE FIRING 

A I c 

D 

B 

E 
Input Places 

AFTER FIRING Output Places 

FIGURE 5.3-7. PETRI NET FIRING PRINCIPLE 
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Note that there may be multiple tokens in one place. When the transition fires, 
one token is removed from each input arc and one token is placed in each output 
arc. Notice that in place A there is a token left over since only one is 
removed when transition bar 1 fires. 

Petri nets may be used to model protocols in the same way that state machines 
are used. However, Petri nets have broader application in some cases. Certain 
resources, such as a receiver with multiple buffers, are better represented by 
Petri nets than state machines. Each buffer allocation can be handled by a 
separate set of tokens being added to the net. Events which occur in an 
arbitrary order are also easily represented by the Petri net. The Petri net 
represented in figure 5.3-8 is an example of a net that would be difficult to 
represent by a state machine since any transition may fire at any time. This 
Petri net, which contains 16 labeled places, actually represents 256 individual 
states. 

4 x 4 x 4 x 4 = 256 states 

in 4 x 4 Matrix 

FIGURE 5.3-8. A PETRI NET DIFFICULT TO REPRESENT BY A STATE MACHINE 

An example of a Petri net model of a protocol will now be examined. The state 
machine for the Positive Acknowledgement/Retransmission Protocol of figure 5.3-4 
was given in figure 5.3-5. Figure 5.3-9 models this protocol as a Petri net. 
These state machine and Petri net figures model the global state, which consists 
of the actions of the sender, receiver, and channel. These actions are modeled 
separately in the Petri net, as opposed to the composite states of the FSM. 
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EmitO 

Wait 
for 
AckO 

Emit 1 

Wait 
for 
Ack 1 

C: Seq 0 on the line 

D: Ack on the line 

E: Seq 1 on the line 

Expect 1 

Process 1 

ExpectO 

Sender's state Channel Receiver's state 

FIGURE 5.3-9. PETRI NET FOR THE POSITIVE ACKNOWLEDGEMENT/ 
RETRANSMISSION PROTOCOL (Tanenbawn 1981) 
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The normal states of the receiver are "Expect a Zero Frame" and "Expect a One 
Frame." Correspondingly, the states of the sender are "Wait for ACK 0" and 
"Wait for ACK 1." Actions of the sender are in the transitions "Emit 0" and 
"Emit 1." Note that for this Petri net to function properly the tokens must be 
conserved. Sender timeouts and receiver rejections must replace the token from 
the place it was lost to conserve the present state. 

If the initial state of the protocol is ACG, then the normal sequence is as 
shown in table 5.3-3. 

State 

ACG 
ADF 
BEF 
BDG 
ACG 

TABLE 5.3-3. NORMAL PROTOCOL STATES FOR THE POSITIVE 
ACKNOWLEDGEMENT/RETRANSMISSION PROTOCOL 

Sender Channel Receiver Next Transition 

Wait for Ack 0 0 in Channel Expect 0 10 
Wait for Ack 0 Ack in Channel Expect 1 3 
Wait for Ack 1 1 in Channel Expect 1 11 
Wait for Ack 1 Ack in Channel Expect 0 1 
Wait for Ack 0 0 in Channel Expect 0 10 

If the initial state of the protocol is ACG and the sequence-zero message in the 
channel is lost, then the sequence is as shown in table 5.3-4. 

TABLE 5.3-4. PROTOCOL STATES WITH A LOST SEQUENCE-ZERO MESSAGE 

State Sender Channel Receiver Next Transition 

ACG Wait for Ack 0 0 in Channel Expect 0 5 
AG Wait for Ack 0 Channel empty Expect 0 2 
ACG Wait for Ack 0 0 in Channel Expect 0 10 

Only one state is necessary for recovery since the receiver did not receive and 
process the message which was lost in the channel. For the case of the 
acknowledgement being lost in the channel, the recovery takes two states since 
the sender does not know that the receiver has already processed the message it 
must send again. Also, the receiver must know that this particular message has 
been passed to the host processor and to discard it. This sequence is as shown 
in table 5.3-5. 
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TABLE 5.3-5. PROTOCOL STATES WITH A LOST ,\CKNOWLEDGEMENT 

State Sender Channel Receiver Next Transition 

ADF Wait for Ack 0 Ack in Channel Expect. 1 6 
AF Wait for Ack 0 Channel empty Expect. 1 2 
ACF Wait for Ack 0 0 in Channel Expect 1 8 
ADF Wait for Ack 0 Ack in Channel Expect 1 3 

If all possible states of the Petri net and their associated transitions were 
drawn as a single graph, the resulting graph for 1:he Positive Acknowledge
ment/Retransmission Protocol would be similar to figure 5. 3-10. This particular 
representation of the Petri net is referred to as a t:oken machine. 

5.3.3.3 Other Methods of Protocol Representation 

FSMs and Petri nets are common methods for protocol n~presentation, but not the 
only ones. High-level programming languages and grammars are used to model 
protocols and have the advantage of being easily understood since they appear 
more like natural language. Advantages of using a high-level language include 
ease of representing counters, data, and variables. Complex control structures, 
on the other hand, are difficult to represent and ur.derstand when represented 
by a high-level language. 

The use of a high-level programming language to model a protocol by its very 
nature comes close to an actual implementation of the protocol. Also, the 
unique characteristics of the programming language, which may be nonessential 
to the protocol model, will be obvious in the implementation. 

5.3.4 Protocol Verification Methods 

With a shift from unidirectional to bidirectional data buses, the access 
protocol assumes an added degree of complexity. As complexity increases, so 
should the concerns that relate to protocol verification. Verification involves 
demonstrating that the interactions of distributed protocol modules satisfy the 
service specification of the protocol (Sunshine 1979). A protocol may logically 
meet all the requirements of the specification, but this does not guarantee that 
a particular implementation is correct. 

Also a particular protocol of layer, n, may meet the requirements but its 
correct operation is based on the service provided to it by the n-1 layer. For 
example, if the Network Layer is not operating correctly, the cause may be in 
the physical or Data Link Layer which the Network Layer relies on. 
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FIGURE 5.3-10. TOKEN MACHINE FOR THE POSITIVE ACKNOWLEDGEMENT/ 
RETRANSMISSION PROTOCOL 
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Certain general properties of any protocol may be checked. Areas which should 
be checked are as follows (Merlin 1979): 

• Deadlock Freeness 

Liveness 

• Tempo-Blocking Freeness 

• Starvation Freeness 

Recovery from Failures 

• Self Synchronization 

Correct Execution of the Purpose of the Protocol 

Deadlock Freeness means that the protocol will not terminate. There should 
exist no states in the protocol design or implementation which are terminal. 
Liveness shows that from a given reachable state, any other state can be 
reached. Tempo-Blocking Freeness simply checks that there is no infinite 
looping. Starvation Freeness means that no process will forever be prevented 
from acquiring an available resource. Recovery from Failures states that when 
a failure occurs, the protocol operation will return to the normal execution 
within a finite number of states. Self Synchroniz3.tion means that from any 
abnormal state the protocol will recover within a finite number of states. 
Correct Execution of the Purpose of the Protocol mear.s that a protocol is doing 
what it was designed to do. 

5.3.4.1 Global State Generation 

These are the particular properties that are checked for a protocol, but the 
method used to apply these checks varies. In a pro1:ocol modeled by an FSM or 
a Petri net, one of the more common methods of verification is called global 
state generation. This method is often implementE!d using a token machine. 
Figure 5.3-10 is an example of global state generat:~on using a token machine. 
Global state generation is implemented by starting uith a given initial state 
and identifying all possible transitions from that state to another state. Each 
of the new states is examined until no new transitions are identified. Some 
transitions may lead back to a state already eneountered. When this is 
complete, all possible outcomes of the protocol are known and observations may 
be made concerning the properties listed above. 

There are only four normal states for this protocol ACG, ADF, BEF, and BDG. 
States used for error recovery in the case of a loHt acknowledgement or data 
frame are AG, AF, ACF, BF, BG, and BEG. From figure 5.1-9 it can be seen that 
the protocol will not terminate in any state and, therefore, exhibits the 
Deadlock Freeness quality. It is also easily seen that from a given reachable 
state, any other state can be reached, verifying the Liveness property. The 
Tempo-Blocking Freeness property is evident since all looping involves proper 
execution of the protocol or error recovery. It can be verified by inspection 
that Recovery from Failures occurs after executing a maximum of two states. If 
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the receiver is viewed as a resource from the view point of the sender then the 
property of Starvation Freeness is readily apparent. 

Only transient errors will temporarily impede the progress of the protocol. Due 
to the simplicity of the protocol, it is also easy to see that it satisfies the 
property of Correct Execution of the Purpose of the Protocol. As protocols 
increase in complexity it becomes more difficult to prove that they are doing 
what they were designed to do. The property of Self Synchronization cannot be 
shown by this simple model. 

The Petri net of figure 5.3-9 can be represented in algebraic form. Table 5.3-6 
contains the complete set of rules which can be deduced from the figure. Note 
that when algebraic rules are applied, the common factors are eliminated. A 
transition from state ACG to ADG is not represented as ACG ~ ADF, but as CG ~ 
DF since place A is common. In addition, the loss of a token, as in transition 
5 from state ACG to AG, is shown as C ~ 1 and its corresponding introduction in 
transition 2 is given as 1 ~ C. 

TABLE 5.3-6. ALGEBRAIC REPRESENTATION OF A PETRI NET 

Normal Operational Rules 

Action Rule Number Description 

CG ~ DF 10 Process Sequence 0 message 
AD ~ BE 3 Emit Sequence 1 message 
EF ~ DG 11 Process Sequence 1 message 
BD ~ AC 1 Emit Sequence 0 message 

Error Recovery Rules 

Action Rule Number Description 

c ~ 1 5 Token lost at C 
1 ~ c 2 Token replaced at c 
D ~ 1 6 Loss of Ack 
c ~ D 8 Rejection of duplicate Sequence 0 
E ~ 1 7 Token lost at E 
1 ~ E 4 Token replaced at E 
E ~ D 9 Rejection of duplicate Sequence 1 

These rules are the direct consequence of the state transitions of the complete 
token machine. Other rules may be deduced from the sequence of state transi
tions. For example, if transition bar 6 fires, there are only two allowable 
sequences for correct operation. These are 6, 2, 8 or 6, 4, 9. Also, 
transition bar 2 may fire only after transition bar 5 or 6. Any other sequence 
would indicate an error condition and failure of the protocol. 
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Time constraints may also be placed upon the protoco:. and modeled by the Petri 
net with some variations. Notice what happens if 1:he sender timeout is too 
short, causing transition bar 2 to fire prematurely. Figure 5.3-11 shows the 
new undefined states that result due to this problem. 

FIGURE 5.3-11. PROTOCOL FAILURE DUE TO PREMATURE SENDER TIMEOUT 

A faulty implementation of a protocol, such as too short a value for the sender 
timeout, leads to undefined states, violation of the protocol rules, and 
eventual failure of the protocol. 

This method of global state generation has a limitation. It may only be used 
on protocols that can be represented with a finiee number of states. An 
advantage of this technique is that it may be easil:r mechanized for automatic 
testing of certain properties. 

5.3.4.2 Assertion Provin& 

Assertion proving is another technique for verification. This is applied to the 
protocol and its description as though they were para.llel programs. Assertions 
are made about certain variables based on the description. If the protocol and 
description compare at predetermined points, then the proof holds. The 
assertion proving method is commonly used with protocols that have many states. 
Assertion proving requires special considerations for implementation. 
Therefore, it does not lend itself to automation as the method of global state 
generation does. 
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5.3.4.3 Other Verification Methods 

Two other methods in use are "induction over the topology" and "adherence to 
sufficient conditions." In the first method, the holding of a property or 
occurrence of an event is proven by showing that certain conditions will 
propagate throughout the topology (Merlin 1979). If a certain property holds 
for a system with x entities, then it will also hold for a system of x+l 
entities. The latter method uses constructive design rules that automatically 
result in correct protocols. For instance, for every send transition imple
mented by the designer, the design rules specify the corresponding receive 
transition of the peer entity (Bochmann and Sunshine 1980). At each step in the 
design, the protocol is checked to ensure that it satisfies the properties it 
specifies. 

There is no one method that can be applied easily to all protocols. Depending 
on the complexity and the topology, one method may be preferred over another. 
In cases where the state explosion becomes a problem, such as for complex 
protocols, it is sometimes necessary to make simplifications of the model for 
the purpose of verification. 

5.3.5 Application To Avionic Data Buses 

Protocols may be implemented in hardware as well as in software. Most of the 
hardware used in avionic data buses, such as the ARINC 629 bus, ASCB, and MIL
STD-1553 bus, has been implemented in a single high-density IC or a combination 
of several high-density !Cs. When this is done, the protocol is not accessible 
to examination and scrutiny as is a software-implemented protocol. As avionic 
systems using data buses increase in complexity, so do the protocols and the bus 
hardware used to implement the protocol. 

A protocol may be implemented in any of the seven layers of the OS! Basic 
Reference Model, from the Physical Layer to the Application Layer. The 
complexity of a protocol is not the same from one level to the next. At the 
Data Link Layer a protocol may be straightforward, but at the Network Layer 
become highly complex and, therefore, difficult to model. 

As seen in the ARINC 429 bus standard, a more complex bit-oriented protocol is 
added on top of the previously defined physical and Data Link Layers. This can 
be done with any data bus, whether it is unidirectional or bidirectional. Since 
protocols may be layered in this manner, some data bus standards, such as ARINC 
Specifications 429-12 and 629, have defined protocol transactions which can be 
used at the higher layers. 

Although a data bus may be implemented strictly in hardware, it should not be 
treated any differently in the areas of specification and analysis than a 
software-implemented protocol. Hardware-implemented protocols should be 
subjected to rigorous analysis, like that specified in RTCA/D0-178 for avionic 
software. 
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5.3.5.1 ARINC 429 Bus 

The ARINC 429 DITS is a unidirectional broadcast type bus with only one 
transmitter. Access to the bus by the transmitter is not a matter of conten
tion. Another factor contributing to the simplicity of this protocol is that 
it was originally designed to handle "open loop" data transmission. In this 
mode there is no required response from the receiver when it accepts a 
transmission from the sender. The system simply depends on the integrity of the 
shielded twisted pair of transmission lines, a data ir.tegrity test using parity, 
and data reasonableness checks by the host processor. 

With an increasing need for more functions to be handled by the data bus, a new 
protocol was developed and has been incorporated into the standard. This 
protocol is bit-oriented, as described in section 2.5 of ARINC Specification 
429-12, and is used along with the previously defined character-oriented 
protocol. It is intended to be used for the transfer of data files from one bus 
member to another using techniques that are commor. to computer networks to 
ensure safe and orderly delivery of data files. Four layers of the OSI Basic 
Reference Model are described for use with the bit-oriented protocol: 
Physical, Data Link, Network, and Transport Layer·s. Labels, timing, and 
protocol transactions are described as well. The protocol transactions specify 
an orderly and controlled transfer making use of closed-loop control. Commands 
such as RTS and CTS are used along with timeouts, ·;.rhich are required on all 
transactions. 

The use of a data bus in this manner can be modeled with a Petri net and tested 
for all the properties a protocol should have, such as Deadlock Freeness, 
Liveness, Recovery From Failures, etc. It is beyond the scope of this report 
to attempt to model this protocol, but such analysis should be done by a 
developer for verification purposes. 

5.3.5.2 ARINC 629 Bus 

The ARINC 629 bus is a bidirectional bus with multiple transmitters and 
receivers. Access to the bus by all transmitters mu.3t conform to a thoroughly 
tested integration standard. 

At the lower levels, the access protocol is implemented in hardware. The 
protocol at this level may be analyzed by an FSl< or a Petri net method. 
Included in Attachment 7 of the ARINC 629 bus specification is a state diagram 
of the overall access protocol. The purpose is to give an overview of how a 
terminal accesses the bus for a particular operation8l mode. Some of the other 
functions of the hardware that could be modeled for verification are self 
monitoring, interaction with the host CPU, the data bus, various timers, and 
error checking and handling. If the complete acti.ons of the hardware were 
modeled, the state diagram would be quite complex. 

The state diagram of the CP is included for reference in figure 5.3-12. The 
diagram shows the general actions of the access pr·:>tocol based on the three 
defined levels of access: Ll, L2, and L3. The conditions for transition to the 
next state are also shown. In the ARINC 629 bus specification, each of the 
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three levels of access are expanded to one complete page in Attachments 7c, 7d, 
and 7e, respectively. 

Figure 5.3-12 shows, in a general manner, how a terminal acquires the bus for 
a transmission when using the CP. The three levels of access and the various 
timers are explained in section 5.1 of this report. 

As with the ARINC 429 DITS, this standard also 
the layers of the OSI Basic Reference Model. 
as a broadcast bus, but it is also intended to 
as stated in ARINC Specification 629, Part 1, 

defines the data bus in terms of 
Not only is it designed for use 
be used as a closed-loop system, 
section 6.3.1 (1990): 

"Directed messages may or may not be used to direct information 
between two systems so that handshaking protocols may be established 
for message checking capability." 

In this closed-loop mode it is necessary to define a complete protocol which 
utilizes the services provided by the lower protocol layers (the ARINC 629 data 
bus). This protocol should define parameters that may be used for directed data 
transfer such as an acknowledgement response, some form of flow control, the 
data transfer and data structures, and timeout conditions. When all of the 
necessary parameters are specified, along with the rules governing their 
interactions, it is possible to subject the protocol to analysis as previously 
defined in section 5.3. 

5.3.5.3 ASCB and MIL-STD-1553 Bus 

A data bus that uses a form of central control can be examined using the 
analysis techniques presented in this section. When a command is issued on the 
bus, a response is anticipated from the addressed terminal. Whether the 
response occurs or not, the timeout conditions, the number of retries, and the 
error handling can all be modeled for the interaction with the terminal. A 
global network model can be created and checked against the specification for 
correct operation. When redundant central controllers are used, there needs to 
be a clear definition of the interaction between them for detecting and handling 
controller error conditions. Modeling can provide this clarity. 

The ASCB is implemented as an open-ended protocol where the response from the 
terminals is not checked by the BC. Therefore, no end-to-end interaction may 
be modeled for the ASCB specification. 

The MIL-STD-1553 is a candidate for analysis by use of formal techniques. The 
interactions can be formally examined for any problems using the guidelines 
previously set forth in section 5.3. 
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FIGURE 5.3-12. ACCESS PROTOCOL OVERVIEW FOR ARINC 629 BUS 
(ARINC Specification 629, Part 1, Attachment 7b, 1990) 
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------- ____________ " _______________ _ 

5.3.6 Summary 

A data bus specification should address integration problems by defining the 
hardware as completely as possible. A data bus specification addressing a 
software protocol should also be complete to avoid future integration problems. 
Questions need to be asked concerning these protocol specifications and 
implementations, such as the following: 

Is the protocol implementation correct according to the specification? 

Is the protocol specification complete? 

Do all systems have the same timeout values for every timeout condition? 

• Do all systems have the same retry value? 

How can the protocol parameters be tested under every possible condition? 

Have all the properties of the protocol been checked? 

The fundamental question that needs to be addressed on this topic is "Has the 
protocol been completely specified and verified by the use of formal methods?" 
When formal methods are used, the implementor may have more confidence in the 
protocol. 

5.4 Bus Integration Standards. Guidelines, and Techniques 

A typical avionics system consists of several subsystem boxes that are connected 
in a unique arrangement to input sensors, output devices, and each other to 
produce the functionality required for a particular aircraft. The intercom
munication is provided by one or more digital data buses, as well as some analog 
data buses and point-to-point wiring. 

