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EXECUTIVE SUMMARY 

There are two basic elements involved in the design of a 
stereographic projection system for an area control facility 
<ACF>. One of these is the geometric relationship between an 
ellipsoidal model of the sea level surface of the earth and a 
plane surface on which stereographic images of points on the 
model surface can be displayed. The other is a projection 
algorithm that converts the altitude and radar measurements of 
the slant range and azimuth of an aircraft into a point on the 
plane that is an estimate of the actual stereographic 
representation of aircraft latitude and longitude. The display 
surface can be viewed as a plane tangent to a sphere with a 
center that is collocated with the center of the earth. The 
geometric relationship between the plane and the ellipsoidal 
earth model is specified by the radius of the sphere and the 
point of tangency. These two parameters determine the dilation 
characteristic on the control jurisdiction of the ACF. The 
structure of the projection algorithm pretty much determines the 
size of the projection error (i.e., the distance between the 
estimate of aircraft latitude and longitude and the actual 
stereographic representation of these angles>. However, for a 
given projection algorithm, the error size does change with the 
geometric relationship between the earth model and the 
stereographic plane. 

This report is concerned with the structure and performance of a 
projection algorithm developed at the Federa.l Aviation 
Administration Technical Center. Methods for achieving an 
optimal dilation characteristic are covered elsewhere. While the 
performance evaluation of the algorithm is based on the 
assumption that the geometric relationship tetween the earth 
model and the stereographic plane optimizes the dilation 
characteristic on the control jurisdiction, the evaluation 
methodology avoids the need to deal directly with this geometry. 
As a result, it provides an efficient means for testing algorithm 
performance for all possible radar site locations within the 
border of any ACF that might be commissioned in the Advanced 
Automation System. 
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1 . INTRODUCTION. 

Since the inception of the Design Competition Phase of the 
Advanced Automation System <AAS> program, a great deal of effort 
has been expended in the development of projection algorithms. 
In August 1985 the Government provided both the International 
Business Machines Corporation and the Hughes Aircraft Corporation 
with the details of a projection scheme developed at the Federal 
Aviation Administration <FAA> Technical Center. By the fall of 
1986, both corporations were able to come up with algorithms of 
their own. This report discloses the results of computer 
experiments performed at the FAA Technical Center for the purpose 
of evaluating the FAA algorithm. 

The objective of the FAA algorithm <reference 1> is the same as 
that of the projection algorithm currently employed in the 
National Airspace System <NAS> (i.e., to provide a stereographic 
representation of the latitude and longitude of an aircraft from 
reported altitude and radar measurements of slant range and 
azimuth>. The FAA algorithm is a simple nonrepetitive procedure 
that involves the application of correction factors to the output 
of the NAS algorithm which by itself is unable to meet the 
accuracy requirements of the AAS. The algorithm is based on the 
fact that when the actual stereographic representation of the 
aircraft and the representation provided by the NAS algorithm are 
viewed as complex numbers then the differences between the 
magnitudes and the phases of the two number~• are approximately 
sinusoidal functions of azimuth <references 2 and 3> and the 
amplitudes of the sinusoids can be estimated by known functions 
of slant range and altitude. In essence, tre FAA algorithm 
involves the addition of sinusoidal correction factors to the 
phase and magnitude of the output of the NA:; algorithm. 

The remainder of the report consists of seve!n sections. Section 
2 is a brief description of some pertinent cetails regarding the 
structure of a stereographic projection system for an air traffic 
contra 1 f ac i 1 i ty supported by numerous surve• i 11 ance radars. In 
section 3, a method is disclosed for evaluating the accuracy of a 
projection algorithm that is essent i a 11 y i nc!ependent of the 
location, size, and structure of the coverage region supervised 
by the facility. Section 4 is a description of the data used in 
the evaluation of the FAA projection algorithm. Numerical 
results are presented in section 5. Section 7 deals with the 
mechanics of the FAA algorithm which, as a lr·eady indica ted, is 
closely related to the projection algorithm currently employed in 
NAS. Details of the NAS algorithm appear in section 6. 
Concluding remarks can be found in section El. 

2. BACKGROUND. 

Separation standards in NAS are maintained through control from 
the ground of the separation of aircraft in at least one of three 
dimensions, namely, altitude, latitude, and longitude. Aircraft 
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altitude is conveyed to the control facility by voice 
communication or transponder replies to radar interrogation 
messages. The remaining dimensions are obtained indirectly 
through some data processing scheme <i.e., the projection 
algorithm> that manipulates raw surveillance information <i.e., 
reported altitude and radar measurements of slant range and 
azimuth>. 

