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EXECUTIVE SUMMARY
 

Horizontal separation of aircraft under the control of a .single Air Route 
Traffic Control Center in the National Airspace System (NAS) is accomplished by 
controlling the relative separation of points in a plane that represent actual 
aircraft locations. Such a representation is supposed to be the image of the 
orthogonal projection of an aircraft onto the mean sea level surface of the 
earth under a stereographic~apping. In practice, th~ system implementation of 
the mapping is imperfect. Hence, even if the aircraft location is known exactly 
in terms of surveillance data, i.e., altitude, slant range, and azimuth, there 
is a difference between the system representation of the aircraft and the image 
of actual aircraft position under the stereographic mapping. This difference 
constitutes a projection error, and the magnitude of the error determines how 
well the system representation of an aircraft reflects its location in terms of 
latitude and longitude. While the NAS implementation of the stereographic 
mapping is simple and computationally efficient, the corresponding projection 
errors exceed limits imposed on the design of the Advanced Automation System 
(AAS) that is to replace NAS. 

The ensuing report examines sources of projection error in NAS. Implementations 
of the stereographic mapping other than that employed in NAS are considered. 
Both spherical and ellipsoidal models of the mean sea level surface of the earth 
are taken into account. An implementation of the stereographic mapping is 
disclosed that retains much of the simplicity of the NAS design and yet meets 
the accuracy requirements of the AAS specification in the context of an 
ellipsoidal earth model. 

v 



1. INTRODUCTION. 

This report is concerned with projection errors in 2-dimensional representations 
of airspace employed for air traffic control (ATC) purposes. Some 20 Air Route 
Traffic Control Centers (ARTCC's) dispersed across the contiguous United States 
provide ATC services to en route aircraft operating under flight plans filed 
with the National Airspace System (NAS). The control jurisdiction of a single 
ARTCC consists of the combined coverage regions of many radars, and involves 
hundreds of thousands of square miles of the surface of the earth. Range and 
azimuth data acquired at the radar sites in connection with the location of 
airborne targets is transmitted to the ARTCC. Additional altitude information 
is supplied to the ARTCC for those aircraft equipped with Mode C transponders, a 
mandatory requirement in airspace above 12,000 feet. This surveillance 
information is used to create a representation of aircraft positions consisting 
of points in a 2-dimensional coordinate system referred to as the system plane 
or the ARTCC master plane. Separation of aircraft at the same altitude is 
effected by controlling the relative positions of the points. 

From a theoretical viewpoint, the system representation of a target should be 
the same as the image of the position of the target above the mean sea level 
surface of the earth under an explicit mapping of stereographic origin. 
However, the system implementation of the mapping is imperfect, and measurements 
of target radar coordinates are rarely exact. As a result, there is a 
difference between the system representation of the target and the image of 
target position under the mapping. This difference constitutes a projection 
error. While there are sources of projection error other than inexact 
measurements and imperfect implementation of the mapping, they are beyond the 
scope of this work. 

The objective of this report is to disclose some implementations of the 
projection mapping besides the one created by the designers of NAS. In the case 
of NAS the implementation is simple and computationally efficient. On the other 
hand, the corresponding projection errors exceed limits imposed on the design of 
the Advanced Automation System (AAS) that is scheduled to replace NAS in the 
next decade. Hence, it is natural t9 ask how one might alter the NAS 
implementation without materially destroying the simplicity of the design and 
yet achieve an accuracy that will meet the needs of the AAS. This report is a 
step in that direction. 

The remainder of the report is divided into 12 sections that deal with 
projection error in the context of a spherical model of the mean sea level 
surface of the earth. Extensions to an ellipsoidal model and details of a 
mathematical nature are relegated to four appendixes. The next three sections 
review some basic target location parameters and relationships between them that 
are used in succeeding developments. The projection error can be expected to 
exhibit some dependance upon target altitude and the position of the target 
relative to the antenna from which slant range and azimuth are measured. Hence, 
some quantitative formulation of what is meant by radar coverage region is 
essential to an analysis of the error. Such a formulation is provided in 
section 5. The mapping that carries target positions into the master plane can 
be regarded as a composition of two maps (references 1 and_2). One of these 
stereographically projects airspace into a so-called local radar plane tangent 
to the surface of the earth at the latitude and longituqe of the radar site from 
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as S increases from O. Otherwise, it steadily decreases as S increases toward 
the critical value 

.A <.~,) = (E + H ) (6)~ e R '+' 

, ~ ! 

where it takes on its minimum value 

), ( ~,) :. ) (7),.......,.,.., <. E -+ H 
R 
~'Y - E.
 

