
FAA WJH Technical Center

11

00093219

Communications Interface
Driver.>(CID) SQft.~are
Principles of Operati .. Qn

Thomas Bratton
Charles Dudas
Jeffrey livings
Mark Schoenthal

September 1990

DOT/FAA/CT-TN89/46

Document is on file at the Technical Center <.t
Library, Atlantic CityJn.t~~nati<:>niil.J\.ir.port: N.J. 08405

Technical Center
Atlantic City International Airport, N.J. 08405

--

NOTICE

This document is disseminated under the sponsorship
of the U.S. Department of Transportation in the interest of
information exchange. The United States Government
assumes no liability for the contents or use thereof.

The United States Government does not endorse
products or manufacturers. Trade or manufacturers'
names appear herein solely because they are considered
essential to the objective of this report.

Technical Report Documentation Page

1. Report No. 2. Goverl'lmenl Access•on No.

DOT/FAA/CT-TN89j46

4. T,lle and Subtitle

COMMUNICATIONS INTERFACE DRIVER (CID")
SOFTWARE PRINCIPLES OF OPERATION

5. Report Dote

September 1990
6. F'orlorm,ng Orgon• zol•on Code

~.--;-::--;-,:------::-;----:::--:------::::---:;---::----;---------4 8. F' orlorm1ng 0 rgan• zat• on Report No.

I
, 7. Aurl>or's) Thomas Bratton, Charles Dudas,

Jeffrey Livings, Mark Schoenthal DOT/FAA/CT-TN89j46

9. F'orlorm•ng Organ• zat•on Name and Address

Federal Aviation Administration
Technical Center

10. Work Un•t No. (TRAIS)

II. Contract or Grant No.

Atlantic City International Airport, New Jersey 08405 ,3 r t--';:-:;--;------:-....::....-7.'"" __ '7"'::-:-:----_:_-__:. _____ _;:_ ____ ~ • ypo o I Report and Pori od Covered

12. Spansot~ng Agency Name and Addrou

U.S. Department of Transportation
Federal Aviation Administration
Technical Center

Technical Note

14. Sponso,ng Agol'lcy Code

Atlantic City International Airport, New Jersey 08405
IS. Supplementary Notes

16. Abstract

The Communications Interface Driver (CID) makes possible the performance assessment
of the Mode Select (Mode S) sensor under it's specified maximum communication load.
To accomplish this, CID uses prepared communication scenarios structured on air
traffic models to generate the simulated communication messages for Mode S. The
physical connection to the Mode S sensor is through X.25 Link Access Procedure
Balanced (LAPB) communication lines.

This document, the CID Software Principles of Operation, describes the CID software
and theory of operations. Each software module is discussed. Data flow diagrams,
program flow charts, and timing charts are included where appropriate.

17. Key Worda

CID
Mode S
Software, CID

19. Socurily Cloud. (of thia report)

Unclassified

Form DOT F 1700.7 !8-721

18. Distribution Stot_.,.,

Document is on file at the Technical
Center Library, Atlantic City
International Airport, NJ 08405

20. Security Cloud. (of this pogo) 21. No. of F' ages 22. F'" ce

Unclassified 138

R.,roduction of complotod pogo authorized

I

I

TABLE OF CONTENTS

EXECUTIVE SUMMARY

1. INTRODUCTION

2. OBJECTIVE

3 . BACKGROUND

4. RELATED DOCUMENTS

5. CID SOFTWARE DESCRIPTION

5.1 CID Real-Time Target Simulation

5.1.1 OS/32 Integration
5.1.2 Init
5.1.3 Scheduler
5.1.4 Input Message Processing
5.1.5 Output Message Processing
5.1.6 Second Processing
5.1.7 Operator Communications (Op-Comm)
5.1.8 I/0 Management
5.1.9 Extraction
5.1.10 X.25 Processing

5.2 CID Initialization Program

5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

CIDINIT Main Routine
Initialization and I/0 Routines
X.25 Device Routines
Simulation Initialization Routines
Standard Uplink and ELM Default Message Routines
X.25 Device Configuration Display Routine

iii

Page

viii

1

1

1

2

2

3

5
6
9

10
12
16
16
so
51
52

54

55
55
56
56
57
57

•

Figure

1-1

1-2

1-3

1-4

5-l

5.1-1

5.1.2-1

5.1.2.5-1

5.1.3-1

5.1.3-2

5.1.4.1-1

5.1.4.1-2

5.1.4.2-1

5.1.4.3-1

5.1.5-1

5.1.5-2

5.1.5-3

5.1.5-4

5.1.6-1

5.1.6-2

5.1.6-3

5.1.7.1-1

5.1.7.1-2

5.1.7.1-3

LIST OF ILLUSTRATIONS

CID Functional Block Diagram

ARIES/CID Simulation Block Diagram (Phase

CID Live World Block Diagram

CID Live World Block Diagram

Software Overview

CID Module Overview

Initial Program Flowchart

(Phase

(Phase

Flowchart of Block Init Seen Buffers

Task Scheduling Program Flowchart

Task Scheduling Data Flowchart

Flowchart of Inmess

Flowchart of X. 25 Line Processing

I)

II)

I)

Flowchart of Op-Comm Message Interface (Phase I)

Flowchart of Network Management

Flowchart of Outmess (2 Sheets)

Flowchart of Get line

Flowchart of Getbuf

Flowchart of Send Message

Second Processing Flowchart

Software Errors

X.25 Hardware Errors

Op-Comm Menu

Interface

Flowchart of Computed Goto Algorithm

Flowchart of the Op-Comin Routine

iv

(Phase II)

Page

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

74

75

76

77

77

78

78

79

80

LIST OF ILLUSTRATIONS (Continued)

Figure Page

5.1.7.1.1-1 Types of Expected Input 81

5.1.7.1.1-2 Single Character Input Flowchart 81

5.1.7.1.1-3 Single Digit Decimal Input Flowchart 82

5.1.7.1.1-4 Several Digit Decimal Input Flowchart 83

5.1.7.1.1-5 Single Digit Hex Input Flowchart 84

5.1.7.1.1-6 Two Digit Hex Input Flowchart 85

5.1.7.1.1-7 Six Digit Hex Input Flowchart 86

5.1.7.1.1-8 Fourteen Digit Hex Input Flowchart 87

5.1.7.1.1-9 Twenty Digit Hex Input Flowchart 88

5.1.7.1.2-1 Flowchart of Op-Comin Function 0 89

5.1.7.1.3-1 Flowchart of Op-Comin Function 1 89

5.1.7.1.4-1 Flowchart of Op-Comin Function 2 90

5.1.7.1.5-1 Flowchart of Op-Comin Function 3 91

5.1.7.1.6-1 Flowchart of Op-Comin Function 4 92

5.1.7.1.7-1 Flowchart of Op-Comin Function 5 92

5.1.7.1.8-1 Flowchart of Op-Comin Function 6 (Main Subroutine) 93

5.1.7.1.8-2 Flowchart of Op-Comin Function 6 (State 1) 94

5.1.7.1.8-3 Flowchart of Op-Comin Function 6 (State 2) 95

5.1.7.1.8-4 Flowchart of Op-Comin Function 6 (States 3-17) 96

5.1.7.1.8-5 Flowchart of Op-Comin Function 6 (State 18) 97

5.1.7.1.9-1 Flowchart of Op-Comin Function 7 (Main Subroutine) 98

5.1.7.1.9-2 Flowchart of Op-Comin Function 7 (State 1) 99

5.1.7.1.9-3 Flowchart of Op-Comin Function 7 (State 2) 100

5.1.7.1.9-4 Flowchart of Op-Comin Function 7 (State 3) 101

5.1.7.1.9-5 Flowchart of Op-Comin Function 7 (State 4) 102

v

Figure

5.1.7.1.9-6

5.1.7.1.10-1

5.1.7.1.11-1

5.1.7.2-1

5.1.7.2.1-1

5.1.7.2.1-2

5.1.7.2.1-3

5.1.7.2.9-1

5.1.7.3.1-1

5.1.7.3.1-2

5.1.7.3.2-1

5.1.8-1

5.1.9-1

5.1.9-2

5.1.10-1

5.1.10-2

5.1.10-3

5.1.10-4

5.1.10-5

5.1.10-6

5.1.10-7

5.1.10-8

5.1.10-9

LIST OF ILLUSTRATIONS (Continued)

Flowchart of Op-Comin Function 7 (State 5)

Flowchart of Op-Comin Function 8

Flowchart of Op-Comin Function 9

High Level Flowchart of Op-Comm

Flowchart of Op-Comms TOASCII Algorithm

Flowchart of Op-Comms Decimal TOASCII Algorithm

Flowchart of Op-Comms Time Output Algorithm

Flowchart of Op-Comm Function 7 (Subroutine)

List of OPBLKDTA Display Screen Buffers

Template Buffer Example

Menu Screen Buffer List

I/0 Program Flowchart

Extraction Program Flowchart

Extraction Header Record Description

CID Common Memory Structure

CID Real-Time Memory Structure

Flowchart for MDISC X25

Flowchart for Reset X25

Flowchart for !nit X25

Flowchart for Link Status

Flowchart for Active X25 and Deactive X25

Flowchart for TXMITx

Flowchart for Interrupt Service Routine (2 Sheets)

vi

Page

103

104

104

105

106

107

108

109

110

110

111

112

113

114

115

115

116

116

117

117

118

118

119

Figure

5.2.1-1

5.2.2-1

5.2.2-2

5.2.2-3

5.2.3-1

5.2.3-2

5.2.3-3

5.2.3-4

5.2.4-1

5.2.4-2

5.2.5-1

5.2.5-2

5.2.5-3

5.2.5-4

5.2.6-1

LIST OF ILLUSTRATIONS (Continued)

CIDINIT Main Routine Flowchart

CIDINIT creat init Routine Flowchart

CIDINIT in c file Routine Flowchart

CIDINIT out c file Routine Flowchart

CIDINIT X25 dev sc Routine Flowchart

CIDINIT mod X.25 dev Routine Flowchart

CIDINIT Port Routine Flowchart

CIDINIT Baud Routine Flowchart

CIDINIT sim init Routine Flowchart

CIDINIT mod sim init Routine Flowchart

CIDINIT comma_sc Routine Flowchart

CIDINIT elm sc Routine Flowchart

CIDINIT mod comma Routine Flowchart

CIDINIT mod elm Routine Flowchart

CIDINIT printcid Routine Flowchart

vii

•

Page

121

122

122

123

123

124

124

125

125

126

126

127

127

128

129

EXECUTIVE SUMMARY

The Communications Interference Driv~r (CID) is a capacity test device for the
production Mode Select (Mode S) beacon system. The design and development of the
CID was the responsibility of ACN-220 Federal Aviation Administration (FAA)
Technical Center personnel. The FAA will make this equipment available as
government-furnished equipment to the Mode S contractor.

This document, along with the actual commented code, will be used to maintain both
the real-time and off-line software of the CID. This document contains sections on
both the real-time CID software and the CID initialization (CIDINIT) programs. For
the real-time CID software, this document provides an overall description of the
software's functions and subroutines and an explanation on how this software is
integrated into the host computer's operating system, along with separate
descriptions and flowcharts for each subroutine within the real-time software.
This document provides a description and flowchart set for each of the CID's
programs.

ix

1. INTRODUCTION.

The Communications Interference Driver (CID) system is designed to simulate the
X.25 communications environment for up to 700 aircraft for the purpose of testing
the operation of Mode Select (Mode S) beacon interrogators under heavy
communication load. The CID equipment consists of time-of-year (TOY) clock
circuitry, twelve X.25 communication interfaces, a computer system, and associated
computer peripheral equipment. Specific circuitry, as described above, was
designed and developed by Secondary Surveillance Systems Branch, ACN-220,
personnel. The computer system implemented is a Concurrent Computer Corporation
model 3230XP with a 1600-baud tape device, 300-megabyte disc drive, and line
printer. The X.25 interfaces were built by Macrolink and utilized the Western
Digital WD-2511 X.25 protocol control chip as the communication line interface.
The Macrolink interface also contains logic for the COMMUX and DMA interface to the
Concurrent Computer System. Software, as described in section 6 of this report,
was designed and developed by ACN-220 personnel. Figure 1-1 depicts a functional
block diagram of the CID hardware.

The CID system was designed to work in conjunction with the Aircraft Reply and
Interference Environmental Simulator (ARIES). These two simulation test systems
will provide an environment of 700 aircraft with communication for the testing of
the Mode S sensor. Figure 1-2 depicts the simulation block diagra~ for the CID,
ARIES, and Mode S systems. The CID may be utilized in the live world environment
for the testing of the Mode S sensor. Figure 1-3 depicts the live world block
diagram for the CID and Mode S sensor. CID real-time software was designed in
two phases. Phase 2 software includes the capability to utilize the CID with two
Mode S sensors for the purpose of multisite testing. Figure 1-4 depicts the live
world block diagram for the CID and two Mode S sensors.

2. OBJECTIVE.

The objective of this report is to describe the CID software. These include
functional descriptions of each program component of the CID system. The
functional descriptions are composed of discussions of all modules used to develop
each program component of CID. Program flow charts and data structures have been
included as figures in this report. This report will provide the top two levels of
documentation for CID software. The third level documentation is provided by
detailed comments that are included in the actual CID software.

3. BACKGROUND.

For the past decade, the Federal Aviation Administration (FAA) has been committed
to the development of a new sophisticated aircraft surveillance system for air
traffic control (ATC). The new system, ModeS, provides increased capacity, better
azimuth measurement, and reduced interference. In addition, aircraft equipped with
Mode S transponders provide ground-to-air and air-to-ground data link capabilities.

1

•

Due to the large target capacity of a Mode S sensor, it is not possible to find a
current air traffic environment that is dense enough to fully test the sensor under
heavy load conditions. It is also desirable to be able to repeat an identical test
situation several times. For these reasons, a communications simulator has been
built to provide a repeatable dense communication environment typical of what may
be encountered in the future. CID is intended to provide the communications
environment for the purpose of factory and field acceptance testing in the capacity
situation and to provide a capacity load for the Mode S sensor. CID is not
designed to be able to test all the system features of a Mode S sensor.
Capabilities which are costly to implement and have little effect on sensor's
behavior under load have not been implemented.

4. RELATED DOCUMENTS.

FAA-ER-2716, Specification for a Mode Select Beacon System (Mode S) sensor,
March 24, 1983.

FAA Order 6365.1A, United States National Standard for the Mode Select Beacon
System, January 3, 1983.

FAA-RD-80-14A, The Mode Select (Mode S) Surveillance abd Communications, ATC and
Non-ATC Link Protocols, and Message Formats, November 26, 1985.

5. CID SOFTWARE DESCRIPTION.

The CID consists of various software functions to perform the generation and
simulation of X.25 communication functions for the Mode S system. The CID is
designed to simulate the communication loading for up to 700 transponder-equipped
aircraft. The software functions include:

a. Scenario Generation ~

b. CID Initialization
c. CID Simulation

Scenario Generation is the process in which communication messages are prepared
off-line for the CID simulation program. Communication scenarios are prepared by a
program function that generates scenario files that may be stored on disc or tape
for future simulation. The CID initialization (CIDINIT) program creates and
maintains files that contain the configuration data for the real-time simulation
program. The CID program performs the real-time simulation of the X.25
communication messages. The interaction of these software modules is depicted in
figure 5-l.

The process of creating a communication scenario begins off-line with the creation
of the definition file. This definition is a part of the target definition for the
ARIES system. Targets are defined by time, position, and transponder events.
These definitions resemble flight plans but also include transponder events.
Communication functions are added to the target definitions. These data are stored
in a waypoint definition file. A configuration contains the definitions for
operating parameters of the scenario generator. These two file sets are used as

2

input for the target scenario program. The output is a time ordered set of
communication messages in raw binary format that the CID program can use as input
during the real-time simulation. This program is described in the Scenario
Generator User's Manual for the Aircraft Reply and Interference Simulator and the
Communication Interface Driver System, DOT/FAA/CT-TN88/43.

5.1 CID REAL-TIME TARGET SIMULATION.

The CID software is designed around a highly efficient real-time simulation
·program. Certain functions, such as the communications scenario generation and

CIDINIT, are performed prior to the actual simulation. Once a scenario is produced
in these steps prior to the actual simulation, it may be used as many times as
desired in an actual real-time simulation. The CID program has been designed to
maximize processing efficiency and peripheral throughput. Each module was time and
load tested to insure the proper operation of the real-time simulation system.

The CID real-time program is designed to operate X.25 communication lines.
Messages generated by the Mode S Sensor are received by the CID and extracted on
magnetic tape. The scenario contains a time ordered sequence of messages. These
messages are transmitted on the X.25 lines at the specified time. Each X.25 line
in the CID may be configured to operate at either 9600 baud or 56k baud. The
definition for operation of each port is contained in the CID initialization file.
This file also contains a set of default messages used in the real-time simulation.

The design of a scheduling function to permit efficient task switching time was
also necessary. The scheduling function allows not only periodic scheduling of a
module, but also the intermittent scheduling of a module. System input and output
(I/O) had to be distributed over time in order to prevent. the lockout of other
processing modules. The I/0 Manager was designed to distribute system input and
output according to a priority scheme. The extraction function was designed to
permit extraction of data from any processing module including the interrogation
processing routines. It is semaphore protected and minimizes the amount of data
relocation in order to maximize the extraction processing efficiency.

The CID program consists of the following major software modules:

5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9
5.1.10

Initialization (!nit)
Task Scheduling (Scheduler)
Input Message Processing (INMESS)
Output Message Processing (OUTMESS)
Second processing (Sec)
Operation Communication (Op-Comm and Op-Comin)
I/0 Management (I/O)
Data Extraction (Extraction)
Interupt Service routines (ISR)

These modules interact through the global common data structures as shown in
figure 5.1-1. The operation of each module is summarized here and explained in
detail in the aforementioned chapters of this report. The use of each common data
structure is also summarized here. Note that !nit and Extraction interact with all
processing modules and data commons.

3

•

!nit (5.1.2) sets up the logical devices, loads the global common data structures,
positions the model input files, and resets the CID hardware for the simulation.
It can also be used to initiate the data extraction process. Execution of this
module occurs only once during each real-time simulation.

Scheduler' (5.1.3) controls the order in which the processing modules in the CID
task are executed. All processing modules are called by the Scheduler except !nit
and Extraction. Scheduler is accomplished by this module because of the severe
overhead incurred in the use of operating system resources for this function.

All incoming X.25 messages are processed by the Input Message Processing routine
(5.1.4). This routine interfaces with the extraction routine for data extraction
of messages, the operator's communications (Op-Comm) routine for the display of
selected target messages, and the network management processing subroutines for the
interactive response of network management messages.

Message data is obtained from the model files stored on the disc. These data are
processed by the Output Message processing modules (5.1.5), The message model file
is time ordered. Messages created through the Op-Comm terminal are also processed
by the Output Message Processing module.

Second processing (5.1.6) performs various regular functions required in the CID
real-time system.

Op-Comm (5.1.7) provides the system operator with the capability to control the
operation of the simulation. These functions include checking system status,
checking system errors, creating or displaying X.25 messages, operating the data
extraction module, and terminating the simulation.

I/0 Management (5.1.8) provides an orderly control of the I/0 for the model input
files, extraction device, and the Op-Comm control terminals. I/0 requests are
processed using a priority algorithm that attempts to maintain a queued I/0 for
each file.

Extraction (5.1.9) processes all requests for data extraction. Extraction packs
messages in output buffers and sets the output request flags for I/0. Extraction
operates as a subroutine that can be called by any processing task. A second
extraction subroutine with protecting semaphores is implemented for interrogation
processing.

X.25 Communication Routines (5.1.10) performs all the functions associated with the
processing of interrupts and data from the X.25 devices and the TOY device.
Interrupts are generated by the X.25 devices.for all incoming messages, outgoing
messages, and error conditions. Interrupts are generated by the TOY device every
0.001024 seconds. The TOY interrupt provides the basic timing element for the CID
real-time software.

The X.25 message scenario file is stored on the magnetic disc device. These files
contain the X.25 message descriptions in a raw binary format to allow the most
efficient real-time processing. These files are each built off-line by the
scenario generation process. Many scenario files may exist on the disc. The
operator selects the message scenario file during initialization for the real-time
CID simulation. All operator functions and statistics are controlled and presented
through the Op-Comm terminals.

4

The initialization parameters for an execution of the CID real-time software are
contained within a file stored on the magnetic disc device. These files are built
off-line by the CIDINIT program. Many initialization files may exist on the disc.
The operator selects which initialization file is required at the start of the CID
real-time program.

For each external file, there exists a buffered common area for the I/0 data. The
X.25 message scenario file data is buffered in the message input buffer. The
Op-Comm terminal data, both input and output, are buffered in the Op-Comm I/0
buffers. These buffers are maintained and processed by I/0.

5.1.1 OS/32· Integration.

The CID program operates on a Perkin-Elmer (PE) 3230 processor with the OS/32
operating system. The OS/32 is a versatile, multitasking, real-time operating
system operates on the PE 3200 computer system family. It provides a responsive
environment for the CID application. The operating environment is qescribed in the
following paragraphs.

The CID system requires initialization of OS/32 system functions before the ARIES
program can execute. These functions are built into a command substitution
system (CSS) that perform operations executed by a single command. By typing a
single command, "CID,l the user can execute all the steps required for OS/32
initialization and execute the actual CID program. The following steps are
required for OS/32 initialization:

a. Terminate all OS/32 tasks.
b. Initialize the task common areas.
c. Load the writable control store with the Micro-Code Program.
d. Load the interrupt service routines in a task common area.
e. Install pointers in the Interrupt Service Pointer Table of OS/32.
f. Install interrupt branches in OS/32.
g. Assign I/0 devices.
h. Load and start the CID task.

The termination of OS/32 task is accomplished by a program called Killtask.
Killtask is an OS/32 executive task that removes the task control blocks for all
tasks running under OS/32. This will remove all tasks from the system regardless
of their current states. The initialization of the task common areas is performed
by a program called Inittcom. It is an OS/32 executive task that stores a
predetermined pattern in the fixed task common area.

The Writable Control Store (WCS) is loaded by an OS/32 utility. The microcode
loaded in the WCS contains the function of TOY Interrupt Processing. The Interrupt
Service Pointer table is modified to handle interrupts from the TOY hardware and
the X.25 hardware. The entries in the Interrupt Service Pointer table are
addresses of the Interrupt Service Routines (ISR's) for each Interrupt Process.
Since the table entry is 16 bits, the address of each ISR must be in the bottom
64 kilobytes of memory. The major ISR's are located either in WCS or the Fixed
Task Common. Therefore, the Interrupt Service Pointer table will point to a set of
branch instruction that transfer the processor to either the WCS ISR or the Fixed
Task Common ISR.

5

•

The final function of the CID CSS is to load the CID program, initialize devices,
and start the execution of the CID Task. Once the CID Task is in progress, all
commands are performed by Op-Comm. Shou~d an OS/32 function be requested through
the system console, a fault will be generated and undesirable results will be
generated. Once the CID has completed its function, the user may stop the
simulation process through an Op-Comm function provided to terminate the CID Task.
Control of the system now reverts to the OS/32 System Console.

Two versions of the CID software were designed. The first phase is the generic CID
real-time software as described. The second phase consists of all functions
incorporated in phase I and additional software to provide for the connection of
two Mode S sensors to a single CID system. The software for the second phase has
been modified to incorporate networ~ management functions to permit messages
entering the CID from the first sensor to be directed to the second sensor.
Selected messages with the sending sensor identification fields set for the second
Mode S sensor will be retransmitted by the CID to the second Mode S sensor.
Phase II software may be executed by typing a single command "CID2." The user can
execute all the steps required for OS/32 initialization and execute the actual CID
program with network management functions.

5.1.2 !nit.

!nit is t~e task that insures that all the required parts of CID are ready
before beginning the real-time processes. A flowchart of !nit is shown in
figure 5.1.2-l. The following reflects the task operated by !nit:

a. First the required disk files are obtained by Logical Unit !nit.

b. The data extraction buffers are set up in Extraction !nit.

c. The Scheduler is set up in Scheduler !nit.

d. The CID system commons are initialized in Task Common !nit.

e. The scenario buffers are initially filled in Scenario Buffer !nit.

f. The system status display is then cleared followed by Op-Comm !nit which
initializes the Op-Comm functions.

The configuration for operating the CID program is generated by the CIDINIT program
as described in section 5.2 of this report. The configuration file generated by
CIDINIT contains all parameters for the operation of the CID real-time program.
After the operator supplies the configuration definition filename, the operator
will be told to switch the system console over to the control terminal. !nit will
wait until the switch has been turned, clears the control terminal's screen, and
then set up the fault handlers in Task Status Word Initialization. Hardware !nit
will initialize the special purpose CID hardware. After all the required software
and hardware has been initialized, !nit will call the Scheduler to begin the
real-time portion of the CID program.

6

5.1.2.1 Logical Unit Init.

Logical Unit Init is responsible for assigning the logical units, as required by
the CID program. The logical unit assignments for the hardware devices required by
the CID system is ·accomplished by the CID startup CSS. The following logical unit
assignments are made: ·

a. X.25 Message Scenario File
b. Magnetic Tape Drive (Data Extraction)
c. Statistics Terminal
d. System Console (Default)
e. Menu And Control TerminaL

The files that the CID p~ogram require is the X.25 message scenario. A message is
sent to the default unit (5-System Console) requesting the specific filename.
After the filename is read from the console, the corresponding extension is
appended to the filename (.CID for the X.25 message scenario). Finally, account
number 2 is appended to complete the filename. The resultant file is then tested
to insure that the file exists. The scenario files are also tested to insure that
the file is of a contiguous type. After the file is tested, the file is opened to
the correct logical unit number. If an error is encountered anywhere through the
testing or open process, an error message will be sent to the system console and
the CID program stopped.