From an idealistic viewpoint the projection algorithm is supposed 
to provide a point on a plane surface (i.e., the system plane of 
the control facility> that is the stereographic representation of 
aircraft latitude and longitude with respect to some ellipsoidal 
earth model <e.g., the reference ellipsoid chosen for the North 
American Datum of 1983 <reference 4>> that approximates the 
geoid. The plane is tangent to a conformal sphere <i.e., a 
sphere with a center that is collocated with that of the 
ellipsoidal earth model>. The point of tangency and radius of 
the sphere are chosen <or at least should be chosen> so as to 
optimize the dilation <reference 3, part II and reference 5> over 
the floor of the control jurisdiction <i.e., the portion of the 
surface of the earth model directly beneath the airspace that is 
under the supervision of the control facility>. The control 
facility attempts to separate aircraft in one or both of the 
dimensions of latitude and longitude by keeping whatever points 
are provided by the projection algorithm a prescribed distance 
apart. However, data processing schemes with the same objective 
do not necessarily perform equally well and, regardless of the 
accuracy of the raw surveillence information, there is always 
some difference (i.e., a projection error) between the actual 
stereographic representation of an aircraft and the point 
representation provided by any practical projection algorithm. 
If the difference is large then there is some question as to what 
is being controlled <e.g., latitude and longitude or something 
else>. If it is small then there is no such question. 

The projection algorithm currently employed in NAS generates 
errors as large as 0.2 nautical mile <nmi> <references 2 and 3). 
In the case of the AAS the requirement is that the projection 
error shall not exceed 0.005 nmi <reference 6> for any aircraft 
under radar control within the jurisdiction of an area control 
facility <ACF>. It is conceivable that a single ACF control 
jurisdiction could include the airspace under 60,000 feet and 
over a portion of the surface of the earth as large as the 
contiguous United States. Practically speaking, jurisdictions of 
this magnitude will only be encountered in ACFs charged with the 
control of oceanic air traffic, and the contiguous United States 
will, as now, be part~tioned into much smaller regions. 
Nevertheless, the projection errors associated with any 
projection algorithm in compliance with the AAS specification 
must not exceed 0.005 nmi over extremely large volumes of 
airspace. While the specification is somewhat vague as to what 
is meant by a large volume, it seems that a sufficient volume for 
any practical purpose can be defined to be the airspace under 
60,000 feet and over that portion of the surface of the earth 



model that extends approximately 1815 nmi in any direction from a 
predetermined latitude and longitude (reference 5>. In what 
follows data are presented that provide strong support for the 
contention that the FAA projection algoritrm satisfies the 0.005 
nmi error criterion over just such volumes of airspace. 

As will be seen, it is possible to show th~t the FAA projection 
algorithm meets the 0.005 nmi error require,ment of the AAS 
specification without resorting to a determination of the radius 
of the spherical support of the system plane or the location of 
the system plane point of tangency. On the! other hand, both of 
these parameters must be evaluated in any cperational 
environment. While this report does not acldress that problem, 
methods are available <reference 5> for determining an optimal 
radius for the conformal sphere that suppor·ts the system plane 
and an optimal location for the system plane point of tangency. 

3. TEST METHODOLOGY. 

Projection error is a function of many variables aside from those 
that describe the location of the aircraft relative to the radar 
from which slant range and azimuth are measured. Some of these 
define the location in absolute terms of the radar (e.g., radar 
site latitude and altitude). Others describe the location, size, 
and structure of the ACF as a whole (e.g., the radius of the 
conformal sphere that supports the system plane, the latitude of 
the point of tangency, and the distance measured in the system 
plane between the point of tangency and the stereographic 
representation of the radar site>. While one can conduct a brute 
force evaluation of a projection algorithm by examining 
projection errors in the ACF system plane, it is clear that any 
such evaluation will be dependent upon factors unique to the 
location and overall structure of whatever ACF is involved in the 
testing procedure. 

