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EXECUTIVE SUMMARY

In an air traffic control system where aircraft separation is
maintained by controlling the trajectories of stereographic
representations of aircraft in a plane tangent to a sphere with a
center collocated with the center of the earth, dilation is one
of many factors that adversely affect system performance. The
length of the stereographic image of an arc on the mean sea level
surface of the earth (i.e., the surface of an ellipscid that
approximates the geoid) differs from the length of the arc, and
this dilation phenomenon is nonuniform in the sense that the
lengths of the images of distinct equilength arce need not be the

same {(i.e., the length of the image aof an arc is a function of
both the arc length and the pasition of the arc on the surface of
the earth). As a result, the stereagraphic representation of the

relative separation associated with a pair of aircraft at the
same altitude varies with the absolute position of either member
of the pair as well as with the relative separation itself.
Alsos the stereographic image of an aircraft exhibits an
acceleration that reflects the change in the dilation with
position rather than the physical characteristics of the actual
flight trajectory. Indeed, if steps are naot taken toc minimize
the variation of dilation over the portion of the surface of the
earth underlying controlled airspace, dilation effects may
sericusly impact the design of automatic tracking and separation
assurance features that are supposed to provide accurate
forecasts of future positions of aircraft images in the
stereographic plane. '

The dilation at any point on the mean sea level surface of the
earth is customarily expressed in terms of the ratio of the
length of an infinitesimal arc through the point to the length of
the stereographic image of the arc. The functional behaviar of
this measure of dilation over the control jurisdiction of a
control facility is governed by the location of the tangency
point and the radius of the sphere that supports the
stereographic plane. The maximum value of the magnitude of the
rate of change of the measure with respect to distance in the
floor of the control jurisdiction (i.e.s the portian of the
surface of the earth underlying the control jurisdiction) is
strangly dependent on the latitude and longitude of the tangency
point. Since the magnitude of the acceleration of an aircraft
image due to dilation tends to increase with the magnitude of the
dilation rate, it makes sense to select a latitude-longitude pair
for which the maximum value of the magnitude of the rate is
small. Depending upon the shape of the floor, this criterion for
tangency point selection may result in a latitude-longitude pair
corresponding to a point in the floor or cutside the floor. In
any event, determination of a latitude—-longitude pair far the
tangency point automatically fixes the ratio of the maximum and
minimum values of the dilation on the flaor. Subsequent to the
selection of the latitude and longitude of the point of tangency
the absolute values aof these extremums are completely controlled
by the radius of the sphere that supports the stereagraphic
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1. INTRODUCTION. R

In an air traffic control (ATC) environment like the National
Airspace System (NAS) aircraft are separated in at least one of
the three dimensians aof altitude, latitude, and longitude by
means of commands transmitted from a ground facility. Aircraft
altitude is conveyed to the ground facility by voice
communication or transponder replies to radar interrogation
messages. The remaining dimensions are obtained indirectly
through a projection algorithm that manipulates raw surveillance
information (i.e., reported altitude and radar measurements of
slant range and azimuth). The objective of the projection
algorithm is to provide a point on a plane surface (i.e.s the
system plane of the control facility) that is a stereographic
representation of aircraft latitude and longitude with respect to
some ellipsoidal earth model. The control facility attempts to
separate aircraft in one or both of the dimensions of latitude
and longitude by keeping whatever points are provided by the
projection scheme a prescribed distance (e.g.s 5 nautical miles
{(nmi)) apart.

There are two factors, among many others, that adversely affect
the ability of the contral facility to maintain separation
standards. These are projection error (i.e., the difference
between the actual stereographic representation of an aircraft
and the point representation provided by the projection
algorithm) and dilation (i.e.; the discrepancy between the
distance separating points on the surface of the earth model and
the distance between the stereagraphic representations of these
points in the system plane). If the projection error is large
then there is same question as to what is being caontrolled (i.e..
latitude and longitude ar something else). If it is small then
there 1is no such question. Dilation adversely affects the
ability of the control facility to maintain separation standards
in the sense that it gives the facility a false impression of the
actual distance measured over the surface of the earth model
between one location and another that cannot be corrected by a
constant scale factor.

Projection errors are pretty much a function of the projection
algorithm. 0On the other hands; dilation is determined by the
geaometric relationship between the system plane and the earth
model. In particular, the system plane is tangent to a conformal
sphere (i.,e., a sphere with a center colleocated with that of the
earth model) and dilation is dependent upon the locaticon of the
point of tangency and the radius of the sphere. In other words,
there are two basic jobs involved in the design of a
stereographic projection system in ATC applications. First, the
designer must select a caonformal sphere and a point of tangency
that provide a reasonable dilation characteristic aover the
contral jurisdiction. Second, the designer must provide an
algorithm that is capable of converting raw surveillance
infaormation into a point on the system plane with little aor no
projection error. In the case of the Advanced Automation System
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f(ge).m 2/[1 + cosigc)] (1)

where g. is the angle subtended at the center of the earth model
by the point of tangency of the system plane and a conformal
representation of the point p (i.e., the point on the surface of
a confarmal sphere at the conformal latitude and longitude of p).
Another is the ratioc of the radius E of the sphere that supports
the system plane to the equatorial radius a of the earth model.
The remaining factor is a function h(J) of the geodetic latitude
J of p that increases maonatonically from 1 to a number just under
1.0034 as the magnitude of the latitude increases from 9= to 99=.
Unfortunately, this function is complicated, and as a result, the
formula

m, = h{(J)(E/a)f(g) (23
is not too useful in the design of ATC projection systems.