5.1.2.2 Extraction Init.

Extraction Init will prompt the user for a YES/NO answer to the query ENABLE
EXTRACTION. When the user answers with a Y (or YES), Extraction Init will send a
rewind command to the magnetic tape unit (logical unit 2). The status returned
from the rewind command will be tested. A nonzero status may indicate a tape drive
error, but probably indicates that the tape is either off-line or not loaded.
Thus, when a nonzero status is encountered, Extraction Init is restarted allowing
the user to correct the problem and reanswer the enable extraction query. After a
successful rewind is completed, the extraction buffer pointers will be initialized
and the system flag ST EXT FLAG will be set indicating that extraction is enabled.

5.1.2.3 Scheduler Init.

The Scheduler is made up of eight separate subroutines: I/0, Op-Comm, Op-Comin,
INMESS, OUTMESS, SECOND, and two dummy subroutines to leave room for expansion.
SECOND is initialized to first run at 1 second into the simulation and each second
thereafter. Op-Comm and Op-Comin are popup tasks where Op-Comin is popped up by
I/0 and Op~Comm is popped up by Op-Comin. The remaining tasks are initialized to
values determined by testing and, as such, are subject to change.

5.1.2.4 Task Common Init.

Task Common Init is responsible for initializing all the required task common areas
prior to system operation. Common areas are utilized for storage of data between
the main real-time program, task subroutines, and the interrupt service routines.
Two types of task commons are utilized. Some of these commons use storage within
the task block. These commons are referenced only by the main real-time program
and task subroutines. Other commons are fixed in memory location. These commons

7

•

are utilized by all routines within the system including the interrupt service
routines. The accessibility of all commons from the main real-time program and
subroutines is through the memory address controller of the 3230XP computer system
and transparent to the program.

5.1.2.5 Scenario Buffer !nit.

This subroutine is responsible for loading the X.25 message scenario buffers with
valid data, and, then if a start time other than zero is requested from the user,
to update the input buffers, and their associated pointers, to the appropriate
scenario data. A flowchart for scenario buffer !nit is given in figure 5.1.2.5-1.

First, the buffer pointers will be set to point to the first update of the first
buffer. After the pointers have been set, the subroutine will fill all the buffers
with scenario data from the disk. The subroutine uses the routine I/0 !nit to fill
the buffers.

Once the buffers have been filled the operator will be given the opportunity to
alter the simulation start time from the default of zero. The time is input into
the variables START MIN and START SEC. If either variable is found to be a
positive number, then a nondefault start time will be processed; otherwise, the
start time will be zero and the subroutine will be exited.

When a nondefault start time has been read from the operator it will be received in
minutes and seconds. First, the time will be converted to seconds and the l's
digit will be made 0, leaving the start time in tens of seconds. This is done
because the interval between fruit scenario updates is 10 seconds. Since the fruit
updates are not time tagged, the easiest way to insure that the target and fruit
scenario remain synced in time is to start right at a 10-second boundary. After
the time has been put into tens of seconds, the time will be converted into system
timing units (STU) where lSTU - 1.024 seconds.

The X.25 message buffers will be updated with the scenario data corresponding to
the new start time. The subroutine will read the time tag of the first update in
each buffer (NEXT BUFFER) until a buffer is found with a time tag greater than the
new start time. When a buffer has been found not to have a time tag greater than
the new start time, the preceding buffer will be filled with new scenario data from
the disk and the NEXT BUFFER pointer and the buffer number will be incremented and
the next buffer tested. When a buffer has been found to contain a time tag greater
than the new start time, then the preceding buffer will be read to find the initial
update to be used in the simulation. The preceding buffer will be read until an
update is found whose time tag is once again greater than the new start time. If

.such an update is found, then that update will be considered the initial update and
the appropriate pointers will be set. If the buffer is completely read and no
update is found with a time tag greater than the new start time, then the first
update will be considered the initial update and the appropriate pointers will be
set to point to it.

When an update is found whose time tag is less than zero (which indicates the end
of the scenario), then the previous buffer will be searched. If no update is found
with a time tag greater than the new start time, then the new start time is greater
than the overall length of the scenario, and an error message will be output to the
operator and the simulation cancelled.

8

•

After the scenarios have been positioned, the Scheduler will need to be updated to
reflect the new start time. ·The Scheduler's time to execute fields must be reset
in accordance with the new start time in STU's.

5.1.2.6 Op-Comm !nit.

Op-Comm !nit initializes the variables used to calculate the percent data
extraction and Central Processing Unit (CPU). These variables are initialized here
since it is an Op-Comm function to update these percentages. Next, Op-Comm is
placed into the Scheduler where the first time to run is set to 1 second into the
simulation and the frequency of operation is every 3 seconds. Op-Comm then sets
the function flag to function 1 and queues the appropriate buffers to output the
function menu on terminal 1 and the statistics display on terminal 2.

5.1.2.7 Hardware !nit.

Hardware !nit is responsible for insuring that all the special purpose CID hardware
is prepared for the start of the simulation.

After the special purpose ARIES hardware devices are initialized, Initialize
Hardware will disarm the system devices not needed by the ARIES program. The
system devices that are disarmed are the Program Interval Clock (PIC), and the Line
Frequency Clock (LFC).

5.1.2.8 X.25 Hardware !nit.

X.25 Hardware !nit is responsible for insuring that all the CID X.25 hardware is
prepared for the start of the simulation. Each X.25 device required in the
simulation will be reset, the DMA interface for the X.25 controller will be
initiated, and the registers in the Western Digital WD-2511 X.25 controller will be
loaded for normal operation.

5.1.2.9 Task Status Word !nit.

Task Status Word (TSW) !nit will initialize the fault handlers used during the CID
program. During operation of the CID program OS/32 will not be handling the normal
processor faults. To keep the CID system from crashing when a processor fault is
encountered, the following fault handlers must be added to the CID operational
program: Memory Access fault, Illegal Instruction fault, and Data Format fault.
When the CID program encounters one of the above faults, a message detailing the
fault, along with the address of the fault, will be displayed on the console.
After the message is displayed, the ARIES hardware will be disarmed and the system
hardware will be rearmed. Data Extraction will extract any remaining buffers of
data onto the magnetic tape and then the CID program will be exited.

5.1.3 Scheduler.

The Scheduler is an Assembly Language Program that arbitrates the scheduling
request of the CID system. This process contains three tables with one entry per
task to be scheduled. These tables contain the location of the first executable
instruction of the task, the next time to execute the task, and the time between
executions of the task. The scheduling function uses a round robin scheduling
algorithm that determines the order in which tasks are examined for their

9
FAA WJH Technical Center

11111111111111111111111111111111 Ulllllllllllllll
00093219

•

processing needs. Tasks may be scheduled periodically by storing a positive value
in the increment table for that task. Also, tasks may be scheduled once by storing
the start execution time in the next time to execute table and a negative value in
the time increment table for that task. The Scheduler was designed to accommodate
eight potential tasks: I/0, Op-Commin, Op-Comm, INMESS, OUTMESS, SECOND, and two
spare tasks.

The Scheduler will traverse the time to execute the table until it detects a time
less than the current system time. Once this condition is met, the Scheduler will
determine the next time for that task to request processing and store that time
value in the time to execute the table. If the current request for task processing
is a single shot popup request, th~ value stored in the time to execute the table
is the maximum time value. Before the Scheduler calls the task, the PIC is started
to measure the processing time. The task is then allowed to proceed. Once the
task has completed, the task Scheduler will strobe the PIC to determine the amount
of time used by the task. This time is accumulated and used by the Op-Comm for the
presentation of processor loading. The Scheduler will then look at the time to
execute the table, starting with the next entry in the table.

The Scheduler was designed in the above manner to enhance the performance of the
system. The scheduling of· separate tasks under OS/32 requires over 1 millisecond
(ms) to switch a task. Performance was greatly enhanced by the table scheduler
permitting task switch times of less than 100 ms. Program and data flow charts are
presented in figures 5.1.3-1 and 5.1.3-2.

5.1.4 Input Message Processing.

The Input Message Processing (INMESS) task is responsible for inputting the
messages as they arrive on the X.25 links and the extraction of these data packets.
INMESS was designed to operate at the capacity 700 target communication load as
described in the Mode S engineering requirement. The INMESS task was developed in
two phases. Phase II (CID2) also includes functions for the display of incoming
X.25 messages and network management functions. The phase II functions were
designed to be executed in situations less than the capacity loading.

5.1.4.1 INMESS (Overview).

INMESS is written in modular form. The main module is named INMESS and is composed
of INMESS.TOP, INMESSX.FTN, and INMESS.END. These groups of file are concatenated
to form the module INMESS.FTN. A command substitution system (CSS) file named
EXPANDIN.CSS was designed to facilitate the concatenation process. INMESS.TOP
includes the common declaration and parameter definition. Next, 12 copies of the
INMESSX.FTN file are concatenated. A separate copy INMESSX.FTN for each line must
be used because of access to the the memory of the common data structures. These
structures must be accessible from both the INMESS task but also from the ISR as
described in section 5.1.10. Finally, the INMESS.END module is concatenated. This
module contains the terminating code for the INMESS task.

The processing of X.25 lines is accomplished in a linear order. The algorithms for
processing each X.25 line are identical for all X.25 lines. Figure 5.1.4.1-1
depicts the flowchart for the INMESS processing. INMESS will first check the next
expected message pointer for the X.25 physical device. Then a determination is
made as to whether a X.25 message is available. If a message is available, the
length must be computed from data available from the X.25 device. Processing

10

statistics are updated and the message is extracted. At this point in processing,
an algorithm for displaying messages in Op-Comm function seven is included in
phase II software. Also, at this point an algorithm for network messages in
included in phase II software. These algorithms are described in sections 5.1.4.2
and 5.1.4.3. The X.25 buffer is reset so that it may be used for another message,
in consecutive order. Eight X.25 input message buffers are included. These
buffers are used in rotation as the X.25 messages arrive. If another message is
buffered, the entire pro~ess is repeated. Otherwise, statistics for the Op-Comm
display function are updated. The X.25 frame reject flag is checked. If set, the
buffer pointers, control variables, and the X.25 flags are reset. A flowchart of
this process is depicted in figure 5.1.4.1-2. The entire process is repeated for
each of the twelve X.25 lines in the CID system.

5.1.4.2 Message Display Function.

Phase II software permits the user to display of incoming X.25 messages on the
statistics display. The user interface is provided by Op-Comm function 7. A
complete explanation of Op-Comm function 7 is contained in section 5.1.7.1.9. If
the Op-Comm function 7 active flag is set, INMESS must filter each message for the
display function. The identification field of the message is checked to determine
if it is one of the following:

a. 31 - Message Rejection/Delay Notice
b. 32 - Uplink Delivery Notice
c. 41 - Standard Downlink
d. 42 - ELM Downlink
e. 44 - Data Link Capacity
f. 45 - ATCRBS ID Code

If the message type is one of the above, the Mode S identification field (ID) will
be checked against a list of five potential Mode S IDs. The five Mode S IDs are
provided by the user through Op-Comm function 7. If the message is for one of
the five selected Mode S IDs, the message is copied to an output buffer, the Mode S
ID is stored, the byte count is stored, the type code is stored, the port number
is stored, and the storage pointers are updated. The values stored will be
used by Op-Comm function 7 for the subsequent display of the selected messages.
Section 5.1.7.1.10 describes the operation of the Op-Comm display function. A
flowchart for the operation of message filtering for the Op-Comm display function
is depicted in figure 5.1.4.2-1.

5.1.4.3 Network Management Function.

Phase II (CID2) permits the retransmission of X.25 messages to support the
network management functions of the Mode S system. When executing this program,
X.25 messages arriving at the CID system are scanned. Network management messages
will be transmitted to the Mode S sensor as defined in the receiving sensor
identification (RSID) field. The port number of the CID system must comply with
the RSID field for this to occur.

11

This process begins with a determination if the network management function is
enabled. Then the identification field of the message is checked to determine if
it is one of the following:

a. 91 - Data Start
b. 92 - Data Stop
c. 93 - Data Request
d. 94 - Track Data
e. 95 - Cancel Request
f. 9D - Primary Coordination
g. 9E - Track Alert
h. Dl - ATCRBS Data Start
i. D2 ATCRBS Data Stop
j. D3 ATCRBS Data Request
k. D4 - ATCRBS Track Data
1. D5 - ATCRBS Cancel Request
m. 71 - Status Message
n. 72 - Adjacent Sensor Status Request
o. 73 - Adjacent Sensor Status Response

If the message type is one of the above, the RSID field is determined. The message
is composed and placed in the buffer for Output Message (OUTMESS) Processing. A
message pointer is placed on a list of pending messages for transmission. These
messages will be transmitted by OUTMESS to the sensor as defined by the RSID field.
In the event space is not available for the message pointer to be placed on the
list, an error is generated. This error will be accounted along with all other CID
system errors. A flowchart for the operation of the network management function of
INMESS is depicted in figure 5.1.4.3-1.

5.1.5 Output Message Processing.

The OUTMESS Processing task is responsible for handing scenario based messages to
the TRANSMIT routine. TRANSMIT will load the messages into the hardware for final
delivery. OUTMESS is a single subroutine made up of four blocks; OUTMESS main,
GETLINE, GETBUF, and SEND MESSAGE. OUTMESS uses the $INCLUDE statement to include
these blocks directly into OUTMESS main. Note that the block SEND MSG is also used
by the create a message and message routing functions to send messages.

5.1.5.1 OUTMESS (Main).

OUTMESS starts by setting the extraction buffer index and the number of messages
processed counters. OUTMESS builds an extraction buffer as it processes messages.
OUTMESS then extracts this buffer just before exiting. A flowchart of OUTMESS main
is given in figure 5.1.5.1-1.

The first messages processed by OUTMESS are the OLD messages. These are messages
that OUTMESS had previously processed but received a nonfatal error return code
from the hardware. OUTMESS then saved the messages as OLD messages. OUTMESS will
only process 10 OLD messages for each call. The pointers to these messages are
stored in a Fortran circular list. The messages themselves are still stored in the
scenario message buffers. OUTMESS retrieves the message pointer by using the
Fortran call RTL (read top of list). OUTMESS then places the pointer into the
variable MSG POINTER. OUTMESS will check for errors and then set the appropriate

12

•

flags. Next OUTMESS will need to insure that the scenario buffer holding the OLD
message is still ready and has not been overwritten. This is done by checking the
scenario buffer's ready flag. When this flag is found to have been reset, then the
buffer has been re£illed. The OLD message has then been overwritten and is lost.
OUTMESS will increment and extract the error condition.

OUTMESS uses the variable SCEN POINTER to update MSG POINTER when processing
scenario messages and not OLD messages.

Now MSG POINTER is pointing to the message that OUTMESS will process. OUTMESS next
processes the time field of the current message. A positive time field indicates
the time at which the message should be sent. A zero time field indicates the end
of the scenario buffer, while a negative time field indicates the end of the
scenario.

A time field that is greater than the current system time indicates there are no
more scenario messages scheduled to be sent now. OUTMESS will then extract its
extraction buffer and return to the CID. task Scheduler.

A zero time field will cause OUTMESS to process the block GETBUF. GETBUF will get
the pointers to the next scenario buffer. After GETBUF is finished, OUTMESS will
extract its extraction buffer and return.

A negative time field will cause OUTMESS to deschedule itself from the CID's task
scheduler and extract that event. OUTMESS will also extract its extraction buffer
and then return.

A positive time field that is less than or equal to the current system time will
cause OUTMESS to process the message. OUTMESS will read the header, port number
and byte count of the message, and then enter the block GETLINE. GETLINE will
return with the variable LINE set on and the multi-line variable sent accordingly.

Next, OUTMESS will check to see if the message has aged too much to process. This
would usually be an OLD message. When the time difference between the message's
time field and the current system time is greater than a preset variable, the
message is too old. OUTMESS will enter the message pointers and a failure code
into the extraction buffer and return to the top of its message processing loop.

OUTMESS will then enter the block SEND MESSAGE. This block will try to send the
message on the line number held in the variable LINE. SEND MESSAGE will check
return codes from the hardware and on failures to try to resend messages from
multi-line ports. When there are no available lines, SEND MESSAGE will try to save
the message on the old list.

OUTMESS will next increment the scenario index. OLD messages do not apply here.
OUTMESS will increment the scenario index by five words for a scenario message that
was a default message. For other scenario messages, the scenario index will be
incremented depending on the length of the message. The header field holds the
length of the message in bytes. OUTMESS will then return to the top of its message
processing loop (label 10). OUTMESS will continue to process messages until it
finds a time field that is either greater than the current system time, zero, or
negative.

13

5.1.5.2 GETLINE.

GETLINE is a block of code that is included into the OUTMESS subroutine as in-line
code. .GETLINE will take the port number of the message and determine its port and
line status. A flowchart of GETLINE is given in figure 5.1.5.2-1.

GETLINE first checks that the port number passed to it is a legal port number.
This step should not be necessary, but since an illegal port number will cause a
system crash, it is done anyway.

Next GETLINE checks for a single-line or multi-line port. Single line ports have
their port number converted directly to a line number. Multi-line ports are more
complicated.

First, with a multi-line port GETLINE will check to see if the port has been
configured. For a port that is not configured, the appropriate error message and
counters are incremented and extracted. Program control will return to the top of
the process loop in OUTMESS .main. Next, GETLINE sets the MULTI flag and the
variable ATTEMPTS. OUTMESS uses the variable ATTEMPTS to increment through the
lines in a multi-line port when an error is received from the TRANSMIT routine.
GETLINE then uses the variable PT PTR, along with the PORT number, to index in the
array MLINE to get the line number.

5.1.5.3 GETBUF.

GETBUF is a block of code that is included into the OUTMESS subroutine as in-line
code. GETBUF will get the pointers to the next scenario buffer and check for error
conditions. A flowchart of GETBUF is given in figure 5.1.5.3-1.

The number of scenario buffers is set by the variable SCEN BUFS. I/0 Processing
fills these buffers by following the variable OBUF. OUTMESS uses the scenario
ready and full flags to determine the scenario buffer status. When incrementing
the scenario buffer index, GETBUF initially uses the variable NEWBUF, while OUTMESS
uses the variable SBUF.

First, GETBUF will set its extraction buffer index to 0 and set the scenario index
to 0, also. This means that the scenario index will point to the top of the new
(or old) buffer. GETBUF will then increment the scenario buffer index, storing the
result in the variable NEWBUF, thus preserving the variable SBUF.

When GETBUF finds the new buffer to be "not full," the appropriate error counters
are incremented and entered into GETBUF's extraction buffer. Note that GETBUF used
the variable NEWBUF to point to the next buffer. The variable SBUF still holds the
index for the last processed buffer. GETBUF next sets the time field of the first
message in SBUF to 0. This indicates that the buffer is empty and insuring that
the OUTMESS will not process the messages in that buffer a second time. GETBUF is
then exited and after an extraction call OUTMESS will also be exited. The next
time that OUTMESS is processed, it will encounter the zero time field on SBUF.
This will allow GETBUF to try to get the next buffer again. Hopefully, the
additional time will have allowed I/0 Processing to fill the new buffer.

14

When GETBUF finds that the new buffer is full, then GETBUF will reset the ready and
full flags of the buffer pointed to by OBUF. GETBUF will then increment OBUF.
This will allow I/0 Processing to fill this buffer. Note that OBUF is kept a few
(determined in INITIAL) buffers behind the buffers being processed by OUTMESS.
This allows messages saved on the OLD list to still be available for delayed
processing. GETBUF then set SBUF, the index used by OUTMESS, to the NEWBUF index.
GETBUF also sets the appropriate counters and extraction fields. GETBUF then
checks the buffer for a read error. For buffers that do not have a read error,
GETBUF sets the ready flag, extracts GETBUF's extraction buffer, and exits. For
buffers that have a read error GETBUF, sets an extraction word and control will
then revert to the top of GETBUF to get the next buffer. GETBUF keeps a count of
the number of bad (read error) buffers found in consecutive order. When this
number reaches 8, GETBUF deschedules OUTMESS and extracts an error. This is done
so this condition does not set up an endless loop.

5.1.5.4 SEND MESSAGE.

SEND MESSAGE is a block of code that is included into the OUTMESS subroutine as in­
line code. SEND MESSAGE will try to send the message pointed to by the variables
MINDEX and MBUF by calling the subroutine TRANSMIT. A flowchart of SEND MESSAGE is
given in figure 5.1.5.4-1.

SEND MESSAGE first checks to see if the message is a default message. When SEND
MESSAGE finds a default message, then SEND MESSAGE will copy the first two words of
the message into the first two words of the default buffer. SEND MESSAGE then
calls the subroutine TRANSMIT passing it to the location of the message. Default
messages are transmitted from the default message buffers while other messages are
transmitted from directly the scenario buffers.

SEND MESSAGE will next check the return code from TRANSMIT for errors. A return
code that equals 0 indicates that the message was successfully loaded into the
hardware to be transmitted. SEND MESSAGE will then increment the messages sent
statistics and exit. A nonzero return code indicates there was an error and that
TRANSMIT did not load the message into the hardware.

When SEND MESSAGE finds a nonzero return code, it will check to see if the
messages's port is a multi-line port. When the port is a multi-line port, SEND
MESSAGE will increment through the lines in the port calling TRANSMIT for each
line. SEND MESSAGE will continue to try to send the message until either it is
successful or until it has tried all the lines in the port.

When there are no other lines available to TRANSMIT the message on, SEND MESSAGE
will try to save it. SEND MESSAGE will first check the return to see if the error
was a fatal error. For a fatal error SEND MESSAGE will increment the appropriate
counters and set the appropriate fields in the extraction buffer. For a nonfatal
error SEND MESSAGE will try to add the message to the OLD list. SEND MESSAGE will
check the return code from the Fortran call ABL (add to the bottom of the list).
When the ABL call returns an error SEND MESSAGE will increment the appropriate
counters and set the appropriate fields in the extraction buffer.

The SEND MESSAGE block is then complete.

15

5.1.6 Second Processing.

The second processor is a Fortran program that is executed by the Scheduler every
second. The purpose of this program is to process periodic events within the CID
real-time system. Two calls are made to the extraction routine in second
processing. The extractor is described in section 5.1.9 of this report. The first
call will extract the software error counters. The second call will extract the
X25 device errors. These error counters consist of all the errors that are
detected by the real-time CID program. A flow chart of the second processing
routine is given in figure 5.1.6-1. A list of software errors is shown in
figure 5.1.6-2 and the list of X25 errors is shown in figure 5.1.6-3.

5.1.7 Operator Communications (Op-Comm).

The Op-Comm package provides the user interface to the real-time operations of the
CID. The package consists of two processing subroutines; the routine Op-Comm which
performs the statistical processing, and the routine Op-Comin which performs the
input processing. A third file, Opblkdta is used to provide the database of
display screens which appear on the two CID terminals. Together, the three
processes provide the user with the capability of displaying system status and
errors, displaying X.25 device status and errors, and the necessary functions
required to control the CID simulation.

The Op-Comm package is executed by the Scheduler. Op-Comin processes terminal
input buffers (a string of characters, typed by the operator, terminated by a
carriage return) from the control terminal. Scheduling of Op-Comin for execution
is performed by I/0 on receipt of each completed terminal input buffer. A terminal
input buffer allows the CID operator a means of sending data to the CID task.
Op-Comin schedules the Op-Comm routine when the user's input requires statistics
processing. The two routines are synchronized by parameters contained in the CID
Fortran common blocks.

The Opblkdta routine is a Fortran block data subprogram which defines the various
display screens. This database holds both the ASCII contents of each display
screen and the cursor positioning information of each string on a particular
screen. The individual display screens, or buffers, are selected for display by
the Op-Comm package; the actual display of the screens is performed by I/0.

5.1.7.1 Operator Communications Input (Op-Comin).

Op-Comin is responsible for processing input from the operator, handling input
errors, setting up for the display of statistical screen templates, and setting
up pointers for the next function to be processed in both Op-Comin and Op-Comm.
Op-Comin is also responsible for scheduling Op-Comm, but only when the operator's
request requires statistical processing.

The Op-Comin routine consists of ten functions. These functions correspond
to the individual menu items of figure 5.1.7.1-1. An optimized version of a
subroutine call is used to vector to one of these functions depending on the user's
response to the CID menu. This subroutine call is based on an Assembly Language
implementation of a Fortran "computed GOTO" statement. It uses a location table to
look up a subroutine address base~ on the state condition (held in OPINFUNC) passed
to it. The key to this algorithm is that there is no parameter list associated

16

with the subroutines. Instead, common blocks are used to pass information to the
subroutine. This allows the standard subroutine call overhead to be bypassed,
hence speeding up the vectoring process. Figure 5.1.7.1-2 shows a flowchart of the
computed GOTO algorithm.

On entering _the Op-Comin main routine, the first thing done is to check OPINSTATE.
This variable, set during Initialization and each subsequent state of Op-Comin,
determines whether a previous function has been completed. When OPINSTATE does not
equal 0, program control is transferred to the appropriate function, using OPINFUNC
as the vector, by utilizing the computed GOTO algorithm.