A better approach to projection algorithm e?valuation is available 
that takes advantage of an upper bound on E~rror that is derived 
from the simple bilinear transformation (i,e., the transformation 
equation <references 2 and 3>> relating two distinct 
stereographic representations of the same :~atitude-longitude 
pair. These are the representation in the system plane and the 
representation in the plane tangent to a conformal sphere at the 
latitude and longitude of the radar site. The latter plane is 
sometimes referred to as the local radar plane, and the sphere 
that supports the local plane is rarely tht= same as the sphere 
that supports the system plane. In fact, :he radius of the 
conformal sphere supporting the local plant= is (or should be) 
equal to the distance between the center a·~ the ellipsoidal earth 
model and the point on the surface of the model at the latitude 
and longitude of the radar site. As shown in appendix A, there 
exists an upper bound on the error induced in the system plane by 
a projection error eL in the local plane tt1at can be expressed as 
a function of the local plane error and th'~ dilation design 



constant n <i.e., the design goal for the median value of the 
dilation on the floor of the control jurisdiction <reference 5)). 
Indeed, if eL is less than 1 nmi and the distance in the local 
plane separating the tangency point from the stereographic 
representation of the illuminated radar target <i.e., the target 
ground range> is at most 205 nmi then the distance ea derived 
from the relationship 

ee = 1.094 neL 

is an upper bound on the corresponding error induced in the 
system plane. 

( 1 ) 

The bound defined by equation <1> is valid for any ACF that might 
be commissioned in the AAS. It is also independent of those 
variables that characterize the location and overall structure of 
any such ACF. Thus, the bulk of the work involved in algorithm 
evaluation can be reduced to an examination of errors in the 
local plane. In effect, it is only necessary to determine the 
maximum error that the algorithm can induce in the local plane 
and then compute the corresponding error bound. If the result is 
less than 0.005 nmi when the design constant is set equal to 1 
then it is certain that the algorithm meets the AAS accuracy 
requirement. Needless to say, if the maximum error in the local 
plane is 1 nmi or more then the error bound equation is invalid 
and one must either derive another bound or else reject the 
algorithm on the basis of the local plane data. While the 
derivation of another error bound relationship does not in itself 
present a serious problem, outright rejection of the algorithm is 
th~ appropriate action to take in the face of excessive local 
plane errors. 

4. EXPERIMENTAL SETUP. 

Determination of the maximum projection error in the local plane 
is not a mathematically tractable problem. It is only possible 
to obtain an estimate of the local plane maximum from empirical 
data. Consequently, it is necessary to obtain local plane error 
samples corresponding to enough aircraft positions relative to 
the radar and enough radar locations to establish beyond a 
reasonable doubt that the sample maximum is an accurate estimate 
of the actual local plane maximum. 

The radar locations used in the generation of the error data 
reported here correspond to the 21 altitude-latitude pairs that 
can be formed from 3 altitudes and 7 latitudes relative to the 
reference ellipsoid chosen for the North American Datum of 1983. 
The altitudes are 0, 5,000, and 10,000 feet above the surface of 
this earth model <i.e., an ellipsoid with an equatorial radius of 
3443.919 nmi and a polar radius of 3432.372 nmi). The latitudes 
extend from 15~ north geodetic latitude to 75° north geodetic 
latitude in 10~ increments. 
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Aircraft location relative to the radar can be defined in terms 
of altitude, azimuth, and slant range. AnClther <but equally 
good) specification of aircraft location i!; used here. 
Specifically, relative location is defined in terms of altitude 
and the stereographic representation in thE~ local plane of 
aircraft latitude and longitude. The loca:. plane representation 
of latitude and longitude is commonly expn~ssed as a complex 
number with respect to a Cartesian coordinclte system in which the 
local plane point of tangency is the origin and the imaginary 
axis is the stereographic representation o,~ the meridian plane 
passing through the radar site <references 2 and 3). In the case 
of aircraft locations in the meridian plam~ the phase angle of 
the complex number is identical to the complement of azimuth. 
For other aircraft locations it is close to, but not necessarily 
the same as, the complement of aircraft azimuth angle. As 
already indicated, the magnitude of the complex number conforms 
to the usual notion of aircraft ground ranqe. 

From considerations of symmetry about the meridian plane 
containing the radar, it is to be expected that if the dimension 
of altitude is una 1 tered then the magn i tudt~ of the projection 
error in the local plane associated with a 1,Y complex number 
representation of aircraft latitude and longitude will be 
identical to the magnitude of the error as·:sociated with the 
negative of its complex conjugate. The NAS and FAA projection 
algorithms fulfill this expectation. Cons,2quently, it is 
redundant to consider camp 1 ex number repre~:>entat ions of aircraft 
latitude-longitude pairs in both the right and left half planes. 
For this reason the data reported here is limited to aircraft 
1 oca t ions for which the phase ang 1 es ex tend from -90"'' to +90c> 
(i.e. azimuth angles are less than or equal to 180~). 

