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EXECUTIVE SUMMARY

This report details the system design and theoretical studies idenLifying
accuracies associated with a Microwave Landing System Area Navigation (MLS RNAV)
system. An MLS RNAV system makes use of the signal coverage volume afforded by
the MLS to provide precision navigation within the airport terminal area. This
allows randomly oriented linear flightpaths, complex curved flightpaths and
complex combinations thereof to be executed. A subset of these flightpaths,
namely the computed centerline and parasite approaches, are considered here.

This report describes the derivation, analysis, and testing of MLS to cartesian
coordinate transformation algorithms. Simulated flight profiles employing this
software are tested using both clinical and live flight derived input data. In
addition, anticipated system accuracy is computed under various anticipated
operational scenarios. These simulations are performed for the computed
centerline and parasite approaches. The errors attributable to the MLS signal
sources are factored into these analyses. Regions of acceptable Category 1
accuracy can be extracted from these results. Also, the effects on total system
accuracy of offsetting the conical beam elevation transmitter from the runway
centerline are presented.

xiii






INTRODUCTION

PURPOSE.

The purpose of this report is to document the plans, conduct, and results of the
analytical studies performed as an integral part of the Microwave Landing System
Area Navigation (MLS RNAV) project. These analytical studies were conducted in
order to define the limitations and capabilities of performance of an MLS RNAV
system in an airborne environment prior to, and in the absence of, the
availability of RNAV system flight data. A principal purpose for these
simulations of MLS RNAV system performance was that of comparison with and
contribution to the Radio Technical Commission for Aeronautics (RTCA), Special
Committee 151, Minimum Operational Performance Standards (MOPS). Additionally,
the purpose of these studies was to develop and validate the MLS to cartesian

coordinate transformation algorithms needed for the development of an MLS RNAV
system.

BACKGROUND.

The Time Reference Scanning Beam (TRSB) MLS was selected as the new international
standard approach and landing guidance system by the International Civil Aviation
Organization (ICAO) on April 19, 1978. Presently being implemented at airports
around the world, the new generation MLS will be in use as the standard precision
landing system well into the next century. Consisting of azimuth and elevation,
and precision distance measuring equipment (DME/P) transponder, MLS makes
possible precision approach and landing operations under IFR conditions. Azimuth
angle (6) coverage is available over a nominal :ﬁ0° sector out to a range of 20
nautical miles (nmi) and elevation angle (@) coverage is available from 0.9° to
15° at the same range. DME/P coverage is available out to a range of 22 nmi from
the ground transponder. Given this wide area of MLS coverage in the terminal and
final approach areas and given the proper airborne computer and display

equipment, it is possible to perform three dimensional RNAV in the terminal
and/or final approach areas.

In essence, area navigation consists of executing nonradially defined flight
profiles relative to radio navigation aids (MLS, very high frequency omni
directional range (VOR), etc.). Examples of this may include final landing
approaches which are simply offset from and parallel to the 0° course of an MLS
azimuth unit (computed centerline approaches) as well as nonparallel and
nonradial (parasite) approaches to heliports. More sophisticated RNAV flight
profiles would include precision navigation to a waypoint using random single
segment paths as well as multiwaypoint and complex curved paths. Numerous
benefits should accrue from the implementation of area navigation in the terminal
and final approach areas. Among these are increased aircraft safety, obstacle
avoidance, separation, increased airport efficiency and operations rates, as well
as the performance of instrument approaches to non—- MLS equipped runways.

Work performed at the Federal Aviation Administation (FAA) Technical Center
at the Atlantic City International Airport, New Jersey, has addressed the myriad



tasks inherent in the successful development and implementation of an MLS RNAV
system. Principally, the work falls into two areas: (1) analytical studies and
(2) experimentation. The present report is concerned with the analytical
studies.

Analytical studies in MLS RNAV comprise numerous topics. Six of these topics
which were studied and are covered in detail in this report are:

1. The development and testing of 12 various iterative and exact closed form
solution algorithms which effect the transformation from MLS angle and range

coordinates to rectangular cartesian coordinates.

2. The simulation of RNAV flight profiles using the algorithms of task 1 and
computer generated noiseless angular and range input data.

3. The simulation of RNAV flight profiles using the full RNAV software suite and
live flight angle and range input data.

4. The simulation of centerline approaches in the presence of an offset azimuth
unit when the input data includes the effects of MLS signal source error.

5. The simulation of parasite approaches for a general ground equipment siting
which includes the effects of MLS signal source error.

6. The calculation of glidepath error due to the offset of a conic elevation
unit.

DISCUSSION

MLS COORDINATE TRANSFORMATION ALGORITHMS.

The three ground based MLS transmitting units: azimuth, elevation, and precision
distance measuring equipment define a generalized MLS coordinate system with the
triple (8,4,p). Knowing the triple and the relative positions of the ground
units, it is possible to locate the position of the aircraft in space.

With a three-dimensional (3D) MLS RNAV it is possible to determine position
independently of the conventional MLS selected reference azimuth and elevation
approach course. Practicality and simplicity dictate that a cartesian coordinate
(X,Y,2) reference system be employed. 1In our development, the origin of this
coordinate system can assume any position in space. The x-axis is aligned

parallel to the 0° azimuth. 1In order to obtain aircraft position in this
coordinate system it was necessary to develop a set of equations to convert the
coordinate triple (8,¢,0) into the new cartesian coordinate triple. For obvious

reasons this transformation must be unique in the region of application., These
equations, when implemented on a digital computer, are known as the MLS
transformation algorithms. These algorithms run the gamut from a simple exact
solution for (x,v,z) to a complex, fully general iterative solution. The degree
of sophistication is dependent on the ground unit geometry, with most
sophistication required when the ground units are sited in different z-planes.
In the most general case, any location of MLS azimuth, elevation, and DME/P
equipment in cartesian space is allowed. These conditions vastly complicated



the transformation problem. Fortunately, for many cases, only a subset of these
conditions need be considered. When certain simplifying assumptions are made
(e.g., collocated azimuth and DME/P equipment), exact solutions to the
transformation problem are made available.

The approach to the MLS transformation problem solution is illustrated in

figures 1 and 2. These figures present the mathematical representation and not
the physical representation of the signal patterns. As illustrated, the MLS
azimuth unit defines a plane at angle 0, referenced to boresight (planar azimuth)
or a cone of exterior angle , (conical azimuth) with origin located at
(Xa,Y3,23). The elevation unit defines a cone of exlterior angle g,

centered at its location (X,,Y,,z,). The prototype DME/P defines a sphere

of radius p, whose center is located at (X4,Yq,Zq). These three surfaces
intersect at a maximum of four points. Three of these points can be discarded
based on prior knowledge of the geometry. A total of 12 different transformation
algorithms have been developed at the FAA Technical Center. A description of the
siting geometry, the signal propagation pattern, and the method of solution of
these algorithms are contained in table L.

In several of the cases, the origin of the coordinate system has been situated to
coincide with one or more of the MLS signal sources. The recommended origin for
MLS coordinate transformation is the MLS datum point. This point is located
abeam the elevation unit on the runway centerline. For the special cases
presented herein which do not use the MLS datum as the origin, conformance will
necessitate the use of simple x, y, and z linear translations to the MLS datum
point.

All of the algorithms presented herein have been written in Fortran 77 and run on
a Digital Equipment VAX 11/750 computer under the VMS version 4.2 operating
system. They have been tested successfully at azimuth angles from +40° to -40°,
elevation angles of +2° to 20°, and DME/P ranges from 2 to 20 nmi. Those who use
these algorithms outside of these limits should independently verify that
iterative solution algorithms are applied in a proper region of convergence.

MLS COORDINATE TRANSFORMATION ALGORITHM DESCRIPTIONS.

A total of 12 different MLS to cartesian coordinate transformation algorithms
have been developed. These algorithms are tailored to address varying degrees of
complexity and conditions in the coordinate transformation process. As noted in
table |, some of the pertinent complexity issues are wmethod of solution (exact
closed form or iterative), type of azimuth signal (planar or conical), collocated
or separated signal sources, coplanar Z plane location or separate Z plane
locations, and cartesian location of the signal sources. Specific descriptions
of each algorithm are covered in the following narrative, as well as in the
derivations of each individual case.

TRANSFORMATION ALGORITHM PHILOSOPHY AND USAGE.

GENERAL COMMENTS (APPLY TO ALL CASES). In a completely general sense, MLS
reconstruction consists of transforming MLS angular and DME/P range data into
cartesian coordinates. TFurthermore, in the most general case, any location of
MLS azimuth, elevation, and DME/P stations in cartesian space is allowed. These
conditions vastly complicate the transformation problem. TFortunately, for many
cases, only a subset of thesce conditions need be considered. With conic azimuth
propagat ion only Case I1I, IV, VI, VIII, IX, and XII need to be considered.
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TABLE 1. MLS RECONSTRUCTION ALGORITHMS

Case Description Solution

1 DME & AZ COLLOCATED, PLANAR AZ EXACT
AZ & EL COLINEAR, SAME 7 PLANE

2 DME & AZ COLLOCATED, PLANAR AZ EXACT
AZ & EL OFFSET, SAME Z PLANE

3 DME & AZ COLLOCATED, CONICAL AZ EXACT
AZ & EL COLINEAR, SAME 7 PLANE

4 DME & AZ COLLOCATED, CONICAL AZ EXACT
AZ & EL OFFSET, SAME Z PLANE

5 DME & AZ COLLOCATED, PLANAR AZ ITERATIVE
AZ & EL COLINEAR, DIFFERENT Z PLANES

6 DME & AZ COLLOCATED, CONICAL AZ ITERATIVE
AZ & El COLINFAR, DIFFERENT 7 PLANES

7 COMPLETE GENERAL SOLUTION PLANAR ITERATIVE
AZ, GENERAL AZ, EL & DME POSITIONS
"THEDFORD'" TYPE ALGORITHM

8 "THEDFORD ALGORITHM" EXTENSION CONICA ITERATIVE
AZ, DME & AZ COLLOCATED

9 COMPLETELY GENERAL SOLUTION ITERATIVE
CONICAL AZ
NONLINEAR SEIDEL ITERATION

10 COMPLETELY GENERAL SOLUTION ITERATIVE
PLANAR AZ
NONLINEAR SEIDEL ITERATION

11 "THEDFORD ALGORITHM" ITERATIVE
PLANAR AZ, DME REFERENCE FRAME
AZ & EL POSITIONS COMPLETE GENERAL

12 "SHREEVES ALGORITHM" NEWTON/RAPHSON
CONIC AZ & EL JACOBIAN
COMPLETE GENERAL ITERATION
AZ, EL & DME POSITIONS

Precisidn DME Antenna

DME =

Azimuth Antenna

= Elevation



The algorithm descriptions address diverse cases by considering geometries of
progressively increasing complication. Each case presented includes the

mathematical development, the FORTRAN code used, and an illustration identifying
reference measures used as input.

The transformation algorithms numbered 1 through 4 are simple ones which comprise
exact solutions to the transformation problem. This simplicity is made possible
by assuming the collocation at the cartesian origin of the azimuth and DME/P
units and by not allowing any relative displacement in the z-direction between
the elevation and other ground units. Case Il differs from I and case IV differs
from III in that cases IV and II permit a lateral (y-direction) displacement of
the elevation unit from the azimuth DME/P units. Also, cases I and I1 use planar
and cases IIT and IV use conic azimuth. These 4 algorithms will probably find
use running on relatively unsophisticated computers in applications such as
computing a parallel offset course.

Cases V and VI introduce an additional level of sophistication beyond the first
four cases in that the elevation unit is displaced in the Z direction from the
collocated azimuth and DME/P unils, which define the coordinate system origin.
This relative displacement greatly complicates the resulting mathematics, leading
to quartic polynomials in X which must be solved using an iterative technique.
Case V addresses planar and case VI addresses conic azimuth. Although a split
site configuration is allowed under these cases, the two sites are assumed to lie
along a common line parallel to the runway centerline. These algorithms would
most probably be used for geometries which have significant z-plane differences

(e.g., sloped runways). A computer of moderate sophistication would be required
to run these programs.



CASE I:

This case assumes that both the azimuth and DME/P ground units are collocated and
reside in the same horizontal z-plane as the elevation unit. Also, the elevation
and azimuth and DME/P units are assumed to be located along a common line,

which is parallel to, but offset from the runway centerline. The azimuth beam is
assumed to be planar. The azimuth and DME/P units are located at the origin of the
cartesian coordinate system. A closed form solution results.

The equations which result are:

From DME/P = x2 + y2 + 22 =p2 )
From Azimuth: y = —-xtane (2)
From Elevation: y2+(x-xe)2 = z2cot2¢ (3)

These equations are solved for y and a quadratic in y results as follows:
Substitute (2) into (1) to eliminate y:
x2tanZe+x2+22 = p2 (4)
or:
x2(1+tan2g)+z2 = p? (5)
Substituting (2) into (3) to eliminate y:
x2tanfg+(x-xe)? = 22 cotZy (6)
Substituting (5) into (6) to eliminate z yields:
x2tan20+(x-xe)2 = ((p2-x2(1+tan26))cot?¢ (N
Rearranging and collecting terms:
x2(tanZe+cotZ¢+tanZocot 2e+1)-2xxe-p2cot2é+xeZ = 0 (8)
Using the quadratic formula (8) has solutions:

x=2xet(4xe2—4(Lanze+cot2Q+tan26cot2¢+1)(xez—pzcotgﬂ))1/2 (9)
2(tanZ6+cotZ2é+tanle cotle+1)

The larger value of x is chosen

The x value from equation 9 is then substituted into equations (2) and (1)
respectively to obtain x and z.

y = -xtan (2)
z (p2-92-x2)1/2 from (1)



MLS RECONSTRUCTION ALGORITHM
CASE I FORTRAN SUBROUTINE

SUBROUTINE CASE1{THET,PHI,RHOD,XE,X,Y,Z)
C*x#*%%%x SUBROUTINE CALCULATES CARTESIAN COORDINATES FROM
MLS ANGLE AND DME/P DATA
THET=RCVR AZ (RADIANS)
PHI =RCVR EL(RADIANS
RHOD = DME/P DISTANCE (FEET)
XE=AZ TO EL SEPARATION (FEET)

DETERMINE THE SQUARES OF TAN AND COT OF THET AND PHI

OO0 0O000n

TAN2TH=(SIN(THET)/COS(THET) )* (SIN(THET)/COS(THET) )
COT2PH = (COS(PHI)/SIN(PHI))*(COS(PHI)/SIN(PHI))
Ck**%% DETERMINE QUADRATIC PARAMETERS

A = 1,0+TAN2TH+COT2PH+TAN2TH*COT2PH
B = 2.0*%XE
C = XE*XE - RHOD*RHOD*COT2PH

Cx¥*%* GOLVE QUADRATIC AND PICK LARGER SOLUTION FOR X
c

(-B+SQRT(B*B~4.0%A*C))/(2.0%A)
-X*TAN(THET)

SQRT (RHOD*RHOD-Y*Y-X*X)
RETURN

END

N <P
[



CASE 1
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FIGURE 3. CASE I, GEOMETRY
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CASE II:

This case assumes that both the azimuth and DME/P ground units are collocated and
reside in the same horizontal z-plane as the elevation unit. However, the azimuth
and DME/P units are assumed to be separated from the elevation unit by a distance
xe along a line parallel to the runway centerline, and by a distance ye transverse
to the runway centerline. The azimuth and DME/P units are located at the origin
of the coordinate system. The azimuth beam is assumed to be planar. A closed
form solution results.

The equations which result are:

From DME/P = x2+y2452 = p2 (1)
From Azimuth: y =-xtan6 (2)
From Elevation: (x-xe)2+(y-ye)2=z2cot2 ¢ (3)

Substitute (2) into (1) to eliminate y:
x2tane + x2+22 = p2 (4)
or:
x2(1+tan2g)+z2 = p2 (5)
Substituting (2) into (3) to eliminate y:
(xtang+ye)2+(x-xe)2 = z2cot2¢ (6)
Rearranging (5)
z2 = p2-x2(1+tan?6) (7)
Substituting (7) into (6) to eliminate z:
(xtane+ye)2+(x-xe)2 = (p2-x2(1+tanZs))cot?y (8)
Expanding and collecting terms:
xZ(tanZg +cot2g+cot2granZe+1)
+x(2yetand-2xe)
+(xe¥+y92—pzcotz¢) (9)
Equation 9 is a quadratic which can be solved by the quadratic formula:

x = -B+(B2-4Ac)1/2

2A (10)
Wherein:
A = tan29+cot2¢+cot2¢tan20+1 (11)
B = +2yetanf-2xe (12)
C = xe+yeZ-p2cot2¢ (13)

11



Choose the larger value of X obtained from (10)

The value of y is gotten from:
y = -xtan@ | (2)
z is obtained from recasting equation (1):

2 = (p2-x2-y2)1/2 (1a)

12



MLS RECONSTRUCTION ALGORITHM
CASE II FORTRAN SUBROUTINE

SUBROUTINE CASE2(THET,PHI,RHOD,XE,YE,X,Y,Z)
Cx*¥¥%% THIS SUBROUTINE USED THE MLS ANGLE AND DME/P DATA IN

CONJUNCTION WITH OFFSET DISTANCES TO COMPUTE CARTESTAN
X,Y AND Z COORDINATES.

THET = RCVR AZ ANGLE (RADIANS)

PHI = RCVR EL ANGLE (RADIANS)

RHOD = DME/P DISTANCE (FT)

XE = OFFSET BETWEEN AZ AND EL IN X DIRECTION (FT)
YE = OFFSET BETWEEN AZ AND EL IN Y DIRECTION (FT)

oo oo

DETERMINE SQUARES OF TAN AND COT OF THET AND PHI
TANTH=SIN(THET)/COS(THET)
TAN2TH = (SIN(THET)/COS(THET) )*(SIN(THET)/COS(THET))
COT2PH = (COS(PHI)/SIN(PHI))*(COS(PHI)/SIN(PHI))
C***%% DETERMINE QUADRATIC PARAMETERS
A= 1.0 + TAN2TH + COT2PH + COT2PH*TAN2TH
B = +2 .0*YE*XTANTH-2.0%XE
C = XE*XE+YE*YE-RHOD¥RHOD*COT2PH
C SOLVE QUADRATIC AND PICK LARGER SOLUTION
X =(-B+SQRT(B*B-4%A*C))/(2*%A)
Y=-X*TANTH
Z=SQRT(RHOD*RHOD-X*X-Y*Y)
RETURN
END

]

1]
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CASE TIII:

This case assumes that both the azimuth and DME/P ground units are collocated and
reside in the same horizontal z-plane as the elevation unit. The azimuth and
DME/P units are separated, however, by a distance xe along a line parallel to the
runway centerline. The azimuth and DME/P units are located at the origin of the
coordinate system. The azimuth beam forms a cone with exterior angleg. A closed
form solution results.

The equations which result are:

From DME/P, a sphere: x2+y2+422 =2 (1)
From Azimuth, a cone: psing= -y (2)
From Azimuth, a cone: x2+z2=y2cot2e (3)
From Elevation, a cone: y2+(x-xe)2=z2¢ot2¢ (4)
Square (2): y2 = pZsinZs - (5)
Substitute (5) into (3): x2+z2 = p2gin2gcotle (6)
From trigonometry: sinZgcot2g = cos2g @)
Therefore: x2+z2 = pzcosze (8)
Solve for z: 22 = p2coslg-x2 (9)
Substitute (9) into (4): y2+(x-xe)2=(p2cos20-x2)cot2¢ (10)

Substitute (5) for y2 in (10):
p2sinZe+(x-xe)2 = (p2cos26-x2)cot2¢ (11)
Multiplying out and collecting any terms yields a quadratic:
x2(1+cot24)-2xxe+xe2+p2sin2e-p2cosZgcotled = O (12)

The quadratic parameters are:

A = (l+cot2y) (13)
B = -2xe (14)
¢ = xe2+p25in29-p2cosZgcot2e (15)

Using the quadratic formula:

x = -Bt(B2-4Ac)1/2 (16)
2A

Choose the larger value of x
From (2) obtain Y:

y = = psing (2)
From (1) obtain z:

z = (p2-x2-y2)1/2 (17)

15
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MLS RECONSTRUCTION ALGORITHM
CASE TIII FORTRAN SUBROUTINE

SUBROUTINE CASE3(THET,PHI ,RHOD,XE,X,Y,Z)

THIS SUBROUTINE USES THE MLS ANGLE AND DME/P DATA
TOGETHER WITH OFFSET DISTANCE YE TO COMPUTE CARTESIAN
X,Y AND Z COORDINATES.

THET = RCVR AZ ANGLE (RADIANS)

PHI = RCVR EL ANGLE (RADIANS)

RHOD = DME/P DISTANCE (FT)

YE = OFFSET BETWEEN AZ AND EL IN Y DIRECTION (FT)

DETERMINE SQUARES OF TAN AND COT OF THET AND PHI
TAN2TH = (SIN(THET)/COS(THET))*(SIN(THET)/COS(THET))
COT2PH = (COS(PHI)/SIN(PHI))*(COS(PHI)/SIN(PHI))
DETERMINE QUADRATIC PARAMETERS

A = 1.0+COT2PH
B = -2.0%XE
C = XE*XE+RHOD*RHOD*SIN(THET)*SIN(THET)-

RHOD*RHOD*COS ( THET )*COS (THET ) *COT2 PH
SOLVE QUADRATIC AND PICK LARGER SOLUTION
X=(~B+SQRT(B*B-4 .0%A*C))/(2.0%A)
Y=-1.0*RHOD*SIN(THET)

Z=SQRT ( RHOD*RHOD-X*X~Y*Y)
RETURN
END

16
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CASE 1IV:

This case assumes that both the azimuth and DME/P ground units are collocated and
reside in the same horizontal z-plane as the elevation unit. However, the azimuth

and DME/P units are assumed to be separated from the elevation unit by a distance xe
along a line parallel to the runway centerline, and by a distance ye transverse to the
runway centerline., The azimuth and DME/P units are located at the origin of the
coordinate system. The azimuth beam is assumed to be conical. A closed form solution
results.,

The equations which result are:

From DME/P, x2+y2+z2 = 02 (1)
From Azimuth, psiné= -y (2)

X2+22=y2cot29 (3)
From Elevation (x-xe)2+(y-ye)2Z = z2cot2¢ (4)

Substitute (2) into (4) to eliminate y:

(psing+ye)2+(x-xe)2 = z2cot2y (5)

Square (2): pZsin2g = y2 (6)

Substitute (6) into (3): x2+22 =p25in2gcotly (7)

From trigonometry: sinZgcotZ6= sin2pcos2e= cos2s (8)
sin‘g

Therefore: x2+z2 = p2cos2g (9)

22 = p2cos2g-x2 (10)

Substitute (10) into (5):
(psine+ye)2+(x-xe)? = (chosze-xz)cot2¢ : (11)
Simplifying and collecting terms:

xz(l+cot2¢)—2xxe+(ye2+xe2+2yepsine+pzsinze
-pZcosZgcotd) = 0 (12)

This is a quadratic which can be solved for x as:

x = -B +(B2-4AC)1/2
25 (13)

The larger value of x is chosen in (13).

