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EXECUL IVE SUMMARY

This project was conducted to validate the MLS mathematical model program which
was converted for implementation on the Federal Aviation Administration (FAA)
Technical Center Honeywell 66/60 computer. The original math model was
developed and validated by Lincoln Laboratory, Massachussetts Institute of
Technology. Five scenarios were gselected to demonstrate: (1) terrain
reflections, (2) building reflections, (3) aircraft reflections, (4) runway
shadowing, (5) building shadowing, and (6) ailrcraft shadowing. These were
input to the model for comparison with the output from the Lincoln Laboratory

Amdahl computer. Comparisons show that the results from both computers are
equivalent.

ix



INT RODUCT ION

PURPOSE .

The Microwave Landing System (MLS) mathematical model computer program developed
by the Lincoln Laboratory of the Massachusetts Institute of Technology has been
converted by Federal Aviation Administration (FAA) Technical Center personnel to
operate on their Honeywell 66/60 computer. The objective of this project is to
verify that analogous results are obtained from the Technical Center computer and
the Lincoln Laboratory Amdahl computer for the same model input parameters.

BACKGROUND .

To aid in MLS technique selection and siting optimization, a realistic multipath
mathematical model was developed by Lincoln Laboratory to simulate real-world
airport environments. The term "multipath”™ is used to describe the
reflection/shadowing phenomena because several possible paths exist for signals
to travel between the transmitter and receiver, as opposed to the single (direct)
path assumed in initial system design. The continuing construction of buildings
in the vicinity of the approach and landing zone and the increasing use of wide
body aircraft (both potentially significant multipath sources) emphasize the
importance of multipath effects to the design and selection of any landing
system. This model will be used to assess the degradation of a guidance path
when subjected to various levels of multipath interference. The Lincoln
Laboratory MLS model has been used to analyze MLS performance for various field
siting configurations. Since this model has been converted for operation on the
FAA Technical Center's Honeywell 66/60 computer, a validated model program was
required to provide the Technical Center with the assurance that the capability
to evaluate the performance of an MLS in a real-world environment has not been
compromised by the conversion process.

DISCUSSION

MLS MATHEMAT ICAL MODEL DESCRIPTION.

The MLS mathematical model simulation program is written in the FORTRAN IV
computer language and has successfully been used on computers in the United
States, United Kingdom, and the Feaeral Republic :of Germany. An MLS simulation
may be considered as consisting of thr:: elements.

l. The first element is the airport ard flightpsiiti model. This model consists
of the input data which specifies the iucations and composition of reflecting and
shadowing obstacles, terraia features, antenna locations, and the path flown by
the aircraft.

2. The second element is kiaown as the propagation model. This element
determines the signals at the receiver for each point along the flightpath,
taking into account the various multipath reflections.

-



3. The third element is the Time Reference Scanning Beam (TRSB) system and
receiver model. This part of the simulation computes the receiver error caused
by multipath for the specified ground equipment antenna patterns, aircraft
antenna pattern, scan format, and receiver processing algorithm.

Figure 1 shows the interrelationship of these elements to the total MLS
simulation. (See Bibliography for detailed theory and description.)

AIRPORT /FLIGHT PATH MODEL.

The airport and flightpath model (used as a block data subprogram) consists of
data specified for the particular airport environment being considered. At the
FAA Technical Center, this information is currently entered in an interactive
session which creates the block data file for input to the propagation model.

The degree of approximation to an actual airport environment will depend heavily
upon the simulation and the scatterer geometry. For example, in a case where the
multipath is out of beam and of short duration, hangars might be represented by a
single plate; however, to closely predict actual system performance in a critical
multipath situation, it would be necessary to input the same hangar with many
plates representing the various electrical properties of the different parts of
the hangar.

PROPAGAT ION MODEL.

Propagation modeling consists of executing the propagation program with the
airport/flightpath model input (block data). This model determines the multipath
characteristics of the specified airport environment. The numerical results from
the propagation model define the direct signal; signals reflected from or
diffracted by terrain, buildings, and aircraft; and the changes in the direct
signal characteristics due to shadowing by runway humps, buildings, and aircraft.
The type of multipath considered in a simulation is dependent upon and determined
by the input parameters defined in the block data. Numerical results are saved
in three different files: one file for further processing by the system model
(data set 8), and the other two for plotting of the multipath data (data sets 14
and 16). The propagation model can accommodate the mulripath types specified
below.

TERRAIN REFLECTI''N MODELING. The terrain is typically represented by a
collection of rectangular and triangular plates, each with prescribed
orientation, roughress, and dielectric constant. By vorying these parameters,
one can assess the sensitivity of performance to terrain type (e.g., dry ground
versus snow). The multipath levels are computed either by a numerical
Kirchoff-Fresnel integral or a simplified approximation.

BUILDING REFLECTION MODELING. Bulldings are represented by one or more
rectangular plates of prescribed orientation and surface material. The various
plates represent salient features of a building such as the doors of a hangar.

By allowing each plate to have a different surface material characterization,
inhomogeneous surfaces (e.g., concrete walls with metal doors) can be modeled.
Consideration is also made for secondary ground reflection paths. The levels are
computed assuming Fresnel diffraction and using closed form Fresnel integral
expressions.




AIRCRAFT REFLECTION MODELING. For aircraft, it is essential to consider the
curvature of the surfaces as this tends to spread the reflections over a much
greater region than would be the case with flat plates. The fuselages and tail
fins are both modeled as cylinders or a section thereof. The resulting multipath
levels are computed by a combination of Fresnel diffraction (integrals) and
geometric optics.