Two groups of relative aircraft locations, expressed in terms of 
ground range-phase angle-altitude triplets, were used in the 
generation of the projection error data. One group <i.e., the 
short range group) is characterized by the 20 ground ranges that 
extend from 0.25 nmi to 5.00 nmi in 0.25 nmi increments. The 
other (i.e., the long range group) is characterized by the 21 
ground ranges extending from 5 nmi to 205 nmi in increments of 10 
nmi. In each group, the phase angle-altitJde pairs coupled with 
each ground range are the same. Specifically, 481 phase angle­
altitude pairs were constructed from the 37 phase angles 
extending from -90"'' to +90c=· in 5c:• increments and the 13 aircraft 
altitudes extending from 0 to 60,000 feet in 5,000-foot 
increments. Consequently, there are 9,620 relative aircraft 
locations in the short range group and 10,101 locations in the 
long range group. 

Projection errors were generated by means of the following six­
step procedure using a software package constructed by the MITRE 
Corporation <reference 7>. 
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Procedure 1. 

a. A radar location is selected in terms of an altitude­
latitude pair. Since longitude is missing, this does not provide 
a complete specification of toe position of the radar. On the 
other hand, projection error is independent of the longitude of 
the radar site. Consequently, without loss of generality, the 
altitude-latitude pair together with a longitude of 0~ can be 
used to specify the location of the radar. 

b. A triplet is selected from one or the other of the two 
groups of relative aircraft locations. 

c. The latitude and longitude of the radar site together 
with the aircraft ground range and phase angle are used to 
compute the geodetic latitude and longitude of the aircraft. 
This result and aircraft altitude completely describe the 
location of the aircraft relative to the ellipsoidal earth model. 

d. Slant range and azimuth are computed from the positions 
of the radar and the aircraft with respect to the earth model. 

e. The slant range, azimuth, and altitude of the aircraft 
are input to the projection algorithm, and the algorithm in turn 
outputs an estimate of the stereographic representation in the 
local plane of aircraft latitude and longitude. 

f. Projection error is computed as the euclidean distance 
between the complex formulation of the estimate and the complex 
number associated with the ground range and phase angle of the 
aircraft. 

An error generated in this fashion is here classified as a long 
range error or a short range error depending upon the source 
(i.e., short or long range group> of the ground range-phase 
angle-altitude triplet. 

The reported errors are those that are associated with aircraft 
locations within the radar coverage region. While the total 
number of short range errors generated from all 21 radars is 
202,020 and the corresponding number of long range errors is 
212,121, some of these are associated with aircraft locations 
that are outside of covered airspace (i.e., in the cone of 
silence or else below the radar horizon>. In this report, the 
cone of silence is taken to be that portion of airspace for which 
the radar elevation angle exceeds 85°. In addition, refraction 
effects are ignored and so the airspace in the shadow of the 
earth below the line-of-sight horizon is also considered to be 
outside the coverage region. As a matter of coincidence rather 
than contrivance, it turns out that the number of short range 
errors associated with aircraft locations inside covered airspace 
is the same as the number of long range errors generated from 
covered aircraft locations (i.e., 186,192>. 
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5. RESULTS. 

Table 1 displays the maximum of all projection errors (i.e., both 
long and short range errors> in the local plane that were 
generated from aircraft locations in covered airspace. Also 
shown is the corresponding upper bound 

TABLE 1. MAXIMUM ERROR ESTIMATE 

: Estimate of Maximum Error 
Algorithm in Local Plane (nmi> 

: Error Bound 
<nmi> 

-----------:--------------------------·-:-------------
FAA 0.00310 0.00339 

(derived from equation <1>> on error in the ACF system plane. 
Needless to say, the bound is less than the 0.005 nmi error limit 
of the AAS specification. 

Figures 1 and 2 illustrate the maximum of all projection errors 
observed in the local plane that were generc~ted from aircraft 
locations with the same ground range. As indicated, the maximum 
of all observed errors, regardless of range, was generated at the 
maximum ground range (i.e., 205 nmi>. Also, figures 1 and 2 
demonstrate that the accuracy of the FAA alc.;~orithm improves as 
aircraft ground range decreases. Suprisingly enough, the same 
cannot be said for every projection algorithm. 

