
I

Microwave Landing System
(MLS) Mathematical Model
Installation Manual

~......
~ OtT 20 Rec-d

~ Ill'll' ".~'. ,,_....pl£~;.';'":., <~, ,.,~~, .
~~."" , ,t, -'IlL D. Jones

May 1987

DOT/FAA/CT-TN87/17

This document is available to the U.S. public
through the National Technical Information
Service, Springfield, Virginia 22161.

US.Department of TransportatiOn

Federal Aviation Administration

Technical Center
Atlantic City Airport, N,J. 08405

qt'-.

NOTICE

This document is disseminated under the sponsorship of
the Department of Transportation in the interest of
information exchange. The United States Government
assumes no liability for the contents or use thereof.

The United States Government does not endorse products
or manufacturers. Trade or manufacturer's names appear
herein solely because they are considered essential to
the object of this report.

1. Ropo" No.

DOT/FAA/CT-TN87/17

2. Go".,,,,,,..., Acc•••ioft N••

Tochftical M.,ort OoCUlIIo"tation Pat.
3. R.cilli."'·. C.,.,., N•.

4. T"l••" .. 5"bli,l.
MICROWAVE LANDING SYSTEM (MLS) MATHEMATICAL
MODEL INSTALLATION MANUAL

S. R....,' "0'.
May 1987

6. P.,f."";,,, O" ..i I.'io" Coel.

ACT-140

DOT/FAA/CT-TN/87/17

10. W.'" U"i' No. ITRAIS)

Technical Note
June 1986 - February 1987

~;-;::;~i:i-------------------- -18. P..,...i", O"."il.ti." A.p.,' N•.I 7. A"th.,t.)

Jesse D. Jones

9. Po,fo''''i''. O" ..il.'l." N_...4 A44" ..
Department ox Transportat~on

Federal Aviation Administration
Technical Center n. c."".c, 0' G,..., No.

Atlantic City International Airport, N.J. 08405 T0603N
r.-:;--;:=~-:-7--:::--...-o::-:-~~-----------------J13. T"....' R.II." P.,i04 Co".,.4

12. SII_••,i"........c" N_. _4,...

Department of Transportation
Federal Aviation Administration
Program Engineering and Maintenance Service
Washington, D.C. 20590

16. "It.,.•c'

This Technical Note provides requirements and guidance for the installation of
the base1ined microwave landing system (MLS) mathematical model. This model
originated at the Massachusetts Institute of Technology, Lincoln Laboratory,
during the late 1970's, and has been revised and baselined to facilitate future
software support and improvements. A majority of the work in developing this
Technical Note was performed under contract DTFA03-86-C-00055, Task B-2 by:

MSI Services Incorporated
600 Maryland Avenue, S.W.
Suite 695
Washington, D.C. 20024

20. S.cu,It" CI...il. C.I ,hi. II.'.)

17. Ko" Wo,d,
Microwave Landing System
MLS
Mathematical Model
Installation Manual/MLS Mathematical

Model

19. SOC""'" CI.,.,I. Col "'I, ,~.,.)

II. DI,triltu'i_ S,.,__'
This document is available to the U.S.
public through the National Technical
Information Service, Springfield, Va.

22161

21. No.•1 P.... 22. POle.

Unclassified

For", DOT F 1700.7 C8_72)

Unclassified

Rop,.4uctl_ .f c....pl••e4 p.,. ou.h.,Ia.cI

25

TABLE OF CONTENTS

EXECUTIVE SUMMARY

INTRODUCTION

Purpose
Intended Audience

REQUIREMENTS

Hardware Requirements
Software Requirements
Storage Requirements

DISTRIBUTION MEDIA AllD LAYOUT

GENERAL PROCEDURES

ABOUT THE APPENDIXES

APPENDIXES

A - Graphics Interface Software Specifications
B - IBM/MVS/TSO Installations
C - DEC/VAX 11/750/780 Installations
D - UNIX System V Systems Installations

iii

Page

v

1

1
1

1

1
2

2

3

3

4

EXECUTIVE SUMMARY

This Technical Note provides an estimate of system requirements and installation
guidance for the baselined microwave landing system (MLS) mathematical model. This
model was originally developed by the Massachusetts Institute of Technology, Lincoln
Laboratory, during the late 1970's. Different users of the model subsequently
obtained copies of the model with various levels of improvements. Therefore, to
facilitate future software support and improvements, the Federal Aviation
Administration (FAA) contracted to have the model baselined with all known
improvements and to make the data input user friendly.

v

InTRODUCTION

PURPOSE.

The purpose of this manual is to provide the user with instructions that will permit
the installation of the microwave landing system (MLS) Lincoln Laboratory simulation
software at the user's computer facility. It is intended that the procedure for
making revisions to the model will be accomplished by a reinstallation and,
therefore, "installation" and "system update" will use the same procedure as
described in this manual.