Although the function h(J) is somewhat complicated, it is clear
that dilation is nearly proportional to the simple function
f(g=), and hence, the shape of the dilation characteristic over
the floor of a control jurisdiction is strongly dependent an the
parameter g.. As will be seen, there are two aspects of this
parameter that are significant from the standpoint of projection
system design. One of these is based on the fact that there are
infinitely many conformal representations aof the same point an
the surface of the earth model. The other stems from the fact
that the angle subtended at the center of the earth model by two
points on the model surface is essentially the same as the angle
subtended at the same location by conformal representations of
the points.

The angle g. and the specific conformal sphere of radius E that
supports the system plane are independent entities. There are as
many conformal representations of a point on the surface of the
earth model as there are confarmal spheres, and all of these
representations lie on the same radial line segment emanating
from the center of the earth. Consequently, there are infinitely
many conformal representations of the floor of a control
jurisdiction, and regardless of whether the point p is a member
of the floors g. is the unique angle subtended at the center of
the earth model by the point of tangency and any conformal
representation of p. Also, if g is the earth model
representation of the point of tangency (i.e., the location on
the model surface specified by the geodetic latitude and
longitude of the tangency point) then the same angle is subtended
at the center of the earth by any conformal representatiaon of the
point p and any conformal representation of g, including the
tangency point itself. For example, the angle g. iz the same as
the angle subtended at the center of the earth by the conformal
representations of p and q on the unit sphere (i.e., the
conformal sphere characterized by a radius of 1 in whatever units
the dimension of length is expressed). This concept can be
exploited in the selection of the tangency point.

3
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table 1. Approximations 'of: angles like g. by parameters aof the
type d/468 and g are useful in the selection of a near optimal
radius for the conformal sphere that supports the system plane.

TABLE 1. ESTIMATION ACCURACIES OF d/62 AND g.

d ! g ! Bil(d) | Bg{g)
(nmi) 1 (deg) | (1@-7) | (1@~7)
=1 B 1 3.2 | g.4
129 | 2 | 11.9 | .9
189 | 3 6.0 1.3
249 | 4 45.6 | 1.7
32 | 5 78.8 2.2
698 | 19 + 279.4 | 4.3
P2 | 15 + 627.5 | 6.5
1268 | 28  1117.7 8.7
158 | 25 |t 1753.% ! 19.9
18900 : 39 | 2541.3 | 13.2
2199 | 35 ! 3486.4 | 15.5
24090 | 49 i 4397.3 | 17.9

3. ESTIMATION OF DILATION.

The dilation at any point in the floor of the control
jurisdiction is cldsely approximated by the function

m{gd.) = k(E/a)f(g) (3)

where k is the arithmetic mean of upper and lower bounds in the
interval from 1 to 1.8934 on the set of values of the function
h(J) assaociated with the geodetic latitudes of the points in the
floor. Indeed, if h, is a lower bound,; h= is an upper bound, and

k = (hy + ha)/2 (&)

thens; as shown in appendix D, the dilation at any point in the
floor must satisfy the inequality

maglms, — m(ge?] £ [the — hyd/(hy + he)Imig:). (7)

Thuss if the bounds are 1 and 1.0@34 (i.e.y k is 1.€917) then the
use of m(g.) as an esimate aof the dilation at any point on the
surface of the earth model results in an estimation error that is
at most @.17 percent of the estimate. Table 2 implies that
tighter bounds than these apply to smaller regiaons aof the surface
of the earth. Consequently, as demonstrated in examples 1 and 2,
greater estimation accuracies can be realized over the floor of
an ACF control jurisdiction.



maglum(n) = vin,ge)l < L{ha = h1)/(hs + he)llvin,ge) + nl (1)

for every point p in the floor of the control jurisdiction. As
will be seeny, it is possible to keep v(n,g.) below @.@352n on the
floaor of an ACF control jurisdiction that fulfills the size
requirements of the AAS specification. Statéd amother way, if
the system plane point of tangency and the radius of the
conformal sphere supporting the system plane are properly
selected then vin,;g:) will differ from the magnitude of the
difference between the dilation and n by at most

Vin) = 1.035280(hw - hy)/{hy + h=)1n. (11)
Since he - h; is at most ©.9@034 and h, + he is never less than 2
it follows that V(n) is at most ©0.176 percent of n. In practice,
the value of V(n) can be made much smaller than this. For

instance, VIin) is @.0002%6n in example 1 and it is @.800115n in
example 2.