The fraction of all observed errors in the long range data that 
exceed a prescribed error bound is displayed as a function of the 
bound in figures 3 and 4. For example, only 10 percent of the 
long range errors associated with the FAA al.gorithm exceed 0.0008 
nmi. As shown in figure 1 all of the short range errors are less 
than 0.0001 nmi and it turns out that only ".01613 percent of 
these exceed 0.00005 nmi. 

6. NAS ALGORITHM. 

A spherical model of the mean sea level suri'ace of the earth was 
used in the development of the NAS projectiCJn algorithm. In the 
case of a spherical earth model the complement of aircraft 
azimuth angle A is the same as the phase anqle of the complex 
number that is the stereographic representation in the local 
plane of aircraft latitude and longitude. t1oreover, the 
magnitude r of this number can be expressed as a simple function 
of aircraft slant range s, aircraft altitude? H above mean sea 
level, radar altitude HF, above mean sea leve~l, and the radius E 
of the earth model. Specifically, 

r = Rx·-·:1. (2) 

where 

R = cs~a- (H- Hf,)lii.!]:t./n ( 3) 
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and 
( 4) 

Thus, in the case of a spherical earth model the complex number 

ZN = r expCj<pi/2 - A>J ( 5) 

is the stereographic representation in the local plane of 
aircraft latitude and longitude. In essence, this is the output 
of the NAS algorithm. 

If the NAS algorithm is to be employed in conjunction with an 
ellipsoidal earth model then, since the radius of the model 
changes with latitude, some refinement of the definitions of the 
parameters H, HR, and E is in order. The altitude of an object 
becomes the distance separating the object from the point on the 
surface of the model at the geodetic latitude and longitude of 
the object and E becomes the distance from the center of the 
earth to the point on the model surface at the geodetic latitude 
and longitude of the radar. Unfortunately, under the assumption 
of an ellipsoidal earth model there are numerous aircraft 
locations relative to the radar for which ZN differs 
substantially from the complex number z that is the stereographic 
representation in the local plane of aircraft latitude and 
longitude. For this reason, the NAS algorithm cannot serve as 
the AAS projection algorithm. 

7. FAA ALGORITHM. 

The FAA algorithm can be viewed as a procedure by which 
correction factors dr and dp are added to the magnitude and 
phase, respectively, of the NAS estimator to construct the 
complex number 

ZF = <r + dr>expCj<pi/2- A+ dp>J ( 6) 

<i.e., the FAA estimator>. 
the formulas 

The correction factors are defined by 

dr = a,.-recos<A> ( 7) 

and 

dp = bFrsin<A> (8) 

where aF and bF are dependent on the altitude and latitude of the 
radar site <references 2 and 3). 

Values for the parameter aF can be obtained from the application 
of the least squares method to the sum of squares of terms 
representing errors in the magnitude of the FAA estimator. The 
remaining parameter can be evaluated by the same method using 
errors in the phase of the estimator. The computation far aF is 



particularly simple in the case where each term of the sum 
corresponds to an aircraft latitude-longitude pair represented by 
a complex number on the positive half of the imaginary axis. 
Specifically, if z is such a number then the corresponding 
aircraft azimuth angle is 0 rad. Consequently, the difference 
between the magnitude of z and the magnitude of the FAA estimator 
is r + aFre- mag<z>. The computation for bF can be simplified 
by using complex numbers on the positive half of the real axis. 
Indeed, if z is a real and positive number that is no more than a 
few hundred nmi then the corresponding aircraft azimuth angle 
will be very close <but not equal> to pi/2 rad and the difference 
between the phases of the estimator and z is just the phase of 
the former. In other words, the difference is essentially the 
same as pi/2 - A + bpr. The details of the least squares 
solutions for ap and bF derived from these formulations of 
magnitude and phase errors are provided in the following 
procedure. 

Procedure 2. Assignment of Values to ap and bF. 

It is assumed that the location of the radar has been 
specified in terms of an altitude, a geodetic latitude, and a 
longitude of 0Q. It is also assumed that a stack of aircraft 
altitude-real positive number pairs of the form <H,P> has been 
created where P represents the magnitude of the complex 
representation on the imaginary or real axi:. of an aircraft 
latitude-longitude pair. 

a. Initialize sums s1L' s1R' SeL' and E~R to 0. 

b. Using H and P in the pair at the to~ of the stack and the 
radar location parameters, compute the NAS ground range r1 
associated with the aircraft altitude-comple•x number pair CH,jP). 

d. Using the radar location parameters, compute the azimuth 
angle A and NAS ground range re associated ~~ith the aircraft 
altitude-complex number pair CH,P>. 

e. Increase SeLby Cre)e and SeR by reCA- pi/2). 

f. Decrease the size of the stack by 1 by removing the pair 
at the top of the stack. 

g. If the stack is not empty then go tc• step b. Otherwise, 
assign the value S1R/S1L to the parameter ar- and the value 
SeR/S~L to the parameter bF. 

