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EXECUTIVE SUMMARY

The purpose of this project was to develop estimates of excess mileage flown
in the terminal area, to estimate excess fuel burn due to air traffic control
(ATC) delay maneuvers, and to develop a method to analyze the effect of future
ATC concepts to reduce delay. The results discussed in this report are from
an analysis of ARTS track data collected during the 1974~1975 time period as a
data base for the ATC/Airbornme Collision Avoidance System (ACAS) Compatibility
Analysis project. The data base consists of 48 hours of Advanced Radar Terminal
System (ARTS) tracks; 12 hours each from Chicago, Miami, Los Angeles, and
Washington. These data were collected in accordance with the criteria estab-
lished for the ATC/ACAS analysis which were not completely in consonance

with criteria required for delay analysis. Regardless of this limitation, the
study yielded several significant findings, such as: '

1. It was found that ARTS track data provides a viable medium to derive
credible estimates of terminal area delay and excess fuel consumption. However,
raw data as recorded by the ARTS computers are characterized by anomalies,
spurious data, and other vagaries, Therefore, the process used to derive these
estimates should provide for manual intervention at appropriate points; other-
wise, the results may be misleading. The methodology applied in this project
permitted manual review, evaluation, and editing of ARTS track data. Human
judgment was applied in areas where decisions through program logic would be
suspect. The methodology proved to be effective and economical and should

have broad application in future analysis of ARTS data. '

2, In addition to excess fuel consumption that results from holding, path-
stretching, and speed control delay, other sources of excess fuel consumption
were revealed from analysis of ARTS track data. These include excess route
mileage due to local procedures and increased flight time and fuel flow due

to premature descent from cruise altitude. In connection with the latter, the
data were collected before profile descent procedures were implemented
(reference 1). This, obviously, should have an effect on that source of
excess fuel consumption.

3. It was found that when delay is required, the proper application of speed
control and early descent is a fuel-efficient method of absorbing the delay.
However, speeds requiring the use of flaps should be avoided, if possible, and
early descent from cruise altitude should not be a matter of routine practice,
but, rather, should be used only when delay is required.

4, Rigid procedures, where an attempt is made to absorb all delay by high-
altitude holding, were not supported by this analysis. However, efforts to
develop fuel-efficient scenarios to absorb delay are encouraged. As inputs
to these efforts, the following strategies are provided, in descending order
of priority, depending upon the amount of delay required, the predictability
of the ATC system, navigational accuracy, and other factors:

a. Reduced speed while descending from enroute altitude to metering fix
altitude,

E~1



b. Reduced speed at enroute cruising altitude,

c, Descent to an appropriate lower crulsing altitude to effect further
speed reduction (this requires further study),

d. Reduced speed between the metering fix and the approach gate, but
not below clean-flap configuration,

e. High-altitude holding,
f. Path-stretching vectors, and,
-8 Lower speeds near the approach gate if needed for fine-grain control.

It should be noted that the above strategies are not in complete consonance
with the scenarios depicted in reference 2,

5. The need for fuel-efficient delay-absorbing strategies 1s clearly evident
from the delay and excess fuel consumption data derived in this project for
the Chicago O'Hare (ORD) airport. The average delay for the 635 ORD arrival
tracks analyzed was computed to be approximately 10 minutes, The excess fuel
consumption due to this delay was estimated to be 1,055 pounds (1b) (157 gal~
lons) per track. Assuming that the current traffic levels at ORD are at 1east
equal to those in the data base, an annual estimate of delay and excess fuel
consumption for arrival aircraft at ORD can reasonably be placed in the area
of 2.5 million minutes and 40 million gallons, respectively. At average

1978 prices, the cost of this delay to the users of the ATC system 1s estimated
to be in the range of 33 to 40 million dollars.

Although the data from Miami (MIA), Los Angeles (LAX), and Washington (DCA)
produced some enlightening results, no attempt was made to extrapolate annual
estimates from these data, It was felt that the data samples from these air~
ports were not sufficiently representative of the periods during which delay
normally occurs., Also, annual estimates at these alrports would require a
thorough analysis of traffic loads, weather, and other factors. At ORD, on
the other hand, traffic generally remains at high levels from 9 a.m, to

9 p.m., daily, In addition, the ORD data samples used in this analysis were
collected during periods of instrument flight rules (IFR) conditions as well
as visual flight rules (VFR) conditions and, also, the principal runway con-
figurations were represented in the data base.