In fact, at the critical slant range the w-elevation surface is tangent to the 
sphere of radius E + hmin (W) about the center of the earth. As S 
continues to increase, the function h(S, W) rises, and it passes through HR as 
the slant-range moves through 2s c ( W) . 

The relationship 

2­

+ (s + <. E· "'R) ~ YJ1 (8) 

can be obtained by completing the square in (3). The solution of (8) for slant 
range leads to the functions 

and 

1. a ,/2.
 
A ~H,'IJ) "~"E+H) -<'E-+~R·;Z.c:.....a"1l \1-'1 - <E+'"'k' ~lf'. (10)
 

1,.: 

If Wis negative and 

(11) 

then slo (H, W) (shi (H,. W)) represents the smaller (larger) of the . 
two possible slant ranges for a target on the w-elevation surface at altitude H. 
If either W> a or else W< a and the altitude does not satisfy the constraint 
(11), then - slo (H, W) has no physical meaning. On the other hand, when 

5
 



(16) 

about the antenna, and 

\, (SiS) ':: <E"i H ) ~$4 - E 
c. R 

(17) 

is the altitude of the locus of the points of tangency. Consequently, there are 
two possible altitudes for a target on this surface at a slant range S for which 

(18) 
~ E' of H R· 

These are 

lIz. 
(~.., (19 )

\, l¢ > -(s
z. 
~ 

...,s" J "'" \,c~ .A 2.. 

.l.r 

and 
1/2. 

2.
\, t.¢ ) -= I 52- A (¢>J +'n<sz'). (20) 

~k 
e 

When S exceeds E + HR there is only one possible target altitude, and it can 
be obtained from (20). Slant ranges of this magnitude are not encountered in 
ATC applications. 

In the case where S ~ E + HR, the preceding remarks imply the existance of 
target locations at slant range S for which the line segment connecting the 
target to the antenna is perpendicular to the line segment connecting it to the 
center of the earth. These locations correspond to the circular locus of points 
defined by the intersection of the sphere of radius S about the antenna and the 
,-deviation surface that is tangent to the sphere. The altitude of each of 
these tangency points is given by 

E (21) 

which can be obtained from obvious geometric considerations or the solution of 
(16) and (17) for hc(') in terms of 8 mi n (,). Obviously, ,(S,Hp (8)) 
is the maximum deviation angle that can be attributed to a target at slant 
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o ~ e <'211'. . (30) 

As will be seen, this provides a foundation for evaluating the performance of 
surveillance techniques based on the method of,stereographic projectioq. For 
example, there will be subsequent references to the minimum and maximum 
altitudes ~. (S) and H (S) that can be assumed by a target in1n. ''1llaX • • •
the coverage reg10n at slant range S. It can be eas1ly ver1f1ed that these are 
provided by the following algorithms in the practical case where ~max is 
positive. The algorithms are written in terms of simple PASCAL assignment 
statements (reference 4) with the understanding that the symbolic 
representations of mathematical functions on the left (right) side of each 
expression are to be treated as real varibles (functions). 

Algorithm 1. Maximum Altitude 

if (( M >H ) ~ 
(,M. R 

else 

Algorithm 2.- Minimum Altitude 

if 

else 

.~ s 
o 

6. STEREOGRAPHIC PROJECTION IN THE LOCAL RADAR PLANE. 

A target can be stereographically projected onto any plane tangent to the 
surface of the earth or, for that matter, tangent to the surface of any sphere 
about the center of the earth. The phrase "local radar plane" will be used to 
refer to the plane tangent to the surface of the earth directly beneath the 
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'\ (S... H) '= R<. S) \0" \: I")( <. S... \-\)1
-,/z 

(33) 

where 
\ 

1. a i l z: 
R (S.. ~) = t s - (~- '"' R) 1 (34) 

and 

.-,( (S H) (35)
J 

Thus, target slant range, altitude, and azimuth can be used to compute the 
complex representation z(S, H, e ) of the stereographic projection of the target 
onto the local radar plane via (31) and (33). 