When all previous states of a function have been completed, Op-Comin is ready to
process the next function request from the user. This function request comes in
the form of a filled input buffer.

The input buffer processed in response to the CID menu must be converted into
appropriate form. In response to the CID menu, this requires the conversion of the
input buffer to integer representation. It is known that only one character need
be processed since the response at this point must be a value "1" through "9."
When any other value is typed in by the user, an error message is displayed and the
user is asked to try again. Figure 5.1.7.1-3 shows a flowchart of the Op-Comin
routine.

5.1.7.1.1 Input Processing.

Due to time constraints placed on the Op-Comin processing routine by the CID
design, standard Fortran I/0 processing (i.e., reads and writes) is inadequate for
use in communicating with the CID program. A series of algorithms have been
developed for each type of input expected by Op-Comin. The user is able to
communicate directly with the CID program only through certain windows provided by
the Op-Comin routines. Input to the simulation occurs when:

a. Responding to the CID menu.
b. Selecting an X.25 device to activate or deactivate.
c. Displaying a message.
d. Creating a message.

Figure 5.1.7.1.1-1 lists each type of input expected and the processing routines
associated with it. Any input by the user must be in response to a menu or
question displayed on the CID control terminal. An input comes in the form of a
filled input buffer. The input buffers processed throughout the Op-Comin routine
are ASCII representations of the input. A filled input buffer is defined as a
buffer of 80 characters (bytes) in length, or a buffer less than 80 characters
terminated by a hexadecimal (hex) D, and the ASCII representation of a carriage
return <cr>. The user has the choice of filling an input buffer with a character
string within the range defined in the query or taking the default value by simply
hitting the carriage return. In either case, the range of the input allowed and
the default value taken are given in the CID user's manual.

In order to process input into usable data, the information must be converted into
appropriate format for the intended operation. An input buffer is requested to be
opened by Op-Comin, prepared by I/0, and ultimately filled by the user in response
to the displayed CID menu or query. The input buffer is guaranteed to be ready for
processing by Op-Comin because I/0 does not schedule the Op-Comin routine until the
input buffer has been filled by the user.

17

Single character input is the simplest input to process. It is known that only
one character need be processed, and that the response from the user be one of two
possible values. Figure 5.1.7.1.1-2 shows a flowchart of Single Character Input
Processing. The algorithm to perform this process using "Y" and "N" (for YES and
NO) as the expected inputs is listed below:

a. Load the high order byte of the input buffer, IVAR(l), into INTBYTE.

b. If the value of INTBYTE is "Y" (hex 59), perform the YES branch of the
necessary logic.

c. Otherwise, perform the NO branch of the necessary logic.

Single digit decimal input requires slightly different processing. In this
case, the conversion of the input buffer is to integer. It is known that only
one character need be processed since the response at this point should be a
0 through 9. Figure 5.1.7.1.1-3 shows the flowchart of Single Digit Decimal Input
Processing. The algorithm to perform this process is listed below:

a. Load the high order byte of the input buffer, IVAR(l), into INTBYTE.

b. Compare INTBYTE with <cr>. A <cr> signifies the end of the input buffer.

c. When INTBYTE is not <cr>, insure that INTBYTE is between hex 30 and 39,
subtract hex 30 from INTBYTE, and save this value for later use.

d. When INTBYTE is <cr>, the user selected the default. This default value
depends on the individual function and state. The CID menu does not use a default,
a value from "0" to "9" is required.

e. Otherwise, if INTBYTE was not between hex 30 and hex 39 and not a <cr>, an
error message will be queued to the control screen by setting COMBUF equal to 8.
I/0 will inform that an input buffer needs to be opened by setting IOBUFILL equal
to TRUE, and return to the Scheduler while keeping OPINSTATE unmodified so that the
next input buffer is processed for the same function and state.

Several digit decimal inputs handle responses from the user from "0" to "9999."
The user's response is terminated by a <cr>. In this case, the conversion of the
input buffer is to integer. Figure 5.1.7.1.1-4 shows a flowchart of Several Digit
Decimal Input Processing. The algorithm to perform this process is listed below:

a. Set I to 1. Set DEC! VAL to 0. Load the high order byte of the input
buffer, IVAR(l), into INTBYTE(I).

b. Compare INTBYTE(I) with <cr>. A <cr> signifies the end of the input
buffer. When I is 1 and a <cr> is entered, i.e., the user did not enter a value
but only the <cr>, the user has selected the default value to be used, if it is
applicable for the function and state process in effect.

c. When INTBYTE(I) is not <cr>, insure that INTBYTE is between hex 30 and 39
and set DEC! VAL equal to (DEC! VAL *10) + (INTBYTE(I) - X'30'). Increment I by 1,
and check to see if the maximum of four digits has been processed. If so, jump out
of this loop to step 5. If the maximum of four digits has not been processed, load
the next byte of the input buffer IVAR into the next halfword of INTBYTE and jump
back to step 2.

18

d. When INTBYTE(I) is not <cr>, and INTBYTE(I) is not between hex· 30 and 39,
then an illegal digit has been entered and the user is informed to try again.
COMBUF is set to 7 to queue the message, an input buffer is opened by setting
OIBUFILL to TRUE, and Opcomm is descheduled.

e. When acceptable input terminated by a <cr> has been processed at this
point, a check is performed to verify that DEC! VAL is within the acceptable limits
for this function and state. Again, if DEC! VAL is not acceptable, COMBUF is set
to 7, an input buffer is opened, and Op-Comm is descheduled.

Single digit hex input requires only one digit input processing. In thi~ case, the
conversion of the input buffer is to integer. It is known that only one character
need be processed since the response at this point should be a hex 0 through F.
Figure 5.1.7.1.1-5 shows the flowchart of Single Digit Hexadecimal Input
Processing. The algorithm to perform this process is listed below:

a. Load the high order byte of the input buffer, IVAR(l), into INTBYTE.

b. Compare INTBYTE with <esc>. An <esc> signifies the input buffer contains
an escape character.

c. When INTBYTE is not <esc>, insure that INTBYTE is between hex 30 and 46.
Check if INTBYTE is greater than hex 39. If it is, subtract,hex 37 from INTBYTE,
or else subtract hex 30 from INTBYTE and save this value for later use.

d. When INTBYTE is <esc>, the user selected the default.

e. Otherwise, if INTBYTE was not between hex 30 and hex 46, queue an error
message to the control screen by setting COMBUF equal to 15. Inform l/0 that an
input buffer needs to be opened by setting IOBUFILL equal to TRUE, and return to
the Scheduler by setting OPINSTATE equal to 7 in order that the next input buffer
can be processed for the same function and state.

A two-digit hex input requires up to two-digit input processing. In this case, the
conversion of the input buffer is to integer. It is known that two characters need
to be processed since the response at this point should be a hex 0 through FF.
Figure 5.1.7.1.1-6 shows the flowchart of Two-Digit Hexadecimal Input Processing.
The algorithm to perform this process is listed below:

a. Load the high order byte of the input buffer, IVAR(l), into INTBYTE.

b. Compare INTBYTE with <esc>. An <esc> signifies the input buffer contains
an escape character.

c. When INTBYTE is not <esc>, insure that INTBYTE is between hex 30 and 46.
Check if INTBYTE is greater than hex 39. If it is, subtract hex 37 from INTBYTE,
or else subtract hex 30 from INTBYTE and save this value for later use. Increment
I by 1, and check if the maximum of two digits has been processed. If two digits
have been processed, save this value for later use and perform the next state
processing. If two digits have not been processed, load the next byte of the input
buffer IVAR into the next halfword of INTBYTE.

d. Compare INTBYTE with <cr>. If it is a <cr>, perform the next state
processing. If it is not a <cr>, repeat step c.

19

e. When INTBYTE is <esc>, the user selected the defauit.

f. Otherwise, if INTBYTE was not between hex 30 and hex 46, queue an error
message to the control screen by setting COMBUF equal to 15. Inform I/0 that an
input buffer needs to be opened by setting IOBUFILL equal to TRUE, and return to
the Scheduler by setting OPINSTATE equal to the current state in order that the
next input buffer can be processed for the same function and state.

A six-digit hex input requires up to six-digit input processing. In this case, the
conversion of the input buffer is to integer. It is known that six characters need
to be processed since the response at this point should be apex 0 through FFFFFF.
Figure 5.1.7.1.1-7 shows the flowchart of Six-Digit Hexadecimal Input Processing.
The algorithm to perform this process is listed below:

a. Load the high order byte of the input buffer, IVAR(l), into INTBYTE.

b. Compare INTBYTE with <esc>. An <esc> signifies the input buffer contains
an escape character.

c. When INTBYTE is not <esc>, insure that INTBYTE is between hex 30 and 46.
Check if INTBYTE is greater than hex 39. If it is, subtract hex 37 from INTBYTE,
or else subtract hex 30 from INTBYTE and save this value for later use. Increment
I by 1, and check if the maximum of six digits hap been processed. If six digits
have been processed, save this value for later use and perform the next state
processing. If six digits have not been processed, load the next byte of the input
buffer IVAR into the next halfword of INTBYTE.

d. Compare INTBYTE with <cr>. If it is a <cr>, perform the next state
processing. If it is not a <cr>, repeat step c.

e. When INTBYTE is <esc>, the user selected the default.

f. Otherwise, if INTBYTE was not between hex 30 and hex 46, queue an error
message to the control screen by setting COMBUF equal to 15. Inform I/0 that an
input buffer needs to be opened by setting IOBUFILL equal to TRUE, and return to
the Scheduler by setting OPINSTATE equal to the current state in order that the
next input buffer can be processed for the same function and state.

A 14-digit hex input requires a somewhat different approach to decoding. All
other input until now required only one fullword of storage space to hold the
result. In this case, the result requires two fullwords of storage space.
Also, since hex utilizes the characters A through F to represent the decimal
values 10 through 15, the check for a legal digit in the input buffer becomes
more complicated. Figure 5.1.7.1.1-8 shows a flowchart of 14-Digit Hex Input
Processing. The algorithm below describes the process:

a. I is initialized to 1. The first byte of the input buffer, IVAR(l), is
loaded into the processing buffer INTBYTE(l) which is a halfword-oriented array.

b. When the user simply entered a <cr>, INPT2 CRSR POS is incremented by 1,
and the cursor position buffer is queued for output by setting COMBUF to 5. An
input buffer is opened by setting OIBUFILL to TRUE, and a check is made to see if

20

F5 UPDATE FLAG is set to 1. When the flag is set to 1, it means that this is an
update to track already on the CTL. In this case, the parameter cannot be updated.
When F5 UPDATE FLAG is not 1 and the user typed only a <cr>, the default values for
the two variables generated are set to the de(ault values.

c. When the first character in the input buffer was not a <cr>, 14 hex
characters are expected. When INTBYTE(I) is between hex 30 and 39, the value is
normalized to hex by subtracting hex 30 from it. When INTBYTE(I) is between
hex 41 and 46 (A and F), the value is normalized by subtracting hex 37 from it.
Otherwise, the INTBYTE(I) is considered illegal and error processing is invoked by
setting COMBUF equal to 7, OIBUFILL to TRUE, and descheduling Op-Comm.

d. When INTBYTE(I) holds a valid hex value, the pointer into the input buffer,
IVAR, is set to increment by one halfword, and the byte pointer into the-proper
halfword element of IVAR is selected. I the index into the INTBYTE array is also
incremented by 1, and using the pointers just computed, the next byte of the input
buffer is loaded into the next halfword of the INTBYTE array.

e. Now that the index I has been incremented to the next value, it can be
compared against the value of 15. When I is less than 15, the control passes back
to step 2. When I is equal to 15, the final format of the data is computed. This
is done by shifting the INTBYTE array elements by magnitudes of 10 according to the
individual function state requirements which yields two fullwords of computed
values.

A 20-digit hex i~put requires up to 20 digit input processing. All other input
until now required only one fullword of storage space to hold the result. In this
case, the result requires three fullwords of storage space. Figure 5.1.7.1.1-9
shows a flowchart of 20-Digit Hexadecimal Input Processing. The algorithm below
describes the process.

a. I is initialized to 1. The first byte of the input buffer, IVAR(l), is
loaded into the processing buffer INTBYTE(l) which is a halfword-oriented array.

b. Compare INTBYTE with <esc>. An <esc> signifies the input buffer contains
an escape character.

c. When INTBYTE is not <esc>, insure that INTBYTE is between hex 30 and 46.
Check if INTBYTE is greater than hex 39. If it is, subtract hex 37 from INTBYTE,
or else subtract hex 30 from INTBYTE and save this value for later use. Increment
I by 1, and check if the maximum of 20 digits has been processed. If 20 digits.
have been processed, save this value to process three fullword input. The fullword
processing is done by mutiplying the appropriate hex bit field to each input byte
and storing it in a buffer. If 20 digits have not been processed, load the next
byte of the input buffer IVAR into the next halfword of INTBYTE.

d. Compare INTBYTE with <cr>. If it is a <cr>, perform the next state
processing. If it is not a <cr>, repeat step c.

e. When INTBYTE is <esc>, the user selected the default.

21

f. Otherwise, if INTBYTE was not between hex 30 and hex 46, queue an error
message to the control screen by setting COMBUF equal to 15. Inform I/0 that an
input buffer needs to be opened by setting IOBUFILL equal to TRUE, and return to
the Scheduler by setting OPINSTATE.equal to the current state in order that the
next input buffer can be processed for the same function and state.

5.1.7.1.2 Function 0 - Output Menu.

Function 0, the output menu subroutine, is not directly accessible by the operator.
This function is invoked whenever the simulation is initialized or any function is
concluded. The purpose of this function is to queue the CID menu buffer for
display by setting COMBUF to 1 and permit input to be accepted by I/O's input
buffer by setting OIBUFILL to TRUE. In addition, OPINSTATE is set to 0, informing
the main routine of Op-Comin to process the next input buffer for a new function
value. Figure 5.1.7.1.2-1 shows a flowchart of Op-Comin function 0.

5.1.7.1.3 Function 1 -Display Statistics.

Function 1, the display statistics subroutine, will toggle the display of the CID
system statistics. When the statistics function is enabled (OPINFUNC is equal
to 1) on entering this function, it becomes disabled. Op-Comm is descheduled by
setting the next time to process Op-Comm, ITIME(3), to the largest number possible
(hex 7FFFFFFF). Also, the frequency of scheduling Op-Comm, INCTIME(3), is set to a
negative number (hex 80000000). OPINFUNC, which contains the next function to
process, is set to 0. The CID menu buffer is queued by setting COMBUF equal to 1
and an input buffer is opened allowing the user to type in his next response to the
CID menu by setting OIBUFILL to TRUE. OPINSTATE is set to 0 for the next time
through the Op-Comin main routine.

When the Statistic Terminal is disabled (OPINFU~C is not equal to 1) it now becomes
enabled by setting OPINFUNC to 1. This informs Op-Comm of the function to process.
Op-Comm is scheduled to run in 1 second from now and every 4 seconds, thereafter,
by setting ITIME(3) to the current system time, plus 1000 STUs and setting
INCTIME(3) to the value of the schedule frequency variable, SCH UPD FREQ, which
is 4 seconds. COOBUF is set to 1 to queue the template· buffer of the display
statistics function. COMBUF is set to 1 to queue the menu buffer for display. An
input buffer is opened allowing a response to the menu, and finally, OPINSTATE is
set to 0, signifying the completion of Op-Comin's processing of this function.
Figure 5.1.7.1.3-1 shows a flowchart of Op-Comin function 1.

5.1.7.1.4 Function 2 -Display System Errors.

Function 2, the display system errors subroutine, will toggle the display of the
CID system errors. When the error function is currently enabled (OPINFUNC is equal
to 2), it becomes disabled. Op-Comm is descheduled by setting the next time to
process Op-Comm, ITIME(3), to the largest number possible (hex 7FFFFFFF). Also,
the frequency of scheduling Op-Comm, INCTIME(3), is set to a negative number (hex
80000000). OPINFUNC, which contains the next function to process, is set to 0.
The CID menu buffer is queued by setting COMBUF equal to 1, and a buffer is opened
allowing the user to type in his next response to the CID menu by setting OIBUFILL
to TRUE. OPINSTATE is set to 0 for the next time through the Op-Comin main
routine.

22

When the system error function is disabled (OPINFUNC is not equal to 2), it now
becomes enabled by setting OPINFUNC to 2. Op-Comm is scheduled to run in 1 second
from the current system time and every 4 seconds, thereafter, by setting ITIME(3)
to the current system time, plus 1000 STUs and setting INCTIME(3) to the value
of the· schedule frequency variable, SCH UPD FREQ, which is 4 seconds. COOBUF is
set to 1 to queue the template buffer of the system error function. COMBUF is set
to 1 to queue the menu buffer for display. An input buffer is opened allowing a
response to the menu, and finally, OPINSTATE is set to 0, signifying the completion
of Op-Comin's processing of this function. Figure 5.1.7.1.4-1 shows a flowchart of
Op-Comin function 2.

5.1.7.1.5 Function 3 - Display X.25 Statistics.

Function 3, the display X.25 statistics subroutine, toggles the display 9f the CID
system errors. When the error function is currently enabled (OPINFUNC is equal to
3), it becomes disabled. Op-Comm is descheduled by setting the next time to
process Op-Comm, ITIME(3), to the largest number possible (hex 7FFFFFFF). Also,
the frequency of scheduling Op-Comm, INCTIME(3), is set to a negative number
(hex 80000000). OPINFUNC, which contains the next function to process, is set
to 0. The CID menu buffer is queued by setting COMBUF equal to 1 and a buffer is
opened allowing the user to type in his next response to the CID menu by setting
OIBUFILL to TRUE. OPINSTATE is set to 0 for the next time through the Op-Comin
main routine.

When the X.25 statistic function is disabled (OPINFUNC is not equal to 3), it
becomes enabled by setting OPINFUNC to 3. Op-Comm is scheduled to run in 1 second
from the current system time and every 4 seconds, thereafter, by setting ITIME(3)
to the current system time, plus 1000 STUs and setting INCTIME(3) to the value of
the schedule frequency variable, SCH UPD FREQ, which is 4 seconds. COOBUF is set
to 5 to queue the template buffer of the X.25 statistics function. COMBUF is set
to 1 to queue the menu buffer for display. An input buffer is opened allowing a
response to the menu, and finally, OPINSTATE is set to 0, signifying the completion
of Op-Comin's processing of this function. Figure 5.1.7.1.5-1 shows a flowchart of
Op-Comin function 3.

5.1.7.1.6 Function 4 - Display X.25 Errors.

Function 4, the display X.25 errors subroutine, toggles the display of the CID
X.25 errors. When the error function is currently enabled (OPINFUNC is equal
to 4), it becomes disabled. Op-Comm is descheduled by setting the next time
to process Op-Comm, ITIME(3), to the largest number possible (hex 7FFFFFFF).
Also, the frequency of scheduling Op-Comm, INCTIME(3), is set to a negative number
(hex 80000000). OPINFUNC, which contains the next function to process, is set
to 0. The CID menu buffer is queued by setting COMBUF equal to 1 and a buffer is
opened allowing the user to type in his next response to the CID menu by setting
OIBUFILL to TRUE. OPINSTATE is set to 0 for the next time through the Op-Comin
main routine.

23

When the X.25 ·error function is disabled (OPINFUNC is not equal to 4), it becomes
enabled by setting OPINFUNC to 4. Op-Cornrn is scheduled to run in 1 second from the
current system time and every 4 seconds, thereafter, by setting ITIME(3) to the
current system time, plus 1000 STUs and setting INCTIME(3) to the value of the
schedule frequency variable, SCH UPD FREQ, which is 4 seconds. COOBUF is set to
7 to queue the template buffer of the X.25 error function. COMBUF is set to 1 to
queue the menu buffer for display. An input buffer is opened allowing a response
to the menu, and finally, OPINSTATE is set to 0, signifying the completion of
Op-Comin's processing of this function. Figure 5.1.7.1.6-1 shows a flowchart of
Op-Comin function 4.

5.1.7.1.7 Function 5 -Modify the X.25 Device Status.

Function 5, the modify X.25 device status subroutine, toggles. the status of a
selected X.25 device, when requested.

The function has three states. In state 1, the modify X.25 query buffer is queued
for display by setting COMBUF equal to 3. An input buffer is opened for the user's
response by setting OIBUFILL to TRUE. OPINSTATE is set to 2 for the next time
through this function (after the user responds to the modify query). OPER FUNC is
set to 3 which selects the X.25 statistics function for execution. OPER STATE is
set to 0. ITIME(3) and INCTIME(3) are set to run the X.25 statistics function in 1
second and every 4 seconds, thereafter. Finally, COOBUF is set to 5 which queues
the X.25 statistics template screen for display.

After the user responds to the modify query, Op-Comin uses the flags set in state 1
to execute state 2 of function 5. In this state, the input buffer is processed.
When a valid input is decoded (0 through 11, or an <esc>), the error processing
routine is skipped. The error processing simply rese1ects function 5 state 2 for
reexecution after clearing the user's errant input from the control screen.

When the routine decodes an <esc>, function 5 is terminated after the CID function
menu is queued for display by setting COMBUF equal to 1.

When the routine decodes a device from 0 through 11, a check is performed to verify
that the device was configured during CID Initializaion. When the check finds that
the device is not configured (ST X25 CONFIGURED(DEV NUMBER) is not greater than 0),
COMBUF is set to 5 which queues the "not configured" error buffer and function 5
state 2 is selected for execution once again. When the configuration test declares
that the decoded device number is configured (ST X25 CONFIGURED(DEV NUMBER) is
greater than 0), the selected device number is checked to determine whether the
device is currently active. When the device is active (COX ACTIVE FLAG is TRUE),
DEVICE ACTIVE is set TRUE and COMBUF is set to 6 which queues the "OK to
de-activate" buffer. When the device is inactive (COX ACTIVE FLAG is FALSE),
DEVICE ACTIVE is set FALSE and COMBUF is set to 7 which queues the "OK to
activate" buffer. Whether the device is active or inactive OPIN STATE is set
to 3, selecting function 5 state 3 for execution after the user responds to the
displayed buffer.

24

In state 3, when the user responds with a "N" to the displayed buffer selected in
state 2, state 2 is reselected for execution by setting COMBUF to 3 and OPIN STATE
to 2. Otherwise, DEVICE NUMBER is checked and the appropriate CDX ACTIVE FLAG is
toggled by performing a logical NOT on the value. Next, COMBUF is set to 3 and
OPIN STATE is set to 2, which selects state 2 of function 5 for execution after
displaying the associated buffer. In any case, an input buffer is opened before
terminating function 5 state 3 by setting OIBUFILL to TRUE. Figure 5.1.7.1.7-1
shows a flowchart of function 5.

5.1.7.1.8 Function 6 - Create A Message.

The Create A Message subroutine, function 6 of the CID main menu, will allow
the user to create various messages to. be transmitted on the designated port.
Figure 5.1.7.1.8-1 shows a flowchart of Op-Comin function 6.

The function consist of various states. The first state will queue the Create A
Message option screen to terminal 1 by setting COMBUF equal to 24. An input buffer
is opened for a user response by setting OIBUFILL equal to TRUE. OPINSTATE is set
to 2 for the next state to process. OPERFUNC is set to 6 which allows the Create
A Message function to be executed. ITIME(3) and INCTIME(3) are set to run the
Create A Message function in 1 second at every 4-second intervals, respectively.
Terminal 2 is cleared by setting COOBUF equal to 10. Figure 5.1.7.1.8-2 shows a
flowchart of Op-Comin function 6 - State 1.

In the second state, the user selects a message to create. Once the user selects a
message to be created, Op-Comin recognizes the flags which were set in state 1 to
execute state 2 of function 6. If the user does not type a valid entry from 1 to
7, then Create A Message screen is queued again. This is done by setting COMBUF
equal to 24, OIBUFILL equal to TRUE, and OPINSTATE equal to 2. If a valid input
is entered, then OPINSTATE is set to 3 to allow state 3 to be processed. Again,
OIBUFILL is set to TRUE to allow user response. COMBUF is set to 25 to queue the
Assigned Message Number buffer. If the user enters a 7, then OPINSTATE is set
to 0 to inform Op-Comin to ignore all states in function 6. COMBUF is set to
1 to allow the main CID menu buffer to be queued and OIBUFILL is set to TRUE.
Figure 5.1.7.1.8-3 shows a flowchart of Op-Comin function 6 - State 2.

In the third state, the user enters the assigned message number. If the user
enters a valid input (0-F), then COMBUF is set equal to 26, OPINSTATE equal to 4,
and OIBUFILL equal to TRUE. This will allow Op-Comin to execute state 4 in
function 6 for the next time around this subroutine. The input is converted to
ASCII and stored in OMBUF25(93:94) to allow the user to view what was typed in
when a response is made not to send the message. The input is also converted
to a 32-bit integer value and stored in MSGNO to be added to the transmission
buffer (BUFFER). If the user types an invalid input, then OMBUF15(52:52) and
OMBUF15(55:55) are set to "-" and "F," respectively, prior to when COMBUF is set to
15 and OPINSTATE is set to 3. This will display that the user typed in an invalid
input and to notify to reenter another input, reposition the cursor, and reexecute
state 3. If the user types in an <esc> key and the FILL flag is not set high, then
the user will be requested to reenter the input, and the error message will be
displayed similar to the invalid input prompt. The FILL flag allows the user to
skip over this state, had the user already typed a previous value for this entry.
If the FILL flag was set high when the <esc> key was entered, then state 4 and the
X.25 Port No. buffer will be queued. This is done by setting OPINSTATE equal to 4,
COMBUF equal to 26, and OIBUFILL equal to TRUE. Figure 5.1.7.1.8-4 shows a
flowchart of Op-Comin function 6 - States 3 to 17.