SHADOWING. Shadowing by buildings or aircraft causes both an attenuation and
distortion of the transmitted wavefront. Both of these factors are considered in
the models for shadowing. The shadowing obstacles are represented by one or more
rectangular plates which approximate the object silhouette. Similar techniques
have been successfully used in studying the effects of widebody aircraft on the
Instrument Landing System (ILS). The shadowing of the azimuth signal by runway
humps requires explicit consideration of the surface curvature, and is computed
by mathematical algorithms similar to those of aircraft reflection modeling.

The graphical routines used to display the propagation model results at the FAA
Technical Center are from the TEKTRONIX Plot 10 Terminal Control System. These
routines provide easy access to the graphic capabilities of the Tektronix 4010
type Direct View Storage Tube (DVST) terminals. Information displayed on the
storage tube may be copied as desired (via a hard copy unit) to provide a
permanent record of the results. Graphical output from the multipath model
consists of a listing of the input parameters used in the simulation, the flight-
path of the receiver, an airport map showing the location of the transmitters and
obstacles, and multipath diagnostics. These diagnostics display relative azimuth
(AZ), distance measuring equipment (DME), and elevation (EL) multipath/direct
(M/D) amplitude ratios (for the maximum component of the several multipath
components from a given obstacle) and separation angles (time delay for DME)
along the flightpath for the obstacles generating significant multipath
components, and the variation in the direct signal AZ, DME, or EL level where
shadowing 1s involved. Input parameters and airport maps are included in this
report for all scenarios discussed. Multipath and diagnostic plots are included
as applicable.

SYSTEM MODEL.

The TRSB system and the MLS receiver algorithms are simulated in the system
model. This model considers the received signal as a superposition of the
received direct path signal and a number of replicas (multipath) of it, each
having its owa amplitude, delay, angle, and Doppler shift. The system model then
determines the receiver error by taking into account the nature of the
transmitted s.gnals and the antenna patterns. The functional form of the beam
wavetorm is cd»rermined from measured or theoretical patterns and is included in
th2 model as 1 f'wmction subprogram. By superimposing the beam patterns
corvesponding to the various signal paths, the net received envelope 1is
determined.

The remainder of the system model parallels the processing by the receiver
microprocessor. A tracking gate is centered on the largest consistent envelope
peak with the beam arrival angle derived by finding the times at which the
leading and trailing edges of the received envelope cross a threshold. Various
checks and tracking algorithms are applied to each measurement before it 1s
presented as angle data. DME is not a part of the system model at this time.



The output of the system model is displayed on a Tektronix DVST using the
TEKTRONIX Plot 10 graphics subroutines. A specific transmitter (AZ or EL) is
selected for plotting and the errors generated by the model are plotted versus
the distance along the flightpath. The applicable error plot (AZ or EL) is
included for most of the scenarios discussed in this report.

PROGRAM VALIDAT ION SCENARIOS.

The scenarios listed below were recommended by the MLS model's author,
Dr. James Evans, to validate the FAA version of the program. Input and output
data required for program validation were provided by Dr. Evans.

1. Scenario 1 is derived from the J. F. Kennedy Airport geometry as an example
of elevation reflection multipath from buildings.

2. Scenario 2 is designed to show shadowing by buildings.

3. Scenario 3 is derived from the Los Angeles Airport to show azimuth reflection
multipath from buildings and aircraft, along with shadowing by a humped runway.

4. Scenario 4, based on actual flight tests, 1s designed to demonstrate azimuth
shadowing by a taxiing aircraft.

5. Scenario 5 involves the demonstration of ground reflections from tilted

terrain, and is based upon field tests made by Lincoln Laboratory at Ft. Devens,
Massachusetts.

DATA PRESENTATION AND ANALYSIS

Two sets of graphical output were generated by Lincoln Laboratory. One set was
generated using the original Lincoln Laboratory model and the other set was
generated using the FAA version of the model as it existed on tn. Lincoln
Laboratory computer. Due to better readability (larger size), the latter set of
plots is the one to which the FAA Technical Center output was compared. With one
exception, both sets of plots from Lincoln Laboratory were ident.cal and indicate
that there were no coding problems with the FAA model program. 71he exception
occurred when the AZ separation angle and DME time delay plots ’'r scenario 3 did
not agree on the duration of the affect from building 1 when the M/D ratio went

below the lower plot limit. Since the M/D ratio was beiow ~40 ¢z2cibels (dB). rhe
differences are considered insignificant.

The propagation model was run at the FAA Technical Center using the same block
data inputs as were used at Lincoln Laboratory. Som:@ additiona. parameters were
added to the block data to define a few variables, wiich normally were inpu: from
the keyboard while the model was running at Lincoln Laboratory.

The system model at the FAA Technical Center was run with two sets of input data.
One input to the system model was the output (data set 8) from the Lincoln
Laboratory propagation model, which was used to verify that both system models
provided the same output when using identical input data. T .« ouiput from the
FAA propagation model was also used as an input to the FAA system model to show

the cumulative effect of computational differences between the two computers and
programs



The axes on all plots are determined by automatic scaling routines which are
different between the two computers. However, this scaling does not affect the
actual data values.

The airport maps included are from the FAA propagation model graphical output.
These plots depict the building, aircraft, and runway hump locations with respect
to the MLS transmitter locations indicated by a star. Each transmitter location
is labeled by use of symbols sgpecified at the upper right corner of the plot.

The origin of the coordinat=z system used is typically located at the stop end of
the runway. Buildings, aircraft, and terrain plates are normally identified on
these plots by a number corresponding to a number on the input parameter listing.
However, for clarity, additional labeling has been added manually. Two plots are
required to depict the flightpath. The first plot shows the flightpath on the
standard x~-z coordinate system. The runway is labeled if the flightpath crosses
threshold. The flightpath is indicated by the dashed line with the numbered
waypoints.

The other flightpath plot shows the elevation (z-axis) versus the "distance along
the flightpath.” These two plots may be correlated by referring to the table on
the latter plot. The distance along the flightpath is the x-axis used on all
multipath and shadowing plots.