A general procedures section is included to give the user or the person installing
the simulation a basic idea of the steps that are required in the installation
process. This section will NOT provide system specific procedures because these will
be different for each installation, i.e., the installation of the software on an IBM
3033 mainframe will require different commands and utilities than installation on a
DEC VAX 11/780.

Appendixes have been furnished to provide some system specific examples of computer
utilities and setups that could be employed to actually accomplish the installation
at a given computer facility.

A specification for user supplied graphics software is included in appendix A.

INTENDED AUDIENCE.

~he manual is written for someone with computer background. In order to implement
the procedures described in this manual, the user will have to have access to the
target computer system and be familiar with some of the system utilities (e.g.,
editors and compilers) that reside in the system. Some of the necessary information
can probably be obtained from the system administrator, or technical staff if the
facility happens to be a large one.

REQUIREMENTS

HARDWARE REQUIREMENTS.

~he computer that is to serve as the target system must have the following hardware
elements:

1. 1/2 inch 9-track 1600 bits per inch (bpi) tape drive

2. I megabyte applications program memory

3. Floating point processor (not required but recommended)

4. Graphical output device.

1

The model has also been compiled (using a FORTRMl-77 compiler) and run on an IBM
personal computer (PC)/AT equivalent with the following hardware elements:

1. 1.2 megabyte floppy disk drive

2. 640k bytes of memory

3. Floating point processor

4. Plotter (graphical output device).

SOFTWARE REQUIREMENTS.

The model is distributed in source code form, therefore, the following utility
programs must be available on the target system:

1. FOR~l 77 (MISI X3.9-l973) compatible compiler

2. Graphics library (Tektronix, CALCOHP, etc.)

3. User written graphics software to interface with the graphics library.

STORAGE REQUIREMENTS.

In order to install the model on your computer there must be sufficient direct access
storage space available to hold the source code, object and load modules, and the
sample input and output data sets.

The following is a breakdown of approximate storage requirements:

Executable

Program

BMLST
BMLSR
BPLOTT
BPLOTR
Plotting files
Intermediate file
(data from BMLST to

Code

l200k bytes
280k bytes
580k bytes
365k bytes
400-1000k bytes
l-4M bytes

BMLSR)

VAX 11/750

83k bytes
47k bytes
76k bytes
96k bytes

PC AT

250k bytes
125k bytes
190k bytes
l60k bytes

Estimates for load modules will fluctuate on different systems and for different
compilers. The byte count for source code statements is based on an 30-byte record.
Some systems may be able to store these data in less space, but the transmittal tapes
will always contain fixed 30-byte records. Compression may be possible if the
compiler can accept statements that are less than 80 characters. Of course, the
source can be removed after the compilation and link steps are completed.

2

DISTRIBUTION MEDIA AND LAYOUT

The simulation software and supporting data sets are contained on 1/2 inch 9-track
1600 bpi unlabeled magnetic tape.

The order of the data is as follows:

FILE 1
FILE 2
FILE 3
FILE 4
FILE 5-N
FILE N+l •••

BMLST SOURCE (Propagation Model)
BMLSR SOURCE (System Model)
BPLOTT SOURCE (Propagation Model Plotting)
BPLOTR SOURCE (System Model Plotting)
SAMPLE PROGRAM INPUTS
OTHER FILES AS REQUIRED

All files are ASCII coded 80-character text records. The data will be blocked at
40 records to a physical block or 3200 bytes.

GENERAL PROCEDURES

Installation and checkout of the simulation software consists of the following steps

1. Copy source code from distribution media to target machine disk using separate
files for BMLST, BMLSR, BPLOTT, and BPLOTR.

2. Copy sample input data sets likewise.

3. Create user supplied graphics interface software, compile code, and create
object file for subsequent linking. See "Graphics Interface" section.

4. Compile BMLST and link with SINIT and SOPEN creating a BMLST executable image.
(Note: SINIT and SOPEN are provided with original installation tape for user
adaptation of initialization parameters).

5. Repeat Step 4 for BMLSR.

6. Compile and link BPLOTT with SINIT, SOPEN, and USERPLOT.
(Note: USERPLOT refers to the user written graphics software. The user can, of
course, substitute any name here).

7. Repeat step 6 for BPLOTR.

8. Execute BMLST with the sample input files. This may require building
installation dependent job control language (JCL) to execute and relate physical
files with logical unit numbers.