7. GROUND RANGE ESTIMATION WHEN ALTITUDE IS UNKNOWN. 

Let ~min(S) ( ~max(S» represent the minimum (maximum) deviation 
angles that can be attributed to a target in the coverage region at slant range 
S from the antenna. It follows from (32) that 

is the arithimetic mean of the maximum and minimum ground ranges that can be 
associated with such a target. Moreover, the maximum value of the difference 
between rm(s) and the true ground range of the target is 

(37) 

Thus, when target altitude is known only to the extent that it lies between the 
minimum and maximum altitudes Hmin(S) and H x(S) that can be 

i b " maattr1 uted to a target 1n the coverage region at slant range S, then rm(S) can 
be used as an estimator of target ground range, and the absolute value of the 
corresponding estimation error cannot exceed Ei:n(S). This estimator is optimal 
in the sense that the maximum error associated with any other estimate of ground 
range cannot be less than em(S). 
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viewed as an attempt to approximate rm(s). However, in the case where the 
slant range exceeds shi (M, ib ), a much closer approximation can be 

. max. I . If· f /obta1ned from a least squares f1t of a low order po ynom1a unct10n 0 1 S to 
samples of rm(S). In the cases where the slant range falls below Shi(M, 

) ' our experience indicates that rm(S) is essentially a linear functionib max 
of S. However, there is a problem with polymomial fitting in the sense that 
~m(S) does change with the configuration of the coverage region, and so one 
cannot expect the same pair of polynomials to apply to all radar 'si t ea; in NAS. 
Thus, one is left with the usual problem of deciding whether the benefit to be 
derived from optimality is worth the effort needed to achieve it. 

8. GROUND RANGE ESTIMATION WHEN ALTITUDE IS KNOWN. 

When both altitude and slant range are known, the ground range can be obtained 
from (33). However, there are many ways in which this computation can be 
carried out. To the extent that computational speed and consumption of 
computational resourses are important, some of these may be desirable and others 
not so desirable. In what follows, an approach to the determination of ground 
range will be described that is easy to implement in a form that provides quick 
results accurate to within 2 m. 

There exist efficient high speed techniques (reference 6 and -7) for evaluating 
the factor R(S, H) in the formula (33) for ground range. The remaining factor 
can be expressed as a polynomial in xes, H) by a straight forward application of 
Taylor's theorem with a remainder to the expansion of the reciprocal of the 
square root of x about an arbitrary positive number In" other words, thexo• 
ground range can be expressed in the form 

(42) 

where ~ is a number between Xo and xes, H), 

r ($ H '1<) (43) 
,..,.. J ) e 

Dk(t) is the k th derivative of (l/x)t evaluated at x = t, and 

Thus, if rn(s, H, xo) is used to estimate the ground range then the 
corresponding estimation error is given by (44). Unfortunately, ~ is unknown 
and so the error cannot be evaluated. On the other hand, it is possible to find 
an upper bound on the absolute value of the error that is valid for any pair 
(S, H) corresponding to a target location in the coverage region, and, in the 
case of NAS, this bound is on the order of a meter when both Xo and n are 
assigned the value 1. As a result, the estimator 
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and 

(52)
 

are satisfied throughout NAS. Hence, by using the right sides of constraints 

(50)-(52) in place of Smax, ~R, 
estimation error can be obta1ned 
NAS. For example, 

and M 
that 

in (46)-(49) 
is valid for 

an upper bound on 
all radar coverage 

the 
regions in 

(53) 

and 

I. b 0 (54) 

From (54) it is concluded that rl(S H 1) is essentially the same as the 
ground range over the coverage region of any radar site 1n NAS. On the other 
hand, the same conclusion cannot be drawn for roeS, H, 1) from (53). 