Values assigned to the parameters aF and bF for the purpose of 
generating the reported projection errors we~re obtained by means 
of procedure 2. The stack was created from CH,P> pairs 
constructed from a single altitude (i.e., 30,000 feet) and the 
128 ground ranges, other than 0, that are integer multiples of 
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205/27 nmi not exceeding 205 nmi. The values assigned to the 
parameters are displayed in tables 2 and 3. The variation of 
parameter values with altitude is small compared to the variation 
with latitude. 

TABLE 2. FAA ALGORITHM PARAMETER aF <10- 7 nmi- 1
) 

Radar 
Latitude 

<deg) 

Radar Altitude (ft) 
:----------- -----------:-----------

5,000 
----------:----------- -----------:-----------

15 2.378802 2.335961 2.293141 
25 3.677897 3.646522 3.615161 
35 4.511287 4.495151 4.479022 
45 4.765510 4.766553 4.767998 
55 4.403381 4.421472 4.439553 
65 3.471638 3.504587 3.537520 
75 2.093987 2 0 137808 2 0 181608 

TABLE 3. FAA ALGORITHM PARAMETER bF <10-7 nmi- 1 ) 

Radar 
Latitude 

<deg> 

Radar Altitude (ft> 
:-----------:-----------:-----------

5,000 10,000 
----------:-----------:-----------:-----------

15 -2.427211 -2.427211 -2.427211 
25 -3.721020 -3.721021 -3.721021 
35 -4.568345 -4.568346 -4.568348 
45 -4.866189 -4.866191 -4.866193 
55 -4.577112 -4.577115 -4.577117 
65 -3.734452 -3.734455 -3.734457 
75 -2.439023 -2.439025 -2.439027 

While the altitude effect on the phase of the FAA estimator is 
clearly insignificant, changes in parameter values for aF with 
altitude can materially affect the projection error. For 
example, suppose that two estimators are constructed for the same 
radar site by assigning distinct values V1 and v~ to the 
parameter ap. The euclidean distance separating the estimators 
is remag<v1- Ve). Suppose now that the radar site is at sea 
level, the site latitude is 75Q, and the values v1 and v~ are 
those prescribed by table 2 for that latitude at sea level and 
10,000 feet, respectively. In the case of an aircraft ground 
range of 205 nmi the corresponding distance between estimators is 
in the neighborhood of 0.000368 nmi. Referring to figure 2, 
this is greater than 10 percent of the maximum projection error 
associated with the FAA algorithm at a ground range of 205 nmi. 
On the other hand, the altitude effect is not so serious that it 
will lead to projection errors in excess of the AAS 0.005 nmi 
error limit. 

The local plane estimate of the stereographic representation of 
aircraft latitude and longitude must be mapped into the ACF 
system plane. From the point of view of computational speed this 



mapping should be implemented in terms of arithmetic operations 
on the real and imaginary parts of the local plane estimate. The 
real and imaginary parts of the FAA estimator are 

re<ZF> = <r + dr)[sin<A>cos(dp) - sin<dp>cos<A>J ( 9) 

and 

im<ZF> = <r + dr)[cos<A>cos<dp) + sin<A>sin<dp)J. ( 10) 

Unfortunately, these expressions are rather complicated. This 
complication can be removed by exploiting the fact that the 
correction factors dr and dp are very small numbers. In 
particular, little is lost in the formulas for the real and 
imaginary parts of ZF by replacing cos<dp> ~ith 1 and sin<dp) 
with dp and then throwing away any terms in the resulting 
expressions that contain the product of dr and dp as a factor. 
The final result can be viewed as a complex number WF for which 

re<WF> = r[sin<A> - r([bp- ap]/2>sin<2A>J ( 1 1 ) 

and 

( 12) 

In fact, the projection error data reported here is 
representative of the euclidean distance between WF and z rather 
than that between ZF· and z. However, it has. been verified in 
other computer experiments that the rep or tecl data a 1 so 
constitute, as expected, an accurate description of the accuracy 
of the estimator ZF. Further simplification of the estimator is 
possible through the elimination of the factor ((a, •. + br··>I2Jr<:!! 
in <12). As shown in appendix B, the maximllm projection error in 
the system plane associated with the estimator resulting from 
this simplificatiion is less than the 0.005 nmi requirement of 
the AAS specification. Needless to say, the~ simplification 
effective 1 y reduces the two parameters ap and bf.. to one, i.e. , 
half of the difference bF - ap. 