Each subsystem is typically designed independently of the others. They may even 
come from different manufacturers. This section describes the standards, 
guidelines, and techniques used to ensure that data buses reliably integrate 
the subsystems that they interconnect. This section also addresses how these 
integration aids relate to the certification of aircraft. For additional 
information, integration aids for buses that are used primarily in military 
applications are included. A list of some of these documents is given in table 
5.4-1. For more detail, refer to the bibliography. 
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TABLE 5.4-1. INTEGRATION STANDARDS AND GUIDELINES, BY BUS 
(PART 1 OF 2) 

Document Name 

ARINC 429 Bus 
ARINC Specification 429-12 
ARINC 429 Supplement 
ARINC 429 Receiver/Transmitter 
ARINC 429 Bus Interface Circuit 
ARINC 429 Bus Interface Line Driver Circuit 
Application Note No. 400 

ARINC 629 Bus 
ARINC 629 Part 1, Technical Description 
ARINC 629 Part 1, Supplement 1 
ARINC 629 Part 1, Supplement 2 
ARINC 629 Part 2, Applications Guide 
ARINC 629 Part 3, Data Standards 
ARINC 629 Part 4, Test Plan 
ARINC 629 User's Manual 
ARINC 629 Terminal Device 
ARINC 629 Communication IC 
ARINC 629 Serial Interface Module 
ARINC 629 Current Mode Coupler 
ARINC 629 Serial Interface Module 
ARINC 629 Current Mode Coupler 

GAMA CSDB 
GAMA CSDB 
EIA RS-422-A 

GAMA ASCB 
GAMA ASCB 
EIA RS-422-A 
WD193X Synchronous Data Link Controller 
ASCB Data Link Coupler 

MIL-STD-1553 Bus 
MIL-STD-1553-B Standard 
MIL-HDBK-1553-A Handbook 
SAE AE-12 Systems Integration Handbook 
SAE AS4112 RT Production Test Plan 
SAE AS4113 BC Validation Test Plan 
SAE AS4114 BC Production Test Plan 
SAE AS4115 System Test Plan 
Multiplex Applications Handbook 
Multiplex Applications Handbook Addendum 
MIL-STD-1553 Designer's Guide 
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ARINC 
GAMA 

Publisher 

W·~stern Digital 
Harris Semiconductor 
Harris Semiconductor 
Harris Semiconductor 

AUNC 
AUNC Draft 
AUNC Draft 
AUNC Draft 
AUNC Draft 
AUNC Draft 
B:;AC 
LSI Logic 
National Semiconductor 
s:;I Technology 
~:;I Technology 
A~P/Dallas Semiconductor 
A~P/Dallas Semiconductor 

G!\MA 
EIA 

G!\MA 
EIA 
Western Digital 
SCI Technology 

Military Standard 
Military Standard 
SA.E 
SA.E 
SA.E 
SA.E 
SA.E 
AFSC 
AFSC 
Data Devices Corporation 



TABLE 5.4-1. INTEGRATION STANDARDS AND GUIDELINES, BY BUS 
(PART 2 OF 2) 

Document Name Publisher 

SAE LTPB 
AS4074.1 Standard SAE 
AIR 4288 Handbook SAE Draft 
AS4290 Test and Validation Plan SAE Draft 

SAE HSRB 
AS4074.2 Standard SAE 
AIR 4289 Handbook SAE Draft 
AIR 4291 Test and Validation Plan SAE Draft 

5.4.1 Levels of Inte~ration 

There are several levels at which reliable integration of subsystems must be 
ensured. The lowest level is the physical integration of the hardware. 
Physical integration includes mechanical and electrical aspects. For the 
subsystem hardware to be properly integrated, the pieces must be mechanically 
compatible and the bus interface of each subsystem must obey the bus standards 
for voltage levels, signal encoding, signal timing, and other electrical 
characteristics. These specifications must not be exceeded for any configura
tion that the system might take on, and for any environment in which the system 
might be placed. Integration at this level is essential for bus messages to be 
generated and received. 

The logical integration of the hardware is the next level of integration. The 
hardware protocol defines the sequence of bits that constitutes the smallest 
unit of data that can be transferred on the bus as a legal message. Bus 
messages form the building blocks for all higher level transfers of information. 
The subsystems must obey the bus standard for the timing, sequence, and polarity 
of each bit in a bus message. This ensures that all messages are encoded and 
decoded into the proper sequence of synchronization bits, start-of-message bits, 
control bits, address bits, data bits, status bits, error detection bits, error 
correction bits, and/or end-of-message bits. The patterns of many of these 
groups of bits must obey certain rules. If there are exceptions, the hardware 
produces a bus message error signal. Integration at this level also is 
essential for bus messages to be generated and received. 

The logical integration of the software is the next level of integration. 
Although the hardware protocol usually permits all possible permutations of 
control, address, data, and status bits, a particular system usually supports 
only a few of the possibilities. The software protocol determines the legal 
field formats and message sequences. The subsystems must obey the software 
protocol standards to be integrated into a reliable system. Otherwise, legal 
bus messages might not reach their proper destination or might not be properly 
interpreted. 
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The final level of integration occurs at the functional level. The function 
that each subsystem is to perform in response to a received message must be 
consistent with the intent of the subsystem geneJ:ating the message. The 
application programs must all use the same data definitions. At this level, the 
content of the messages becomes important. The subsystems must obey the system 
standard for legal communications at this level to be integrated into a reliable 
system. 

The first three levels of integration are clearly bus-dependent integrations. 
It would appear that functional integration is not a bus integration issue. It 
is primarily the concern of the system specification, rather than a bus 
standard. However, since every LRU which communicates on a bus must use the 
same data definitions, the job of standardizing the definitions has been 
relegated, in many cases, to the bus standard. In fact, not only do the bus 
standards define the acceptable data words, but many of the protocols accept no 
other data types. Many of the buses do not transparer,tly transfer whatever data 
the LRUs wish to transmit. 

5.4.2 The Ideal Bus Integration Standard 

Certainly a bus integration standard requires that, a1: a minimum, the bus medium 
and the LRUs satisfy a bus standard which specifies it:ems such as the following: 

Bus medium 

Bus connectors 

Electrical characteristics that all signals on the bus must satisfy 

Logical characteristics that elementary message.; on the bus must satisfy 

Electrical characteristics that each LRU must sa.tisfy 

Logical charaGteristics that each LRU must sati.;fy 

Environmental conditions under which the equipm,:lnt must operate 

Electromagnetic requirements that all of the equipment must meet 

LRU test procedure 

But this is not sufficient because problems that are unique to a particular 
system configuration are uncontrolled by such a bus standard. For instance, the 
bus standards do not specify the interactions of multiple LRUs in a system. 
That is left for the system specification. A bus in~egration standard that is 
designed to control the integration of LRUs must also specify the following 
integration specific items: 

Physical layout of the bus 

Control, address, and status words that are allowed on the bus 
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Interpretation of the allowed control, address, and status words 

Data words that are allowed on the bus 

Interpretation of the allowed data words 

Integration test procedure 

Where possible, control of these items should be accomplished by precise 
specification. Where greater flexibility is required, the standard should use 
formal guidelines. These must consist of precise definitions with formulas, 
tables, rules, or flowcharts that constrain the system designer to produce 
working configurations. 

None of the avionic data bus standards qualify as bus integration standards by 
these criteria. Some of these integration-specific topics are either not 
addressed at all or are only discussed, as opposed to specified. Furthermore, 
no generic bus integration standard was discovered by these researchers for 
avionic buses. 

5.4.3 Bus Integration Standards and Guidelines 

The standards that address system integration by data buses consist of the data 
bus standards and the data bus test standards. These standards regulate the 
integration of subsystems to varying degrees. Generally, they do not address 
the integration-specific topics directly. 

All of the data bus standards specify, to some extent, the physical makeup of 
the bus conductors. They generally do not specify the physical layout of the 
system. That is unique to each system. Nevertheless, some of the bus standards 
at least address the effects that the system layout has on the electrical 
characteristics of the bus. All of the bus standards specify the electrical and 
logical hardware requirements for each LRU attached to the bus. They do not all 
address the electrical and logical characteristics of multiple LRUs interacting 
on the bus. All of the bus standards also address the software protocol that 
each LRU must obey. Howeve~, they cannot specify the content of the control, 
address, data, and status words for a particular system. These are unique to 
each LRU and system. 

The following subparagraphs delineate the strengths and weaknesses of each set 
of bus standards as they apply to subsystem integration. Guidelines are also 
discussed, whether they are part of the standard or not. 

5.4.3.1 ARINC 429 Bus 

ARINC Specification 429, "Mark 33 DITS," defines a linear broadcast bus which 
connects one transmitting LRU to multiple (usually) receiving LRUs. Any 
responses to the output of the transmitting LRU that the receiving LRUs are to 
generate are passed back on other ARINC 429 buses. As a result, integration 
problems are few, but they do exist. 
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The physical integration of ARINC 500-Series LRUs is partially addressed in 
ARINC Specification 600. All ARINC 500-series LRUs must fit into slots of a 
specific size in standardized equipment shelves and 1:acks. The connector to be 
used for the connection of LRUs to the data bus is also specified. The 
complete list of environmental requirements is given In part, this specifica
tion sets forth the following: 

"The definition, guidance, and appraisal for de~:ign and acceptance of 
the mechanical, electrical, and environmental interfaces between LRUs 
and the racks or cabinets in which they are installed." (ARINC 
Specification 600-7, 1987). 

The bus medium and the electrical characteristics of the network are specified 
in Attachment 4 of ARINC Specification 429-12. However, the physical layout of 
the bus for a particular system is not addressed at all, either in ARINC 
Specification 600 or ARINC Specification 429-12. That is left to the system 
designer. Similarly, although the DITS specificati•m requires each LRU to be 
tolerant of bus faults and to isolate the bus from it:s own faults, no standards 
or guidelines are given for achieving this. 

Each LRU in a Mark 33 DITS must satisfy the electrical signal levels and bit 
timing that are specified in ARINC Specification 429-12. The degradation 
allowed anywhere on a particular system is also specified (ARINC Specification 
429-12, Attachments 3, 7, and 8, 1990). 

The logical integration of the hardware is controlled by the specification that 
all messages are to be 32-bit-word messages, separat•~d by a m~n~mum gap of four 
bit-times. How each receiving LRU is to respond to partial messages is left to 
the systems integrator. 

The use of an interface IC can increase the standardization and compatibility 
of LRUs connected by ARINC 429 buses. However, the circuit, control registers, 
and software must be set up for ARINC 429 bus operat.ion. 

The Western Digital publication, "WD1993 ARINC 429 Receiver/Transmitter and 
Multi-Character Receiver/Transmitter" (1983), is a iata sheet for their ARINC 
429 Receiver/Transmitter. WD1993 is a general purpose IC, capable of many 
different configurations. It must be controlled b~r a microprocessor via two 
control registers and a status register. Using this IC would standardize some 
of the details, but it adds IC-specific details that: are not standardized. 

The Harris "CMOS ARINC Bus Interface Circuit" (1989) data sheet tells how the 
HS-3282 IC implements the ARINC 429 bus protocol. It uses a single control 
register to support options that are part of the ARINC bus standard. The Harris 
"ARINC 429 Bus Interface Line Driver Circuit" data sheet explains how to use the 
ARINC 429 line driver with their protocol chip. This chip provides the output 
impedance, voltages, and rise/fall times required by the ARINC 429 bus standard. 
The Harris Application Note 400 (Clifton) describes how to interface a 
microprocessor to their HS-3282 IC. It includes notes on lightning protection, 
an appropriate circuit for hardware control, and a flowchart for the appropriate 
software control. Each of these notes fills in details that are not present in 
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the standard. To the extent that designers use these documents, operation of 
ARINC 429 bus LRUs would be more consistent. 

The software integration is not fully specified. Although the specification is 
very thorough in defining the sequence of labels, data bits, sign/status bits, 
and/or parity bit that compose each authorized word, not all words are available 
in a given system. Few guidelines are given for the design of a particular 
system. The tables of data needed to support a system design are provided, but 
the system designer must generate the design. An additional parameter, the 
Source/Destination Identifier, is defined but uncontrolled. The specification 
of this parameter is left to the system designer. 

The ARINC 429 bus specification provides much of the data needed for functional 
integration. The data standards (ARINC Specification 429-12, Attachments 2 and 
9, 1990) give the interpretation of each of the labels, status bits, and data 
words. Given that a particular message is broadcast, the specification 
completely defines the proper interpretation of the message. However, the 
determination of which messages are sent and the sequence of these messages is 
unspecified. The "ARINC 429 General Aviation Subset" (GAMA, 1986) is GAMA' s 
publication of the information in attachment 9 of the ARINC 429 bus standard. 
It includes additional detail and guidance for GA applications. 

In the final analysis, the designer of a subsystem within a particular system 
must find out which LRU is generating the data that the subsystem needs, on 
which bus each datum is transmitted, and at what interval. The designer must 
also ensure that the subsystem provides the data required by other LRUs. The 
system designer needs to coordinate this information accurately and comprehen
sively. The system design must also control the data latencies that may result 
as data are passed from bus to bus as required by various LRUs. All testing is 
left to the system designer. 

5.4.3.2 Commercial Standard Digital Bus 

The CSDB is a linear broadcast bus, like the ARINC 429 bus. Each bus has only 
one LRU that is capable of transmitting with (usually) multiple LRUs receiving 
the transmission. Thus, the CSDB has few inherent subsystem integration 
problems. However, the standard does not address them. The preface to the CSDB 
standard clearly states its position concerning systems integration: 

"This specification pertains only to the implementation of CSDB as 
used in an integrated system. Overall systems design, integration, 
and certification remain the responsibility of the systems in
tegrator." (GAMA CSDB, 1986). 

Although this appears to be a problem for the reliability of CSDB-integrated 
systems, the GA scenario is quite different from the air transport market. The 
ARINC standards are written to allow any manufacturer to independently produce 
a compatible LRU. In contrast, the GAMA standard states the following in the 
preface: 

"This specification ... is intended to provide the reader with a basic 
understanding of the data bus and its usage." (GAMA CSDB, 1986). 
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The systems integrator for all CSDB installations is the Collins General 
Aviation Division of Rockwell International. That which is not published in the 
standard is still standardized and controlled because the CSDB is a sole source 
item. 

The physical integration of LRUs on the CSDB is addressed by the standardization 
of the bus medium and connectors. These must conform to the Electronic 
Industries Association (EIA) Recommended Standard (RS) -422-A (1978), "Electrical 
Characteristics of Balanced Voltage Digital Interface Circuits." The CSDB 
standard provides for the integration of up to 10 receivers on a single bus, 
which can be up to 50 meters long. No further constr.~ints or guidelines on the 
physical layout of the bus are given. 

Each LRU on a CSDB must satisfy the electrical signa:.s and bit timing that are 
specified in the EIA RS-422-A. The logic sense, signaling rate, risejfall 
times, and electrical loads are given in the CSDB standard. However, to ensure 
successful integration, the electrical load specification must be applied to a 
fully integrated system, even if the initial design does not include a full 
complement of receivers. As a result, additional receivers can be integrated 
at a later time without upsetting the electrical cha:~acteristics of the bus. 

The standard is open to a particular integration problem in this scenario. It 
allows the receiver capacitances to be increased by a total of 600 picofarads 
for each receiver less than 10. Exercising this option keeps the system 
capacitance at its maximum. No further LRUs could be added without possibly 
requiring the redesign of every one of the others. The system designer must 
also be sure to specify to users the signaling rate of each bus, since two rates 
are permissible. 

The logical integration of the hardware is controlled by the CSDB standard, 
which establishes the bit patterns that initiate a message block and the start 
bit, data bits, parity bit, and stop bit pattern that comprises each byte of the 
message. The system designer, however, must control 1:he number of bytes in each 
message and ensure that all the messages on a particular bus are of the same 
length. 

The software integration is not fully specified. The standard is very thorough 
in defining the authorized messages and in constraining their signaling rate and 
update rate. The synchronization message that begitts a new frame of messages 
is also specified. However, the determination of whieh messages are sent within 
a frame for a particular bus is unspecified. Also, there are no guidelines 
given for choosing the message sequence or frame loading. The frame design is 
left to the system designer. 

In general, the sequencing of the messages does not present an integration 
problem since receivers are to recognize messages by the message address, not 
by the sequence. However, this standard does not disallow an LRU from depending 
on the message sequence for some other purpose. The system designer must be 
aware of whether any LRU is depending on the sequence for something other than 
message recognition since once the sequence is cho~.en, it is fixed for every 
frame. 
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The bus frame loading is more crucial. There are three types of messages that 
can occur within a frame: continuous repetition, noncontinuous repetition, and 
burst transmissions. The system designer must specify which type of transmis
sion to use for each message and ensure that the worst maximum coincidence of 
the three types within one frame does not exhaust the frame time. The tables 
of data needed to support this system design are provided, but the system 
designer must generate the design. 

The CSDB standard provides much of the data needed for functional integration. 
The detailed message block definitions give the interpretation of the address, 
status byte, and data words for each available message. Given that a particular 
message is broadcast, the standard completely defines the proper interpretation 
of the message. The standard even provides a system definition, consisting of 
a suite of predefined buses which satisfy the integration needs of a typical GA 
avionics system. 

If this predefined system is applicable, most of the system integration 
questions are already answered. But if there is any variation from the 
standard, the designer of a subsystem in a CSDB integrated system must inquire 
to find out which LRUs are generating the messages that the subsystem needs, on 
which bus each message is transmitted, at what bus speed the messages are 
transmitted, and the type of transmission. The designer must also ensure that 
the subsystem provides the messages required by other LRUs. The system designer 
needs to coordinate this information accurately and comprehensively. The system 
design must ensure that all the messages on a particular bus are of the same 
length. It must also control the data latencies that may result as data are 
passed from bus to bus by various LRUs. All testing is left to the system 
designer. 

There are no additional guidelines published for the CSDB. Whatever problems 
are unaddressed by the standard are addressed by Collins during system 
integration. Furthermore, Collins has not found the need to formalize their 
integration and testing in internal documents since the work is done by CSDB
experienced engineers. 

5.4.3.3 ARINC 629 Bus 

ARINC Specification 629, "Multi-Transmitter Data Bus, Part 1, Technical 
Description," defines a linear bus which connects multiple LRUs, each of which 
may either transmit or receive. It is a bidirectional bus. On.such a bus, all 
responses to the output of the transmitting LRU that the receiving LRUs are to 
generate can be passed on the same bus at a later time. This greatly simplifies 
the network of buses. A single bus could provide all the required interconnec
tions. However, since any LRU may need to transmit at any time, asynchronously 
from all others, it greatly complicates the message handling on a bus. 

The specification must define a protocol which ensures that no transmitters are 
tra~smitting simultaneously and that the remaining LRUs are all listening to 
each transmission. As a result, there are numerous integration problems. 
Possibly because of this potential for more problems, the ARINC 629 bus standard 
will be published in four parts, which will provide the additional help of an 
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applications guide and a test plan. Furthermore, a ·~ser' s manual is available 
from the BCAC ("ARINC 629 User's Manual," 1990). 

The physical integration of ARINC 629 LRUs is partially addressed in ARINC 
Specification 600. It specifies the mechanical intE!gration of all ARINC 500-
Series LRUs. ARINC 629 LRUs must meet the same meehanical and environmental 
requirements as ARINC 429 LRUs, discussed in section 5.4.3.1. However, ARINC 
629 bus connections are specified by the bus specification, rather than by ARINC 
Specification 600. 

The bus medium and the electrical characteristics of the network are specified 
as the physical layer in ARINC Specification 629, Part 1. Specifications are 
provided for transmission over a shielded, twisted pair cable with a CMC 
connection (ARINC Specification 629, Part 1, Attachme:nts la, li, and lj, 1990). 
The physical layout of the bus for a particular system is limited to 120 
terminals on a 100-meter bus, with up to 15 meter E:tubs. Additional general 
guidelines are given, both to minimize damage to the bus and optimize the 
electrical characteristics of the bus. The details are left to the system 
designer. 

Each terminal on an ARINC 629 bus must satisfy the electrical signal levels and 
bit timing that are specified in ARINC Specification 629, Part 1, Attachments 
ld, lf, lg, and lh. These levels and timing must be met for the environmental 
conditions specified in RTCA/D0-160. Furthermore, irl Part 4, the specification 
will supply a test plan for validating terminal, SIM, stub, and coupler 
combinations. 

The logical integration of the hardware, the data link layer, is controlled by 
the specification that the elemental transmission iH a 20-bit-word, comprised 
of a sequence of three synchronization bits, 16 da::a bits, and a parity bit 
(ARINC Specification 629, Part 1, Attachment 4, 1990). Illegal transmissions 
are monitored by the transmitter. If synchronization, modulation, or parity 
errors occur, the transmission is halted. If seven consecutive bad transmis
sions occur, the transmitter is permanently inhibited (ARINC Specification 629, 
Part 1, Attachment 5, 1990). Receiving terminals are to detect these same 
errors, thus recognizing the faulty transmission. Their response is not 
specified. Additionally, a transmission is terminated if illegal labels or 
Channel IDs are detected or if wordstrings or messages overrun their specified 
length. Although it is not specified that they mus1:, receiving terminals can 
also detect these errors. How they respond to these partial messages and other 
terminal-to-terminal errors is left to the system designer. The use of checksum 
and CRC error checking is also left to the system design. 