6. The criteria to be followed when collecting data for delay and excess
fuel analyses are critical, The samples should include a representative range
of weather conditions and runway configurations and each sample should be of
sufficient duration to capture the oscillating effect of traffic demand

(peaks and valleys) on delay and excess fuel consumption. Also, terminal area
delay may start to accrue while aircraft are still well into the enroute area.
Therefore, for a more complete analysis of terminal area delay, data should
also be collected from selected sectors of the air route traffic control
center (ARTCC).



INTRODUCTION

This project was established to support the Federal Aviation Administration
(FAA) Advanced System Engineering Program (ASE) which was formulated by the
Office of Systems Engineering Management (OSEM). Specifically, the objectives
of this work were to:

1. Develop a data base of actual miles flown in the terminal area versus
nominal and minimum route lengths which can serve as a measure of efficiency
for future ATC system design concepts;

2. Derive first-order estimates of excess fuel consumed in the terminal area
due to holding, path-stretching vectors, ATC procedures, and other factors
assoclated with delay; and

3. Develop a methodology for the analysis of terminal area delay and excess
fuel consumption which can support advanced concept development efforts on an
as-needed basis.

Initially, the work was to include the enroute area and, where possible,
actual runway-to-runway flight mileages were to be compared with fuel-conser-—
vative, direct routes as defined in the ASE Program Plan. However, due to the
magnitude of the requisite data collection and reduction efforts, the scope of
the.effort was subsequently reduced to include only representative terminal
areas.

It was the general consensus that the best source for analysis of terminal
area mileage and delay was track data being recorded online by ARTS III. It
was recognized, however, that effective analysis of the ARTS track data
requires a substantial amount of computer software that was not available at
the time., As an initial step, therefore, it was decided to use an available
data base of ARTS tracks as a vehicle to develop the required software and
other methodology. This data base was developed during an ATC/ACAS Compati-
bility Analysis (reference 3) and consists of ARTS data from Chicago, Miami,
Los Angeles, and Washington.

This report discusses estimates of delay and excess fuel consumption derived
during this initial phase., In addition, a general description of the method-
ology developed to conduct these analysis is provided. Detailed descriptions
of the computer software is contained in separate documentation.



METHOD OF APPROACH

DATA BASE,

With the advent of ARTS and an associated data recording capability, it became
possible to perform comprehensive analysis of real world operations in the
terminal areas. It is recognized, however, that a data collection program
designed to meet specific analytical objectives is a costly and time-—consuming
task. Moreover, for a variety of reasons, data recorded by ARTS require a
considerable amount of processing and editing before being effectively applied
to operational analyses. In the interest of economy and expediency, therefore,
it was decided to use data for this project that had been collected earlier
for the purpose of investigating the interaction between the ATC system and a
proposed ACAS (see reference 3),

The data base developed during that study, referred to as the 'Field-Derived
Data Base," or FDDB, had many of the features needed to meet the objectives of
this study. As shown in table 1, the FDDB consists of 48 l-hour data
samples--12 each at Chicago, Miami, Los Angeles, and Washington.

In addition to being readily available, this data base had undergone several
levels of processing, most of which is required for any type of analysis of
ARTS data. Track data had been smoothed between beacon acquisition points,
missing altitude data had been added, and most anomolies had been removed.
There were, however, some disadvantages in using the FDDB for this study. The
data were collected during the 1974/1975 time period and therefore may not
completely reflect current procedures and traffic loads. Also, the data
samples were selected to meet the analytical objectives of the ATC/ACAS study
which were not completely consonant with delay and fuel consumption analysis.
For example, more periods when delay is expected to occur, such as prolonged
IFR conditions, would have been desirable. For delay analysis, samples of
longer than l~hour duration are needed to capture the effects of oscillating
traffic demand on the terminal., Also, delay due to terminal conditions may
start to accrue while aircraft are still under center control. Therefore, for
more complete analysis of terminal area delay, it is necessary to also collect
data from the enroute sectors which feed traffic into the terminal area.

Regardless of these and other limitations, it was felt that the FDDB provided
a good starting point for investigating delay and excess fuel consumption that
result from many interrelated factors in terminal air traffic control. In
particular, the FDDB offered an ideal instrument for the development of com—
puter programs and other methodology needed to conduct a credible analysis of
these data. Further, although many problems had already been eliminated,
analysis of the FDDB revealed that reduction of delay data from ARTS tracks
without provision for manual intervention could yield highly questionable
results. Accordingly, the process developed consists of a series of sequential
steps, where each step provides the capability for manual interface with com-
puter processing of the track data (see "Description of Methodology").