-4, SELECTION OF THE SPHERICAL SUPPORT RADIUS.

Assuming that the earth madel representation of the point of
tangency is known (i.e., the angle g. is defined) the estimate
m(g.) can be viewed as a function of the parameters E and g., and
it is clear that to each positive number that might be used as
the radius of the spherical support for the system plane there
corresponds some maximum value, other than @, of vin,g.) on the
floor of the control jurisdiction. Fortunately, among all such
numbers it is easy to locate one for which the maximum is least.
As shown in appendix E, this optimal radius is

Ec(n,FesGe) = Bnlark)/LT(Fg) + F(Ge) ] ) (127

where F. and G. represent the minimum and maximum angles,
respectively, subtended at the center of the earth model by the
system plane point of tangency and a point within any conformal
representation of the floor. Using r to represent the ratioc of
f(G.) to f(Fg), the farmula

Valn,r) = nl(r - 1)/(r + 1)1 (13

supplies the corresponding maximum value of the magnitude of the
difference between n and the estimate of dilation on the floor of

the cantrol jurisdiction. IT the earth model representation of
the point of tangercy is located in the floor then f(F.) is 1
(1.€.5 Fe. 18 @) and vei{n,r) takes aon the value
Vo iny F{G.:)) = nwi(G) (14)
where
w(B.) = [f(G.) — 11/0F(G.) + 113. (15)



column upper bounds the magnitude of the difference between w(G..)
and w(B). As demonstrated by the table, the estimate of the
maximum deviation of the dilation from n associated with the
optimal radius is not significantly different from the deviations
assaciated with the suboptimal radii. In other words, if the
great circle distances De and D= are available then there is
little reason for one to be reluctant about employing
Eo(n,De/6@,Dn/6@) as the radius of the spherical support for the

TABLE 3. BOUNDS ON maglw(G.) - w{(B)J1 AND
maglw(B.) - Ww(Dw/6@)1]

Do ! G i w(Dwu/60) or w(B) | Bm{Dg) | Ba(BG)
{nmi) | (deg) | (1@—*=) V1) L (1@ )
3868 | S5.00 | ?.5 ! @.0354 | @2.0011
600 | 10.90 | 38.1 i ©.13%97 | @.9022
P03 | 15.00 | 85.9 i\ 9.3137 | ©.9932
1209 | 20.20 | 183.1 i ©9.9587 | ©.09043
1500 | 25.900 | 239.8 i 9.8764  @.0055
1890 | 30.990 | 346.5 1 1.2687 | 9.9066
1815 | 39.25 | 352.4 1 1.2906 | O.9866
2199 | 35.090 | 473.5 1 1.7399 | @.9977
2400 | 40.00 | 621.2 | 2.2892 | 2.008°

system plane. Likewise, E.(n,F,6) can be used as the radius of
the supporting sphere whenever the angles G and F are available.
Appendix G discloses the procedure used to generate the bounds in
table 3.

The parameters D&, Dw, F, and G may not be readily available.

For example, there is always some inherent distortion associated
with any planar representation of a portion of the surtace of the
earth, and so it is not possible to obtain an exact determination
of the distances De and De from a standard map illustrating the
boundary of the flocor of the control jurisdiction. On the aother
hand, the latitude and longitude of each radar in the network of
radars supporting the surveillance function of an ACF will most
certainly be known. This information together with the latitude
and longitude of the tangency point can be used to compute the
degree measures of the minimum and maximum angleés Amiw aNd Ama
subtended at the center of the earth by the earth model
representation of the point of tangency and a location on the
madel surface corresponding to the latitude and longitude of a
member of the radar network. Also, it is most likely that some
reasonable upper bound S on the ranges of the network radars will
be available. For examples the maximum effective range of the
search radars employed in NAS is often quoted as being 2909 nmi.
Consequently,s the sum of the degree measure of Amna. and the ratio
of 8 in nmi to &9 can he viewed as a reasonable estimate oTf the
degree measure of G. In like manner, the angle F can be taken to
be the maximum of the numbers @ and Amninw — S/60. In those cases
where the members of the radar network are not endowed with the
same effective range, this technique can be extended to provide

9
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of motion of the representation, and the magnitude of the
acceleration is in the neighborhood of the product of 1/64d,
pi/180, s(d/&d), and the square of c.

Minimization of the parameter r does not guarantee that the
maximum value of the slope of the dilation estimate on the floor
of the control jurisdiction will be a minimum. The maximum value
of the estimate on the floor assocciated with the optimal radius
is the sum of v.(n:r) and n. Thus,

Sa(NirsBe) = Lva(n,r) + nltan{BG./2) (18

is the maximum value of the slope of the estimate on the flaor
associated with the optimal radius. Since G; is not necessarily
a monotone increasing function of r there is little reason to
believe that the best position for the point of tangency is a
location that renders r a minimum.