Additional specifications ensure that the hardware does not produce bus 
contention. The hardware provides the production and detection of the bus time 
delays between transmissions by different terminals (ARINC Specification 629, 
Part 1, Attachment 3, 1990). The assignment of the TG for each terminal and the 
system SG and TI is left to the system designer. The process to follow when 
choosing a consistent set is specified. These can V8.ry from bus to bus, making 
a terminal bus-specific. Nevertheless, these parameters are easily reprogrammed 
for any LRU. 
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The software integration, addressed in the network and higher layers, is defined 
but not fully specified. The various types of words are combined into 
wordstrings. Each wordstring follows a predefined format, identified by the 
label word at the beginning. Wordstring structure is well defined, but the 
actual wordstring definitions are left to the system designer. Once the 
wordstrings are defined, they will be incorporated into ARINC Specification 629, 
Part 3, but not all wordstrings are available in a given system. 

The specification also defines periodic, aperiodic, and CPs, but a particular 
bus can obey any one of them. With the periodic protocol, the orderly 
sequencing is determined by the bus initialization. How this is done is not 
specified. Also, periodic messages need not be sent every bus cycle, but can 
be assigned multirating factors that allow them to skip up to 31 cycles. Once 
these are assigned, the transmission schedule in the Transmit Personality PROM 
(XPP) must be programmed so that each message is scheduled in either the 
independent mode or the block mode. In addition, if the receiving LRU wants an 
interrupt, the transmitter must produce the interrupt and the required interrupt 
vector. 

Aperiodic messages can include message priority, which adds further complica
tions to the system coordination. Messages can be sent as either broadcast or 
directed messages. Directed messages can be commands, requests for information, 
or file transfers, each with or without acknowledgement. The number of retries 
must be set and fit in with the rest of the bus load. Bulk data can be 
transferred in either a block structure or file structure, depending on the 
structure of the data and the required integrity of transfer. These are all 
implemented at the discretion of the system designer. Guidelines are given for 
the design of a particular system. ARINC Specification 629, Part 2, will 
provide an applications guide for system design. The data needed to support a 
system design are provided in ARINC Specification 629, Part 1, but the system 
designer must generate the design. 

After all these system design decisions are finalized, they are encoded into the 
XPP, the Receive Personality PROMs (RPPs), and the binary value pins. Any 
mistakes in the encoding can cause these high-level protocols to fail. Consider 
the replacement of an LRU on a periodic bus with a supposedly plug-compatible 
one from another manufacturer. This manufacturer mistakenly programs an illegal 
message in the XPP. Since the message is thought to be legal, the RPP is 
programmed to recognize the message as legal. Thus, the transmitter will 
continue to transmit the undefined message, since its monitoring function finds 
the message defined as legal from its RPP. The RPPs in the receiving LRUs, 
however, recognize the message as illegal and ignore it, but they cannot remove 
the babbling transmitter. The babbling could affect the communications of other 
LRUs since the illegal message could cause the LRU to exceed its allotted time. 

ARINC Specification 629, Part 3, will provide the data needed for functional 
integration into real systems. The data standards will give the definition and 
interpretation of each of the authorized wordstrings, data words, parameters, 
buses, and terminals. Given that a particular wordstring is broadcast, the 
specification will completely define the proper interpretation of the word
string. However, the determination of which wordstrings are sent, their 
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composition, the bus upon which to send them, and the sequence in which to send 
them is unspecified. 

The use of the System Status Word, Function Status Word (FSW), and Parameter 
Validity Word to control data validity is defined. The assigning of functions 
to the various levels in the FSW is left to the system designer. This 
assignment must be followed by all LRUs on the bus and will certainly not be 
standard from bus to bus. The data types are carefully and completely defined, 
but when the data are finally put into the subsystem memory they will be misread 
if the subsystem uses a different format. The subsystem would need to convert 
the data. 

Many of the topics and problems not addressed by the standard are made more 
clear in comprehensive guides available from BCAC and National Semiconductor. 
They both provide a fairly complete description of the bus operation and of each 
bus component. The BCAC "ARINC 629 User's Manual" (1990) describes the 
protocol; the operation of the transmitter, receiver, and monitor; and the 
design of the personality PROMs and the subsystem interface. The National 
Semiconductor book, "ARINC 629 Communication Integrated Circuit" (1990), covers 
many of these same topics and includes application no1:es. Some of the component 
data sheets include helpful design guidelines. The data sheet on the AMP/Dallas 
Semiconductor SIM ("Serial Interface Module (SIM) for ARINC 629/DATAC," 1990) 
discusses the details of fault management, coupler testing, and receiver 
threshold settj.ng. The data sheet for their CMC ("DATAC Current Mode Coupler," 
1991) details the coupler dimensions and the stub and bus connections. 

In the final analysis, the designer of a subsystem ~vithin a particular system 
must find out which LRU is generating the data that the subsystem needs, on 
which bus each datum is transmitted, and at what in1:erval. The designer must 
also ensure that the subsystem provides the data required by other LRUs. The 
system designer needs to coordinate this information accurately and comprehen
sively. The system design must control assignment:> of the timing gaps, the 
protocol to be used, and the data latencies that may result as data are passed 
from bus to bus, as required by various LRUs. Doct~entation is available to 
assist with most of these decisions, but no structu:~ed methodology is promul
gated. Systems integration testing is not addressed at all. 

5.4.3.4 Avionics Standard Communications Bus 

The ASCB is a bidirectional linear bus used primarily in GA aircraft. Like the 
ARINC 629 bus, each LRU on the bus can transmit or receive data on the same bus. 
Thus, it has the same advantage as the ARINC 629 bu::; for reducing the network 
complexity. It also has the same increased complexity of transmission control. 
Again, the standard must define a protocol which en:mres that no transmitters 
are transmitting simultaneously and that the remain:~ng LRUs are all listening 
to each transmission. As a result there is the potential for numerous 
integration problems. Recognizing this, the preface to the ASCB specification 
states its position concerning systems integration: 

"This specification pertains only to the implementation of ASCB as 
used in an integrated system; overall systems de~:ign; and integration. 
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Certification remains the responsibility of the systems integrator." 
(GAMA ASCB, 1987). 

Furthermore, the ASCB is controlled like the CSDB. The systems integrator for 
all ASCB installations is the Business and Commuter Aviation Systems Division 
of Honeywell, Incorporated. That which is not published in the standard is 
still standardized and controlled because the ASCB is a sole source item. 

The physical integration of LRUs on the ASCB is addressed by the standardization 
of the bus medium, by the recommendation of circuits for controllers and user 
interfaces, and by a recommended bus configuration. Even the use of a bus 
bridge is addressed. However, the bus couplers and connectors are not fully 
specified by the standard. Nevertheless, a standard coupler with connectors 
does exist, as provided by SCI Technologies. The ASCB standard provides for the 
integration of up to 48 users on a single bus, which can be up to 125 feet long 
with 18.4 inch stubs. Many further constraints and guidelines on the physical 
layout of the bus are given. 

The driver and receiver components of each LRU on an ASCB must conform to the 
EIA RS-422-A, "Electrical Characteristics of Balanced Voltage Digital Interface 
Circuits." The logic sense, signaling rate, rise/fall times, and electrical 
loads are given in the ASCB specification. The specification provides 
recommended circuits that satisfy the requirements, as well as a complete table 
of specifications for custom-built circuits. The test configuration for which 
the specifications apply is provided. All components must comply with RTCA/D0-
160 for environmental and RF interference considerations. 

The logical integration of the hardware is controlled by the ASCB specification, 
which establishes the bit patterns for each of four types of standard messages 
that may be transmitted on the bus. For each message, the synchronization bits, 
delay bits, start-of-message flag bits, CRC bits, end-of-message flag bits, and 
mark bits that start and end a message are specified. This structure is a 
variation of the HDLC protocol. Industry standard ICs can be used to implement 
it. This does not, however, ensure successful integration at this level, since 
many of these chips are more general than the HDLC protocol. They must be 
properly configured to produce the desired protocol. This issue is addressed 
to some extent in the data sheets for the IC, like the "WD193X Synchronous Data 
Link Controller" (1983) data sheet. In addition to the protocol, address and 
data fields in each message are defined. The system designer, however, must 
control the addresses used, the data used, and the length of each message. 

The bus architecture does much to address the integration problems. The 
standard configuration requires two buses, controlled by a dedicated controller, 
with multiple standby controllers. The two buses provide isolation of functions 
so that if one bus were to be rendered inoperable, the entire system would not 
be disabled. Since LRUs can listen to both buses, only the transmissions of one 
bus are lost. Although this is an important feature, no specifications or 
guidelines for the distribution of LRUs on the two buses are given. This 
configuration eliminates one of the main integration problems with bidirectional 
buses. Since control is centralized, the controller has complete control of all 
bus activity. All transmissions are initiated at its command. Thus, there is 
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no bus contention under normal circumstances. The only thing left to coordinate 
in real-time is the switchover to a standby controllE!r. 

Controller interaction is also addressed. The standard requires that all 
controllers monitor the control messages. The active controller must disable 
itself if it detects any error in the content or timing of control messages, 
whether due to software errors or hardware faults. A standby controller must 
perform the same monitoring. If it detects that sucl1 faults are followed by a 
lack of bus activity, it must take control of the h.1s. An interlock must be 
provided to ensure that only one controller contJ~ols the bus at a time. 
Although there are many safeguards defined, the standard makes no attempt to 
control the specifics about how to implement the controller functions. For 
example, should a controller disable itself in mid-message, mid- frame, mid
cycle, or only at the end of one of them? At what part of the frame or cycle 
should the other controller start? On the other hand, the standard does require 
that a controller be sufficiently generic that it cottld control any bus simply 
by reprogramming the cycle definition. Thus, in praetice, controller behavior 
could be made quite standard, though not controlled by the standard. 

The configuration also introduces a new problem. LIWs only listen on one bus 
at a time. The standard does not specify how to ensure that each LR.U is 
listening to each transmission, regardless of which bus it is on. Coordination 
could become complex if the buses can be active simultaneously or can be 
unsynchronized. While the standard does not specify this, the application 
presented gives only one cycle definition. It implies that the two buses are 
always synchronized, with no simultaneous transmissions. The standard 
specifically addresses switching the listening from one bus to the other only 
as it concerns controller switchover. 

The software integration is not fully specified. The eight-frame cycle is 
carefully defined, and the length of the cycle and each frame is precisely 
specified. The frame start and control messages provide the necessary 
initialization for each frame. The specification thoroughly defines the 
authorized messages for each ASCB product, and constrains their order and update 
rates for a particular application. For new applications, however, the 
determination of which LR.Us should transmit within a frame for a particular bus 
is unspecified. No guidelines are given for choosing the transmission sequence 
or update rate. The cycle and frame design is left to the system designer. 

In general, the sequencing of the messages does n•)t present an integration 
problem since receivers are to recognize messages by the message address, not 
by the sequence. However, this specification does not disallow an LR.U from 
depending on the message sequence for some other purpose. The system designer 
must be aware of whether any LR.U is depending on the sequence for something 
other than message recognition, since once the sequence is chosen, it is fixed 
for every cycle. 

The bus frame loading is more crucial. The messages must be preplanned to fit 
within the 25 millisecond frames. Once the duration of the transmission of each 
LRU is set, the DETs are designed to keep the transmissions from exceeding the 
planned duration. Even if an LRU keeps babbling, the DET disables the driver, 
keeping the continued transmission from getting to tho:! bus. The system designer 
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must specify the length of each message of an LRU's transmission, and which LRUs 
will transmit in each frame, to determine whether all the messages fit within 
one frame. The formulas and tables of data needed to support this system design 
are provided, but the system designer needs to generate the design. 

The software protocol is not fully specified because it allows users to engage 
in nonstandardized communications between legal messages. Any such communica
tion increases the risk of system integration problems. The systems integrator 
and users must be sure that the communications are compatible with both the 
published standard and the specific interface specifications for each nonstan
dard communication. 

The ASCB specification provides much of the data needed for functional 
integration. The detailed data format specifications give the interpretation 
of the addresses and data words for each available message. Given that a 
particular message is broadcast, the specification completely defines the proper 
interpretation of the message. The standard also defines a counter for tagging 
data items, but it does not specify the details of its use. "Data valid," 
"master valid," and "composite valid" flags are defined, but their use is not 
specified. These details, as well as the use of a checksum, appear as part of 
the specification for a particular application. 

The standard provides a system definition, consisting of a suite of avionic 
subsystems that satisfy the integration needs of a specific GA avionics system. 
If the predefined system is applicable, most of the system integration questions 
are already answered. 

In general, for a new ASCB-based system the designer of an ASCB subsystem must 
find out which LRUs are generating the messages that the subsystem needs, and 
on which bus and in which frame each message is transmitted. The designer must 
also ensure that the subsystem provides the messages required by other LRUs, in 
the proper frames, and of the proper duration. The system designer needs to 
coordinate this information accurately and comprehensively. The system design 
must control the data latencies that may result as data are passed from bus to 
bus as required by various LRUs. All testing is left to the system designer. 

There are no additional guidelines published for the ASCB. Whatever problems 
are unaddressed by the standard are addressed by Honeywell during system 
integration. Honeywell has not found the need to formalize their integration 
in internal documents since the work is done by ASCB-experienced engineers. 
However, they do have an internal document that describes a detailed ASCB test 
plan. 

5.4.3.5 MIL-STD-1553 Bus 

The MIL-STD-1553 Digital Time Division Command/Response Multiplex Data Bus is 
another bidirectional linear bus. It is used predominately in military 
applications. The ASCB is a derivative of this bus. Thus, the MIL-STD-1553 bus 
is also a centrally controlled bus with communications among LRUs controlled and 
initiated by the BC. LRUs are attached to RTs that perform the bus communica
tions. To ensure the integrity of the communications, emphasis is placed on a 
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two-way communication for every transmission sequence~. Broadcast messages are 
not recommended. 

The standard does not ensure successful systems integration, but it does address 
it. The standard states, "It is intended that this s::andard be used to support 
rather than to supplant the system design process." (MIL-STD-1553B, 1986). At 
the same time, the foreword states the following: 

"Even with the use of this standard, differences may exist between 
multiple data buses in different system applications due to particular 
application requirements and the designer options allowed in this 
standard. The system designer must recognize this fact and design the 
multiplex bus controller hardware and software to accommodate such 
differences." (MIL-STD-1553B, 1986). 

Everything that is required is carefully and fully specified. The optional 
features are the primary source of integration problems with this bus. 
Furthermore, unlike the GA buses, there are many different manufacturers 
producing MIL-STD-1553 bus-based avionics. 

Although the manufacturers have freedom in selecting options, the MIL-STD-1553 
bus standard is backed by extensive guidance documentation. A MIL-STD-1553 bus 
handbook is itself a military standard (MIL-HDBK-1553A, 1988). This handbook 
specifically addresses numerous concerns on each point of bus medium design, 
terminal design, and system design. Design aids, like formulas and graphs, are 
provided to help the system designer produce a workin~; and reliable system. The 
handbook also includes six example systems and guidelines for data word and 
message format design. The SAE also publishes a handbook, Document AE-12 (MIL
STD-1553 Databus Systems Integration Handbook, 1991). AE-12 consists of 24 
articles, many of which define successful implementations of the MIL-STD-1553 
bus optional features. Since these implementations are published, many of the 
options are effectively standardized. The "MIL-S~~D-1553 Designer's Guide" 
(1982) covers much of the same design information as the MIL-HDBK-1553 and also 
includes application examples. The Air Force Systems Command (AFSC) also 
published a MIL-STD-1553 handbook ("Multiplex Applications Handbook," 1980). 
It contains much of the same material as the MIL-HDBK-1553, as well as some 
additional information. 

The physical integration of RTs on a MIL- STD-1553 bus is addressed by the 
standardization of the bus medium, stubs, couple:rs, and shielding. The 
connectors are not specified. MIL-STD-1553 provides for the integration of up 
to 31 users on a single bus. They are connected to 1:he bus by one-foot direct 
coupled stubs or 20-foot transformer coupled stubs. Many further constraints 
and guidelines on the physical conductor and stubs are given. The AE-12 
handbook contains an article on adapting the physical bus network to topological 
constraints. 

The electrical characteristics of the bus are thoroughly addressed. The bit 
encoding, logic sense, and transmission frequency are each carefully specified. 
The standard also specifies the values and tolerances for parameters like 
rise/fall times, droop, noise rejection, and electrical loads that must be 
satisfied throughout the range of environmental condit:ions. The test configura-
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tion for which the specifications apply is provided. Some test descriptions are 
also included. No environmental conditions or tests are given. The wiring and 
cabling must provide the electromagnetic capability specified by the standard, 
MIL-E-6051. The AE-12 handbook adds detail on the topic of transceiver 
selection. 

MIL-HDBK-1553 emphasizes that it is essential for a bus network to be simulated 
to ensure hardware integration. It explains how to do a hardware simulation and 
a computer simulation. A computer simulation program is available. MIL-HDBK-
1553 provides an example of a simulation that uses the program. 

The logical integration of the hardware is completely specified by the MIL-STD-
1553. It establishes the bit pattern for the standard 20-bit-word that may be 
transmitted on the bus. For each word, three synchronization bits, 16 
information bits, and a parity bit are specified. There are no variations. 

The central controller eliminates one of the main integration problems with 
bidirectional buses. Since control is centralized, the controller has complete 
control of all bus activity. All transmissions are initiated at its command. 
Thus, there is no bus contention under normal circumstances. However, if a 
redundant bus configuration is used, the interaction between controllers is 
poorly defined in the standard. This lack is covered by an AE-12 article, which 
specifically addresses the handshaking between the two controllers. 

The software integration is also carefully specified. The standard defines 
three types of words that compose all bus message sequences. It specifies the 
legal command and status words and the interpretation of each. Data words are 
defined. Based on these words, the standard specifies a set of 10 message 
sequences that can be initiated by the BC. The contents of these messages are 
fully specified, except for the mode commands. 

One type of legal command is the mode command. Two of the mode commands are 
used to define some general purpose optional command modes. Many of the 
definitions only describe the information that can be transferred. The actual 
data are not defined. These command modes are considered optional, but in some 
of the definitions, it is not clear whose option it is. Since all messages are 
broadcast messages, the optional modes should be selected on a bus basis. Then 
the BC and each RT need not keep track of which RTs broadcast messages that 
support a particular optional mode. The variability in mode command implementa
tion has also been addressed by AE-12. One article presents the possible 
implementations and describes a methodology to ensure that each is addressed in 
a particular design. Another article explains how RTs should respond to 
nonimplemented mode commands. 

Furthermore, addi tiona! message sequences may be defined. Thirty of the 
subaddressjmode codes are available for each RT to use with a custom definition. 
These message sequences must be composed of some sequence of command, status, 
and/or data words, up to a total length of 32 words. No other bus communication 
is defined or allowed. The custom definition is guided by an article in AE-12, 
on the utilization of subaddresses. However, the timing and sequence of RT 
messages is not addressed. No guidelines are given for choosing the transmis-
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sion sequence or update rate. The custom message design and the message 
schedule design are left to the system designer. 

In general, the sequencing of the messages does not present an integration 
problem since receivers are to recognize messages by the message address, not 
by the sequence. However, this standard does not disa.llow an LRU from depending 
on the message sequence for some other purpose. Since once the sequence is 
chosen, it is usually repeated, the system designer must be aware of any LRU 
depending on the sequence for its proper operation. 

The number and repetition of messages to transmit is more crucial. The messages 
must be preplanned to meet the response time needed by every LRU. Once the 
duration of the transmission of an RT is set, a hard1.rare timeout is set on the 
RT to keep the transmission from exceeding the planned duration. Even if an RT 
keeps babbling, the timeout disables the driver, keeping the continued 
transmission from getting to the bus. The system designer must specify the 
length of each message that the RTs need to transmit, and the order in which the 
RTs will transmit, to determine whether all the messages are delivered on time. 
The standard provides no formulas or tables of dat:a to support this system 
design. AE-12, however, has two articles on the toplc. 

Most of these issues are addressed in MIL-HDBK-1553, AE-12, and the "MIL-STD-
1553 Designer's Guide." In addition, there are RT a:1.d BC test plans published 
that give step-by-step tests for the validation and production testing of these 
units. The RT validation test plan is published :~n MIL-HDBK-1553. The RT 
production test plan is published by the SAE as AS4112, and is contained in the 
"MIL-STD-1553 Designer's Guide." The BC validation and production test plans 
are published by the SAE as AS4113 and AS4114, respe:::tively. These test plans 
ensure that the units meet the hardware and software standards on an individual 
basis, thus accomplishing the most basic level of integration. The U.S. Air 
Force (USAF) has a validation testing facility to perform these tests. It is 
operated by the Systems Engineering Avionics Facility (SEAFAC), which serves as 
the Office of Primary Responsibility for the MIL· STD-1553 bus (Thorpe and 
Vakkalanka 1982). The SAE also publishes a system tast plan which specifies a 
step-by-step test for reliable communications, systent-wide. Very little of the 
bus communications design is left unspecified or ung~ided. 