TABLE 1. CONTENTS OF THE FIELD-DERIVED DATA BASE (FDDB)
NO. OF AVG. HOURLY AVG. HOURLY AVG. HOURLY
1-HOUR ARRIVAL DEPARTURE OPERATIONS ARRIVAL
LOCATION SAMPLES RATE RATE RATE WEATHER RUNWAY(S)
Chicago 3 66 Note 1 Note 1 IFR - 14L/14R
0'Hare
(ORD) 3 68 Note 1 Note 1 VFR 14L/14R
6 66 Note 1 Note 1 VFR 27R/32L Note 2
Washington 6 30 26 56 VFR 36
»ational
(DCa) 6 29 26 56 VFR 18
Los Angeles 3 33 40 73 IFR 24/25
Intl. (LAX)
~ote 3 3 36 38 34 VFR 24/25
3 33 38 71 VFR 6/7
Miami Intl. 6 31 28 59 VFR 9L/9R
(MIA)
3 32 22 54 VFR 27L/27R
3/ 29 23 52 Note & Note 4
Note:
1 Departure load was not a factor at ORD, due to use of independent runways.
2 In one sample, aircraft were using 27R/27L for the first half of the hour, then the 27L traffic

was changed to 32L.

3 An additional three l-hour set was collected at LAX for a particular ATC/ACAS probe.

operations rates were typically low, they were not included in the analysis.

4 These samples were taken when thunderstorms were reported in the terminal area.

landing was changed twice in one sample.

Because the

Direction of



DELAY MEASURES.

Before discussing the results of this study, it is important to clarify what
is meant, herein, by "delay" and by "excess fuel consumption.”" Webster's New
World Dictionary states that "delay implies the interference of something that
causes a detainment or postponement." As applied to arrival aircraft (depar-
tures were not analyzed), the dictionary interpretation of 'delay" would infer
that delay is the result of one or more constraints imposed on the aircraft's
movement that causes the landing time to be later than it would otherwise have
been.

There are, of course, many constraints which cause arrival aircraft to
encounter delay, several of which are associated with the operation of the air-
craft itself, For example, cabin pressure management may preclude optimum
descent gradient, and passenger comfort may limit aircraft maneuvering which
could increase flying time. Other constraints causing delay can be the result
of weather, terrain, noise abatement procedures, vortex phenomenon, and the
like, Of primary concern in this study, however, are the constraints imposed
by the ATC system during the normal performance of its mission--i.e., safe and
expeditious movement of traffic, It should be pointed out that it is not the
intent in this work to judge the performance of the ATC system. The sole pur-
pose, on the other hand, is to provide objective data on how much delay accrues
under differing circumstances and, further, to produce estimates as to how much
excess fuel is consumed as a result of such delay. In this context then,
"excess fuel consumption'" is simply the fuel required over and above that which
would have been consumed had the delaying constraint not been imposed.

In the normal course of air traffic control, there are three basic methods to
effect delay: (a) holding in a racetrack pattern at a navigational fix, (b)
path-stretching by radar vectors, and (c) speed control. Normally these delay-
ing measures are applied in various combinations, depending upon local proce-
dures, traffic demand, and many other factors., However, since each method
impacts fuel consumption differently, it was decided to partition delay into
components associated with each method. With this approach, the results can
be more effectively applied in the development of fuel=-conservative delay
strategies.

DELAY DUE TO PATH-STRETCHING VECTORS., In a terminal radar environment, arrival
aircraft normally do not navigate over a prescribed (i.e., charted) route from
terminal entry point to touchdown. From feeder fix to the final approach course, =
navigation is primarily affected through radar vectors (headings) issued by

alr traffic controllers. From entry point to the feeder fix, navigation may

be along a charted airway or very high frequency omnirange/tactical air navi- .
gation (VORTAC) radial, or may also be accomplished by vectoring. Moreover,

radar vectors perform a dual function, i.e., navigation and separation. When
separation requirements result in an increase in flying distance, the corre-
sponding action is referred to as '"path-stretching." Obviously this results

in added flying time (i.e., delay) and an increase in fuel consumption; there-

fore, realistic measurement of path-stretching mileage was an essential

requirement for this study. In order to derive this path~stretching distance,

it was necessary to establish baseline routing by which to compare the actual

4



track distances from the FDDB. These routings are referred to as ''mominal

routes" which, in a general sense, approximate the paths aircraft would normally
fly if path-stretching for separation purposes were not required.

The ground rules and procedures used in constructing nominal routes were as
follows:

1. The start point for each arrival route (departure routes were not developed)
was on the circumference of a circle which was centered at the primary airport
and which had a radius of 55 nmmi. It was found that the initial track point
would normally lie inside such a circle.