A good position for the tangency point is any location that
minimizes the maximum angle G. subtended by the point of tangency
and 8 paint in a conformal representation of the floor.
Regardless of the location of the tangency point, the parameter r
is at least -1 and at most f(G.). As a result,

Sa Ny T(G) 38:) = Nnlw(B:) + 11tan(G./2) (19)
bounds the maximum slope s.(n,rsG.) from above and
Se (Ny1:6e) = ntan(Ge/2) (29)

baounds it from belaw. Since w(BG.) is an increasing function of
G. the same is also true for the magnitude of the difference
between these bounds. Also, (19) implies that the maximum slope
SolnsryGe) differs from the lower bound by at most 100w((G.)
percent of that bound., Finally, as shown in the previous
section, nNw(G.) upper bounds vei{nsr). Thus, there is ample
reason to view the function w(G.) as a measure of goodness of the
location aof the point of tangencys and much can be gained by
selecting a location for the tangency point for which the angle
G. is least.

Table 3 illustrates that the sensitivity of the measure w(BG.) to
the position of the earth model representation of the point of
tangency is not so critical that one needs to resort to powerful
optimization techniques in order to find an appropriate location
for the tangency point. For examples w(Du/60) increases from
@.02398 tao @.¥4735 as Dw increases from 13500 nmi to 219090 nmi.
Thus, the rate of change of the measure per unit change in
distance is roughly @.00004 nmi—* when the largest great circle
distance separating a point in the floor of the control
jurisdiction from the earth model representation of the point of
tangency is in the neighborhood of 1899 nmi. Consequently, an B87
nmi movement of g will result in a change in the measure w(Dw/&9)
of about 18 percent. In fact, the value of w(Da/68) increases

11



longitude of g. when the nymber of points in the set R is
infinite. 0On the other hand, if R is finite then the
determination of the latitude and longitude of g reduces to a
linear programming problem. The following algorithm is a
prescription for setting up the linear programming problem and
acquiring the conformal latitude and longitude of qg. from the
problem solution. A detailed development of the algorithm is
provided in appendix I.

Algorithm., Tangency point selection via linear programming.

Input data for the algorithm consists of n pairs of numbers
(Lay Madseeas(limy Ma) where L. and M. are the longitude and
confarmal latitude, respectively, of the kth (k = 1,...3yn) memhber
Puw 0f a finite set R of n points on the surface of the earth
model that represents the extent of the floor of the control
jurisdiction. 1In effect, the pair (L., M.) represents the
spherical coordinates of the conformal representation of p. on
the unit sphere. It is assumed that the caonformal representation
of the entire set R on the surface of the unit sphere i1s a subset
of a hemisphere. Gince the floor of a control jurisagiction
meeting the AAS design limit on the size of the coverage region
of an ACF is much less than half the surface of the earth model,
this assumption is satisfied in any case where R is a subset of
any portion of the model surface that qualifies as the floor of a
control jurisdiction in the context of the AARS specification.

a. Construct a 3xn matrix B such that the elements of the
kth column of the matrix are the Cartesian coordinates of the
kth element of the set R on the unit sphere. Thus, the 3x1
matrix

i cos{Muicaos (L) | )

b = | cos(Mu)sin(L.) (22)
i sin(M.) ;

is the kth column of B.

b. Construct the nxn symmetric matrix A that 1s the result
of premultiplying the matrix B by its transpose.

c. Letting 1 represent the nxl matrix with identical
elements equal to 1, 17T the transpose of 1, and @ the nxl matrix
with identical elements equal to @, find an nx! matrix x and a
scalar r such that the scalar is a minimum subject to the
constraints that r and all the elements of x are nén—-negative,

Ax - rl = @, (23)

and
1™ = 1. (24)
This is a linear programming problem in n + 1 variables (i.e., r

13



closed curve constructed ‘opn the surface aof a specific confarmal
sphere. The radius of the sphere is the arithmetic mean of the
equatorial and polar radii of the earth model (i.e., 3:438.1464
nmi) and the curve consists of four great circle arcs esach of
which is exactly 2509 nmi in length. As shown in appendix J, the
center of the smaller of the two regions bounded by the four arcs
is separated from each vertex of the boundary by a great circle
distance of 1,811.774 nmi. If the AAS design limit is
interpreted to be the radial projection of the smaller region
onto the surface of the earth model then the limit corresponds to
the somewhat fuzzy, but nevertheless realistic, notion of a
region of the model surface having a square-like perimeter that
is approximately 10,909 nmi in length and a centrally located
point that is roughly 1,812 nmi from each vertex of the
perimeter. In fact, as shown in appendix J, adjacent vertices of
the perimeter are separated by a great circle distance that is
between 2,495.8802 nmi and 2,3594.198 nmi, and the great circle
distance between the centrally located point and any vertex of
the perimeter is not less than 1,808.732 nmi nor more than
1,814.817 nmi. Needless to say, the maximum great circle
distance separating the centrally located point from any other
point in the square-like region cannot exceed the upper bound of
1,814.817 nmi.