The MIL-STD-1553 bus standard provides no data for f~nctional integration. No 
addresses or data formats are specified. Bit packing of data is allowed, but 
undefined. Several types of errors are defined and flag bits provided, but 
their use is optional. The optional nature present:> problems. For instance, 
RTs have the individual option of checking for unsupported commands. Thus, if 
no illegal commands are flagged in a bus test, the te~:ter should not necessarily 
conclude that the BC issued only legal commands. If more extensive error 
checking or correction is required, the standard suggests two methods that could 
be used. The system designer could use a software handshake to verify each 
transmission, word-by-word, or integrate some form of error checking data into 
the data stream. If any RT requires a response more often than the controller 
polls it, interrupts can be used, but this is not defined. 

Despite the lack of standards for functional integration, the system designer 
is not left unguided, particularly in the area of word and message formats. 
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MIL-HDBK-1553 gives a flowchart for word design, along with standard formats and 
Interface Control Document (!CD) presentation sheets. It also includes tables 
of predefined words. Similarly, the handbook explains how to design messages 
and provides standard message formats and !CD presentation sheets. 

In general, for a new MIL-STD-1553 bus based system, the designer of a MIL-STD-
1553 RT must find out which RTs are generating the messages the subsystem needs 
and when each is transmitted. The system designer has to ensure that each 
subsystem provides the messages required by other LRUs, at. the proper time, and 
for the proper duration. The system designer needs to coordinate this 
information accurately and comprehensively. The system design must control the 
data latencies that may result as data are passed from bus to bus, as required 
by various LRUs. The MIL-STD-1553 bus standard does not specify all of these 
items, but is thoroughly backed by guidance material to help the system designer 
specify them with confidence. The options selected are listed and defined in 
the !CD. Thus, if the !CD is well written, the RT designer should get a precise 
specification of the information needed from the system's !CD. This topic is 
addressed in AE-12. 

5.4.3.6 SAE Linear Token Passing Bus 

The LTPB is one of two modern high-speed buses designed to meet the needs of the 
military for this decade and beyond. It is anticipated that they will fill the 
place that the MIL-STD-1553 bus has had in integrated flight-critical systems 
and also support the much higher data rates required by increased integration. 
The LTPB is a bidirectional linear bus capable of 50 megabits per second 
operation. The bus users are called stations. LTPB station interaction is 
controlled by a token passing protocol, where the stations are configured in a 
logical ring. Only one station can hold a valid token at a time. Once a 
station receives a valid token, it has control of the bus. All other stations 
respond to its requests, as necessary. 

The standards and guidelines for this bus follow the pattern of the MIL-STD-
1553 bus documentation. When complete, the LTPB documentation will consist of 
a bus standard, a test and validation standard, and a formally published 
handbook. The basic standard is released as SAE AS4074.1. It specifies the 
bus structure and protocols. The test and validation plan will define a step
by-step test procedure for validation of stations. The handbook will take a 
designer through the bus design, step-by-step, providing the formulas, tables, 
and graphs necessary to produce a solution compatible with the standard. 

The AS4074.1 standard is a precise and complete specification of the physical 
and logical aspects of an LTPB. The "send message" process is precisely 
flowcharted. The state diagram of the bus operation is explicitly shown and 
discussed. The BIU initialization sequence is specified. The standard also 
specifies BITs that each station must perform and statistics that must be kept. 
Following the bus specification, the standard specifies a Quality Assurance (QA) 
plan. This plan includes a test plan for performing engineering test and 
evaluation, qualification testing, reliability and maintainability testing, 
operational testing, and acceptance testing. A cross-reference shows the 
coverage of the bus specifications that is accomplished by the specified tests. 
The method of testing to be used is specified for each stage. Most of these 
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items go above and beyond the specifications of the 
standard tightly specifies a bus of high integrity. 
an individual station to the bus standard is highly 

other bus standards. This 
Furthermore, compliance of 
assured. 

SAE AS4290, containing the test and validation pl~Ln, will 
sequence to support the test plan. Besides specifying a test 
specified by the standard, the draft includes a comprehensive 
assess error handling capability through error injection. 
incomplete as of this writing. 

provide the test 
for each function 
set of tests that 

The draft is 

The handbook will be published by the SAE as an AIR. The draft discusses the 
theory of the bus medium design and the protocol configuration. It describes 
the concerns that must be addressed as the bus network is integrated. It then 
presents three step-by-step sequences that may be followed to customize a 
particular bus. A sample design is included. A list:_ng of a BASIC program that 
can be used in the analysis is given in an appendix. In the final section, the 
bus state machine is discussed in detail. A cross-reference between each 
paragraph of the handbook and the standard is given. 

The designer of an LTPB-based system can design LTPB-compatible stations by 
following the SAE documentation. Furthermore, the designer can design the 
system with confidence that all of the issues necessary for system integration 
have been addressed. Nevertheless, the integration design and testing is 
ultimately left to the system designer. 

5.4.3.7 SAE High-Speed Ring Bus 

The HSRB is the other of two modern high-speed buses designed to meet the needs 
of the military for this decade and beyond. The HSRB is a point-to-point ring 
bus capable of 50 megabits per second operation. The bus users are called 
stations. HSRB station interaction is controlled by a token passing protocol. 
Only one station can hold a valid token at a time. Once it does, it may place 
a message onto the bus. The message is passed from station to station around 
the ring. Other stations can then respond to its request, as necessary. 

The standards and guidelines for this bus follow tre pattern of the LTPB bus 
documentation. When complete, the HSRB documentation will consist of a bus 
standard, a formal test and validation plan, and a fcrmally published handbook. 
The basic standard is released as SAE AS4074.2. It specifies the bus structure 
and protocols. The test and validation plan will define a step-by-step test 
procedure for validation of stations. The handbook will take a designer through 
the bus design, step-by-step, providing the formulas, tables, and graphs 
necessary to produce a solution compatible with the standard. 

The AS4074. 2 standard is a precise and complete spe<~ification of the physical 
and logical aspects of an HSRB. The state diagram of the bus operation is 
explicitly shown and discussed. Following the bus specification, the standard 
specifies a QA plan which defines the methods of testing to verify the bus 
operation. A cross-reference shows the method to u:>e for each bus specifica
tion. Most of these items go above and beyond the specifications of the other 
bus standards. This standard specifies a bus of high integrity, but not as 
tightly as the LTPB standard. 
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SAE AIR 4291, containing the test and validation plan, will provide the test 
sequence to support the test plan. It will specify the test requirements for 
verifying that HSRB stations meet the requirements of the bus standard. The 
draft is incomplete as of this writing. 

The handbook will be published by the SAE as an AIR. The draft discusses the 
theory of the bus medium design and the protocol configuration. It discusses 
the application specific variations that should be considered and some 
implementation specifics. Most of the AIR sections have little to do with 
integration. However, one section specifically addresses ·interoperability 
issues. It states that the standard guarantees interoperability at the physical 
layer. The AIR then points out how compatibility is affected by stations 
implementing optional features. It also indicates which optional features need 
to be addressed by the system designer. In general, optional features are _, 
designed to have no impact on compatibility. 

The handbook draft then gives the step-by-step process that the system designer 
should follow to calculate the main system design parameters: throughput, 
message latency, and message traffic flow. Some examples are provided. Design 
graphs are also provided. The graphs help the system designer see the tradeoffs 
being made when choosing the parameters. Finally, the elements of a station 
self-test and background test are specified. 

The designer of an HSRB-based system can design HSRB-compatible stations by 
following the SAE documentation. The integration design and testing is left to 
the system designer, but informal guidelines are provided. 

5.4.4 Bus Integration Techniques 

The complexity of the interactions among LR.Us on bidirectional buses has 
motivated many data bus designers to use various design analysis techniques when 
designing and certificating systems that use data buses. Typically, convention
al computer system design techniques are adapted to the unique requirements of 
data bus development. These techniques use mathematical or otherwise logical 
constructs to represent the system being designed. The representation is then 
exercised and tested to determine if the real system most likely has, or will 
have, the desired characteristics. Each technique emphasizes a particular 
characteristic. The goal of these techniques is usually to increase .the 
confidence that the system will always satisfy the requirements for it. Using 
these techniques could give the developer confidence that an aircraft is worth 
building, or give a CE confidence that a built aircraft should be TCed. 

Some of these techniques are described and their application to data bus design 
and analysis presented. Their use in certification will be addressed later. 
A list of the techniques documents is given in table 5.4-2. 
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TABLE 5.4-2. INTEGRATION TECHNIQUES DOCUMENTS 

I Document Name Reference 

Computer Resources Handbook for Flight Hecht and Hecht 
Critical Systems 1985 

Fault/Failure Analysis for Digital Systems ARP 1834 
and Equipment 

Procedures for Performing a Failure Mode, MIL-STD-1629A 
Effects and Criticality Analysis 

Fault Tree Handbook Vesely et al. 
1981 

Some of the techniques described below are recommended or required by the data 
bus documentation. Specifically, MIL-HDBK-1553 sta1:es, "It is essential that 
a proposed network be simulated before the design is finalized." (MIL-HDBK-
1553A, 1988). The HSRB test plan requires that the station tester emulate the 
host and all other bus stations. Similarly, both thE! LTPB and the HSRB specify 
the use of analysis in their QA plan. Some of the analysis techniques are 
recommended in the certification documentation. In AC 25.1309-lA, the 
Functional Hazards Assessment, FMEA, and FTA are all offered as acceptable means 
of showing compliance with RTCA/D0-178. Other techr.iques are commonly used by 
developers simply as good engineering practice. 

5.4.4.1 Modeling 

Modeling consists of creating a system of mathematical equations that formulates 
all the significant behavior of the system being modeled. The reliability of 
the system is a common behavior of interest. 

In unidirectional broadcast buses, the bus is little more than a transmission 
medium, since all of the communications control is embedded in the LRU software. 
For these buses, modeling is used only to analyze the behavior of the electrical 
signals on the bus. The standards specify this behavior for an ideal bus. 
Modeling is necessary to confirm that a particular implementation, with multiple 
LRUs, specific bus lengths, and specific LRU separations, conforms to the ideal. 
This means that a particular layout of a bus must be sufficiently characterized 
so that the shape of the signal waveform can be calculated for any point on the 
bus at any time in the sequence of transmissions. This was done for the Mark 
33 DITS, for various configurations, to confirm tha<: distortions remain within 
the permissible limits of the waveform. The waveforms are presented in appendix 
1 of ARINC Specification 429-12. The ARINC 629 bu~: standard provides for the 
use of this kind of analysis also. Although ARINC 629 bus operation has been 
established for lengths up to 100 meters, "A systems designer may extend the bus 
length if proper analysis demonstrates that there is no loss of bus integrity." 
(ARINC Specification 629, Part 1, 1990). 
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A model of the electrical characteristics of a bus network is usually used to 
aid the engineer when developing a design. A tentative layout for integrating 
multiple LRUs can be set up in the model, and the electrical behavior checked 
for unanticipated problems. As various layouts are checked, the iterative 
process guides the designer toward a trouble-free solution. This technique 
turns trial and error learning into a convergent engineering design process. 

For bidirectional buses, bus communication is controlled by a computer system 
of its own. Bus transmissions are controlled by a state machine, implemented 
with hardware and software, that serves no function for the LRU except to 
control bus communication. This computer system can be quite complex, involving 
a protocol that controls numerous unique interactions in an environment that 
requires fail-safe operation. The reliability required of a bus used in 
critical avionics may be provided by a fault tolerance scheme that is dis
tributed across hardware and software features and even across LRUs. The design 
of such a system is greatly dependent upon the use of modeling. 

The Computer Resources Handbook for Flight Critical Systems (Hecht and Hecht 
1985) presents a simple analytic model for assessing the reliability, availabil
ity, and fault tolerance of a system. An analytic model allows the designer to 
evaluate the likely outcomes of system design decisions and gives insight into 
the behavior of the design. 

A thesis from the Naval Postgraduate School gives a good example of how modeling 
is applied to a complex data bus network (Nelson 1986). In that study, a 
computer architecture that uses advanced hardware-software reliability 
techniques is modeled for the purpose of determining a design that can meet FAA 
safety requirements for critical systems. Conventional reliability analysis is 
inadequate, since it is based on hardware reliability alone. In this case, the 
reliability was based on the reliability of the components of the system, and 
the capability of the system to identify correctly both the occurrence of a 
fault and its precise location within the system configuration. (This is 
exactly what is done in the bidirectional bus protocols as they try to ensure 
that no two transmitters attempt to operate simultaneously.) A Semi-Markov 
analysis computer program was used to create the model. This model was used to 
generate a configuration that met the safety requirements. 

Such a model makes an implicit claim that all significant effects were modeled. 
This is not necessarily so. Furthermore, models often include simplifying 
assumptions, which may or may not be true. For instance, Nelson made a 
conjecture that significantly reduced the model, but he did not completely prove 
the conjecture (Nelson 1986). 

After finding four simple techniques inadequate for complex systems, Veatch et 
al. (1985) present a reliability analysis methodology appropriate to a system 
that relies on system structure for its fault tolerance, as in dynamic 
reconfigurability. The Mission Reliability Model (MIREM) computer program 
produces a structural, rather than a component model of a system. It was used 
to determine the Mean Time Between Critical Failures for such a complex computer 
system. They noted, "A major advantage of MIREM as a design tool is its ability 
to evaluate the impact of proposed design changes." (Veatch et al. 1985). It 
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is particularly useful early in the design phase. T"clis methodology may prove 
to be useful for bidirectional buses, since they rely on system structure for 
their fault tolerance. The evaluation of changes could be very helpful when 
another LRU is added onto a working bus. 

In another study, an engineering model was produced fo·r the Advanced Information 
Processing System (AlPS). T"his model was used to evaluate the design of the I/0 
System Services of this system, which included two TDMA contention buses. In 
this case, the design was evaluated by testing to see if the AlPS model properly 
handled a sample set of I/0 requests (Masotto and Alger 1989). Similar tests 
could be performed to see if bus- integrated LRUs would properly handle their 
intercommunications. 

MORE is another program used to assess computer system designs (Munoz 1988). 
It is used to compare competing designs, rather than to create designs. The 
modeling teams follow a strict methodology to partition the architecture into 
a hierarchy of subsystems that communicate by a consi3tent set of interfaces to 
produce the system behavior. The methodology address·~s some important modeling 
concerns: 

"Because we are modeling systems that do not exist, it is not possible 
to validate the model against its real-world analogy, and yet it was 
recognized that some sort of validation must take place if any 
credibility is to be applied to the results obtained. Wherever 
possible, results were presented and discussed with experts in the 
field and/or with results obtained from similar systems that have been 
implemented." (Munoz 1988). 

The methodology also relies on peer review for validating the models. The use 
of "best engineering judgment" is defined for fillin;~ in lacking information. 

T"he Hybrid Automated Reliability Predictor (HARP) embodies yet another approach 
to the modeling of computer systems that use advanced reliability techniques 
(Bavuso et al. 1987). It addresses a weakness of tha structural decomposition 
method, discussed above. In order to do a structural decomposition, the fault 
tolerant behavior of a system must be able to be partitioned along with the 
mutually independent subsystems. T"his often is not t:he case. The HARP program 
uses behavioral decomposition instead. Bavuso et al. applied the method to two 
flight control systems as examples. 

Some models are more general purpose. Parhami (1979) developed an approach to 
modeling bus redundancy. The model can be used to assess the tradeoff between 
increased redundancy and increased complexity for single and multiple bus 
systems. 

5.4.4.2 Simulation 

Simulation is very similar to modeling. Simulation consists of creating a 
system of mathematical equations that formulates all significant contributions 
to the behavior of the system being modeled. Simulat:ion, however, assumes that 
the system exists. A simulation usually combines a computer program emulation 
of most of the functions of the system (before they are implemented) with some 
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of the actual hardware. Simulations that rely heavily on emulation are 
sometimes called emulations. 

Since real, rather than proposed, behavior is modeled by a simulation, the model 
can be, and should be, validated. The response of the simulation to a 
particular real-life scenario is compared against the response of the real 
system. Once the simulation is validated, it is used to do analyses which would 
be too costly in time, money, or risk to perform on a real system. 

The ARINC 629 bus, MIL-STD-1553 bus, LTPB, and HSRB all rely on simulation for 
the validation of a particular bus network. The LTPB handbook includes a 
program listing that can be used to simulate the priority scheme of the 
protocol. This simulation aids the system designer in choosing protocol 
parameters while the bus design is still only on paper. The HSRB test procedure 
requires a simulator that can emulate a host and all other stations. Simulators 
are also used to test and evaluate ARINC 429 buses. 

The USAF Aeronautical Systems Division defined guidelines for the development 
of computer programs used in digital flight control systems. Sylvester and Hung 
(1982) present the concepts for V&V of these systems that require extreme 
reliability. They found that, 

"The key to the development approach leading to V&V is the consistent 
and integrated use of models and simulations. The verification of 
such simulations with ground and flight test information leads to 
validation of flight control system concepts and implementation." 
(Sylvester and Hung 1982). 

They proceed to present a conceptual framework where the problem of design and 
test of highly reliable systems may be studied. The aesign process should start 
with a functional simulation, validated against experimental data and analysis. 
As it continues, the simulation should evolve into a simulation test facility 
which uses as much of the prototype hardware as possible. In the testing phase, 
flight tests should be instrumented to gather data to confirm that the earlier 
simulations were valid. Sylvester and Hung also describe an entire system of 
simulation plans and reports, and a cross-reference index for the integration 
of simulation into the design process. 

The need for early validation of complex computer systems is also addressed by 
Karmarker and Clark (1982): 

"Few automated or semi-automated techniques, however, have been 
developed to address the verification of the very early development 
stages, namely system requirements and system design. Instead modern 
practice relies on formal and informal reviews, and analytical studies 
and trade-off analyses of various aspects of the system design." 

They present a tool and a development methodology for using a system level 
emulation to perform this early validation. They have applied the technique to 
a flight control system. 
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The National Aeronautics and Space Administration has also investigated using 
emulation as a technique for validation, rather than relying only on analytical 
modeling. Becher writes, "ways must be found to reduee the risk caused by these 
new technologies" (Becher 1987). Becher developed an algorithm to emulate the 
hardware of complex integrated computer systems as lcgic gates, flip-flops, and 
tri-state devices. The emulations are used as general reliability analysis 
tools in the Avionics Integration Research Laboratory (AIRLAB). Such an 
emulation also lends itself to using fault injection to determine the response 
of the system to faults. 

Petrichenko (1988) writes on some lessons learned f:rom doing simulation. The 
article gives a good introduction to some of the basics of simulation tech
niques, particularly for hardware-in-the-loop simulation. He observed that an 
added benefit of creating a simulator is that it functions as an independent 
development of the same function as the system bein?; simulated. As a result, 
when the logic of the two differ, often the system logic may be found to be 
faulty. 

Hecht and Hecht (1985) address the simulation of reliability models. They point 
out that simulation allows complex models to be evaluated for the system failure 
modes. Furthermore, a simulation can be tailored to '~oncentrate on the unlikely 
problem areas that are of particular interest in critical systems. They discuss 
some general-purpose simulation programs that can be used. Bannister et al. 
(1982) also address the evaluation of which design is best for a particular 
application. They state, "Simulation and analytical tools are the time-proven 
means for the precise evaluation of a given design." They then discuss some 
software tools that can be used for this purpose. 

Simulation is taken one step further with the ARINC ·~29, CSDB, and MIL-STD-1553 
buses. Manufacturers make black box testers that are used to simulate an LRU 
connection to the bus. They are made to generate and evaluate messages 
according to the electrical and logical standards for the bus. They consist of 
a general purpose computer connected to bus interface cards. The simplest ones 
may simulate a single LRU transmitting or receiving. The most complex ones may 
be able to simulate multiple LRUs simultaneously, as well as a BC, where 
applicable (McCartney and Phillips 1981). 

These simulators are invaluable for system integration in highly integrated 
systems. In such systems, a single LRU cannot be tested without the entire 
system being present. Testing should not be held o:ff that long. Furthermore, 
the correctness of the data bus itself must be checked before LRUs can be 
installed (Sawtell and Dawson 1988). These simulators provide a solution to 
both problems; they can be used to verify bus operation and to simulate the 
other LRUs in the system. Fitzgerald and Polivka (1982) also point out the 
usefulness of a system tester that can be used in data bus system development 
and integration testing. 

Although simulation can be used to detect many integration problems, a 
simulation cannot be run for the many hours required to prove that a system will 
not have a critical failure more often than 10-9 per flight-hour. VanBaal (1985) 
states it well: 
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"To put this figure into perspective, it should be realized that the 
total accumulated number of flight-hours on turbo-jet powered 
airplanes since their introduction in 1957 is estimated to be in (sic) 
the order of 3 x 108 . It is thus easily seen that proof of such low 
probabilities by means of ... simulation is highly impractical." 