Where: A = l+cot2g (14)
B = -2xe (15)
C = y82+xe2+2yepsine+pzsin26-02c0529c0t2¢=0 (16)

Obtain x from (2): vy =-psing (2)

Solve (1) for z: 2z = (p2-x2-y2)1/2 (17)

18



CRFFekdk

OO0

Chedeick

CHsdck

MLS RECONSTRUCTION ALGORITHM
CASE IV FORTRAN SUBROUTINE

SUBROUTINE CASE4(THET,PHI ,RHOD,YE,XE,X,Y,Z)

THIS SUBROUTINE USES THE MLS ANGLE AND DME/P DATA
TOGETHER WITH OFFSET DISTANCE YE TO COMPUTE CARTESIAN
X,Y AND Z COORDINATES.

THET = RCVR AZ ANGLE (RADIANS)

PHI = RCVR EL ANGLE (RADIANS)

RHOD = DME/P DISTANCE (FT)

YE = OFFSET BETWEEN AZ AND EL IN Y DIRECTION (FT)

XE = OFFSET BETWEEN AZ AND EL IN X DIRECTION (FT)
DETERMINE SQUARES OF TAN AND COT OF THET AND PHI
TAN2TH = (SIN(THET)/COS(THET) )*(SIN(THET)/COS(THET))
COT2PH = (COS(PHI)/SIN(PHI))*(COS(PHI)/SIN(PHI))
DETERMINE QUADRATIC PARAMETERS

A 1.+COT2PH

B = —2.0%XE

C = YE*YE+XE*XE+2,0*YE*RHOD*SIN(THET)

"~ +RHOD*RHOD*SIN(THET)*SIN(THET)

—RHOD*RHOD*COS (THET) *COS (THET ) *COT2PH
SOLVE QUADRATIC AND PICK LARGER SOLUTION
X=(-B+SQRT(B*B-4%A*C))/(2.0%A)

= - RHOD*SIN(THET)

Z=SQRT (RHOD*RHOD-X*X~Y*Y)

RETURN
END
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CASE V:

This case assumes that both the azimuth and DME/P ground units are collocated and
reside at the origin of the coordinate system in the z=0 plane. The

elevation unit does not reside in this plane, but rather, it lies in the
vertically displaced plane z=ze. Furthermore, the elevation unit is displaced by
a distance xe along the x axis from the azimuth and DME/P units. There is
assumed to be no relative displacement between any of the units in the y
direction. Planar azimuth is used in the derivation. A closed form expression
does not result, but rather, a quartic polynomial in x results. An iterative
solut ion (Newton-Raphson) running on a digital computer is recommended.

The equations which result are:

From DME/P = x2 + y2 + 22 =p2 (1)
From Azimuth: y = -xtan@ (2)
From Elevation: y2+(x-xe)2 = (z-ze)ZcotZ¢ (3)
Square (2): yZ = x2¢tanZe (4)
Substitute (4) into (1) x2tan28+x2+2z2 = p2 (5)
Rearranging (5) yields: 22 = p2-x2(1+tan26 ) (6)
Taking the positive square root of (6): z = +( p2-x2(1+tan29))1/2 (7)

Substituting (7) into (3) yields:

y2+(x-xe)2 = ((p2-x2(1+tan26))1/2-2¢e)2¢c0t2¢ (8)
Substituting (4) into (8) yields:

x2t ane+(x-xe)? = ((Dz~x2(1+tan29))1/2~ze)2cotz¢ , (9)
Multiplying out and collecting terms:
x2 ¢ an2g +(x-xe)2-(p2-x2(1+tan0) )cot2¢-zeZcot 2g=-2ze(p2-x2(1+t an 8 ))1/2 (10)
Square both sides:

Azez(pz-x2(1+tan26)) =xb4t an%0+2x2t an26-2x2t an20 (p2-x2(1+tanZ6))cot2 ¢ (11)
-2x2tan26zelcot 2 +(x~xe)?
-2(x-xe)2(p2-x2(tan2e+1))cot2¢~2(x-xe)2ze2cot2¢
+(02-x2(1+tan29))2cot4¢ -2(p2-x2(1+tan26))cotbgze?
+zebcot4 ¢

This equation is of the form: Ax4+Bx3+Cx2+Dx+E = 0 (12)

1]

Where: A t3049+2tan26(1+tan29)coL2¢+2(l+tan26)tot2¢ (13)

+(1+tanZ0)2cot4¢+1

™
n

—4xe—4xe(1+tan26)cot2¢ (14)
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C = 2tan2g-2 o2tan23cot2¢-2tan29ze2cot2¢ (15)
+6xe2-2p2cot2$-2ze2cot2¢+2xe2(1+tan28)cot2¢
-2p2(1+tan26)cot4¢+2(1+tan28)cotHee?
+4ze2(1+tan2e)

D = -4xe3+4xep2cot2$+4xezeeot 2 (16)
E = -2xe? p2cot2¢- 2xe2ze2cot2¢ (17
+ p4coL4¢ Zchot g 5 17)
+zebcotd ¢+xe ~bze
There should be 4 real roots which correspond to the four points of intersection.
An iterative procedure such as Newton-Raphson should work provided care is taken

to insure convergence to the proper point.

The equation employed in this method is:

Xpe] = xn *ff(ig; (18)

Where f (x,) is equation (12) above and:

£'(x) = 4Ax3+3Bx2+2Cx+D

(19)
The positive value of x closest to the elevation station is desired if ze is
positive. 1If ze is negative, the intersection point farthest from elevation is
desired.
Once x is known, y is obtained by:
y=-xtané (20)
z is obtained via (1) and x and y:
7 = (DZ-XZ—y2)1/2 (21)
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MLS RECONSTRUCTION ALGORITHM
CASE V FORTRAN SUBROUTINE

SUBROUTINE CASE5(THET,PHI ,RHOD,XE,ZE,X,Y,Z,LIM)
SUBROUTINE CALCULATES CARTESIAN COORDINATES FROM
MLS ANGLE AND DME/P DATA

THET=RCVR AZ (RADIANS)

PHI=RCVR EL(RADIANS)

XE=AZ TO EL SEPARATION (FEET)

DETERMINE THE POWERS OF TAN AND COT OF

THET AND PHI, RHOD, XE AND ZE
TAN2TH=(SIN(THET)/COS(THET) )*(SIN(THET) /COS(THET) )

COT2PH = (COS(PHI)/SIN(PHI))*(COS(PHI)/SIN(PHI))
COT4PH=COT2PH*COT2PH

RHOD2=RHOD*RHOD

ZE2=2E%ZE

XE2=XE*XE

DETERMINE QUARTIC PARAMETERS

A = TAN2TH*TAN2TH+2.0*TAN2TH*(1.0+TAN2TH)*COT2PH+2.0%(1.0+TAN2TH)*COT2PH
1+(1.0+TAN2TH)* (1 .0+TAN2TH)*COT4PH+1.0

B = =4 ,0%XE-4 ,0%XE*(1.0+TAN2TH)*COT2Pl1

C = 2.0*TAN2TH-2.0*RHOD2*TAN2 TH*COT2 TH-2.0*TAN2 TH*ZE2*COT2PH
L+6.0%XE2-2.0%RHOD2*COT2PH~2 .0%ZE2*COT2PH+2 . 0*XE2*
1(1.0+TAN2TH)*COT2PH~2.0*RHOD2*(1.0+TAN2TH)*COT4PH+
12.0%(1.0+TAN2TH)*COT4PH*ZE2+4 , 0%ZE 2% ZE 2%

1(1.0+TAN2TH)

D = -4.0%XE2*XE+4, 0%*XE*RHOD2*COT2PH+4 .0*XE*ZE2*COT2PH

E = -2.0*%XE2*RHOD2*COT2PH-2 .0*XE2%*ZE2*COT2PH+RHOD2*RHOD2*
1COT4PH~-2 . 0% *RHOD2*COT4PH*2ZE 2+ ZE 2% 2E 2% COT4PH+XE 2%XE2

1-4 .0%ZE2*RHOD2

3TART NEWTON RAPHSON ITERATION HERE

COMPUTE START POINT X (XE IF ZE >0, RHOD IF ZE<O)
IF(ZE.GT.0.0) X=XE

IF(ZE.LT.0.0) X=RHOD

COMPUTE QUARTIC X FUNCTION F

F = A*X*X*XFX+BIXFX*X+CHX*X*+D*X+E
COMPUTE DERIVATIVE OF F=FDIV

FDIV=4 ,0%A*X*X¥X+3,0*B*X*X+2,0%C*X+D

COMPUTE NEW ITERATIVE POINT XN
XN=X-F/FDIV

COMPARE THE DIFFERENCE BETWEEN OLD
AND NEW Y VALUES TO TOLERANCE LIMIT=LIM
IF(ABS(XN-X).LT.LIM)GO TO 20

X=XN

GO TO 10

Y=—X*TAN(THET)
Z=SQRT(RHOD2-X*X-Y*Y)

RETURN

END
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CASE VI:

This case assumes that both the azimuth and DME/P ground units are collocated and
reside at the origin of the coordinate system in the Z=0 plane (see figure). The
elevation unit does not reside in this plane, but rather, it lies in the
vertically displaced plane z=ze. Furthermore, the elevation unit is displaced by
a distance xe along the x axis from the azimuth and DME/P units. There is
assumed to be no relative displacement between any of the units in the y
direction. The azimuth beam is assumed to be conical. A closed form expression
does not result, but rather, a quartic polynomial in x results. An iterative
solution (Newton-Raphson) running on a digital computer is recommended.

The equations which result are:

From DME/P: x2 + y2 + z2 =p2 (1)
From Azimuth: y = -psing (2)
From Elevation: y2+(x-xe)2 = (z-ze)2cot2¢ 3)

Substitute (2) into (1):

p2sin2p+x2+2z2 = p2 (4)
Rearranging and using l-sin26=cosZg ' (5)
2 + 22 = p2cos2g (6)
x = (p2cos29-22)1/2 (7)

Substituting (2) and (7) into (3) to get:
p2sin20+((p2co0s20~22)1/2-xe)2=(z-ze)2cot 2¢ (8)

Multiplying out the terms:

p25in28 +p2cos26-2z2-2xe(p2c0s20-22)1/24xe2=(z-ze)2c0t 2¢ (9)
Rearranging:
-2xe(p2c0826-22)1/2=(z-ze)2cot 2¢0+22-p2-xe2 (10)

Square both sides to clear fractional powers:
4xe2( p2co0s29-22)=(z-ze)bcot4d+2(z2~c2-xe2)(z-ze)2cot 20+(22-p2-xe2)2 (11)

Multiplying out and collecting terms yields a quartic polynomial in Z:

Azb + Bz3 + Cz22 + Dz + E (12)
Where: A = cot%¢+2cot2¢+1 (13)
B = —4zecotBé-4zecot 29 (14)

C = 6zelcot4e+2(ze2-p2-xe2)cot2¢-2p2+2xe2 (15)

D = =4ze3cot40+2(2p2ze+2xe2ze)cot2¢ (16)

E = xe4+2pzxe2+p4-2ze2xe2cot2¢~2ozze2c0t2¢ (17)

+ze4cot4¢-4xe202cosze

25



There should be 4 real roots which result, corresponding to the 4 polnts of
intersection. Newton-Raphson 1lteration would be one technique which could be

used for solution provided that care is taken to insure convergence to the proper
point.

The equation employed in this method is:

Zp+1=2zn~£(zp)
f'izn) (18)

Where f (y,) is equation (12) above and:
f = 3 2
(z) = 4Az3+3B2z2+2Cz+D (19)

The positive value of z closest to the elevation station is desired if ze 1is

positive. If ze is negative, the intersection point farthest from the elevation
is desired.

Once z is known, y 1is obtained by:

y = -psing (20)
x is obtained via (1) knowing y and 2z (21)
x = (02-22-y2)1/2 (22)
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MLS RECONSTRUCTION ALGORITHM
CASE VI FORTRAN SUBROUTINE

SUBROUTINE CASE6 (THET,PHI ,RHOD,XE,ZE,X,Y,Z,LIM)
SUBROUTINE CALCULATES CARTESIAN COORDINATES FROM
MLS ANGLE AND DME/P DATA

THET=RCVR AZ (RADIANS)

PHI=RCVR EL(RADIANS)

RHOD=DME /P (FEET)

XE=AZ TO EL SEPARATION (FEET)

LIM=ITERATION LIMIT

DETERMINE THE POWERS OF COS AND COT OF

THET AND PHI, RHOD, XE AND ZE

COS2TH = COS(THET)*COS(THET)
COT2PH=COS(PHI)*COS(PHI)/(SIN(PHI)*SIN(PHI))
COT4PH=COT2PH*COT2PH

RHOD2=RHOD* RHOD

XE2=XE*XE

ZE2=2E*ZE

DETERMINE QUARTIC PARAMETERS

A = COT4PH+2.0*COT2PH+1.0

B = -4,0%ZE*COT4PH-4.0%ZE2%COT2PH

C = 6.0%ZE2*COT4PH+2.0* ( ZE2-RHON2-XE2 )*COT2PH-2 .0*RHOD2+2 .0*XE2
D = =4 0%ZE2%ZE*COT4PH+2.0% (2, 0*RHOD*ZE+2 .0*XE2*ZE )*COT2PH

E = XE2*XE2+2.0*RHOD2*XE2+RHOD2*RHOD2-2 .0% ZE2*XFE2*COT2PH

1-2,0%¥RHOD2#*ZE2* COT2PH+ZE 2*ZE2* COT4PH-4 . 0*XE2*¥RHOD2*COS2TH

START NEWTON RAPHSON ITERATION HERE
COMPUTE START POINT Z HERE
Z = (*RHOD-XE)*SIN(PHI)+ZE

COMPUTE QUARTIC Y FUNCTION F

F = AXZXZ%Z*kZ2+B*Z¥kZ*Z+C*Z* 2k +D*Z+E
COMPUTE DERIVATIVE OF F=FDIV

FDIV=4 .0%A*Z*Z*Z+3 0%B*Z*Z+2 0%C*Z+D

COMPUTE NEW ITERATIVE POINT 2N
ZN=Z-F/FDIV

COMPARE THE DIFFERENCE BETWEEN OLD AND NEW Y VALUES TO DETERMINE
CONVERGENCE TO WITHIN LIMIT DELTA = LIM
IF(ABS(ZN-Z).LT.LIM)GO TO 20

Z=7ZN

GO TO 10

Y=~-RHOD*SIN( THET)

X=SQRT(RHOD2-Z*Z~-Y*Y)

RETURN

KND
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Cases VII, VIII, and XI can be grouped together and are referred to as "Thedford"
type algorithms after their originator, Dr. William Thedford. These algorithms
iterate using a quadratic derived from the three MLS defining equations.

Case VII is the most general of the three in that it covers an arbitrary
placement of the three signal sources. 1It, along with case XI, employs planar
azimuth. Case XI which uses the DME/P as the reference frame, requires a linear
translation for use of a non-DME/P centered reference frame. Case VIII uses a
collocated azimuth/DME/P referenced coordinate sytem as well as conic azimuth.

It is the simplest of the thtee, and would be used for closely spaced signal
sources. All three of the algorithms are relatively simple and converge within

three iterations, which takes less than 20 milliseconds on a PDP 11/34 computer,
a typical target .machine.

Cases IX and X are very similar implementations of a Seidel-like iterative
technique. The prime difference between them is that case IX addresses conic
azimuth, whereas case X addresses planar azimuth. Completely arbitrary signal
source geometries are allowed in both cases. The code required for these general
solutions is minimal. The tradeoff for the aforementioned benefits is that a
greater number of iterations are required for convergence. These algorithms are
useful for the full 3D MLS RNAV implementation for general ground siting.
However, these areas should be run on computers capable of fast processing.

Case XII is another conic azimuth case which is designed for completely arbitrary
ground siting geometry. It employs Newton Raphson iteration in three dimensions

on linear Taylor Series approximations to the three defining equations. Tt is
applicable to full 3D MLS RNAV designs using any ground equipment siting.
Convergence is rapid (usually within a few iterations). Code size is the largest

of all the algorithms. Based on this fact, a computer with adequate memory and
processing power is required with this application.

COORDINATE TRANSFORMATION ALGORITHM TEST PROCEDURE.

All 12 of the MLS transformation algorithms were subjected to various levels of
validation testing. These tests were of three types:

1. Point by point validation of the transformation process throughout MLS
coverage.

2. Simulated RNAV flights along various straight line single segment flight-
paths using computer generated input data.

3. Simulated RNAV approaches and departures to and from the primary instrumented
runway using live flight MLS triples as input data. A more detailed discussion

of each of these tests follow.

GRID POINT TESTING.

All 12 of the MLS transformation algorithms were subjected to point by point
validation testing over an MLS coverage volume spanning 20 nmi in DME/P, +40° in
azimuth and +2° to +20° in elevation. These tests entailed generating cartesian
triples (x,y,z) over the MLS coverage volume, and then converting these to the
equivalent MLS triple (0,g,p). The resulting MLS triple was input to the MLS
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CASE VII:

This MLS Recounstruction Algorithm, referred to as '"Case VIL™ is an extension to
the “"Thedford Algorithms" of Case XI. In concept, this algorithm is very similar
to the Thedford Algorithm implementation. It differs from it principally in that
the origin of the MLS cartesian coordinate system (0,0,0) is not located at the
phase center of the DME/P ground transponder. Thus, the DME/P unit may assume
any location (xd,yd,zd) in cartesian space. The azimuth ground transmitter is
assumed here to produce a planar beam. Its phase center is located at
(xa,ya,za). The elevation unit phase center is located at (xe,ye,ze), and
produces a conical beam whose axis is parallel to the z axis. A closed form
solution for the cartesian coordinates does not result, but rather, an iterative
technique is employed to do the reconstruction. Zi=ithapproxamation to Z.

The equations which result are as follows:

From DME/P: (x-xd)2+(y-yd)2+(z-2d)2 =p 2 (1)

From planar azimuth: tane=—(y-ya)/{(x-xa) . (2)
From elevation: zi+1—ze=sin¢((x—xe)2+(y-ye)2+(z—z§)2)1/2 (3)
or: zi+1=ze+sin¢((x—xe)2+(y-ye)2+(z-ze)2)1/2 (4)
Solve (2) for x: x=xa-(y-ya)cot® (5)

Substitute (5) into (1):
(xa-(y-ya)cot8-xd)2+(y-yd)2+(z-2zd)2=p2 (6)
Multiplying out (6) and collecting terms yields:

y2(1+cot26)+¥(2(xacote-xacote~yacot20-ya)) (7
+(xa2+xd2+yd?+2d2+22-p2+2(xayacot8-zzd-xaxd)+yaZcot 29=0

Knowing the siting parameters, § and z, and assuming a starting value for z, we
have a quadratic equation which can be solved for y using:

y = -B+(B2-4AC)1/2/24 (8)

Where: A = l+cot?e (9)
B = 2(xdcote-xacote~yacot29—ya) (10)
C = xaz+xd2+yd2+zd2+z2-02+2(xaya¢ot9-zzd—xaxd)+ya2cot26 (11)

Knowing y, 8 , and the siting parameters, x can be obtained via (5):
x=xa-(y-ya)cot @ (12)

The foregoing equations are incorporated into an algorithm which proceeds as
follows:

Pick a starting value for zj: zj=psing (13)
Calculate A,B, and C:
(9)
A= 1+C0t26 (10)
B = 2(xdcote—xacote-Zacotze—ya)
¢ = xaz+xd2yd2+zd2+z —92+2(xayacote-zzd-xaxd)+y32coL29 (1)
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Use A,B, and C to calculate y:

yi=-B+(B2-4AC)1/2/2A 8)

Calculate x from (5):

x;=xa-(yi-ya)cots

(5)
Calculate the next value of z:
Zi+l=ze+sin¢((x—xe)2+(y—ye)2+(z—ze)2)1/2 (1)
Compute an error box for stopping:
zi+1"zi|+|Yi+1—Yi|+|xi+l"xi| Py 4 (13)

If 1is less than the limit, then stop iterating. If not, return to (8) and
repeat the process.

Please note, that the angle 1s measured in a clockwise direction from the x
axis, and singularities result when® = 0. To avoid this, logic must be included to
let y=ya in this case, with x being calculated from (1).