9. Execute BPLOTT to obtain plots and compare these with sample plots received
original installation.

10. Repeat steps 8 and 9 with BMLSR and BPLOTR.

3

11. .If the model fails to complete execution or produces strange results not
matching the sample outputs, save the output and consult with your installation
technical staff for probable cause of the error. Report the failure and any known
causes to the Guidance and Airborne Systems Branch, ACT-l40, FAA Technical Center,
Atlantic City International Airport, N.J. 08405.

12. Create a 't "secure backup copy of all installed software.

ABOUT THE APPENDIXES

The following appendixes describe in some detail the required graphics interface
software and the necessary computer setups for installing the simulation software and
sample input/output data sets.

The sample installation procedures have been written in as "generic" a form as is
possible. All computer installations tend to tailor their job control language for
their installation. This means that the setups that are shown here as samples will
require slight modification at any given site.

4

APPENDIX A

. GRAPHICS INTERFACE SOFTWARE SPECIFICATIONS

GRAPHICS INTERFACE SOFTWARE SPECIFICATION

The microwave landing system (MLS) math model has been baselined to assure the
conformity of code for all users. Every effort has been made to standardize the code
to minimize adaptability problems to different computers. Therefore, in order to
make the MLS math model more transportable between computers, calls to graphical
subroutines have been minimized. The subroutines which will be needed are defined
functionally below. The appropriate software to implement these functions should be
developed by each user on-site to assure the desired graphical actions for your
graphical display device or plotter when executing programs BPLOTT and BPLOTR. The
subroutines SINIT and SOPEN are required by all four programs of the MLS math model.
Most of the remaining graphical subroutines called will be similar to standard
CALCOMP plotter subroutines in the actions performed.

CALL SINIT - Will provide site specific data, constants, and time/date. This
subroutine will be called by all four model programs and defines the
computational environment.

CALL SOPEN - Will open file for input/output as appropriate.

CALL SIPLOT - Will initialize and select output device. This subroutine is used by
BPLOTT and BPLOTR to define and specify the plotting or graphical environment.

CALL SNPLOT - Will reassign a new origin for the axes.

CALL SAXIS - Will plot axis and labels.

CALL SNUMBR - Will draw a number for plot annotation, etc.

CALL STITLE - Will draw title, label, etc.

CALL SLINE - Will produce a plot of data X,Y pairs.

CALL SSYMBL - Will draw a single symbol.

CALL EXTPLT - Exit plotting system.

CALL SCALIU - Convert inches to "user units."

CALL SCALUI - Convert "user units" to inches.

CALL SSCALE - Will examine data arrays and determine scaling values (not currently
used) •

The specific details of how these will be implemented are listed on the following
pages. In addition, the user may need to write other additional subprograms to
implement the above functions. It is also important to note that, in some cases, it
may not be possible to implement an option, such as rotated labels, due to
limitations of your equipment. In those situations, a suitable alternative should be
implemented.

A-l

SINIT SUBROUTINE.

The SINIT subroutine is used to initialize common areas with site specific data such
as installation, location, and constants (including date and time) constrained by
machine capabilities. Therefore, only one call will be made to this subroutine in
each program of the model.

There will be no arguments for the calling sequence:

CALL SINIT

All data will be passed from this subroutine in COMMON blocks. These COMMONS are:

1. /TITLE/ consisting of variables:

lRID, a 4-character run identification (initialized by input file).

RDATE, a 9-character date (initialized by this subroutine). RDATE is a
9-character date of the form DD-MMM-YY derived from the system date function.
Some coding may be necessary to put the date in this format.

RTIME, an 8-character time (initialized by this subroutine).
8-character representation of the time in the form HH:MM:SS.
unnecessary if not readily available from a system call.

RTIME is an
Seconds are

TITLE, a 60-character title field (initialized by input file).

2. /SITE/ consisting of variables:

NAME, a 40-char~cter field (initialized by this subroutine) to identify the
installation or user performing the modeling.

ADDR, a 40-character field (initialized by this subroutine) identifying the
location or address of the above installation.

3. /IODEV/ consisting of variables (initialized in this SUbroutine):

ISIU, an integer variable identifying the unit number for manual program input
(terminal, tty, etc.)

ISOU, an integer variable identifying the unit number for output associated
with the above input terminals.

4. /MLSTIO/ consisting of integer variable (initialized in this subroutine):

PID, the unit number from which the MLST input data (formatted input file) is
obtained.

5. /MLSRIO/ consisting of integer variables (initialized in this subroutine):

RID, the unit number from which the MLSR input data is obtained (BMLST output,
original LL file 8).

RDO, the BMLSR confidence counter and flag output data file.

A-2

6. /PMLSTD/ consisting of integer variables (initialized in this subroutine):

PPID, the unit number for the input data to be plotted as MLST diagnostic
plots (BMLST graphical output data).

PPOD, the unit number used for the plotter or other display device.