M/D signal ratio, separation angle (time delay for DME), and shadowing (if
applicable) plots are generated by the propagation model for each transmitter.
After ranking the multipath components from all scatterers according to relative
amplitude, only the largest component from each scatterer is used for plotting
(limited to six scatterers for each plot). AZ and EL error plots are the only
plots currently available from the system model. Only those plots appropriate to
the scenario are included in this report, although all available plots were
compared.

SCENARIO 1.

Figures 2, 3 and 4 show the airport layout and flightpath simulated in this
scenario. Table 1 summarizes the input parameters (see appendix A for an
explanation of the symbols). Since this example was designed to show elevation
multipath, only the elevation M/D ratio, elevation separation angles, and
elevation error plots are shown. TFigures 5 through 7 are the respective output
plots from the FAA Technical Center model. These figures may be compared to
figures 8 through 10 which are the Lincoln Laboratory model output. To aid in
comparison, the FAA output was plotted over the Lincoln Laboratories plots as
shown in figures 11 through 13. The + symbol used for plotting the FAA output on
the Lincoln Laboratory plots is centered on the FAA data location.

Figure 14 shows the comparison between the orieiral Lincoln Laboratory
elevation error and the elevation 2rcor from the FAA system model using the
propagation model output data as the input. With the exception of a few points
that are slightly offset from the >jriginal, thke FAA output is-identical to the
Lincoln Laboratory output.

All of the other plots from the propagation and system models were compared and
showed no discernible differences.

SCENARIO 2.

Shadowing of the MLS system is demonstrated by the airport geometry shown in
figure 15 depicting th2 input parameters of table 2. Flightpath plots are shown
in figures 16 and 17. Shadowing of the azimu - h antenna is shown by the
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FAA output plot of figure 18. The FAA output shown in figure 19 indicates
correctly that there is no shadowing of the elevation signal. The FAA model has
been corrected to eliminate the erroneous indication (in the Lincoln Laboratory
plot which is not shown) of elevation shadowing where none existed. The azimuth
system error generated by the FAA model is displayed in figure 20. Figures 21
and 22 are the Lincoln Laboratory plots corresponding to figures 18 and 20.
Figures 23 and 24 are plots of the FAA model output plotted over the original
Lincoln Laboratory data. Figure 25 is the result of plotting the FAA system
error with the Lincoln Laboratory data set 8 input over the original Lincoln
Laboratory output. All other output data were compared and are essentially
identical between the FAA and Lincoln Laboratory computers.

SCENARIO 3.

This scenario provides a demonstration of azimuth multipath and runway hump
shadowing. The airport layout is specified by table 3 and shown in figure 26.
Figures 27 and 28 show the flightpath. The output from the FAA model for the
azimuth M/D ratio, separation angle, and azimuth shadowing are provided in
figures 29 through 31, respectively. Figure 32 1is the system error generated by
the FAA model. Due to a rerun of the propagation model for this scenariuv to
correct an erroneous Lincoln Laboratory input procedure, no corresponding Lincoln
Laboratory output from the system model is available. Figures 33 through 35 are
the Lincoln Laboratory propagation model outputs corresponding to figures 29
through 31. Plotting the FAA outputs over these plots creates figures 36 through
38. These comparisons, along with those not shown, indicate essentially
identical output data.

SCENARIOQ 4.

The geometry for .this scenario, specified in table 4 and shown in figure 39, was
based on actual flight tests to shuw the shadowing effects of taxiing aircraft.
The tlightpath of the approaching :ircraft 1s shown in figures 40 and 41. The
aircraft taxiing on the runway is ‘ndicated by the two "T's"” marking both ends of
its rrajectory on the runway. The azimuth shadowing plot generated by the FAA
model 1s presented in figure 42 wit:1 the system error plot presented in figure
43. The corresponding original Lincoln Laboratory plots are shown in figures 44
and 45. Figures 46 and 47 are generatd by plotting the FAA output over the
Lincoln Laboratory plots. All plots from the FAA model were found to be
essentially identical to the origiaal Lincoln Laboratory plots. The output of
the FAA system model using the Li:roln Laboratory data set 8 inputs (figure 48)
shous some differences of about 0.71°. We cannot explain this anomaly sin:ze all
other FAA system model oucputs usig the Lincoln Laboratory data set 8 as input
resulted in identical plots. Howerer, this difference is considered minimal and
can be ignored for pract_cal appli:ations.

SCENARIO 5.

This scenario simulates ground reflections from rectangular plates tilted to
simulate terrain slopes. These plutes were configured as shown in figure 49 and
specified in table 5. A vertical flightpath is simulated as shown by figures 50
and 51. Propagation model output plots are not included because multipath levels
were very low (below -40 dB). The FAA system model output is shown in figure 52;
the comparable Lincoln Laboratc.y ou.put is shown in figure 53. A comparison of
these two outputs, figure 54, shows many small differences between the two plots.
These differences, however, only appear to affect the peak amplitude anu can be
attributed to the greater precisica capability (36-bit versus 32-bit) of the FAA
computer, since no changes were made to the focusing ground subroutines which are
used for this simulation. When the system 1odel is run with the Lincoln
Laboratory data set 8 as input, the plots ate essentially identical as inaicated
by figure 55.



NUMERICAL COMPARISONS.

The propagation model output (data set 8) from both computers was compared
numerically. The parameters compared and acceptable differences were:

1. Amplitude: +/-0.05 dB.

2. Phase: +/-0.09 radians (about 5°). An excess number of errors were
encountered with this comparison due to angles being equivalent, but some
multiple of 2 pl radians.