On the first pass through the iteration, two successive values of z are assigned,

but only one for x and y. Two values of x and y are required for the error test.
They can be assigned by letting:

Xo=pcosgcos®

- 14
yo==pcosgsin@ (14)

(15)

31



FORTRAN SUBROUTINE FOR
MLS RECONSTRUCTTON ALGORITHM
CASE VII

SUBROUTINE CASE13(THET,PHI,RHOD,XA,YA,ZA,XD,YD,

120,X,Y,Z ,LIM)
Ck%%%% THIS ALGORITHM PROVIDES CARTESIAN X,Y,Z COORDINATE OUTPUT FOR
MLS ANGLE AND DME/P INPUTS

THET=RCVR AZ (RADIANS)
PHI=RCVR EL(RADIANS)
RHOD=DME /P (FEET)

XA = AZ UNIT X COORDINATE
YA = AZ UNIT Y COORDINATE
ZA = AZ UNIT Z COORDINATE

XE = EL UNIT X COORDINATE
YE = EL UNIT Y COORDINATE
yAD EL UNIT Z COORDINATE

LIM=ERROR TOLERANCE

XD = DME UNIT X COORDINATE
YD = DME UNIT Y COORDINATE
ZD = DME UNIT Z COORDINATE

CALCULATE POWERS AND TRANSCENDENTAL FUNCTIONS

OO0 CcCO0O0OcO OO 0000 o000

RHOD2=RHOD*RHOD
COTTH=COS(THET)/SIN(THET)

XD2=XD*XD
YD2=YD*YD
ZD2=ZD*ZD
COT2TH=COTTH*COTTH
XA2=XA*XA
YA2=YA*YA
C
C CALCLUATE FIRST VALUES OF X AND Y
X = RHOD*COS(PHI)*COS(THET)
Y = ~1.0*%¥RHOD*COS(PHI)*SIN(THET)
c
C CALCULATE 7 STARTING POINT
Z = RHOD*SIN{PHI)
C : CALCULATE QUADRATIC FOR NEXT Y VALUE, YN
C
10 A = 1.0+COT2TH
B = 2.0%(XD*COTTH-XA*COTTH-YA*COT2TH~YA)
C = XA2+XD2+YD2+2ZD2+7*Z-RHOD2+2.0% (XA*YA*COTTH-
L Z*ZD-XA*XD) +YA2*COT2TH
C
YN=(-B+SQRT(B*%2-4 . 0%¥A*C)))/(2.0%A)
C
C CALCULATE XN, THE NEXT VALUE OF X
C
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IF (THET.EQ.0.0) GO TO 20
XN=XA- (Y-YA)*COTTH

GO TO 30
c CALCULATE 0 DEG THETA X VALUE
20 ¥N=XD+SQRT(RHOD2=-(Z-ZD)**2=(YA-YD)**2)
G CALCULATE NEXT Z VALUE, 2ZN
C
ZN=ZE+SIN(PHI)*SQRT((XN~XE)**2+(YN~-YE)**2+(Z~ZE)**2)
C
C COMPUTE ERROR BOX
c
EPS=ABS(ZN-Z)+ABS{YN-Y) +ABS (XN-X)
Z=2N
Y=YN
X=XN
C
C TEST FOR CONVERGENCE
C
IF (EPS.GE.LIM) GO TO 10
RETURN
END
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CASE VIII:

This case is a simplification of case VII, the conical azimuth "Thedford
Algorithm." However, it entails a simplification of the geometry to the
collocated azimuth and DME/P configuration. This collocated site is taken as
the origin of the coordinate system. The elevation station may be situated
anywhere in space at the cartesian coordinates (xe,ye,ze). The equations
which result are nonlinear, and an iterative solution is used to find the
reconstructed (x,y,z) coordinates.

The equations which result are:

From DME/P: x2 + y2 + 22 = o2 (1)
From conical azimuth: y = -psing (2)
From elevation: (zi+1‘ze)=3i“¢((x‘x9)2+(Y‘ye)2+(zi‘Ze)2)1/2 (3)

Where z; is the last z estimate of current aircraft position,.
Substituting (2) into (1): p2sinZe+x2+22=p2 , (4)
Rearranging (4): x%=p2(1-sin2g)-22 (5)
Taking the square root of both sides of (5) and using the identity
(1-sin28) = cos?e 6)
x = 1ﬂozcosze—zz)l/2 (7)
Note: Use the positive value, assuming there is no back azimuth.
The computation proceeds as follows:
Start with an initial value of z:
zy = psin¢+ze (8)
Use (8) to compute a value of x from (7):
ZQ_ZiZ)I/Z

X3 = (pZCOS

(9)
From (2) calculate a value of y:

yi = -psing (10)
Calculate an updated value of z from (3):

Zie] = ze+sin¢((xi-xé)2+(yi-ye)2+(zi-ze)2)1/2 (11)
Check the differential change in z:
If the following holds then stop:

Zorror Izi+1 -zt (12)

If not, return to (9) and repeat the computations.
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MLS RECONSTRUCTION ALGORITHM
CASE VIII FORTRAN

SUBROUTINE CASE8(THET,PHI,RHOD,XE,ZE,X,Y,Z,LIM)
SUBROUTINE CALCULATES CARTESIAN COORDINATES FROM
MLS ANGLE AND DME/P DATA

THET=RCVR AZ (RADIANS)

PHI=RCVR EL(RADIANS)

RHOD=DME /P (FEET)

AZIMUTH AND DME/P ARE COLLOCATED AT ORIGIN

XE = X COORDINATE OF ELEVATION (FEET)
YE = Y COORDINATE OF ELEVATION (FEET)
ZE = Z COORDINATE OF ELEVATION (FEET)

RHOD 2=RHOD*RHOD

START ITERATION WITH INITIAL Z

Z = RHOD*SIN(PHI)+ZE

X = SQRT (RHOD2*COS(THET)*COS(THET)-2*Z)

Y = -1.0%RHOD*SIN(THET)

CALCULATE NEW 2N

ZN=ZE+SIN(PHI)*SQRT ((X-XE)*¥*(X-XE)+(Y-YE)**(Y-YE)

14(Z-ZE)**(2-2ZE))

TEST ITERATION CONVERGENCE

IF (ABS(ZN-Z).LT.LIM) GO TO 20
2=ZN

GO TO 10

RETURN

END
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CASE IX:

This case assumes a completely general geometry for the locations of the ground
based azimuth, elevation, and DME/P stations. The azimuth unit is sited at
cartesian coordinates (xa,ya,za). The elevation unit is located at (xe,ye,ze).
The DME/P coordinates are (xd,yd,zd). Conical azimuth and conical elevation are
used in the derivation. Three nonlinear equations result. A closed form
solution is not obtained. Instead, a nonlinear Seidel-like iteration procedure
is employed in order to obtain a solution for %, y and z.

The equations which result are:

From DME/P: (x-xd)2+(y-yd)2+(z-2d)2 =p 2 (1)
From azimuth: (x-xa)2+(z-za)2=(y-ya)2cot2e (2)
From elevation: (x-xe)2+(y-ye)2=(z-ze)2cot2¢ (3)

Rearranging (3) to the form z = f(x,y,¢):
z=ze+tané((x-xe)2+(y-ye)2)1/2 (4)
Rearranging (2) to the form y=f(x,z,0) yields:
y=ya+tan6((x-xa)2+(z-za)2)1/2 (5)
Rearranging (1) to the form x=f(y,z,p) yields:
x=xd+(p2-(y-yd)2-(z-2¢)2)1/2 (6)

Three aonlinear iteration equations (4,5 and 6) have been derived. The
computation of x, y and z proceeds as follows:

Pick a starting value for x:
x=pcosd (7)
Pick a starting value for y:
y=-psin® (8)
Compute the next value of z, zj,;:
Zjy1=2Ze+tan¢((x-xe)2+(y-ye)2)1/2 (9)
Compute the next value of y, yj,i:
Yisi=Ya+tane((x-xa)2+(z-za)2)1/2 (10)
Compute the next value of x, xj, ;:

Xj41=xd+(p2-(y-yd)2-(z-2d)2)1/2 (11)
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Compare the new values xi+l, yi+l, zi+l to the previous values:

IXiv1-xil £ 8 (12)
[Yi+v1-zi|<& &

(13)
IZi+l—zi|‘_ £ (14)

If any of the above errors are out of bounds, then recompute using xj,},
Yi+l, zi+] as the new starting point.
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SUBROUTINE CASE9(THET ,PHI,RHOD,XA,YA,ZA,XD,YD,ZD,
{ XE,YE,ZE,LIMX,LIMY,LIMZ,X,Y,Z,IFLAG,ITER)
SUBROUTINE CALCULATES CARTESIAN COORDINATES FROM MLS

MLS RECONSTRUCTION ALGORITHM
CASE IX FORTRAN

ANGLE AND DME/P DATA
THET=RCVRAZ (RADIANS)
PHI=RCVREL{RADIANS)
RHOD=DME/P (FEET)

XA
YA
ZA
XD
YD
ZD
XE

[ 1]

AZ X COORDINATE (FEET)
AZ Y COORDINATE (FEET)
AZ Z COORDINATE (FEET)
DME X COORDINATE (FEET)
DME Y COORDINATE (FEET)
DME - Z COORDINATE (FEET)
EL X COORDINATE (FEET)

YE= EL Y COORDINATE (FEET)

ZE = EL Z COORDINATE (FEET)
LIMX = X ITERATION LIMIT
LIMY = Y ITERATION LIMIT
LIMZ = Z ITERATION LIMIT
IFLAG = O ITERATED OUTCOME SUCCESSFULL
= ] ITERATIONS EXCEEDED
= 2 SQRT ARG < O
NOTE: NUMBER OF ITERATIONS MAY VARY FROM 10 TO 90 FOR
IFLAG = 0

.1 FOOT

DETERMINE THE STARTING VALUES, INCLUDING A PSEUDO VALUE FOR Z

Y =-1,0*RHOD*SIN(THET)
Z = 50.

X = RHOD*COS(THET)
ITER=0

ITER=ITER+1

RECORD SAMPLE POINT WITH EXCESSIVE ITERATIONS

IF (ITER.GT.10) THEN
IFLAG=1

GO TO 99

ENDIF

Z1
Y1

= ZE+TAN(PHI)*SQRT({X-XE)*¥*2+(Y-YE)**%2)
YA-TAN(THET)*SQRT( (X-XA)**2+(Z1~ZA)**2)
R = RHOD**2-(Y1-YD)**2~(Z1-ZD)**2

i}

IF(R.LT.0)THEN
[FLAG=2

GO TO 99

ENDIF
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X1=XD+SQRT(R)

TEST TOLERANCE

IF(ABS(X1-X).GT.LIMX) GO TO 20
IF(ABS(Y1-Y).GT.LIMY) GO TO 20
IF(ABS(Z1-2).GT.LIMZ) GO TO 20

BRING NEXT ITERATION PARAMETERS
X=X1

Y=Yl

Z=Z1

GO TO 10

RETURN
END
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CASE X:
This case assumes a completely general geometry for the locations of the ground
based azimuth, elevation,and DME/P stations. The azimuth unit is sited at
cartesian coordinates (xa,ya,za). The elevation unit is located at (xe,ye,ze).
The DME/P coordinates are (xd,yd,zd). Planar azimuth and conical elevation are
used in the derivation. Three nonlinear equations result. A closed form
solution is not obtained. Instead, a nonlinear Seidel iteration procedure is
employed in order to obtain a solution for x, y,and z. [See note 1]
The equations which result are:

From DME/P: (x-xg)2 + (y-yg)2 + (z-24)2 =p2 (0

From azimuth: (y-ya)=-(x-xa)tan® 2)

From elevation: (x-xe)2+(y-ye)2=(z-ze)2cot2g

Rearranging (2) to the obtain the form y = {(x,0):

y=ya+{xa-x)tan® (4)
Rearranging to the form z = f(x,y,g):
2=z, + (xxx)2 + (y-y)2 1/2 (5)
cot2¢
Rearranging (1) to the form x = (y,z, p):
X = X4+ [ 02-(y-y)? - (z~zd)2] 1/2 ‘ (éj

Three nonlinear iteration equations (4, 5 and 6) have been derived. The
algorithm for computation of x,y and z proceeds as follows:

Pick a starting value for x:

X = pcosgcosg+xd

(7)

Compute a value for y:

y =¥, + (x;-x)tang : (8)
Compute a value for z:

z =z, + (x—xe)2 + (y-ye)2 1/2 9)

cotzﬁ
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Compute x;+;:

Xiy] = xgt [Dz‘(y-yd)z-(z-zd)f] 1/2 (10)

Compute y;4q:

yi+l=ya+(xa-xj,1)tan o

(11)
Compute Ziyt

Zi+l T Ze * Bxi+1'xe)2 * (Y1+1‘Ye)2] 1/2

2 (12)

cot® g
The iteration is repeated until the transformed coordinates begin to converge to
their final values, as measured by the following test:

| Yi+1-vil <€ (13)
lxi+1‘xi|<$§ (14)
|zi+172ij £§ (15)

If these tests do not hold, then the process is repeated from step (10).

[1] Note: At values of the MLS triple near the limits of coverage, a large
number of iterations (greater than 20) may be needed to assure convergence.
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FORTRAN SUBROUTINE FOR MLS
RECONSTRUCTION ALGORITHM CASE X

SUBROUTINE TO CONVERT MLS ANGLES AND DME SLANT RANGE
INTO X,Y,Z, CARTESIAN COORDINATES USING ITERATIVE
PROCEDURES.

THET=RCVR AZ ANGLE (RADIANS)
PHI=RCVR EL ANGLE (RADIANS)
RHOD=SLANT RANGE (FEET)
XA=AZ X COORDINATE (FEET)
YA=AZ Y COORDINATE

ZA=AZ Z COORDINATE

XE=EL X COORDINATE

YE-EL Y COORDINATE

ZE=EL Z COORDINATE

XD=DME X COORDINATE

YD=DME Y COORDINATE

ZD=DME Z COORDINATE

o000 0O OO0 0n

SUBROUTINE CASEL0(THET,PHI ,RHOD ,RNM,XA,YA,ZA,XE,YE,ZE,
& XD,¥D,2D,X,Y,Z,DELTA, IERR)

INTEGER I,N
CHdkd INITIALIZE
N = 100

DELTA = .1
IERR = 0

C**%%  CALCULATE TRANSCENDENTAL FUNCTLONS
COTPH(COS(PHI))/(SIN(PHI))
COT2PH=COTPH*COTPH
TANTH=TAN( THET)

Chirkk CHOOSE FIRST VALUE FOR XI

c
XI = XD + RHOD * COS(THET)*COS(PHI)
C
Ck¥%%%  CHOOSE FIRST VALUE FOR YI
C

Y1 = YA+(XA-XI)*TANTH
C
Cx¥x%  CHOOSE FIRST VALUE FOR 71

ARG=( (XT-XE)**2+(YI-YE)**2) /COT2PH
21 = ZE+SQRT(ARG)

Chkek ITERATIVE PROCEDURE
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(9]

&

DO 1000, I = 1, N

XI1 = XD+SQRT(RHOD**2-(YI-YD)*%2-(ZI~-ZD)*%*2
YIl = YA + (XZ - XIl) * TANTH

ARG = ({XI1-XE)**2+(YIl-YE)**2)/COT2PH

7Z11l = ZE+SQRT(ARG)

IF((ABS(XI1 - XI) .LE. DELTA) .AND. (ABS(YIl - YI)
.AND. (ABS(ZIl - ZI) .LE. DELTA)) THEN

XI!

YTl

= ZI1
GO TO 3000

ELSE

X
Y
Z

= XIl
YI = YIL
21 = Z11

1000 CONTINUE

C
Chwexk

RECORD ERROR
WRITE (3,900) THET,PHI,RNM,XI,YI,ZI

900 FORMAT (6E12.4)

C
IERR = 1
C .
CHhds¥x FILL X,Y,Z WITH -999 IF AN ERROR OCCURS
c
X = -999,
Y = -999,.
Z = -999.
C
3000 CONTINUE
C
RETURN
END
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CASE XI1:

This case, referred to as the 'Thedford Algorithm,” is the counterpart to Case
VII, the general extension to the "Thedford Algorithm,” As such, it is in
principle similar to the former case, but differs from it in that the azimuth is
taken to be planar, as opposed to conical. The elevation unit also produces a
conical beam., The three MLS units may assume any location, but the origin of the
cartesian coordinate system, (0,0,0), is placed at the DME/P unit. The azimuth
unit coordinates are (xa,ya,za), and the elevation unit coordinates are (xe,ye,
ze). A closed form solution for the cartesian coordinates does not result, but
rather an ilterative technique is employed to do the reconstruction.

The equations which result are as follows:

From DME/P: x2 + y2 + z2 =p2 (1)
From planar azimuth: tane ==(y=-ya)/(x-xa) (2)
From elevation: zj,)-ze=sing ((x-xe)2+(y-ye)2+(z-ze)2))1/2 (3)
or: zjy1=zetsing ((x-xe)2+(y-ye)2+(z-ze)2)1/2 (4)

Solve (2) for y: y=ya-(x-xa)tan® (s)

Substitute (5) into (1} to solve for x:

x2+(ya-(x-xa)tan g )2+z2 = p2 (6)
Multiplying out (6) and collecting terms yields:

x2(1+tan? @ )+x(-2yatan@ -2xatan2e )+(z2- p2+xaZtan? 9 +2xayatan® +yal)=0 (7)

This is a ‘quadratic equation which may be solved for x using:

x=-B+(B2-4AC)1/2/24 ®)
Where: A = l+tan2e (9)
B = -2yatan6 —2xatan28 (10}

C = z2- p2+xa2tan2e +2xayatan® +ya? (11)

Knowing x,z and p, y can be obtained via (5):

y = ya-(x-xa)tané | (5)

The foregoing equations are incorporated into an algorithm which proceeds as follows:

Pick a starting value z;: z;= psing (12)
Calculate A, B and C: A = l+tanle (9)
B = -2yatan@ -2xatan2e (10)
C = z2-p2+xatran?e +2xayatang +ya2 (11)

Use A, B, and C to calculate x:

x; = ~B+(B2-4AC)L/2/2a (8)
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Calculate y from (5):

yi= ya-(x-xa)tane (5)
Calculate the next value of z:

z;41= zetsin g ((x-xe)2+(y-ye)2+(zj-ze)2)1/2 (4)
Compute an error box for stopping:

& = fzinimzi *|yivioyil * privionil (13)

If £ is less than the limit, then stop iterating. If not, return to (8) and
repeat the process.

Please note, that in order to avoid singularities, the angle 8is measured in a
clockwise direction from the x axis.

On the first pass through the iteration, two successive values of z are assigned,
but only one for x and y. Two values of x and y are required for the error test.

They can be assigned by letting:

Xo=p cosgd cos @ (14)
Yo=-Pcosg sin@ (15)
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FORTRAN SUBROUTINE ¥OR MLS
RECONSTRUCTION ALGORITHM CASE XI

SUBROUTINE CASE XI (THET,PHI,RHOD,XA,YA,ZA,XE,YE,ZE,X,Y,Z,LIM)
Ck%%%% THIS ALGORITHM PROVIDES CARTESIAN X,Y,Z COORDINATE OUTPUT
FOR MLS ANGLE AND DME/P INPUTS

O

THET=RCVR AZ (RADIANS)
PHI = RCVR EL (RADIANS)
RHOD = DME/P (FEET)

XA
YA
ZA

AZ UNIT X COORDINATE
AZ UNIT Y COORDINATE
AZ UNIT Z COORDINATE

non

XE = EL UNIT X COORDINATE
YE = EL UNIT Y COORDINATE
ZE = EL UNIT Z COORDINATE
LIM = ERROR TOLERANCE

CALCULATE POWERS AND TRANSCENDENTAL FUNCTIONS

OO0 OO0 ao 00

RHOND2=RHOD*RHOD

(@]

TANTH=SIN(THET)/COS(THET)
TAN2 TH=TANTH*TANTH
XA2 =XA*XA
YA2=YA*YA
C CALCULATE FIRST VALUES OF X AND Y
X=RHOD*COS (PHI Y*COS(THET)

Y=-1.0%RHOD*COS (PHI)*SIN(THET)

[N}

CALCUUATE 7 STARTING POINT

(@]

Z=RHOD*SIN(PHI)

oo

CALCULATE QUADRATIC FOR NEXT X VALUE,XN

— O

0 A=1_.0+TAN2TH
=-2,0%Y A*TANTH-2.0*XA*TAN2TH
C=Z*Z-RHOD2+XA2*TAN2 TH+2 . 0*XA*YA*TANTH+YA2
XN=(-B+SQRT(B*B-4.0%A*C))/(2.0%A)

CALCULATE YN, THE NEXT VALUE OF Y

QOO0

YN=YA~- (X~-XA)*TANTH

CALCULATE NEXT Z VALUE,ZN

aaOn

ZN=ZE+SIN(PHI)*SQRT( (XN-XE)**2+(YN-YE ) #**2+(Z-ZE )*%2)

@]

C COMPUTE ERROR BOX
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[eE*RP]

EPS=ABS (ZN-Z)+ABS (YN-Y) +ABS (XN-X)

Z=ZN
Y=YN
X=XN

TEST FOR CONVERGENCE
IF(EPS.GE.LIM) GO TO 10

RETURN
END

51



CASE XI
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CASE XII:

This case illustrates a procedure used to effect the transformation from MLS
angle and DME/P coordinates to a cartesian system for completely general ground
station locations. The azimuth unit is located at (xa,ya,za) and is assumed to
produce a conical beam., The elevation unit is located at (xe,ye,ze) and also
produces a conical beam. The DME/P unit is assumed to be located at position
(xd,yd,zd). Three nonlinear equations result, precluding a useful closed form
solution. Rather, a Newton—Raphson iterative technique in three dimensiouns is
employed to find a solution, This algorithm is referred to as the "Shreeve
Algorithm" after its originator. It is readily adaptable to implementation in
matrix form. The illustrative FORTRAN program is adapted from FORTRAN IV
Programming and Computing by James T. Golden.

The equations which result are as follows:

From DME/P: (x-xd)2+(y-yd)2+(z-zd)2= o2 (1)
From conical azimuth: (x-xa)2Z+(z-za)2=(y-ya)2ZcotZ26 (2)
From conical elevation: (x-xe)2+(y-ye)2=(z-ze)2Zcot?¢ (3

Equation (1) can be rewritten as:
£(x,y,2)=(x-xd)2+(y-yd)2+(z-2d)2-p2 (4)
Equation (2) can be rewritten as:
g(x,y,z)=-cos2g (y-ya)2+sinp (x-xa)Z+sin?e (z-za)?2 (5)
Similarly with equation (3):
h(x,y,z)=-sinZ¢ (x-xe)2-sin? ¢ (y-ye)2+cos?¢ (z-ze)? (6)
The Newton-Raphson process is applied to equations (4), (5), and (6) as follows:

Construct a linear Taylor Series approximatiom in three variables, x, y,and z for
each of equations (4), (5), and (6):

For (4): f(x+ax,y+ay,z+az)=f(x,y,z) + dfax + ¥fay + d¥faz (7)
dx dy 3z

For (5): g(x+ax,y+ay,z+az)=g(x,y,z) + dgax + 3gAy + Jgaz (8)
¥Ix dy 3z

For (6): h(x+ax,y+Ay,z+Az)=h(x,y,2z) + 3hax + dnay + Bhaz (9)

3x dy 3z

In the Newton-Raphson process, the left hand sides of (7), (8), and (9) are
linear approximations of the functions which we desire to solve. That is, we are
trying to solve for the roots x,y, and z which make:

f(x+Ax,y+Ay,z+A2)=0 (10)
g(x+Ax,y+Ay,z+A42)=0 (1)
h(x+ax,y+A4y,z+Az)=0 (12)

Adopting the notation that:

of = fx, Of = fy, 3f = fz (13-15)
dx dy 3z



38 = 8X, 9g = &Y, 3g = 82 (16-18)
S 3 55

3 = hx, 3 = hy, ©®h
o9x dy dz

hz . (19-21)

Combining equations (7) thru (21) in matrix notation for compactness:

f(x,y,z) fx fy fg Ax
-1e(x,y,z)| = |gx gy gz ay (22)
h(x,y,z) hx hy hz Az

The desired quantities are x, vy, and z. These are obtained by premultiplying
both sides of (22) by the inverse of the partial derivative matrix:

A% fx fy fg| 1| £(x,y,z)
-l oy | = |&x gy 8z |[s(x,y,z) (23)
Az hx hy hz h(x,y,z)

Once the left hand side of (23) is obtained, the delta x,y, and z are added to the
original values of x,y, and z, and a new point is obtained:

Xi+]=xi*ax (24)
Yi+]1=yitay (25)
Ziy]=zitAz (26)

These new values are used to recompute the partial derivatives and function

values, and the resulting quantities are used in recomputing the Ax, Ay, and Az
in equation (23).