Some very definite implications with respect to dilation are
associated with a design limit that is a region of the. surface of
the earth model with a centrally located point that is separated
from any other point in the region by a great circle distance
less than or equal to a prescribed maximum Do, that is itseilf
known to be less than 1,815 nmi. Specifically, the floor of any
ACF control jurisdiction commissioned in the AAS can be
envisioned as being embedded in the design limit. Thus,
regardless of the location of the point of tangency and the size
of the radius of the sphere that supports the system plane. the
euclidean norm of the difference between the dilation and the
design constant n on the floor af the control jurisdiction will
not exceed the maximum value of the norm of the difference on the
design limit. Consequently, there is no reason why the norm of
the difference on the floor should ever exceed the maximum value
of the norm an the limit in the case where the point of tangency
is centrally located with respect to the limiting region and the
size of the conformal radius is the subobtimal value
Eo(ny@,D,_/60). Since D, is less than 1813 nmi, it follows from
table 3 that this maximum norm is less than #.0352n. As a
result, it can be concluded that the magnitude of the difference
between the dilation and n on the floor of a control jurisdiction
falling within the AAS design limit can ce kept below ¢.835&n by
(1) assigning a location to the point of tangency such that among
all possible positions for the tangency point the maximum angle
subtended at the center of the earth by the assigrned location ang
a point in a conformal representation of the floar is essentially
minimal and (2) using either one of the numbers E.(N:Dp/60,Dn/68)
and E.(n,:F,G) as the radius aof the conformal support for the
system plane.
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most 1.0352n and the minimym dilation is at least 9.94648n. In
other words, if the tangency point and the spherical support
radius are selected in accord with the techniques outlined in
this report then the dilation will deviate from the dilation
design constant by at most 3.52 percent of the constant over the
control jurisdiction of any ACF commissioned in the AAS.
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APPENDIX '‘By,. ANGLE ESTIMATION ERROR

The angle g subtended at the center of the earth model by points
p and g on the model surface is a fairly good estimate of the
angle g. subtended at the same location by canformal
representations of the points. Since the longitude of a point on
the earth model is the same as the longitude of the conformal
representation of the point, the difference between the two
angles is due solely to the fact that the geocentric and
canformal latitudes of the same point on the model surface are
not necessarily the same. In fact,

cos(g) = sin{x)sin(y) + Alcos(x)cos{y)] (B-1)

where x and y are the geocentric latitudes of points p and g,
respectively, and A is the cosine of the difference between the
longitudes of the two points. The corresponding formula for
cos(g.) can be obtained from the expression for cos(g) by
replacing x with the confarmal latitude x. of the point p and vy
with the conformal latitude y. of the point g. Since the
geocentric and conformal latitudes of a point on the surface of
the earth differ by at most 2.000141« it is apparent that the
difference between the angles g and g. is small,

As already shown in appendix A, the magnitude of the difference
between the degree measure of g and the product of 1/60 and the
great circle distance d in nmi separating the points p and g 1is
at most 2.18 percent of d/6@,; and so the ratio d/é6@ should
provide a good estimate of ge. In fact, since g. - d/6@ is the
same as the sum of g - g and g - d/60 it follows that

mag(g. — d/68) £ magi{ge - g) + magl(g - d/é6d). (B-2)

As a result, mag(g. - d/6@) is bounded above by the sum of the
bound 2.9018(d/&@) on magl(g - d/é@) and any upper bound on the
degree measure of mag(g. - g).

A numerical bound on the difference between the angles g and g
can be derived in terms of the gradient vector of the function
arc cos{g) with respect to the arguments x and y. Specifically,
if C is an upper bound on the magnitude of the gradient vector
for all possible values of x, y, and A then

mag(g — ge) £ Clix — %)™ + (y — y)®B]1/B, (B-3)
Since 2.202141« is an upper bound on the'degree measures aof
mag({x — x<) and magl{y - v.) it follows that the degree measura of
the magnitude of the difference between g and g. cannot exceed
the bound
B = CL2(@2.98@8141)®]r =, (B—-4)

It only remains to provide a numerical value for C.
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APPENDIX C. EFFECT OF ANGLE ESTIMATION ERROR
ON THE COMPUTATION OF DILATION

If x is the degree measure of an angle that is less than 1890<, vy
is the degree measure of a like angle, and x and y differ at most
by a positive number p{(x) such that the sum of x and p(x) is less
than 188« then the ratio f(x) of 2 to 1 + cos(x) must satisfy the
inequality

magifiy)/f(x) = 131 £ Bi(x,p(x)) (C-1)
where
Bix,p(x)) = f(x + pi{x))/f(x) = 1. (C-2)

Indeed, f(x) is a positive function of the degree measure x on
the interval I of nonnegative numbers less than 180, and so

maglf(y)/f(x) - 11 = [1/f(x)Imaglfiy) — f(x)1. (C~3)

Also, the first and second derivatives of f(x) with respect to x
are nonnegative functions on I. Thus,

maglf(y) — F(x)1 < Fix + pix)) — Fx) (C-&)

and the bound B(xsp(x)) follows directly upon dividing both sides
of the inequality by f(x).