3. Azimuth angle: +/- 0.004 radians (about 0.25°).
4. Elevation angle: +/-0.004 radians.
5. Scalloping Frequency: +/- 0.3 hertz (Hz).

6. Azimuth incidence angle (with respect to the velocity vector of the
aircraft): +/- 0.02 radians (about 1.0°).

7. Elevation incidence angle (with respect to the velocity vector of the
aircraft): +/- 0.02 radians.

The results of the numerical comparisons are shown in table 6. This table shows
the number of samples, the number of times the samples exceeded the limits, and
the arithmetic average difference for each scenario.

In scenario 4 none of the elevation incidence angle samples compared were within
limits. The model author studied the problem and indicated that a minor coding
change will correct this. However, this parameter is only involved wheun a
directional aircraft antenna is simulated which 1s not currently performed.
Therefore, this problem should have no affect on our current modeling efforts,
and the coding change will be implemented in the near future.

The amplitude and phase values compared in scenario 5 exceeded the tolcrance
about 50 percent of the time. Again, we attribute these differences to computer
precision differences. However, it should be noted that large phase differences
associated with small amplitudes may be neglected since a small shift in the zero
crossing location will yield a phase error in that region. As shown by the
comparison plot (figure 55), the differences have a minimal effect o1 .:he final
output.

CONCLUSTIONS

The Federal Aviation Administration (FAA) Microwave Landing System (MLS)
propagation model and system model provide results comparable to the original
Lincoln Laboratory program when provided with the same input data. 7The greater
precision available in the FAA Honeywell 66/60 computer results in minor
differences in actual numerical and graphical data. Howewver, these differences
should not affect interpretation or analysis of the final results. It 1s
concluded that the FAA MLS mathematical model program is validated.
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TABLE 1. SCENARIO 1, MLS TRANSMITTER DATA AND INPUT PARAMETERS

PROGFAH T0 DO MULTIPATH MODELING AND SINMULATION OF MLS

1268 FAA/LL tLST2 SIMULATJON-LLBD 08/18/84 13.4871
PARAMETERS FOR Al SYSTENM ARE.

PARAMETER VALUE UNITS
XNTRAZX 0. Fy
XNIRA ZY 0. FT
XHIR 2Z 0.588E @ Fi
WLAZ 8.107E 00 F1
PLZAZ 1

DINAZ 8.121E 02 FT
vIYPA2

PARATETERS FOR DME  SYSTER ARE.

PARAI ETER VALUE UNITS
XHTRI X 0. F1
XHTRLNY @.120€ 92 F1
XMIRINZ 9.%598E 9 Fi
WL B.IC7E 8P F1
PLLD |

DINDCE 9.480E 01 F1
JT1YPD

PARAMETERS FOR EL! SYSTEN ARE:

PARATETER VALUE UNITS
XHTRE 1x 0.020E 94 F1
XNTRE Y @.400E @3 F1
XMIREVZ 9.1008E 82 Al ,
WLE! 0.107E 20 F1
PLIES 1

DIMEL | @.118E 92 F1
ITYPE) 3

PARAFETERS FOR EL2 SYSTEM ARE.

PARAFETER YALUE UNITS
XNTRE 2x @ B0RE 94 F1
XHIRE 2Y -9.250¢t @3 Fl
XMIRE 22 0 150t 92 F1
WLE2 . 197¢ o0 F1
PLIE2 1

DIMEL2 8,767 91 F1
JTYPE2 4

MULTIPATH EDJTING PARANETERS
THRESHOLDS FOR EACH PASS = @ . IPE-B4 D.1PE-0) B.30E-0)
OUT OF BEAMNESS: AZ= 3 .8® DEC EL= 3 B0 DEC bNE=  ©.85@E-25 SEC

TRANSHMITTER DATA
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TABLE 1. SCENARIO 1, MLS TRANSMITTER DATA AND INPUT PARAMETERS (CONTINUED)

'.’é';é{.‘%“"s USED IN COMPUTAT[ON OF SPECULAR GROUND REFLECTION
I

ERB- 1.2000+J B. SH20+ B.  NEZe 2.69 NA=25 NBal|

PARAMETERS USED IN COMPUTATION OF MULTIPATH REFLECTIONS

BUILDINC PARAMETERS ARE.

NO xL YL xR YR H8 HBOT  SH2B ERBR ERB{ TILY GRNDBD
| 10780. -750. 11400. -788. 109. 8. 0 0.1BE 92 ©O. 0. 9.
2 o180. -850. 19300. -0%5D. 199. .0 0 1% 02 O B 8.
3 8020. -700. 0©7ed. -70P. 50. 0 0 §.18E 82 B. 0. 0.
4 11150 803. 11400. 728. 52. 0.0 0.18E 02 9. [ ] 8.
-] 10708. 1200. 10000. 1878. g82. s 0 8.15E 02 6. [ ] 0.
8 0675 1150, 18928, 9%0. 50. e 0 0.15E 02 0. [ ] 8.

ERCa 1.206@ 0. SH2G= 8.
PARAMETERS USED IN COMPUTATJON OF SHABOWING

RUNVAY DIMENS JONS
RUNLEN= 0839 .82FT RUNW D= 150 .82FT DRATEs 8.20SEC

s:PROACH FLIGHT PATH DATA § VAYPOINTZCOORDINATES
X Y

YEL DINC

\ 18850 8@ 0. 00 09 210.%6 43.01

4 0830 .00 0 50.00 210.56 43 .01

3 9350 00 e. 20 90 210.56 43.01

4 00850.02 0. 28.09 210.56 43.01

] 85%508.00 Q. 8 .p0o 210.56 3.0
y (WL I} 42.79

INPUT PARAMETLRS
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TABLE 2. SCENARIO 2, MLS TRANSMITTER DATA AND INPUT PARAMETLRS

PROGRAN ‘1D DO MULTIPATH NODELING AND SINMULATION OF LS

1320 FAA/LL MLST2 SIMULATION-LLBD
PARAMETERS FOR AL SYSTEM ARE.
PARANETER VALUE
XNTRAZX -9.188E 04
XHTRAZY 9.

XMTRAZZ ©.600E 01
WLAZ 9.107E 9O
PLZAZ T

DINAZ 9.121E #2
1TYPAZ 1

PARAMETERS FOR DME  SYSTERN ARE,
PARANETER VALUE
XHTRDHMX -0.180€ 04
XHTRDNY 0.