As a result, more analytical techniques should be used to support simulation. 
Some of these techniques are discussed in the following sections. 

5.4.4.3 Fault/Failure Analysis 

F/FA is a general term for analysis techniques used to identify systematically 
and, possibly, quantify the effects of hardware failures on a system. Modern 
data bus interfaces are sufficiently complex to warrant such an analysis. The 
techniques usually implied are those of the formal F/FA process defined by ARP 
926A. The application of these basic techniques to processor-based digital 
electronics is presented in ARP 1834. 

ARP 1834 discusses, in detail, the purposes of F/FA, the types ofF/FA, and the 
considerations to be made in choosing which techniques to use and how thorough 
an analysis to perform. The desired effect is to produce a credible statement 
of the possible faults and their effects in the most cost effective manner. The 
analysis techniques fall into two classes. Those that analyze the faults from 
the top-down and those that analyze from the bottom-up. 

In the first case, the analyst postulates the undesirable system effects and 
deduces from them what subsystem faults could produce such an effect. The 
analyst asks the question, "How can this failure occur?" Each subsystem fault 
is then analyzed to determine what lower level fault would cause the subsystem 
fault. Each of these branches is expanded until they are terminated by faults 
considered to be sufficiently controllable or sufficiently unlikely. Top-down 
analysis has an advantage in that it can be performed on design models. A 
disadvantage is that it does not guarantee that every possible fault is 
identified. ARP 1834 covers the use of FTA for a top-down approach. An example 
is given in appendix 2 of the ARP. 

In the bottom-up method, the system components and their relationships are 
known. The analyst identifies every possible failure mode of each component at 
the level of interest and then deduces the effect each failure would have on the 
next higher level. This procedure answers the question, "What failures are 
possible?" This method is exhaustive. It covers all the bases, but it can 
become unmanageable for complex systems. A bottom-up analysis of IC-based 
circuits must be initiated at some level higher than the component level to be 
feasible. The process defined in ARP 1834 covers FMEA for a bottom-up approach. 

The two approaches tend to be complementary. The F/FA process provides for 
using both approaches. Since both approaches rely on the ability of the analyst 
to think of failure modes and their implications, it is essential that a well
coordinated team effort be used to conduct a correct and comprehensive survey 
of all system faults and their effects (Vesely et al. 1981). Failure Mode, 
Effects, and Criticality Analysis (FMECA) and fault insertion are also presented 
as available methods. Each of the techniques incorporated by ARP 1834 is 
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defined apart from that document and can be used independently of it. For this 
reason, they are discussed individually in subsequent paragraphs. Additional 
discussion is presented in chapter 3 (Curd 1989) of the Digital Systems 
Validation Handbook. Volume II. 

5.4.4.4 Fault Tree Analysis 

FTA is a method that helps ensure that decisions aboU1: a system are based on all 
known pertinent information on the system. In particular, a decision about the 
likelihood of a certain undesirable event occurring should take into account the 
implications of all credible ways in which the event can occur. FTA does this 
by providing a directed, disciplined process for identifying the failure 
producing faults. Furthermore, the analysis recogn:.zes that a complex system 
is more than the sum of its parts. Component interac1:ions determine much of the 
character of a system. Thus, FTA is particularly appropriate for analyzing bus
integrated avionics for problems that are peculiar to the system interactions. 
FTA is usually used for analyzing hardware faults, bU1: application has been made 
to software and computer systems (Hecht and Hecht 1985). 

FTA is recommended by ARP 1834 as a component in an F/FA. FTA of hardware is 
defined, explained, and demonstrated in the Fault Tree Handbook (Vesely et al. 
1981). They explain, 

"Fault Tree Analysis is a deductive failure analysis which focuses on 
one particular undesired event. The undesired event constitutes the 
top event in a fault tree diagram. Careful choice of the top event 
is important to the success of the analysis. If it is too general, 
the analysis becomes unmanageable; if it is too :>pecific, the analysis 
does not provide a sufficiently broad view of the system. Fault tree 
analysis can be an expensive and time-consuming exercise and its cost 
must be measured against the cost associated with the occurrence of 
the undesired event." (Vesely et al. 1981). 

Because fault trees can easily become unmanageable, Hecht and Hecht (1985) 
suggest that FTA be used to identify the critical events at the subsystem level, 
then use FMECA to determine the potential causes of these events. 

A typical fault tree is shown in figure 5.4-1. 

171 



-- -- ----------~ ·-----~-----------·--- ----- ---------- ------------

The computer 
stops working 

I 
OR I 

I 
I I I 

I 
The hard disk Someone tripped The fuse 

crashed on the cord blew out 

I 
AND I 

I I 
I I 

The cord was A person 
left exposed walked by 

FIGURE 5.4-1. TYPICAL FAULT TREE 

The fault tree is produced by a directed qualitative process. However, once the 
tree is produced, a quantitative probability of the undesirable event occurring 
can be calculated. The FTA can be used for either purpose: simply to identify 
the causes so that they can be controlled, or to calculate the probability given 
the set of causes. 

A quantitative analysis is shown in figure 5.4-2. It is calculated as follows: 

2.3 X 10-4 z 5. 7 X 10-5 + (7 X 10-4)(0.2) + 2.9 X 10-5 

where it is assumed that every person that walks by will trip on the cord. 

A particular fault tree only accounts for the effects of the most credible 
attributing faults, as thought of and assessed by the analyst. It is not a 
model of all possible system failures or all possible causes for system failure. 
To accomplish that, the analyst must identify every possible system failure and 
develop the fault trees for each of them. 
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On 

The computer 
stops working 

Two times per year 
(2.3 X 10-4 

OR I 
I I 

I I 
The hard disk Someone tripped The fuse 

blew out crashed on the cord 

ce every two years 1.2 times per year Once every four years 
(5. 7 X 10-5) 

I 
The cord was 
left exposed 

Six hours a year 
(7 X 10-4) 

J 

(1.4 X 10-4 ) (2.9 X 10-5) 

AND I 
l 

I 
A per: 
walke~ ~o~y I 

Once per flve hours 
(0.2) 

FIGURE 5.4-2. QUANTITATIVE FAULT TF.EE ANALYSIS 

5.4.4.5 "Parts Count" Failure Analysis 

If it is assumed that the failure of any single component in a system will cause 
a system failure, the probability of system failure is simply the sum of the 
individual failure probabilities. The analyst eounts the number of each 
component, multiplies each of these by the probability that the component will 
fail, and then adds these together. This probability is the most conservative 
estimate, since all dependencies are covered. Thus, if the system or subsystem 
failure probability is sufficiently low using the parts count method, then it 
will be found to be sufficiently low by any more refi.ned method. The additional 
detail of those methods would be unnecessary. Some of these more refined 
methods are discussed in the following paragraphs. 

5.4.4.6 Failure Mode and Effects Analysis 

FMEA is a systematic analysis of failures and their effects, that uses an 
inductive, bottom-up approach. It is one of the techniques recommended by ARP 
1834 for an F/FA of digital systems. 

In a purely qualitative analysis, the analyst identifies every significant 
failure imaginable at a certain subsystem level and then describes the effects 
that result as the impact of the failure ripples up to the system level. A 
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simple qualitative FMEA is shown in table 5.4-3. A more detailed worksheet is 
provided in MIL-STD-1629. 

TABLE 5.4-3. FMEA QUALITATIVE ANALYSIS REPORT 

Component Failure Mode Failure Effects 

Bus Line Driver Open circuit 1. LRU can no longer transmit. 
2. Bus impedance is changed. 

Short Circuit 1. Bus transmission disabled 
until driver timeout. 

2. Bus impedance is changed. 

Once the effects are identified, a quantitative analysis can be performed to 
find the likelihood of system failure based on the combined contributions of the 
various unrelated failures. Table 5. 4-4 shows a typical quantitative FMEA 
report. The probability of a critical system failure is 2 x 10-4 , which is the 
sum of the four critical effect probabilities. 

Component 

A 

B 

TABLE 5.4-4. FMEA QUANTITATIVE ANALYSIS REPORT 
(Vesely et al. 1981) 

Percent Critical 
Failure Failure Failure Effect 

Probability Mode by Mode Probability 

1 x 10-3 Open 90 
Short 5 5 X lo-s 
Other 5 5 X lo-s 

1 X 10-3 Open 90 
Short 5 5 X lo-s 
Other 5 5 X lo-s 

Noncritical 
Effect 

X 

X 

FMEA is generally used to provide an analysis of hardware, but MIL-STD-1629 
defines both a strict hardware approach and a functional approach in its 
procedures for performing FMEA on hardware. Extending FMEA further, VanBaal 
(1985) found that no special treatment is required when the software elements 
of a system are included in the analysis. He concluded, "an FMEA of a system 
containing software can be performed and yields useful results with regard to 
system safety" (VanBaal 1985). However, the quality of the software has to be 
ensured by following good software engineering practices. Thus, FMEA can be 
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used to address data bus integration issues associated with processor-based bus 
interfaces. 

A quantitative FMEA requires that failure rate data be available for all the 
components. This is not usually available for software or for new and novel 
hardware components or subsystems. Warr (1984) describes a special method of 
FMEA that could be applied in these situations. A multifunctional team of 
design engineers defines the relative rankings and relative weights for each 
product and its failure modes. The relative risk associated with each failure 
mode can be calculated from these weights. This method might prove to be 
especially useful for certificating new and novel bus- integrated systems for 
which no earlier counterpart exists. Hecht (1986) also addresses some of the 
unique requirements for applying FMEA to digital avi•Jnics. 

FMEA is called out as the recommended means of analysis by one of the bus 
standards. An ARINC 629 bus is to be made of a single, unspliced cable. If a 
splice is made, the standard recommends that an FHEA be completed for each 
splice. 

5.4.4.7 Failure Mode. Effects. and Criticality Anal·rsis 

FMECA is recommended by ARP 1834 for use in F/FA of digital systems. The 
technique is defined by the U.S. Department of Defense in MIL-STD-1629. The 
purpose of an FMECA is the early identification of all critical failure 
possibilities so that they can be eliminated or minimized in the system design. 
The standard establishes the following procedures: 

"to systematically evaluate the potential impact of each functional 
or hardware failure on mission success ... Each potential failure is 
ranked by the severity of its effect in order that appropriate 
corrective actions may be taken to eliminate or control the high risk 
items." (MIL-STD-1629A, 1984). 

FMECA is very similar to an FMEA, but the criticality of the failure is analyzed 
in greater detail and controls are described for limit:ing the likelihood of each 
failure. An FMECA worksheet might look like thc:.t shown in table 5. 4-5. 
MIL-STD-1629 contains a more detailed worksheet. 

TABLE 5.4-5. FMECA ANALYSIS REPORT 

Failure Mode Failure Effects Control Net Effects 

Bus line driver LRU cannot trans- LRU switches to One transmis-
open circuits dur- mit redundant bus sion is lost 
ing transmission 

The standard defines a two-step process, beginning with an FMEA and followed by 
a more detailed Criticality Analysis (CA). The pur:Jose of the CA is to rank 
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each potential failure mode according to the combined influence of its severity 
and likelihood, i.e., according to risk. 

The CA can be a qualitative categorization of the failures into five probability 
categories, or a quantitative calculation based on the hardware component 
failure rate data in MIL~HDBK-217. MIL-STD-1629 contains a detailed worksheet 
that is used for a quantitative analysis. Concerning the use of MIL-HDBK-217, 
Hecht and Hecht (1985) write, 

"While the overall failure rate of an LRU can be computed fairly 
readily from the part failure rate information, the failure probabil
ity in a specific mode pertinent to the aircraft level depends almost 
entirely on judgement. Thus, a considerable subjective component 
enters into this approach as well." 

FMECA requires a team approach, since the analyst who understands the effects 
at the component level will probably not properly assess the criticality of the 
effects at the system level. 

5.4.4.8 Fault Insertion 

Fault Insertion is suggested by ARP 1834 as a special technique for F/FA of 
digital systems. Because the system response to a failure may be time, mode, 
or data dependent, the analytical prediction of the response to a specified 
failure may be nearly impossible via the basic methods previously described (ARP 
1834, 1986). Important considerations for fault insertion, taken from ARP 1834, 
are summarized below. 

Rather than trying to deduce the response of a system to each failure, fault 
insertion consists of purposely inserting faults to observe the effects. This 
is most effective when it can be done in the actual system. Rather than alter 
a standard part, usually an LRU or a BC is emulated in a software based tester 
in which faults are easily generated. For verifying designs, a computer can be 
used to simulate bus components in a tester that includes fault generation. 

Fault insertion into the actual system is the most realistic, but has the 
disadvantage that only simple faults can be generated easily. Faults internal 
to an IC cannot be generated at all. Furthermore, the F/FA cannot be performed 
until the system is built. On the other hand, faults can be generated at any 
point in an emulation or a simulation; but they provide less realism. In 
addition, a simulation allows F/FA to be performed on a system design, long 
before any part of the system is fabricated. The main disadvantage of emulation 
and simulation is that they must be validated against the system they claim to 
reflect. For additional discussions on this topic, see chapters 3 (Curd 1989) 
and 5 (Cooley 1989) of the Digital Systems Validation Handbook. Volume II. 

5.4.4.9 System Safety Assessment 

System Safety Assessment (SSA) is a systematic and analytical methodology for 
assessing the safety of software controlled digital avionic systems. It is 
formulated for meeting the analysis requirements for civil aircraft airworthi
ness regulations. The methodology is summarized in table 5.4-6. 
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TABLE 5. 4-6. SYSTEM SAFETY ANALYSIS :'IETHODOLOGY 
(VanBaal 1985) 

1. Prepare a safety plan: 

Goal 
• Function safety plan in SSA 

Limits of the system and the SSA 
Techniques and analysis methods 
Safety criteria 
Time-schedule, organization 

2. Prepare a system description: 

System components (hardware and software) 
Functions of the system 
Architecture 
Interfaces (other systems, crew, environment) 
Requirements 
Safety-related measures already foreseen 

3. Perform a hazard analysis: 

A qualitative, top-down analysis of deductive character 

4. Perform a failure mode and effects analysis: 

A bottom-up analysis of inductive character; initially, only of a 
qualitative nature 

5. Perform other analyses, where necessary. Some options are as follows: 

Zonal analysis 
• Fault tree analysis 

Sneak circuit analysis 
Common cause failure analysis 
Change analysis 

The analysis begins with a Hazard Analysis (HA), whic:h identifies the functions 
whose failure could lead to dangerous situations. The emphasis is on the 
effects that system failure has on things other 1:han the system, like the 
airplane or the crew. VanBaal shows the HA worksheet:; it is reproduced here in 
figure 5. 4-3. An FMEA is then performed on the parts of the system that 
contribute to the functions identified by the HA. .~dditional analyses can be 
conducted as needed to demonstrate airworthiness. The options are listed in 
table 5.4-6. 
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HAZARD ANALYSIS !Primary System: !Aircraft: loate: I Page: of 

Most 
Function, Failure Condition Possible Critical Hazard Hazard Hazard 

# (Effects on Aircraft and Flight) Causes Flight Class Limited By Increased By Remarks 
Phase 

FIGURE 5.4-3. HAZARD ANALYSIS WORKSHEET HEADER 
(VanBaal 1985) 

5.4.4.10 Preliminary Hazard Analysis 

The Fault Tree Handbook (Vesely et al. 1981) describes a Preliminary Hazard 
Analysis that is very similar to the HA. The "preliminary" emphasizes that this 
analysis should be conducted as early in the development cycle as possible to 
identify system safety requirements. Whereas the other methods focus on the 
effect of failures on system operation, this procedure assesses the potential 
hazards posed to system users and bystanders. The process consists of 
identifying hazardous situations and the events that could place the system in 
that situation. The likelihood of the enabling events must be assessed so that 
the need for preventative measures can be determined. This establishes the 
system safety requirements. 

5.4.4.11 Sneak Circuit Analysis 

The Computer Resources Handbook for Flight Critical Systems (Hecht and Hecht 
1985) describes the sneak circuit analysis referred to in the SSA. It is a 
systematic way of detecting unintentional behavior in a system. A logic tree 
is developed for the logic of the system, regardless of whether the system is 
implemented in hardware or software. A software tool analyzes this tree to find 
all the conditions that can cause a given output, all conditions that are 
necessary to prevent a given output, and all conditions that can cause a 
combination of outputs. An analyst then examines these lists to ensure that 
there are no violations of the system requirements. 

5.4.4.12 Petri Net Safety Analysis 

Petri nets are a special form of state diagram that can be used to model and 
analyze system behavior, both hardware and software. From a Petri net, an 
analyst can identify all possible states of the system and, particularly, the 
terminal states into which the logic may lock up. Leveson and Stolzy (1987) 
give several references for this type of conventional Petri net analysis. 

Leveson and Stolzy, however, address the use of Time Petri net modeling and 
analysis techniques in the safety analysis of real-time computer systems, like 
those in aircraft. They developed a Petri net variation which includes a time 
element, noting that "basically correct software actions which are too early or 
too late can lead to unsafe conditions" (Leveson and Stolzy 1987). From the 
analysis, they can determine "the timing constraints of the final system 
necessary to avoid high-risk states and the watch-dog timers needed to detect 
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critical timing failures" (Leveson and Stolzy 198:'). They also develop a 
procedure for analyzing how failures affect the timi":1g and reachability of the 
system states. This technique is appropriate for analyzing the complex state 
transitions of the bus communications in integrated avionics systems. It can 
be applied early in the design stage. 

5.4.4.13 Testing Techniques 

After all the design analysis, modeling, prototyping, and simulation, the real 
product finally needs to be tested. For transport aircraft, manufacturers use 
a Systems Integration Laboratory to test the data bus integrated avionics, since 
testing time on the prototype aircraft is much too eKpensive. This laboratory 
is also called a "hot-bench." The hot-bench allows the integrated system to be 
tested, but with simulated aircraft inputs. Simple bus bench testers only 
simulate generic bus communications. For GA aircraft, this system integration 
is often done in the actual airplane. 

As all the pieces of the aircraft are manufactured, testing may be done on an 
"iron-bird" configuration. In this test configuration, the avionics are 
connected to a cockpit mockup that can be "flown" on the ground by test pilots. 
This provides a realistic, real-time environment in which to test the bus 
integrated avionics. 

The final testing technique used is the flight test. The prototype airplane is 
actually flown in increasingly more demanding flight patterns to verify proper 
operation. While no bus integration problems are explicitly tested during this 
phase, it is still a very important part of the bus integration techniques. The 
real-time data that is collected is used to validate all of the previous 
simulations that were performed. If the small set of documented real flight 
behavior matches that of the simulations of the same behavior, then the 
simulations of all other unverified activity can be r·~lied upon. For additional 
discussion on this topic, refer to chapters 8 and 9 of the "Handbook - Volume 
I" (Hitt 1983). 

5.4.5 FAA Certification and Bus Integration 

FAR Part 21 defines the general process that avionic~: manufacturers must follow 
for the FAA to certify that avionic systems meet the airworthiness standards and 
are in safe condition for flight. In other words, FAR Part 21 defines the 
requirements for the process, and Parts 23, 25, 27, 29, and 33 define the 
requirements for the product. To what extent do the certification process and 
airworthiness standards ensure that complex bus-integrated avionics are 
correctly integrated? Consider the four certification processes presented in 
chapter 3. 

5.4.5.1 Type Certification and Bus Integration 

Type certification requires the most thorough demonstration of compliance to 
the standards. One of the strengths of type certification is it requires that 
systems meet a standard of what constitutes airwor1:hiness. The manufacturer 
who develops systems under a TC must (Part 21, subpa1:t B) perform the following 
steps: 
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Submit a plan for the development, production, and verification of the 
product. 

"Make all inspections and tests necessary to determine compliance with the 
applicable airworthiness requirements" and to determine that the 
materials, parts, and processes conform to those specified in the type 
design. 

• Perform flight tests, as required by the FAA, to determine the reliability 
and proper functioning of the system to be approved. 

• Submit "the type design, test reports, and computations necessary to show 
that the product to be certificated meets the applicable airworthiness ... 
requirements." 

Allow FAA investigators to make any inspections, ground tests, and flight 
tests necessary for them to determine compliance with the requirements of 
the FARs. 

Submit a statement of conformity certifying that each product manufactured 
under the TC conforms to the type design. 

A TCed product cannot escape this process. 

Since the TC process assures that products are checked for compliance with the 
airworthiness standards, the strength of the type certification depends on the 
quality of the airworthiness standards. All four standards include the same 
general requirements for equipment in aircraft (Subpart F, section 1301): 

"Each item of installed equipment must -
(a) Be of a kind and design appropriate to its intended function; 
(b) Be labeled as to its identification, function, or operating 
limitations, or any applicable combination of these factors; 
(c) Be installed according to limitations specified for that 
equipment; and 
(d) Function properly when installed." 