As shown in appendix B, the great circle distance d in nmi
separating points p and g on the surface of the earth model and
the degree measure of the angle g. subtended at the center of the
earth by conformal representations of p and q satisfy the
inequality

magld/60 - g1 £ p1(d/é@) (C-3)
where
p1(d/é@) = B.0018(d/&) + @.00@282, (C-6)

If the sum of d/&6@ and p,(d/&P) is less than 180« (i.e., d is
less than 19780.58 nmi) then

B.(d) = B(d/&@,p.(d/60)) . (C-7)

is an upper bound of the magnitude of the difference between 1
and the ratio of fl{gg) to fi{d/60).

In appendix B it is shown that the degree measures of g. and the
angle g subtended at the center of the earth by the points p and
q differ at most by

p=(g) = 0.000282. (C-8)
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APPENDIX D. ACCURACY OF THE DILATION ESTIMATE

Suppose that x, and xz= are numbers such that the former is less
than the latters x.. is halfway between the limits x, and x=y t is
somewhere between the limits, and n is any number inside or
outside of the interval extending from %, to x=. If both x. and
t lie on the same side of n then the distance separating

magi{xs - n) from mag(t - n) is the same as the distance
separating x. from t. Otherwise, the distance separating

magi(x. - n) from mag{(t - n) cannot exceed half the distance
separating x, from x=. In any case, the distance separating xo
and t can never be greater than half the distance between x, and
Xe= o In other words, the inequality

maglmag{(x.. — n) — mag(t - n)1 £ (xm — x31)/8 (D-1)
is valid for any number n.

If factor h{(J) in (2) is bounded below by h, and above by h= then
the dilation my lies between the limits

X1 = [him(g.?1/k (D-2)
and

Ko = Ehz—r_m(gc:)]/k- (D-3)

If, in additions k is the arithmetic mean of h; and h= then m(ge)
is halfway between the limits, and the distance separating magim,
- n) and magim{g.) — nl cannot exceed

(Xes — %2)/2 = (1/20(he =) /kIm(ge:). {D-4)
Moreover, if m(g.) is not less than n then 1t is the same as the
sum of maglm(g:) - nl and n. Otherwise, the sum exceeds mig.’.
In any event,

(Xxm — x1)/82 £ (1/2)0(he — hy)/kl{maglm(gs) - nl + m (D-3)

for any number n, including ©.
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APPENDIX F. ESTIMATION OF ANGULAR EXTREMUMS

Let ang(xsy) represent the degree measure of the angle subtended
at the center of the earth by any two points x and y. Also, let
G represent the least upper bound of the set A of all numbers aof
the farm ang(g;p) where q is the earth model representation of
the point of tangency and p is a point in the floor K of the
control jurisdiction. If there is a point s in the floor such
that ang{(gss) is the same as G then G is the maximum angle
subtended at the center of the earth by g and a point in the
floor. O0Otherwise, the notion of a maximum angle is meaningless
and it is necessary to resort to the concept of a least upper
bound. In any event, an inequality identical to (3) can be
established for G and the least upper bound G. of the set A. of
all numbers of the form ang(g. »p.’) where q. is the tangency point
and p. is a member of the conformal representation K., on the unit
sphere of the floor K. Likewises it can be shown that the same
inequality applies to the greatest lower bounds F and F. of the
sets A and A., respectively.

The mapping ang(g,p’ is a continuous function of p an the surface
of the earth model, and the closure of K (i.e.y the set of all
points that are in the floor and the boundary of the floor) is a
bounded closed set in euclidean 3-space. Thus, angl{q,p) attains
absolute minimum and maximum values an the closure of the floor,
and so0 there exists a point t in the closure such that ang(g,t>
is G. The inequality (3) implies that

ang(Qeste) > G - z ' (F-1)

where t. is the conformal representation on the unit sphere of t
and the symbol z represents ©.99¢¢0282<. Since the relationship
between geodetic and conformal latituges is a homeomorphism
(i.e.s a bijective function for which both the function and its
inverse are continuous) the same is true of the transformation T
that maps the surface of the earth model into the confarmal
representatian of the maodel surface on the unit sphere. Thus,
the closure of the conformal representation K. of the floor is
the image of the closure of the floor under the mapping T.
Consequently, t. is a member of the closure of Ko, and it follows
that

ang(gecsrte) £ Ge. (F-2)
Clearly, (F-1) contradicts (F-2) under the assumption that G
exceeds the sum of B. and z. As a result, it must be concluded
that
G £ G + z. (F-3)