Although the projection error associated with the estimate (45) is negligible in 
the context of a spherical earth model, it does not necessarily follow that the 
same will be true in the context of an ellipsiodal model. However, there does 
exist an interesting possibility for employing the estimator (45) as a means for 
essentially eliminating the projection error when ~he earth is represented by 
the reference ellipsoid. This subject has already been touched on in the open 
literature (reference 2), and the main features of the idea are provided in 
appendix C. 

9. STEREOGRAPHIC RELATIONSHIPS. 

As already pointed out, an ARTCC is serviced by a multitude of radars, and 
control of aircraft in the horizontal sense is effected through stereographic 
representations of target locations in a single plane. This center master plane 
is tangent to a so-called conformal sphere. The center of the sphere is 
collocated with the center of the earth. However, the radius need not be the 
same as that of the earth. Target representations in the master plane are 
obtained from the stereographic representations of the targets in the local 
planes associated with the radars that support the ARTCC. For example, using 
appropriate coordinate systems in the local and master planes with origins at 
the points of tangency, the master plane representation of a target associated 
with the complex number z in a local rad~r plane is given by 

(55) 
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10. PROJECTION ERROR IN MASTER PLANE. 

Suppose now that ze is the estimate of the stereographic representation of the 
target in the local radar plane. For example, it might be the product of 
rn(s, H, xo) and the phasor exp (i 6). Also supppose that WN(Ex, ze) 
is used to estimate the stereographic representation of the target in the master 
plane. Then 

(E ~) - \.I.r
?C I ri,A (59 ) 

represents the corresponding projection error. Using (55) and (58), it follows 
that 

::. (60)'N \E lSI. ) 
tAo\- BI~IZ1[ \E/E ) J '"DJ - J C]?C .A '" 

where 

:= 
... - ,

C t 1- .B \.II"' 
0 (61)j 1 

,;; 

and '"' 

I - r. cE IE ) vr 
.. 

B ]A 1 
N 

~.J): 
0 

~ 
1- (E'/e ) v.r 

Q J3 J.o. (62 )"1( 

Clearly, (60) cannot be obtained from (59) in the event that either of the 
factors Wo*Bz and (E/Ex)wo*Bz e is one. As already indicated, this 
is not a problem in the case of the former factor, and, as will be shown, the 
same is true in the case of the remaining term. While formula (60) is exact, it 
does not provide much insight into the relationship between ze, Ex, and the 
projection error. In what follows, consideration will be given to an 
approximation that does provide such insight. 

In practical situations both C and D are close to unity. Consequently, one is 
tempted to conclude that the projection error can be closely approximated by 

(63) 

Unfortunately, this is not necessarily true. For instance, one can construct 
practical examples for which the absolute value of the difference between 
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or 200 nmi so long as the target is within the coverage region of the radar. On 
the other hand, the reciprocal of L is typically on the order of thousands of 
nmi. Consequently, the second restriction is not a serious impediment to the 
validity of the bound. Incidently, (67) together with the fact that the radius 
E of the spherical earth model must be between a and b implies that the 
magnitude of the factor (E/Ex )wo*Bz e is less than 1. Thus, as 
indicated before, there is little reason to be concerned with the indeterminate 
s i tua t i on in .connectionwith. the expression (60). 

When the order of the approximation is 1 the bound is given by 

( 68) 

When N exceeds 1 it is given by 

(69) 

where 

L 'J' t. \ + r ~'- L\Jl)) 

( ,- L 'J ' ) ( ,- i L 'J' ) (70) 

and P is any number satisfying the inequality 

(71)
II ( L '$ I ) •r 

The existence of P is guaranteed by the restriction (,67). Moreover, since F is 
an increasing function of P it is clear that the same is true'of the bound W, 
i.e., the bound is tightest when P is set equal to the left most member of (71). 
For future reference it is pointed out that the definition (66) of Limplies 
that both U and F increase monotonically wi th I wol and I zl so long as the 
constraint (65) on LI zl is satisfied. An example will show how this 
monotonicity can be used to evaluate the accuracy of our approximation of the 
projection error. 