7. /PMLSRD/ consisting of integer variables (initialized in this subroutine):

PRID, the unit number for the input data (original LL file 12) to be plotted as
error data.

PROD, the unit number used for the plotter or other display device.

8. /MFPIO/ consisting of integer variables (initialized in this subroutine):

MFID, the unit number for measured flight path input data.

SUBROUTINE SOPEN.

The SOPEN subroutine is used to open files for input/output. This subroutine is
called once for each file to be opened.

The calling sequence

CALL SOPEN (LDEV, NAME, STAT, RLEN)

has four arguments as follows:

LDEV: an integer variable, is the logical device number to be associated with
the input/output file. This number will be one of the variables assigned
a value by SINIT and will be supplied to SOPEN by the subroutine call.

NAME: a character variable of length 40 bytes specifying the file name to be
associated with LDEV. This file name is specified by the user during the
question and answer sequence when the program is run.

STAT: a character variable of length 3 bytes specifying the status of the file
being opened. STAT will be given a value of either 'NEW' or 'OLD' by the call
to SOPEN. The user can change the value of STAT within SOPEN, if necessary.

RLEN: an integer variable indicating the record length of the file being
opened. RLEN will be given a value in the call to SOPEN. The user can change
the value of RLEN in SOPEN, if necessary.

This subroutine should include the labeled common blocks MLSTIO, MLSRIO, PMLST,
PMLSRD, and MFPIO which contain the variables initialized by SINIT to the appropriate
logical device numbers. These will be passed to SOPEN along with an appropriate
status and record length and the file name supplied by the user interactively. It is
suggested that SOPEN contain error traps to allow the user to change the file name
and/or the status without terminating the program.

A-3

If the operating system requires that file names and logical device numbers be
assigned externally to the program (i.e., JCL, etc.), this subroutine may exist
without internal coding so that the driver programs will execute properly.

This subroutine will be a companion to subroutine SINIT and must be included wherever
SINIT is used.

Record lengths used by the various programs are expected to be as follows:

BMLST

PID:
RID:
PPID:
MFID:

BMLSR:

RID:
RDO:
PRID:

formatted input file = 80 bytes
multipath output data = 132 bytes
plot output data = 97 bytes
measured flightpath input data = 55 bytes

multipath output data = 132 bytes
flag output data = 44 bytes
plot output data = 131 bytes

SIPLOT SUBROUTINE.

The SIPLOT subroutine is used to initialize the plotting system. It will be called
only once. This subroutine sets up any necessary plot system constants and opens the
plot output device by performing standard file-opening procedures as necessary
through the computer's operating system.

Additional data to be initialized by this subroutine are variables XINCH and YINCH
which make up common /PLTSIZ/. XINCH is the x-distance (in inches) between the
origin and the right edge of the plotting surface. YINCH is the y-distance (in
inches) between the origin and the top edge of the plotting surface. These values
are used for clipping of the output.

The calling sequence

CALL SIPLOT(LDEV)

has one argument:

LDEV: is the logical output device number, i.e., the device number of the
plotter if it is on-line or the logical number of an output device for off-line
plotting (PPOD or PROD initialized in subroutine SINIT).

Tables generated by BPLOTT will be written to ISOU. Therefore, tables may be
redirected to a printer or other device by redirecting ISOU in this subroutine. This
subroutine is called after all program dialog with the user. Therefore, the
redirection by this subroutine will only have an impact on the tables or any error
messages generated by the system.

A-4

SNPLOT SUBROUTINE.

The SNPLOT subroutine is used to reassign the or~g~n for the X and Y axes and/or to
perform a page advance (clear screen) or whatever command is needed to provide a
clean surface for the preparation of a new plot. The calling sequence

CALL SNPLOT (IDEY)

has one argument:

IDEV: is the logical output device number to which the current output is being
directed, i.e., tables will be directed to ISOU, whereas plots will be directed
to PPOD or PROD.

This subroutine is called with IDEV=ISOU for outputting of tables, and IDEV=PPOD
or PROD when displaying plots. Thus, the user may develop the software for this
subroutine to advance the printer or plotter as required.

SAXIS SUBROUTINE.

Most graphs require axis lines and scales to indicate the orientation and values of
the plotted data points. The type of scaled axis produced by the SAXIS subroutine is
a line at 00 or 900 angle, (X or Y) divided into one-inch segments. This call
also annotates the divisions with appropriate scale values and labels the axis with a
centered title. SAXIS is called separately for each X and Y axis.