The iteration is then continued until the delta x,y and z values have decreased
to a size which is less than specified tolerance values.

Starting values for x,y,and z are of particular importance in insuring that the

iteration converges to the proper point. Taking direction from the technique
employed in the previous case let:

Xo= pcoss
Yo=-psiné
Z2o= psing (29)

Note that we align the x-axis of our coordinate system in the direction of the
azimuth centerline (8=0) which assures that the cross partial derivative terms of

f, g, and h are zero. This helps to avoid the potential of improper
convergence.
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c* *
c* FORTRAN SUBROUTINE FOR MLS RECONSTRUCTION *
c# ALGORITHM CASE XII *
c* *
c* THIS SUBROUTINE PROVIDES CARTESIAN X,Y,Z COORDINATE ]
CH* OUTPUT FOR MLS ANGLE AND DME/P INPUTS. *
CH* *
CH VARTABLES *
CH THET = RCVR AZ (RADIANS) *
C#* PHI = RCVR EL (RADIANS) *
C* RHOD = DME/P (FEET) *
C* %
C* XA = AZ UNIT X COORDINATE *
c* YA = AZ UNIT Y COORDINATE *
c* ZA = AZ UNIT Z COORDINATE *
C#* )
cH* XE = EL UNIT X COORDINATE *
o YE = EL UNIT Y COORDINATE *
c#* ZE = EL UNIT Z COORDINATE *
Cc* *
c* XD = DME/P UNIT X COORDINATE ¥
C#* YD = DME/P UNIT Y COORDINATE H
cH ZD = DME/P UNIT Z COORDINATE »
CcH* *
cH* C = 3X3 MATRIX OF PARTIAL DERIVATIVES (JACOBIAN) *
c* X(1) = CARTESIAN X COORDINATE ¥
C* X(2) = CARTESIAN Y COORDINATE *
cH X(3) = CARTESIAN Z COORDINATE *
C* *
C* F(1) = DME EQUATION = F(X,Y,Z) *
c* F(2) = AZIMUTH EQUATION = G(X,Y,Z) *
c* F(3) = ELEVATION EQUATION = H(X,Y,7) *
C* *
C#* DELT(1) = DELTA X VALUE *
cH* DELT(2) = DELTA Y VALUE *
c#* DELT(3) = DELTA Z VALUE *
CH* *
C* TOL(1) = TEST VALUE FOR X CONVERGENCE *
C* TOL(2) = TEST VALUE FOR Y CONVERGENCE *
c* TOL(3) = TEST VALUE FOR Z CONVERGENCE *
Cc* *
C* LIM NUMBER OF ITERATIONS/INVERSION OF C MATRIX *
C* INDIC COUNTS NUMBER OF ITERATIONS *
* %*

g***!*!!**!*ll*lli*lll*!*ll***********!*****%*ll**l!ii****l**i**!l*
c
c
c

SUBROUTINE CASE12(THET,PHI,RHOD,XA,YA,ZA,XE,YE,ZE,XD,Y¥YD,ZD,

* F, X, DELT, LIM)

C
c

REAL * 4 THET,PHI,RHOD, XA,YA,ZA, XE,YE,ZE,XD,YD,ZD

REAL * 4 C(3,3), DELT(3), X(3), F(3), TOL(3),CIV(3,3)

DATA TOL /.1,.1,.1/
c
o
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(1) = RHOD * COS(THET)
X{2) = -RHOD * SIN(THET)
3) = RHOD * SIN(PHI)

g***** FVECT COMPUTES THE DME, AZ AND EL EQUATIONS #***x

- 1 CALL FVECT(F,X,THET,PHI,RHOD,XA,YA,ZA,XD,YD,ZD,XE,YE,ZE)
g***** PARTL COMPUTES THE C MATRIX OF PARTIAL DERIVATIVES ¥**%x%
’ CALL PARTL( XA,YA,ZA,XE,YE,ZE,XD,YD,ZD,THET,PHI,X,C)

I
ce%sx% TNVERT IS A STANDARD MATRIX INVERSION ROUTINE ¥*%##x

c INVERT OPERATES ON MATRIX C
C
CALL INVERT(C,CIV,IFLAG)
C
Cx*x*% NDX IS A FLAG FOR ITERATION, =1 FOR QUIT, =2 FOR CONTINUE #%%%x
C IFLAG IS A FLAG=1 FOR INVERSION, =2 FOR NONE
IF (IFLAG .EQ. 2) THEN

WRITE(3, 1000) THET, PHI, RHOD,(X(I),I=1,3),(DELT(I),I=1,3)

GOTO 99

ENDIF
C

CH#%%%%® MTXMP IS A STANDARD MATRIX MULTIPLICATION SUBROUTINE #*x*%

CALL MTXMP (CIV,F,DELT)

C
NDX = 1
Do 13 I=1,73
X(I) = X{(I)=DELT(I)
IF (ABS(DELT(I)) .GT. TOL(I)) NDX = 2
13 CONTINUE
IF (NDX .NE. 2 ) GOTO 99
C
cuenw®x TNCREMENT ITERATION COUNTER *#*x%
C
INDIC = INDIC + 1
IF (INDIC .GT. LIM) THEN
WRITE(3, 1010) THET, PHI, RHOD,(X(I),I=1,3),(DELT(I),I=1,3)
NDX = 1
ENDIF
C
1000 FORMAT( 1X,'THE JACOBIAN = O AT (THET,PHI,RHOD) = ',3F11.4,
% /11X, "WHEN X , Y, Z ) = ',3F11.1,
% /1X,"AND DELTA IS (DX ,DY , DZ ) = ',3F11.4)
1010 FORMAT( 1X,'EXCEED 20 ITERATIONS(THET,PHI,RHOD) = ',3F11.4,
& /1%, '"WHEN (X A Z ) = '",3F11.1,
& ) /1X,"AND DELTA IS (DX ,DY , DZ ) = ',3F11.4)
C
GoTo (99, 1) , NDX
99 RETURN
END
C***************************************i******************************l*
C¥* *
c* SUBROUTINE FVECT COMPUTES THE AZ, EL, AND DME/P EQUATIONS. *
C#* *

C*!******************************!******!i*********l**********X****l*****
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SUBROUTINE FVECT(F,X,THET,PHI,RHOD,XA,YA,ZA,XD,YD,2ZD,XE, YE,ZE)

DIMENSION F(3),X(3)

FO1)=(X(1)=XD) %22, (X(2)-YD)®%2+(X(3)~ZD)**¥2_.RHOD**2

F(2)=z=(COS(THET)*(X(2)-YA) ) *% 24+ (SIN(THET)®(X(1)=-XA))*%%2,

1 (SIN(THET)®*(X(3)-ZA))**2
F(3)=(SIN(PHI)D*(X(1)-XE))**24+(SIN(PHI)*(X(2)-YE))*#*2

*
*
*

*
*
*
*

2 ~ (COS(PHI)®(X(3)=ZE))*%2

RETURN

END
C***ili*****i**&i**!****!*l********I**&!*!****i**!l**i*!*!l*!!!l**'*l*
Ci
cH SUBROUTINE MTXMP IS A MATRIX MULTIPLICATION SUBROUTINE
c* IT MULTIPLIES C AND F TO RETURN DELT
Cl
ClilI&***lll*!*l*l&!!!i*!*l****ll!!l*!il***!i*l*!**‘l*i*llﬁiil%lll***!
o
C

SUBROUTINE MTXMP (CIV, F, DELT)
o

DIMENSICN CIV(3, 3), F(3), DELT(3)
C

DO 20 I = 1,3

DELT(I) = 0.0
DO 10 J = 1,3
DELT(I) = CIV(I, J) * F(J) + DELT(I)
10 CONTINUE

20 CONTINUE

RETURN

END
C******l!l***i*ll*i*l&*i*l************ll**l***!l*}*li******liﬁli**!!i
Cl
cH* SUBROUTINE PARTL TO CALCULATE THE JACOBIAN OF f AT (x,y,z)
] AND TO TEST ITS INVERTIBILITY.
C*

*

A EZEELEEEREE RSN RREEREEREEREREREE R R Rl SRl Rl R

~

v

SUBROUTINE PARTL(XA,YA,ZA,XE,YE,ZE,XD,Y¥YD,ZD,THET,PHI,X,C)

DIMENSION C(3,3), X(3)

¢
c
c
cet, 1) =
c(t, 2) =
c(1, 3) =
c
c(2, 1) =
c(2, 2) =-
c(2, 3) =
c
c(3, 1) =
c(3, 2) =
(3, 3) =-
c
RETURN
END

A EEREES AR EEEREEEREESEEEEREEREEREREEEERREEREREEEEREREEEREEEERERERERERERSR)

N

o
« o .

[AS I N V]

O OO

[N e Ne]

[N e e

*
*

(X(1) - XD)
(X(2) - YD)
(X{3) - D)

(SIN(THET) * SIN(THET))
(COS(THET) * COS(THET))
(SIN(THET) * SIN(THET))

(SIN(PHI) * SIN(PHI))

(SIN(PHI) * SIN(PHI))
(COS(PHI) * COS(PHI))
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C* SUBROUTINE TO CALCULATE INVERSE OF a4 3 X 3 MATRIX. *

<

A EEEEE AR RS R R ERERE R R R EEE R R R E R E R S S R R R R R RS2 ]

c
c .
SUBROUTINE INVERT(C,CIV,IFLAG)
C
DIMENSION C€(3,3),CI(3,3),CP(2,2),CIV(3,3)
c
Vi = .1E-26
IFLAG = 1
C
Cx##%% TO GET THE CO-MATRIX **%#%
C

DO 80 I=1,3
Do 70 J=1,3
IF(I-1)900,55,40
490 DO 50 It=1,I-1
IF(J-1)900,45,4u2
y2 DO 44 J1=z1,J-1
CP(IN1,J1)=C(I1,J1)
4y CONTINUE
45 DO 46 J1=zJ+1,3
CP(I1,J1=1)=C(I1,dJ1)
45 CONTINUE
50 CONTINUE
55 DO 64 I1=I+1,3
IF(J-1)900,62,57
57 DO 60 J1=z1,J=1
CP(I1T=1,J1)=C(I1,d1)
60 CONTINUE
62 DO 63 J1=zJd+1,3
CP(I1=1,J1=1)=C(I1,J1)
63 CONTINUE
64 CONTINUE
CI(I,J)=(=1)%%(I+J)*(CP(1,1)%CP(2,2)=CP(2,1)%CP(1,2))
70 CONTINUE
80 CONTINUE
C
CH*%#%%% TO CALCULATE THE DETERMINANT #*%%%#
C
DET = 0.
DO 85 J=1,3
85 DET=DET+C(1,J)%*CI(1,J)
IF(ABS(DET).LT,VZ) THEN

IFLAG = 2
GO TO 900
ENDIF
C
Cunxx® TQ GET THE INVERSE *#®%*xx
c

DO 100 I =1,3
DO 95 J =1,3
CIV(I,J)=CI(J,I)/DET
95  CONTINUE
100 CONTINUE
900 RETURN
END
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transformation algorithm undergoing testing. The MLS transformation algorithm
was then used to regenerate the corresponding cartesian triple. This cartesian

triple was compared to the starting value on a point by point basis. The
algorithm was debugged and fine tuned until the two cartesian triples matched to
a tolerance of at least 0.1 foot.

The equations used to generate the MLS triples from the cartesian grid are given

in appendix A. A block diagram of the validation process employed is also shown
in the appendix under the designation "Truth Model."

MLS RNAV FLIGHT SIMULATIONS (SYNTHESIZED INPUT DATA).

In addition to the aforementioned grid tests, certain algorithms, notably

cases XI and XII (referred to as Thedford and Shreeves, respectively) were tested
via simulation of single segment MLS RNAV route flights. These tests generated a
series of MLS triples which corresponded to flying a given single linear segment
route defined by an approach angle, a glide slope angle, and a terminal waypoint
(given in cartesian coordinates). The MLS signal sources (azimuth, elevation,
and DME/P) were specifically located at various siting geometries as defined by
various cartesian triples in order to test the accuracy of the algorithms over as
wide a range of conditions as possible. FErrors were tabulated for height,
along-track, and crosstrack components as a function of true slant range to the
DME/P.

Figures 15, 16, and 17 illustrate the along-track, crosstrack, and height error
plotted as a function of the slant range from the coordinate system origin for a
simulation which uses a case XII(Shreeves) transformation algorithm. The route
flown was biased at a 10° angle to the runway centerline at a glidepath angle of
6°. The terminal waypoint was located along the runway centerline, 3600 feet in
front of the elevation antenna. The resulting errors were quite small in all
dimensions.. The sawtooth pattern of figure 16 reflects the granularity in the
test procedure. Position determination was tested every 100 feet on the segment
from 2.6 nmi into the terminal waypoint. Four sets of MLS RNAV computer
generated simulations have been selected for presentation herein. They represent
a small sampling of the multitude of simulations which were performed using
computer generated flightpaths and MLS triples., The pertinent equipment siting
geometry, terminal waypoint glidepath angle, and bearing angle are tabulated for
these four simulations in table 2,
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ALONG TRACK ERROR

SHREEVES ALGORITHM FILE: SGP8

D-SCALE LO, HI, STEP : - 100., 1600., 160
S DME LOC. (-4000.00. -2000.00. 0.000)
3‘ _ AZ LOC. ( 0.00 0.00, 0.00)

EL LOC. ( 400.00, 1000.00, 0.00)

W/P LOC. ( 4000.00 0.00 0.00) ;

AZ & GS ANGLES 10.,6. '
o |
o
°- S
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z ATLANTIC CITY AIRPORT, N.J. 08405
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TIGURE 15. LAB SINMULATION 1, ALONG-TRACK ERROR, SHREEVES AIZORITHM, 10¢ AZIMUTH, 6° GLIDEPATH
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CROSS TRACK ERROR

SHREEVES ALGORITHM FILE: SGPS8
S | D-SCALE LO, Hi, STEP : - 100,, 1600., 160
s | DMELOC.  (-4000.00. -2000.00.  0.000)
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HEIGHT ERROR

SHREEVES ALGORITHM FILE: SGP8
g | D-SCALE LO, HI, STEP : - 100., 1600., 160
@_| DMELOC. (-4000.00.-2000.00.  0.000)

AZLOC. ( 000 000,  0.00)
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8
= N~ — ——— e~
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8 |
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rIGURE 17.
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TABLE 2. TEST PARAMETERS FOR MLS RNAV LAB STMULATIONS

Approach Glidepath
Simulation Angle Angle

Number Parameter Algorithm (deg) (deg) X (ft) Y (ft)  z2(fy)
1 Waypoint Loc. Case 12 4000 0 0
DME/P Loc. (Shreeves) 10 6 -4000 -2000 0

AZ Loc. 0 0 0

EL Loc. 400 1000 0

2 Waypoint Loc. Case 12 100 100 100
DME/P Loc. (Shreeves) 30 9 -4000 -2000 0

AZ Loc. 0 0 0

EL Loc. 1000 700 100

3 Waypoint Loc. Case 11 016.16 0 0
DME/P Loc. (Thedford) 10 6 0 0 0

AZ Loc. 0 -303.8 0

EL Loc. 425.32 972.16 0
4 . Waypoint Loc. Case 11 121.52  121.52 121.52
DME/P Loc. (Thedford) 30 9 0 0 0
A7 Loc. 0 -303.8 0
EL Loc. 972.16 729.12 121.52

Figures 18, 19, and 20 illustrate a linear flightpath simulation biased at 30° to
the runway centerline at a 9° glidepath angle. A case 12 (Shreeves) transfor-
mation algorithm has been used here along with a change in the ground equipment
siting. The error plots (crosstrack, along-track, and height) are well behaved
down to the terminal waypoint, which is offset from the runway centerline and
coordinate system origin by 100 feet in the x, y, and z directions. A unique
feature of this simulation is that it was flown "behind" the elevation station,
which 1s situated 1000 feet down the runway centerline. This illustrates a
crucial point in the design of MLS RNAV system software. That is, that logic
must be inserted in a real-time system to discriminate between the multiple

points of solution which result as well as monitor flag status for received MLS
data.

The next set of simulations, figures 21, 22, and 23 for along-track, crosstrack,
and height error, respectively, model a flightpath biased at 10° relative to the
runway centerline and having a 6° glidepath angle. The final waypoint is located
3585 feet in front of the elevation unit, along the runway centerline. The
principal difference between this and the previous simulations is the use of a
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case XI (Thedford) coordinate transformation algorithm. This algorithm
approximates the conical azimuth signal by a planar approximation. TFor small
glidepath angles, the difference between conical and planar azimuth is very
small. Examination of the almost negligible error shown on the error plots bears
out this assumption. Advantages incurred by using this algorithm are simplicity
of code and speed of execution compared to use of a case XII algorithm,

The final set of simulations, figures 24, 25, and 26 (along-track, crosstrack,
and height error, respectively) are based upon a flightpath oriented at a 30°
bearing relative to the 0° azimuth runway centerline (x axis). The glidepath
angle used is 9°. The intent here is to simulate MLS RNAV performance at large
azimuth and elevation angles. A Thedford algorithm (case XI) is used. The
ground transmitters are widely dispersed (see table 2) in order to assess
software performance with worst case inputs. Only the DME/P is located at the
center of the coordinate system (necessitated by the algorithm used), but this
can be changed if needed by a simple translation. The resulting error plots
reveal negligible along-track and crosstrack, and slight height error down to the
final waypoint, located 121.52 feet in three dimensions from the DME/P
(coordinate system origin) ground transponder. It should be noted that in the
course of executing this simulation the aircraft position traverses a path which
takes it from ahead of to behind the elevation transmitter. Although no problems
were encountered with the algorithm employed in the simulation, in the real word
it would be impossible to determine aircraft position for the segment of the
course out of elevation coverage.

MLS RNAV FLIGHT SIMULATIONS (ACTUAL FLIGHT DATA).

In the course of developing the system software for an MLS RNAV system, numerous
flight critical issues need to be addressed. Among these issues are flight
dynamic effects on algorithm performance and algorithm cycle timing. This was
accomplished by testing the RNAV system software with live flight data. The RNAV
system software is depicted in block diagram form in figure 27. One of the most
complex forms of the MLS coordinate transformation algorithms (case XI, Thedford)
was selected for testing with live flight data. These data consisted of time
oriented triples recorded (p,8,¢) on tape in the course of executing conventional
MLS approaches and departures with the FAA Technical Center's Sikorsky S5-76
helicopter. Independent tracking of the helicopter while executing these
profiles was provided by the GTE laser tracker or Extended Area Instrumentation
Radar (EAIR). The flight derived MLS triples were then input to the MLS software
in the lab. This software generated crosstrack, along-track, and height
deviation outputs when run on a PDP 11/34 minicomputer in the lab. The lab
derived outputs were then compared to the independently obtained tracking data
using a time oriented data merge procedure. Tt should be noted that the
differences obtained in this comparison reflect more than algorithm error. Other
errors include signal source error, receiver performance, and site alignment
errors. Despite this, excellent results were obtained.
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Table 3 presents the means and twice the standand deviations of the differences
between MLS RNAV position and the independently tracked position for each
approach or departure profile flown by the helicopter. Approaches were flown
from approximately 4 nmi (6.5 kilometer (km)) into a specified decision height
(DH), on a specified glidepath angle, and the 0° azimuth. Departures were flown
out to approximately 4 nmi and a specified altitude without a vertical guidance
reference. Departures were flown on the 20° left and the 20° right azimuth as
well as the 0° azimuth. The excellent results listed in table 3 actually
represent the equivalent of navigation system error.

An additional level of system simulation was performed by playing the MLS and
DME/P data through the MLS RNAV system software depicted in figure 27 and
measuring the software execution cycle timing. The Thedford (case XI) coordinate
transformation algorithm was used for this study. The entire software suite was
found to consume less than 0.02 seconds per update cycle. Iterative solution
convergence criteria of 0.1 foot were always satisfied. The maximum anticipated
update rate (for coupling to the flight control system) is approximately

25 hertz (Hz). The timing analysis was accomplished on a PDP 11/34 minicomputer
which is slower than the prototype (under development) system's Motorola 68020
VMEbus™ based computer.

SIGNAL SOURCE ERROR SIMULATIONS FOR COMPUTED CENTERLINE APPROACHES.

Regardless of how accurate the MLS reconstruction algorithms are, other systems
limitations, such as within tolerance MLS signal source error, may limit the
application of MLS RNAV techniques within the total volume of signal coverage.
These limitations will influence the establishment of MLS RNAV TERPS procedures
and approach minima. Analysis has been completed for two of the most useful
applications of MLS RNAV, the parallel offset approach (computed centerlinme) and
the parasite approach. The focus of this section is on the computed centerline
approach.