XMIRDMZ @.6p0€ 8!

VLD ®.107E 09
PLID 1

DINDNE 8.400E o1
11YPD 2

PARAMETERS FOR ELI SYSTEN ARE .
PARAMETER VALUE
XMIRE1X ©.02PE B4
XHIRENY -0.400¢ 03
XPIRE1Z ®.130E B2
VLE? 2.107E 80
PLZE 1

DINEL) 8.1 082
JTYPED 3

PARANMETERS FOR EL2  SYSTEM ARE.
PARARETER VALUE
XHMTRE2X ©.720E 04
XHTIRE2Y -@.402¢ 03
ANTRE22 9.130t B2
VLE2 @.107cE @0
P.2E2 1

DINEL2 3.787¢ @)
17vpPE2 4

MATIPATH EDITING PARAMETERS
THRESHOLDS FOR EACH PASS 2

98/19/064 13.0870

®.1PE-84 0.106-2) ©.30€-
OUT OF BEANNESS. AZ. 3 @@ DEC Y A el

3 88 DES DE=  8.50E-25 SEC

TRANSHMITTER DATA
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TABLE 2. SCENARIO 2, MLS TRANSMITTER DATA AND INPUT PARAMLETERS (CONTINUED)

'I,N;CASE'ERS USED IN COMPUTATION OF SPECULAR CROUND REFLECTION
S Ds | .

ERO= 1 .2000+) . SH28= @. NFZls 2.88 NA=2% NB=z11
PARAMETERS USED IN COMPUTATION OF MULTIPATH REFLECTIONS

BUILDING PARAMETERS ARE.
NO aL

YL xR YR H9 HBOT SH2B ERBR ERBS TILT CRNDBD

1 2%90. 7590. -400. 730. 180. 0.0 0.I5E 92 . @ B
e 1000 850. 700. 8%0. 100. 0. 6 0. I5€ 92 O 0 0.
3 3900. 708. 2389. 7e9. 50. 0. b 0.16E 82 O. 0 9.
ERC= 1.2009 0. SH2G= O.
PARAMETERS USED IN COMPUTATION OF SHADOVWING
PARAMETERS FOR SHADOVING DUE TO BUILDINGS ARE
NO SHBLD. xL YL xR YR HBS HBT

) 250.9 750.0 -460.0 750.9 100.0

2 16090.0 8%0.08 700.9 858 .0 100.0 e

3 3000.0 780.0 2329.0 700.0 50.0 [ ]
RUNVAY DINENS]ONS
RUNLEN= 19850.80F T RUNVID« 159 . 02FT DRATEs 8.20SEC

APPROACH FLICHT PATH DATA 8 VAYPOINT COORDINATES

P1 X Y b4 VEL DINC

1 25000 .00 e 2090 .00 270.80 54.00

25030 .00 22200.09 2000.00 8. 0.

2
ICuT IS

INPUT PARAMETERS
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TABLE 3. SCENARIO 3, MLS TRANSMITTER DATA AND INPUT PARAMETERS

PROGRAM 10 DD NULTIPATH MODELING AND SIMULATION OF LS

1281 FAA/LL MLST2 SIMULATION-LLBD
PARANETERS FOR AZ SYSTEM ARE.

PARAIETER YALUE

XHTIRAZX -0.180E P4
XHIRAZY 9.
XMTRAZZ 0.58RE 9
WLAZ @.180E 9!
PLIAZ 1

DINAL D, 121E 82
1TYPAZ !
PARAETERS FOR DM€ SYSTEM ARE,
PARAMETER VALUE
XMYRDAX -0.100€ B4
XHIROMY e.
XHTRDNZ @.5eet 8!
wLD 0.100€ 81
PLLID 1
DiHDE 0.400t 01
11YPD 2
PARAMETERS FOR EL! SYSTEN
PARAME TER YALUE
XHIRE 1 X @ 700E 84
XHIRE Y -0.480E 03
XHTREINZ 9.1308E B2
WLEL 2.182¢€ @8
PLZE} 1
DIMELY ®.118E B2
1TvPen 3
PARAIMETERS FOR E1L2  SYSTEN
PARAIETER VALUE
XMTRE2X Q@.780E 04
XHTRE2Y -0.400€ 03
XNTRE2Z 9.130€ @2
WLE2 2.100E 81
PLIE2 1
DINEL2 8.787¢ Ot
ITYPE2 4

MULTIPATH EDITING PARAMETERS
THRESHOLDS FOR EACH PASS

ARE :

ARE

D.10E-04
QUT OF BEAINESS: AZ:= 3.P@ DEC ElL=

3 29 DEC

28710784 14.777

;

0.30e-01
DMEa  ©.5PE-25 SEC

TRANSMITTER DATA

[
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TABLE 3. SCENARIO 3, MLS TRANSMITTLER DATA AND INPUT PARAMETERS (CONTINUED)

PARANETERS USED IN COMPUTATION OF SPECULAR GROUND REFLECTION
RECTANGULAR SlinACE ELEMENTS ARE.

NO X! Y 2 x2 Y2 22 x3 Y3 13
1 o -78. 8. 8. 75, 9. 68790. 78. 0.