The five arguments in the calling sequence are as follows:

CALL SAXIS (AXIS, LABL, NCHAR, FIRSTV, DELTAV)

AXIS: is a character variable (X or Y) specifying which axis is to be drawn. The
axis length will be 9 inches for X and 6 inches for Y assuming an 8 1/2 x 11 inch
plotting surface. Otherwise, the X-axis should be centered and occupy 9/11ths of
the plot X-dimension. The Y-axis would then span a ratio 6/8.5 of the
Y-dimension beginning 1/8.5 from the bottom of the plot.

LABL: is the axis label, which is centered and placed parallel to the axis line.
This parameter is a character variable of not more than 40 characters. All
annotation appears on the negative (clockwise) side of the X-axis. All
annotation appears on the positive (counterclockwise) side of the Y-axis.

NCHAR: is the number of characters in the label.

FIRSTV: is the starting value which will appear at the first tick mark (origin)
on the axis. This value will be specified by the model input data file in order
to standardize plotting scales.

DELTAV: represents the number of data units per inch of axis. This value
(increment or decrement), which is added to FIRSTV for each succeeding I-inch
division along the axis, will also be specified in the model input data file.

A-5

SNUMBR SUBROUTINE.

SNUMBR converts a floating-point number to the appropriate decimal equivalent so that
the number may be plotted in the FORTRAN F-type format.

The SNUMBR calling sequence has six arguments:

CALL SNUMBR (XPAGE, YPAGE, HEIGHT, FPN, ANGLE, +NDEC)

XPAGE, YPAGE: are the coordinates of the number in user data units.

HEIGHT: is the height (and width)~ in inches,of the symbol to be drawn.

FPN: is the floating-point number that is to be converted and plotted.

ANGLE: is the angle in degrees from the X-axis, at which the annotation is to
be plotted. If ANGLE=O.O, the number will be plotted right side up and
~arallel to the X-axis. Note: Implementation of rotated numbers at any angle
may not be feasible with all graphics packages.

+NDEC: controls the prec~s~on of the conversion of the number FPN. If the
value of NDEC greater than 0, it specifies the number of digits to the right
of the decimal point that are to be converted and plotted, after proper
rounding. For example, assume an internal value (perhaps in binary form) of
-0.12345678 x 103• If NDEC were 2, the plotted number would be -123.46.

STITLE SUBROUTINE.

The STITLE subroutine produces plot annotation at any angle and in practically any
size. This call can be used to draw text such titles, captions, and legends.

The STITLE calling sequence has six arguments:

CALL STITLE (XPAGE, YPAGE, HEIGHT, CHAR, L, ANGLE)

XPAGE, YPAGE: are the coordinates, in inches, of the lower left-hand corner
(before character rotation) of the first character to be produced. The pen is
up while moving to this point.

HEIGHT: is the height, in inches, of the character to be plotted. The
plotting routines assume the width of a character, including spacing, is
normally the same as the height (e.g., a string of 10 characters, 0.14 inch
high is 1.4 inches Wide).

CHAR: is the text, in character representation to be used for annotation. The
character(s) must be contiguous in a single variable. This variable is to be
dimensioned for 60 characters.

L: the number of characters in the title.

A-6

ANGLE: is the angle, in degrees from the X-axis, at which the annotation is to
be plotted. If ANGLE = 0.0, the character(s) will be plotted right side up
and parallel to the X-axis. Note: implementation of rotated titles at any
angle may not be feasible with all graphics packages.

SLINE SUBROUTINE.

The SLINE subroutine produces a line plot of the pairs of data values in two arrays
(X and Y). The line produced may be either continuous or dashed. SLINE computes the
page coordinates of each plotted point according to the data values in each array and
the respective scaling parameters. The data points may be represented by centered
symbols and/or connecting lines between points.

The calling sequence has five arguments:

CALL SLINE (XARRAY, YARRAY, ~NPTS, ~LINTYP, CHAR)

XARRAY: is the name of the array containing the abscissa (X) values in user
data units.

YARRAY: is the name of the array containing the coordinate (Y)values in user
data units.

~NPTS: is the number of data points in each of the two arrays just mentioned.
If NPTS is negative, a dashed line is produced. The number of points in each
array must be the same. The MLS model plotting programs will limit the number
of points to 3000. However, the associated arrays will be dimensioned to 3002
to permit scaling factors needed by CALCOMP plotters to be added to the arrays.

"+LINTYP: is the control parameter which describes the type of line to be drawn
through the data points. The magnitude of LINTYP determines the frequency of
plotted symbols, e.g., if LINTYP = 4, a special symbol (denoted by CHAR) is
plotted at every fourth data point. If LINTYP is zero, the points are
connected by straight lines but no symbols are plotted. If LINTYP is
positive, a straight line connects every data point defined in the array.
(The pen is up when moving from its current position to the first point.) If
LINTYP is negative, no connecting lines are drawn; only the symbols are
plotted.