25

In the fourth state, the user enters the X.25 port number. If the user enters a
valid input (1-6), then COMBUF is set equal to 27, OPINSTATE equal to 5, and
OIBUFILL equal to TRUE, for Create A Message selection (1-5). This will allow
Op-Comin to execute state 5 in function 6 for the next time around this subroutine.
For a Create A Message selection of (6), COMBUF is set equal to 38, OPINSTATE equal
to 6, and OIBUFILL equal to TRUE. This will allow Op-Comin to execute ·state 6 in
function 6 for the next time around this subroutine.

The input is converted to ASCII and stored in OMBUF26(93:93) to allow the user
to view what was typed in when a response is made not to send the message. The
input is also converted to a 32-bit integer value and stored in the transmission
buffer (PORT). If the user types an invalid input, then OMBUF15(52:52) and
OMBUF15(55:55) are set to 0

-" and "F," respectively, prior to when COMBUF is set to
15 and OPINSTATE is set to 4. This will display that the user typed in an invalid
input and to notify to reenter another input, reposition the cursor, and reexecute
state 4. If the user types in an <esc> key and the FILL flag is not set high, then
the user will be requested to reenter the input, and the error message will be
displayed similar to the invalid input prompt. The FILL flag allows the user to
skip over this state, had the user already typed a previous value for this entry.
If the FILL flag was set high when the <esc> key was entered, then state 5 and the
ModeS ID buffer will be queued for Create A Message selection (1-5). This is done
by setting OPINSTATE equal to 5, COMBUF equal to 27, and OIBUFILL equal to TRUE.
If the FILL flag was set high when the <esc> key was entered, then state 6 and the
Message Length buffer will be queued, for Create A Message selection (6). This is
done by setting OPINSTATE equal to 6, COMBUF equal to 38, and OIBUFILL equal to
TRUE.

In the fifth state, the user enters the Mode S ID. If the user enters a valid
input (0-F) for each of the six-hex digits, then COMBUF is set equal to 28,
OPlNSTATE equal to 7, and OIBUFILL equal to TRUE, for Create A Message selection
(1-3). This will allow Op-Comin to execute state 7 in function 6 for the next time
around this subroutine. For Create A Message selection (4), COMBUF is set equal
to 40, OPINSTATE equal to 18, and OIBUFILL equal to TRUE. This will allow Op-Comin
to execute state 18 in function 6 for the next time around this subroutine. For a
Create A Message selection (5), COMBUF is set equal to 36, OPINSTATE equal to 8,
and OIBUFILL equal to TRUE. This will allow Op-Comin to execute state 8 in
function 6 for the next time around this subroutine. The input is converted to
ASCII and stored in OMBUF27(93:98) to allow the user to view what was typed in when
a response is made not to send the message. The input is also converted to a
24-bit integer value and stored in MODESIN to be added to the transmission buffer
(BUFFER). The BYTE COUNT is set to 5 bytes, if Create A Message selection was 4.
If the user types an invalid input, then OMBUF15(52:52) and OMBUF15(55:55) are set
to "/" and "F," respectively, prior to when COMBUF is set to 15 and OPINSTATE is
set to 5. This will display that the user typed in an invalid input.and to notify
to reenter another input, reposition the cursor; and reexecute state 5. If the
user types in an <esc> key and the FILL flag is not set high, then the user will be
requested to reenter the input, and the error message will be displayed similar to
the invalid input prompt. The FILL flag allows the user to skip over this state,
had the user already typed a previous value for this entry. If the FILL flag was
set high when the <esc> key was entered, then state 7 and the Priority buffer will
be queued, for Create A Message selection (1-3). This is done by setting OPINSTATE
equal to 7, COMBUF equal to 28, and OIBUFILL equal to TRUE. If the FILL flag was
set high when the <esc> key was entered, then state 18 and the OK To Send Message

26

buffer will be queued, for Create A Message selection (4). This is done by setting
OPINSTATE equal to 18, COMBUF equal to 40, and OIBUFILL equal to TRUE. If the FILL
flag was set high when the <esc> key was entered, then state 8 and the Reference
Message Number buffer will be queued, for Create A Message selection (5). This is
done by setting OPINSTATE equal to 8, COMBUF equal to 36, and OIBUFILL equal to
TRUE.

In the sixth state, the user enters the message length. If the user enters a
valid input (0-F) for each of the two-hex digits, then COMBUF is set equal to 39,
OPINSTATE equal to 9, and OIBUFILL equal to TRUE. This will allow Op-Comin to
execute state 9 in function 6 for the next time around this subroutine. The
input is converted to ASCII and stored in OMBUF38(93:94) to allow the user to
view what was typed in when a response is made not to send the message. The
input is also converted to an 8-bit integer value and stored in MSGLN to be
added to the transmission buffer (BUFFER). If the user types an invalid input,
then OMBUF15(52:52) and OMBUF15(55:55) are set to "/" and "F," respectively, prior
to when COMBUF is set to 15 and OPINSTATE is set to 6. This will display that the
user typed in an invalid input and to notify to reenter another-input, reposition
the cursor, and reexecute state 6. If the user types in an <esc> key and the FILL
flag is not set high, then the user will be requested to reenter the input, and the
error message will be displayed similar to the invalid input prompt. The FILL flag
allows the user to skip over this state, had the user already typed a previous
value for this entry. If the FILL flag was set high when the <esc> key was
entered, then state 9 and the Message Bit Stream buffer will be queued. This is
done by setting OPINSTATE equal to 9, COMBUF equal to 39, and OIBUFILL equal to
TRUE.

In the seventh state, the user enters the priority field. If the user enters a
valid input (0-F), then COMBUF is set equal to 29, OPINSTATE equal to 10, and
OIBUFILL equal to TRUE. This will allow Op-Comin to execute state 10 in function 6
for the next time around this subroutine. The input is converted to ASCII and
stored in OMBUF28(93:93) to allow the user to view what was typed in when a
response is made not to send the message. The input is also converted to a
24-bit integer value and stored in PRIORITY to be added to the transmission
buffer (BUFFER). If the user types an invalid input, then OMBUF15(52:52) and
OMBUF15(55:55) are set to "0" and "F," respectively, prior to when COMBUF is set to
15 and OPINSTATE is set to 7. This will display that the user typed in an invalid
input and to notify to reenter another input, reposition the cursor, and reexecute
state 7. If the user types in an <esc> key and the FILL flag is not set high, then
the user will be requested to reenter the input, and the error message will be
displayed similar to the invalid input prompt. The FILL flag allows the user to
skip over this state, had the user already typed a previous value for this entry.
If the FILL flag was set high when the <esc> key was entered, then state 10 and the
Expiration buffer will be queued. This is done by setting OPINSTATE equal to 10,
COMBUF equal to 29, and OIBUFILL equal to TRUE.

In the eighth state, the user enters the reference message number. If the user
enters a valid input (0-F) for the two-hex integers, then COMBUF is set equal to
37, OPINSTATE equal to 11, and OIBUFILL equal to TRUE. This will allow Op-Comin to
execute state 11 in function 6 for the next time around this subroutine. The input
is converted to ASCII and stored in OMBUF36(93:94) to allow the user to view what
was typed in when a response is made not to send the message. The input is also

27

•

converted to a-20-bit integer value and stored in RMSGNO to be added to the
transmission buffer (BUFFER). If the user types an invalid input, then
OMBUF15(52:52) and OMBUF15(55:55) are set to "0" and "F," respectively, prior to
when COMBUF is set to 15 and OPINSTATE is set to 8. This will display that the
user typed in an invalid input and to notify to reenter another input, reposition
the cursor, and reexecute state 8.

If the user types in an <esc> key and the FILL flag is not set high, then the user
will be requested to reenter the input, and the error message will be displayed
similar to the invalid input prompt. The FILL flag allows the user to skip over
this state, had the user already typed a previous value for this entry. If the
FILL flag was set high when the <esc> key was entered, then state 11 and the
Reference Type Code buffer will be queued. This is done by setting OPINSTATE
equal to 11, COMBUF equal to 37, and OIBUFILL equal to TRUE.

In the ninth state, the user enters the message bit stream. If the user enters
a valid input (0-F) for the 20-hex integers, then COMBUF is set equal to 40,
OPINSTATE equal to 18, and OIBUFILL equal to TRUE. This will allow Op-Comin to
execute state 18 in function 6 for the next time around this subroutine. The input
is converted to ASCII and stored in OMBUF39(93:112) to allow the user to view what
was typed in when a response is made not to send the message. The input is also
converted to a series of 32-bit integer values and stored in STREAM to be added to
the transmission buffer (BUFFER). The BYTE COUNT is computed by taking MSGLN, add
3 to it, and divide by 2 to get the number of characters to transmit. If the user
types an invalid input, then OMBUF15(52:52) and OMBUF15(55:55) are set to "0" and
"f," respectively, prior to when COMBUF is set to 15 and OPINSTATE is set to 9.
This will display that the user typed in an invalid input and to notify to reenter
another input, reposition the cursor, and reexecute state 9. If the user types in
an <esc> key and the FILL flag is not set high, then the user will be requested to
reenter the input, and the error message will be displayed similar to the invalid
input prompt. The FILL flag allows the user to skip over this state, had the user
already typed a previous value for this entry. If the FILL flag was set high when
the <esc> key was entered, then state 18 and the OK To Send Message buffer will be
queued. This is done by setting OPINSTATE equal to 18, COMBUF equal to 40, and
OIBUFILL equal to TRUE.

In the tenth state, the user enters the expiration field. If the user enters a
valid input (0-7), then COMBUF is set equal to 30, OPINSTATE equal to 12, and
OIBUFILL equal to TRUE, for Create A Message selection (1). This will allow
Op-Comin to execute state 12 in function 6 for the next time around this
subroutine. For Create A Message selection (2), COMBUF is set equal to 33,
OPINSTATE equal to 13, and OIBUFILL equal to TRUE. This will allow Op-Comin to
execute state 13 in function 6 for the next time around this subroutine. For
Create A Message selection (3), COMBUF is set equal to 35, OPINSTATE equal to 14,
and OIBUFILL equal to TRUE. This will allow Op-Comin to execute state 14 in
function 6 for the next time around this subroutine. The input is converted to
ASCII and stored in OMBUF29(93:93) to allow the user to view what was typed in
when a response is made not to send the message. The input is also converted
to a 20-bit integer value and stored in EXPIRE to be added to the transmission
buffer (BUFFER). If the user types an invalid input, then OMBUF15(52:52) and
OMBUF15(55:55) are set to "1" and "F," respectively, prior to when COMBUF is set to
15 and OPINSTATE is set to 10. This will display that the user typed in an invalid

28

•

input and to notify to reenter another input, reposition the cursor, and reexecute
state 10. If the user types in an <esc> key and the FILL flag is not set high,
then the user will be requested to reenter the input, and the error message will be
displayed similar to the invalid input prompt. The FILL flag allows the user to
skip over this state, had the user already typed a previous value for this entry.

If the FILL flag was set high when the <esc> key was entered, then state 12 and the
Acknowledgement buffer will be queued, for Create A Message selection (1). This
is done by setting OPINSTATE equal to 12, COMBUF equal to 30, and OIBUFILL equal
to TRUE. If the FILL flag was set high when the <esc> key was entered, then
state 13 and the No. of Segments To Send buffer will be queued, for Create A
Message selection (2). This is done by setting OPINSTATE equal to 13, COMBUF
equal to 33, and OIBUFILL equal to TRUE. If the FILL flag was set high when the
<esc> key was entered, then state 14 and the BDS Field buffer will be queued, for
Create A Message selection (3). This is done by setting OPINSTATE equal to 14,
COMBUF equal to 35, and OIBUFILL equal to TRUE.

In the eleventh state, the user enters the reference type code. If the user enters
a valid input (0-F) for the two hex integers, then COMBUF is set equal to 40,
OPINSTATE equal to 18, and OIBUFILL equal to TRUE. This will allow Op-Comin to
execute state 18 in function 6 for the next time around this subroutine. The input
is converted to ASCII and stored in OMBUF37(93:94) to allow the user to view what
was typed in when a response is made not to send the message. The input is also
converted to a 16-bit integer value and stored in REFTYPE to be added to the
transmission buffer (BUFFER). The BYTE COUNT is set to 7 bytes. If the user types
an invalid input, then OMBUF15(52:52) and OMBUF15(55:55) are set to "1" and "F,"
respectively, prior to when COMBUF is set to 15 and OPINSTATE is set to 11. This
will display that the user typed in an invalid input and to notify to reenter
another input, reposition the cursor, and reexecute state 11. If the user types in
an <esc> key and the FILL flag is not set high, then the user will be requested to
reenter the input, and the error message will be displayed similar to the invalid
input prompt. The FILL flag allows the user to skip over this state, had the user
already typed a previous value for this entry. If the FILL flag was set high when
the <esc> key was entered, then state 18 and the OK To Send Message buffer will be
queued. This is done by setting OPINSTATE equal to 18, COMBUF equal to 40, and
OIBUFILL equal to TRUE.

In the twelfth state, the user enters the acknowledgement bit. If the user enters
a valid input (0-1) for the bit integer, then COMBUF is set equal to 31, OPINSTATE
equal to 15, and OIBUFILL equal to TRUE. This will allow Op-Comin to execute
state 15 in function 6 for the next time around this subroutine. The input
is converted to ASCII and stored in OMBUF30(93:93) to allow the user to view
what was typed in when a response is made not to send the message. The input
is also converted to a 20-bit integer value and stored in ACK to be added to
the transmission buffer (BUFFER). If the user types an invalid input, then
OMBUF15(52:52) and OMBUF15(55:55) are set to "2" and "F," respectively, prior to
when COMBUF is set to 15 and OPINSTATE is set to 12. This will display that the
user typed in an invalid input and to notify to reenter another input, reposition
the cursor, and reexecute state 12. If the user types in an <esc> key and the FILL
flag is not set high, then the user will be requested to reenter the input, and the
error message will be displayed similar to the invalid input prompt. The FILL flag
allows the user to skip over this state, had the user already typed a previous
value for this entry. If the FILL flag was set high when the <esc> key was
entered, then state 15 and the Segment Count buffer will be queued. This is done
by setting OPINSTATE equal to 15, COMBUF equal to 31, and OIBUFILL equal to TRUE.

29

In the thirteenth state, the user enters the number of segments to send. If the
user enters a valid input (0-4) for the hex integer, then COMBUF is set equal to
34, OPINSTATE equal to 16, and OIBUFILL equal to TRUE. This will allow Op-Comin
to execute state 16 in function 6 for the next time around this subroutine. The
input is converted to ASCII and stored in OMBUF33(93:93) to allow the user to view
what was typed in when a response is made not to send the message. The input is
also converted to a 12-bit integer value and stored in SEGMENTS to be added to
the transmission buffer (BUFFER). If the user types an invalid input, then ·
OMBUF15(52:52) and OMBUF15(55:55) are set to "2" and "F," respectively, prior to
when COMBUF is set to 15 and OPINSTATE is set to 12. This will display that the
user typed in an invalid input and to notify to reenter another input, reposition
the cursor, and reexecute state 13. If the user types in an <esc> key and the FILL
flag is not set high, then the user will be requested to reenter the input, and the
error message will be displayed similar to the invalid input prompt. The FILL flag
allows the user to skip over this state, had the user already typed a previous
value for this entry. If the FILL flag was set high when the <esc> key was
entered, then state 16 and the ELM Default Text buffer will be queued. This is
done by setting OPINSTATE equal to 15, COMBUF equal to 34, and OIBUFILL equal to
TRUE.

In the fourteenth state, the user enters the B-Definition Subfield (BDS) field.
If the user enters a valid input (0-F) for the two-hex integers, then COMBUF is
set equal to 40, OPINSTATE equal to 18, and OIBUFILL equal to TRUE. This will
allow Op-Comin to execute state 18 in function 6 for the next time around this
subroutine. The input is converted to ASCII and stored in OMBUF35(93:94) to allow
the user to view what was typed in when a response is made not to send the message.
The input is also converted to a 16-bit integer value and stored in BDS to be added
to the transmission buffer (BUFFER). The BYTE COUNT is set to 7 bytes. If the
user types an invalid input, then OMBUF15(52:52) and OMBUF15(55:55) are set to
"2" and "F," respectively, prior to when COMBUF is set to 15 and OPINSTATE is set
to 14. This will display that the user typed in an invalid input and to notify to
reenter another input, reposition the cursor, and reexecute state 14. If the user
types in an <esc> key and the FILL flag is not set high, then the user will be
requested to reenter the input, and the error message will be displayed similar to
the invalid input prompt. The FILL flag allows the user to skip over this state,
had the user already typed a previous value for this entry. If the FILL flag was
set high when the <esc> key was entered, then state 18 and the OK To Send Message
buffer will be queued. This is done by setting OPINSTATE equal to 18, COMBUF equal
to 40, and OIBUFILL equal to TRUE.

In the fifteenth state, the user enters the segment count. If the user enters a
valid input (0-3) for the hex integer, then COMBUF is set equal to 32, OPINSTATE
equal to 17, and OIBUFILL equal to TRUE. This will allow Op-Comin to execute state
17 in function 6 for the next time around this subroutine. The input is converted
to ASCII and stored in OMBUF31(93:93) to allow the user to view what was typed in
when a response is made not to send the message. The input is also converted to a
16-bit integer value and stored in SEGCOUNT to be added to the transmission buffer
(BUFFER). OMBUF32(114:157) is cleared for the next state. If the user types an
invalid input, then OMBUF15(52:52) and OMBUF15(55:55) are set to "3" and "F,"
respectively, prior to when COMBUF is set to 15 and OPINSTATE is set to 15.

30

This will display that the user typed in an invalid input and to notify to reenter
another input, reposition the cursor, and reexecute state 15. If the user types in
an <esc> key and the FILL flag is not set high, then the user will be requested to
reenter the input, and the error message will be displayed similar to the invalid
input prompt. The FILL flag allows the user to skip over this state, had the user
already typed a·previous value for this entry. If the FILL flag was set high when
the <esc> key was entered, then state 17 and·the Comm-A Message buffer will be
queued. This is done by setting OPINSTATE equal to 17, COMBUF equal to 32, and
OIBUFILL equal to TRUE.

In the sixteenth state, the user enters the elm default text to transmit. If the
user enters a valid input (0-5) for the hex integer, then COMBUF is set equal to
40, OPINSTATE equal to 18, and OIBUFILL equal to TRUE. This will allow Op-Comin to
execute state 18 in function 6 for the next time around this subroutine. The input
is converted to ASCII and stored in OMBUF34(93:93) to allow the user to view what
was typed in when a response is made not to send the message. The input is stored
in ELMDEF to be determined later for the desired default text to transmit. The
BYTE COUNT is set to 17 bytes, if the number of segments to send was a 0, 27 bytes,
if the number of segments to send was a 1, 37 bytes, if the segments to send was
a 2, 47 bytes, if the number of segments to send was a 3, and 57 bytes, if the
number of segments to send was a 4. If the user set the ELMDEF to 1, then the
ELMTXT(l-14) buffer will be left as a series of 32 bits of hex As, Bs, Cs, Ds, and
Es. If the user set the ELMDEF to 2, then the ELMTXT(l-14) buffer will be set as a •
series of 32 bits of hex Bs, Cs, Ds, Es, and As, and so forth. If the user types
an invalid input, then OMBUF15(52:52) and OMBUF15(55:55) are set to "3" and "F,"
respectively, prior to when COMBUF is set to 15 and OPINSTATE is set to 16. This
will display that the user typed in an invalid input and to notify to reenter
another input, reposition the cursor, and reexecute state 16. If the user types
in an <esc> key and the FILL flag is not set high, then the user will be requested
to reenter the input, and the error message will be displayed similar to the
invalid input prompt. The FILL flag allows the user to skip over this state, had
the user already typed a previous value for this entry. If the FILL flag was set
high when the <esc> key was entered, then state 18 and the OK To Send Message
buffer will be queued. This is done by setting OPINSTATE equal to 18, COMBUF equal
to 40, and OIBUFILL equal to TRUE.

In the seventeenth state, the user enters the Comm-A message to transmit. If the
user enters a valid input (0-F) for the 56 hex integers, then COMBUF is set equal
to 40, OPINSTATE equal to 18, and OIBUFILL equal to TRUE. This will allow Op-Comin
to execute state 18 in function 6 for the next time around this subroutine. The
input is converted to ASCII and stored in OMBUF32(99:157) to allow the user to view
what was typed in when a response is made not to send the message. The input is
converted to 32-bit integers and stored in a series of COMMA buffers to be stored
in the transmission buffer (BUFFER). The BYTE COUNT is set to 14 bytes, if the
segment count was a 0, 21 bytes, if the segment count was a 1, 28 bytes, if the
segment count was a 2, and 35 bytes, if the segment count was a 3. If the user
types an invalid input, then OMBUF15(52:52) and OMBUF15(55:55) are set to "5" and
"","respectively, prior to when COMBUF is set to 15 and OPINSTATE is set to 17.
This will display that the user typed in an invalid input and to notify to reenter
another input, reposition the cursor, and reexecute state 17.

31

•

If the user types in an <esc> key and the FILL flag is not set high, then the user
will be requested to reenter the input, and the error message will be displayed
similar to the invalid input prompt. The FILL flag allows the user to skip over
this state, had the user already typed a previous value for this entry. If the
FILL flag was set high when the <esc> key was entered, then state 18 and the OK To
Send Message buffer will be queued. This is done by setting OPINSTATE equal to 18,
COMBUF equal to 40, and OIBUFILL equal to TRUE.

In the final state, state 18, the user responds to a request to send the message
that was just created. If the user enters a 'Y' or a <cr>, then the word length
(WLENGTH), is calculated for transmission of the message. The WLENGTH is
calculated by adding 3 to the BYTE COUNT and divide its result by 4. The BUFFER
which contains the message created is added to the bottom of the message-scenario
list. The FILL flag is reset to 0 to ignore <esc> keys. After the message gets
transmitted, then the Create A Message menu is returned for selection. This is
done by setting COMBUF to 24, OPINSTATE to 2, and OIBUFILL to TRUE. If the user
enters a "N" to the response, then the FILL flag is set to 1 to allow the user to
enter an <esc> key. The user, at this point is returned to state 3 to reenter
the message created. This is done by setting COMBUF to 25, OPINSTATE to 3, and
OIBUFILL to TRUE. The user is returned to state 18 for an invalid input response.
This is done by setting COMBUF back to 40, OPINSTATE back to 18, and OIBUFILL to
TRUE. Figure 5.1.7.1.8-5 shows a flowchart of Op-Comin Function 6 - State 18.

5.1.7.1.9 Function 7 -Display A Message.

The Display A Message subroutine, function 7 of the CID main menu, will allow the
user to display various messages on the status terminal. Figure 5.1.7.1.9-1 shows
a flowchart of Op-Comin Function 7 - main subroutine.

The function consist of various states. The first state will queue the Display
A Message option screen to terminal 1 by setting COMBUF equal to 9. An input
buffer is opened for a user response by setting OIBUFILL equal to TRUE. OPINSTATE
is set to 2 for the next state to process. OPERFUNC is set to 7 which allows for
the Display A Message function to be executed. ITIME(3) and INCTIME(3) are set
to run the Display A Message function in 1 second at every 4-second intervals,
respectively. Terminal 2 is queued with a Display Message List template by
setting COOBUF equal to 8. This screen is updated at every 4-second intervals.
Figure 5.1.7.1.9-2 shows a flowchart of Op-Comin Function 7 - State 1.

In the second state, the user selects a message to view, add a Mode S ID to
the search list, or delete a Mode S ID from the search list. Once the user
selects a message display option, Op-Comin recognizes the flags which were set
in state 1 to execute state 2 of function 7. The 07 FUN ACTIVE flag is set to
TRUE if the 07 SEARCH LIST contains any Mode S IDs. If a valid input of 1 is
entered, then OPINSTATE is set to 5 to allow state 3 to be processed. Again,
OIBUFILL is set to TRUE to allow user response. COMBUF is set to 10 to queue the
View A Message buffer. If a valid input of 2 is entered, then OPINSTATE is set
to 4 to allow state 4 to be processed, OIBUFILL is set to TRUE, and COMBUF is set
to 11 to queue the Add Mode S ID To Search List buffer. If the search list was
already full (maximum of 5 IDs), then OPINSTATE is set to 2, OIBUFILL is set to
TRUE, and COMBUF is set to 13. This will queue to the control terminal the prompt
List Is Full buffer and return to state 2. If a valid input of 3 is entered, then
OPINSTATE is set to 6 to allow state 5 to be processed, OIBUFILL is set to TRUE,

32

and COMBUF is set to 12 to queue the Delete Mode S ID From Search List buffer. If
the search list was already empty, then OPINSTATE is set to 2, OIBUFibL is set to
TRUE, and COMBUF is set to 17. This will queue to the control terminal the prompt
List Is Empty buffer and return to state 2. If an invalid input was entered for
the menu response, then OPINSTATE is set to 2, OIBUFILL is set to TRUE, and. COMBUF
is set to 19. This will queue to the control terminal the prompt Input Not Between
1 and 4 buffer and return to state 2. Figure 5.1.7.1.9-3 shows a flowchart of
Op-Comin Function 7 - State 2.