NO ERSR ERS] SH2S

A S.pooe 8. 0.0066

NRSPEC= 8

ISPGRDs |

ERG= |1.2080+] O. SH20- B. NFZle 2.80 NA=2S NB=1!|

PARAFMETERS USED IN COMPUTATION OF MULTIPATH REFLECTIONS
BUILDING PARAMETERS ARE
N X YL XR

0 YR H8 HBOT  6H28 ERBR ERBJ TILT CRNDBD
| 3075 -3400. 4400 -3408. 100. 0. D.0138 0.10E 0! -B.10E 80 0. e
2 4550. -2100. 5000 -2108. 100. 9. 0.0130 B.10E 8| -0.1BE 80 O. 0.
3 4600. -3160. ©5200. -3100. 100. 0. 0.0130 0.12¢ 81 -P.1BE 80 0. e.
4 8825. -1620. 7125 -1600. 5. 0. B.0I3O B.IBE O -B.1RE 0D O 0.
5 7760. -1629. ©6080. -1800. 80. Q. D:P130 0. 1RE O -O.1BE 09 D 0.
6 7125. -18088. 72%4. -17@6. %0. . 0.2130 D.I2E 0! -B.1BE 20 0. 0.

esBe. -1809. 8200 -1706. 50 @. 2.0130 B.IOE B! -0.1RE RO 8. 0.

7
ERG= 1.2000 ©. SH2G= B.

AJRCRAFT PARAMETERS ARE:
ND x1 14 xC YC NACTYP ALY GRNDAC

\ 57090.0 -1150.0 500@.9 -1160.0 ! 0. 9.
2 6700.82 -1150 @ 6000.0 -11%0.0 | B 9.
3 97508.6 -1150.0 8000.@ -19068.6 | 0. 2.
4 8020.2 -OPO.©@ 0000.8 -700.0 1 0. 8.
PARANETERS USED IN COMPUTATION OF SHADOVING
RUNVAY HUMP SHADOMING PARAHETERS ARE
X Y z
HPST 3300.0 e e.
HPT10P 3000.82 0. 5.0
HPEND 4380.0 0. 8.
RUNWAY DIMENS JONS
RUNLEN= 87020.02FT RUNVID» 150.00FT DRATE« B.20SEC
APPROACH FLICHT PATH DATA & WAYPOINT COORDINATES
P1 x Y ) 4 VEL DINC
| 17700.00 8. 500 .20 210.56 43 0Ot
2 77@0.00 ] 9. e [
Zcutl IS 50.00

INPUT PARAMETERS
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TABLE 4. SCENARIO 4, MLS TRANSMITTER DATA AND INPUT PARAMETERS

PROGRAH TO DO MULTIPATH MODELING AND SINULATION OF MLS

370 FAA/LL PLST2 SINULATION-LLBD 88/18/84 13 BBl
PARAFETERS FOR AY SYSTFM ARE,

PARAFE TER VALUE UNITS
XAMTRAZX 0. F1
XHTRAZY 0 F1
XMIRAZZ 2.700E @) Fi
WLAZ 9,197 20 Fi
PLZAZ 1

0IHAZ 9.121E 82 Fi

i TYPAZ i

PARAFETERS FOR DME L YSVEN ARE.

PARAPETER VILUE UNSTS
XMTRLHX '} Al
XHIRCHY . 0. F1
XNIRLNZ 8.109E 92 (3
wLD 9.180€ ot (3]
PLID 1

DINDCE 9.400€ 9! (3]
11YPD

PARAMETERS FOR ELI  SYSTEM ARE.

PARAFETER VALUE UNITS
XNTRE IX o G34E D4 3]
XMIRE 1Y 9. 400F 93 F1
XMTRE 12 @.000E 0} F1
WLEI 9 107E PO (3]
PLZE! 1

DIMEL ) P.118E 92 F1
STYPED 3

PARAFETERS FOR EL2 SYSTEM ARE.

PARAFETER VALUE UNITS
XMTRE 2X P 634E B4 F1
XHTRE 2Y 9.400f 03 F1
XMIRE 22 9 .000E 91 F1
WLE2 9.107E 8@ (3]
PLZEZ 1

DIMEL2 8.787¢ 81 F1
JTYPE?2 4

MULTIPATH EDJTING PARANETERS
THRESHOLDS FOR EACH PASS = ©.1BE-04 ©.10£-01 @.30E-01
OUT OF BEAMNESS: AZ= 3.00 DEGC EL= 3.80 DEC DrE= 0.50E-05 SEC

TRANSMITTER DATA
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ThBLE 4. SCENARIO 4, MLS TRANSMITTER DATA AND INPUT PARAMETERS (CONTINUED)

';ggg%TER? USED IN COMPUTATION OF SPECULAR GROUND REFLECTION
ERO= j.2800+J 0. SH2A= 8.066 NFZ= 2.80 NA=25 NB=11

PARAMETERS USED IN COMPUTATION JF MULTIPATH REFLECTIONS

PARAMETERS USED IN COMPUTATION OF SHADOWING
PARAMETERS FOR SHADOH'[NG DUE TO AIRCRAFT ARE

SHPOS2
NO X Y 2 X Y ¥4
1 4076.0 -25.0 0. 2167.0 ~29.¢ 127.9
NO SHACTP SHVEL SHANG
1 6 275.0 14.0

RUNWAY DIMENSIONS
RUNLEN=  B680.08FT RUNWID= 159.00F T DRATE= @.20SEC

s{;PROACH FLIGHT PATH DATA $ UAYPOINTZC(DRDINATES
X

VEL DINC
1 13692.00 -25.00 328.00 181.70 36.30
2 12849. 20 ~20.00 202.00 181.70 36.30
3 11878.20 -14.00 248.00 232.00 46.40
4 8635.20 -5.e8 64.00 0. 9.
ZCUT IS e.