CHAR: is the character equivalent of the special plotting symbol desired at
each data point. If possible, this character should be centered.

SSYMBL SUBROUTINE.

The SSYMBL subroutine produces a single symbol based on the index value of INTEQ.
The SSYMBL calling sequence

CALL SSYMBL (XPAGE, YPAGE, HEIGHT, CHAR, CDUF)

consists of five arguments:

XPAGE, YPAGE: are the coordinates of the symbol in user data units. It is
desirable that XPAGE, YPAGE represent the geometric center of the character
produced.

A-7

HEIGHT: is the height (and width), in inches, of the symbol to be drawn.
CHAR: is the character equivalent of the desired symbol.

CDUF: is a character argument which determines whether the pen is up or down
during the move to XPAGE, YPAGE.

Where:

U = the pen is up during the move, after which a single symbol is produced.

D = the pen is down during the move, after which a single symbol is produced.

EXTPLT SUBROUTINE.

The EXTPLT subroutine is executed to exit the plotting programs. The calling
sequence:

CALL EXTPLT

has no arguments, and will be the last call in the plotting driver program. This
subroutine will be used to close files and plotting devices. Any device numbers
necessary to close the users plotting system should be passed into this subroutine by
the use of labeled common areas initialized and/or defined by SIPLOT.

SCALIU SUBROUTINE.

The SCALIU subroutine inputs an X, Y coordinate pair in inches and provides an
equivalent X, Y coordinate pair in "user data units." The calling sequence:

CALL SCALIU (XI, YI, X, Y)

consists of the arguments:

XI, YI: X and Y coordinate pair in inches referenced to the plot origin.

X, Y: equivalent X-Y location in "user data units."

SCALUI SUBROUTINE.

The SCALUI subroutine takes an X, Y coordinate pair in "user data units" and provides
the equivalent coordinates in inches. The calling sequence:

CALL SCALUI (X, Y, XI, YI)

consists of the arguments:

X, Y: X and Y coordinate pair in "user data units"

XI, YI: equivalent location in inches referenced to plot origin.

A-a

SSCALE SUBROUTINE. (Not currently used)

Typically, the user's program will accumulate plotting data in two arrays:

An array of independent variables, Xi

An array of dependent variables, Xi = f(X i)

It would be unusual if the range of values in each array corresponded exactly with
the number of inches available in the actual plotting area. For some problems the
range of data is predictable. The MLS math model has predetermined standard scale
factors for use in drawing the axes and plotting the data points on the graph. For
special applications, however, these factors may not be known in advance.

Therefore, the SSCALE subroutine is used to examine the data values in any array and
to determine a starting value (FIRSTV, minimum or maximum) and a scaling factor
(DELTAV, positive or negative) such that:

1. The scale annotation drawn by the SAXIS subroutine at each division will properly
represent the range of real data values in the array.

2. The data points, when plotted by the SLINE subroutine, will fit in a given
plotting area. These two values are computed and returned by the call to SSCALE.

The scaling factor (DELTAV) that is computed represents the number of data units per
inch of axis, but is adjusted so that there is always an interval of 1, 2, 4, 5, or
8 x Ion (where n is an exponent consistent with the original unadjusted scaling
factor). Thus, an array may have a range of values from 301 to 912, to be plotted
over an axis of 10 inches. The unadjusted scali~ factor is (912-301)/10 = 61.1
units/inch. The adjusted DELTAV would be 8 x 101 = 80.

The starting value (FIRSTV), which will appear as the first annotation on the axis,
is computed as some multiple of DELTAV that is equal to or outside the limits of the
data in the array. For the example given above, if a minimum is wanted for FIRSTV,
240 would be chosen as the best value. If a maximum is desired instead, 960 would be
selected. In some instances, FIRSTV is selected as a downward-rounded value of the
lowest actual data, and in other instances, the DELTAV ia adjusted upwards. An
attempt is then made to center the data.

There are six arguments in the calling sequence:

CALL SSCALE (ARRAY, AXLEN, NPTS, ~INC, FIRSTV, DELTAV)

ARRAY: is the first element of the array of data points to be examined.

AXLEN: is the length of the axis (in inches) to which the data is to be
scaled. Its value must be greater than 1.0 inch.

NPTS: is the number of data values to be scanned in the array.

+INC: is an integer whose magnitude is used by SSCALE as the increment with
which to select the data values to be scanned in the array.

Normally INC = 1; if it is 2, every other value is examined.

A-g

If INC is positive, the selected starting value (FIRSTV) approximates a
minimum, and the scale factor (DELTAV) is positive.

If INC is negative, the selected starting value (FIRSTV) approximates a
maximum, and the scaling factor (DELTAV) is negative.