Since the MLS (8,¢,p) to cartesian (x,y,z) coordinate transformations are
nonlinear, a direct computation of MLS signal source error impact on MLS RNAV
position determination is prohibitively complex. To complicate matters further,
the coordinate transformation must incorporate knowledge of the relative
locations of the ground elements. However, by using Monte Carlo simulation
techniques, the impact of signal source error on computed position can be
determined with comparative ease. In the computed centerline case analyzed here,
a case I MLS transformation algorithm was used. This algorithm provides
cartesian (x,y,z) position output for a ground geometry in which the azimuth unit
is offset from the runway centerline by a distance ya (rather than being

aligned with it in the normal siting). The DME/P unit is assumed to be
collocated with the azimuth unit. The elevation unit is located along a line
parallel to the centerline which passes through the azimuth unit and is separated
by a distance xe from this unit, All three MLS ground units are assumed to be
located in the Z plane. This configuration is illustrated in figure 28.

The simulation proceeds by establishing a reference point at DH on which to base
the simulation. 1In the computed centerline case, for a given lateral offset
distance, azimuth transmitter to elevation transmitter distance, DH and approach
elevation angle combination, there exists only one MLS coordinate triple to
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TABLE 3.

TOTAL MLS RNAV SYSTEM ERROR IN POSITION DETERMINATION

~ Approach DH or Along-Track Crosstrack Height
Run Angle Final Alt, Error (ft) Error (ft) Error (ft)
No. (deg) (fr) X 20 X 20 X 20
1 | Departure 800 -46.86 [ 47.30 -8.92 25.26 -7.26 | 31.70
2 3.0 150 11.90 50.46 -4.60 18.64 -8.07 21.12
3 6.0 200 30.66 | 50.46 -1.02 11.84 -7.87 | 16.21
4 | Departure 2000 -18.82 | 31.22 27.67 26,47 2.97 | 19.62
5 9.0 350 16.09 | 28.98 -0.22 14,28 | -11.60| 26,96
6 6.0 150 21.96 | 58.11 -2.34 27.62 -2.20 | 21.48
7 3.0 100 40.59 | 86.02 -15.81 48.30 -1.27 | 28.98
8 3.0 200 10.07 65.16 -6.09 15.82 4,36 31.16
9 3.0 200 0.56 | 50.32 16.17 | 25.88 6.70 | 29.98
10 | Departure 20°L| 1400 7.90 | 48.12 -7.01 21.66 -7.52 | 19.64
11 6.0 200 4.67 | 33.02 -10.72 22.08 -4.13 | 24.34)
12 6.0 300 16.54 | 43.28 ~5.69 24,62 -3.67 20. 30
13 | Departure 2000 -39.23 | 51.32 -5.05 25.00 10.73 | 18.16
14 9.0 350 26.47 | 65.84 ~2.84 30.14 2.14 | 34.88
15 3.0 100 30.82 67.48 8.71 26.18 0.64 ] 32.30
16 3.0 150 26.33 | 63.30 -8.92 22.44 | -1.49 | 26.64
17 Departure 2000 -25.41 44,54 -8.08 34.36 2,77 27.10
18 9.0 350 21.30 | 72.14 -1.77 25.54 -2.85| 24.14
19 | Departure 20°R 1400 11.11 | 35.08 -5.30 | -42.06 1.82 | 44.54
20 6.0 300 23.92 | 62.34 -8.42 39.44 -1.21( 18.47
21 6.0 200 26.70 | 69.18 -30.88 37.86 0.49 | 38.90
22 3.0 200 9.64 | 30.06 1.59 12.68 -5.52 | 21.42
23 3.0 150 23.41 | 58.72 -1.27 9.38 -3.73 | 20.24
24 3.0 100 25.57 | 50.42 -0.93 11.92 |  -6.06 | 19.54
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represent that DH point. Assume the MLS triple is ( 6, ¢,p). Through simulation
this triple can be perturbed by a random error vector ( 8es das pe), where

Bes» $o, and p, are independent normally distributed random variables with
standard deviation equal to 1/2 the error tolerances for azimuth, elevatiom, and
DME/P, i.e.,0.115°,0.120°, and 100 feet, respectively. The perturbed triple

(6+ g,,8+@,, P+P ) is then used as input to the MLS RNAV position

computation algorithm, The resulting MLS RNAV position is compared to the exact
DH location to obtain crosstrack and along-track errors.

The above procedure is repeated 1,000 times to obtain statistics on the

along-track and crosstrack errors. This technique has been illustrated in the
form of a flow chart, figure 29,

This technique has been applied to a variety of final approach conditions. The
DH and glidepath angle combinations analyzed were (3°, 200 feet), (4.5°,

250 feet), (6°, 300 feet) and (9°, 350 feet). The offset from the 0° azimuth to
the runway centerline ranged from 0 to 2500 feet in 100-foot increments. The

azimuth to elevation transmitter distances ranged from 3000 to 10000 feet in
500-foot increments.

Tables present the crosstrack and along-track 95 percent (2 sigma) error limits.
Table 4 presents the crosstrack error results for the 3°, 200 feet DH approach.
Generally, the crosstrack error increases as the offset distance increases.
However, it decreases as the azimuth to elevation transmitter distance increases.
Table 4 can be used to obtain the maximum offset to which category 1 approach
minima might be applied. For instance, if error budgets allow 20-foot crosstrack

error for position determination, the maximum offset for a 6000-foot azimuth to
elevation transmitter distance would be 1000 feet.

Table 5 presents the along-track error results for a 3°, 200-foot DH. The
figures obtained for crosstrack error indicate that for this parallel offset
approach, the crosstrack error at DH is an increasing function of azimuth offset
distance and a decreasing function of azimuth to elevation distance. By

contrast, the numbers obtained for along-track error exhibit little variation
with these parameters.

Additional tables are provided which tabulate the cross and along~track errors at
other glidepath - DH combinations, These are tables 6 and 7 for a 4.5°, 250=foot
combination; tables 8 and 9 for the 6°, 300-foot pair; and tables 10 and 11 for
the 9° glidepath, 350-foot DH combination. The conclusions, which were drawn
earlier regarding the behavior of crosstrack and along-track errors as functions
of azimuth offset and distance to elevation unit, are also valid here. There

also appears to be an overall slight increase in along-track error as glidepath
angle and DH iacreases.

In order to graphically illustrate the functional dependency of the crosstrack
error, these data were plotted as a function of azimuth offset distance with
azimuth to elevation distance as a parameter. This was done for the 3° glide
slope 200-foot DH pair. The curves which result (figures 30, 31, and 32) pass
through the origin and reveal a nearly linear increase in crosstrack error with
offset. It can also be inferred from the graphs that crosstrack error decreases

as the azimuth to elevation unit distance increases for the computed centerline
approach example analyzed.
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MONTE CARLO DETERMINATION OF MLS RNAV POSITION DETERMINATION ACCURACY
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TABLE 4.

CROSSTRACK ERROR DUE TC AZIMUTH OFFSET, DH = 200 FT,
GLIDEPATH ANGLE =

30

AZIMUTH TO ELEVATION DISTANCE (FT)

Offset
(ft) 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 3 3 2 2 2 2 2 2 2 2 2 2 2 2 1
200 6 5 5 b) 4 4 4 4 4 3 3 3 3 3 3
300 9 8 8 7 7 6 6 6 6 5 5 5 5 4 4
400 12 11 10 10 9 9 8 8 7 7 7 7 6 6 6
500 14 14 12 12 12 10 10 9 10 8 8 8 8 7 7
600 18 16 15 14 14 13 12 12 11 10 10 10 9 9 8
700 20 20 17 17 15 15 14 14 13 12 12 11 11 11 10
800 24 22 20 18 18 17 16 16 14 14 14 13 12 12 11
900 26 23 22 21 19 19 18 18 17 16 15 14 14 13 13
1000 27 27 26 23 22 21 20 19 18 17 16 17 15 15 14
1100 32 29 27 26 25 23 22 21 20 19 18 17 17 16 15
1200 34 33 31 28 26 24 24 " 23 22 21 20 19 18 18 17
1300 36 33 33 30 29 27 26 25 23 22 21 20 20 19 17
1400 40 36 34 32 31 28 27 26 25 23 23 22 21 20 19
1500 42 41 37 35 33 29 28 28 26 26 25 24 23 22 21
1600 45 41 39 37 35 31 31 30 28 27 25 25 24 24 22
1700 46 44 40 38 38 35 31 31 29 29 28 27 25 25 24
1800 48 47 44 41 39 37 36 33 32 32 30 27 27 26 25
1900 52 49 47 43 41 39 37 35 33 33 31 30 28 28 27
2000 54 51 47 45 42 41 39 37 34 33 32 33 30 28 28
2100 57 55 48 48 45 41 39 38 34 34 35 33 32 29 28
2200 59 55 51 48 46 45 41 39 39 36 34 34 32 31 30
2300 61 57 53 50 47 46 43 41 41 38 37 37 33 33 31
2400 64 59 56 54 51 48 47 43 41 38 38 39 35 34 33
2500 64 62 58 55 51 50 47 46 43 43 39 38 37 35 34
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TABLE 5. ALONG-TRACK ERROR DUE TO AZIMUTH OFFSET, DH = 200 FT,
GLIDEPATH ANGLE

30

AZIMUTH TO ELEVATION DISTANCE (FT)

Offset
(fr) 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
0 98 101 103 102 102 100 107 105 100 100 100 100 99 100 101
100 98 103 97 98 102 97 99 98 100 98 99 100 99 103 96
200 102 99 99 100 95 99 103 101 100 98 97 96 99 100 59
300 98 100 101 94 99 100 105 98 101 95 101 98 101 96 99
400 99 101 99 100 97 102 100 97 97 98 102 103 101 96 99
500 98 99 96 96 102 96 99 96 102 95 98 99 101 99 95
600 99 98 99 97 101 100 98 102 101 98 98 101 99 97 95
700 95 103 96 101 - 97 99 96 100 97 99 104 97 100 101 99
800 101 98 97 95 97 100 97 100 95 96 100 100 98 96 97
900 97 93 95 98 91 98 100 100 99 99 97 95 96 96 99
1000 92 97 100 95 98 98 99 99 96 99 96 101 97 101 99
1100 98 95 95 98 98 96 96 96 98 96 97 94 96 99 94
1200 95 100 100 96 95 94 96 100 98 98 97 98 96 99 99
1300 94 91 97 95 97 95 98 100 97 95 97 97 100 99 91
1400 96 94 95 94 98 93 93 95 94 92 98 95 97 95 95
1500 96 98 95 97 97 91 93 96 94 99 97 98 96 96 96
1600 95 93 95 96 95 91 93 97 96 95 93 95 95 99 95
1700 92 93 92 93 98 94 89 93 93 95 97 99 95 96 98
1800 90 94 9% 94 94 - 95 98 95 95 100 98 93 94 96 95
1900 92 94 95 93 94 94 96 94 93 97 96 96 94 99 97
2000 91 92 92 93 92 95 96 96 92 92 95 101 97 93 97
2100 92 95 89 94 94 91 91 93 88 91 97 95 96 93 93
2200 91 91 91 g1 91 94 91 92 95 93 91 94 94 94 94
2300 90 90 89 30 90 93 92 91 96 92 93 98 93 95 93
2400 90 89 81 93 92 93 95 92 93 90 93 99 93 94 95
2500 87 90 89 91 90 92 91 94 93 96 91 93 96 94 95
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TABLE 6.

CROSSTRACK ERROR DUE TO AZIMUTH OFFSET, DH = 250 FT,

GLIDEPATH ANGLE = 4,5°

AZIMUTH TO ELEVATION DISTANCE (FT)

Offset
(ft) 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 3 3 3 3 2 2 2 2 2 2 2 2 2 2 1
200 7 6 6 5 5 5 4 4 4 4 3 3 3 3 3
300 10 9 8 7 7 7 7 6 6 5 5 5 5 5 5
400 13 12 11 10 10 9 9 8 8 7 7 7 7 6 6
500 16 15 13 13 12 11 11 10 10 9 9 8 8 8 7
600 19 18 17 15 15 14 13 13 12 11 11 10 10 9 9
700 22 22 19 18 17 16 15 15 13 13 13 12 12 11 11
800 26 24 22 20 19 18 17 17 15 14 14 14 13 12 12
900 29 25 24 23 20 20 20 19 18 17 16 15 14 14 14
1000 30 29 28 25 24 23 22 20 19 19 17 17 16 16 15
1100 35 31 29 28 27 24 23 22 21 20 19 18 17 17 16
1200 37 36 33 30 28 26 25 25 23 22 21 20 19 19 18
1300 40 36 35 32 31 29 28 27 25 23 23 22 21 20 18
1400 44 39 37 34 34 30 28 28 26 24 25 23 22 21 20
1500 47 44 40 38 36 32 30 30 28 28 26 25 24 23 22
1600 49 45 42 40 37 34 33 32 30 29 27 26 25 25 23
1700 50 48 44 41 41 37 33 33 31 30 30 29 26 26 25
1800 53 51 47 44 42 39 39 35 34 34 32 29 28 27 26
1900 57 54 50 46 44 41 40 37 35 35 33 31 29 30 28
2000 59 55 51 48 45 44 42 40 36 35 34 35 32 29 30
2100 62 60 52 51 48 44 42 41 36 36 36 34 33 31 30
2200 65 60 56 52 49 48 A 42 41 38 36 35 34 33 31
2300 67 62 57 54 51 49 46 43 43 490 38 39 35 35 33
2400 70 64 61 58 54 51 50 46 44 41 40 41 37 36 35
2500 70 67 62 59 55 53 50 49 45 45 41 40 39 37 36




TABLE 7. ALONG-TRACK ERROR DUE TQ AZIMUTH OFFSET, DH = 250 FT,
GLIDEPATH ANGLE = 4.5°

8

AZIMUTH TO ELEVATION DISTANCE (FT)
Offset
(ft) 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
0 98 101 103 102 102 99 107 105 100 100 100 100 99 100 101
100 98 103 96 98 102 97 99 98 99 98 99 100 99 103 96
200 102 99 99 100 95 99 102 101 99 98 97 96 99 100 99
300 98 100 101 94 99 100 105 98 101 95 101 98 101 96 99
400 98 101 99 100 97 102 100 97 97 98 102 103 101 96 99
500 97 99 96 96 102 96 99 96 102 95 98 99 101 99 95
600 99 98 99 97 101 100 98 102 101 98 98 101 99 97 95
700 94 103 96 100 97 99 96 100 97 99 104 97 100 101 99
800 101 98 96 95 97 100 97 100 95 96 100 100 97 96 97
900 97 93 95 97 91 98 100 100 99 99 97 95 96 96 99
1000 92 96 100 94 97 97 99 98 96 98 96 101 97 101 99
1100 97 94 95 97 98 96 96 96 98 96 97 94 96 98 94
1200 94 99 99 95 95 94 96 100 98 98 96 97 96 99 99
1300 94 91 97 95 97 95 98 99 97 94 97 97 100 98 91
1400 96 93 95 94 98 93 93 95 94 92 98 95 97 95 95
1500 95 98 94 97 96 91 93 96 94 99 97 97 96 96 96
1600 95 93 94 95 94 91 93 97 95 95 92 95 94 98 95
1700 91 93 92 92 97 94 88 92 92 95 97 99 95 96 98
1800 89 94 94 94 94 94 98 94 95 99 98 93 94 96 94
1900 91 93 95 92 93 94 96 94 93 97 96 96 94 99 96
2000 90 92 91 92 91 94 95 96 91 92 95 101 96 93 97
2100 91 94 88 93 93 91 90 93 87 91 96 95 96 92 93
2200 90 90 90 90 90 93 91 91 94 92 91 94 94 94 93
2300 89 89 88 89 89 93 91 90 95 92 93 97 92 95 93
2400 89 88 90 93 92 92 94 92 93 90 93 99 93 94 95
2500 85 89 88 90 89 92 91 94 92 96 90 92 95 94 94
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TABLE 8.

CROSSTRACK ERROR DUE TO AZIMUTH OFFSET, DH
GLIDEPATH ANGLE

= 6.0°

300 FT,

AZIMUTH TO ELEVATION DISTANCE (FT)

Offset
(ft) 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
0 (¢] 0 0 0 0 0 - 0 0 0 0 0 0 0 0 0
100 3 3 3 3 3 2 2 2 2 2 2 2 2 2 1
200 7 6 6 5 5 5 5 4 4 4 4 3 3 3 3
300 10 9 9 8 8 7 7 6 6 6 6 5 5 5 5
400 14 13 12 11 10 10 9 8 8 8 8 7 7 6 6
500 17 16 14 13 13 12 11 10 10 9 9 9 9 8 7
600 20 19 17 16 15 14 13 13 12 11 11 11 10 9 9
700 23 23 20 19 17 17 15 15 14 13 13 12 12 11 11
800 28 25 23 21 20 19 18 17 16 15 15 14 13 12 12
900 30 26 25 24 21 21 20 19 18 17 16 15 15 14 14
1000 32 30 29 26 25 23 22 21 20 19 18 18 16 16 16
1100 37 33 31 29 28 25 24 33 22 20 20 18 18 18 16
1200 39 38 35 31 29 27 26 26 24 23 21 21 20 19 18
1300 42 37 37 34 32 30 29 28 26 24 23 22 22 21 18
1400 46 41 39 36 35 31 29 28 27 25 25 23 23 22 21
1500 49 46 41 40 37 33 31 31 29 29 27 26 24 23 22
1600 52 47 44 42 39 35 34 33 31 29 27 27 26 26 24
1700 53 50 46 43 42 38 34 34 32 31 30 30 27 27 26
1800 55 53 49 46 43 41 40 36 35 35 32 30 29 28 27
1900 59 56 53 48 45 43 41 38 36 36 34 32 30 30 29
2000 61 58 53 50 47 45 43 41 37 36 35 36 33 30 30
2100 65 63 54 53 50 46 43 42 37 37 37 35 34 31 30
2200 68 62 58 54 51 49 45 43 42 39 37 36 35 34 32
2300 70 65 59 56 52 51 48 45 45 41 40 40 36 35 33
2400 73 67 63 61 56 53 51 47 45 42 41 42 38 36 35
2500 73 70 65 61 57 55 51 50 47 46 42 41 40 38 37




TABLE 9. ALONG-TRACK ERROR DUE TO AZIMUTH OFFSET, DH = 300 FT,
GLIDEPATH ANGLE = 6.0°

98

AZIMUTH TO ELEVATION DISTANCE (FT)
Offset
(fe) 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
0 98 101 103 102 102 99 107 105 100 100 100 100 99 100 101
100 98 103 96 98 101 97 99 97 99 98 99 99 99 103 96
200 101 99 99 100 95 99 102 101 99 98 97 96 99 99 99
300 98 100 101 94 99 100 105 98 101 95 101 98 101 96 99
400 98 100 99 100 97 102 99 97 97 98 102 103 101 95 99
500 97 99 95 96 101 96 99 96 102 95 98 98 101 99 95
600 99 98 99 97 101 100 98 101 101 98 98 101 99 97 95
700 94 102 96 100 97 99 96 100 97 99 104 97 100 101 99
800 101 98 96 95 96 99 96 100 95 96 99 100 97 96 97
900 97 93 95 97 91 97 100 100 99 99 97 95 96 96 99
1000 92 96 99 94 97 97 99 98 96 98 96 101 96 101 99
1100 97 94 95 97 98 36 96 96 98 96 97 94 96 98 94
1200 94 99 99 95 95 94 96 99 98 97 96 97 96 99 98
1300 93 91 96 95 97 95 98 99 97 94 97 96 100 98 91
1400 95 93 94 93 97 92 93 95 94 92 98 95 96 95 94
1500 94 97 94 97 96 91 92 96 94 98 96 97 96 96 95
1600 94 92 94 95 94 90 93 97 95 95 92 95 9% 98 95
1700 90 92 91 92 97 94 88 92 92 95 97 99 94 96 98
1800 89 93 93 93 93 94 98 94 94 99 97 93 94 95 94
1900 91 93 94 92 93 94 96 93 93 96 95 95 94 98 96
2000 89 91 91 92 91 94 95 95 91 92 95 101 96 93 97
2100 90 94 88 93 93 91 90 93 87 91 96 95 96 92 92
2200 89 89 90 90 90 93 90 91 94 92 91 94 94 94 93
2300 88 88 87 89 89 92 91 90 95 92 93 97 92 95 93
2400 88 87 89 92 91 92 94 92 92 90 93 98 92 93 95
2500 85 88 88 89 88 91 90 93 92 95 90 92 95 93 94
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TABLE 10.

CROSSTRACK ERROR DUE TO AZIMUTH OFFSET, DH = 350 FT,
GLIDEPATH ANGLE = 9.0°

AZIMUTH TO ELEVATION DISTANCE (FT)

Offset
(ft) 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 4 4 3 3 3 3 2 2 2 2 2 2 2 2 2
200 8 7 6 6 5 5 5 5 4 4 4 4 4 3 3
300 11 11 10 8 8 8 8 7 7 6 6 S 5 5 5
400 15 14 13 12 11 11 10 9 8 8 8 8 7 7 6
500 19 17 15 14 14 13 12 11 11 10 10 9 9 8 8
600 23 21 19 17 17 16 14 14 13 12 12 i1 11 10 9
700 25 25 22 21 19 18 16 16 15 14 14 13 13 12 11
800 31 27 25 2 21 21 19 18 17 16 16 15 14 13 13
300 34 29 27 26 23 23 22 21 19 18 17 i6 15 15 15
1000 35 34 32 28 27 25 24 23 21 20 19 19 17 17 16
1100 41 36 34 32 30 27 26 24 23 22 21 19 19 19 17
1200 43 42 38 34 32 29 28 27 25 24 22 22 21 20 19
1300 47 41 40 37 35 32 31 30 27 25 25 23 23 22 19
1400 51 46 43 39 38 34 32 30 29 26 27 25 24 23 22
1500 54 51 45 43 40 35 34 33 31 30 28 27 26 25 23
1600 58 52 48 45 42 38 36 36 33 31 29 28 27 27 25
1700 59 55 50 47 46 41 37 36 34 33 32 31 29 28 27
1800 61 59 54 50 47 44 43 39 37 37 34 31 30 29 28
1900 66 61 57 52 49 46 44 41 38 38 36 34 32 32 30
2000 63 63 58 54 50 49 46 44 40 38 37 38 34 32 32
2100 72 69 59 58 54 49 46 45 40 39 40 37 36 33 32
2200 75 68 63 59 55 53 48 46 45 42 39 38 37 35 34
2300 77 71 64 60 56 55 51 48 47 44 42 42 38 37 35
2400 80 73 69 66 61. 57 55 51 48 44 44 44 40 38 37
2500 80 76 70 66 61 59 55 53 50 49 44 43 42 40 39
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TABLE 11.