The accuracy of the approximation (64) will be illustrated in the context of the 
ErrRouteAutomated Radar Terminal System (EARTS) mosaic model for Alaska 
(reference 8). According to the model, there are 15 radars supporting the 
ARTCC, the radius Er of the conformal sphere is 3395.7 nmi, the maximum 
effective slant range of each radar is no more that 200 nmi, and the distance of 
the stereographic representation of each site in the master plan from the point, 
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when the approximation is expressed in m. Consequently, when the approximation 
order is greater than 1 the magnitude of the error is at most 7.04 m plus about 
one percent of the magnitude of the approxi~ation itself. Clearly, the accuracy 
of the approximation (64) is pretty good. 

For the most part, one is interested in the magnitude of the projection error 
and so it is convenient to have a simple expression for the magnitude of 
gN(Ex,ze). Such an expression is easy to derive in the practir~l case 
where the phase of the estimate ze is the complement of the target azimuth e • 

I' . 

Then, at least in the context of a spherical earth model, the phases of z and 
ze are identical. Since (56) and (57) imply that the phases of A and Bare 
always the same, namely, - a , it follows from (63) that the magnitude of the 
expression (64) is invariant to azimuth when the approximation order exceeds 1. 
On the other hand, when the order of approximation is 1 it is apparent that the 
magnitude varies with azimuth and is maximum when the azimuth is v radians out 
of phase with the compl~ment of the sum of a and the phase of wOo As a 
result, 

= ( \ A \ -+ \ B \ \ ~C> \ z 1\ \ c / E. IX ) I J.A.' - \J I \ (76) 

and 

---~ 

N= I 

(77) 

whenever the phase of the estimate of the stereographic representation of the 
target in the local radar plane is the complement of target azimuth. 

The relationship (77) can be used to illustrate the importance of the 
distinction between the radius of the earth and that of the conformal sphere in 
the transformation (55) relating the stereographic representations of the target 
in the local radar plane and the master plane. In particular, great pains were 
taken by the designers of NAS to make the ground range estimate I zel as close 
as possible to the true ground range I zl of the target. However, even if the 
true ground range and its estimate are the same, a poor choice for Ex in the 
approximation (58) can cause projection errors on the order of a nmi. For 
example, suppose the radius of the conformal sphere is assigned to Ex ~s is 
the current practice in NAS. Then 

2­r E \ v.i. \ 
~ l _"Y + \ \ 'J \ 

of LtEE (78) 
"'r 

when the estimate I zel of' ground range is exact. In terms of the Alaskan 
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where 

~e (82)
J 

A'd = [Cs oS ~ c", 4"1 <::..crq. e - ~ (sJ'"'J \) 66 Ai.-.. e (83) 
) 

and Cs (CH) is the partial deriviative of rl(S, H~ 1) with respect 
to S (H) evaluated at the actual slant range and azimuth of the target. This 
expression can be viewed as a first order approximation of the error in the 
estimate of the actual stereographic representation of the target in the local 
radar plane due to measurement errors. This is not the total projection error. 
The total error is given by 

(84) 

where 

(85) 

is just the projection error in the case for which the measurements are exact. 
To the extent that the first order approximation of the component of the error 
due to inexact measurement is valid, the total error in the local plane can be 
represented by the sum of ~(S, H, a) and ~ze' Needless to say, the magnitude 
of the former is just the absolute value of the difference between the true 
ground range of the target and rl (S, H, 1). As already pointed out in 
section 8, this is, at most, a few meters for coverage regions of the type 
encountered in ATC applications. 

The projection error in the master plane can be approximated by substituting 
eL for Ze in formula (64). As already demonstrated, the approximation error 
associated with this formula is negligible for current ARTCC control 
jurisdictions. Also, as pointed out early, it is good design practice to assign 
the radius of the earth to Ex regardless of the order N of the polynomial that 
is used to map the local plane into the master plane. With this understanding, 
the total projection error in the master plane associated with the Nth order 
transformation polynomial can be represented by 
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length Aal lies along the line segment connecting the representation of the
 
target and the antenna in the local radar plane. The result is
 

_ (.)"''2. /2.) ( 91) 

~\"') :. \- f. 

It is left to the reader to derive a similar relationship for the master plane
 
from the relationship (86).
 