If INC = ~l, the array must be dimensioned at least two elements larger than
the actual number of data values it contains. If the magnitude of INC is
greater than 1, the computed values are stored at (INC) elements and (2*INC)
elements beyond the last data point. The subscripted element for FIRSTV is
ARRAY (NPTS*INC+l), and for DELTAV is ARRAY (NPTS*INC+INC+).

FIRSTV: is the starting value, which will appear at the first tick mark
origin, on the axis. This value will be specified by the model input data
file in order to standardize plotting scales while still permitting some
flexibility to look at some plots in more detail.

This number and scale value among the axis is drawn with two decimal places.
Since the digit size is about 10 characters per inch, and since value appears
every inch, no more than six digits and a sign would appear to the left of the
decimal point.

DELTAV: represents the number of data units per inch of axis. This value
(increment or decrement), which is added to FIRSTV for each succeeding I-inch
division along the axis, will also be specified in the model input data file.

A-IO

APPENDIX B

IBM/MVS/TSO INSTALLATIONS

IBM Mvs/TSO INSTALLATION.

The following setup provides a basic outline to move the first file from the input
tape to the target MVS system. It would be likely that this setup would have to have
minor changes made to it in order to satisfy system dependent differences. In this
example, the first file is being copied to a disk file named USERID.BMLST.FORT.

To retrieve a file on magnetic tape:

IINAME JOB
IlsTEPl EXEC PGM=IEBGENER
IISYSUTI DD DSN=DUMMY,UNIT=TAPE,LABEL=(l,BLP),
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,DEN=3,OPTCD=Q)
IISYSUT2 DD DSN=USERID.BMLST.FORT, DISP=(NEW,CATLG),
II DCB=*.SYSUTl,SPACE=(CYL,(l,l)),UNIT=DISK
IISYSIN DD DUMMY
IISYSPRINT DD SYSOUT=A

The following similar setup could be used to access the
direct access storage with the name USERID.BMLSR.FORT.
the LABEL field and the DSN change to give the data set
the second file.

second file and copy it to
The only difference being in
a different name and specify

IINAME JOB
IlsTEPl EXEC PGM=IEBGENER
IISYSUTI DD DSN=DUMMY,UNIT=TAPE,
II LABEL=(2,BLP),DCB=(RECFM=FB,LRECL=80,OPCTD=Q,
II BLKSIZE=3200,DEN=3)
IISYSUT2 DD DSN=USERID.BMLSR.FORT, DISP=(NEW,CATLG),
II DCB=*.SYSUTl,SPACE=(CYL,(l,l)),UNIT=DISK
IISYSIN DD DUMMY
IISYSPRINT DD SYSOUT=A

Using this general approach all the data sets on the unlabeled tape can be copied to
direct access storage. Appropriate names should be chosen for the sample input and
output data sets, as these will be required when the model is executed.

COMPILATION AND LINKING.

After the tape has been copied to disk, a compile and link process will be required.
All large IBM installations have a group of "cataloged procedures" that assist in
compiling source code into object code and then "linking" the object into an
executable image. The system manager will be able to supply appropriate JCL
statements that can be used to accomplish this. These procedures can also be
modified so as to create a load module that can be executed without repeating the
compilation and linking steps. Other procedures are available or can be coded to
execute the load module against the sample inputs that have been copied to disk.

The graphics software must be input in the link step of the catalogued procedure
provided. The user may choose any name for this library when it is created.

B-I

APPENDIX C

DEC/VAX 11/750/780 INSTALLATIONS

DIGITAL EQUIPMENT CORP. (DEC) VAX 11/780/50; MICROVAX II.

After logging into the VAX, create a directory in your USER ID to hold the source
code from the tape. Assuming your USER ID is "PAULA" then, at the $ prompt, type:

$ CREATE/DIRECTORY [PAULA.MODEL]

Then make this your "default directory" with:

$ SET DEFAULT [PAULA.MODEL]

Next reserve a tape drive for the transmittal tape with:

$ ALLOCATE MT:

The name MT: is the device name of the tape drive you want to use. It may be
different on your installation - check with the system administrator. Use whatever
name is suggested instead of MT: here and anywhere else MT: appears in this
discussion.

At this point you must physically mount the tape on the drive. Do NOT put a "write
ring" in the tape. That will safeguard the data on the tape from accidental
erasure. Some tape drives allow you to take the same precaution with push buttons on
the front panel.