This general requirement is comprehensive in requLrLng proper functioning. From 
design and installation to operation, it requires that a bus-integrated system 
be properly integrated. However, it makes no attempt to define proper 
functioning and specifies no form of assurance or demonstration that a product 
meets this requirement. 

What constitutes proper functioning is more specifically defined in section 1309 
of each airworthiness standard. To varying degrees, proper functioning means 
that the equipment "perform its intended function under any foreseeable 
operating condition" and, generally, hazards that could result from probable 
malfunction or failure must be minimized or prevented. Parts 23, 25, and 29 
specifically state that this latter requirement take into account the relation 
of systems to one another. This makes these regulations strong on integration. 
But Part 27, for normal category rotorcraft, does not state this. However, the 
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primary weakness of Part 27 lies in the requireme·ats for demonstration and 
analysis. 

Part 27, the airworthiness standard for normal category rotorcraft, does not 
require any specific use of analysis, inspections, or tests beyond that required 
to show compliance with the requirements. This leaves a lot of room for 
interpretation when establishing whether a bus-integrated avionic system meets 
the general requirement that it function properly when installed. It certainly 
does not point the developer in the direction of using integration techniques 
or following bus standards and guidelines. A stronger section 1309 is in order 
for more critical systems (Swihart 1984). Howev·~r, even if section 1309 
referred directly to the bus standards, these standal'ds are weak on integration 
issues. Thus, successful integration of bus communications is not assured for 
normal category rotorcraft by the current type certif:~cation and bus integration 
documents. 

Section 1309 of Parts 23, 25, and 29 specifies analysis and testing for the 
purpose of demonstrating compliance with the requirements for the probability 
of failure and for environmental conditions. They also specifically list that 
an analysis must consider possible failure modes, nultiple failures, failure 
effects, and fault detection. These requirements do much to ensure that 
integration concerns will be addressed and that integration techniques will be 
employed. For transport category aircraft, these activities are assured, since 
Parts 25 and 29 both require such analysis. For norrr.al category airplanes, the 
analysis is only suggested as an acceptable means of showing compliance. This 
is a weaker regulation; but in practice, developers m:ually follow the suggested 
means for showing compliance. Although these airworthiness standards are more 
specific about the use of analysis and testing than Part 27, the integration of 
bus communications still is not ensured, since the bus standards give insuffi
cient guidance on the integration issues. 

5.4.5.2 Supplemental Type Certification and Bus Inte~ration 

Supplemental type certification involves the second ntost thorough regulation of 
the manufacture and installation of avionic systems. The basic tenet of this 
certification process is that the redesigned system must satisfy all the same 
requirements as the TCed product into which it will be installed. Thus, similar 
to the TC process, the manufacturer of a system that is to receive an STC must 
perform the following steps (Part 21, subpart E): 

"Make all inspections and tests necessary to det:ermine compliance with the 
applicable airworthiness requirements" and to determine that the 
materials, parts, and processes conform to th)se specified in the type 
design. 

Allow FAA investigators to make any inspections, ground tests, and flight 
tests necessary for them to determine compliance with the requirements of 
the FARs. 

Submit a statement of conformity certifying that: each product manufactured 
under the STC conforms to the type design. 
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Although an STCed product cannot escape this process, the STC process does not 
go as far in checking compliance to the airworthiness standards as did the TC 
checking. In particular, the manufacturer is not required to repeat the flight 
tests. Since an applicant for an STC is not the manufacturer who holds the TC 
for the original product, relaxing the requirements is unjustified. One 
manufacturer who is changing another's design must be sure to understand the 
design at least as well as the original design team. Changing a design after 
the fact is a more demanding process than working out a new design. Despite 
this, the process tends to move the focus from requiring the applicant to 
substantiate the entire design to substantiating the compliance of just the 
redesigned system, where it is assumed that the rest of the product is not 
affected. 

Like the TC process, the STC process ensures that products are checked for 
compliance with the airworthiness standards. The strength of the supplemental 
type certification also depends on the quality of the airworthiness standards, 
as previously discussed. But the fundamental weakness of the STC process for 
bus-integrated avionics is that it seems to underestimate the ramifications of 
a second party altering a TCed product. 

5.4.5.3 Parts Manufacturer Approval and Bus Integration 

A PMA gives a manufacturer approval to produce aircraft parts for sale or 
installation on the basis that they conform to another manufacturer's TC or STC. 
This is a reasonable regulation, however, it allows an owner or operator of an 
aircraft to manufacture parts for use on their aircraft without obligation to 
this regulation of aircraft part manufacture. In this case, installation 
approval (FAA Form 337) is all that is required. Although an installation 
approval requires that the part being installed is the one required by design, 
no investigation is required to verify the design. This seems to be a major 
weakness in the process of ensuring safe aircraft. An operating airline may 
manufacture a bus LRU according to the type design and then be given permission 
to install it, without any requirement that anyone perform inspections and 
tests. This is not an acceptable regulation of the production of complex 
digital bus-integrated avionics. Detailed accountability is a necessity. 

When the parts are to be sold, the manufacturer's ability to build reliable 
parts is carefully examined. The regulations require that the manufacturer who 
desires to sell a part must perform the following steps (Part 21, subpart K): 

Identify the "product on which the part is to be installed." 

Submit the information necessary to show the design of the part. 

Submit the "test reports and computations necessary to show that the design 
of the part meets the airworthiness requirements" or that the design is 
identical to the original TCed part. 

• "Establish and maintain a fabrication inspection system." 

Allow FAA investigators to make any inspections or tests necessary for them 
to determine compliance with the FARs. 
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"Make all inspections and tests necessary to determine compliance with the 
applicable airworthiness requirements" and to determine that the materials, 
parts, and processes conform to those specified in the type design. 

"Determine that each completed part conforms to the design data and is safe 
for installation." 

These requirements are commensurate with those required to ensure that bus
integrated avionics are properly produced. They are almost as strict as those 
for type certification. The first point avoids the pr~blem that LRUs in digital 
systems are not 100 percent interchangeable, since thB single intended point of 
installation must be specified. In general, these requirements also do not 
assume that the new design produces the same result .s.s the type design. Thus, 
the manufacturer's design is reviewed and compared to the airworthiness 
standards, independent of the fact that the new design was to meet the type 
design. 

The PMA is weak because no flight tests are required, even though the part is 
a new design; no specific inspections and tests are suggested; and the 
airworthiness requirements can be avoided by showing the new part is identical 
in design to the original. If the airworthiness requirements are used as the 
standard, the weaknesses of the PMA are limited primarily to those associated 
with the airworthiness standards, as previously discussed (except for the lack 
of a required flight test). But, if the manufacturer chooses to only show that 
the design of the part is identical to the type design, a more serious problem 
is allowed to occur for bus- integrated avionics. An identical design would 
likely be limited to the requirements set forth by th3 bus standard. Since the 
bus standards generally do not sufficiently cover bus integration, too much 
leeway is allowed in determining whether a design is equivalent. 

5.4.5.4 Technical Standard Order Authorization and Hus Integ;ration 

A TSO Authorization gives a manufacturer approval to produce an aircraft part 
for sale or installation on the basis that it conforns to the minimum perform
ance standard for the part, as specified by a TSO. J~ manufacturer who desires 
to produce parts under a TSO Authorization must pe-rform the following steps 
(Part 21, subpart 0): 

Issue a statement of conformance to the FAR and the TSO. 

Submit the technical data required by the TSO. 

Submit a description of the quality control sys~:em. 

"Conduct all required tests and inspections anc. establish and maintain a 
quality control system." 

Allow FAA investigators to witness tests and inspect parts, processes, 
facilities, and files. 
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This process is the weakest of the four. The TSO concept, that a part can be 
specified apart from its application, is contradictory to the design of parts 
that compose bus-integrated avionics. Furthermore, the bus standards do not 
provide a sufficient forum for producing a reliable TSO. In general, they do 
not provide an integration standard. Even apart from the integration issues, 
the bus standards leave too many requirements unspecified. A TSO that 
incorporates something like the ICDs published for a MIL-STD-1553 bus system 
could possibly provide the necessary integration criteria. 

The TSO Authorization is weak on checking that the manufacturer's design truly 
satisfies the minimum performance standard of the TSO. All that is required is 
a statement of conformance. The FAA investigators may request analysis, 
inspections, and tests, but none are specified as a matter of course. It is 
unreasonable to expect the new design to fulfill the requirements without a 
systematic engineering approach. As pointed out earlier, most of the bus 
standards are open to interpretation. There is no guarantee that two designs 
for the same bus-integrated avionics would produce the same result. 

The airworthiness issue is also inadequately addressed. It is left unaddressed 
by the TSO Authorization. The manufacturer need not be concerned with the 
airworthiness issue or the flight tests needed to substantiate it. The parts 
need only conform to a TSO. It is left to the installation process (FAA Form 
337) to determine whether a part with a TSO number may be installed. Yet, 

"when a system is installed in an aircraft it's often the first time 
TSO approved components can be tested for proper integration. This 
point in the certification process is often too late for the type of 
testing which would be required to demonstrate all combinations of 
system operation." (Williams 1989). 

Nevertheless, as pointed out before, the installation process does not 
investigate the design of the part and certainly not its impact on airworthi
ness. 

The FAA has responded to this problem by issuing ACs on some of the advanced 
integrated systems, like autopilot, TCAS, and multisensor navigation systems. 
The ACs require an additional approval, the Preliminary Installation Approval, 
under certain circumstances. This approval is achieved through an STC program 
for the integration of the system into a specific aircraft. The manufacturer 
must obtain the STC before producing the system for sale. The AC further 
specifies the conditions under which the purchaser must either undergo an STC 
evaluation or simpl~ apply for an installation approval. 

Another problem with the TSO Authorization is that manufacturers with a TSO 
Authorization are given substantial freedom for changing the design. The 
manufacturer may make minor changes to the design being used without any further 
approval from the FAA. This could be reasonable, depending on what is 
considered a minor change. However, it is left to the manufacturer to make the 
determination. The manufacturer can of course solicit an unofficial opinion 
from the ACO. If too much latitude is taken, the FAA will discover this in the 
next audit of the manufacturer's activity. In this case, the manufacturer risks 
the possibility of being fined by the FAA. 
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The manufacturer can also request a deviation from the requirements of the TSO. 
To be granted a deviation, the manufacturer must s'ttow that the deviation is 
compensated for by factors or design features that provide an equivalent level 
of safety. The means of showing compliance to this level of safety is 
unspecified. 

5.4.6 Summary 

Until bus standards are standardized in addressing the complete development 
process, it is not sufficient for a developer to claim that a developed bus 
satisfies the bus standard. Even when bus standards and guidelines are 
followed, the extent to which reliable communication has been achieved depends 
on the particular bus documentation. Some stan::lards barely address the 
integration problems. 

Furthermore, bus standards will never be able to ensure that any particular 
design is proper. The standards must, necessarily, leave room for application 
specific variations. Thus, CEs should expect that bus communications be 
developed and validated through a methodology wh:_ch includes most of the 
following techniques (Ashmore 1982, Bannister et al. 1982, Carter 1986, Earhart 
1982, Hitt and Eldredge 1983, Shimmin 1989, Spradlin 1983, VanBaal 1985, and 
Verdi 1980): 

Requirements Capture - Use a system that ensures that each requirement is 
captured by the design. A cross-reference mat1~ix to identify where each 
system requirement is satisfied in the system specification should result. 

Configuration Control - Use a system that tracks exactly what revision of 
which components constitute the latest approved configuration. 

Design Modeling - Model the design for the put·pose of choosing the best 
one for the system specification. 

Hazards Analysis - Determine the effect of system failures. 

F/FA - Determine the probability of each failure occurrence. 

Hot Bench Simulation Perform laboratory testing of LR.Us based on 
simulation of the environment. 

Iron Bird Simulation Perform testing of real-time operation on a 
simulation that uses as much as possible of the actual avionics and 
airframe. 

Flight Testing - Perform testing during actual flight of the aircraft. 

If levels of performance are set for specific tect.niques, such a systematic 
development can ensure proper operation for any application. Certification 
procedures and airworthiness standards need to go further to ensure that bus 
integration is accomplished according to a systematic engineering process 
involving analytical techniques. 
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6. CONCLUSIONS 

The data communication on serial data buses in aircraft has been analyzed from 
several different angles. The certification procedures have been reviewed to 
determine the certification activity that is performed on data buses. The 
regulations have been analyzed to identify the stipulations that avionic data 
buses must satisfy. The technology has been addres~:ed from several points of 
view to determine the areas that require careful att•~ntion, regulation, and/or 
certification. What are the main areas of concer~. for using data buses in 
aircraft? To what extent are these areas addressed by the current regulations 
and certification procedures? What improvements ar·a needed? The answers to 
these questions are summarized in this chapter. 

6.1 Certification Procedures for Bus- Integrated Sys·~ems 

The TC and STC processes are sufficiently robust to accommodate the complexities 
of current and emerging serial data bus technologiE~s. However, they do not 
currently address these technologies as specifically as necessary. The 
procedures leave the manufacturer and ACO free to mutually determine the 
specific analysis, tests, and documentation required to substantiate the safety 
of the aircraft being designed. They are even free to categorically accept data 
buses as safe, treating them as "simply a piece of wire." Data buses, however, 
are more than just wire and have failure modes that cannot be exercised by 
system level tests. Communications on bidirectional c.ata buses are sufficiently 
complex that the methods of demonstration should be carefully thought out, 
documented, and standardized by data bus experts. A standard that functions 
like RTCA/D0-178 does for software, is needed for Type Certification of bus
integrated systems. 

The Production Certificate situation is similar. The procedure appropriately 
requires the manufacturer to establish an approved production inspection and 
test system to ensure that each manufactured part: meets the type design. 
However, the procedure is not specific about what inspections and tests to use. 
This is inadequate, since manufacturers implement Vc.rious amounts of testing. 
For example, Earhart (1991) explains that, although MIL-STD-1553 buses have been 
designed and implemented for nearly 20 years, testing of LRUs is often 
insufficient because of fundamental misconceptions, :>uch as the following: 

"Validation testing is not necessary if validated components are used to 
build the RT." 

"Because the [bus J interface board was validat.ad in one LRU, validation 
testing isn't necessary on subsequent LRUs." 

"Validation testing is not necessary because the LRU has been operating in 
the system." 

A formal bus testing standard should be adopted by the industry for each avionic 
bus to ensure that tested systems truly are reliable. Furthermore, the 
reliability of integrated systems is not ensured by tasts of system components. 
Installation approvals need to include integration testing. 
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The procedure specified for a TSO Authorization inadequately addresses approval 
of bus-integrated systems, since it allows approval of a component independent 
of the system into which it will be installed. The FAA is making interim 
provisions through special ACs. For the long term, either the procedure should 
be formally made more robust, or integrated systems should not be eligible for 
this approval. 

The current certification procedures have successfully supported the certifica
tion of nonessential systems using data buses. They have also been used to 
support the certification of bus-based essential systems backed up by conven
tional means. Most of this experience is with unidirectional buses, but some 
of it involves bidirectional buses used to a limited extent. To date, no 
civilian aircraft accidents are known to be due to data bus failure. 

As bidirectional data buses 
relied upon in fly-by-wire 
identify the steps necessary 

are used for essential and critical systems and 
aircraft, the procedures need to specifically 

for ensuring reliable data bus operation. 

6.2 Related Regulations and Standards 

There is no specific approach for certificating systems containing digital data 
buses and integrated avionic equipment. As a result, the CE must consult many 
sources for information concerning any affects a data bus might have on a 
flight-critical or flight-essential system. To further complicate the problem, 
the sources must be related to broad federal regulations. 

The AIAA, IEEE, and other organizations produce publications which address 
technical requirements for avionic systems integrated with data buses. Since 
current certification methods do not consider systems at the bus's level, these 
publications could be useful for establishing new certification procedures. 
Test procedures within the publications may ensure that particular interactions 
between a system and a data bus are not overlooked during a system's certifica
tion. 

RTCA and SAE committees work towards making an avionics system easier to 
certify. Standards produced by these organizations may be used as part of the 
manufacturer's design process, or as informal guidelines to meet specific FARs, 
ACs, or SCs. 

ARINC and GAMA also work with manufacturers to produce standards for avionic 
equipment and data buses. The standards include specifications of data bus 
topologies and protocols, as well as tests which data bus manufacturers can use 
during the development process. Because the standards contain specific 
technical information about data buses, they are also useful for system 
certification. 

Chapter 4 related current FARs to procedures defined by the above organizations. 
It is also useful for developing a certification process applicable to 
integrated avionic equipment and data buses. The new procedure for certifica
tion should consider information from a variety of sources and treat every 
integrated system separately. Whether a new certification process is developed, 
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or current methods refined, a successful procedure shl)uld perform a thorough V&V 
on all aspects of flight-critical and flight-essential systems. 

6.3 Bus-Integrated Systems Technology 

6.3.1 System Integration Concerns 

There is no one factor that can satisfy all of the requirements for data buses 
used in flight-critical systems. The accurate and ti.mely delivery of data from 
the source to the destination demands that the data bus exhibit a mixture of 
attributes. The architecture needs to control data latency. Physical 
redundancy needs to be carefully considered and implemented. Protocols must 
ensure periodic, deterministic, simple, error-free, and efficient communication. 
Other attributes, such as maintenance and monitoring, are implemented at the 
discretion of the designers and system integrators. This implementation 
requires careful and detailed consideration in the design phase and should not 
be treated as an afterthought. 

The system designer or system integrator is tasl<:ed with many integration 
decisions. Using standards that are not completely specified, or are unclear 
in certain areas, creates problems which might escape detection. Seeking to 
resolve any ambiguity at an early stage will ensure a more successful integra
tion period. 

The system integrator should not merely be concerned with having an operational 
system, but a system that operates correctly under all conditions. Exhaustive 
monitoring, recording, and reporting of data bus activity is the only way to 
ensure that data bus integrity is maintained. 

6.3.2 Bus Hardware-Software Interaction 

Hardware-software interaction between a BIU and an ~rionic system can be easily 
overlooked during a system's certification process. Integration has taken data 
buses to a new level, sometimes concealing what functions are implemented with 
hardware and what functions are implemented with software. Section 5. 2 
discussed hardware-software interaction between digital data buses and avionic 
systems. Special attention was given to the BIU IC and the host system CPU's 
interface. 

To analyze hardware-software interaction at this level, section 5.2 discussed 
data integrity problems that arise when a bus and avionic system pass data. 
Common errors which occur during bus hardware-software interaction include 
parity, framing, and overrun errors. Other errors more specific to certain 
buses, are timing and interrupt handling errors. All of these errors could 
result from dynamic conditions within the BIU or CPU, or from the system's 
design. 

Regardless of the type, any undetected error can ha,•e a catastrophic effect on 
its system. For this reason, section 5.2 presented methods of error detection 
and correction. These methods included monitoring, voting, retransmission for 
after the fact correction, prevention, and redundancy. Any of the methods can 
be applied at the hardware-software interface. 
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Practical solutions for hardware-software interaction problems were presented 
in the final part of section 5.2. Although some of the solutions were designed 
by manufacturers of military aircraft, they are applicable to civilian aircraft 
as well. Detection and correction methods are a key part of the solutions. 
Section 5.2 demonstrated how some of the solutions are implemented. 

6.3.3 Bus Protocol Specification and Analysis 

One particular area that requires careful attention from the designer is the 
communication protocol. Since protocol specifications must be both concise and 
easy to understand, formal techniques are used for protocol specification. 
Formal techniques should be used to model and define protocols and to analyze 
the correctness and proper operation of the protocol. 

With a shift from unidirectional to bidirectional data buses, the access 
protocol assumes an added degree of complexity. Since protocols may be 
implemented in hardware rather than software, the protocol should be subjected 
to rigorous scrutiny before it becomes "buried" in the hardware. The protocol 
specification and analysis should be performed as carefully as it is for a 
software-implemented protocol. 

6.3.4 Bus Integration Standards. Guidelines. and Techniques 

The integration of LRUs from various sources to form a system implies that there 
exists a central specification to which each manufacturer can design. The 
digital data buses provide this specification. The buses used to integrate the 
various LRUs on the market are designed according to a published industry 
standard for each bus. However, these standards primarily specify the operation 
of a single bus interface, rather than an entire integrated system. The system 
integration is mostly left in the hands of the system designer. As a result, 
when these systems are certificated, there is no standard by which to judge the 
applicant's claim that the system meets the airworthiness standards. 

The airworthiness standards require analysis and testing, but bus integration 
standards need to be formally published by the industry to provide direction on 
these topics. These standards should specify the values and tolerances of all 
constant parameters. 