In the third state, the user selects a message to view. The message buffer
OMBUF41(94:321) is cleared with blank strings prior to it being filled. If
the user enters an <esc> key to escape this function, then COMBUF is set to 9,
OPINSTATE is set to 2, and OIBUFILL is set to TRUE. This will return the user to
the Display A Message menu in state 2. The user input is checked to see if it is
a valid decimal number. If the input is not a decimal number, then COMBUF is set
to 20, OPINSTATE is set to 5, and OIBUFILL is set to TRUE. This will queue the
Input Not A Decimal Number buffer and return to state 3. The input is then checked
to see if it is within decimal values of 1 to 20. If it is not, then COMBUF is set
to 21, OPINSTATE is set to 5, and OIBUFILL is set to TRUE. This will queue the
Message Number Out Of Boundaries buffer and return to state 3. The input value is ..
used for an array 07 MESS NUM for a pointer to the message being displayed on the
status terminal.

If any values within the array 07 MESS NUM is equal to 0, then COMBUF is set to 22,
OPINSTATE is set to 5, and OIBUFILL is set to TRUE. This will queue the No Data
At This Message Number buffer and return to state 3. If a value within the array
07 MESS NUM is equal to.l, then the requested message location to display (buffer
which contains the message displayed on the status terminal) will be computed, the
computed message location will be stored in the control terminal display buffer,
and the incoming messages are converted to ASCII, hex format. To compute the
requested message location (PTR) which contains the data, the input value is
subtracted by 1 and multiplied by 73 to obtain the location value of OOBUF09.
OOBUF09 is the buffer which contains the message data used for displaying it on
the status terminal. A second message location (PTR2) is computed to obtain the
message-number string from the Display A Message template buffer. The computation
for PTR2 is done by subtracting 1 from the input value, multiplying it by 8, and
then adding 196 to the result to obtain the location of the template buffer
OOBUF08. OOBUF08 is the template buffer which holds all the headers and empty data
string buffers for the Display A Message buffer. The computed location data are
then stored in the status terminal buffer OMBUF41 to view the message. The length
of the entire message (WLENGTH) is then computed. WLENGTH is computed by obtaining
the byte count (07 BYTE), adding 3 to it, and dividing by 4 to obtain the word
length. A third message location (MSPTR) is computed to determine where to store
the entire message within the OMBUF41 buffer. MSPTR is computed by subtracting 1
from the value of K, if K is less than 9, multiplying that by 8, and adding 94 to
the result; where K is the value of WLENGTH. If K is less than 18, then 10 is
subtracted from K, multiplied by 8, and 172 is added to the result. If K is less
than 27, then 19 is subtracted from K, multiplied by 8, and 250 is added to the
result. Prior to the entire message being stored to OMBUF41, the hex integers are
all converted to ASCII-hex values. The individual byte is obtained from each
32-bit message data. Each nibble of each byte is added to a hex 30. This will
allow to obtain the appropriate ASCII value. If its result is greater than hex 39,
then it is added to it 7. This will allow to obtain the appropriate hex values

33

greater than hex 40. The result is then multiplied by the appropriate byte field
within a 32-bit ASCII word. The final result of a 32-bit hex integer is two 32-bit
ASCII-hex words. Now that the message has been converted, it is then stored in the
control terminal buffer OMBUF41 and queued for display. This is done by setting
COMBUF to 41, OPINSTATE to 5, and OIBUFILL to TRUE. Figure 5.1 .. 7.1.9-4 shows a
flowchart of Op-Comin Function 7 - State 3.

In the fourth state, the user selects to add a Mode S ID to the search list. If
the user enters an <esc> key to escape this function, then COMBUF is set to 9,
OPINSTATE is set to 2, and OIBUFILL is set to TRUE. This will return the user to
the Display A Message menu in state 2. The user input is checked to see if it is a
valid, 6-digit hex number between 0 and F. If the input is not a hex number, then
COMBUF is set to 23, OPINSTATE is set to 4, and OIBUFILL is set to TRUE. This will
queue the ID Not A Hexadecimal Number buffer and return to state 4. If the input
was a valid hex input, then it is converted to a 24-bit integer. The input is
converted to an integer by taking each ASCII character of the 6-digit input and
multiplying it by the appropriate and corresponding nibble of a 32-bit integer.
The 24-bit integer is stored in MODESIN. The value in MODESIN is then compared
against the search list (07 ID) to see if there were any current IDs with the same
Mode S ID.

If there were any matching IDs with the existing IDs in 07 ID, then COMBUF is set
to 14, OPINSTATE is set to 4, and OIBUFILL is set to TRUE. This will queue ID
Already On Search List buffer and return to state 4. The input is also saved in
its ASCII format to be stored in MSIDl and MSID2, which is used to display it on
the Display A Message screen on the status terminal. MSIDl contains the first
32 bits of the ASCII Mode S ID and MSID2 contains the remainder of the 16 bits.
The 24-bit integer ID is then stored in the Search List (07 ID). The two-part
32-bit ASCII ID is stored in both OMBUFll and OMBUF12 to display it to the
control terminal. After the ID is stored in the 07 ID, the search list counter
is incremented by 1 to keep track of where to store the next ID. The user is then
returned to the Display A Message menu. Figure 5.1.7.1.9-5 shows a flowchart of
Op-Comin Function 7 - State 4.

In the fifth state, the user selects to delete a Mode S ID from the search list.
If the user enters an <esc> key to escape this function, then COMBUF is set to 9,
OPINSTATE is set to 2, and OIBUFILL is set to TRUE. This will return the user to
the Display A Message menu in state 2. The user input is checked to see if it is
a valid, 6-digit hex number between 0 and F. If the input is not a hexadecimal
number, then COMBUF is set to 23, OPINSTATE is set to 6, and OIBUFILL is set to
TRUE. This will queue the ID Not A Hexadecimal Number buffer and return to
state 5. If the input was a valid hexadecimal input, then it is converted to
a 24-bit integer. The input is converted to an integer by taking each ASCII
character of the 6-digit input and multiplying it by the appropriate and
corresponding nibble of a 32-bit integer. The 24-bit integer is stored in MODESIN.
The value in MODESIN is then compared against the search list (07 ID) to see if
there were any current IDs with the same Mode S ID. If there were no matching IDs
with the existing IDs in 07 ID, then COMBUF is set to 18, OPINSTATE is set to 6,
and OIBUFILL is set to TRUE. This will queue ID Not On Search List buffer and
return to state 5. If the value in MODESIN did match an ID in 07 ID, then that
value is removed from 07 ID, OMBUFll, OMBUF12, MSIDl, and MSID2. The deletion of
the Mode S IDs are done in a sorting manner. If there were five Mode S IDs in the
search list and the user ID matched the third ID in the 07 ID, then the fourth ID

34

will overwrite the third ID, the fifth ID will overwrite the fourth, and the fifth
ID gets blanked out. After the ID is deleted from all of the ID parameters, the
search list counter is decremented by 1 to keep track of where to store the next
ID. The user is then returned to the Display A Message menu. Figure 5.~.7.1.9-6
shows a flowchart of Op-Comin Function 7 - State 5.

-5 .1. 7 .1.10 Function 8 - Toggle Data Extraction.

Function 8, toggle data extraction subroutine, will toggle the extraction of data
during the CID simulation. The current data extraction setting is displayed on the
display screen of the system statistics function. To reinforce the toggling of
extraction, the System status f~nction is invoked to display the data extraction
status flag.

When extraction is currently enabled (ST EXT FLAG is greater than 0), it becomes
disabled by setting ST EXT FLAG to -1. An extractor termination message is
included by writing the TOY on the end of the extractor tape. Also, the last
extraction buffer is queued by calling extract.

When the system status function is disabled (ST EXT FLAG is less than 0), it
becomes enabled by setting ST EXT FLAG to 1 when the tape drive is found to be
loaded and on-line by the tape drive status routine. When the tape drive is found
off-line, the request is ignored. Op-Comm is scheduled to run 1 second from the
current system time and every 4 seconds, thereafter, by setting ITIME(3) to the
current system time, plus 1000 STUs and setting INCTIME(3) to the value of the
schedule update frequency variable which is 4 seconds. COOBUF is set to 4 to queue
the label buffer of the display system errors function, COMBUF is set to 1 to queue
the menu buffer for display, an input buffer is opened allowing a response to the
menu, and finally OPINSTATE is set to 0 signifying the completion of the Op-Comin
processing of this function. Figure 5.1.7.1.10-1 shows a flowchart of Op-Comin
Function 8.

5.1.7.1.11 Function 9 -Terminate the Scenario.

Function 9, the~terminate scenario subroutine, brings the CID simulation to a clean
stop when the user responds with a "Y" to the "OK to terminate (Y/N) ??" query
displayed on the control terminal. Hardware devices are reset by calling
the Termhard subroutine, normal Fortran I/0 is enabled by calling the Fortran
subroutine Garcon, and a Fortran write is used to ·display a message on the
control terminal to return the switch back to the system console position.
Figure 5.1.7.1.11-1 shows a flowchart of Op-Comin Function 9.

5.1.7.2 Op-Comm.

Op-Comm's primary responsibility is to manipulate the CID display screen contents.
Other functions of Op-Comm are to perform statistical calculations, update data
bases, set up for the display of statistical screen data fields, and set up
pointers for the next routine to be processed in the Op-Comin routine.

When manipulating data, it is necessary to access and modify values shown on the
display screens. A discussion of the display screen databases and the manipulation
of these databases is contained in section 5.1.7.3 (Opblkdta). All computations on
the statistics are performed in integer mode. The necessary ASCII conversions to
display statistical results on the display terminal are explained in detail in
section 5.1.7.3.1.

35

Op-Comm is broken down into 10 functions. These functions correspond to the
functions shown in the alogorithm's flowchart in figure 5.1.7.2-1. An optimized
subroutine call is used to vector to one of these functions depending on the value
passed to it from the Op-Comin routine. The optimized subro~tine call is identical
to the algorithm used for Op-Comin as detailed in section 5.1.7.1.

On entering Op-Comm, a value of 0 through 9 is expected in the variable OPERFUNC.
One of the ten OPCOMM function routines will be performed based on the value
contained in this variable.

5.1.7.2.1 Output Processing.

Due to time constraints placed on Op-Comm by the CID sy~tem design, standard I/0
processing (i.e., Fortran reads and writes) are inadequate for use in communicating
with the CID real-time system. In preparing output for display, Op-Comm utilizes
specific algorithms to convert the internal variables computed by Op-Cpmm to
the ASCII format necessary for output on the display screen of the CID system.
Section 5.1.7.3 contains a discussion of the makeup of the display screen, the
associated buffers, and how the individual variables are positioned within a buffer
created for display.

The normal output processing routine used in Op-Comm converts either a halfword or
fullword integer value and cotverts it to an 8-byte (four character) ASCII. A
common piece of Fortran code, called TOASCII, is included with Op-Comm through the
use of the Fortran compiler's $INCLUDE directive to perform this conversion where
required. The algor~thm to perform this conversion follows:

a. When INT NUMBER, the value passed to the algorithm, is less than 10,
AR NUMBER is computed to be,

AR NUMBER- INT NUMBER+ Y'20202030'.

The above conversion merely adds a hex 30 to the single digit value held in INT
NUMBER. The remaining three characters to the left of the converted value are
ensu~ed to be cleared of any prior information by inserting the ASCII code for a
blank at those locations.

b. Otherwise, when INT NUMBER is less than 100, AR NUMBER is computed as:

AR NUMBER- (INT NUMBER/10) * X'lOO' +
(INT NUMBER - INT NUMBER / 10 * 10) +
Y'20203030'.

The above conversion spreads the integer of INT NUMBER across 4 storage bytes and
adds a hex 20203030 to the resultant value to convert the 4 right-hand bytes to
ASCII and ensure that the left-hand bytes are cleared of any previous information.

36

c. Otherwise, when INT NUMBER is less than 1000, AR NUMBER is computed as:

AR NUMBER- (INT NUMBERilOO) * X'l0000' +
(INT NUMBER - INT NUMBERI100*100)110*X'l00'
(INT NUMBER - INT NUMBER I 10 * 10) +
Y' 20303030'.

'The above conversion spreads the integer of INT NUMBER across 6 storage bytes and
adds a hex 20303030 to the resultant value to convert the 6 right-hand bytes to
ASCII and ensure that the left-hand byte is.cleared of any previous information.

d. Otherwise, when INT NUMBER is less than 10000, AR NUMBER is computed as:

AR NUMBER- (INT NUMBERilOOO) * X'lOOOOOO' +
(!NT NUMBER - !NT NUMBERI1000*1000)1100*X'l0000'+
(INT NUMBER - INT NUMBERI100*100)110*X'l00'
(INT NUMBER - INT NUMBER I 10 * 10) +
Y' 30303030'.

The above conversion spreads the integer of INT NUMBER across 8 storage bytes and
adds a hex 30303030 to the resultant value to convert the value to ASCII.

e. Otherwise, when INT NUMBER is greater than or equal to 10000, AR NUMBER is
computed as:

AR NUMBER- Y'2A2A2A2A'.

This places the string **** in the storage location used for the particular
variable to signify that an overflow has occurred and the algorithm is unable to
convert this value to ASCII in the allotted storage space. Figure 5.1.7.2.1-1 is a
flowchart of the ASCII algorithm.

A similar output conversion algorithm is used to convert the IPCNT (the percent CPU
utilization) variable to ASCII in Function 1 of OPCOMM. IPCNT is computed to the
tenths digit. This requires the placement of a decimal point in the ASCII result.
The algorithm below explains this process:

a. When IPCNT is less than 100, AR IPCNT is computed as:

AR IPCNT- IPCNTI10*Y'l0000'+
(IPCNT-IPCNTI10*10)+
Y'20302E30'

The above conversion spreads the decimal of IPCNT across 6 bytes while placing a
".,"represented by hex 2E, between the tens and tenths digits.

b. Otherwise, when IPCNT is less than 1000, AR IPCNT is computed as:

AR IPCNT- IPCNTI100*Y'l000000'+
(IPCNT-IPCNTI100*100)+
(IPCNT-IPCNTI10*10)+
Y'30302E30'

The above conversion spreads the decimal of IPCNT across 8 bytes while placing a
".,"represented by hex 2E, between the tens and tenths digits.

37

c. Since the percent CPU utilization cannot exceed 99.9 percent, processing
is not performed on IPCNT when it is greater than or equal to 1000. The overflow
case algorithm is computed to be,

AR NUMBER~ Y'2A2A2A2A'.

This places the string '****' in the storage location used for the AR IPCNT to
signify that an overflow has occurred and the algorithm is unable to convert this
value to ASCII in the allotted storage space. Figure 5.1.7.2.1-2 is a flowchart of
the decimal to ASCII algori~hm. ·

To convert the Time Into the Simulation (TIS) parameter into display format, a
special algorithm is used to break down the ST SYSTEM CLOCK variable into minute
(TIS MIN) and second (TIS SEC) units. The following algorithm is used:

a. STUs are converted to milliseconds by the equation,

MIN SEC - ST SYSTEM CLOCK/976,

b. When MIN SEC is le.ss than 600, i.e. , less than 10 minutes, the following
equation is used to strip the "minute" value off of the MIN SEC variable and
assigns the result to TIS MIN value, which is part of the display buffer being
prepared for display.

TIS MIN- MIN SEC/60 + X'2030',

c. Otherwise, MIN SEC is assumed to be less than the value 9959, which is the
largest value allowed for this equation. In this case, the following equation is
used to determine the "minute" value.

TIS MIN- MIN SEC/600*X'l00'+ (MIN SEC/60-MIN SEC/600*10) +
X'3030',

d. In any case, the seconds value, TIS SEC, is computed by the following
equation. In the output buffer where this ASCII converted information is stored, a
colon has been prepositioned between the variables TIS SEC and TIS MIN to generate
the time into simulation running time display. Figure 5.1.7.2.1-3 is a flowchart
of the algorithm.

TIS SEC - (MIN SEC - MIN SEC/60*60)/10 *X'l00' +
(MIN SEC - MIN SEC/10*10) + X'3030'.

5.1.7.2.2 Function 0 -Output Menu.

Function 0 of Op-Comm is not utilized by the Op-Comm package.

5.1.7.2.3 Function 1 -Display Statistics.

Function 1, the system statistics subroutine, is responsible for computing the
current system statistics and converting them to ASCII for output. The system
statistics processed in this subroutine can be found in the CID user's manual.

38

The system statistics subroutine is scheduled to be run in 4-second increments by
Op-Comin. It is run repetitively until another function is selected, or is
disabled by reselecting Fun~tion 1.

On entering Op-Comm Function 1 processing, the percent CPU used is computed.
IPCNT, the percent CPU used, is computed as 10 times its actual value. This is
done to obtain IPCNT in one-tenths units. The formula for computing IPCNT in
tenths of a millisecond is:

IPCNT- (ST PROCESS TIME) I (ST SYSTEM CLOCK- ST OLD SYSTEM CLOCK),

where ST PROCESS TIME is the CPU time used since the last update and (ST SYSTEM
CLOCK - ST OLD SYSTEM CLOCK) is the total time since the last update. To convert
this value to tenths of STUs:

IPCNT- IPCNT * 125 I 128,

where the factor (125/128) yields the conversion from milliseconds to seconds
without overflowing the fullword integer storage location used for the IPCNT
variable. The results are then converted from fullword integer to ASCII. The
final step before moving on to the next statistic is to r~set the computation
parameters for the next time through the routine. This requires that ST PROCESS
TIME be set to 0, and that ST OLD SYSTEM CLOCK is set to ST SYSTEM CLOCK,
effectively resetting the stopwatch.

The percentage data extraction utilized, PCNT DEX, is computed next. Since the
data extraction buffers work on a circular queue principle (section 5,1.10), a
check must be made to verify when the buffer being used has wrapped past the
maximum buffer value. This is done by checking if OLD DEX BUF, the value in
which the buffer used the last time through this routine was saved, is less than
CEXTBUFF, the current extraction buffer. When this is true, PCNT DEX is computed
to be:

PCNT DEX - CEXTBUFF - OLD DEX BUF

When the check is not true, PCNT DEX is computed to be:

PCNT DEX - 100 - (OLD DEX BUF - CEXTBUFF)

OLD DEX BUF is then assigned the current value of CEXTBUFF for the next time
through the routine. As a final step before conversion to ASCII, PCNT DEX is
multiplied by 2 to yield the actual percentage extraction utilized value. The
results are then converted from fullword integer to ASCII.

To tally the total number of system errors, TOTAL ERRORS is computed by summing the
array ST ERROR from ST ERROR(l) to ST ERROR(30). The result is then converted from
fullword integer to ASCII.

To tally the total number of X.25 errors, TOTAL X25 ERRORS is computed by summing
the five error fields in each of the Task Common areas, CDOXXXXX to CDBXXXXX. The
result is then converted from fullword integer to ASCII.

The next value processed is the number of scenario buffers processed. This value,
ST SCEN NUM, is directly converted to ASCII by using the TOASCII in-line routine.

39

•

The next status value processed is that of the current data extraction processing
status. This is found by checking the flag ST EXT FLAG. When ST EXT FLAG is 0,
data extraction processing is currentLy disabled and the statistics display screen
is directly modi~ied by setting the 4 bytes starting at byte 69 of the statistics
display screen, OOBUF02(69:72), to the character string "DISA." When sr EXT FLAG
is not set to 0, data extraction processing is enabled and the statistics display
screen is modified to reflect this by setting the 4 bytes starting at byte 69 of
the statistics display screen, OOBUF02(69:72), to the character string "ENA." A
complete explanation of how the statistics display screen is organized and
manipulated is included in section 5.1.7.3.1. (Opblkdta)

The next 17 values processed are ST COUNTl through ST COUNTG. They are in fullword
integer format and need only be converted to ASCII.

The time into simulation is computed by simply dividing ST SYSTEM CLOCK by 976.
The value 976 is used to convert from STUs to seconds. This result, stored in
MINSEC is the time into tne simulation in seconds. The conversion of this value
into the minute and second format is based on two considerations. First, if the
value of MINSEC is less than 600, there is no need to handle the tens digit of the
result. Second, if the MINSEC value is greater than 600, the extra digit in the
minutes field is computed and eventually displayed.

The final step of this function is to queue the statistics buffer for display by
setting COMBUF to 2.

5.1.7.2.4 Function 2 - Display System Errors.

On entering function 2, the TOTAL ERRORS counter is set to' 0.

The following errors are converted to ASCII in function 2:

a. Data extraction I/0 (ST ERROR(l)).
b. Message Scenario I/0 (ST ERROR(2)).
c. Op-Comm I/0 (ST ERROR(4)).
d. Data extraction data lost (ST ERROR(5)).
e. Scenario buffer overwrite (ST ERROR(8)).
f. Scenario buffer empty (ST ERROR(9)).
g. Bad port number (ST ERROR(lO)).
h. Savelist empty (ST ERROR(l2)).
i. Savelist full (ST ERROR(l3)).
j. Illegal X.25 device (ST ERROR(ll)).
k. X.25 packets (ST ERROR(l6)).
1. Link not active (ST ERROR(l7)).

For each of the above errors, the error value is accumulated in TOTAL ERRORS to
tally the total number of system errors. TOTAL ERRORS is converted to ASCII after
the 12 individual errors are processed. The total number of X.25 errors is tallied
and converted by summing the eight individual errors for each of the 12 task common
areas, COO SOFT ERRORS through COB SOFT ERRORS.

Both system time and time into simulation are converted to ASCII as described in
section 5.1.7.2.3

The final step of this function is to queue the system error buffer for display by.
setting COMBUF to 4.

40

•

5.1.7.2.5 Function 3 -Display X.25 Status.

For each of the 12 (hex 0 through hex B, denoted by "x" in the following variable
names) X.25 devices included in the CID, it is necessary to process the link status
and device status flags when a X.25 device is configured.

When ST X25 CONFIGURED(x) is greater than 0, the device is configured. When
configured, CDx ACTIVE FLAG is checked. When the active flag is TRUE, the
appropriate field in the output buffer (OOBUF06) is set to "A." When the active
flag is FALSE, the OOBUF06 field is set to "I." Next, CDx LINK CONNECT is checked
to determine when the link status flag is TRUE. When the flag is TRUE, the link
status field for the device being processed in OOBUF06 is set to "C." When the
link connect flag is FALSE, the link status field for the device is set to "D."

When ST X25 CONFIGURED(x) is less than or equal to 0, the device· is not configured
and "N" is placed in the device status field of OOBUF06.

After the status fields of each device is modified, the X.25 statistics must be
updated. The statistics included in this function are input bytes per second,
input messages per second, output bytes per second, and output messages per second.
Statistics are computed only for configured devices.

To compute input bytes per second, a measure of the number of input bytes, ST X25
STAT(x,l), is divided by the number of seconds since the last update (ST SYSTEM
CLOCK- ST OLD SYSTEM CLOCK all divided by 977 to change from STUs to seconds).

The computed value is then converted to ASCII, but only
bytes per second computation is not 0. When the result
placed in the input bytes per second field of OOBUF06.
if the original ST X25 STAT(x, 1) was o· on entering this

if the result of the input
is 0, the string "< 1" is
A "0" is placed in OOBUF06
function.

Input messages per second, output bytes per second, and output messages per second
are each computed using the identical algorithm, but different variables to compute
and convert their results.

Once the X.25 statistics are computed, ST SYSTEM CLOCK is stored in ST OLD SYSTEM
CLOCK to reset the stop watch so that the interval between executions of function 3
can be properly timed.

Both system time and time into simulation are converted to ASCII as described in
section 5.1.7.2.3.

The final step of this function is to queue the X.25 statistics buffer for display
by setting COMBUF to 6.

5.1.7.2.6 Function 4- Display X.25 Errors.

The processing routine of the X.25 errors is identical to that of section
5.1.7.2.5, except that the four X.25 statistic columns (input bytes per second,
etc.) are replaced by six columns of X.25 errors.

The number of messages lost (ST MSG LOST(x)) is an array held in the system table.
These values are stored in the appropriate task common area variable (CDx SOFT
ERRORS(4)) at the beginning of the X.25 error routine to simplify the following
conversion routine.

41

•

For each of the 12 (hex 0 through hex B, denoted by "x" in the following variable
names) X.25 devices included in the CID, it is necessary to process the X.25 device
errors only when the device is configured.

When a device is configured, errors COx SOFT ERRORS(l) through COx SOFT ERRORS(5)
are computed, converted to ASCII, and finally stored in the proper field of
OOBUF07. The sum of errors COx SOFT ERRORS(2) through COx SOFT ERRORS(5) is taken
as a step in computing the total X.25 errors. A sixth error is computed by summing
COx SOFT ERRORS(6) through COx SOFT ERRORS(lO). This sum is converted to ASCII,
stored in the proper field of OOBUF07, and also added to the total X25 error count.

Once each of the configured X.25 devices are processed as stated above, the running
total of X.25 errors is converted to ASCII and stored in the proper field of
OOBUF07. ,

Both system time and time into simulation are converted to ASCII as described in
section 5.1.7.2.3.

The final step of this function is to queue the X.25 error buffer for display by
setting COMBUF to 7.

5.1.7.2.7 Function 5 - Modify X.25 Status.

Function 5 of Op-Comm is not utilized by the Op-Comm package.