Next mount the volume with:

$ MOUNT/FOREIGN/NOWRITE/BLOCK=3200/DENSITY=1600/RECORD=80 MT:

Next copy the first file (which contains source code) to disk by typing:

$ COpy MT: BMLST.FOR

Copy the second file in the same way just use a different name:

$ COpy MT: BMLSR.FOR

Next copy the two plotting source files with:

$ COpy MT: BPLOTT.FOR
$ COpy MT: BPLOTR.FOR

Next copy the input files to disk by a series of copies like:

$ COpy MT:
$ COPY MT:
$ COpy MT:
$ COpy MT:
$ COpy MT:

INPUTl
INPUT2
INPUT3
INPUT4
INPUT5

Enter as many copy commands as necessary to retrieve all the input data sets. If the
distribution notes specify, copy all succeeding files to disk choosing appropriate
names for the files.

C-l

This completes the transfer of data to disk. You can release the tape drive by these
commands and then unload the tape:

$ DISMOUNT MT:
$ DEALLOCATE MT:

The programs must now be compiled and linked to create an ".exe" file that can be
executed. To compile the programs type the following commands:

$ FORT BMLST
$ FORT BMLSR
$ FORT BPLOTT
$ FORT BPLOTR
$ FORT USERPLOT
$ FORT SINIT
$ FORT SOPEN
$ LINK BMLST, SINIT, SOPEN
$ LINK BMLSR, SINIT, SOPEN
$ LINK BPLOTT, USERPLOT, SINIT,
$ LINK BPLOTR, USERPLOT, SINIT,

SOPEN
SOPEN

Your system may have a different command than "FORT", e.g., "F77" or "FORTRAN" to
invoke the FORTRAN 77 compiler. Check with the system administrator if "FORT"
doesn't work.

You must provide a plot routine library called "USERPLOT.OBJ" for input to the
linkage editor. See appendix A for specifications of the source code.

This completes the basic installation procedure. To exercise the model refer to the
user's manual to select appropriate input data sets and run the simulation.

C-2

APPENDIX D

UNIX SYSTEM V SYSTEMS INSTALLATIONS

UNIX INSTALLATIONS.

The installation of the MLS model on a UNIX System V computer requires that the
transmittal tape be post-processed to generate disk data sets that are suitable for
compilation and editing. A short "c" program is included here to assist in
reformatting the source code and input data sets after they have been copied to disk.

The following program listing may prove useful to the installer:

/* sample program */
#include K stdio.h k
maine)
?
FILE *f~r;

int balL80], *buffer;
buffer = bal;
fpr=fopen("tran","r");

while (: feof(fpr))
?

/
/

fgets(buffer, 81, fpr);
printf("%s : n",bal);

This program inserts a new line character (hex Oa) after each 80 characters in the
file "tran." The output is written to standard output so it can be redirected.

This program may be compiled in the usual UNIX fashion with:

$ cc name.c

Where "name.c" was the name given to the above program when created.

If all goes well this will produce the default executable file "a. out."

Copying files:

'l'he tape files can be copied by using the standard "dd" utility.

The following would copy the first file from the tape:

$ dd if=/dev/rmtl of=BMLST ibs=3200

Where "/dev/rmtl" would most likely have to be changed to specify your installation's
9-track drive at 1600 bpi. This will create a file called "BMLST" in your default
directo~. Subsequent files on the tape can be copied in a similar manner, keeping
in mind that you must pick a unique name for the output file each time. You will
also have to understand how to keep the tape from rewinding on close, or how to space
to the desired file each time you copy a file. No rewind may be the default on your
system, or you may have to specify a different device name to get no rewind. Best
advice is to check with someone about this, if in doubt.

D-l

Assuming that each file has been successfully copied, they may be reformatted using
the following procedure:

$ mv BMLST tran

$ a.out k temp

$ mv temp BMLST

This will put the new line characters into the files so that they can be compiled
and, if necessary, edited. These three statements need to be repeated for each
filename that was copied to disk.

The next step is to compile the source code files to get executable files. The
standard FORTRAN 77 compiler command is "F77." The following command could be used.
However, if the compiler command has a different name, substitute that for "F77" in
this example.

$ F77 BMLST SINIT SOPEN

$ mv a.out BMLST.o

$ F77 BMLSR SINIT SOPEN

$ mv a.out BMLSR.o

$ F77 BPLOTT SINIT SOPEN USERPLOT

$ mv a.out BPLOTT.o

$ F77 BPLOTR SINIT SOPEN USERPLOT

$ mv a.out BPLOTR.o

This will create the necessary load files to execute the simulation and execute the
plotting programs. Remember that USERPLOT is a FORTRAN 77 program that the user site
must provide. SINIT and SOPEN are initialization module provided for user
modification when the model was first delivered.

For the curious, "mv" is the UNIX rename command. The residual files with the ".0'
suffix are executable files. To execute any of the four programs just type the file
name. For example:

$ BPLOTT.O

will involve the BPLOTT software.

You must set up the appropriate input files before invoking this program or it will
terminate with errors.

D-2

,

;

I