Bus integration guidelines should be published to control the flexible aspects 
of a bus. These guidelines should provide formulas or formal procedures for 
deriving reliable values for variable parameters. In addition, these standards 
need to specify component and system tests designed to exercise the full scope 
of significant failure modes. Some of the bus standards specify component 
tests, but none address system tests. 

The standards, guidelines, and test procedures that have been developed for the 
MIL-STD-1553 bus come close to providing a model for bus standards and 
integration guidelines. The standard for individual LRUs is flexible, yet 
specific. Numerous integration guidelines are provided. The documents for 
civilian avionic buses would be greatly improved if their specifications and 
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procedures were patterned after those of the military bus; and would be complete 
if integration standards were added. 

Techniques for systematic, analytical design and analysis also need to be 
formally incorporated into the certification requirements. Techniques exist 
which can improve the reliability of bus-based digital systems, but they are not 
presently part of the bus standards or the certification procedures. These 
should be formally recommended in these documents for the development of bus
based systems. 

6.3.5 FAA Certification and Bus Integration 

The buses associated with integrated avionics currently in use have been 
certificated implicitly as part of the system that uses them. Thus, they are 
naturally certificated in an integrated environment. This has been sufficient 
for unidirectional and bidirectional buses used in nonessential systems. As 
bidirectional buses are fully used in essential and critical systems, the bus 
integration issues will need to be explicitly analyzed and tested. 

The airworthiness standard for normal category rotorcraft, as specified in FAR 
Part 27, is particularly weak on bus integration issues since it does not 
require any specific analysis and testing, as do the other airworthiness 
standards. Although the other standards (Parts 22, 25, and 29) do require 
specific analysis, the industry provides very few guidelines on how to perform 
the bus analysis and testing required. Thus, even though the certification 
requirements are fairly strong for these categories of aircraft, there is no 
guarantee that the implementation is meaningful. The TC and STC procedures, 
which rely on these airworthiness standards, need to specify standards and 
guidelines that may be followed as an acceptable means for showing compliance 
to the airworthiness standards. This may be done either by reference or 
inclusion. 

The STC procedure is weakened even further on integration concerns, since it 
allows a manufacturer to make a change to another's design without resubstan
tiating the entire design. Only the changed aspectB need to be shown to meet 
the airworthiness standard. This would be a reasonable allowance to make for 
the manufacturer who designed it, but not for another·. Another manufacturer is 
more likely to overlook the full ramifications of a change than would the 
original designer. This situation needs to be closHly examined to see if the 
development of a bus- integrated system is adequately examined under an STC 
approval. 

The PMA covers the production of bus-integrated systems fairly well, but it 
relies heavily on the completeness of design specifications for ensuring that 
manufactured parts are reliable. Currently, the bus Btandards are too ambiguous 
for that to be a safe approach. Integration analysis, ground tests, and/or 
flight tests should be considered for every installation of a bus-integrated 
system. Alternatively, bus integration standards could be developed that are 
sufficiently specific that successful integration of a manufactured part could 
be more easily ensured. 
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The TSO Authorization regulations currently do not address integration at all. 
The regulations assume that systems developed under a TSO Authorization are 
interchangeable. This is not realistic for complex bus architectures and 
protocols. The FAA is taking steps to rectify this situation. 

To sufficiently address the integration of systems with data buses, the industry 
needs to develop a comprehensive suite of documentation on each data bus. This 
documentation needs to include a thorough standard that includes test procedures 
and criteria for single LRUs and an integration standard that includes system 
specifications, tests, and guidelines. In addition, the FAA regulations need 
to adopt these standards as specifying an acceptable means for showing 
compliance with the airworthiness requirements for safe operation. 

6.4 Summary 

Improvements needed to support the certification of flight-essential and 
flight-critical systems that use data buses have been identified, as follows: 

The certification procedures of FAR Part 21 need to consistently require 
that integrated systems, rather than components, be certificated. 

The airworthiness standards of FAR Parts 23, 25, 27, 29, and 33 need to 
consistently require analysis and testing of equipment, systems, and 
installations, particularly in an integrated configuration. 

ACs should be published to establish formal guidelines for the specifica
tion, design, analysis, and testing of bus protocols and hardware. 

Bus standards need to be adopted by ACs as informal guidelines, specifying 
an acceptable means for showing compliance to the FARs. 

Bus standards need to specify a complete system engineering methodology for 
the specification, design, analysis, and testing of bus protocols and 
hardware, from the component to the system level. 

Specific analysis techniques need to be adopted by ACs as informal 
guidelines for bus analysis. 
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APPENDIX A - FEDERAL REGULATIONS SUMMARY 

Avionic system manufacturers consult the Federal Aviation Regulations (FARs) 
during a system's design process. The FARs specify requirements that must be 
met by the manufacturer before the system is considered airworthy. Military 
aircraft do not have to meet these requirements. FAR Part 23 gives standards 
for normal, utility, and acrobatic category airplan~s. while Part 25 contains 
standards for transport category airplanes. Part 27 contains standards for 
normal category rotorcraft, and Part 29 contains standards for transport 
category rotorcraft. FAR sections 23.1309, 25.581, 25.1309, 27.1309, 29.1309, 
33.75, and 33.91 are of primary concern for data buses and integrated avionic 
equipment. 

Table A-1 lists FAR sections and Advisory Circulars (ACs) discussed in section 
4.2, along with their titles. Key points of each are presented in the following 
sections. 

TABLE A-1. FEDERAL REGULATIONS APPLICABLE TO DIGITAL AVIONIC EQUIPMENT 

1 Regulation Title 

Section 23.1309 Equipment, Systems, and Installc:.tions 

Section 25.581 Lightning Protection 

Section 25.1309 Equipment, Systems, and Installc:.tions 

Section 27.1309 Equipment, Systems, and Installations 

Section 29.1309 Equipment, Systems, and Installations 

Section 33.75 Safety Analysis 

Section 33.91 Engine Component Tests 

AC 20-115A RTCA/D0-178A 

AC 20-136 Protection of Aircraft Electrical/Electronic 
Systems Against the Indirect Effects of Lightning 

AC 21-16C RTCA/D0-160C 

AC 23.1309-1 Equipment, Systems, and Installations in Part 23 
Airplanes 

AC 25.1309-lA System Design and Analysis 
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A.l Federal Aviation Regulation Section 25.581 

FAR Part 25, section 581, is devoted to lightning protection. 
part does not go into much detail, it expresses concerns 
lightning effects on integrated avionic equipment, as follows: 

Although this 
about indirect 

FAR 25.58l(b)(2) states that equipment should be designed so a strike will 
not endanger the airplane. 

FAR 25.58l(c)(2) states that compliance may be accomplished by "incorpor
ating acceptable means of diverting the resulting electrical -current so as 
not to endanger the airplane." 

For data buses and their associated components, direct lightning effects are not 
a concern. FAR Parts 27 and 29, section 610, state the same lightning 
requirements for transport and normal category rotorcraft. 

A.2 Federal Aviation Regulation Sections 23.1309, 25.1309, 27.1309, and 29.1309 

These sections address equipment, systems, and installations. They point out 
the requirements each should meet. Section 23.1309 addresses normal, utility, 
and acrobatic airplanes and section 25.1309 addresses transport category 
airplanes. 

FAR 23.1309(b)(l) states that each item of equipment, each system, and each 
installation must be designed so it performs its intended function under 
any foreseeable operating condition. 

FAR 25.1309(a) contains a similar statement for transport category 
airplanes. 

These particular FARs also discuss failure conditions which could inhibit the 
continued safe flight and landing of the aircraft. 

FAR 23 .1309(b) (2) (i) and 25.1309 (b) (1) state "the occurrence of any failure 
condition that would prevent the continued safe flight and landing of the 
airplane must be extremely improba?le." 

FAR 23.1309(b)(2)(ii) and 25.1309(b)(2) state "the occurrence of any other 
failure condition that would (significantly [Part 23 only]) reduce the 
capability of the airplane or the ability of the crew to cope with adverse 
operating conditions must be improbable." 

Requirements of this nature can be met by analysis, and ground, flight, and 
simulator tests. Sections 23.1309(e) and 25.1309(g) further explain how to 
comply with the requirements of Parts 23 and 25. 

FAR 23.1309(e) states that "in showing compliance with this section with 
regard to the electrical power system and to equipment design and 
installation, critical environmental and atmospheric conditions, including 
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radio frequency energy and the effects (both direct and indirect) of 
lightning strikes, must be considered." 

FAR 25.1309(g) states that in showing compliance with the requirements for 
equipment, systems, and installation design, "critical environmental 
conditions must be considered." Consideration includes design analysis or 
reference to previous comparable service on othe:r aircraft. All equipment, 
except that which is covered by a Technical Standard Order (TSO), is 
subject to these requirements. 

Both FAR Parts, section 1309, mention that compliance can be shown by referenc
ing previous comparable service experience on other aircraft. 

FAR Parts 27 and 29 contain the same type of requirements for normal and 
transport category rotorcraft. All systems employing data buses are subject to 
these requirements. 

ACs 20-115A, 20-136, 21-16C, 23.1309-1, and 25.13051 -lA were published by the 
Federal Aviation Administration (FAA) to help the manufacturer comply with FAR 
sections 25.1309(b), (c), and (d), and FAR section 23.1309. 

A.3 Advisory Circular 20-115A 

AC 20-115A describes how Radio Technical Commission for Aeronautics (RTCA)/D0-
178A is used in connection with TSO, Type Certific.:~.te, and Supplemental Type 
Certificate authorizations. Since data bus systems may utilize software, and 
can be transparently certificated under these authorizations, this AC is 
applicable. No procedures or guidelines are pointE!d out in this AC; it only 
says that RTCA/D0-178A may be used as a means of securing FAA approval of 
systems which contain digital computer software. RTCA/D0-178A can be used to 
satisfy FAR Parts 23, 25, 27, and 29 for software. 

A.4 Advisory Circular 20-136 

AC 20-136 was published by the FAA to help the manufacturer satisfy FAR Parts 
23, 25, 27, and 29; sections .581, .610, .867, .901, .903, .954, .1301, .1309, 
and .1431. It shows how a manufacturer can deal with the hazards of a lightning 
environment. 

The AC points out lightning hazards that indirectly affect external and internal 
equipment. Manufacturers who wish to achieve compliance with the FAA's 
lightning requirements should note AC 20-136, figure 2. This figure is a 
flowchart, and shows the manufacturer generally what they have to do to satisfy 
the lightning requirements. 

A.5 Advisory Circular 21-16C 

AC 21-16C shows the relevance of RTCA/DO -160C for satisfying environmental 
conditions for TSO authorizations. Since digital equipment is sometimes 
certified under TSOs, this AC is applicable to the (:.ertification procedure for 
data buses. No procedures or guidelines are pointe:d out in this document; it 
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only states that RTCA/D0-160C may be used in lieu of the corresponding TSO 
conditions and procedures under certain conditions. 

A.6 Advisory Circulars 23.1309-1 and 25.1309-lA 

AC 23.1309-1 and AC 25.1309-lA give specific failure analyses procedures for 
meeting the requirements of FAR sections 23.1309 and 25.1309(b), (c), and (d). 
Also included in AC 25.1309-lA, is the FAA's fail-safe design concept, as 
follows: 

• "In any system or subsystem, the failure of any single element, component, 
or connection during any one flight ... should be assumed ... Such single 
failures should not prevent continued safe flight and landing, or 
significantly reduce the capability of the airplane or the ability of the 
crew to cope with the resulting failure conditions." (AC 25.1309-lA, 1988). 

Failure condition analysis and design procedures are also presented in AC 
25.1309-lA. Brief examples of each are presented below: 

Functional Hazard Assessment (FHA) This technique identifies and 
classifies potentially hazardous failure conditions. FHA describes the 
failure conditions in functional and operational terms. FHA is often used 
by manufacturers as a tool to help determine the acceptability of a design 
concept or design changes, identify potential problem areas, or determine 
the need and scope of any additional analyses. 

Latent Failure Detection - "A latent failure is one which is inherently 
undetected when it occurs. A significant latent failure is one which 
would, in combination with one or more other specific failures or events, 
result in a hazardous failure condition." (AC 25 .1309-lA, 1988). The 
frequency with which a device is checked for latent failures directly 
affects the probability of latent failures and should always be kept in 
mind. Failure monitoring and warning systems assist with latent failure 
detection. 

• Analysis of Minor Failure Conditions - An FHA is complete if it shows that 
system failures would cause only minor failure conditions. If the system 
contains only minor failure conditions, the design practice is to 
physically and functionally isolate the system from other systems. 

Analysis of Major Failure Conditions - Major failure conditions must be 
shown to be improbable. Failures that are more severe than others should 
have smaller probabilities than those that are less severe. Analysis of 
major failure conditions, as described in AC 25.1309-lA, paragraph 7f, is 
usually sufficient. Qualitative compliance may be shown by a Failure Mode 
and Effects Analysis. A quantitative analysis may be necessary for a more 
severe failure condition. 

Analysis of Catastrophic Failure Conditions Catastrophic failure 
conditions must be shown to be extremely improbable. Here, a very thorough 
safety analysis is necessary. Considerations in AC 25.1309-lA, paragraphs 
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7c and 7e, should always be taken into accoun·~. The assessment usually 
includes both qualitative and quantitative analysis. 

An assessment to identify and classify failure conditions is usually qualita
tive. An analysis may range from a report that i.nterprets test results or 
compares two systems, to an analysis that includes runnerical probabilities. In 
any case, the analysis should show that the system and its installation can 
tolerate failures to the extent that major failure conditions are improbable and 
catastrophic failure conditions are extremely improbable. AC 23.1309-1 
discusses similar procedures for normal, utility, and acrobatic category 
airplanes. 

197 



APPENDIX B - DYNAMIC TIME SLOT ALLOCATION PROTOCOL 

The operation of the Dynamic Time Slot Allocation (:)TSA) protocol is based on 
time allocations being preassigned to all bus users. Each user is guaranteed 
that during its time slot, under error-free conditions, it will have an 
opportunity to access the bus. This access method lends itself to a high bus 
efficiency, even under heavy loading conditions. A simple state diagram for the 
DTSA protocol is given in figure B-1. 

MESSAGE ARRIVES 
AND COUNT IS NOT 

COMPLETED 

MESSAGE IS 
COMPLETELY 

RECEIVED 

COU'ITIS 
COMPLETED 
AND BUS IS 
AVAILABLE 

MESSAGE IS 
COMFLETELY 

TRAN!)MITTED 

FIGURE B-1. DTSA ACCESS PROTOCOL STATE DIAGRAM 

Under normal operation, one bus user will be in the 1:ransmit state and all other 
bus users will be in the receive state. After the transmitting user is 
finished, it and all the receiving users go into a count state to determine 
which can access the bus next. The amount of time each user must wait to send 
a message is determined by the following relationship (Porter, Couch, and 
Schelin 1983): 

where 

if n>m 

if ~m 

wait time for user m 
count duration (based on maximum propagation delay) 
address of user performing computatton 
original address of last transmission 
maximum number of users 
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As seen in the state diagram, each user fluctuates between the "count" state 
and "receive" state, or the "count" state and the "transmit" state. When a 
transmission is received from the bus, the user switches from the "count" to the 
"receive" state and then back to the "count" state when reception is complete. 
When a new transmission is received, each user decrements its counter. If user 
number four is in the count mode and then receives a transmission from user 
number two, user number four computes the time until it can originate a 
transmission, Tc = n-m, or two units of time. The sequence for four users is 
given in table B-1. 

TABLE B-1. DTSA USER ACCESS SEQUENCE 
(Porter, Couch, and Schelin 1983) 

Address of Address of Number of Tc Times 
Terminal Performing Last Terminal in Terminal Must Wait in 

Calculation Transmit Mode Count Mode Before 
(n) (m) Transmitting 

n - m if n > m 
N + n - m if n ~ m 

1 1 4 
2 1 1 
3 1 2 
4 1 3 

1 2 3 
2 2 4 
3 2 1 
4 2 2 

1 3 2 
2 3 3 
3 3 4 
4 3 1 

1 4 1 
2 4 2 
3 4 3 
4 4 4 

SEQUENCE REPEATS 

If a user does not have data to send when its count duration decrements to zero, 
the bus interface simply sends a status message without involving the host 
central processing unit. This maintains a constant timing and access sequence 
for the protocol. 
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The timing diagram for different numbers of active users is given in figure B-2. 
Note that the frame time, TF, which is defined as the time from the start of user 
number one time slot to the next start of user number one time slot, varies 
based on the number of active users and the length of messages being sent on the 
bus. 

As seen by examination of the DTSA, time slot protocols exhibit greater 
throughput and shorter wait times during periods of heavy loading than does a 
Carrier- Sense, Multiple Access protocol. Also, for cases where the average 
access times of both protocols are approximately the same, DTSA provides the 
shortest maximum wait time (Porter, Couch, and Schelin 1983). 

ACI'IVE ~ TF ~ .....j ~ Tc 
TERMINALS 

I L I I Ct It 1 1 1 
!ONLY I I I I I I 

~ 
T .....j F 

I 1 I I 2 I 1 l I 2 
1AND2 I I I I 

~ TF .. ~ 
I 1 I I 2 I I 3 I, I 1 I I 2 

1, 2,AND3 

~ TF .....j 

I 1 I I 2 II 3 I [ 4 I I 1 
1, 2, 3, AND4 

FIGURE B-2. DTSA ACCESS PROTOCOL USER TIMING 
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APPENDIX C - HIGH-LEVEL DATA LINK CONTROL PROTOCOL 

The High-Level Data Link Control (HDLC) protocol was defined by the Internation
al Standards Organization for the purpose of replacing character-oriented 
protocols. It is a bit-oriented protocol which may be broken into three main 
categories for better understanding: 

• The bit stream 

• Transmission format 

Station-to-Station cooperation 

C.l The Bit Stream 

Since HDLC is a bit-oriented protocol, data at the physical layer of the Open 
Systems Interconnect Basic Reference Model appears simply as part of the bit 
stream. This bit stream includes information which may be added by a higher 
layer (e.g., network or transport layer). It is then necessary to define t~e 
beginning and end of the data bit stream. This is clone by using a flag at th) 
beginning and end of the sequence. The entire bit stream is referred to as a 
frame. 

The bit sequence that defines an HDLC frame is 0 1 1 1 1 1 1 0. This unique bit 
sequence appears only at the beginning and end of the frame. When data are sent 
using the HDLC protocol, the transmitter will te:st for the occurrence of 
consecutive ones. When five ones in a row are found, the transmitter will 
automatically insert a zero for the next bit. At the receiver, if there is a 
bit stream of five ones detected, the sixth bit is dropped. 

C.2 Transmission Format 

Any information sent using the HDLC protocol uses the format shown in figure 
5.1-7 of this report. Normally, the address and control fields are each eight 
bits in length. The address field may contain thn address of the sender or 
receiver, depending on the particular configuration. A broadcast mode is 
implemented by using all ones in this field. Groups of users, or stations, may 
be assigned a particular address to which they ar~~ to respond, called group 
addresses. Extended addressing may be used by se1:ting the last bit in this 
field to a zero. In this case, the address field can be extended by multiples 
of eight bits. 

There are three kinds of frames defined for HDL<;: Information frames (I 
frames), Supervisory frames (S frames), and Unnumbered frames (U frames). The 
formats of these frames are given in table C-1. I frames are used in data 
transfer to maintain a sequential flow of related information; S frames are used 
for data control, to acknowledge or reject messages from the sender; and U 
frames are used for control purposes. They are used to implement initializa
tion, disconnection, polling, and other functions (ranenbaum 1981). 
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Frame Type 

I 

s 

u 

TABLE C-1. HDLC CONTROL FRAMES 
(Meijer and Peeters 1982) 

MSB Bit Significance 

8 I 7 I 6 5 4 I 3 

Receive Count N(R) P/F Send Count 

Supervisory 
Receive Count N(R) P/F Type S 

Modifier Ml P/F Modifier M2 

LSB 

2 1 

N(S) 0 

0 1 

1 1 

In table C-1, N(R) and N(S) refer to the number of I frames which are received 
or sent, respectively. All stations maintain counters for these variables. 
They are used to keep the frames in proper sequence. The sender increases the 
N(S) bit field by one for each I frame it sends, and the receiver increases the 
N(R) field by one for each I frame it acknowledges. These three-bit fields 
allow for only seven unacknowledged frames (Meijer and Peeters 1982). 

When a sender polls another bus user, the sender sets this Poll bit. The 
receiver replies with a response frame and sets the F, or Final, bit. The S bit 
field indicates different types of supervisory frames. Ml and M2 are modifier 
bits for the Unnumbered frames. These bits are used to define the various 
control commands used by the HDLC protocol (Tanenbaum 1981). 