INPUT PARAMETERS
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TABLE 5. SCENARIO 5, MLS TRANSMITTER DATA AND INPUT PARAMETERS

PROGRAM TO DO MULTIPATH MODEL ING AND SIMULATION OF MLS

6032 FRA/LL MLST2 SIMULATION-LLBD 28/10/84
PARAMETERS FOR AZ SYSTEM ARE:

PARAMETER VALUE UNITS
XMTRAZX e. FT
XMTRAZY a. FT
XMTRAZZ 0.400E 91 FT
wLAZ 0.992€ 82 FT
PLZAZ T

DIMAZ 8.12SE 82 FT
[TYPAZ |

PARAMETERS FOR DME  SYSTEM ARE:

PARAMETER VALUE WNITS
XHTRDMX e. FT
XHTRDMY Q. FT
XMIRDMZ 9. 158t 082 FT
wiLD 8.902t 00 FT
PLZD T

DIMDME 0.234E 02 FT
[TYPD 2

PARAMETERS FOR EL!  SYSTEM ARE:

PARAME TER VALUE UNITS
XMTRE 1 X Q. FT
.XMTRE1Y 8. FT
XMIRE1Z 9.766E 2| FT
WLE ] 3. 191E 99 FT
PLZET T

DIMELL 8.126E @2 FT
ITYPEL 3

PAPAHMETERS FOR EL2  SYSTEM ARE:

PARNMETER VALUE UNITS
XMTRE2X 0. FT
XHTRE2Y e. Fi
XMTRE2Z 0.760E °1 FT
WLEZ2 2.191E ©d FT
PLZE2 T

DIMELZ2 8.128t @2 FT
ITYPE2

MULTIPATH EDI/ING PARAME TERS :
THRESHOLDS FOR EACH PASS =  0.10E-24 O712€-81 0.30E-21
QUT OF BEAMNESS: AZ= 3.82 DEG EL= 3.00 DEG DME=  @.50E-85 SEC

TRANSMITTER DATA

13.904




€L

TABLE 5. SCENARIO 5, MLS TRANSMITTER DATA AND INPUT PARAMETERS (CONTINUED)

PARAMETERS USED IN COMPUTATION OF SPECULAR GROUND REFLECTION
KE CTANGULAR SURFACE ELENENTS ARE.

HQ - Y 21 x2 Y2 12 x3 Y3 13
1 9] -50. 0. ] 50. e 126. -%8. -I0@.
2 126 -50. -18 126 5. -190. 482. -5%@. -I13.
3 480 -59 -13.  482. 50. -13. 724. -50. -3.
4 790, -50. -4, 702. 50 . 1. 040. -30. 0.

NO ERSR ERSJ SH2S
! 6.0000 -0.0033 0.

2 6 9000 -9.0033 2.
3 6 Peooe -0.0033 B
4 6.0000 -0.0033 8.

NRSPEC-- 1+ 1 |}

1SPGRD- @

ER2- 15.0000+) 0. SH2O=7¥9%9¥ NFZ= 2 .89 NAx25 NBall

PARAMETERS USED N COMPUTATION OF MR TIPATH REFLECTIONS
PARAMETERS USED IN COMPUTATION OF SHADOWING
RUNWAY DIHENS|ONS

RUNLEN- 04D . DOFT RUNWID-= 100.90F 7 DRATE:= ©.20SEC

APPROACH FLIGHY PATH DATA 8§ WAYPOINY COORDINATES

P? | Y z VEL DINC
| 3039 98 0. 10.00 6.00 2.20
2 31030 Q2 0. 425 09 8. 8.

F{oV) I 19.00

INPUT PARAMETERS
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|
TABLE 6.

SUMMARY OF DIFFERENCES BETWEEN FAA AND LINCOLN LABORATORY DATA SET 8

< KL O G % %
Q S S AR \y O A S
D EE LS| o | o |88 | 55
S X [AN X | Lok OO AN DAY
© . & R Vuép'é% L PSRN S <§‘h3?' Ny \g§g
SCENARIO |
NUMBER OF SAMPLES 641 641 641 G541 641 641 €41
SAMPLES EXCEEDING LIMIT 0 6 0 o 1 0 0
AVERAGE DIFFERENCE 0.000f | 0.0045 | 0.0000 | 0.0002 | 0.0183 | 0.0000 | 0.0000
SCENARIO 2
NUMBER OF SAMPLES 2280 2280 2280 2280 2280 2280 2280
SAMPLES EXCEEDING LIMIT 0 0 0 0 0 0 0
AVERAGE DIFFERENCE 0.0000 | 0.0002 | 0.0000 | 0.0000 | 0.0083 | 0.0000 { 0.0000
SCENARIO 3
NUMBER OF SAMPLES 2676 2676 2676 2676 2676 2676 2676
SAMPLES EXCEEDING LIMIT 0 17 0 2 0 0 0
AVERAGE DIFFERENCE 0.0001 | 0.0310 | 0.0000 | 0.0000 | 0.0179 | 0.0000 | 0.0000
SCENARIO 4
NUMBER OF SAMPLES _ 62 62 62 62 62 62 62
SAMPLES EXCEEDING LIMIT 0 12 0 0 0 0 62
AVERAGE DIFFERENCE 0.0007 [0.1365 | 0.0000 | 0.0002 | 0.0178 | 0.0020 | 0.0456
SCENARIO &
NUMBER OF SAMPLES 824 824 824 824 824 824 824
SAMPLES EXCEEDING LIMIT 414 486 8 10 0 8 0
AVERAGE DIFFERENCE 0.0445 | 0.4059 | 0.0002 |0.0016 | 0.0056 | 0.0561 | 0.0002




APPENDIX

SPECIFICATION OF INPUT PARAMETERS DISPLAYED

PARAMETERS REQUIRED FOR MULT IPATH COMPUTAT IONS.