ALONG-TRACK ERROR DUE TO AZIMUTH OFFSET, DH = 350 FT,
GLIDEPATH ANGLE = 9.0°

AZIMUTH TO ELEVATION DISTANCE (FT)

Offset
(fr) 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000
0 97 101 102 101 101 99 106 105 99 100 - 99 100 99 100 101
100 97 103 96 97 101 97 99 97 99 97 99 99 98 103 96
200 101 99 98 99 95 99 102 100 99 97 97 96 99 99 99
300 97 99 100 94 99 100 104 98 100 95 101 98 101 96 99
400 98 100 99 99 97 102 99 97 96 98 102 102 100 95 98
500 97 98 95 95 101 96 98 96 102 95 928 98 101 99 95
600 98 98 98 97 100 100 98 101 101 98 98 101 98 96 95
700 94 102 96 99 96 99 96 100 96 98 103 97 100 101 99
800 100 97 96 94 96 99 96 99 95 95 99 99 97 96 97
900 96 92 94 97 90 97 99 99 99 98 97 94 96 95 99
1000 91 95 99 94 97 97 98 98 96 98 96 101 96 101 99
1100 96 93 94 97 97 95 96 96 98 96 97 94 96 98 94
1200 93 98 98 94 94 93 95 99 97 97 96 97 96 99 98
1300 92 90 96 94 96 9% 98 99 96 94 97 96 99 98 90
1400 9 92 93 93 97 92 92 94 94 91 98 95 96 94 94
1500 93 96 93 96 95 90 92 96 94 98 96 97 95 95 95
1600 93 91 93 94 93 90 92 96 95 94 92 94 94 98 95
1700 89 91 90 91 96 93 88 92 92 95 96 98 94 96 97
1800 88 92 92 92 93 93 97 9 94 99 97 93 94 95 94
1900 89 92 93 91 92 93 95 93 92 96 95 95 93 98 96
2000 87 90 90 91 90 93 94 95 91 92 94 100 96 92 97
2100 89 92 87 92 92 90 89 92 87 90 96 94 95 92 92
2200 87 88 88 89 89 92 90 90 94 92 90 93 93 94 93
2300 86 87 86 87 88 91 90 89 94 91 92 97 92 94 93
2400 86 86 88 91 90 91 93 91 92 89 92 98 92 93 94
2500 83 86 86 88 87 91 90 93 91 95 90 92 95 93 94
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Along-track error was also plotted in a fashion similar to crosstrack error.

That is, for a 3° glide slope, 200~foot DH, the 2 sigma along-track error values
obtained for each azimuth to elevation distance were plotted as a function of
elevation unit offset from the runway centerline. The resulting curves (figures
33, 34, and 35) do not pass through the origin, but rather are approximately
horizontal and clustered about the 100-foot along track error value. There is a
slight downward slope which results as centerline offset increases. Lower errors
also appear to result from shorter elevation to azimuth separation distances.

One possible explanation for these effects is the fact that larger offsets and
smaller elevation separation results in larger off axis bearings to the MLS
signal sources, thereby transferring more of the relatively large DME/P error out
of the along-track axis and into the crosstrack axis.

SIGNAL SOURCE ERROR SIMULATIONS FOR PARASITE APPROACHES.

An analysis of MLS RNAV system accuracy for computed centerline approaches via
simulation has already been described. Herein, an accuracy analysis of another
MLS RNAV application, the parasite approach, is described. The parasite approach
is similar to the computed centerline approach in that the flightpaths of both
are defined by a linear segment. However, the parasite approach is much more
general insofar as both the terminal waypoint and the angle formed with the
runway centerline may assume any feasible value within the volume of MLS signal
coverage. An example of this would include precision guidance to an intersecting
but noninstrumented runway within MLS coverage (figure 36). An additional
application of the parasite approach technique to helicopters is shown in

figure 37. As the number of helicopter IFR operations continues to increase,
mixing the helicopter with its slower approach speed with the traffic - flow to the
primary instrument runway tends to slow the entire traffic flow. However, using
the parasite approach technique, a precision approach to an on-airfield heliport
in MLS coverage could be used to separate the helicopter from the primary
instrument ruaway traffic flow. Based on the results of the present analysis, a
decision on where to retain category 1 approach minima could be made.

The system accuracy analysis of the parasite approach proceeds in a manner
similar to that of the computed centerline approach in that both are simulations
written in Fortran 77 and run on the VAX 11/750 computer. The simulation uses a
Monte Carlo technique to generate a random variable triple in MLS coordinates
(8,¢,0). This normally distributed random variable has 20 component values
which are a function of their position in the volume of MLS coverage. In
general, these 2g values, which are given in appendix B, increase in magnitude as
the angle off centerline aund range increase. Appendix B is our interpretation of
tolerance limits identified in reference 4. For each point at which system
accuracy is to be assessed, 1000 random MLS triples are generated. These triples
are individually fed to a case XIIMLS transformation algorithm which produces an
output cartesian triple (x,y,z). Alsc input to the case XII algorithm are the
siting parameters of the signal source transmitters, These siting parameters

conform to the Radio Technical Commission for Aeronautics Special Committee 151
(MLS RNAV) recommendations for a general test siting.
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They are as follows (in meters) referenced to the MLS Datum Point:

X A z
Azimuth -4000 0 30
Elevation 0 120 2
DME/P ~3900 -137 30

The principal difference between the computed centerline and the parasite
approach simulations is that in the former case, the ground transmitter locations
are varied in order to assess the effect of offset azimuth. In the parasite
case, they are fixed. However, since a parasite approach may terminate anywhere
in the region of MLS coverage, accuracy is evaluated at a multitude of points
over a 3000 by 4000-foot grid off the threshold of the runway. For each point,
crosstrack, along-track, and vertical error values are computed. These error
values correspond to the 20 statistic computed from the 1000 cartesian triple
values output by the case XII transformation algorithm for each test grid point
evaluated. Error values were computed for assumed headings of 45° and 315°
referenced to the runway centerline. DH values were also varied (200, 250, and
300 feet) at each grid evaluation point.

The results of the parasite approach accuracy simulation are listed in tables 12
and 13 for a 200-foot DH, tables 14 and 15 for a 250-foot DH, and tables 16 and
17 for a 300-foot DH. The results of the along-track and crosstrack error are
plotted in figure 38 for all DH's and grid test points. The vertical track error
curves for all DH's and grid test points are displayed in figure 39.

Some relevant conclusions are immediately apparent from the plots. First, the
worst case errors for along-track and crosstrack components result at the largest
distances from the datum point. In the case of along-track and crosstrack
errors, the 2g values encountered reach approximately 100 feet. For vertical
track errors, these values are more randomly distributed and reach a maximum of
approximately 40 feet at a DH of 200 feet at a point x=4000 feet, y=3000 feet
from the datum point. Another fact evident from the plots is the similarity of
the 45° crosstrack and 315° along-track error curves and the 45° along-track and
315° crosstrack error curves. Upon reflection, this seems plausible since the
two headings evaluated, 45° and 315°, are 90° rotations of each other, resulting
in the crosstrack axis becoming the along-track axis of the aircraft (and vice
versa) when changing from one heading to the other. Finally, the slope of the
curves in figure 38 may, at first glance, defy explanation. However, upon closer
examination, the curves appear to slope upward or downward toward a 100-foot
error in most cases. Further reflection indicates that this slope does not
correlate with lateral grid point displacement, but rather with angular alignment
to the DME/P interrogators. This fact becomes more apparent when one considers
the fact that the 100-foot DME/P basic 20 error closely approximates the maximum
value of the plotted error curves, This leads one to conclude that the DME/P

component appears to be the most significant contributor to parasite approach
system accuracy.

PARASITE APPROACH MEASURES OF SKEWNESS AND KURTOSIS.

The overall MLS RNAV system accuracy was previously computed for parasite

approach applications. These accuracy figures were the 20 values calculated from
output cartesian triples of the Monte Carlo process. One thousand cartesian
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TABLE 12, PARASITE APPROACH STMULATION, 45° COURSE ANGLE,
DECISION HEIGHT = 200 FT DATI: 7729737
o e B ’ HELICDPTER-GROUP ACT1430, -
- o - FAR/ 20T, _ATLANTIC CITY AIRPORT.
IALK3ATdWIS5
* 47 ANMTINYNA QFIRATION IS COMICALS -
JAIN RSFIIINCEID TO TAZ DTY AAD CENTZR LINZS, ANTENNA PHMASE CZNTIRS ARE AT:
AZ = ( =13123.23 2.090 $2.42) 3 e
L= ( 3.22 377,70 5e39)
pME= ( =12723.12 ~649.47 °02,42);
* UNIT IS5 FT OR Dija o .
o - PARASITE PATH ON 45. D:6
DEGRADATIONS AT DH = 200.FT
A-TRACK DIST  PATH-3a5:D 5RID - OFF3ZT TO OTM ALOME LINT-X-0TH
FR34 OTH DIZ3RACATION
o -1500.39 -1001.00 -500.00 9.3C 500.00 100C. 490 15G9.00
NO n e o i o = e = - — . - = S A D = = . A A e P Y T S S R T P MR W S G W e WP S A - .y - o oy ———
1252.7) ATE $5.61 2h.77 34,39 5436 73.%4 77.08 75.09
XT: 52.15 82.09 45.39 72.31 72.35 75.25 77.99
VT 17,54 22,43 24417 19.33 11.71 11.32 10.50
220C.34 AT  37.49 34.7¢ 53.34 81.4€ 79.28  78.17 ?8.74
XT: 57,23 73451 7522 73.0% £§0a32 51.584 89 .45
VTS - 14435 15.76 16.23 12.25 12.52 12.53 13.09 o
T392439 AT S 31.3% 23,41 36,72 £S.1% 83.24 78946 TT.TA ]
XTx 1.2 33.07 75,32 29455 $1.21 91.23 $5.31
) vrT 14.75 Yhadh 14,32 15.4C 17.10 21.59 24.93
o 4209.29 AT 32.1r . $1.97  90.33 23,19 55463 8C.20  _ 22.21 o
X7z A 93.04 97.2% 99.71 101.71 100.13 107.32
YTz 31.653 22,74 26443 29,054 3195 32,49 38,83
. —— _ LEGEND - ;

ATE = Along-Track Error

"XTE = Crosstrack Error
VIE = Vertical Track Error



o , DATZ: 7/12%/37
e ~ 7?A§E§ﬁ13-7“BABASII§7APPROACH SIMULATION, 315° COURSE _ o
ANGCLE, DECISION HEIGHT = 200 FT HELICOPTEZR—GR0UP ACT140,
e e FAA/DOT, ATLANTIC CITY AIRPORT.
TACCIZOJND 3
* A7 ANTEINNA $PIATINY IS COMICALS .
WHEN ATFIAINCED TO THS DT AND CENTZ2 LINES, ANTINVA PHASE CINTEZRS ARE AT:
AT = ( -13122.22  a.m) 22,42y B
L= ( ST 373.70 £.56)
D4z= ( -127%5.1% L49.47 R.42);
= UNIT IS FT 02 2I5. ) - - o
PARASITZ PATH ZN 315. pza
DEGRADATIONS AT DH = 200.FT
A-TRACC DIST PATH=3AS3D G%ID - OFFSET TO DTM ALONG LINE-X-DTM
FROA OTH JEGRADATION
~1332.9¢C -100330.30 =-5035.53 0.30 5300.00 1030.00 1500.00
= 1032433 ATE 5551 52433 55494 69.32 59.85% 72.51 78.06
o XTE 25425 6575 Shald3 31.43 75422 80.43 75.12
VTe 17432 22.71 23.91 18.58 13.23 11.83 10.4%
2037434 ATz 714 3¢ 71.593 77.32 31.02 32.36 B3.35 86.73
XTE 93.33 BhadT 85.49 24,73 21.51 7767 76.33
AR 13352 15.27 14.62 13.77 13.02 12.45 12.463
3350.22 AT Z .73 313.5% 35.31 R3.23 97.77 9313 87.00
TE 32,7 39.13 27.14 3he42 32.2% 20.07 79.07
yT= A 1451 14.322 1%.23 12.582 21.32 25434
4333423 _ATE .y F3LTs _73.97%9 55e37 33.31 104453 104.66
XTE 3TLTT 31.13 741 %5.43 22.77 83.37 79.32
YT= 2191 23450 25451 23.1% 33.32 35428 37.75
~ o o o o LEGEND o o
ATE = Along-Track Error
XTE = Crosstrack Error
VIE =

_Vertical Track Error




PARASITE APPROACH SIMULATION, 45°

TABLE 14, COURSE ANGLE,

DECISION HEIGHT = 250 FT DATE:

7/23137

HELICOPTER-520UP ACT14d,
_ FA2/D0T, _ATLANTIC CITY AIRPORT..

42

Al

ANTINNA_ SPZ34 -
Hald XIFSA3422I0 10 T4<Z

T ANTENNA PHASE CIHTZRS A% AT:

F3.42)

EL = ( 3.37 393.70 50520 ’
oIz ( =12735.1Z —649.47 934427
* UNIT I5 FT 03 533, _ o L

PARASITE PATH CN

A-TRACK DIS3T PATHY-3A350 GRID - QFFSET TO DTM ALCNG LINZ-X—-DTH o e
FRO4 07TH DISRADATION
-15300.9¢C -1037.3C -300.00 JaCU 507.00 1000.00 1500.00
—
Ez 1052.00 ATF 71.0%y $1.47 $4.57 34%.25 17 .45 . TE.é2 78.863%_
XY 1.29 532.G9 63,213 67.7¢ 70.53 76.70 31.67
VT 22.33 29.5%2 32.22 22.33 15425 13.52 12.59
2J00.20 ___ ATE $7.57 32.47 E7.44, €503 73.%6 7737 76.20 . _
XT:2 59,73 75302 73.73 §2.21 7763 33.02 86.54
A IS . 19.74 12.27. 174350 _ 1537 14,39 1&4.737 14.13
SCC0.00 AT PRe*7T th.21 24,90 2hJT4 32414 T9.22 _ 1799
LAt Sl .33 34 .33 38,22 $0.42 92.12 $5.6%3
NTE AT %05 1537 5.9 15490 . 16«24 19.56 .
40303430 ATZ #9433 3%.74 . &3.75 _ 37.3% 2 31.04 0 83.933_ 1%9.25 __  ____
T2 723 £3.75 F3.33 92.72 96.23 103.41 103.92
VT 15,722 AT.54 22449 2334 2493 2%.37. __ 31.95
LEGEND
e o _ _ATE = Along-Track Error
XTE = Crasstrack Error
o o o _ eeviee o .. VTE = Vertical Track- Exrror



SATz: 77259737

.~ TABLE 15. PARASITE APPROACH SIMULATION, 315° COURSE ANGLE B o
DECISION HEIGHT = 250 FT YeLICCPTER-50UP ACT140,
. I o . e L FEAA/DOT,  ATLANTIC CITY AIRPORT.  _
IACKG20UND S
S LoNICAL . o . o L e o o o
D2TH AND C-VTZR LINZS, ANTZINNA PHASZ CINTZZS ARS AT:
_ . ';‘,_f‘_"l_ o iaeb) e o e
RPN AN La32)
-u~4.k? >labk2);
PARASITEZ PATH ON 315. DZ5
DECIADATIONS AT DH = 2504FT7
o A=T24CK DIST  PATH=3A3ZD CAID ~ OFFSZT TO DTH ALONG LINE-X-0T% B
FROM DT H# DISRADATION
=15360.7%3 =1007.19G -300.00 0.70 500.00 1000.00 1500.00
— 133.52 ATE 52.32 52,17 63,2 66477 73.57 77.33 77.91
4?3 XT:Z 33.53 70423 ) 37.5¢ 82.738 23.7% 79.79 76.98
Viz 21.37% 29.13 22.%% 22.43 16320 13.70 12.046
200C.34 ATZ 704358 73.15 76.73 81.53 31.40 85.09  87.64
XT= 33a.37 $5.21 6221 85«38 Cla34 794238 77.13
- viz 12,97 13499 17.24 16.23 14,863 14.33 = 14.30 -
3GI. 02 AT 2034 45433 34.15 §56.22 51453 94.17 97«50
XT=z 71427 950490 34.99 B2.4% 3296 3C.7%2 79.42
o _ _ vT% AU N B 597 15.71 15.41 1s5.06  16.57 = 19.85
4053433 ATE 57474 531455 96455 §5.3C 99.561 100.24 102.83
X7z 73437 27.8% 33.07 85.63 £3.31 30.29 78.44%
V72 149.7%¢ 1214 20443 22.932 25.75 28.32 21.57
LEGEND
ATE = Along-Track Error
T XTE = Crosstrack Error
- o L e o _ VIE = Vertical Track Error _




o dATI: 7/29/37
B o r_rij{\ﬁ‘g@‘l‘@\._ﬂgARME __APPROACH SIMULATION 45° COURSE ANGLE -
DECISIOXN HEIiGHT = 300 FT HEZLICOPTER-GROUP ACT140G,
. o S S N _ __ _FAAfDOT.  ATLANTIC CITY AIRPORT.
TACKIIZIN e
o AL ANTZINA J3IATION_ IS J0MICAL. S
YHMIN IIFIINCID TO THE OTA AND CINTI LINZIS, ANTZINNA PMA3ZS CINTER3 ARE AT:
A = ( ~13123.25 3.9 Y2e42) _
L= ( J.2) 3¥3.70 533
DMe= -12775.12 ~449,47 33442)7
* UNIT I35 57 03 335, . __ o
PARASITE PATH ON 45. D:G
DEGRADATIONS AT dH = 300.FT
A=-TRA{K DIST PATH-2A5S5D o GRID = OFFSZT TC OTM ALONG LINE-X-OTM S
Fag» o7 OZ3PADATION
-1532.20 -1003.290 -503.06 0.300 503.00 1000.90 1500.00
= 232.33 ATE 37435 o 24418 3199 7?9256 75.532
w XTE< 57.30 64430 71.55 77.75 78449
VT:E 25.31 26.07 19.45% 14.02 12.76
c33Ca23 ATE - B27.45 Z3.18 32430 33452 £0.29 75.35 79.64
X7Z 43.30 72424 75.G2 7%.75 21.93 85.14 90.49
V1= _ 2277 21.57 12.57 1322 16.77 1€.13 1634
3300430 AT 2.1 39.12 32.5% 34.42 33,46 82420 72.11 .
XTz LTI 134354 32.72 88,25 92.13 95.42 $5.83
_vre A3 1332 _13.49 17.74 17.73 12.3¢6 - 17.81 .
o A3535.04 . ATE »2e 3> 3AL4AD 3735 EhoP4 34,38 _79.32  30.84
{7 2 S57.73 3.33 ¥3.38 96495 100422 99..59 105.97
AR 12.359 11.21 13.27 12.5%] 20.52 22.76 27.01
o o . L e LEGEND e
ATE = Along-Track Error
T o XTE = Crosstrack Error
e o B i S VTE = Veértical Track Error




DATZ:

TABLE 17. PARASITE APPROACH SIMULATION, 315° COURSE ANGLE . _ .

THELICOPTER=GR0UP ACT140,

DECISION HEIGHT = 300 FT
o e e FAA/DOT, _ATLANTIC CITY AIRPORY. ___ _
TATK3A3UN S,
_F AT 2NTS RAATION IS5 CONICA o o o o o o i
WHIN 37 ST OTHE 3Tx AND INZ3, ANTZNUA 2HASS CINTERS ARZ AT:
AL =« D S prat O T -5 o “ e o R
L= ¢ Jul0 373472 POETY!
DIz ( -1.775.12 -443.a7 734425
* UNIT IS FT 0% 935. i - N L _
A=TRACK DIST  2AT4=24%ID ~ 5312 = OFFIZT TO DTM ALONG LINE=X=DTHM o
FY%59 o7 4 SEGRATATION
o -1533.30 -13063.20G -53C.00 0.0C 500.00 100G.900 1500.00
o 19334332 AT 5747 §35.22 71.35 78,43 80,52 _
XT< 39495 85.37 51,72 20.37 77.43
= vT: 26.37 25465 19.23 15.20 14.0°9
-
2003.20 AT 59431 74433 75.43 20.00 32.91 26.5% 87.80
XTz 35,37 57 .54 3322 22,77 81426 3C.71 77.27
yis 22.37 22.23 13.73 13434 15.92 14.44 15.85
3039433 ATE 76.23 3T.%5¢ 53.3% 27.41 $1.21 91.50 92.08
XT< 32.933 i9.23 £3.20 33440 3245673 73.97 75.02
LA 12,35 17458 13.1 17.5¢4 17453 17.32 1707 o
. 2 D VI § - L Pt . S S ey S 4 $ B C1C1.45  104.%2  105.3%y
XT3 33,52 73.29 34 5 35,40 32,43 80.35
yTE 12,44 1923 113 29.7¢C 23,37 24.73
S N e _.._ .LEGEND. — o
_ ATE = Along-Track Error

XTE
e VTE

Crosstrack Error
Vertical Track Error -




GoT

DT CARTC.TI25/87
FRA TECH. CFNTERP. POuSep k], GRANS

PEFERCNCER T DTM. ANTENNA STATIANG ARC:
£7 + (-13123. 2. g,
T 0 328 7y,
OME s {-12735. -443, 38,
¥-AX13 STANDZ FOR CROSS CISTANCE FROM DM,
EACH CURVE STANDS FOR ONE PARALLEL CISTANCE FROM DTM.
UNTT 15 FT
FARASITE APPROACH - FATH DEGRADATIONS
45. DEG PATH 315. DEG PATH
DH ATE XTE ATE XTE
- 406C.  _
3 3
- 3000. A
© ©
a &
i 20C0.
1, ¥ g—i\
1 0CGC. -4
200 I
Y:A
b4
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. ETTT ' ] R SNt
~ ’:’é; w 8 'N ) v
- XT° X ° X s iecs
-Tsoe-Tocc-Bec. o7 sbe. 1bes vdec dsec-Toco-50c. 07 she. 1hee. vdec. Isoc-Tocc-Foe o sée. 1dec. e Tsee-toce-fec. of s 1Rer iBec
_ s0cs. 4060,  _
o o Q
) 2 =
7 30CC )\
0 - o 30[:«\’ v
97 2005, © e v
3 3 - 3
1 106G, B 10CG. g
306. - / 3 e %\
? D (&) i
g2 3 5 © 3 ~ joce
- S ot . AN 2266
@ 196, o X ° X by L3gse
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FTGURE 38. PARASITE APPROACH CROSS AND ATONO-TRACK ERROR PLOTS



CATA DATE:7/23/87

FAA TECH. CENTER. POMONA.N.J. CR40S.
REFERENCED TC DTM. ANTENNA STATICNS ARE:

AZ = (-13123, . 8.