5.1.7.2.8 Function 6 - Creat a Message.

Function 6 of Op-Comm is not utilized by. the Op-Comm package.

5.1.7.2.9 Function 7 - DisRlay a Message.

The Display A Message Periodic subroutine, function 7 of the CID main menu, will
handle all input messages and convert them to ASCII prior to updating the
individual messages to the Display A Message List screen. This routine will
process at every 4-second intervals, which will update the screen during this time.
Figure 5.1.7.2.9-1 shows a flowchart of Op-Comm Function 7 -subroutine.

A check is made to determine if the input and output message pointer (07 IN PTR and
07 OUT PTR), of the common storage area, have a different value. 07 IN PTR is the
pointer to keep track of all input messages. 07 OUT PTR is the pointer to keep
track of all messages which were output to the Display A Message List screen. If
the two pointers are of equal value, the screen is only updated with the current
messages stored in COOBUF9 buffer. COO~UF9 stores the Display A Message List
data area. If the two message pointers did not have the same value, then there
would exist another message to be processed before displaying it to the screen.
Prior to processing the message, various parameters have to be obtained from
the common storage area. The message (07 MESSAGE), type code (07 TYPE), port
number (07 PORT), and ModeS ID (07 MSID) all have to be obtained from the common
storage area.

42

The type code is checked against a series of message types (hex 41, 42, 44, 45, 31,
and·32). If the type code matches with hex 41, the type code (CTYPE) is set to an
ASCII value of "434F4D42" to obtain the string "COMB." The message number (REF) is
obtained from the first byte of the second 32-bit word in 07 MESSAGE, which is the
actual message. It is then converted to ASCII by use of the in-line Fortran
TOASCII code. The status field (MISC) is obtained from the second byte of the
second 32-bit word in 07 MESSAGE. It is converted to ASCII by use of the in-line
Fortran TOASCII code. If the type code matches with hex 42, CTYPE is set to an
ASCII value of "20454C4D" to obtain the string "ELM." REF is obtained from the
first byte of the second 32-bit word in 07 MESSAGE, which is the actual message.
It is then converted to ASCII by use of the in-line Fortran TOASCII code. The
status field (MISC) is obtained from the second byte of the second 32-bit word in
07 MESSAGE. It is converted to ASCII by use of the in-line Fortran TOASCII code.
If the type code matches with hex 44,.CTYPE is set to an ASCII value of "20434150"
to obtain the string "CAP." REF is obtained from the first byte of the second

1· 32-bit word in 07 MESSAGE, which is the actual message. It is then converted to
ASCII by use of the in-line Fortran TOASCII code. The status field (MISC) is
obtained from the second byte of the second 32-bit word in 07 MESSAGE. It is
converted to ascii by use of the in-line Fortran TOASCII code. If the type code
matches with hex 45, CTYPE is set to an ASCII value of "4303936" to obtain the
string "CAP. '1 REF is obtained from the first byte of the second 32-bit word in 07
MESSAGE, which is the actual message. It is then converted to ASCII by use of the
in-line Fortran TOASCII code. The status field (MISC) is obtained from the second
nibble, of the second byte, of the second 32-bit word, and the third byte of the
32-bit word in 07 MESSAGE. It is converted to ASCII by use of the in-line Fortran
TOASCII code. If the type code matches with hex 31, CTYPE is set to an ASCII
value of "2052454A" to obtain the string "REJ." REF is set to an ASCII value of
"20202020," since there is no message number in this type of message.

The status field (MISC) is obtained from the second byte, of the second 32-bit
word, in 07 MESSAGE. MISC is then checked for various status values. If MISC has
a value of hex 80, AMISC is set to the ASCII string "NO ELM." If MISC has a value
of hex 60, AMISC is set to the ASCII string "NOT PR." If MISC has a value of hex
20, AMISC is set to the ASCII string "NOT RC." If MISC has a value of 0, AMISC is
set to the ASCII string "NO TGT." If the type code matches with hex 32, CTYPE is
set to an ASCII value of "2044454C" to obtain the string "DEL." REF is set to
an ASCII value of "20202020," since there is no message number in this type of
message. The status field (MISC) is obtained from the second byte, of the second
32-bit word, in 07 MESSAGE. MISC is then checked for various status values. If
MISC has a value of hex 80, AMISC is set to the ASCII string "EXP." If MISC has a
value of 0, AMISC is set to the ASCII string "DEL."

Once the port number (07 PORT) is obtained, depending on its value, the ASCII
equivalence is stored in CPORT for the display buffer. If the port number was a 1,
then the ASCII eqivalence would be "31."

The ModeS ID in 07 MSID is compared with the user ID from the Search List (07 ID).
Once the ID is matched, its ASCII equivalence in AMSIDl and AMSID2 is assigned to
AMODESl and AMODES2 for the display buffer.

The TOY is obtained by masking out the required bits for the minutes and seconds
from ST TOYl. The value is then stored in TOYS MIN and TOYS SEC.

43

•

Two message pointers (PTR and PTR2) are computed for the current and previous
message buffers, respectively. The current message pointer (PTR) is computed by
subtracting 1 from the output message pointer (07 OUT PTR) and multiplying its
result with 73, to store the message in the appropriate buffer location OOBUF09.
The previous message pointer (PTR2) is computed by subtracting 2 from the output
message pointer (07 OUT PTR) and multiplying its result with 73, to clear the
message pointer in the appropriate buffer location OOBUF09.

When the message is stored in the OOBUF09 buffer, a flag is set to tell OPINFUN7
that a message is present at that location for View A Message option. This is done
by setting 07 MESS NUM to 1. The ouput message pointer is also incremented by 1 to
keep step with the input message pointer 07 IN PTR.

The screen is only supposed to display 20 lines of individual messages, therefore,
when 07 OUT PTR reaches a value greater than 20, it is reset back to 1.

Finally, the Display A Message List screen is updated with the new message line by
setting COOBUF equal to 9.

5.1.7.2.10 Function 8- Data Extraction Toggle.

Function 8 of Op-Comm is not utilized by the Op-Comm package.

5.1.7.2.11 Function 9 - Stop The CID Simulation.

Function 9 of Op-Comm is not utilized by the Op-Comm package.

5.1.7.3 Opblkdta Routine.

A separate program unit, called a block data, is allowed in Fortran to initialize
data values of arrays and variables appearing in common blocks. The Op-Comm
package utilizes this program unit to create a database of display screens, menu
screens, prompts and messages to communicate with the CID user. This block data,
called OPBLKDTA, contains all the necessary information to provide the user with
full communication ability within the CID.

The Op-Comm package is designed to minimize the amount of CPU utilization. The CID
software design aids in this effort by removing much of the time consumptive work
which must be performed. The three cases where this is most apparent is in task
scheduling, data extraction, and 1/0. The 1/0 function, which this section covers
requires that any 1/0 that is necessary during the simulation must be performed by
the 1/0 Manager. Required information about a buffer to be output must come in the
form of an output request by the routine requiring the transaction. For Op-Comm
and Op-Comin, an output request is queued for execution by setting the COOBUF or
COMBUF common variable to the index of the buffer to be output. This queues the
output request for eventual execution by 1/0. To the CID operator, the eventual
execution takes place seemingly without delay.

COOBUF serves as a pointer to a series of buffers which are eligible for display on
the CID Display Terminal. COOBUF can take on the values 1 through 8 and serves as
an index to the buffers OOBUFOl through OOBUF08. These buffers inform the user of
the status of the system in response to a menu choice.

44

•

COMBUF serves as a pointer to a series of buffers which are eligible for display on
the CID Menu Terminal. COMBUF can take on the values from 1 to 14 and serves as an
index to the buffers OMBUFOl through OMBUF14. These buffers consist of information
to formulate the necessary menu screens, error messages, and prompts which the user
may request or require.

5.1.7.3.1 CID Display Screen Buffers.

Figure 5.1.7.3.1-1 lists each of the Display Screen buffers defined in the OPBLKDTA
subprogram. OOBUFOl through OOBUF07 are the buffers which form the displays of
statistics required for several of the CID menu·functions. The display process is
broken into two parts to save processing time. A template buffer is used for the
display screens to provide a base of information on the screen which is overlayed
with the computed and converted (to ASCII) data buffer. The template buffer is
displayed once per function request. The data buffer is updated repetitively on
the screen at defined time intervals until the function is reselected or another
function is requested. By doing this, processing time is saved because less time
is spent displaying ·unnecessary information. Another reason this is done, is to
provide a time efficient method of processing data. Each of the status data
buffers use Fortran equivalence statements to allow an array to have more than one
variable name, and variable type, associated with a particular storage location.
This allows arithmetic calculations to be performed on data and allows the computed
result to be converted immediately to ASCII format. This precludes the use of the
standard Fortran write statement to display information on the status screen, which
has proven to be too slow for CID's requirements.

A template buffer is comprised of a series of FORTRAN DATA statements which
include headings, text and cursor positioning information to properly position the
information on the display screen. The cursor positioning information is a 6-byte
hex field which controls positioning in the horizontal and vertical directions.
The ASCII for the sequence is, <esc> X??? <esc> Y ???, where the question marks
determine the line and column number which enables the cursor to be positioned
anywhere on the screen.

The headings and text which are contained in a template buffer are the actual
character strings to be displayed. By merging cursor positioning information
with each of the character strings to be displayed, a template buffer is formed.
When defining the buffer, the data statement is used to initialize the headings,
text, and cursor positioning information. Each of the template buffers is defined
as a single array of a length long enough to contain all of the information
necessary. Fortran requires that a particular DATA statement cannot be longer
than 135 characters. This requires that the template buffers, along with all other
types .of buffers, be broken into a series of manageable data statements. The
management of a template buffer thus becomes a series of DATA statements, which
define an exact number of characters in the character string, with each DATA
statement containing either cursor positioning information, header definitions or
text. Figure 5.1.7.3.1-2 taken from OOBUFOl, the System Status Template, is a
brief example of a template buffer. There are several things to notice about the
template. In line 1, the 2 numerical values separated by the colon represent the
array within the OOBUFOl character array which the value within the slashes (/)
represent. The character Z which precedes the string of numbers 1B48000000000000,
informs the FORTRAN compiler that the following string of numbers is in hex. The

45

•

number string itself represents the 8-byte cursor positioning command to clear the
display screen of all information and return the cursor to the horne position (which
is the upper left-hand corner of the screen). The 12 zeros which follow the
command "1B48" represent a delay necessary to allow the display screen to complete
the intended operation.

In line 2, the array substring from byte 9 through 14 contains the cursor
positioning information to position the cursor at li~e 4 and column 23 of the
display screen. In line 3, the array substring from byte 15 through 51 is defined
as the header label for the system status function of the CID simulation.

The remaining lines of the example above follow the format of lines 1 through 3.
For further information on cursor positioning, refer to the PE Model 550
Maintenance Manual.

The primary functions of the status data buffers are to provide storage locations
for the converted status information computed in Op-Comm and provide cursor
positioning information for the proper display of this information on the display
screen. The format of the status data buffers is the same as for the template
buffers described above. Care has been taken in designing the status data buffers
to keep the storage locations for the data on halfword or fullword boundaries and
to space the data evenly for simple two-dimensional array access.

The following text describes each Display Screen buffer.

OOBUFOl, the System Status template buffer, is queued for display in Op-Cornin
Function 1. The buffer is 1076 bytes long.

OOBUF02, the System Status data buffer, is queued for display in Op-Comm
Function 1. The buffer is 341 bytes long.

OOBUF03, the System Error template buffer, is queued for display in Op-Cornin
Function 2. The buffer is 805 bytes long.

OOBUF04, the System Error data buffer, is queued for display in Op-Comm Function 2.
The buffer is 247 bytes long.

OOBUFOS, the X.25 Statistics and Error template buffer, is queued for display in
Op-Cornin function 3 and Op-Cornin function 4. The buffer is 565 bytes long. The
buffer contains information which is common to both display screens.

OOBUF06, the X.25 Statistics data buffer, is queued for display in the Op-Comm
Function 3. The buffer is 1128 bytes long.

OOBUF07, the X.25 Error data buffer, is queued for display in Op-Comm Function 4.
The buffer is 1495 bytes long.

OOBUF08, the CID Display Message List buffer, is queued for display in Op-Cornin
Function 7. The buffer is 1536 bytes long. It contains the CID message list
template for 20 lines of display.

46

•

OOBUF09, the CID Display Message Data buffer, is queued for display in Op-Comrn
Function 7. The buffer is 1536 bytes long. It contains the buffer area to store
the message pointer, time message was input to CID, message type, message number,
port number, and the message status.

5.1.7.3.2 CID Menu Screen Buffers.

Figure 5.1.7.3.2-1 lists each of the CID menu screen buffers as found in the
OPBLKDTA subprogram. OMBUFOl through OMBUF08 are buffers which form the displays
of menus, prompts, and queries utilized by the Op-Comrn package and displayed on the
menu screen. Since the display of these buffers is on a one-to-one relationship
with an event (i.e., a function request on the CID menu, or an illegal input in
response to a menu or a query), the display of the Menu Screen buffers simply
requires that the buffer be queued for output by setting the COMBUF variable to the
appropriate buffer index. I/0 handles the output procedure from that point.

The following text describes each Menu Screen buffer:

OMBUFOl, the CID Menu Screen buffer, is queued for display upon both normal and
abnormal termination of a user requested function throughout the CID simulation.
Basically, the CID menu screen provides the user with all the options for
controlling the simulation. The buffer is 520 bytes long.

OMBUF02, the CID termination verification query, is queued for display in Op-Comin
Function 9. The buffer is 46 bytes long.

OMBUF03, the Modify X.25 Device main menu, is queued for display in Op-Comin
Function 5 State 1. The buffer is 211 bytes long.

OMBUF04,
Function
than 11.

the Modify X.25 Device error query, is queued for display in Op-Comin
5 State 2 when the user enters a device number less than 0 or greater
The buffer is 66 bytes long.

OMBUF05, the Modify X.25 Device not configured error buffer, is queued for display
in Op-Comin Function 5 State 2. The buffer is displayed when the user types a
device number which is not configured in this simulation. The buffer is 66 bytes
long.

OMBUF06, the Modify X.25 Device deactivate buffer, is queued for display in
Op-Comin Function 5 State 2. The buffer is displayed when the user types a device
number which is currently active. The buffer is 63 bytes long.

OMBUF07, the Modify X.25 Device activate buffer, is queued for display in Op-Comin
Function 5 State 2. The buffer is displayed when the user types a device number
which is currently inactive. The buffer is 63 bytes long.

OMBUF08, the Input Error Reprompt buffer, is queued for display in the Op-Comin
main routine. The buffer is displayed when the user types a value other than "0"
through "9" in response to the CID main menu. The buffer is 42 bytes long.

OMBUF09, CID Display Message List Menu buffer, is queued for display in Op-Comin
Function 7. The buffer is 512 bytes long. It contains the options for controlling
the 9isplay of various input messages.

47

OMBUFlO, View A Message option buffer, is queued for display in Op-Comin
Function 7. The buffer is 256 bytes long. It contains the option to enter the
desired message number to view.

OMBUFll, IDs In Search List and Add ID To Search List buffer, is queued for display
in Op-Comin Function 7. The buffer is 256 bytes long. It contains the option to
add an ID to the search list.

OMBUF12, IDs In Search List and Delete ID From Search List buffer, is queued for
display in Op-Comin Function 7. The buffer is 256 bytes long. It contains the
option to delete an ID from the search list.

OMBUF13, List Is Full buffer, is queued for display in Op-Comin Function 7. It is
128 bytes long. It notifies the user when the search list is full.

OMBUF14, ID Already Exist buffer, is queued for display in Op-Comin Function 7. It
is 128 bytes long. It notifies the user that the ID entered already existed.

OMBUF15, Invalid Input buffer, is queued for display in Op-Comin Function 6. It is
128 bytes long. It notifies that the input was not valid.

OMBUF17, Search List Is Empty buffer, is queued for display in Op-Comin Function 7.
It is 128 bytes long. It notifies that there are no more IDs in the search list.

OMBUF18, Nonexising ID In Search List buffer, is queued for display in Op-Comin
Function 7. It is 128 bytes long. It notifies that the ID entered does not exist
on the search list.

OMBUF19, Input Must Be 1 and 4 buffer, is queued for display in Op-Comin
Function 7. It is 128 bytes long. It notifies that the menu selection was
not between 1 and 4.

OMBUF20, Input Must Be Decimal buffer, is queued for display in Op-Comin
Function 7. It is 128 bytes long. It notifies that the input must be a decimal
value.

OMBUF21, Input Must Be 1 - 20 buffer, is queued for display in Op-Comin Function 7.
It is 128 bytes long. It notifies that the input must be between 1 and 20.

OMBUF22, No Message To View At This Message Number buffer, is queued for display in
Op-Comin Function 7. It is 128 bytes long. It notifies that there is no message
to view at the desired message number.

OMBUF23, ID Must Be In Hex buffer, is queued for display in Op-Comin Function 7.
It is 128 bytes long. It notifies that the ID is not in hex when adding to or
deleting from the search list.

OMBUF24, CID Create A Message buffer, is queued for display in Op-Comin Function 6.
It is 512 bytes long. It gives the option to create various types of messages.

OMBUF25, Assigned Message Number buffer, is queued for display in Op-Comin
Function 6. It is 256 bytes long. It allows the user to assign a message number
to the message being created.

48

OMBUF26, X.25 Port Number buffer, is queued for display in Op-Comin Function 6. It
is 256 bytes long. It allows the user to assign a port number to the message being
created.

OMBUF27, ModeS Address buffer, is queued for display in Op-Comin Function 6. It
is 256 bytes long. It allows the user to assign a Mode S ID to the message being
created.

OMBUF28, Priority buffer, is queued for display in Op-Comin Function 6. It is
256 bytes long. It allows the user to assign a priority field to the message being
cre'ated.

OMBUF29, Expiration buffer, is queued for display in Op-Comin Function 6. It is
256 bytes long. It allows the user to assign an expiration field to the message
being created.

OMBUF30, Acknowledgement buffer, is queued for display in Op-Comin Function 6. It
is 256 bytes long. It allows the user to assign an acknowledgement field to the
message being created.

OMBUF31, Segment Count buffer, is queued for display in Op-Comin Function 6. It is
256 bytes long. It allows the user to assign a segment count to the message being
created.

OMBUF32, COMM-A Message Text buffer, is queued for display in Op-Comin Function 6.
It is 256 bytes long. It allows the user to enter a COMM-A text field to the
message being created.

OMBUF33, No Of Segments To Send buffer, is queued for display in Op-Comin
Function 6. It is 256 bytes long. It allows the user to select the number
of segments of the text field to send for the message being created.

OMBUF34, ELM Default Text Block buffer, is queued for display in Op-Comin
Function 6. It is 256 bytes long. It allows the user to select the elm default
text block to send for the message being created.

OMBUF34, ELM Default Text Block buffer, is queued for display in Op-Comin
Function 6. It is 256 bytes long. It allows the user to select the elm default
text block to send for the message being created.

OMBUF35, BDSl and BDS2 buffer, is queued for display in Op-Comin Function 6. It
is 256 bytes long. It allows the user to enter the BDS field for the message being
created.

OMBUF36, Reference Message Number buffer, is queued for display in Op-Comin
Function 6. It is 256 bytes long. It allows the user to enter the reference
message number for the message being created.

OMBUF37, Reference Type Code buffer, is queued for display in Op-Comin Function 6.
It is 256 bytes long. It allows the user to enter the reference type code for the
message being created.

49

OMBUF38, Message Length In Bytes buffer, is queued for display in Op-Comin
Function 6. It is 256 bytes long. It allows the user to enter the message length
for the message being created.

OMBUF39, Message Bit Stream buffer, is queued for display in Op-Comin Function 6.
It is 256 bytes long. It allows the user to enter the message bit stream for the
message being created.

OMBUF40; OK To Send Message buffer, is queued for display in Op-Comin Function 6.
It is 256 bytes long. It allows the user to enter select if it is OK to send the
message for the message being created.

OMBUF41, View A Message buffer, is queued for display in Op-Comin Function 7. It
is 512 bytes long. It contains the entire context of the message in which the user
selected to view.

5.1.8 I/0 Management.

I/0 is an Assembly Language Program that processes the I/0 requests from other
modules in the system. A flowchart for I/0 is given in figure 5.1.8.1-1. Requests
are performed for the input of fruit and target scenario records, I/0 of Op-Comm
records, and output of extraction records. These I/0 records are buffered in
common areas along with their control buffer variables. The output buffers are
filled by their respective tasks and the control variables are set to request I/0
to send output. The input buffers are filled by an I/0 request and the control
variables are set to notify the pertinent task of completed input. The following
itemizes the unit assignment and primary task user:

Logical
Unit

1
2
3
5
6

Function

Message Scenario Input
Data Extraction
Statistics Terminal
System Console I/0
CONTROL Terminal

OUTMESS
Extraction
Op-Comm
Initial
Op-Comin

The Message Scenario and Data Extraction buffers are configured in a set of
circular used buffers. I/0 attempts to maintain a full set of input buffers and an
empty set of output buffers in each of these situations. The terminal buffers are
individual buffers and are controlled by a pointer containing the buffer to be used
for I/0. In every case only one I/0 is executed in each call to I/0. The reason
for the single I/0 per call is that each I/0 requires about 1 ms to process.
Multiple calls for I/0 would monopolize the processor for long periods of time not
allowing other processes access time. The selection of the buffer to be processed
is through the following prioritized system.

a. Extraction Output
b. Message Scenario Input
c. Operator Control Terminal Output
d. Operator Control Terminal Input
e. Operator Statistics Terminal Output

50

First, I/0 will process an extraction buffer for output if one is requested and
there are less than two in the current output queue. Each extraction buffer
requires about 100 ms between the initial I/0 and the final interrupt from the
drive. Therefore, it is not necessary to queue more than two records before other
I/O's can be accomplished. There exist 100 extraction buffers in.order to permit
the extraction of data without overloading the internal buffer structures.

An I/0 request for message scenario input will be processed next. Ten input
buffers have been assigned for the message scenario. Each of the scenario input
buffers a large number of messages. In the capacity situation, the internal
buffers are designed to hold more than one complete scan of messages.

Operator terminal I/0 is then performed. The output buffer is processed on the
first pass of I/0 and the input buffer is processed. Statistics terminal output is
performed last.

Once I/0 has performed an I/0 request, it processes the I/0 complete flags for all
possible pending I/0 functions. This is accomplished by surveying the supervisor
call for each pending I/0. A special device code (01) is inserted in the processor
control block for each I/0 operation. A completed I/0 will contain a device code
zero if no error occurred or a device code other than (01) in the case of a
failure. If an I/0 function for any device is complete, the buffer is released.
If an error occurs, the appropriate error counter is incremented and the buffer is
flagged with the error.

I/0 is a scheduled task under the Scheduler. This task is allowed periodic
to the processor every 10 ms. Since only a single I/0 request is processed
pending I/0 flags are processed, the maximum execution time is about 1 ms.
number of I/0 requests per scan in a 700-target capacity situation is:

I/0 Time
Device Per Scan For 1 I/0

Extraction so 90 ms
Message Scenario 10 400 ms
Control Terminal 2 4 sec
Statistics 1 4 sec

access
and all
The

Since the I/0 priority algorithm permits extraction to queue only two requests
before processing other device requests, the possibility of I/0 lockout to other
devices is avoided. Since I/0 can execute every 10 ms and the extraction device
has processing priority, the extraction device can expect to be continuously queued
in a capacity situation.

5.1.9 Extraction.

The purpose of extraction is to process requests for data extraction made by
all other modules in the system. A flow chart for extraction is given in
figure 5.1.9-1. Each extraction request is independently processed. If the data
extraction flag is not set, an immediate return is executed. The space in the
current extraction buffer is compared against the space necessary to process this
request. If sufficient space is available, the extraction message along with the
extraction header is moved into the output buffer and the current buffer pointer
and word counter are adjusted. Otherwise, the current buffer is released for

51

output to I/0 and a check is made to determine if the next buffer is busy. The
actual I/0 request for extraction data to be sent to the tape device is performed
by I/0. Coordination between the two tasks is provided by an array of logical
flags that define the state of each extraction buffer .. If the buffer is not
available, then the message is lost and a system error counter (#5) is increm~nted.
Otherwise, the current buffer pointers and counters are updated for the next
available buffer and the logical message is moved there with its header.

Extraction processes all extraction requests from any task in the system. This
module has been structured so that any process that operates through the scheduling
task may request extraction.

Each request for extraction must define to the extraction process the format
number, the number of 32-bit words to be extracted, and the position of the first
word to be extracted. This information composes a logical header which consist of
two 16-bit fields and a 32-bit field, as depicted in figure 5.1.9-2. Logical
records are combined into a physical record until a request for extraction exceeds
the space available in the physical record. At this point a logical termination
record is extracted. All data beyond the terminal record to the end of the
physical record should be ignored.

5.1.10 X.25 Processing.

The X.25 processing routines consist of subroutines for the initialization of the
X.25 links, subroutines for the transmission of packets, subroutines for the
control of the X.25 links, and interrupt service routines. These routines
interface all the X.25 fu~ctions with the CIO real-time process except for the
receiving of the data. The X.25 data receiving function is accomplished by the
INMESS processing routine described in section 5.1.4 of this report. The buffering
of all X.25 data and control variables is contained within the COx common data
areas. Figure 5.1.10-1 depicts the memory structure for the CIO process.