The following parameters are required to specify the airport model which is
employed in the multipath computation section of the program. A standard
rectangular coordinate system is used, where the XY-plane is in the plane of the
runway, the X-axis is coincident with the runway centerline and the Z-axis passes
through the stop end of the runway. All lengths, frequencies, and times are
given in feet, hertz (Hz), and seconds, respectively.

TRANSMITTER PARAMETERS (AZIMUTH, DISTANCE MEASURING EQUIPMENT, AND ELEVATION).

1. XMTRAZ - (X,Y,Z), XMI'RDM - (X,Y,Z), XM'RE1l - (X,Y,Z), XM'RE2 - (X,Y,Z):
X,Y,Z-coordinates of location of transmitter.

2. WLAZ, WLD, WLEl, WLE2: Wavelength (nominally 0.2 feet for C-band).
3. PLZAZ, PLZD, PIEl, PLE2: Polarization (vertical or horizomtal).

4. DIMAZ, DIMDME, DIMELLl, DIMEL2: Dimension of transmitter antenna.

SPECULAR GROUND REFLECTION.

1. NR: Number of rectangular surface elements.

2. (X1, Y1, z1), (X2, Y2, 22), (X3, Y3, 23): X,Y,Z-coordinate of two corners,
plus X,Z coordinates of third corner, in increasing order of magnitude for the
X-coordinate, for each rectangular surface element.

3. ERSR, ERSI, SH2S: The real and imaginary relative dielectric constants, and
the root-mean-square roughness height, respectively, for. each rectangular surface
element.

4. NI': Number of triangular surface elements.

5. (X1, Y1, 21), (X2, Y2, Z2), (X3, Y3, 23): X,Y,Z-coordinates of the three
corners of each triangular surface element, in increasing order of magnitude of
the X-coordinate.

6. ERSR, ERSI, SH2S: (see 3 above) for each triangular surface elemenc.
7. ERO, SH20: Default values of dielectric constant and roughness h:ight which
are used in those regions not specified by previously defined rectangular and

triangular areas.

SCATTERING FROM BUILDINGS .

1. NBLD: Number of buildings.



2. HBOI: Height of bottom edge of front face of buildings above ground for each
building.

3. HB: Height of building, relative to botr:tom ->.ge, for each building.

4. (XL, YL), (XR, YR): X, Y-coordinates of left-hand and right-hand, edge of
front face of building, for each building.

5. ERBR, ERBI, SH2B: Real and imaginary relative dielectric constants and the
RMS roughness height. -

6. ERG, SH2G: Dielectric constant and RMS roughness heijht for ground
reflection. These parameters are specified orly once, <iice they are assumed to
be the same for the ground surrounding each building.

SCATTFRING FROM AIRCRAFT.

1. NAC: Number of aircraft.

2. NACTYP: Aircraft type, for each aircraft, e.g., l(= 747), 2(= 707-320B), 3(=
727), 4(= DC1l0), 5(= C-124). A subroutine ACI'YPE is called, using the
appropriate aircraft type, to load the following ailrcraft parameters, which are
already stored in computer memory, into a suitiable storage area:

Area of wings

Radius of fuselage

Length of fuselage

Radius of curvature of tail fin

Width of tail fin

Height of tail fin

Height of center of fuselage above the ground

NV S WN =

3. (XT, YT), (XC, ¥YC): X, Y-coordinates of cockpit and tail fin edge of
fuselage centerline, for each aircraft.

4. AIT: Altitude of each aircraft defined as the height of fuselage centerline
above the ground. If aircraft is parked on the ground, then ALT should be set to
zero so the program can recognize that a default value should be used in
computations.

The parameters ERG and SH2G specified in item 6 under "Scattering From Buildings’
are also used to obtain ground reflections for scattering from the fuselage and
tail fin.

SHADOWING DUE TO BUILDINGS.

1. (XL, YL), (XR, YR): X, Y-coordinates of left-hand and right-hand, edge of
each shadowing surface.

2. HBS: Height of shadowing surface relative to bottom edge.

3. HBT: Height of bottom edge of surface relative to Z-axis reference.

A2
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SHADOWING DUE TO RUNWAY HUMP.

1. HMPSL, HMPTOP, HMPEND: X, Y, Z-coordinates for the location of the hump
along the runway.

The runway hump is assumed to extend from the lower, to the upper, edge of the
runway .

SHADOWING DUE TO AIRCRAFT.

Only one shadowing aircraft is considered by the program, for which the following
should be specified:

1. SHACTYP: Aircraft type (see item 2 under "Scattering From Aircraft”).

2. SHPOS': X, Y, Z-coordinates of center of fuselage of shadowing aircraft at
the starting frame number

3. SHPOS2: X, Y, Z-coordinates of center of fuselage of shadowing aircraft at
the ending frame number (assumes linear path).

4. SHANG: Pitch angle, angle between fuselago centerline and the X-axis
measured in the X-Z plane.

5. SHVEL: Velocity of shadowing alrcraft between SHPOS1 and SHPOS2.

APPROACH FLIGHTPATH AND WAYPOINT COORDINATES.

1. VEL: Aircraft receiver velocity, in ft/sec, for each segment. This velocity
is considered as being along the flightpath.

2. X,Y,Z: X, Y, Z-coordinates for each segment of each flightpath.

3. DINC: Distance along flightpath between evaluation points, nominally
40 feet.

4. ZCUT: Altitude at which transition from EL-1 to EL-2 system occurs,
nominally 100 feet.

In addition to the preceding data concerning the airport model, the following
information should also be specified:

RUNLEN: Length of runway
RUNWID: Width of runway

GPIP: X, Y, Z-coordinates of glide path intercept point (GPIP)

A3