EL = 0. 334, 7Y,

OME= (-12795, -443. 98).

X-AX15 STANDS FCR CRCS5 DISTANCE FROM DTM.
EACH CURVE STANDS FCR CONE PARALLEL DISTANCE FROM DTM.

UNIT 15 FT.
PARASITE APPROACH - PATH DEGRADATIQONS
45 DEG PATH & 3i5 DEG FPATH
DH VTE
E 400C.
q
“ =
3Jo00.
200.
33
g
— 20090.
= *--45__________4b1000.
Ysec. Y o0s. -500. 2, she. 1boa. 1500,
9 4008.
250

-

bd

4

°

7 4000.

) Qo

3C0 ~ e

S I~\‘\?‘ \

e —" S — ; ~+ 4§Q8§
————— +22CC

— iC0C
° X
-1300. Sece. Yec. By she thee ko0

FIGURE 39. PARASITE APPROACH VERTICAL TRACK ERROR PLOTS
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triples per grid evaluation point formed the basis of the 2¢ accuracy
calculation. Concern was expressed within the flight standards community over

the normality of the distributions resulting from the Monte Carlo process. In
order to address these concerns that the output data distribution was not
Gaussian, a Fortran 77 program was developed. This program evaluates the

skewness (asymmetry) and kurtosis (peakedness) of the 1000 cartesian triple
output distribution for each test point. A skewness and kurtosis figure is then
calculated for each point within the 3000 by 4000-foot test grid. TIdeally, for
perfectly symmetrical curves, such as the normal distribution, a skewness value
equal to zero is desired. For kurtosis, a value equal to 3 is desired, since
this is the value for the Gaussian distribution. An explanation of the methods
used in computing the skewness and kurtosis is given as appendix C.

The results of this study are depicted in tables 18 through 23. Each table
represents a different bearing (45° and 315°) and DH (200, 250, and 300-foot)
combination. The values of skewness and kurtosis are tabulated over the x=4000
by y=3000 foot grid. A skewness and kurtosis pair is tabulated for along-track,
crosstrack, and vertical track error at each point in the grid. Note that in all
cases, the skewness, the first element of each pair (labeled S) is comparatively
small, confirming the hypothesis of a symmetrical distribution. The second
element of each pair (labeled K), is the kurtosis. WNote that in all cases, these
values are relatively close to a value of 3. This fact leads to the conclusion
that the associated distribution of Monte Carlo cartesian triples obtained is a
good approximation to a Gaussian distribution.

CONICAL ELEVATION INDUCED ERRORS.

Another limitation which must be considered in the assessment of MLS RNAV system
accuracy is the error in vertical position which results from flying an
unprocessed conical elevation signal. This error will probably be most serious
in an RTCA SC-151 Level I system, such as a computed centerline type system in
which the elevation unit is offset from the runway centerline and no processing
of vertical deviation is performed prior to display. The net result of flying
the path defined by this vertical guidance (flying a centered vertical deviation
indicator (VDI)) is that the aircraft follows a hyperbolic path in space rather
than the desired linear path. This hyperbolic path results in a constantly
changing glide-path angle rather than a constant angle in the linear case.
Another way of presenting this error is in terms of the linear vertical
difference in feet between the hyperbolic and linear cases. These errors are
~listed in table 24 as a function of glidepath angle, DH, and offset of the
elevation unit from centerline. Supplementing this tabulation are three
graphical presentations of the vertical errors encountered for glidepath angles
of 3°, 6°, and 9° and DH's of 200, 300, and 400 feet. These are figures 40, 41,
and 42, respectively.

Some general conclusions can be reached regarding an interpretation of the
forgoing data, Note that the vertical position error increases with increases in
the elevation angle or magnitude of offset in the approach being simulated. Data
shown on the graph can be used to identify the amount of offset which can be
tolerated without causing an increase in the Category 1 approach minima when
using raw elevation guidance. In theory, Category 1 approach minima could be
applied across larger offset magnitudes if the vertical position error was
eliminated through computed glidepath guidance.
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TABLE 18. SKEWNESS AND KURTOSIS FOR PARASITE APPROACH
SIMULATION FOR 45° APPROACH AT DH = 200 FT
DATE:  37207%7

HELICOPTER-GROQUP ACT14J,
FAA/DOT, ATLANTIC CITY AIRPORT.

BACKSROUNDS:

AZ ANTENNA QJPERATION IS CONICALS
WHEN REFSRENCED TQO THE DTM AND CENTER LINES, ANTENNA PHASE CINTERS ARE AT:

AL = ( =13123.20 0.00 98.42)
EL = ( J.00 393.70 6.56)
DNE= ( -12795.12 =449.47 98.42)7

* UNIT IS FT OR DEG.

801

DATA NORMALITY STUDIES THROUGH SKEWNESS AND KURTOSIS

- - - - = . e e o o e it e

PARASITZ ALONG 45. DEG AT DH = 200. FT

A-TRACX DIST DATA OF GRID -~ OFFSET TO DTM ALONG LINé—X-DTM
FROM DTH

-1500.00 -1000.00 -500.00 .00 . 500.30 100G. 30 15G0.00
S K N X g X S K S K N K S K
1000.30 ATE -0.06 2.33 C.00 2.72 D0.13 2.74 -0.08 2.61 0.00 2.81 0.01 2.88 0.1% 2.86
XTE -0.05 2.88 =0.01 2.72 0.11 2.73 -0.09 2.61 -0.01 2.81 =-0.01 2.38 D.17 2.85
VTE e 0a11 2492 0a10 2.73 0.22 2.81 0a08 246C 0.20 2.83 02419 2.91 0.33 3.0¢
2000.30 ATE J0.08 2,75 0.03 2.80 -0.01 2.90 -0.12 3.32 -0.08 2.97 0.00 7I.07 -0.03 2.79
XTE 007 2.74 0.02 2.80 =0.02 2.90 =2.13 3.03 -0.09% 2.97 =0.01 3.C6 -0.05 2.79
VTE 0.18 2.73 C.14 2.81 0.12 2.92 0.01 2.97 0.04 2.96 0.12 3.13 0.06 2.8C
3000.0° ATE -0.07 2.93 =0.05 3.05 0.00 2.92 0.02 2.76 0.083 2.83 0.14 2.94 0.00 2.45
XTE =0.09 2.94 =0.07 3.36 -0.31 2.92 0.01 2.7¢ 0.07 2.33 0.12 2.93 -0.02 2.55
vTE .04 2.91 0.06 3.00 0.11 2.94 0.12 2.7¢ 0.13 2,86 0.22 2.938 0.06 2.66
4000.390 ATE 0.06 2.66 0.38 2.73 0.03% 2.92 -9.904 3.14 0.05 2.33 -0.02 <.388 =-0.95 2.75
ATE 0.05 2.66 0.06 2.72 0.36 2.91 -0.06 3.14 0.04 2.28 -0.03 2.88 -0.06 2.75
VTE 0.15 2.62 0.17 2.786 0.18 2.%8 0.07 3.17 0.14 2.31 Q.05 2.23 0.32 2.75

LEGEND

ATE = Along-Track Error
XTE Crosstrack Error
VTE Vertical Track Error
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TABLE 19. SKEWNESS AND KURTOSIS FOR PARASITE APPROACH SIMULATION
FOR 315° APPROACH AT DH = 200 FT

DAT=Z: G/20/37

HELICOPTEP-GROUP ACT140,
FAAZ/DOT, ATLANTIC CITY AIRPORT.

3ACKEAROUNDS:

* AZ AMTENNA OPERATION IS CONICAL:
WHEN REFERINCED TO THE DTM AND CENTER LINES, ANTENNA PHASE CZINTERS AREI AT:

A7 = «( -13123.20 0.90 98.42)
gL =« 2.00 393.70 5.56)
DME= ( -12795.12 447447 93.42);

* UNIT IS FT OR DEG.

DATA NORMALITY STUDPICSS THROUGH SKEWNESS AND KURTOSIS

A-TRACK DIST DATA OF GRID - OFFSET TO DTM ALONG LINE-X-DTM
FROM DTH .

-1509.00 -1500.00 -500.00 .00 500.00 1006.00 1500.00

s K s X 3 K s e s X s X 3 K
1000.20 ATE =0.11 2.87 —0.10 2.95 C€.02 3.01 -0.03 2.97 -G.09 2.97 -0.06 2.92 =0.04 3.13
XTE 0.09 2.87 0.09 2495 =0.04 3.01 0.02 2.97 0«07 2.97 0.05 2.92 0.02 3.13
vTE 0.06 "2.87 0.02 2.96 C.15 3.03 0.16 3.00 0.13 3.00 0.15 2.51 0.15 3.14
2006.02 ATE 3.06 2.81 =0.04, 2.79 =0.07 2.51 =0.0% 2.94 0.09 2.92 -0.06 2.78 =-0.10 3.07
XTE =0.07 2.81 Q.03 2.79 Q.06 2.61 Q.07 2.94 =0.11 2.92 D04 2.78 Q.05 3.06
VTE 0.18 2.85 0.08 2.78 0.05 2.62 0.06 2.95 0.23 2.98 0.05 2.75 0.02 3.03

3000.20 ATE 0.04 2.87 D.01 2.94 -0.03 2,46 0.01 2.94 -0.11 3.02 0.07 2.86 -0.01 2.81
XTE =0.05 2.87 =0.02 2.94 .02 2.46 -0.02 2.94 0.10 3.01 -0.03 z.%6 0.00 2.81
R C.16 2.89 9.13 2,95 0.06 2.46 0.12 2.9 C.00 2.97 0.17 2.29 0.08 2.83
4000. 08 ATE £.01 2.95 0.09 2.77 -0.08 2.90 -C.12 2.90 -0.02 2.92 -0.03 2.94 0.92 2.90
XTZ =0.02 2.94 =Ca10 2.77 .07 2.89 0.11 2.90 0.01 2.93 .91 2.94 -0.03 2.90
VTE £.13 2.95 $.20 2.31 0.03 2.89 =0.0% 2.85 0.08 2.95 0.07 2.94 0.10 2.9C

LEGEND

ATE = Along-Track Error
XTE Crosstrack Error
VTE Vertical Track Error



0Tt

3ACK3IROUNDS:

* AZ ANTENNA OPERATION IS CONICAL;S

WHEN REFERENCSD TC THE DTM AND CENTER LINES,

AZ = ( =-13123.20
EL = ( 3.00
pMeE= ( -12795.12

* UNIT IS FT OR DEG.

A-TRACK DIST

FROM DTH

100C. 00

2000.0¢

3000.00

4000.00

DATA

TABLE 20. SKEWNESS AND KURTOSIS FOR PARASITE APPROACH SIMULATION
FOR 45° APPROACH AT DH 250 FT
DATE: 3720737
HELICOPTER=GROUP ACT143.
FAAZDOT, ATLANTIC CITY AIRPORT.
ANTZNNA PHASE CEZINTEQS ARE AT:
0.C 98.42)
393,70 64558)
-449.47 98.42);
DATA NORMALITY STUDIES THROUGH SKEMNESS AND KURTOSIS
PARASIT: ALONG 45. DEG AT DH = 25Q. FT
OF GRID - OFFSET TO DTM ALONG LINE-X-DTM
-1500.00Q -1000.09 ~500. 00 0.30 500.00 1000.00 1500.00
s 14 s K S X s X S X s X s K
~0e05 2487 0.04 3.09 0.06 2.95 -0.06 2.88 0.09 2.73 0.01 2.83 0.05 2.86
~0a08 2487 0.02 3.08 0402 2.95 -0.08 2.39 0.08 2.73 0.00 2.83 0.04& 2.36
. 0.10 2.85 Q.15 317 0216 2.9% 0.12 2.35 0.27 2.82 0.19 2.89 0.21 2.93
0.10 2.90 Q.14 3.09 0.10 2.98 0.01 2.74 =-0.10 2.95 Q.06 3.10 0.13 2.84
0.08 2.89 0.13 3.0% 0.0%8 2.97 0.00 2.74 -0.11 2.95 0.04 3.10 0.12 2.83
019 22493 0a28 3.17 0e22 3.05 0a12 2.76 0.02 2.94 0.17 3.17 0.22 2.87
—0.16 2.32 =0.02 2.37 002 2.93 -0.08 3.08 =0.03 3.27 -0.05 2.73 -0.03 2.79
“0.17  2.32 -0.03 2.86 0.00 2.93 =0.10 3.03 -0.05 3.27 =0.06 2.73 -0.04 2.30
-0.06 2.79 0.038 2.91 9412 2.95 0.02 3.08 0.07 3.29 0.02 2.71 0.04 2.79
0a08 2.75 -0.09 2.35 0.03 2.81 -0.06 2.79 0.02 2.81 0.02 2.73 0.06 2.90
0.06 2.75 =0.10 2.3%5 0.05 2.31 =0.07 279 0.01 2.31 0.01 2.78 D0.05 2.%90
0.15 2.79 =0.01 2.31 0.1% 2.33 0.02 2.7% 0.25 2.83 0.09 2.30 0.13 2.92
LEGEND
ATE = Along-Track Error
XTE = Crosstrack Error

VTE

Vertical Track Error



)

11

2ACKGROUNDS:

* A7 ANTENNA OPERATION IS CONICALZ

WHIN
AZ
L
DME=

* UNIT

REFERENCED TO THE DTM AND

( -13123.20
< 0.00
( -12795.12

IS FT OR DEG.

A-TRACK DIST
FROM DTM

1000. 00

2000.00

3360.00

40G0.00

DATA

ATE

VT

.20
393.70
—449.47

OF

-1

TABLE 21.

CENTER LINES,

93.
b
98.

42)
56)
42)7

SKEWNESS AND KURTOSIS FOR PARASITE
FOR 315° APPROACH AT DH = 250 FT

ANTENNA PHASE (SNTERS ARE AT:

DATA NORMALITY STUDIES THROUGH SKEWNESS AND XURTOSIS

500.00

GRID - CFFSET TO DTM

-10090.00

s K
-3.058 2.90
0.06 2.90
Coal4 2.33
-0.12 3.08
0.11 3.08
0.01 3.02
-0.12 2.72
0.11 2.71
4 -C.02 2.43
~0.07 2.85
0.06 2.85
.03 2.33

~500.00

0.02
-C.04
Catd

-%.19%
0.17
-0.05

0.05
-G.03
0.14

0.01
-0.03
0.11

2488
2.89
2.93

3.02
3.01
2.93

2.84
2+84
2.57

2.76
2.76
2.78

ALONG LINE-X-DTM

DATE:

HELICOPTER~GROUP

APPROACH SIMULATION
120737

ACT14G,

ATLANTIC CITY AIRPOKT.

FAA/DOT,
’
1000.00
S K

0.04 2.91
-0.06 .91
0.25 2.94
-0.08 2.3¢
0.07 2.35
0.03 Z.85
0.02 2.08
-0.03 3.07
0.12 3.07
0.00 2.86
-0.01 2.86
0.09 2.86

1500.00
S X
0.02 2.79
-0.03 2.79%
0.13 .82
-0.03 2.84
g0.02 2.83
0.07 2.83
-0.23 2.90
0.21 2.89
-Cal4 2.83
.09 2.73
=011 2.74
0.17 2.76
LEGEND
ATE = Along-Track Error
XTE = Crosstrack Error

VTE

Vertical Track Error



AN

3ACKGROUNDS:

TABLE 22. SKEWNESS AND KURTOSIS FOR PARASITE APPROACH SIMULATION

* AZ ANTENNA OPERATION IS CONICAL;

WHEN
Az
el
DNE

* UNIT

(  -13123.20
( 0.00
(  -12795.12

IS FT OR DES.

A=-TRACKX DOIST
FROM DTHM

1060.00

2000.00

3000.00

4000.30

REFZRENCED TO THE DTHA AND CENTZIR LINZS, ANTEINNA PHASE CENTERS ARE AT:
0.Co 98.42)
393.70 8.5%)
~449.47 98.42);
DATA NORMALITY STUDIES THROUGH SKEWNESS AND XURTOSIS
PARASITE ALONG 45. DEG AT DH = 30C. FT

DATA OF GRID = OFFSET TO DTM ALON6 LINE-X-DTM
-1530.00 -1000.00 -500.00 0.00 500.00

S K S K S X S X S X

ATE =0.02 2.9 0.00 2.79 0.08 2.39
XTE -0.04 2.92 ~0.02 2.79 0.06 2.39
VTE 0.12 2.36 0.17 2.84 0.28 2.97

L}

ATE 0.0f 3,01 -0.03 2.72 -0.08 2.80 0.28 2.98 0.07 2.74
XTE 0.06 3.01 =0.04 2.72 -0.09 2.31 0.07 2.98 0.05 2.74
VTE 017 3.05 0.06 2.74 0.03 2.80 0.20 3.01 0.17 2.75
ATE -0.12 2.3% 0.08 2.87 -2.03 2.82 0.04 3.16 -0.13 2.31
XTE ~0.13 2.39 0.06 2.36 =0.10 2.82 0.03 3.16 -0.14 2.82
VTE =0.02 2.37 0.17 2.93 0.01 2.82 0.15 3.1 -0.04 2.79
ATE ~0.03 2.75 =0.14 3.05 0.13 2.98 =0.15 2.92 0.07 2.463
XTE =0.04 2.75 =0.15 3.06 Q.12 2.97 =0.16 2.92 0.05 2.53
VTE Cel35 2.76 =005 3,32 0.21 3.01 -0.07 2.88 0.13 2.65

FOR 45° APPROACH AT DH = 300 FT

DAT:=:

8723727

HELICOPTER~GROUP ACT140,

VTE

FAA/DOT, ATLANTIC CITY AIRPORT.
100C.00 15C0.00
s X s K
0.01 2.36 -0.07 2.99
0.00 2.36 -0.09 2.99
0.20 2.%1 0.09 2.92
-0.05 .01 -0.03 2.80
-0.07 3.01 -0.04 2.80
0.06 3.02 0.05 2.81
0.12 2.33 0.00 2.76
0.11 2.33 =-3.01 2.76
0.20 ?2.86 0.07 2.75
-0.04 2.75 0.13 2.88
-0.05 2.75 3J.12 2.87
0.03 2.74 0.20 2.92
LEGEND
ATE = Along-Track Error
XTE = Crosstrack Error

Vertical Track Error
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TABLE 23. SKEWNESS AND KURTOSIS FOR PARASITE APPROACH SIMULATION
FOR 315° APPROACH AT DH = 300 FT DATZ: 3/20/87
HELICOPTER~GROUP ALT140,
FAAR/DOT, ATLANTIC CITY AIRPORT.
3ACKGROUNDS:

* AL ANTENNA OPZIRATION IS CONICAL~,
WHEN REFERENCED TO THE DTH AND CENTER LINES, ANTENNA PHASE CENTERS ARE AT:

A7 =« -13123.20 3.00 98.42)
EL = ( 0.00 333.70 6+56)
DME= ( -12795.12 =449.47 F8.42)5

* UNIT IS FT OR DEG.

DATA NORMALITY STUDIES THROUGH SKZWNESS AND KURTOSIS

PARASITE ALONG 315. DZG AT DH = 300. FT1

A~TRACK DIST DATA OF GRID — OFFSEYT TO DTM ALONG LINE~-X-DTHM
FROM DT™
*

=1500.00 ~1000.00 ~500.00 0.90 500.00 100C.00 1500.00

s K N K S K s X S K S X S K
130C.00 ATE -0.03 3.00 0.08 2.89 -0.02 2.335 0.04 3.04 ~0.11 2.78
XTE 0.01 3.00 ~0.10 2.°0 0.00 2.23 -0.05 3.04 0.10 2.73
VTEe 0.13 3.00 .28 3.01 90.20 2.92 0.26 3.07 0.06 2.75
2005400 ATE C«06 2487 -0.02 2.97 0.02 2.88 0.04 2.72 -0.04 2.86 0,01 13I.25 ~0.03 2.%5
XTE -0.07 2.87 02.01 2.97 -0.03 2.37 -0.05 2.93 0.03 2.87 -0.02 3.25 0.02 2.85
vTE 0u16 2.91 2.10 2.94 G.14 2.85 0.17 2.97 0.08 2.90 0.15 3.27 0.07 2.88
3000.00 ATE ~0.05 2.92 0.901 2.83 -0.01 2.49 -0.05 3.01 0.04 3.03 -0.07 2.81 ~0.08 2.88
XTE 0.04 2.92 -0.02 2.8 0.00 2.69 C.04 3.01 -0.05 3.03 0.05 2.31 0.06 2.88
VTE 006 2.91 0.12 2.88 0.07 2.71 0.06 3.02 9.14 3.03 0.02 2.52 0.01 2.83
400C.00 ATE 0.09 2.99% =0.01 2.82 0.02 2.62 G.038 2.8¢ -0.09 2.84 0.05 2.95 0.00 3.14
XTE =0.11 2.99 0.60 2.82 -0.03 2.42 =0.09 2.37 0.07 2.83 =0.07 2.96 -0.02 3.15

2.89 0.00 2.83 0.14 2.99 0.09 3.1%

VTE 3.2C 3.03 G.08 2.53 0.10 2.83 C.17

LEGEND

ATE = Along-Track Error
XTE Crosstrack Error
VTE Vertical Track Error

1
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TABLE 24.