2, There were two runway configurations in the data samples for each terminal
area (see table 1), and the start point was normally the same for both con-
figurations, The location of the start point on the circular boundary was
determined by knowledge of the arrival traffic flow routings. This information
was gained from (a) preferred route listings in the Airman's Information Manual,
(b) observation of plotted tracks, (c) operations manuals and other facility
documents, and/or (d) a priori knowledge and experience with traffic flows and
procedures at the terminal of interest.

3. From the entry point, nominal routings normally proceeded directly to an
inner (feeder) fix, It was found that, for the most part, the same feeder
fixes were used for both runway configurations; however, observed exceptions
were accommodated.

4, From feeder fix to the runway, the nominal route geometry depended upon
several factors, such as weather conditions, predominate aircraft performance,
the angular relationship between the feeder fix and the final approach course,
and other considerations. In general, appropriate geometry from feeder fix

to the runway could best be derived through repeated observations of plotted
tracks. Where necessary in the design, the performance of commercial jet air-
craft was assumed. It was also assumed that instrument landing system (ILS)
navigation was used on the final approach, regardless of the weather (DCA
"River" approach to runway 18 was an exception). However, the point of turn-
on to final varied from airport to alrport. On occasion, such as the parallel
14 approaches at Chicago O'Hare (ORD), different turn—on points were required
between IFR and VFR conditions. When a downwind/base leg (trombone) pattern
was called for, the downwind leg was constructed parallel to, and 4 to 4.5 nmi
abeam of, the final approach course. The base leg in a trombone pattern per-
mitted at 30° intercept to the final approach course at a point approximately
500 feet below the ILS glide slope.

5. Alternate nominal routes for light aircraft were not constructed because
(a) except for DCA, relatively few were found in the sample and (b) the impact
of light aircraft on excess fuel consumption was minimal. When the tracks of
light aircraft deviated too far from the prescribed nominal, the track data
were eliminated from delay and fuel computation.

6, Due to an occasional short turn-on to the final approach course, track
lengths were sometimes less than nominal route lengths. Such '"megative path-

5



stretching" was reduced through design modifications, but never was completely
eliminated.

7. In order to capture the effect of local procedures on route lengths, an
alternative route, referred to as "minimum approach route," was constructed

for each nominal route, The minimum approach route started at the same point

on the boundary circle as the corresponding nominal. From that point, the
minimum approach route was constructed so as to reflect the most direct path

for an ILS approach to the nearest runway in use. In this design, turn radii

of jet aircraft were accommodated and, in addition, the route could not overfly
the airport., Terrain, noise abatement, and the like were not taken into account
in the design of minimum approach routes.

As can be seen from the "Description of Methodology" section, nominal routes
were developed through an iterative process, Each configuration would be
checked against a sufficient number of tracks to ensure adequate representation.
Although this was primarily a judgment process, route mileage versus track
length was also considered. When excessive negative path-stretching occurred,
track plots were analyzed to determine whether (a) the nominal should be modi-
fied, (b) certain tracks should be dropped from further consideration, or (c)

no changes should be made.

Nominal routes that were ultimately developed for the four airports in the

data base are shown on figures 1 through 8. These include all routes developed
except (a) VFR routes for ORD runway 14L approaches, (b) alternate routes for
ORD runway 27L approaches during the dual, 32L/27R configuration, (c) Midway
(MDW) routes, and (d) Fort Lauderdale (FLL) routes. Initially MDW and FLL .
nominals were constructed, and delay and fuel data were computed. However,

due to the small number of tracks, these data were not included in the final
results.

As can be seen from these nominal route configurations, many of the nominal
routes nearly follow the most direct path from entry point to final approach
course. This is reflected in the annotated distance data. On the other hand,
minimum approach routes which differ substantially from the corresponding
nominal are depicted in dashed lines. A good example is route 5B at MIA
(figure 4). From track data it was found that, when landing west at MIA, air-
craft through SERPA normally were vectored for an approach to 27L. The closest
runway for this traffic was 27R; therefore, the minimum approach route was con-
structed as shown to capture the effect of these local procedures on excess
fuel consumption,

To derive the amount of path-stretching delay incurred by a track, it was first
necessary to find a point on the associated nominal route that closely corre-
sponds to the start point of the track. This was accomplished in the computer
program by swinging an arc through the track start point until it intersects
the nominal route (see figure 9). The center of the arc was a prespecified
point in the close-in pattern, normally where the minimum approach route merges
with its corresponding nominal., That portion of the nominal route from the
intersect point to the runway is referred to as a "comparable nominal route."