The COx common data areas are implemented as fixed task common storage elements.
This will cause the address of these data areas to be predefined in order to allow
access from not only the CIO task routines but also the X.25 interrupt service
routines and the Macrolink X.25 protocol control hardware. The interrupt service
routine executes in interrupt state of the processor and must have access to the
common area in memory directly without the memory address controller used to modify
the address. The Macrolink X.25 protocol control hardware must have access to the
common area through the direct memory access mode for interaction with the input
buffers, output buffers, and control variables. Routines execution within the CIO
real-time simulation software will access the common areas through the normal
common/task interface using the memory address control mechanism of the 3230XP
processor.

A separate common area exist for each X.25 device in the CIO system. The common
area contains eight input buffers and eight output buffers for each of the
Macrolink X.25 devices included within the CIO. These buffers are 2048 bytes long
for a total length of 32k bytes. The X.25 variable area is positioned after the
buffer area. This variables consist of control parameters and error counters for
the X.25 interface. The control variables and part of the error counters are
directly accessible by the Macrolink X.25 protocol controller through the direct

52

memory access mode of the computer. Other error conditions are detected by
software routine and the interrupt service routine. These variables are accessed
directly by the appropriate routine. Figure 5.1.10-2 depicts the structure for the
X.25 CID common area.

Various subroutines were written for the control of the Macrolink X.25 protocol
controller board. These routines included: MDISC X25, RESET X25, !NIT X25, LINK
STATUS, ACTIVE X25, and DEACTIVE X25. These routines are utilized by the !nit
routine and the Op-Comm routines.

MDISC X25 will execute a master disconnect of the X.25 protocol controller and
will set the link connect flag in the common to a condition of false. Execution
of the routine will cause all current X.25 operations to cease and the protocol
controller to be put in a quiescent state. This routine is executed by !nit at the
beginning of simulation and by Op-Comm function nine at the end of simulation.
Figure 5.1.10-3 depicts a flowchart of the MDISC X25 subroutine.

RESET X25 will clear the direct memory access and COMMUX ports of the X.25 protocol
controller. The direct memory access and COMMUX ports are the access paths from
the current 3230XP computer. The COMMUX path provides the control path for the
Macrolink X.25 protocol controller. The direct memory access path provides the
path for data, incoming and outgoing X.25 packets, between the Macrolink protocol
controller and the current 3230XP computer. Figure 5.1.10-4 depicts a flowchart of
the RESET X25 subroutine.

!NIT X25 will initialize the direct memory access function and the X.25 protocol
hardware of the Macrolink protocol controller. This routine is utilized by the
!NIT routine at the beginning of the real-time simulation. Figure 5.1.10-5 depicts
a flowchart of the !NIT X25 subroutine.

LINK STATUS is a logical function that will determine the current status of the
X.25 link. The inquiry is made to determine if the X.25 link is active. The
logical function will return the current state of link activity. This is
accomplished by accessing registers on the Macrolink protocol controller for the
current status of the X.25 link. Figure 5.1.10-6 depicts a flowchart of the LINK
STATUS function.

ACTIVE X25 will set the X.25 active flag in the common area. DEACTIVE X25 will
reset the X.25 active flag in the common area. Figure 5.1.10-7 depicts a flowchart
of the ACTIVE X25 and DEACTIVE X25 subroutines.

TXMITn is a subroutine that provides for the transmission of X.25 packets. A
copy of the routine with appropriate common memory access exist for each of the
Macrolink X.25 protocol controllers in the CID system. This routine requires
a buffer with the data to be transmitted in the packet and the size of the
packet. TXMIT will return a status for the transmission request. The routine
will first check for the availability of a buffer and report an error if no buffer
is available. A check of the packet size is made to deter~ine that the request
is within the bounds for transmission. An error is reported if the packet size
is out of bounds. The status of the link is checked to determine if the message
may be accepted for transmis~ion. An error is reported if the message is not
accepted. The data is moved to the transmit buffer in the task common and the
Macrolink protocol controller is instructed to proceed with the transmission of
the packet. Pointers are updated before the routine returns to the call process.
Figure 5.1.10-8 depicts a flowchart of the TXMITx subroutine.

53

The interrupt service routine (ISR) is an assembly language program for processing
all interrupts from the Macrolink protocol controller. Interrupts are generated
whenever a packet is transmitted, a packet is received, or an error is generated.
A separate copy of the ISR is maintained for each X.25 device in the CID system.
The ISRs are located in memory just above each fixed task common containing the
common data interface to the real-time task. This was done to accommodate the ease
of access of the common areas for both the ISR and real-time task.

When an interrupt occurs, the ISR first will check the status byte for the
interrupt type. Only interrupts from the X.25 network device require processing.
All interrupt conditions are saved for possible later analysis. Any combination of
the three types of X.25 network interrupt conditions may occur during an interrupt.
Each condition must be checked and processed independently. First, the receiver
packet bit is examined in the status byte. If a packet was received, the packet
received bit is set for that device in fixed task common area. The INMESS routine
will see this bit and process the incoming data packet. Next, the packet transmit
acknowledge bit is examined in the status byte. And, finally, the error bit is
examined in the status byte.

When the error bit is set in the status byte, a single error has occurred. This
error will be determined by examining the error register in the X.25 network
device. Errors may occur because of the following conditions:

a. Receiver Overrun
b. T~ansmitter Underrun
c. Receiver not ready for next packet (buffer not available)
d. Link is up (link was down)
e. Disconnect sent
f. Received a disconnect
g. Link reset received
h. Supervisory command timeout
i. Frame reject received
j. Frame reject sent

Each error has an associated error counter that will be extracted regularly. The
error counters are also displayed on the statistics screen by Op-Comm function 4.
The ISR will process the link up interrupt, the link reset interrupt, and the frame
reset interrupt with and additional algorithm to reset the buffers and hardware of
the X.25 network device. A flowchart of the ISR is depicted in figure 5.1.10-9.

5.2 CID INITIALIZATION PROGRAM.

The CID Initialization (CIDINIT) Database program builds a file that contains the
configuration data required to run the CID real-time program. This data consists
of physical line to logical port assignments, X.25 set up parameters, and default
text fields for standard uplink and ELM uplink messages. This program provides
the method for bypassing the CIDINIT routine's interactive session. All of the
values normally requested during the CID interactive session can be defined and
saved into the CIDINIT data file before a CID simulation is run. This offers
the user a method of ensuring that two separate CID simulation runs use the same
initialization pa~ameters. CIDINIT is flexible enough to allow the selective
definition of the initialization parameters, i.e., the CID interactive session
bypasses those queries which·are defined within the CIDINIT Database file, but
still requests those parameters which are not defined within the file.

54

CIDINIT is written in "C" under the OS/32 operating system. The program uses a
main routine to process the CIDINIT main menu and function calls to process each of
the four sub-menus which may be requested by the user. The sub-menus include:
(1) X25 device initialization screen, (2) simulation initialization screen,
(3) standard uplink default message screen, and (4) the ELM uplink default message
screen.

5.2.1 CIDINIT Main Routine.

The source file for .the main routine is CIDINIT.C.

The main routine first prints the main menu on the user terminal. An answer from
the user is then processed. When the answer decoded is a ·"P," the print request
filename query is displayed. The answer from the user is then processed. When the
answer received is a valid filename (meets OS/32 naming conventions and it exists
on disk), the file is opened, read, spooled to the line printer, and then closed.

When the response to the main menu is a "M," the modify
displayed. The answer from the user is then processed.
is a valid filename (meets OS/32 naming conventions and
file is opened, read, processed by each of the sub-menu
the named file, and then closed.

request filename query is
When the answer processed

it exists on disk), the
routines, written back to

When the response to the main menu is a "C," the create request filename query is
displayed. The answer from the user is then processed. When the answer processed
is a valid filename (meets OS/32 naming conventions and it does not exist on disk),
the file is created, initialized, processed by each of the sub-menu routines,
written back to the named file, and then closed.

When the response to the main menu is an <esc><cr>, the program is terminated.

Figure 5.2.1-1 is a flowchart of the main routine.

5.2.2 Initialization and I/0 Routines.

Routines to initialize data structures and process I/0 are stored in the CONFINIT.C
source file.

The creat_init routine is used to initialize standard uplink arrays, ELM uplink
arrays, port values and baud-rate values on creation of a new file. The routine
is called by the main routine. It neither requires or.returns any parameters.
Figure 5.2.2-1 is a flowchart of this routine.

The in_c_file routine is used to read data from the named file when either a print
request or modify request is chosen by the user. This routine is a series of r·ead
statements to read each of the values stored in the file in the past. After the
read portion of the routine is complete, the ASCII values read from the file are
converted to a usable form for later processing needs. The routine is called by
the main routine. It neither requires or returns any parameters. Figure 5.2.2-2
is a flowchart of this routine.

55

The out_c_file routine is used to write data to the named file after either a
create request or modify request is chosen by the user. The routine is called by
the main routine. It neither requires or returns any parameters. This routine is
a series Qf write statements to write each of the values to be contained in the
file. Figure 5.2.2-3 is a flowchart of this routine.

5.2.3 X.25 Device Routines.

Routines to process the X.25 device routines are stored in x25dev.c.

The x25_dev_sc routine is used to display the X.25 device configuration screen.
The routine is a series of cursor positioning and print statements to locate and
print the menu's text strings. The routine is called by the main routine. It
neither requires or returns any parameters. Figure 5.2.3-1 is a flowchart of this
routine.

The mod_x25_dev routine is used to process the the user's choices after displaying
a message. The message asks the user to select a X.25 device to modify. Once a
legitimate device number is selected, two routines; port and baud, are called to
process the port number and baud rate columns of the x.25 device menu. This
routine is called by the main routine. It neither requires or returns any
parameters. Figure 5.2.3-2 is a flowchart of this routine.

The port routine contains logic to process the user's port number selection. The
routine calls valid_port to make sure that the value chosen by the user is possible
based on the values already contained in the port number and baud rate buffers.
Port is called by the mod_x25_dev routine. It neither requires or returns any
parameters. Figure 5.2.3-3 is a flowchart of this routine.

The baud routine conta~ns logic to process the user's baud rate selection. The
routine calls valid_baud to make sure that the value chosen by the user is possible
based on the values already contained in the port number and baud rate buffers.
Baud is called by the mod_x25_dev routine. It neither requires or returns any
parameters. Figure 5.2.3-4 is a flowchart of this routine.

5.2.4 Simulation Initialization Routines.

Routines to process the simulation initialization routines are stored in SIMINIT.C.

The sim_init routine is used to display the simulation initialization screen. The
routine is a series of cursor positioning and print statements to locate and print
the menu's text strings. The routine is called by the main routine. It neither
requires or returns any parameters. Figure 5.2.4-1 is a flowchart of this routine.

The mod_sim_init routine is used to process the the user's choice after displaying
a message. The message asks the user whether to continue with this screen or not.
'When a "M" is selected, mod_sim_init processing continues. Responses to each of
the five questions on this screen are then processed. This routine is called by
the main routine. It neither requires or returns any parameters. Figure 5.2.4-2
is a flowchart of this routine.

56

5.2.5 Standard Uplink and ELM Default Message Routines.

Routines to process the default message menus are stored in MESSDFLT.C.

The cornrna_sc routine is used to display the standard uplink (cornrn A) default
message menu. The routine is a series of cursor positioning and print statements
to locate and print the menu's text strings. The routine is called by the main
routine. It neither requires or returns any parameters. Figure 5.2.5-1 is a
flowchart of this routine.

The elm_sc routine is used to display the ELM default message menu. . The routine is
a series of cursor positioning and print statements to locate and print the menu's
text strings. The routine is called by the main routine. It neither requires or
returns any parameters. Figure 5.2.5-2 is a flowchart of this routine.

The mod_cornrna routine is used to process the user's choice after displaying a
message. The message asks for the standard uplink default message number to
modify. Once a legitimate default message is selected, the user's input default
message is read. The routine is called by the main routine. It neither requires
or returns any parameters. Figure 5.2.5-3 is a flowchart of this routine.

The mod elm routine is used to process the user's choice after displaying a
message. The message asks for the elm default message number to modify. Once a
legitimate default message is selected, the user's input default message is read.
The routine is called by the main routine. It neither requires or returns any
parameters. Figure 5.2.5-4 is a flowchart of this routine.

5.2.6 X.25 Device Configuration Display Routine.

PRINTCID.C is the source file for this routine.

The routine simply spools each of the 4 screens to the printer by using 4 sets of
print statements to format the desired output. The routine is called by the main
routine. It neither requires or returns any parameters. Figure 5.2.6-1 is a
flowchart of this routine.

57

~ ~ ~ ca11 ~ X.25 • IEVICE 1

G ~ ~ ~2~ X.25 •
0

G
0

~
0
0
0
0

I~ I
0

~
0
0
0
0
0

6 ~ ~ ~~~~ X.25 •

EJ ~ ~ ~~.2r X.25 •

FIGURE 1-1. CID FUNCTIONAL BLOCK DIAGRAM

58

1.2&

CDMM Llll

ElUACTIDI

FIGURE 1-2.

CDMM
SCEI.UID

EUIACTIDI

AIALYSIS

TAICIT
SCEIAIID

a.r.
Llll

ARIES/CID SIMULATION BLOCK DIAGRAM (PHASE I)

59

!UIACTIDI

sc:S.Wto

X.25

CCH1 LIN<

EXmACTI~ EXmACTI~

FtR..YSIS

R.F".
LIN<

LIVE
HaUl

FIGURE 1-3. CID LIVE WORLD BLOCK DIAGRAM (PHASE I)

60

...

~IO

X.25 X.25

CCH1 LIN< CCH1 LIN<

EXTRFICTia.. EXTRFICTia..

FIGURE 1-4. CID LIVE WORLD BLOCK DIAGRAM (PHASE II)

61

LIVE
HOR..D

TAIGET
COIFIGUBATIOI(DISC)

I. 26 HAIDWAII

CDMMUIICATIOI
SCEIAIIO (DISC)

IITBACTIOI (TAPE)

WATPOIIT
DIFIIITIDI(DISC)

OP.CDMM TEIMIIALS

FIGURE 5-l. SOFTWARE OVERVIEW

62

STFmJS x.zs
na..E: IIE'nRS

~ j

., n

T.O.Y. x.zs
lEVI as

FIGURE 5.1-1. CID MODULE OVERVIEW

63

FIGURE 5 .1. 2-1.

IIITIALID
1/0

llltiALID
DAtA

llTIACTIOI

IIITIALID
SCUDULIIG

IIITALID
COMMOII

IIITIALID
SCIIAIIO
aurrus

IIITIALID
OPIIAtol

COMMVIICATIOIS

IIITIALID
JIAIDIAU

IIITIALID
TAll StATUI

INITIAL PROGRAM FLOWCHART

64

SEt POIRtERS tO 1St
UPDATE II BElt
BUFFER FILL OLD
BUFFER IIC I OF

BUFFERS PROCESSED

lilt POIITDS
lilt tAIO

aurru czt
StAit tiME

COIVEit tiME
)-----t tO DIGitAL

GEt lilt
UPDATE THIS

BUFFER

SEt
POIItDS tO
tHIS UPDAtl

MSEC

GEt IRDEI
tO MESSAGE

BUFFER

SEt lEW
SCHEDULD

tiMES

GEt IIEIT
UPDATE II

tHIS BUFFER

SEt
POIItERS tO
tHIS UPDATE

FILL OLD
BUFFER IIC t

OF BUFFEilS
PROCESSED

FIGURE 5.1.2.5-1. FLOWCHART OF BLOCK INIT SCEN BUFFERS

65

•

(START)

T
LOOlC FOB BElT

TASlC TO
EXECUTE

!
UPDATE TIME
TO EXECUTE

THE TASlC

!
START

PRECISION
IBTERBAL

CLOClC

i

EXECUTE TASlC

!
STROBE PIC
AND UPDATE

PROCESSOR
LOADTIME

FIGURE 5.1.3-1. TASK SCHEDULING PROGRAM FLOWCHART

66

NEXT TIME
TO PROCESS

TASK

DELTA
TIME

FIGURE 5.1.3-2. TASK SCHEDULING DATA FLOWCHART

67

SUB TASK
LOCATION

PIOCESS LIIE
0

PIOCESS LIIE
1

0

0

PIDCESS LIIE
10

PIOCESS LINE
11

FIIISHED

FIGURE 5.1.4.1-1. FLOWCHART OF INMESS

68

•

Cit lilt IIPECTID
1211 POlitO

Dltlllllll
LIITI or

IIISSACI

UPDATI
STATISTICS

IUIACT
MISSAGI

UIIT 1.211
aura
PDIITD

FIGURE 5.1.4.1-2.

I
UPDATI

STATISTICS

IESEt PO IITEI
AID IEJICT

FLAG

FIIISRID 1._10 I

FLOWCHART OF X.25 LINE PROCESSING

69

FIGURE 5.1.4.2-1.

•

MDVI MISSACI
to BUFFO

StOll MODI S
ID

StDII:Bttl
CDVJt tTPI

CDDI PDit
IUIIBD

VPDATI
PDIItUS

FIIISHID

FLOWCHART .OF OP-COMM MESSAGE INTERFACE (PHASE I)

70

FIGURE 5.1.4.3-1.

STORE RECEIVE
SEIISOR ID

COMPOSE
MESSAGE TO
PUT 01 LIST

PUT MESSAGE
01 LIST

IIICREMIIT
IRIOR

T

rill SKID

FLOWCHART OF NETWORK MANAGEMENT INTERFACE (PHASE II)

71

•

t10

116

lilt
PAIAMETEIS

I

SIT PO IITEIS
TO SCEIAIIO

SET TIME
IIC IUM
DOll

SET PO IITEIS
TO OLD LIST

CALL ITL
CHECIIIC
EIIOIS

SET EIIOI
CALL EITIACT

FIGURE 5 .1. 5-1. FLOWCHART OF OUTMESS (Page 1 of 2)

72

t3116

OLD

1400

PIOCESS MSO
GET HEADEI %

t Of BYTES

STAir
CETLIII

I

STAir
SEID

MESSACI

SCI

IIC POIITDI
CBICI roa

DIFAVLT 1180

FIGURE 5 .1. 5-1.

SET EIRDI
CDUIT EITIACT
MSO PO IITEIS

riOM CITLIR

T JOT TIME TO PIOCESS '

STAIT
CETBUF

BUFFO EID

T

I

DESCEDULE
OUTMESS

FLOWCHART OF OUTMESS (Page 2 of 2)

73

SCEJ EID

SIT Llll t TO
PDIT t

T

FIGURE 5 .1. 5-2.

IIC Llll
IUMBII II

PO IT

IIC '& !ITIACT
0101

SET !1101 '&
EITIACT

FLOWCHART OF GETLINE

74

1260

lilt
POIITIIS

IIC llt PTI
GIT llllll FOI

THE 10
BVFFD

IIC !1101 SIT
11101 II !IT

FLAGS IESIT
avrru TIMI

TO ZOO

CALL
llTIACT

T

FIGURE 5 .1. 5-3.

•

I!S!T OLD
BVFFEI'S FULL
FLAGS VPDATI

TH! OLD
BVFFII'S IIDEX

IIC BVF IIDEX
TO IIIBVF IIC

t BVF VSID
PVT avF •

liTO llt IOID

I

SET SCEI
IEADT FLAG
FOI avrn1

IIC COVITEI
SET Elt

FLAG

T

DESCHEDVLI
OVTM!SS

lltiACT 11101

FLOWCHART OF GETBUF

75

IIC Llll t
tiT ACAII

..

t37&

I

CALL
TIAISMIT

CHI FOR
DEFAULT OR
SCEI BUFFER

CALL ABL
ADD MSG
TO OLD

LIST

IIC DROR
MODIFY liT

BuFrn

•

GET DEFAULT
T FIELD t MOYI
)----+! 1ST 2 MSG WOlDS

T

TO DEFAULT
BUFFIR

PUT HEADD
IITUII CODE 'I

LIIE 'I liTO
ElY BUFFER

IIC OLD LIST
COUITII

MODIFY EXT
Burro

STOll Ptl
IIC

STATISTICS

MODIFY EXT
Burrn 11c

DROR IF CODI
• g

FIGURE 5.1.5-4. FLOWCHART OF SEND MESSAGE

76

CALL
lltiActiOI

(ststlll
111011)

CALL
lltiActiDI

(1.2& 111011)

FIGURE 5.1.6~1. SECOND PROCESSING FLOWCHART

ERROR DESCRIPTION

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Extraction I/O
Message Scenario I/O
unused
OP COMM I/0
Extraction Messages Lost
unused
unused
Scenario Buffers Overwrite
Empty Scenario Buffers
Bad Port Number Found
Illegal X.25 Line
Savelist Found Empty
Savelist Full
Bad Line Number on Input
unused
X.25 Packet Error
Link Not Active
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused

FIGURE 5.1.6-2. SOFTWARE ERRORS

77

ERROR DESCRIPTION

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

FCS ERROR
Short Frame
T1 Expiration
Rejection RX
Rejection TX
Link Initialization
Frame Reject on Transmit
Frame Reject on Receive
Transmit Buffers Full
Receive Buffers Full
S Command Time Out
Receiver Underrun
Transmitter Overrun
Link Reset
Other Errors

FIGURE 5.1.6-3. X.25 HARDWARE ERRORS

COMMUNICATIONS INTERFACE DRIVER FUNCTION MENU

1 - CID STATISTICS
2 - CID ERRORS
3 - X.25 DEVICE STATISTICS
4 - X.25 DEVICE ERRORS
5 - MODIFY X.25 DEVICE STATUS
6 - CREATE A MESSAGE
7 - DISPLAY A MESSAGE
8 - TOGGLE DATA EXTRACTION
9 - TERMINATE THE CID

PLEASE SELECT A FUNCTION

FIGURE 5.1.7.1-1. OP-COHM MENU

78

. SAVE cnm:NTS

rF REGISTER 13

PROCESS rucTICt4
5El.£CTED TO LOCRTICt4

TFB..£ INIEX

GET
Sl..JJRXJTII'£

INIEX

BRfN:H
TO 5El.£CTED
Sl..JJRXJTII'£

r- ----,
I PERF'CA1 I
I 5El.£CTED I

Sl..JJRXJTII'£
L_- - _J

REST' a£
cnm:NTS rF
REGISTER 13

FIGURE 5.1.7.1-2. FLOWCHART OF COMPUTED GOTO ALGORITHM

79

PROCESS n£

-e PERF"CH1 DISR..AY CID
I'ENJ

USER II'<RIT a.F'FER PERF"<H1 CPCa1IN
DISR..AY CID STRTISTICS

r--

L

OPTIMIZED •CQoFUTED GOTO•

SLJIRl.JTIJIE CfLL

_..J

PERF"CH1 GflaJ1IN
DISPLRY X.2S STATISTICS

PERF"<H1 <PCa'IIN
DISR..AY X.2S "ERRORS--..::x:

PERF"CH1 CPCa1IN
MODIFY X.2S DEVICE

PERF"<H1 CPCa1IN
OCEH I£ A I1£SSAQ:

PERF"<H1 CPCa1IN
DISR..AY A i"£SSRG£

PERF"CH1 CPCa1IN
1£Fa'tlllfi'TE n£ SCEl'fiUO

FIGURE 5.1.7.1-3. FLOWCHART OF THE OP-COMIN ROUTINE

80

•

Input Type
Single Character

Single Digit Decimal

Several Digit Decimal

Single Digit Hexadecimal

2 Digit

6 Digit

14 Digit

20 Digit

Hexadecimal

Hexadecimal

Hexadecimal

Hexadecimal

FIGURE 5.1.7.1.1-1.

DO DlfAVL'f
PIOCIIIIIG

Function State
5 3
6 18

Main Routine
6 2 1 4 1 101 12 1 13 1 151 16
7 2

5 2
7 3

6 7

6 31618111114

6 5
7 415

6 17

6 9

TYPES OF EXPECTED INPUT

LOAD BTTI 1
litO

ll'fBtTI(l)

DO
101-DifAVL'f
PIOCIIIIIG

FIGURE 5.1.7.1.1-2. SINGLE CHARACTER INPUT FLOWCHART

81

PDFDIM
11101

PIDCISSIIO

I

FIGURE 5.1.7.1.1-3.

T

I

LOAD Itt! 1
I lTD

11Titrl(1)

PIIPAU tO
UPDAtl rHI

DAtA BASI

PDFDIII IrAti
UPDAtE

PIDCISSIIO

T

BYPASS DATA
BASI

PIDCISSIIG

SINGLE DIGIT DECIMAL INPUT FLOWCHART

82

DECI VAL •(DECI
VAL 1

10)(IITIITTI
(1)-1'30')1•1•1

LOAD IITTI 1
liTO

IITIITTI(I)

T

T

FIGURE 5.1.7.1.1-4.

•

I

DECI VAL •0
1•1

LOAD IITTI I
liTO

IITIITT£(1)

PEIFOIM EIIOI
PIOCESSIIG

PDF DIM
StAI VPDAtl
PIDCESSIIG

T

SEt FVICtiDIS
CDMMOI

VAIIAIILI tO
DECI VALVE

I

SEVERAL DIGIT DECIMAL INPUT FLOWCHART

83

PEIFOIM
EllUl

PIOCESSIIC

PDFDU DIDI
PIOCIIIIIO

I

FIGURE 5.1.7.1.1-5.