It is emphasized that (91) is based on the assumption that (81) does indeed 
qualify as an accurate approximation of the difference between Ze(S+6S,6H+H,e+6~) 

and Ze(S, H, e). Clearly, this is not the case when the measurement errors 
are large. Consequently, one might do well to at least demonstrate the validity
 
of the relationship before using it as a design tool.
 

12. CONCLUSIONS. 

There are many ways of going about estimating target ground range in the local 
radar plane in the case where altitude is unknown. The approach to ground range 
estimation described in this report is optimal in the minimax sense. The 
current method employed in NAS LS optimal in the same sense only in the context 
of a flat earth model. It is, at best, suboptimal in the context of a 
spherical model. 

While ground range can be determined exactly when altitude is known, it has been 
shown here that computations can be greatly simplified by resorting to an 
approximation of the.exact formula that is accurate to within 2 m for any target 
in the coverage region of the radar. This, together with a special method for. 
calculating the difference between S2 and (H-HR)2, can be used to formulate an 
efficient, high speed algorithm for estimating the stereographic representation 
of the target in the local plane. Numerical studies (appendix C) indicate the 
existence of extensions of the algorithm to the ellipsoidal earth model for 
which the projection error can be essentially eliminated under the geometric 
limitations imposed by ARTCC control jurisdictions and ATC radar coverage 
regions of practical import. One of these extensions involves a ground range 
correction factor that limits the ground range error to values less than 5 m. 
The corresponding error in phase involves angles that are less than 0.006°. 
~hese bounds are. cosiderably less than the slant range and azimuth quantization 
'i nte rva l s vof 0.0078 nmi and 0.022° associated with the Mode S s'y s t em that is 
scheduled to replace the current operational ATC radar beacon system. 
Unfortunately, at ground ranges of 200 nmi from the antenna the phase error can 
lead to projection errors on the order of 0.02 nmi which exceeds the 0.005 nmi 
limit imposed on projection errors by current AAS requirements. However, by 
introducing a phase correction factor in addition to the ground range 
correction, it is possible to hold the projection errors in both the local radar 
plane and the ARTCC master plane to levels that are well within AAS 
specifications. In fact, this can be accomplished in such a manner that the 
master plane magnification factor (reference 2) is optimized. Insofar as size 
of the control jurisd~ction is concerned, the 2500 x 2500 nmi limitation imposed 
by the AAS specification on the surveillance coverage region of the Area Control 
Computer Complex does not present an obstacle to successful application of the 
range and phase correction fa c t or s-, 
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APPRENDIX A 

SLANT RANGE EXTREMUM IN THE ALTITUDE WINDOW 

Let J represent the~et of points in the intersection of the beam and the window 
comprising all altitudes from 0 to M. Suppose there are targets in J at 
altitude H. Since slant range increases with increasing deviation a~gle at 
constant altitude it follows that among all such targets the one with the 
greatest deviation angle will be farthest from the radar. 

Now consider the case where ~min is less than the elevation angle of the 
line-of-sight horizon. Clearly, the target at altitude H in J at the greatest 
distance from the antenna must lie on the ~o-elevation surface, and the 
corresponding slant range is Shi(H,~o). But formula (10) implies this is 
an increasing function of altitude. Hence, the greatest distance Sl between 
the antenna and a point J must be Shi(M, ~o). In like manner, it can be 
shown that Sl . (.1.) .1. 

1S shi M, ~min when min ~ ~o. 

Finally, since the slant range of a constant altitude target decreases with 
decreasing deviation angle, shi(M,l/J) is a decreasing function of elevation 
angle, and so shi(M, l/Jo) exceeds shi(M, l/Jmin) if, and only if, 
!/Jmin > !/JO• Thus, in general, Sl is given by (25). 
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APPENDIX B 

ERROR BOUND 

Consider any pair (S, H) corresponding to a target in the coverage region. 
Expression (34) implies that R(S, H) cannot exceed the maximum slant range 
Smax of the radar. Moreover, as will ·be seen, xes, H) is bounded above by 
v and .be.low by u , Also , ' the magnitude (47) of ' the (n+l)thderivative of lWis 
a decreasing function of t. Consequently, (46) must be an upper bound for 
en (S, H, ~ ) • xo, 