The inequality

F >Fe - 2 (F=4)



b(pi/Z1801)G & dist(g,t) < al{pi/18@)06 (F-11)
where a is the equatorial radius of the earth model in nmi and b
is the polar radius in nmi. Since Dy is at least dist(g,t) and
ang{g,s) cannat exceed G, it follows that

b(pi/188)6 £ Dy £ al(pi/180)6. (F-127

Following the argument in appendix A, it is now a simple matter
to show that

mag(De/6@ — G) £ B.9018(Du/60) (F-13)
and

mag{é@G — Dw) £ 0.0018(696G). (F-14)
In like manners it can be shown that mag(D=/6@0 - F) cannot exceed

¥.18 percent of De/60 and mag(6@F — De) is never greater than
@.18 percent of &4F.
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BL(B) = C(G,pri(B)) (G-9)

whenever the sum of G and p=(BG) does not exceed 124.16%.
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ta the norm of w. Ve
The conformal representation R. of the set R is closed and
bounded. Specifically, the norm of each element of R. is bounded
above by 1, and so R. is certainly bounded. Alsos; the bijection
T and its inverse T—* are continuous functions. Consequently,
since R is closed, the image of R under the transformation T
(i.e.y Rg?) is itself closed.

Amang all the vectors in the convex hull H(R:) of the set R«
there exists one, and only one;s vector w with a norm that is less
than the norm of any other vector in the hull. The assumption
that there is a unit vector g and a positive number t such that

Y in R implies (z,y) 2 ¢t (H=-1)

guarantees that R.s; and hence, the convex hull of R., is a subset
of the convex set

J = {y: norm{y) £ 1 and (z,y) > tI. (H=-2)

Since t exceeds ©; the origin of E® is not a memher of J. Alsa,
since R: is closed and bounded, the set H(R:) is closed and
bounded. Thus,s by virtue of a well known theorm on the minimum
distance to a convex set (Luenbergers D., Optimization by Vector
Space Methods, John Wiley, 1969, page 49) there exists one, and
only aones vector w in the convex hull of Re such that

Y in Re implies (wyy) 2 [norm(w? 1%, {(H-3)

and the narm of w is strictly less than the norm of any other
member of H(R:).

If x is a unit vector then there exists a vector s(x) in R« such
that

Yy in Re implies (x;8(x)) < (x5¥)> (H-4)

and (xss({x)) is a continuous function of x on the set U aof all
unit vectors. As & result, there exists a unit vector x. and a
member y. of R. such that

(Rosy) 2 (Xer¥e) 2 mind{(x,y): y in Re> (H=-9)

for every unit vector x and every member y of Rz. The existance
of s(x) is guaranteed by the fact the inner product (x,y) is a
continuous function of y and the set R: is both closed and
bounded (i.e.s a continuous function attains an absolute minimum
and an absolute maximum on & closed and bounded set in E®).

Also, like R.y the set U is closed and bounded. Thus, the
product set UxR. is a closed and bounded subset of the product
space E®xE®, Since the inner product of two vectors is a
continuous function on this space, the inner product is uniformly
continuous on UxR.. As a result, the function (x,s(x)) is
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APPENDIX I. A -LINEAR PROGRAMMING APPROACH TO
TANGENCY POINT SELECTION

In this appendix it is assumed that the extent of the flgor of
the cantral jurisdiction is fairly represented by a finite set R
of n paints on the surface of the earth model. For example, each
member of R might be a location on the model surface defined by
the geodetic latitude and longitude of a radar or it might
consist of a group aof points more ar less uniformly scattered
over the floogr. In addition, it is assumed that there exists at
least one unit vector z such that the angle subtended at the
center of the earth by z and any one of the n members of the
conformal representation R. of R on the unit sphere is less than
0= . As pointed out in appendix H, this assumption is satisfied
in any case where R fairly represents the extent of the floor of
a control jurisdiction meeting the AAS design limit on the size
of the coverage region of an ACF. Alsos as established in
appendix Hs; the closed nature of R and the existance of the
vectar z imply that the optimal tangency point is merely a scalar
multiple aof the minimum narm vector w in the convex hull H(R.) of
Rz. Consequently, the longitude of w is the longitude of the
earth model representation q. of the optimal tangency point, and
the geocentric latitude of w is the conformal latitude of q.. As
will be seen, this appendix discloses a practical technique for
finding ws and hence, gGes in terms of the solution of a linear
programming problem.