The length of the comparable nominal is called 'CNOM," and the difference between
track length (TRK) and CNOM is the resulting path-stretching mileage (TRK-CNOM).
In the CNOM computations, adjustments were made for turning radii. Note also
that when CNOM is greater than TRK, negative path-stretching mileage results.

In the summary of data, negative path-stretching is treated in an algebraic
manner,

HOLDING DELAY. In this study, terminal area holding delay was derived by
manually recording holding times from plotted ARTS tracks. If the holding
pattern was entered after the first data polnt of the track, then the duration
of the complete holding delay was recorded. These holding data are referred
to as type A holding and generally reflect holding delay that occurred after
handoff from the center. If, on the other hand, the first data point of the
track revealed that the aircraft was holding at that time, only the remainder
of the holding delay could be recorded. Unless the time of the first data
point was equal to the start time of the sample hour, it was obvious that the
aircraft had been holding for an undeterminable amount of time while under con-
trol of the center. In either case, these incomplete holding delays were
recorded as type B holding. Obviously, this yielded results substantially
less than what actually occurred at the time, and it therefore points out the
need for enroute data when deriving terminal area delay.

Figure 10 depicts examples of type A and type B holding patterns. With type A
holding, the computer removes holding distance from track length by making a
straight-line connection between the "time-in" point with the "time-out" point.
Altitude data at these two points were also saved for subsequent use. In the
case of type B holding, only ''time-out" was manually extracted, and all track
data prior to that point were stored as holding delay. Track length was com—-
puted from the "time-out" point to the runway. Altitude at the "time-out"
point was used to represent type B holding pattern altitude.

EARLY DESCENT/SPEED CONTROL DELAY. During the analysis phase of the project

it was found that (a) considerably more level-flight mileage was flown by air-
craft in the data base than was needed for path-stretching delay, (b) level-
flight altitudes (weighted averages) were well below 10,000 feet, and (c) level-
flight mileage and speeds varied substantially from terminal to terminal. In
the interest of deriving data from the FDDB relative to the profile descent
program (reference 1), which was instituted after the FDDB was collected from
the field, it was decided to include speed and vertical profile data in the
final results,

To appreciate the delay due to early descent, consider the profile on

figure 11, In that schematic, descent from 35,000 feet is initiated 27 nmi
ahead of a continuous descent gradient. Assuming standard atmospheric con-
ditions and without considering wind, the reduction in true airspeed (TAS)

from 450 knots to 290 knots results in a 2-minute increase in flying time over
the 27 nml even though indicated airspeed (IAS) remains at 250 knots. This
delay would have occurred in the example shown on figure 11 solely by early
descent, whether or not it was the intent of the ATC system to reduce the speed
of the aircraft at that point., Obviously, level flight at the lower altitude
results in more fuel consumption; but this will be discussed in a later section.



Closely intertwined with early descent delay is delay caused by speed control
instructions used to facilitate the traffic management function., However, a
precise measurement of delay due to both forms of speed reduction requires
analysis of voice recordings and additional processing of the track data that
had not been provided during the programing support phase of the project.
Therefore, it was necessary to manually derive an estimate of this delay from
analysis of available data.

For reasons explained later, the vertical profile of each track had been com-
puter and stored by the computer program for subsequent use in fuel consumption
computation. In developing the vertical profile for arrival tracks, a regres-
sion analysis model was applied to the altitude associated with each 30-second
data point. When the model indicated that the descent gradient was less than
100 ft/nmi (parameter), the track was declared as being level at that point.

A typical profile is shown on figure 12, Level-flight distance and level-flight
time were accumulated and stored for each track, In addition, a time-weighted
altitude was computed based on the duration at each level-flight altitude.
Later, data reduction programs summarized these data into altitude bands for
specified sets of sample tracks. Figure 13 depicts an example of these data
summaries,