VERTICAL POSITION ERROR (FEET) DUE
TO OFFSET OF CONIC ELEVATION

Approach 3.0 4.5 9.0
DH 200 ft 250 ft 300 ft 350 f¢

0 0 0 0 0
100 0 0 0] 0
200 0 0 1 1
300 1 1 2 3
400 1 2 3 6
500 2 3 5 9
600 2 4 7 13
700 3 6 9 17
800 4 8 12 22
900 5 10 15 28
1000 7 12 18 34
1100 8 15 22 41
1200 10 17 25 48
1300 11 20 30 56
1400 13 23 34 64
1500 15 26 39 73
1600 17 30 44 82
1700 i9 34 49 92
1800 2] 37 55 101
1900 23 41 60 112
2000 26 45 66 122
2100 28 50 72 133
2200 31 54 79 144
2300 34 59 85 155
2400 36 63 92 167
2500 39 68 99 178
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FIGURE 40. GLIDEPATH ERROR FOR OFFSET ELEVATION (EL = 3°)
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In addition to those already described, other methods of presenting the errors
attributable to a laterally displaced elevation transmitter were developed. The
error values obtained correspond to MLS datum point referenced glidepath angles
of 2.5%, 3.0°, 3.5°, and 4.0°, respectively. The results are divided into three
parts. Part I, tables 25 through 28, give the vertical threshold crossing error
in feet when a fixed glide angle is flown from an offset elevation transmitter
whose antenna phase center is level with the datum point. Part I, tables 29
through 32, give the same vertical error for an antenna phase center located

B feet above the MLS datum point. Part II tabulates the angular error which
results at threshold when a constant elevation angle is flown. This is listed in
tables 33 through 36 and is the difference between the elevation angle and the
ground point of intercept (GPY) referenced glidepath angle (along the runway
centerline), Part III lists the equivalent elevation angles which would have to
be entered and flown in order to yield the equivalent centerline reference glide-
path angle. These results are listed in tables 37 through 40.

The values tabulated in parts I, II, and IIT are listed as functions of

elevat ion/GPI distance (1000, 1200, and 1500 feet) and elevation offset distance
(200, 300, 400, 500, and 600 feet). It should be noted that all results have
been calculated on a strictly geometric basis and, as such, do not include
additional error factors such as signal source, transmission, and receiver
errors. For reference purposes, a mathematical description of the methods used
in calculating the elevation offset induced errors are included as appendix D.

Several conclusions can be drawn from the data generated in these analyses.
First, it is apparent that the MLS threshold crossing errors which result are not
insignificant. They vary from less than a foot at shallow angles and smaller
elevation offsets to approximately 20 feet at the larger offsets, elevation
angles, and phase center heights. Under similar conditions, the angular errors
obtained varied from less than 0.05° to nearly 0.7°. It should be noted that
these errors are made larger by increasing elevation angle and elevation offset
distance as well as antenna height. They are decreased as the elevation to
threshold distance is Increased.

SUMMARY OF RESULTS

1. A total of 12 MLS to cartesian coordinate transformation algorithms were
developed. These algorithms were all tested in the lab over a synthesized grid
of space approximating the MLS volume of coverage and were found to converge to a
solution within the specified 0.l-foot tolerance. All 12 algorithms were tested
on a Digital Equipment Corporation (DEC) VAX~11/750 minicomputer and were written
in VAX-11 FORTRAN. The VAX-11/750 is a 32-bit machine with floating point
accelerator (FPA) support, operating under the VAX VMS operating system

version 4.3, VAX-11 FORTRAN is DEC's implementation of the American National
Standards Institute (ANSI) standard FORTRAN 77. Additionally, the case III
algorithm was also tested on a Zenith PC-150 and a Zenith PC-248 personal
computer. The PC-150 is an 8086 based microcomputer and has arithemtic
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TABLE 25. PART I, MLS THRESHOLD CROSSING ERRORS (FT)

EL ANGLE = 2,50

EL Angle = 2.5 (degrees)

EL Offset Distance (ft)

200 300 400
1000.0 0.864566 1.92242 3.36333
EL/GPI
to
Threshold
1200.0 0.72270 1.61247 2.83408
Distance
(fr)
1500.0 0.57958 1.29699 2,28860

EL Phase Center Height = 0,0 (ft)

500 600
5.15348 7.25603
4.36609 6.18417
3.54260 5.04500

TABLE 26, PART I, MLS THRESHOLD CROSSING ERRORS (FT)

EL ANGLE = 3,00

EL Angle = 3.0 (degrees)

LL Offset Distance (ft)

200 300 400
1000.0 1.03738 2.30755 4,03713
EL/GPI
to
Threshold
1200.0 0.86748 1.93551 © 3,40184
Distance
(fr)
1500,0 0.69569 1.55682 2.74708

119

EL Phase Center Height = 0,0 (ft)

500 600

6.18590 8.70967
' 5.24078 7.42308
4,25231 6.05569



TABLE 27,

EL Angle = 3.5 (degrees)

200

1000.0 1.21126
EL/GPI
to
Threshold

1200,0 1.01239

Distance

(ft)

1500,0 0.81191

TABLE 28,

EL Angle = 4,0 (degrees)

200
1000. 1.38482
EL/GPL
to
Threshold
1200.0 1.15746
Distance
(ft)

1500,0 0.92325

PART I, MLS THRESHOLD CROSSING ERRORS (FT)

EL ANGLE = 3.5°

EL Phase Center Height = 0,0 (ft)

EL Offset Distance (ft)

300 400
2.69303 4,71154
2.25884 3.97013
1.81689 3.20599

500

7.21927

6.11626

4,96266

PART I, MLS THRESHOLD CROSSING ERRORS (FT)

EL ANGLE = 4,0°

EL Phase Center Height = 0,0 (ft)

EL Offset Distance (ft)

300 400
3.07892 5.38667
2.58252 4.53902
2.07724 3.66539

120

500

8.25374

6.99268

5.67378

600,

10,16464

8.66312

7.06731

600

11.62116

9.90449

8.08000



TABLE 29. PART I, MLS THRESHOLD CROSSING ERRORS (FT)
EL ANGLE = 2.5°, EL PHASE CENTER HEIGHT = 8.0 FT

EL Angle = 2.5 (degrees) EL Phase Center Helght = 8,0 (ft)

EL Offset Distance (ft)

200 300 400 500 600
1000.0 8.86466 9.92242 11.36333 13.15348 15.25603
EL/GPI
to
Threshold
1200.0 8.72270 9.61247 10.83408 12.36609 14.18417
Distance
(ft)
1500.0 8.57958 9.29699 10,28860 11,54260 13,04500
TABLE 30. PART I, MLS THRESHOLD CROSSING ERRORS (FT)
EL ANGLE = 3,0°, EL PHASE CENTER HEIGHT = 8.0 FT
EL Angle = 3,0 (Degrees) EL Phase Center Height = 8,0 (ft)
EL Offset Distance (ft)
200 300 400 500 600
1000.0 2.03788 10.30755 12.03713 14.18590 16.70967
EL/GP1
to
Threshold
1200.0 8.86748 9.93551 11.40184 13.24078 15.42303
Distance
(ft)
1500.0 8.69569 9.55682 10,74708 12.25231 14,05569
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TABLE 31. PART I, MLS THRESHOLD CROSSING ERRORS (FT)
EL ANGLE = 3.5°, EL PIIASE CENTER HEIGHT = 8,0 FT

EL Angle = 3,5 (degrees) EL Phase Center Height = 8,0 (ft)

EL Offset Distance (ft)

200 300 400 500 600
1000.0 9,21126 10.69303 12,71154 15,21927 18.16464
EL/GPI
to
Threshold
1200.0 9,01239 10.25884 11,97013 14.11626 16.66312
Distance
(fr)
1500.0 8.81191 9.81689 11,20599 12.96266 15,06731
TABLE 32. PART I, MLS THRESHUOLD CROSSING ERRORS (FT)
EL ANGLE = 4.00, EL PHASE CENTER HEIGHT = 8.0 FT
EL Angle = 4.0 (degrees) EL Phase Center Height = 8.0 (ft)
EL Offset Distance (ft)
200 300 400 500 600
1000,0 9,38482 11.07892 13,38667 16.25374 19.62116
EL/GPIL
to
Threshold
1200.0 9.15746 10.58252 12.53902 14.99268 17.90449
Distance
(ft)
1500.0 8.92825 10.07724 11,66539 13.67378 16,03000
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EL Angle =

EL/GPL
to
Threshold

Distance

(ft)

EL Angle =

EL/GPI
to

Threshold

Distance

(f£t)

TABLE 33, PART II, !MLS THRESHOLD CROSSING ERRORS (DEGREES)
EL ANGLE = 2.5°

2.5 (degrees)

EL Offset Distance (ft)

200 300 400 500
1000.0 0,04945 0.10993 0.19231 0.29464
1200.0 0.03444 0.07684 0.13505 0.20804
1500.0 0.02210 0.04945 0.08725 0,13505

TABLE 34. PART II, LS THURESHOLD CROSSING ERRORS (DEGREES)
EL ANGLE = 3.0°

3.0 (degrees)
EL Offset Distance (ft)
200 300 400 500
1000.0 0.05930 0.13183 0.23063 0.35334
1200.0 0.04130 0.09215 0.16196 0.24948
1500.0 0.02650 0.05930 0.10463 0.16196
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600

0.41481

0.29464

0.19231

600

0.49742

0.35334

0.23063



TABLE 35. PART II, MLS THRESHOLD CROSSIMNG ERRORS (DEGREES)
EL ANGLE = 3,5°

EL Angle = 3.5 (Degrees)

EL Offset Distance (ft)

200 300 400 500 600
1000.0 0.06914 0.15370 0.26887 0.41190 0.57984
EL/GPI
to
Threshold
1200.0 0.04816 0.10744 0.18881 0.29085 0. 41190
Distance
(fo)
1500.0 0.03090 0.06914 0.12199 0.18881 0.26887

TABLE 36. PART II, !MLS THRESHOLD CROSSING ERRORS (DEGREES)
EL ANGLE = 4,0°

EL Angle = 4.0 (degrees)

EL Offset Distance (ft)

200 300 400 500 600
1000.,0 0.07895 0.17551 0.30701 0.47032 0.66204
EL/GPIL
to
Threshold
1200.0 0,.05499 0.12269 0.21561 0.33211 0.47032
Distance
(ft)
1500,0 0.03528 0.07895 0.13930 0.21561 0.30701
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TABLE 37.

PART III, MLS THRESUOLD EQUIVALENT ELEVATION ANGLES (DEGREES)
EL ANGLE = 2.50

EL Angle = 2.5 (degrees)

1000.0
EL/GPI
to
Threshold
1200,0
Distance
(fe)
1500.0
TABLE 38.

200

2.45451

2.46603

2.47810

EL Offset Distance (ft)

300 400
2.39469 2.32139
2,42545 2.37186
2,45151 2.41569

500 600
2.23635 2.14409
2.30791 2.23635
2.37186 2.32139

PART III, MLS THRESHOLD EQUIVALENT ELEVATION ANGLES (DEGREES)
EL ANGLE = 3,0°

EL Angle = 3.0 (degrees)

1000,
EL/GP1
to
Threshold
1200.0
Distance
(ft)
1500.0

200

2.94185

2.95925

2,97373

EL Offset Distance (ft)

300 400
2.87370 2.78578
2.91058 2.84631
2.94185 2.89888
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500 600
2.68377 2.57310
2.76961 2.68377
2,.84631 2.78578



TABLE 39. PART 1I1I, MLS THRESHOLD EQUIVALENT ELEVATION ANGLES (DEGREES)
EL ANGLE = 3,5°

EL Angle = 3.5 (degrees)

EL Offset Distance (ft)

200 300 400 500 600
1000.0 3.43220 3.35274 3.25023 3.13127 3.00221
EL/GPI
to
Threshold
1200.0 3.45249 3.39575 3.32080 3.23136 3,13127
Distance
(ft)
1500.0 3.46937 3.43220 3.38210 3.32080 3.25023

TABLE 40, PART III, MLS THRESHOLD EQUIVALENT ELEVATION ANGLES (DEGREES)
EL ANGLE 4,0°

EL ANGLE = 4.0 (DEGREES)

EL OFFSET DISTANCE (FT)

200, 300. 400, 500, 600,
1000, 3.92257 3.83182 3.71474 3.57887 3.43145
EL/GPI
TO
THRESHOLD
1200. 3.94575 3.8809%4 3.79535 3.69319 3.57887
DISTANCE
(FT)
1500, 3.96502 3.92257 3.86536 3.79335 3.71474
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coprocessor support, running under Microsoft MS-DOS disk operating system version
2.0. The Zenith PC-248 is an 80286 based microcomputer that also has arithmetic
coprocessor support, running under Microsoft MS-DOS disk operating system version
3.0. The programs for use on the Zenith systems were written in Microsoft
Corporations's Implementation of the ANST standard FORTRAN 77. 1In all cases this
software was found to execute within 20 milliseconds and was within the accuracy
specified for Category I operations.

2. Monte Carlo simulations of computed centerline approach operations employing
a case I MLS transformation algorithm were performed. These simulations include
the effects of MLS signal source error. Crosstrack errors encountered ranged
from 0 to 80 feet, with the worst values occuring at large glidepath angles and
elevation unit offsets from centerline. Increasing azimuth/DME/P to elevation
unit spacing lowers the crosstrack error. Along-track error is fairly constant

at 100 feet. A slight improvement is noted as the azimuth/DME/P to elevation
unit spacing is lowered.

3. Monte Carlo simulations of generalized parasite approach operations were
conducted using a case XIT MLS transformation algorithm. These simulations
included MLS sigunal source errors which varied as a function of position in MLS
space. Approach angles of 45° and 315° and terminal waypoints over a 3000 by
4000-foot grid were simulated. DH's of 200, 250, and 300 feet were modeled.
Crosstrack and along-track errors ranged from approximately 57 to 107 feet, the
extremes of this range being observed at the extremeties of the test grid.
Vertical track errors were observed to vary from approximately 10 to 39 feet;
again, the extremes were observed near the limits of the grid. Skewness and
kurtosis studies were run on the simulation output data and indicated close
conformance to a normal distribution.

4. When the MLS elevation unit is offset from the runway centerline, and
vertical deviation information is not processed in the RNAV computer (but is
displayed raw, as in a case I algorithm) errors due to the conicality of the
elevation signal result. 1In the simple case of an approach along .the centerline,
the aircraft follows a hyperbolic rather than linear glidepath. The resulting
error in feet increases with elevation offset distance, glidepath angle, and

DH. Vertical errors obtained spanned the range from 0 to 178 feet. When
referenced to threshold, these errors are found to increase sigificantly over the
previous DH referenced cases since the hyperbolic and linear paths diverge more
at close-in ranges (e.g., for a 3° path at 600-foot offset, the DH figure yields
2 feet vs, the threshold value of 6 to 9 feet, depending on elevation to
threshold distance).

CONCLUSIONS

1. Accuracy in position determination is the prime consideration in microwave
landing system area navigation (MLS RNAV). When the required site ground
geometry is known, the most accurate (and general) MLS Transformation Algorithm
should be employed. This will minimize error added by the transformation

process. Of course this is dependent upon the availability of the necessary
computer processing power.
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2. When the azimuth transmitter is offset due to siting restrictions category I
approach minima may still be obtainable through the use of computed centerline
techniques. Testing over glide slope values of 2° to 9°, azimuth transmitter to
elevation transmitter distances of 3,000 to 10,000 feet and offset azimuth values
of up to 2,500 feet has shown that category I approach minima are possible in
some regions. However, each application must be reviewed individually since
position determination accuracy is influenced by a combination of factors
including azimuth transmitter offset, the distance between the azimuth and
elevation transmitters and approach glide slope.

3. The ability to execute parasite approaches over a wide range of terminal
waypoints, DH's and approach angles has been demonstrated analytically. However,
MLS signal source error degradation over the volume of coverage, as outlined in
item 4, Bibliography, results in larger error tolerances off the 0° azimuth
and/or the 3° elevation. This fact causes larger across-track, vertical and
along~track errors when making parasite approaches. Additionally, since DME/P
accuracy heavily impacts MLS RNAV crosstrack accuracy when not paralleling the 0°
azimuth, parasite approach accuracies would be considerably reduced as the final
approach course biasing of the 0° reference azimuth increases.

4. Another limitation of MLS RNAV which must be considered is the error in
vertical position which results from attempting to fly a linear descent path
while using a raw conical elevalion signal. For certain shallow angle glide-
paths, small offsets, and centerline approaches it will be possible to maintain
the stated minima while using the unprocessed elevation signal. However, for
larger glidepath angles, elevation offset distances, and decision heights, it
will be necessary to process the elevation signal using a case XI or XII
algorithm to compensate for conic signal propagation and maintain required
accuracy.
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APPENDIX A
CARTESIAN TO MLS COORDINATE TRANSFORMATIONS

Sited Anteunna Coordinates:

Azimuth Antenna - (Xa,Ya,Za) Elevation Antenna - (Xe,Ye,Ze)
DME Antenna - (Xd,Yd,Zd) MLS Datum Point - {(Xm,Ym,Zm)

Aircraft Coordinates: (relative to MLS datum point)

Actual - (X,Y,Z) Computed - (X',Y',2")

Computed MLS Coordinates

DME = ((X-Xd)2 + (Y-Yd)2 + (z-24)2)1/2

AZ = SIN-l -(Y-Ya)/((X-Xa)2 + (Y-Ya)2 + (z-za)2)1/2

"

EL = SIN-1 (z-Ze)/((X-Xe)Z + (Y-Ye)Z + (z-ze)2)1l/2
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APPENDIX B

MLS SIGNAL ACCURACY DEGRADATION

® Azimuth Signal Error:  A@,g(Angular PFE in Degrees)

1. TFor elevation values less than 9° (§ < 9°)

sor emi i g fgat)]

Limited to a maximum of +.25°

where:
P = DME/P
R = Runway centerline distance from azimuth station to MLS reference datum
8 = Azimuth angle in degrees

2. For elevation values greater than or equal to 9°, but less than or equal to

157 (9°<¢ @ < 15°%)

+ ran1{ 13.5 [l + .5| 8
R 40

Limited to a maximum of +.50°

A D g

S () (o) ]

where §§ = elevation angle

Use &A@,4 by generating random variables from a normal distribution having
o = 2A920- and then adding these values to the nominal value of 8 being
flown to obtain a perturbed value of @.

® Elevation Signal Error: Ag,, (Angular PFE in Degrees)

l. For elevation angles from 3° (or 60 percent of minimum glidepath angle,
whichever is less) to the elevation coverage extreme. For purposes of
simulation, this means:0.9° < § < 3°

a = +0133° |1 +0.2 | ®© +0.2 -R |\ + 2.0 3.0° - @
Por =2 l_—_ {’W’ ({ﬁa) (—Tr'— ]

DME/P

= Runway centerline distance from DME/P station to MLS reference datum
Azimuth angle in degrees

Elevation angle in degrees

] it

s ® w7y

2. For elevation angles from 3° to 15°, 3° < ¢ < 15°

+0.2 ( -R ) + ((b - 3°)
nm —T

There are no maximum values specified for A,Q/ZQ'

A p = +0.133° L1 +0.2 200




Use Aﬁmby generating random variables from a normal distribution having
O =2a@ 9¢ and then adding these values to the nominal value of ¢ being
flown to obtain a new value of @.

® DME/P Signal Error: AFZO (Linear 2g value in ft)

1. Over the volume of DME/P coverage:
APog =+ 820'-100' (p-r) + 100'
e = (20x6076'—0' F

where R = along centerline distance from DME/P ground antenna to runway
threshold in feet.

‘3= DME/P distance in feet
AP, = +0.00592 (P-R) + 100"

Use AP2 by generating random variables from a normal distribution having
g = 2%? 20 and then adding these values to the nominal value of Pbeing
used at the DH point in order to obtain a perturbed value for .  A'thousand

f"s are obtained for each error calculation. F




APPENDIX C
PARASITE APPROACH STUDIES
MEASURES OF SKEWNESS AND KURTOSIS

Skewness: The degree of asymmetry, or departure from symmetry, of a
distribution. A frequency curve of a distribution is said to be skewed to the
left (negative) or to the right (positive) if it has a longer tail away from
the central maximum in that direction.

A measure of skewness:

Moment coefficient of Skewness:

T 43 =m3 = mg3
3
53 ( \/mz)
where m3 = The third moment about the mean
X = the mean of the sample
Xy, 0= jth sample value
N = Number of samples
s =,/m2 = standard deviation
s2 = m, = the variance
N
my = I (xj - ;)3
j=1 N
N N
N
g =]z (XJ - %2 =]z Xj2 _ 5 xj 2
L — —_— '=l -
j=1 N j=1 N J N
N
Xx = X Xj
j=1 —
N N
The moment coefficient = ay = mg = L (Xj - x)3
of skewness ;g‘ 5=1 T w

\/‘E (% -—§)2 ’
i=1 ﬁi

® TFor perfectly symmetrical curves, such as the normal curve, ay =0




Kurtosis: Kurtosis is the degree of peakedness of a distribution relative to
the normal distribution.

One measure of kurtosis uses the fourth moment about the mean expressed in
dimensionless form and is given by:

Moment coefficient of kurtosis = a;, =my = my

4 2
where: s m,
m, = the fourth moment about the mean
X = the mean of the sample
Xj = jth value of sample
N = Number of values in the sample
s? = variance = mo
N N
m, = I (xj - x)% sh=(12 (x5 - x)z) 2
=1 = =1 =

For the normal distribution, a; = 3



APPENDIX D

CONIC ELEVATION INDUCED ERROR COMPUTATIONS

(x,y,z) = Test point coordinates based on linear glidepath

(Xc,yc,zc) = Test point coordinates based on conical elevation

(Xe,ye,ze) = Elevation unit antenna phase center coordinates

# = Centerline (linear) glidepath angle

¢

¢ = Conical elevation angle

I

z

¢

Height crror

Angular error
Assume all points referenced to MLS datum at (0,0,0)

The equation describing conical elevation 1s:

)2 =

(Xc~xe)2 * (yemye)” = (Zc-ze)2 C0t2¢c

The equation describing a linear glidepath is:

z = xtan{

Assuming GC =@, x, = x, yo = v,

Find the resulting height error:
(x—xe)2 + (y-yg)? = (zc—ze)2c0t2¢

From (3): Zc = ((—xe)2+(y—ye)z) tan2¢> 1/2+Ze
From (4) and (2)

2 = 272, = xtan§ - (ng—xe)2 + (y-ye)? tan2¢§>l/2 + oz,

Assuming (xc’Yc»Zc) = (x,y,2)
Find the resulting angular difference:

From (2):

§ = tan"! 4
x

(1)

(2)

(3)

(4)

(5)

(6)



From (1)

p. = tan™! ( (z—z%)2 ) 1/2
(x—xe)z + (y—ye)z

Combining (6) and (7) yields:

g = Q—QC = tan”! 2z = Lan_l( (z-z )2 )1/2
X (x=x,)2 + (y-y)*

Y U.5. GOVERNMENT PRINTING OF FICE: 1987-704-075/60202
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