The Frame Check Sequence field in figure 5.1-7 of this report is a method for 
checking the validity of the received frame. It is actually a Cyclic Redundancy 
Check (CRC) inserted in the message by the sender based on the generator 
polynomial X16 + X12 + X5 + 1. If a CRC error is detected by the receiver, the 
entire frame is discarded and some form of error recovery should be exercised. 

Combined stations can send both command frames and response frames. The 
difference between the two types of frames will be in the address bit field. 
If the address is the station's own, then the frame is a response frame; 
otherwise it is a command frame. In unbalanced operation, a frame sent by a 
primary station is always a command frame, and that sent by a secondary station 
is always a response frame. 

204 



APPENDIX D - CHECKLIST FOR ANALYSIS OF DATA BUS HARDWARE AND SOFTWARE 

Avionic manufacturers who wish to evaluate their systems may use the checklist 
provided in table D-1. The checklist should not he the only means used to 
evaluate these systems. It is merely a starting poittt for ensuring that single 
failures are adequately addressed. The checklist could be used in conjunction 
with a Failure Mode and Effects Analysis or other m:=!thod described in section 
5.4 of this report. 

I 

I 

TABLE D-1. CHECKLIST FOR ANALYSIS OF BUS HMtDWARE AND SOFTWARE 
(Bunce 1980) 

System Failure Mode 

Is the failure detected by the system, LRU, CPU, or YES [ l NO 
BIU? 

Does the CPU's software detect this failure? YES [ l NO 

Does the BIU's hardware annunciate this failure to YES [ l NO 
the CPU's software? 

Does the CPU's software provide effective methods for YES [ l NO 
dealing with this failure? 

If the CPU's software cannot correct the error, will YES [ l NO 
other hardware within the BIU or LRU? 

Will the failure cause either HW or SW to overload YES [ l NO 
the other? 

If the failure mode is introduced into other sw YES [ l NO 
logic, will other functions be affected? 

Is the system able to handle more than one of these YES [ l NO 
failures at a time? 

Is reconfiguration of the system, by either the YES [ l NO 
system itself or the crew, necessary? 

Explanations/Comments: 

Necessary Changes: 
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GLOSSARY 

ACCESS. The process of a transmitting bus user obtaining control of a data bus 
in order to transmit a message. 

ADVISORY CIRCULAR. An external FAA publication consisting of nonregulatory 
material of a policy, guidance, and informational na1:ure. 

AIR TRANSPORT AIRCRAFT. Aircraft used in interstate, overseas, or foreign air 
transportation. 

AIRWORTHINESS STANDARDS. Parts 23, 25, 27, 29, and 33 of the Code of Federal 
Regulations, Title 14, Chapter 1, Subchapter C. 

ARCHITECTURE. The design and interaction of componertts of a computer system. 

ARRAY CODE. A sequence of bits that is interpreted as data arranged in a matrix 
with parity associated with each row and column. 

AVIONIC. Electronic equipment used in aircraft. 

BABBLING TRANSMITTER. A bus user that transmits out1::ide its allocated time. 

BALANCED CONFIGURATION. 
primary stations. 

BIDIRECTIONAL DATA BUS. 
transmitting. 

A bus using the HDLC protocol that connects only 

A data bus with more t::1an one user capable of 

BIT-ORIENTED PROTOCOL. A communication protocol where message frames can vary 
in length, with single bit resolution. 

BRIDGE. A BIU that is connected to more than one bus for the purpose of 
transferring bus messages from one bus to another, w·.:1ere all the buses follow 
the same protocol. 

BROADCAST DATA BUS. A data bus where all messages are transmitted to all bus 
users. 

BUFFER. Memory used to hold segments of the data tram:ferred between asynchron
ous processes. 

BUS. A conductor that serves as a common connection of a signal to multiple 
users. 

BUS CONTROLLER. The electronic unit that is designed to control the bus 
communication of all users for a centrally controlled bus. 

BUS INTERFACE UNIT. The electronics that interface 1:he host CPU of an LRU to 
a bus medium. 
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BUS MESSAGE. 
users. 

A complete set of bits that can be transferred between two bus 

BUS NETWORK. The collection of all BIUs and bus media associated with one bus. 

BUS OVERLOAD. The condition that exists when the time it takes to transmit 
outstanding messages on a bus exceeds the time allotted for those transmissions. 

BUS USER. Any LRU attached to a bus. 

CENTRAL BUS CONTROL. The bus control approach where a single electronic unit 
attached to a bus controls all the communication of the bus users. 

CERTIFICATION. The process of obtaining FAA approval for the design, manufac
ture, andjor sale of aircraft and associated systems, subsystems, and parts. 

CHARACTER-ORIENTED PROTOCOL. A communication protocol where messages can vary 
in length, with single character resolution. 

CHECKSUM. An error detection code produced by performing a binary addition, 
without carry, of all the words in a message. 

CLOSED-LOOP. A system where the output is a function of the input and the 
system's previous output. 

COMMAND/RESPONSE DATA BUS. A data bus whose protocol initiates each data 
transfer with a command and terminates the transfer after a proper response is 
received. 

CONFIGURATION MANAGEMENT. The precise control and documentation of the 
configuration of an entity at any time during its development and deployment. 

CONTENTION PROTOCOL. A protocol that allows users to randomly access the bus 
at any time. When bus contention results, each user tries again to access the 
bus without contention. 

CONTROL REGISTER. A register in an IC controller that receives commands from 
a host processor. 

DATA BUS. A bus that carries electronic signals that represent information. 

DATA BUS PROTOCOL. The set of rules that governs the transfer of data between 
data bus users. 

DATA LATENCY. The delay in transferring data from its source to various users. 
This can result in using an old sample of data in a system after a new sample 
is available. 

DATA REASONABLENESS CHECK. A check performed to see if a value of data is 
within reasonable bounds for the given context. 
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DEFAULT DATA. An alternative value used for a parameter whenever the normal 
data is not supplied. 

DETERMINISTIC PROTOCOL. A protocol where all parame·:ers are known so that its 
various states are predictable in sequence and time. 

DIGITAL DATA BUS. A data bus that uses digital elec·:ronic signals. 

DISSIMILAR REDUNDANCY. The redundancy of systems that provide a redundancy of 
function, but by a different form. 

DISSIMILAR SOFTWARE. Redundant computer programs that provide a redundancy of 
function, but by a different form. 

DISTRIBUTED BUS CONTROL. The bus control approach where the total communication 
control job is distributed across the bus users, each controlling the communica
tions during its period of responsibility. 

EMULATION. The duplication of the behavior of a system with a different system. 

ERROR MASKING. The process of masking the presence of avionic errors, possibly 
by using an electronic voter to override an erroneou;; input with the values of 
substitute inputs. 

FAIL-SAFE. A design philosophy that ensures that any failure in a system does 
not result in an unsafe condition after the failure. 

FAULT TOLERANCE. The ability of a system to continu'~ operation after a fault, 
possibly in a degraded condition. 

FEDERAL AVIATION REGULATIONS. Subchapter C of the Code of Federal Regulations, 
Title 14, Chapter 1. 

FINITE STATE MACHINE. A state machine with a finite number of states. 

FLIGHT-CRITICAL FUNCTION. A function whose failure would contribute to or cause 
a failure condition that would prevent the continued safe flight and landing of 
the aircraft. 

FLIGHT-ESSENTIAL FUNCTION. A function whose failure would contribute to, or 
would cause, a hazardous failure condition that would significantly impact the 
safety of the aircraft or the ability of the flight crew to cope with adverse 
operating conditions. 

FLIGHT-NONESSENTIAL FUNCTION. A function whose failure could not significantly 
degrade aircraft capability or crew ability. 

FRAME. A formatted block of data words or bits that is used to construct 
messages. 

FUNCTIONAL PARTITIONING. The partitioning of system functions by placing each 
group of users, which share a common function, on different data buses. 
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GATEWAY. A bus user that is connected to more than one bus for the purpose of 
transferring bus messages from one bus to another, where the buses do not follow 
the same protocol. 

GENERAL AVIATION AIRCRAFT. The non-air transport civil aircraft. 

GENERATOR POLYNOMIAL. The polynomial code that is used to generate the 
remainder in the division of the CRC check. 

GLOBAL STATE. A state that represents the condition of the entire network being 
modeled, including senders, receivers, and the communication link. 

HALF-DUPLEX. Bidirectional communication between two entities on a single 
channel by each having a turn to control the channel. 

HAMMING CODE. 
distance. 

An error detection and correction code based on the Hamming 

HAMMING DISTANCE. The number of bit positions in which two binary words differ. 

HANDSHAKING. The reciprocal responses given by two electronic systems to 
sequence the steps of a transfer of data between them. 

HARDWARE-IN-THE-LOOP SIMULATION. A partial simulation of a system; part of the 
actual system is used in the simulation. 

INTEGRATED CIRCUIT CONTROLLER. An IC that contains state-machine logic of 
sufficient complexity that it controls the activity of other hardware. 

INTERRUPT VECTOR. The address that points to the beginning of the service 
routine for an interrupt. 

INTERRUPT VECTOR TABLE. 
serviced by a system. 

The table of interrupt vectors for all interrupts 

LINE REPLACEABLE UNIT. An electronics unit that is made to be replaced on the 
flight line, as opposed to one that requires the aircraft be taken to the shop 
for repair. 

LINEAR BUS. A bus where users are connected to the medium; one on each end, 
with the rest connected in between. 

MANCHESTER II MODULATION. A non-return to zero, bipolar modulation of a voltage 
that encodes bits based on the zero-crossing direction of the signal. 

MODELING. Creating a system of mathematical equations that formulate all the 
significant behavior of a system. 

MULTIVERSION PROGRAMMING. N-version programming. 
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N-VERSION PROGRAMMING. The independent coding of a number, N, of redundant 
computer programs that are run concurrently for the purpose of comparing their 
outputs. 

NONSTATIONARY BUS CONTROL. Bus control that is contLmally passed from bus user 
to bus user according to a predetermined sequence. 

OPEN-LOOP. A system where the output is a function of only the input. 

OVERHEAD. The message timing gaps, control bits, and error detection bits added 
to some data to satisfy the data bus protocol. 

PARITY. An error detection bit added to a data word based on whether the number 
of "one" bits is even or odd. 

PARTITIONED. Colocated hardware or software functions that are designed so that 
adverse interactions between them cannot occur. 

PETRI NET. A state analysis diagram that tracks the status of the state 
transition conditions of a state machine. 

POLLING. A method whereby a CPU monitors the s;:atus of a peripheral by 
periodically reading its status signals. 

POLYNOMIAL CODE. A sequence of bits that represent~: the coefficients of each 
term in a polynomial. 

PRIMARY STATION. An intelligent HDLC protocol user, usually used to manage the 
access of other bus users to the bus. 

PROPAGATION DELAY. The time it takes an electrical signal to travel from its 
source to its destination. 

PROTOCOL. The set of rules by which all bus users must abide to access the bus 
and ensure its specified operation. 

RECONFIGURATION. The process of a system reassignirg which hardware performs 
a particular function. 

RECOVERY BLOCK. A block of code executed upon detect:ion of a fault to recover 
from the erroneous condition that results. 

REGISTER. A single word of RAM located within an I::; controller that is used 
for transferring data and control information. 

REMOTE TERMINAL. The BIU portion of a MIL-STD-1553 bus user. 

RING BUS. A bus where users are connected only to tre two adjacent users in a 
continuous ring; each connected to the next and the last one connected to the 
first one. 
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ROUND-ROBIN CONTROL. Control that is passed from one bus user to the next, in 
sequence, after each user completes its messages. 

SAFE-LIFE. A design philosophy that treats a component or assembly as designed 
to retain its integrity throughout its useful life. 

SECONDARY STATION. A simple HDLC protocol user. 

SENSOR. Any transducer that converts the measurement of a physical quantity to 
an electrical signal. 

SERIAL DATA BUS. 
series. 

A data bus capable of sending only one bit at a time, in 

SERVICE PRIMITIVE. A primitive function of the service provided by a protocol 
layer. 

SERVICE SPECIFICATION. The specification of the service provided by a protocol 
layer. 

SIMULATION. An approximated representation of the behavior of a system with a 
similar system. 

SINGLE-POINT FAILURE. A failure of a component that, by itself, causes the 
failure of the system in which it is contained. 

SPECIAL CONDITION. A regulatory document that adds to, or otherwise alters, the 
airworthiness standards for particular aircraft. 

STATION. Bus user. 

STATIONARY BUS CONTROL. Bus control that is continually performed by a single 
bus controller, or by one of its backups. 

STATUS REGISTER. A register in an IC controller that holds the status of the 
state of certain controller functions. 

STUB. The short length of cable used to attach a single LRU to a data bus. 

SYSTEM INTEGRATOR. The developer who has the responsibility to integrate the 
various subsystems into a working system. 

TIME MULTIPLEXING. The technique of sharing a communication channel among 
several users by allowing each user a period of time to have sole access to the 
channel. 

TOKEN MACHINE. A state diagram that shows each state and transition represented 
by a Petri net. 

TOKEN PASSING PROTOCOL. A protocol that limits bus access to the user that has 
just received the token word. 
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UNBALANCED CONFIGURATION. A bus using the HDLC 1= rotocol that connects one 
primary and one or more secondary stations. 

UNIDIRECTIONAL DATA BUS. 
transmitting. 

A data bus with only one user that is capable of 

VALIDATION. The process of evaluating whether or not items, processes, 
services, or documents accomplish their intended purpose in their operating 
environment. 

VERIFICATION. The act of reviewing, inspecting, testing, checking, auditing, 
or otherwise establishing and documenting whether or not items, processes, 
services, or documents conform to specified requirements. 

WATCHDOG TIMER. A timer which, when it expires, warns the system that an event 
has not occurred within the proper time. 

229 



J.'S 
AC 
ACK 
ACO 
AEEC 
AFSC 
AIAA 
AIM 
AlPS 
AIR 
AIRLAB 
AP 
ARINC 
ARP 

_f. ASCB 
ASG 
AT 
BA 
BAC 
BC 
BCAC 
BCD 
BFCS 
BIT 
BIU 
BNR 
BOCP 
BP 
BUSY 
BV 
CA 
CD 
CE 
CMC 
CMOS 
CP 
CPU 
CRC 
CSDB 
CSMA 
CTS 
DATAC 
DC 
DER 
DET 
DITS 
DMA 
DME 

ACRONYMS AND ABBREVIATIONS 

Microsecond 
Advisory Circular 
Acknowledge 
Aircraft Certification Office 
Airlines Electronic Engineering Commit:tee 
Air Force Systems Command 
American Institute of Aeronautics and Astronautics 
Advanced Integrated MUX 
Advanced Information Processing Systent 
Aerospace Information Report 
Avionics Integration Research Laboratory 
Application Processor 
Aeronautical Radio Incorporated 
Aerospace Recommended Practice 
Avionics Standard Communications Bus 
Aperiodic Synchronization Gap 
Access Time-Out 
Bus Active 
Balanced Asynchronous Configuration 
Bus Controller 
Boeing Commercial Airplane Company 
Binary Coded Decimal 
Beacon Frame Check Sequence 
Built-In-Test 
Bus Interface Unit 
Binary 
Bit-Oriented Communications Protocol 
Basic Protocol 
Destination Busy 
Binary Value 
Criticality Analysis 
Collision Detection 
Certification Engineer 
Current Mode Coupler 
Complementary Metal-Oxide Semi-Conduct:or 
Combined Protocol 
Central Processing Unit 
Cyclic Redundancy Check 
Commercial Standard Data Bus 
Carrier Sense-Multiple Access 
Clear To Send 
Digital Autonomous Terminal Access Couwunication 
Display Computer 
Designated Engineering Representative 
Driver Enable Timer 
Digital Information Transfer System 
Direct Memory Addressing 
Distance Measuring Equipment 
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DMIR 
DTSA 
EEC 
EES 
EFID 
EFIS 
EIA 
F/FA 
FAA 
FAR 
FCC 
FCS 
FMEA 
FMECA 
FSM 
FSW 
FTA 
FTMP 
GA 
GAMA 
HA 
HARP 
HDLC 
HERF 
HIRF 
HSRB 
HW 
Hz 
1/0 
lACS 
IC 
ICD 
ID 
IEEE 
IFCS 
IMR 
ISO 
IVT 
LRU 
LSB 
LSI 
LTPB 
m 
MC 
MCFCS 
MCS 
MFCS 
MHZ 
MIL-HDBK 
MIL-STD 
MIREM 
ML 

Designated Manufacturing Inspection Representative 
Dynamic Time Slot Allocation 
Electronic Engine Control 
Electromagnetic Emission and Susceptibility 
Electronic Flight Instrument Display 
Electronic Flight Instrument System 
Electronic Industries Association 
Fault and Failure Analysis 
Federal Aviation Administration 
Federal Aviation Regulation 
Flight Control Computer 
Frame Check Sequence 
Failure Mode and Effects Analysis 
Failure Mode, Effects, and Criticality Analysis 
Finite State Machine 
Function Status Word 
Fault Tree Analysis 
Fault Tolerant Multi-Processor 
General Aviation 
General Aviation Manufacturers Association 
Hazard Analysis 
Hybrid Automated Reliability Predictor 
High-Level Data Link Control 
High Energy Radio Frequency 
High Intensity Radiated Frequency 
High Speed Ring Bus 
Hardware 
Hertz 
Input/Output 
Integrated Avionic Computer System 
Integrated Circuit 
Interface Control Document 
Identifier 
Institute of Electrical and Electronics Engineers 
Information Frame Check Sequence 
Interrupt Mask Register 
International Standards Organization 
Interrupt Vector Table 
Line Replaceable Unit 
Least Significant Bit 
Large Scale Integration 
Linear Token Passing Bus 
Original Address of Last Transmission 
Mode Code 
Message Control Frame Check Sequence 
Minimum Cut Set 
Message Frame Check Sequence 
megahertz 
Military Handbook 
Military Standard 
Mission Reliability Model 
Message Length 
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MPSC 
ms 
MSB 
MSI 
MT 
MTBF 
MTTR 
MUX 
n 
N 
NASA 
NCTS 
OSI 
PMA 
PROM 
PSG 
QA 
RAM 

! RAT 
RF 
RIM 
RIU 
RPP 
RR 
RRT 
RS 
RT 
RTCA 
RTE 
RTS 
SAE 
SAl 
sc 
sec 
SCM 
SCP 
SEAFAC 
SG 
SIM 
SIR 
SMF 
SQA 
SSA 
SSI 
STC 
sw 
Tc 
TC 
TCAS 
TCB 
TDMA 
TF 

Multi-Protocol Serial Controller 
millisecond 
Most Significant Bit 
Medium Scale Integration 
Message Time 
Mean Time Between Failure 
Mean Time to Repair 
Multiplexer 
Address of User Performing Computation 
Maximum Number of Users 
National Aeronautics and Space Administration 
Not Clear To Send 
Open Systems Interconnection 
Parts Manufacturer Approval 
Programmable Read-Only Memory 
Periodic Synchronization Gap 
Quality Assurance 
Random Access Memory 
Ring Admittance Timer 
Radio Frequency 
Ring Interface Module 
Ring Interface Unit 
Receive Personality PROM 
Read Register 
Ring Rotation Time 
Recommended Standard 
Remote Terminal 
Radio Technical Commission for Aerona1.ltics 
Real-Time Executive 
Request To Send 
Society of Automotive Engineers 
Systems Architecture and Interfaces 
Special Condition 
System Configuration Controller 
Software Configuration Management 
Self-Checking Pair 
Systems Engineering Avionics Facility 
Synchronization Gap 
Serial Interface Module 
Shared Interface RAM 
Self Monitor Function 
Software Quality Assurance 
System Safety Assessment 
Small Scale Integration 
Supplemental Type Certificate 
Software 
Count Duration 
Type Certificate 
Traffic Alert and Collision Avoidance System 
Type Certification Board 
Time Division Multiple Access 
Frame Time 
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TFCS 
TFEDF 
TG 
THT 
TI 
TIA 
Tm 
TRT 
TSDF 
TSO 
UAC 
UNC 
USAF 
V&V 
VLSI 
VOR 
VT 
WR 
XPP 

Token Frame Check Sequence 
Token Frame Ending Delimiter Field 
Terminal Gap 
Token Holding Timer 
Transmit Interval 
Type Inspection Authorization 
Wait Time for User 
Token Rotation Timer 
Token Starting Delimiter Field 
Technical Standard Order 
Unbalanced Asynchronous Configuration 
Unbalanced Normal Configuration 
United States Air Force 
Verification and Validation 
Very Large Scale Integration 
VHF Omnidirectional Range 
Validation Testing 
Write Register 
Transmit Personality PROM 
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