Early descent mileage was derived for a given set of data by subtracting the
path-stretching mileage from the level-flight mileage. In other words, these
additional level miles were not needed for separation purposes and therefore
could have been flown at cruise altitude., Since level-flight distances and
level-flight times were available in the summary, an average track velocity

was easily derived. An estimate of delay time was derived by computing the.
difference in flying time over the early descent miles between the time
required at average track velocity and the time that would have been required

at a nominal cruise speed of 450 KTAS., Obviously, in this method the effect

of speed control could not be separated from the effect of early descent. ,
Accordingly, these delay components were combined in the final results., How-
ever, additional delay occurs during descent when aircraft have been given

speed Instructions by the controller. An estimate of this delay was derived

by computing the difference in flying time over the descent mileage (track
length minus level-flight distance) between the time required at average track
velocity and the time that would have been required at an average nominal speed
of 265 KTAS., (At MIA, the average track velocity over all tracks in the data
sample was 271 knots.) The coarseness of the foregoing estimating method is
recognized. It is felt, however, that lacking a more precise method, the data
so derived from the FDDB can provide important inputs to fuel conservation tech-
niques, such as profile descent. It is expected, for example, that the point

at which descent from cruise altitude is initiated, has rarely been associated
with delay. Yet, by the natural phenomenon of air density, delay occurs when
aircraft are descended early, whether such delay is needed or not for air traffic
control purposes. Furthermore, as will be shown later, when delay is required,
early descent together with speed control is a fuel-efficient way to absorb the
required delay as long as speeds below clean-flap configurations are not employed,



DELAY DUE TO PROCEDURAL ROUTING. In addition to holding, path-stretching vec—
tors, and early descent/speed control, a fourth delay component, referred to

as "procedural routing," was derived from the ARTS track data. These delay
data relate to the added mileage embodied in the nominal route geometry as a
result of local procedures. There are a wide range of factors involved in
establishing procedural routings; however, it was not the intent in this study
to assess the impact of the individual factors, nor to pass judgment on the
procedures themselves. Rather, these data were derived solely to identify yet
another area where fuel conservation procedures or techniques may have appli-
cation. It will be seen, for example, that, while procedural routing average
less than l-minute delay per track, overall, there are a few routes within each
terminal area which contribute to the bulk of the total procedural routing
delay. Accordingly, improvements in this area to reduce excess fuel consump-
tion would need only to concentrate on a limited number of identifiable factors,

As discussed earlier, a minimum approach route was constructed for each nominal
route in order to capture the effect of local procedures on excess fuel con-
sumption., In the basic nominal geometries (figures 1 through 8), minimum
approach routes started from the same point as the corresponding nominal route.
For individual track computations, however, a "comparable minimum approach route
distance computation (CMIN) was started at the track start point (see figure 9).
The difference between CNOM and CMIN was the excess mileage delay attributable
to local procedures (CNOM-CMIN).

EXCESS FUEL COMPUTATION. In an attempt to construct fuel flow models for the
aircraft types found in the data base, it was found that actual fuel flow
depends upon many factors, most of which were not available to the project.
However, it was felt that good estimates could be derived from available data
based on a few key assumptions, For example, aircraft performance manuals
depict fuel flow in level flight a function of weight, speed, and altitude.
Speed and altitude could be derived from ARTS tracks; however, it was necessary
to make an assumption regarding weight for the particular aircraft type.
Further, it was found, for the purpose of this project, that aircraft types
could be reasonably grouped into categories in accordance with the number and
type of engines and assumed weight. Table 2 shows the category grouping for
the jet and turboprop aircraft used in the fuel consumption computation.

These types accounted for over 99 percent of the usable FDDB arrival tracks.
Another assumption involved fuel consumption during the descent phase of opera-
tion. For several reasons, it became necessary to disregard fuel consumed
during descent and therefore base all findings on level-flight data. For example,
excess fuel consumption attributable to path-stretching was derived from path-
stretching mileage and a computed level-flight fuel flow rate (to be explained
later). What this amounts to is the assumption that different descent gradients
in the terminal area (after ARTS acquisition) have an insignificant effect on
differences in fuel consumption.

The method for computing a level-flight fuel flow rate to be applied to delay
mileage is shown on figure 14, It can be seen that the resultant rate is a
weighted average based on aircraft type and the distance and speed at each
level segment altitude. The application of these variables on fuel consumption
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NOTES:

TABLE 2. AIRCRAFT TYPE CATEGORIZATION

ASSUMED
WEIGHT
(1b) ATRCRAFT TYPES
- MU2,' VC6, BE99, OV1, DH6, BE9OQ, U2l
- ¥Ys1l, G159, Sw2, sW3, SW4, CV58, ND26, CCO9,
FA22, CV64, C2, FA27, FH22, C580, HP13
- P3, C130, L188
- H525, AC21, LR23, LR24, LR25, N265, T39, C500,
A37
- G2, FFJ
90,000 B737, BAll, C9, DC9
140,000 B727
220,000 B720, C135, C140
220,000 B707, DC8
320,000 DC10, L101
220,000 DC86
550,000 B747