The set R. is represented by a 3xn matrix B, The kth column of B
is @ function of the longitude L. and the conformal latitude M.
of the kth member of the set R that describes the extent of the
floor of the control jurisdiction. As indicated in figure I-1,
the center of the earth is viewed as the origin of a Cartesian
coordinate system with axes 1,2, and 3 where axis 3 coincides
with the polar axis of the earth and the positive direction along
axis 3 is from the South Pole to the North Pole. The element b ;.
in the jth row and kth column of the matrix B is defined in terms
of the formulas

biw = cos(Mulcos(lu), (I-1)
baw = cos(M.)sin(l.), (I1-2)

and
Daw = sin(Mu). (I-3)

Thuss the kth column of the matrix B is a 3x1 matrix b. with
elements blu:, bzak-,, and b:—sug-

The mimimum norm member of the convex hull H(R.) of R. is a 3x1
matrix obtained by postmultiplying B by an nxl1 probability
matrix. AN nxl matrix x is a probability matrix if all
components of the matrix are non-negative (denoted by x 2 @) and
a sum of 1 is obtained when the transpose x7 of x is
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postmultiplied by the nx! wvector 1 with identical components
equal to 1. Since the convex hull of a finite set is just the
collection of all convex linear combinations of the elements of
the set, H(R.) is equivalent to the set of all 3x1 matrices of
the form Bx such that x > @ and x71 = 1.

Letting A represent the nxn symmetric semipositive definite
matrix formed by premultiplying B by its transpose BT, the
minimum norm element of the convex hull of R. is a 3x1 matrix of
the form Bx where x is any nxl matrix that minimizes the function

Gix) = xTAx (I-4)
subject to the constraints
x7L -1 =0 (I-3)
and
x > @. (I-6)

The constraints merely restrict x to the set of nxl probablity
matrices. The function G(x) is the result of premultiplying the
3x1 matrix Bx by its transpose, and so it is just the square of
the norm of Bx.

Every solution of the constrained minimization problem is a
probability matrix x satisfying the equation

Ax — rl =@ (I-7)

where r is a scalar and g is the nx1l null matrix (i.e., the
elements of @ are identical and equal to @). This result Tollows

directly from a straight forward application of the generalized

method of Lagrange multipliers to the problem of minimizing G(x)
subject to the constraints (I-3) and (I-&).

Any soclution of the linear programing problem in n + 1
variables of minimizing the linear functional r subject to the
constraints

A 1 Y x 2
o ———— e R Rttt i (1-8)
1Ty e 0 - ' 1 '
and
' x i
_____ V> 3. (I-9)

r H

is a solution to the problem of minimizing G(x) subject to the
constraints (I-3) and (I-6). The scalar r in equation (I-7) is
merely the square of the norm of Bx. This fact can be verified

o
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APPENDIX. J. SPHERICAL SQUARES

If x is a positive number not greater than 929 then there exists a
spherical square on the surface of a conformal sphere in the
sense that it is possible to select four distinct points pws pis
P=s and ps (i.e., the vertices of the square) on the surface of
the sphere such that x is the degree measure of the angle
subtended at the center of the earth by any pair of adjacent
vertices (i.e., vertices pmcs> and pmecs +» 15> where i is any
nonnegative integer and m(i) represents the integer i modulo 4).
The spherical coordinates of a point on the sphere consist of the
radius of the sphere, the latitude of the points and the
longitude of the point. Let x/2 represent the latitude of p, and
Pms —(x/2) the latitude of pa and pas L the longitude of pm and
P=s and -L the longitude of pe and pi. The degree measure A of
the angle subtended at the center of the earth by p. and p= is
the same as the degree measure of the angle subtended at the same
location by p- and pms. The cosine of this angle is just the
inner product of the direction cosine vectors of p, and p=.

Thus,

cos(A) = cos®B(x/2)[2cos®(L) — 1] + sin®(x/2), ‘ (J-1)

and so cos(A) decreases from | to —-cos{(x) as L increases from &
to 99=. Since x is not greater than 99= it follows that A
increases from @« to at least 90« as L moves from 0@ to 90<,
Consequently, there exists a degree measure L. not greater than
99+ such that A is x when L takes on the value L.s and (J-1)
implies that

cos®(L.,) = cos(x)/cosP(x/2). (J-2)

In other words, the points pws Pis Pmsy and pms become the vertices
of a spherical square when L is L..

There is a point t on the surface of the sphere associated with
the spherical square defined by the vertices paspispPz=s 3nd pam
that is centrally located with respect to the square in the sense
that the degree measure B of the angle subtended at the center of
the earth by t and a vertex of the square is the same for all
vertices of the squares the cosine of B is the square root of the
cosine of the angle subtended at the center of the earth by
adjacent vertices, and the angle subtended at the center of the
earth by t and any point p on the shortest great circle arc
connecting adjacent vertices is at most B. Let t be the point on
the sphere corresponding to @ latitude and @< longitude. From
considerations of symmetry it is apparent that the degree measure
B of the angle subtended at the center of the earth by t and a
vertex is the same for all vertices. Alsa, the cosine of B 1s
just the inmner product of the direction cosine vectors of t and
any one of the vertices, and so

cos(B) = cos(x/2)cos{L,) = [cos(x)]1*"=, (J-3)
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