In order to establish u as a lower bound for xes, H) one need only note that 
Smax is certainly less than the polar radius of the earth in ATC 
applications and the latter is not greater than E. Consequently, (35) implies 

2­

/X ( S,J ~n ~ I - l S~ / (2. E)~ ~ ~. (B-1) 

The upper bound v can be obtained from (35) and the fact that M 15 the max1mum 
target altitude in the coverage range, 1.e., 

I')(. (S 1..1) < (B-2) 
J 

IV'" • 
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APPENDIX C
 

ELLIPSOIDAL EARTH MODEL
 

Under the assumption of an ellipsoidal earth model the altitude of a point above 
mean sea level is the distance separating the point from its orthogonal 
projection onto the ellipsoidal surface. The geodetic coordinates of a target 
at altitude H are specified in terms of the triplet (L, ~,H) where L and A are 

i ,
the geodetic latitude and the longitude of the target. The latitude measures 
the angular deviation from the equatorial plane of the normal to the ellipsoidal 
surface at the project~on of the target. Thus, it specifies the location of the 
projection to within a circle about the polar axis of the earth. The longitude 
represents an angle measured in the plane through the circular locus from the 
projection to a fixed half plane defined by the polar axis and a predetermined 
point on the surface of the earth. As a result, latitude and longitude uniquely 
specify the projection of the target on the surface of the earth and this, 
together with altitude, provides the location of the target itself. 

If it is imagined that the lengths of the axes of the ellipsoid approach one 
another, then L approaches the angular deviation from the equatorial plane of 
the line segment connecting the target to the center of the earth. In fact, 
points on the ellipsoid are often associated with points on the surface of a 
so-called conformal sphere abottt the center of the earth. Specifically, the 
point (L, A, 0) on the ellipsoidal surface is equated to the point on the 
surface of the sphere at longitude A and latitude VeL) where 

-z.,. L cc-i». -.. J6 

is the mapping defined by the equation 

(C-2 ) 

and ~ is the eccentricity of the ellipsoid (references I and 2). The angle VeL) 
is sometimes referred to as the conformal latitude of the target. As will be 
seen, this concept bears directly on the definition of the local radar plane in 
the context of an ellipsoidal earth model. 

Consider a radar with geodetic coordinates (Ls , As, HR)' The antenna axis 
corresponds to the normal to the ellipsoidal surface at (Ls , As' 0), and 
rotation is commonly in the direction counter to that dictated by the right hand 
rule with respect to the direction along the axis at the radar away from the 
ellipsoid. The azimuth of a target is determined by two half planes having the 
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as the range and phase components of the error. If the lengths of the 
semi-minor and major axes of the ellipsoid approach the common value E, then 
(C-4) reduces to the projection error in the context of the spherical model, the 
angle error vanishes, and, as pointed out in section 8, the range error is 
negligible for radar coverage regions like those encountered in practical ATC 
.app l i ca't Lons , .However, it still r emai.ns to show how the projection error for 
such coverage regions can be neutralized in the situation where the mean sea 
level surface of the earth is represented by the reference ellipsoid. 

If we employ the reference ellipsoid as the earth model and assume that the 
coverage region of the radar is constrained by inequalities (50) - (52), then 
the range and phase components of the projection error can be represented by 
sinusoidal functions of the phase of the true representation z of the target in 
the local radar plane with amplitudes that vary with the magnitude of the 
representation. In particular, consider the case where z is constrained to lie 
on a circle about the point of tangency of the local radar plane, target 
altitude is held constant, and the phase of z is increased from 0 to 2v 
radians. Empirical data (references I and 2) suggest that both the range and 
phase errors oscillate in an almost sinusoidal like manner. The same data also 
suggest that the amplitude of the range (phase) error oscillation is a nearly 
quadratic (linear) function of ' the radius of the circle. Although the 
ampitudes of the oscillations do vary with the geodetic latitude of the radar 
site, the radar site altitude, and the altitude of the target, the variation 
with target altitude is extremely small over the values assumed by this 
parameter in ATC applications. In more explicit terms, empiri~al data suggest 
that the approximations 

(C-7) 

and 

(C-8) 

are highly accurate representations of the range and phase components of the 
projection e~ror wh~re the coefficients ao, aI, a2, bO' and bl' are functions of 
the radar s~te lat~tude Ls and the radar site altitude HR. 