1. Missing category numbers were for types not used in fuel
consumption computation,

2, Assumed weights were for the arrival phase,
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is shown on figure 15. A second-degree equation was developed for each of the
four altitudes for the aircraft categories shown in table 2. The coefficients
for the fuel flow equation were derived through application of regression
analysis on the data extracted from performance manuals for the aircraft type
representing each category. Two sets of coefficients were derived for com-
mercial jet transports (categories 11 through 19). The first set, like the one
shown on figure 15, represents a no-flap configuration, and the second set
represents various flap settings as a function of KIAS. The flap data were
obtained from the United Airlines Office, Denver, Colorado (reference 6). An
example of the effect of flaps is shown on figure 16, Indicated airspeed was
computed by using track velocity as KTAS and applying the following formula:

KTAS = KIAS x 68320 + 0,293 2
6832 - 0.707 2
where Z is altitude in feet.

The weighted fuel flow rate described above was used to derive excess fuel con-
sumption due to path-stretching delay and procedural routing. For fuel con-
sumption during holding delay, however, a different approach was taken. It

was assumed that aircraft held at optimum holding speeds and therefore fuel
consumption would be In accordance with data published in performance manuals
such as that shown on figure 17. These data are normally given in pounds per
hour; therefore, holding duration was used in fuel computation as opposed to
holding distance. In this computation a second-degree equation was used where
the independent variable was altitude (Z). Regression analysis was also
applied to derive holding fuel flow coefficients for each type category.

In deriving excess fuel consumption attributable to early descent/speed control
delay, it was again necessary to resort to an approximation method. From
analyzing fuel consumption for jet aircraft in the data base, it was found that
a good average estimate of fuel consumption (1b/nmi) at cruise altitude is about
half the average computed for the tracks at the weighted level-flight altitude.
Therefore, after fuel attributable to path-stretching was subtracted from the
total fuel consumed in level flight (634,988 1b in figure 13), the difference
was divided by two. These estimates were made for only the final summaries of
the total data sample for each terminal area. Also, no attempt was made to
derive excess fuel consumption due to delay that accrued during descent in the
terminal area as a result of speed control.

DISCUSSION OF RESULTS

SUMMARY OF DELAY AND EXCESS FUEL CONSUMPTION.

An overall summary of the delay data reduced from the FDDB is presented in
table 3, and corresponding excess fuel consumption attributable to this delay
is shown Iin table 4., Figure 18 depicts a bargraph comparison of the excess
fuel consumption for the four alrports in the sample data together with the
average arrival rate over all sample hours for each airport. It is interesting
to note that the average number of usable tracks in the l-hour samples at ORD

11



TABLE 3. DELAY DATA REDUCED FROM ARTS TRACKS (FIELD DATA COLLECTED
FOR ATC/ACAS INTERACTION STUDY)

ORD MIA LAX DCA
Total Number of Tracks 635 217 175 212
Per-Sample Average 53 18 19 18
Total Delay Time (min) 6,160 699 568 1,038
Per-Track Average ' 9.7 3.2 3.3 4.9
Components of Delay:
Holding
Number of Tracks Held 132 3 0 6
Percent of Total 20.8 1.4 - 2.8
Total Holding Time (min) 1,128 12 - 39
Average Time Per Hold (min) 8.6 4.0 - 6.4
Per-Track Average (min) 1.8 NIL - 0.2
Path-Stretching Vectors
Total Delay Mileage (nmi) 6,769 773 617 1,111
Per-Track Average (nmi) 10.7 3.6 3.5 5.2
Ratio:Delay to Nominal Route (Percent) 20 6 7 9
Est. Per-Track Delay Time (min) 3.0 0.8 0.9 1.3
Early Descent/Speed Control
(NOTE: See "Method of Approach")
Est. Total Delay Time (min) 3,604 369 333 530
Per-Track Average (min) 4.1 1.7 1.9 2.5
Procedural Routing
(NOTE: See "Method of Approach")
Total Delay Mileage (nmi) 1,927 662 323 796
Per~Track Average (nmi) 3.0 3.1 1.8 3.8
Per-Track Delay Time (nmi) 0.8 0.7 0.5 0.9
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TABLE 4, EXCESS FUEL CONSUMPTION REDUCED FROM ARTS TRACKS

(FIELD DATA COLLECTED FOR ATC/ACAS INTERACTION STUDY)

Total Number of Tracks

Total Excess Fuel Burn
All Tracks (1lb)
All Tracks (gal)
Per-Track Average (1b)
Per-Track Average (gal)
Per-Track Cost (in dol.) @ $.42