8. CONCLUSIONS. 

THe reported data support the contention thctt the FAA algorithm 
satisfies the AAS requirement that the projE~ction error not 
exceed 0.005 nmi for any aircraft in an ACF coverage region. 
This conclusion is based on the assumption 1;hat the spherical 
support radius and tangency point for the ACF system plane are 
optimal in the sense that the values assignE~d to these parameters 
minimize the variation of the dilation an the floor of the 
control jurisdiction about a predetermined <:onstant. In 
addition, the mathematical structure of the algorithm is simple. 
As a result, efficient computer implementatLons of the algorithm 

:1.'::3 



can be expected to yield high speed computation of system plane 
representations of aircraft latitude and longitude with mimimal 
allocation of storage space for adaptation parameters. 

While the reported data support the contention that the FAA 
algorithm satisfies the AAS accuracy requirement, it might be 
argued that the sample of aircraft locations relative to the 
radar employed in the study is flawed. For example, the data 
indicate that the maximum projection error at a given ground 
range increases monotonically with the range. On the other hand, 
the density of locations decreases with distance from the 
antenna. In fact, the azimuthal distance between adjacent 
locations at the same sample ground range is 5~. This is 
equivalent to an arc length of 17.9 nmi between aircraft 
locations at the maximum ground range of 205 nmi. Accordingly, 
future investigations of the accuracy of the algorithm might do 
well to concentrate on the error in the neighborhood of the 
maximum ground range and use a smaller azimuthal separation 
between adjacent sample aircraft locations at the same range. 

It is worthwhile noting that the maximum error generated by the 
algorithm is dependent upon the values assigned to the parameters 
aF and bF• If procedure 2 is used to make the assignment then 
the maximum error in the local plane is the value reported in 
table 1. If some other assignment procedure is used then the 
maximum local plane error may be greater or less than 0.0031 nmi. 
For example, procedure 2 is just the result of applying the 
method of least squares to points on the real and imaginary axes 
of the local plane coordinate system. The parameters can also be 
evaluated by means of an application of the least squares method 
to points on and off the axes. Another approach to the 
assignment problem is to recognize that the correction factors 
<7> and <8> are monotonic functions of r that vanish when r is 
zero. This means that r and pi/2 - A are pretty good estimates 
of the amplitude and phase of the stereographic image of a target 
close in to the antenna. Consequently, it might be possible to 
reduce the maximum error by means of a least squares fit of the 
amplitude and phase of the complex variable (6) that is 
restricted to points in the local plane at large ground ranges 
<e.g., 150 nmi- 205 nmi). The hope is that the restriction will 
lower the error when the range is long and the monotonic behavior 
of the correction factors will automatically take care of the 
situation at shorter ranges. 
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APPENDIX A. BOUND ON THE SYSTEM PLANE ERROR 

There exists an upper bound on the error induced in the system 
plane by a projection error eL in the local plane that can be 
expressed in terms of the radius E of the conformal sphere that 
supports the local plane, the radius Er of the sphere that 
supports the system plane, the euclidean distance Wo measured in 
the system plane between the tangency point and the stereographic 
representation of the geodetic latitude and longitude of the 
radar site, and the euclidean distance z separating the local 
plane tangency point from the stereographic representation in the 
local plane of the geodetic latitude and longitude of the target. 
The bound is the ratio of 

<A-1> 

to 

<A-2> 

where 

<A-3> 

It can be easily derived in a straight forw.:~rd manner from known 
results <Mulholland, R. and Stout, D., Numerical Studies of 
Conversion and Transformation in a Surveill.:mce System Employing 
a Multitude of Radars- Part II, Astia Document AD A072-086, 
National Technical Information Service, Springfield, VA, April 
1979, equation <58) and the appendix). The bound can be re­
expressed in terms of the angle V subtended at the center of the 
earth model by the point of tangency of the system plane and the 
conformal representation of the radar (i.e.l the point on the 
surface of the spherical support of the system plane defined by 
the conformal latitude and longitude of the radar). This is a 
direct result of the fact that the ratio of Wo to 2Er is just the 
tangent of V/2. 