I

LOAD lttl1
liTO

lltltf1(1)

lttl(l)•
lltlt'fl(I)

-l'SO'

PDrOU ltAfl
VJIDAfl

PIOCIIIIIO

T

ITtl(I)•lltlttl
(I) -1 '37'

SINGLE DIGIT HEX INPUT FLOWCHART

84

PIIFOIM
11101

PIOCISSIIG

•

•

LQAJ) BYTE 1
litO

lltBYTI(I)

•

T

T

LOAil BYTE 1
litO

lltBYT(l)

BYTE(I)
•lrtBTE(I)

-1'30'

T

BYTE (I)•
lltBTTE(I)

-1'37'

KEXVAL•IAID
(BYTE(l) •

1'10', BTTE(2)•
l'FF')

PIIFOIM
lilt StAtl
PIOCISSIIG

FIGURE 5.1.7.1.1-6. TWO DIGIT HEX INPUT FLOWCHART

85

PDFOIM
DIDI

PIOCISSIIG

I

I

LOAD 8Ttl 1
liTO

IITITT!(I)

FIGURE 5.1.7.1.1-7.

•

T

T

LOAD BYTE 1
litO

IITBTT(1)

BYTE(I)
•IITITE(I)

-1'30'

T PEIFDIII STATE
)---t UPDATE

T

PIDCESSIIG

ITT! (I)•
IITBTTE(I)

-1'37'

•H!lVAL1•BTTE(1)•
T'1DOOOO'• BTTE(2)•
T '10000'+ BTTI(3)
• T'1DOO'+ BTTE(4)
• T'100' •BYTE(&) •

T'10' • ITTI(I)

PDFOIII STATE
)---------~ UPDATI

PIDCESSIIG

SIX DIGIT HEX INPUT FLOWCHART

86

DICI YAL
•(DICI YAL l
ll)(lltllfl
(I) -l':SO')

IIPDAU
POIIUU litO
urnu.l•l•t

LOAD IYU I
rna

IIUYU (I)

T

FIGURE 5.1.7.1.1-8.

I

LOAD ITU I
litO

lltllfl(l)

DICI YAL
•(DICI YAL

lll)
+(lltiTTI(I)

-l'U'

I

ITPAII DATA
IAII

PIOCIIIIIO

FOURTEEN DIGIT HEX INPUT FLOWCHART

87

PDFOIII
EIIOI

PIOCESSIIO

I

• T

LOAD BYTE 1 I

1•1
KE1VAL1,2,3•0

LOAD BYTE 1
liTO

IITBTT(1)

T PEIFOIII STATE
)----..1 UPDATE

BYTE(I)
•llfTBTE(I)

-1'30'

T

PIOCESS 1110

BTTI (I)•
IITBTTI(I)

-1'37'

•KEIVAL1•BTTE(1)•
T'100000'+ BTTE(l)•
T '10000'+ 8TTI(3)

liTO 1+---{ • T'1000'+ BTTI(4)
IITBTTI(I)

FIGURE 5.1.7.1.1-9.

• T'100' +BTTE(6) •
T'10' + BYTE(&) •
~~ FOI KEIVAL l,3

TWENTY DIGIT HEX INPUT FLOWCHART

88

RETUU

FIGURE 5.1.7.1.2-1.

FIGURE 5.1.7.1.3-1.

QUEVI DMBUF01
FDI DISPLAY

OPEl IIPUT
BUFFO

FLOWCHART OF OP-COMIN FUNCTION 0

I

FLOWCHART OF OP-COMIN FUNCTION 1

89

CAICEL
DPCOMM

SCHEDULE

T

FIGURE 5.1.7.1.4-1.

QUEUE
OMBUF01

OPEl AI
IIPUT

aurrn

DPIISTATI
•0

SCHEDVLI
DPCDMM 11.6

SEC IITDYALS

DPDFVIC •
2 OPDSTATI

•1

QVEUI
ooavros roa

DISPLAY

FLOWCHART OF OP-COMIN FUNCTION 2

90

CAICEL
OPCOMM

SCHEDULE

t

FIGURE 5.1.7.1.5-1.

QUEUI MIIU
BUFFO

OPEl AI
IIPUt

BUFFil

OPIIStAtl
•0

I

·SCHEDULE
OPCOMM 11.&

SIC
IICIIMIITS

CL&U
StAtiStiC
aurrns

OPDFUIC •3
OPEIStAtl

•1

QUEUE
OOBUF03 FOI

DISPLAY

FLOWCHART OF OP-COMIN FUNCTION 3

91

CAICEL
OPCOMM

SCHEDULE

QUIUI
OMBUFOl FOI

DISPLAY

OPEl IIPUT
BUFFEI

OPEIFUIC •
0

y

FIGURE 5.1.7.1.6-1.

SCEIDULI
OPCOMM II 1. II
SIC(OILT DICI

FIGURE 5.1.7.1.7-1.

I

SCHEDULE
OPCOMM II 1. &
SEC t 1.& SEC

IITDVALS

OPDFUIC •
4 DPDSTATE

• 0

QUEUI OOBUFO&
AID OMBUFOl
FDI DISPLAY

OPEl IIPUT
BUFFO

FLOWCHART OF OP-COMIN FUNCTION 4

•1 PIIFOIM
STATI 1

FLOWCHART OF OP-COMIN FUNCTION 5

92

FIGURE 5.1.7.1.8-1.

QUEUE
CREATE A

MESSAGE
MENU SCHED·

IN 1 sec.

QUEUE INVALID
INPUT BUFFER
RETURN STATE

2

DESCHEDULE
FUNC 6

PERFORM STATES
3.4.5. 7.

IO.t2.15.t7.19

PERFORM
STATES

3.4.5. 7.
10.13.16.!9

PERFORM
STATES
3.4.5. 7

.10.14.19

PERFORM
STATES

3.4.5.19

PERFORM
STATES
3.4.5.8
.11 .!8

PERFOAM
STATES

3.4.6.9.18

FLOWCHART OF OP-COMIN FUNCTION 6 (MAIN SUBROUTINE)

93

FIGURE 5.1.7.1.8-2.

COMBUF•24
QUEUE CIEATE

A MESSAGE
OPTIOI SCIEEI

OPIISTATE•2
SET lEU
StATE TO

STATE 2

OPEIFUJCae
ALLOW

FUICTIOI e TO
EIECUTE

ITIME(3)•ST SYSTEM
CLOCI +1000

IICTIME(3)aSCKE UPD
FIEQ lUI FUIC8 II 1

SEC. AID 4 SEC.
IITEIYALS

COOBUF•10
CLEAI

TEIMIIAL 2

FLOWCHART OF OP-COMIN FUNCTION 6 (State 1)

94

COMBUF • 26
OPI!STATE •3 QUEUE

!EIT MESSAGE
PAAAMETEll

FIGURE 5.1.7.1.8-3.

COMBUF •24
OPI!STATE •2 QUE!UI
. ClEAT A MESSAGE

MllfU

COMBUF •1 OPI!STATE
•0 EIIT FUICTIOI I

lET

IE%

FLOWCHART OF OP-COMIN FUNCTION 6 (State 2)

95

•

I

BUffll • I IPVT
MISSACI BTtl COVIt

• IIPVt
LIICtH(StAtES

&,D,11,14,11,17,
OILY)

COMBUF • Jilt
BVffll DPIISTATE •
lilt STATE DIBVFILL

• tiVI

DMBVf1& • CUtiEIT
evtSOI PDSITIOI

COMBVf •1&
OPIISTATE • CVtiEIT

STATE DIBVFILL •
tiVI

FIGURE 5.1.7.1.8-4. FLOWCHART OF OP-COMIN FUNCTION 6 (States 3-17)

96

•

I FILL •1 COMBUF • 2&

T

WLEICTH •
(BYTE COUit
•3)/4 WOlD

LEICTH

SCEI (I) •
Burro c1 >

STOal MISSACI

CALL ABL
(SCEI) Tl
MISSACI

FILL • 0 COMBUF •
24 OPIISTATI • 2
OIBVFILL •TIUE CO

TO STATE 2

OPIISTAtl • 3
OIBUFILL • TIUI CO

tO StAtES 3

FIGURE 5.1.7.1.8-5. FLOWCHART OF OP-COMIN FUNCTION 6 (State 18)

97

QVEVI DISPLAY A
MESSAGE MEIV

SCHEDULE II 1 SEC.

QVEIVI IIVALID
IIPVT BVfrEI IITVII

STAT! 2

DESCHEDVLI FVIC 7
CLEAI TEaMIIAL 2

PDFOIII STATE
3

PDfOaM STAtE

'

PDFOIII STAll
&

FIGURE 5.1.7.1.9-1. FLOWCHART OF OP-COMIN FUNCTION 7 (MAIN SUBROUTINE)

98

Q
CDMBVF • g QVEVI
DISPLAY A MISSACI

OPTIDI SCIEEI

!

OPIISTATE • 2 SET
KElt STATE TO StAtl

2

r

OPEIFVIC • 1 ALLOW
FUICTIOI 1 TO

El!CVTI

i
ITIME(3) • St

SYSTEM CLDCI • 1000
IICTIME(3) • SCHE

UPD FIEQ lUI FUIC 1
II 1 SEC. AID 4
SEC. IITEIVALS

l

COOBVF • I QVEVI
DISPLAY MESSAGE

LIST TEMPLATE
Burro

T
lit

FIGURE 5.1.7.1.9-2. FLOWCHART OF OP-COMIN FUNCTION 7 (State 1)

99

•

I

ACTIVATE IIIPV'f
MESSAGE PROCESS

IOU'f!IE 07
FUIAC'f!VE• 'flUE

FIGURE 5.1.7.1.9-3.

•

CIT USli:l
IIPUT

(ll'fB'ftE)

T

QUEUE IIYALID IIPU'f
BUFFEI liDO STATE 2

CDMBUF • 1g
OPIIS'fA'fl • 2

EX IT FUIC 7 AID
CLEAR TEIMIIAL 2

COMBUF • 1, CDDBUF
• 10 OPIIS'fATE • 6

T QUEUE VIEW A
MESSACE BUFFO

COMBUF • 10
OP IIS'fA'fl • 6

QUEUE ADD MOD! S ID
TO SEARCH LISt

BUFFEI COMBUF • 11
OPIIS'fATI • 4

T QUIUI DILITI MODI S
ID FIOM SIAICR LIST

COMBUF • 12
OPIISTATI • I

FLOWCHART OF OP-COMIN FUNCTION 7 (State 2)

100

SILICT MISSAQI TO
VIP (IITITTI)

COIIntl IOQCI AID
Dut IIIUAGI

POIITIII(PTI,XIPTI)

FIGURE 5.1.7.1.9-4.

COIIIVF • I
DPIIITATI • 2 ,
QUIVI DISPLAY A

IIIIIIAQI MIIV

COIIIVF • 20
OPIIITATI • & ,
QVIVI IIPUT lot
DICIIIAL IVFrD

COIIIVF • 21
OPIIITATI • I,

QVIVI MIISAOI 10
DVT ar IOVIDAIIII

avrru

COIIIVF • 22
DPIIITATI • I ,

QVIVI 10 DATA AT
IIIIBAOI 10 avrru

ITOU MIISAGI II
ICIDI avrru

DIIIVFU • IIIPTI

Y I D MIISAOI ,
COIIIIF • U

OPIIITATI •I

FLOWCHART OF OP-COMIN FUNCTION 7 (State 3)

101

EITEl A MODI
s ID ro

SElliCK LISt
(lltBTtl)

y

MODISII •
24-Bit IITDCU
connr IIPur

TO 24-Bit
IITICD

071D •
MDDISII STOU

IIPVT

CDIIIVF • I
DPIISTATI • 2
QVIVI DISPLAY

A MISIIACI
MIIV

FIGURE 5.1.7.1.9-5.

Y COMBUF • I
OPIIStlitl • 2
QUIUI DISPLAY

A MESSACI
MIIV

I CDMBVF • 23
OPIISTATE •4
QUEUE"ID JOT
HEIADECIMAL"

BUFF!I

COMBUF • 14
OPIISTATI •4

QVEUE"ID ALIEADY 01
SEAICH LIST" BVFFD

FLOWCHART OF OP-COMIN FUNCTION 7 (State 4)

102

IITD A MODI
S ID TO

DILITI ROM
SIAICll

LIST(IITITTI)

IIODIIII •U·IIT
I ITIOD COIVDT
IIPV'T %0 2t·II'T

IITIOD

011D •' '
DILITI MODI

I ID

COMIVJ • I
OPIII'TA%1 • 2
Qllnl DIIPLA!

A IIIIIAGO
111ft

COIIIVF •I
OPIIITATI •2
QVIVI DISPLAY

A MISSAGI
IIIIV

COIIIUf •2S
OPIJITAtl •t
QVIVI • ID lOt
IIJ:IADIC !IAL.•

aurrn

COIIIVF • 11
OPIII'TAtl • I
QVIVI"I D lOt

01 SIAICI
Ltn• avrrn

FIGURE 5.1.7.1.9-6. FLOWCHART OF OP-COMIN FUNCTION 7 (State 5)

103

FIGURE 5.1.7.1.10-1.

FIGURE 5.1.7.1.11-1.

FLOWCHART OF OP-COMIN FUNCTION 8

PDF Dill
TIIIIILUII

PDF Dill
C.UCDI

ITAIDAIII
raaru.
IDI'UD

Oltl
TIIIIIATIDI
IIUSAGI TO
SCIDI

FLOWCHART OF OP-COMIN FUNCTION 9

104

r

L

0

OPTIMIZED •cetAJTED GOTO•

SUEROUTIJ'.E CfLL

_ _j

PERF'<H1 CPCOf't1
DISPLAY STAiiSTICS

PERF"<H1 OPCOMIN
DISPLAY X.25 STATISTICS

PERF'<H1 OPCOf't1
IJ.ISPLAY X. 25 ERR<Ri

PERF"<H1 OPCOf't1
MODIFY X. 25 STATUS

PERF"<H1 OPCOf't1
DISPLAY A I"ESSAGE

IIU..L
ROUT II'£

FIGURE 5.1.7.2-1. HIGH LEVEL FLOWCHART OF OP-COMM

105

PLACI ..••.
II OVtPVt
avrrn

FIGURE 5.1.7.2.1-1.

T

connr ro
1 DICit

ASCII (BBBt)

COJYDt tO
2 DICit

ASCII (BBtt)

coJYDr ro
3 DIGit

ASCII(Bttt)

CDJVIIt tO
• DIGit

ASCII(tttt)

FLOWCHART OF OP-COMMS TOASCII ALGORITHM

106

PLACE o o. o.
ll OUTPUT
BUFFO

FIGURE 5.1.7.2.1-2.

T

COJVDT TO
ASCII (Bto t)

COIVI:IT TO
ASCII (tt o t)

FLOWCHART OF OP-COMMS DECIMAL TOASCII ALGORITHM

107

•

CDIVEIY 0-00
MllutES

FIGURE 5.1.7.2.1-3.

CDIYEIT
DIGITAL

MILLSECDIDS
fD SECDID

CDIVEIT 0-60
SECDIDS

CDIVDT 0-0
MIIVTES

FLOWCHART OF OP-COMMS TIME OUTPUT ALGORITHM

108

Cit IIPVT AID
OUTPUT MISSAOI

POIITDS
(D711PTI,070VTPTI)

t

CIT :TYPE
CDDI(07TTPI)MSO
IO.(IEF) MSO

STATVS(MISC) PDIT
ID.(07PDIT) MODIS

ID(07MSID)
TOT(TOTSMII,TOTSSIC)

COVDT DATA
TO ASCII

II·LIII TO
ASCII.FTI

STOU DATA
OOIIVFOII •DATA

caoavr •II
QVIVI DATA
11vrra TO

TDJIIIAL Z

I COOIIUF •II
QUIVI DATA
IIUFFD TO

TDMIIAL 2

FIGURE 5.1.7.2.9-1. FLOWCHART OF OP-COMM FUNCTION 7 (SUBROUTINE)

109

•

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

(10)
(11)

BUFFER
OOBUFOl
OOBUF02
OOBUF03
OOBUF04
OOBUF05
OOBUF06
OOBUF07
OOBUF08
OOBUF09
OOBUFlO

____ DESCRIPTION
- System Status Template
- System status Data
- System Error Template

System Error Data
- X.25 Status & Error Template
- X.25 Status Data
- X.25 Error Data
- Display Message Template

Display Message Data
- Create a Message Screen Clear

FIGURE 5.1.7.3.1-1. LIST OF OPBLKDTA DISPLAY SCREEN BUFFERS

DATA OOBUF01(1:8)/Z1B48000000000000/
DATA OOBUF01(9:14)/Z1B58211B5936/
DATA OOBUF01(15:51) I' C I D s y s
DATA OOBUFOl(52:57)/Z1B58211B5936/
DATA OOBUF01(58:104) I'
DATA OOBUF01(105: 110)/Z1B58241B5925/
DATA OOBUFOl(111:143)/' \ CPU UTILIZATION
DATA OOBUF01(144:149)IZ1B58251B5925/
DATA OOBUFOl(150:182)/' \ DATA EXTRAGTION

DATA OOBUFOl(l002:1007)/ZlB58361B5950/
DATA OOBUF01(1008:1023)/' - TIME OF YEAR

T E M S T A T U

UTILIZATION

FIGURE 5.1.7.3.1-2. TEMPLATE BUFFER EXAMPLE

110

•

S'l

'I

'I

'I

'I

FIGURE 5.1.8-1.

•

SVC Elt
BUFFO

SVC TABGIT
BUFFO

svc raun
BUFFEI

SVC OP-COMM

CHICIAIT
PEIDIIO 1/0 FDI
COMPLITI/0101

I/0 PROGRAM FLOWCHART

112

I

T

FIGURE 5.1.9-1.

•

TDMIIATE
CUll! IT
BUFFO

llltiALIZII:
JUT aurrn

STOlE
EITIACtiOI

HEAD Ell

StOll
ElTlACtiOI

DAtA

IIClEM!It
MESSAGE LOSS

COUITU

EXTRACTION PROGRAM FLOWCHART

113

LOGICAL RECORD STRUCTURE!

FORMAT NUMBER RECORD SIZE

SCENARIO TIME (lsb =1.024ms)

TOY TIME<lower 32 bits)

EXTRACTED DATA

FIGURE 5.1.9-2. EXTRACTION HEADER RECORD DESCRIPTION

114

•

CONTROL VARIABLES
AND ERROR COUNTS

(4 K BYTES)

RECEIVE
BUFFERS

(8-2K BYTE)

TRANSMIT
BUFFERS

(8-2K BYTE)

FIGURE 5.1.10-1. CID COMMON MEMORY STRUCTURE

FIXED
TASK

COMMON AREA

C. I.D

REAL TIME
TASK

OPERATING
SYSTEM
OS/32

FIGURE 5.1.10-2. CID REAL-TIME MEMORY STRUCTURE

115

FIGURE 5.1.10-3.

SET Lllfl
COifiECT

FLAG• FALSE

SEifD MASTEl
DISCOiflfET

COMMAifD TO
MACIOLIII

FLOWCHART FOR MDISC X25

CLEAI 126
IHTEIFACE

CLEAI DMA
I!ITEIFACE

FIGURE 5.1.10-4. FLOWCHART FOR RESET X25

116

c START

t
DETEilMIIE
VALUE FDI

IETWDII
UGISTDS

!
SET UP ALL

IETWOII
IEGISTEIS

!
START DMA
OPEIATIOI

t
START IETWOII

FIGURE 5.1.10-5.

FIGURE 5.1.10-6.

OPEIATIOI

!
IETUII

FLOWCHART FOR !NIT l25

GET Llll
STATUS FIDM

IETWOII
HAIDWAIE

FLOWCHART FOR LINK STATUS

117

SET ACTIYI
FLAG tiVI

SIT ACTIYI
FLAG FALSI

FIGURE 5.1.10-7. FLOWCHART FOR ACTIVE X25 AND DEACTIVE X25

•an DAtA TD anrn aura

GPMt&
nnau
CGniGL

, __
II'Mtl

Pllltlll

FIGURE 5.1.10-8. FLOWCHART FOR TXMITx

118

FIGURE 5.1.10-9.

StOll
IITDIUPT

SIT PACIIT
RECEIVE FLAG

SET PACIET
ACIIDILEDCE

FLAG

IICBEMIIT
covn

IICBEMIIT
EIIOI COUlTER

IICBEMIIT
EBBDB covnn

RESET
JIAIDIAllE

RET VII

FLOWCHART FOR INTERRUPT SERVICE ROUTINE (Page 1 of 2)

119

FIGURE 5.1.10-9.

T IJCIEMEIT
DIOI COVITD

T IICIEMEJT
DIOI COVITD

T IICIEMEJT
DIOI COUITD

T IJCIEMEIT
0101 counn

IICIEMEIT
0101 caunn

IICIEMIIT
0101 COUITD

IICIEMIIT
DIOI COVITD

IESET BUFFO,
POIITEIS AID
1. 2& IIAIDWAII

usu aurrns
POIITDS
&!lAID WAll

FLOWCHART FOR INTERRUPT SERVICE ROUTINE (Page 2 of 2)

120

DISPLAY MAll
ME IV

CET USER'S
AISWER

I

y CET F I LEIAME
PROCESS PRIJ't

ROVTIIE

GET r I LEIAME
PROCESS
MODIFY

ROV'ti!IES

CE't FILEIAME
PROCESS
CREATE

ROVITIIES

DISPLAY EIIOR
MESSAGE

FIGURE 5.2.1-1. CIDINIT MAIN ROUTINE FLOWCHART

.121

FIGURE 5. 2. 2-1.

FIGURE 5.2.2-2.

!llr!ALIZI
CDIIKA
DIFAVLf
YALUU

lllr!ALIZI
lUI DIFAVLf

YALVU

!llr!ALIZI
POif 1111110

DIFAVLf
YALUU

lllr!ALIZI
IAVD IAfl

DlrAVLf
YALUU

CIDINIT CREAT INIT ROUTINE FLOWCHART

IIAD IIPVf
JILl

PIOCIU POif
11111110

PIOCIU IAVD
lArD

naCIU
M IIICit.LAIIOVI

!IFOIMfiOI

CIDINIT IN C FILE ROUTINE FLOWCHART

122

FIGURE 5.2.2-3.

FIGURE 5 .2.3-1.

IDVTIJE
ovr-c-FILE

Ill TE DVTPVT
FILE

CLOSE FILE

CIDINIT OUT C FILE ROUTINE FLOWCHART

lOUT Ill
126-DIV-SC ·

DISPLAY 1.2&
COlli GVIAT I 01

ME IV

CIDINIT X25 DEV SC ROUTINE FLOWCHART

123

FIGURE 5.2.3-2.

IDIJtiR
MOD_I. 21_DIY

DIIPLAY
DIYICZ II

IIIIIAGI

Cit VSD
UIPOISI

POlY (DIYJCZ
IVMIIII) lAUD

(DIYJCZ
IVMIII)

CIDINIT MOD X.25 DEV ROUTINE FLOWCHART

~ POittiOI
CVIIDI to

CD&UCT Llll

an 1110
tiP'II1'

DIIPI.\T DIU -

FIGURE 5.2.3-3. CIDINIT PORT ROUTINE FLOWCHART

124

IOUTIII BAUD

PDSITIDI
CUISDI TO

C:DUIC:T Llll

CIT usn
IIPUT

UPDATE BAUD
BUFFII

PIIIT ERIDI
MESSACI

FIGURE 5.2.3-4. CIDINIT BAUD ROUTINE FLOWCHART

FIGURE 5.2.4-1.

DISPLAY THE
SIICVLATIOI

IIITIAI.IZATIDI
ICE IV

CIDINIT SIM INIT ROUTINE FLOWCHART

125

FIGURE 5.2.4-2.

FIGURE 5. 2. 5-l.

lOUT Ill
MOD-Sill- lilT

PIDCISS
MISSACI

SCIJA&ID FILE
lAIII

PIDCESS TIACI
DATA FILE

lAME

PlDCISS DATA
ElTIACTIDI

STATUS

PIDCISS
SCEIA&ID

STAIT TIME

PIDCISS Llll
lATE TEST

FLAC

CIDINIT MOD SIM INIT ROUTINE FL.OWCHART

DISPLAY CDMM
A MIJU

CIDINIT COMMA SC ROUTINE FLOWCHART

126

FIGURE 5.2.5-2.

UTVII

FIGURE 5.2.5-3.

DISPLAY ELM
ME IV

CIDINIT ELM SC ROUTINE FLOWCHART

IDVUIIE
MOD-COMMA

DISPLAY
DEFAULT
MESSAGE
JUMBO
MESSAGE

GET usn
USPOISE

POSITIOI
cuasoa to

PIOPD LID

UAD usu·s
lh DEFAULT

MESSAGE

CIDINIT MOD COMMA ROUTINE FLOWCHART

127

!Etull

FIGURE 5.2.5-4.

IOVTIII MOD-ELM

DISPLAY
DEFAULr
MESSAGE
IVMBEI
MESSAGE

cxr usn
IESPOISI

POSITIDI
CUISOI TO

PIOPD Llll

lEAD usn·s
lEW DIFAULr

MESSAGE

CIDINIT MOD ELM ROUTINE FLOWCHART

128

FIGURE 5. 2. 6-1.

PIIIT 1.26
DEVICE

COIFIGUIATIDI

Plllt CID
SIMULATIDI

IIITIALIZATIDI

Pllllt COMMA
DEFAULT

MESSAGES

Plllt ELM
DEFAULT

MESSAGES

CIDINIT PRINTCID ROUTINE FLOWCHART

129

•