The coefficients aO through bl' can be determined by applying least squares 
methods to samples of the range (phase) errors corresponding to a single target 
altitude and a sequence of values of z along the positive half of the imaginary 
(real) axis of the local plane coordinate system where arg(z) is rr/2 (0) 
radian. The target altitude chosen for this task might be half the maximum 
altitude of interest within the coverage region of the antenna. For example, 
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into the master plane. The answer to this question is affirmative. In 
particular, 'the reader need only refer to the formula provided in reference 1 
for the impact of the projection error in the local plane on the corresponding 
error in the master plane. A little thought will lead to the conclusion that 
the projection error in the master plane associated with the use of (C-9) and 
(C-lO) in the estimation of the local plane representation of the target is
 
essentially the same as the corresponding error in the local plane under the
 

. usually. constraints imposed on the geometry, of an ARTCC control jurisdiction.
 
The recent numerical work performed at the FAA Technical Center substantiates 
this conclusion for cases where. the radar site is located at distances up to 
1460 nmi from the latitude and longitude marking the so-called master plane 
point of tangency. 

It is emphasized that the accuracies claimed for the estimates (C-9) and (C-lO) 
are based on empirical data rather than a mathematical derivation. Moreover, 
the data were collected for selected radar site latitudes in the northern 
hemisphere for which the coverage region of the antenna does not include the 
north pole or the equator. We do not expect the relationships (C-9) and (C-lO) 
to hold for radar sites near a pole for which the coverage region involves 
points on the surface of the ellipsoid on both sides of any plane passing 
through the polar axis. Likewise, these approximations cannot be expected to be 
valid for sites in the neighborhood of the equator where the coverage region 
involves portions of the earth'surface in both the northern and southern 
hemispheres. 

Finally, the projection error in the master plane is dependent upon the - . .. 
corresponding error in the local plane as well as the bilinear transformation 
used to map the l~tter plane into the former. The transformation is itself a 
function of E and another parameter ~r that is sometimes referred to as the 
radius of the conformal sphere supporting the master plane (references 1 and 2). 
If Er is improperly evaluated, then there is no guarantee that the projection 
error in the master plane will be commensurate with rhat in the local plane. 
This problem can be avoided by choosing Er to optimize the so-called 
magnification factor in accord with the method outlined in reference 2. In 
fact, no difficulty whatsoever should be encountered for the control 
jurisdiction geometries cited in the AAS specification, and there is good reason 
to believe that the approach to the projection problem outlined in this appendix 
can be successfully applied to the case where the size of the jurisdiction is 
extended well beyond the limits prescribed by the specification for the 
surveillance cov~rage region of ~he Area Control Computer Complex. 
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(0-6)
 

corresponds to (63) and 

(0-7) 

By expressing x as a function of z through (0-1) and using the fact that E lies 
between a and b, it can be verified that I uI is upper bounded by U of (68). 

Turning to the case where N exceeds 1, it will be noted that 

N 
(0-8)

[ 
\.~ I 

where 

(0-9) 

and 

As a result, (0-4) can be written as 

(D-11) 

where 

(D-12) 
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Under the constraint (65) the magnitude of v is upper bounded by that of u. 
Hence, U of (68) must upper bound I vi. Thus, to establish the validity of the 
bound (69) it only remains to verify the inequality 

(D-13)F 

Toward achieving the last stated goal we point out that 

~ 
''d I 

(D-14)
 

Moreover, by multiplying the leftmost inequality of the relationship (71) 
through by I wo*~ and recalling that the radius of the spherical earth model 
cannot exceed a, it is apparent that 

(D-15)
 

Consequently, 

..k ~-, 
~ lrx \ -I [ = 

.~ ~-, (D-16)
~:o 

'-,
,'" ,U-f ) 

.~ r "¢ I 

From this relationship and the obvious inequality 

(D-l7) 
I d(')(" IJ' I 

the objective can be achieved. 

In what follows, we verify (D-13) for the case where P is not one. Verification 
of the inequality for the remaining case is left to the reader. When p is other 
than one the relations (D-16) and (D-17) imply 