The number N cannot exceed 

<A-4> 

where a and b are the equatorial and polar r·adii of the reference 
ellipsoid chosen for the North American Datum of 1983, n is the 
dilation design constant, and Gc: is 30.2502El2'"'. In addition, 

Uc, ( z , el ... ) = [ ( z + e '-·· ) ] I ( 2 b ) tan ( G c-J 2 ) <A-5> 

is an upper bound on the parameter u. It is known that the 
optimal choice for the radius of the spherical support of the 
system plane for any ACF that might be commissioned in the AAS 
cannot exceed the product of a and n <Mulholland R., Optimization 
of the Dilation Characteristic on the Control Jurisdiction of an 
Area Control Facility, Report No. DOT/FAA/CT-TN87/39, FAA 
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Technical Center, Atlantic City Airport, NJ, August 1987>. Also, 
it is known that the maximum angle subtended at the center of the 
earth by the system plane point of tangency and the conformal 
representation of any point in the floor of a control 
jurisdiction meeting the AAS design limit on the size of an ACF 
coverage region should not exceed the sum of 30.25° and 
0.000282°. Thus, the tangent of Gc/2 is an upper bound for the 
ratio Woi<2Er>• Moreover, the product of a and n is an upper 
bound on the parameter Er. Finally, since E is just the distance 
separating the center of the earth from the point on the model 
surface at the geodetic latitude and longitude of the radar site, 
it is clear that E is not less than b. 

The number D is not less than 

<A-6> 

and so the ratio of N to D cannot exceed 

<A-7> 

If the ground range z is at most 205 nmi and the projection error 
eL is less than 1 nmi then it is clear that uo<z,eL) is at most 
uo<205,1). Since UoC205,1) is less than 1 it follows that Do 
bounds D from below. 
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APPENDIX B. BOUND ON THE PROJECTION ERROR ASSOCIATED 
WITH A MODIFICATION OF THE FAA ALGORITHM 

If U is the complex number defined by the equations 

re<U> = re<W.,..-> 

and 

then U and the FAA estimator WF· satisfy the inequality 

<B-1> 

<B-2) 

<B-3> 

under the experimental setup of section 4. Indeed, equations 
<11) and <12) imply that mag<U- WF) is the same as the product 
of re and (ap + bp)/2. The inequality <B-3> follows directly 
from the implication of tables 2 and 3 to tt-e effect that the 
magnitude of the sum o~ aF and bF is less than 0.40 X 10-7 nmi- 1

• 

If r is expressed in nmi then the inequality <B-3> can be used to 
show that the local plane error in nmi associated with the 
estimator U cannot exceed the bound 

B < r ) = 0. 00310 + < 0. 20 X 10 -· 7 ) r ~ <B-4) 

under the experimental conditions described in section 4. Table 
1 implies that the maximum error associated with the FAA 
estimator WF is 0.00310 nmi. The bound B<r> follows directly. 

The parameter r cannot be greater than 205.~125 nmi under the 
experimental setup of section 4. Specifically, equations <6> and 
(7) imply that the magnitude of the FAA estimator is the sum of r 
and apr 2 cos<A>. Since table 2 shows the parameter aF to be a 
positive number no greater than 5 X 10-7 nmJ.- 1 and table 1 shows 
the maximum local plane error associated with the FAA estimator 
to be 0.00310 nmi, it follows that 

r - < 5 X 10-7 > r~ ~ 205 . 00~110 <B-5) 

under the experimental conditions of section 4. Otherwise, the 
maximum error for the FAA estimator would be! larger than the 
observed maximum of 0.00310 nmi. The left ~;ide of the inequality 
<B-5) is an increasing function of the parameter r for values of 
the parameter that are less than l0b nmi, and it equals the right 
side of the inequality when the argument is 205.0241174 nmi. As 
a result, the parameter r must take on value!s less than 205.025 
nmi under the cited experimental conditions .. 

The system plane error associated with the E!stimator U is at most 
0.00431 nmi. Indeed, the number B<205.025) obtained from (8-4> 
when r is 205.025 nmi is less than 1. Thus~ the bound ( 1 > is 
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valid and the system plane error cannot exceed (1.094)8(205.025> 
nmi. 
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