Excess Fuel Per Delay Component

Holding

Total--All Holding (1b)
Per-Hold Average (1b)

Path-Stretching Vectors

Total=~All Tracks (1b)
Per-Track Average (1b)

Early Descent/Speed Control

Total-=-All Tracks (1lb)
Per-Track Average (1b)

/
Procedural Routing

Total—All Tracks (1b)
Per-Track Average (1b)

635

670,009
100,001
1,055
157

66

142,350
1,078

273,954
431

180,517
284

73,188
115

13

MIA

217

116,493
17,387
537

80

34

1,238
413

28,644
132

64,877
299

21,734
100

12

175

60,424
9,019
345

22

26,498
151

22,201
127

11,725
67

DCA

212

70,995
10,596
335

50

21

3,140
523

24,692
116

27,451
129

15,712
74



is about triple that at MIA, LAX, and DCA, even though the average arrival rate
at ORD was only about twice that of the other airports. In general, this results
from the fact that the traffic at ORD is highly regimented and could normally
be associated with a nominal route; whereas, special treatment was frequently
given to traffic at the other airports. In particular, during VFR weather and
light or moderate traffic, local service and commuter flights at these airports
would often land on a secondary rumnway or would otherwise be vectored such that
association with a nominal route was not feasible. Further, since the FDDB
samples were taken in l-hour slices in time from the ARTS recordings, tracks

at the beginning and at the end of each sample hour were also not usable for
delay analysis. Overall, about 80 percent of the tracks in the ORD samples
could be used in the analysis, and at MIA, LAX, and DCA about 60 percent of

the tracks were suitable. Obviously, a data collection program, established

to measure delay and excess fuel consumption, would require longer sampling
periods than the FDDB and would avoid periods of light VFR traffic. In spite
of the shortcomings of the sample data, however, the study yielded highly use-
ful results concerning terminal area delay and excess fuel consumption. In
particular, the findings from this study have direct application to efforts
dealing with the development of fuel conservation procedures and techniques. .

Of particular interest are the average total delay per track (table 3) and the
average excess fuel consumption attributed to that delay (table 4). Note that,
while individual delay components appear relatively small, the aggregate of
these data can be considered substantial, particularly at ORD., For example,
the average time in system, from ARTS acquisition to landing, was about

21.5 minutes for the 635 tracks; however, using methods previously described,
nearly 45 percent of that time (9.7 minutes) was calculated to be delay. The
average nominal route distance for these tracks was 54 nmi, so that without
holding, path-stretching, or speed control, the average time in the system
would be slightly over 14 minutes. Therefore, even discounting procedural
routing delay and the added effect of early descent, a delay of 7 to 8 minutes
remains., In addition to the effect on fuel consumption, absorbing this delay
prior to ARTS acquisition would have the added effect of reducing the simul-
taneous number of aircraft under approach control by seven to nine aircraft.
Obviously, the impact on center workload would depend .on how and where the
delay was absorded by ARTCC,

In connection with excess fuel consumption, the average aggregate amount of
1,055 1b (157 gallons) per track at ORD appears substantial in light of fuel
costs. To properly view these data in connection with the national posture
on energy conservation, it 1s necessary to extend the estimates of excess fuel
consumption to a longer time frame, such as to an annual basis. It was felt,
however, that the sample data used in this project were not sufficiently
representative to make a statistically valid annual extrapolation. Without
belaboring the point, it seems obvious that estimates of this nature require
especlally designed data collection criteria. Nevertheless, to sense the
order of magnitude of what the average values on table 4 project to on a
annual basis, one can apply simple arithmetic to the ORD data. It was found,
for example, that the present demand/capacity ratio at ORD is about the same
as it was when the data used in this project were collected (1974-75). Also,
inspection of the schedules in the Official Airline Guide indicates that the
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demand is at a nearly continuous peak from 9 a.m. to 9 p.m. Therefore, a
first-order estimate of excess fuel consumed daily by arrival aircraft during
the 12 peak hours at ORD can reasonably be derived by extending the 100,000
gallons of excess fuel from the sample data (table 4) in the following manner.
First, since each sample hour yielded about 48 minutes (80 percent) of usable
track data, it is necessary to divide 100,000 by 0.8 to extend the 12 sample
hours to 12 complete hours of operation. This computation yields an estimate
of 125,000 gallons of excess fuel consumption for 12 peak hours. Assuming the
sample data are sufficiently representative of the average operations at ORD
during peak hours, an annual estimate of excess fuel consumption due to delays
to arrival aircraft ranges from 32.5 million gallons (based on a 5-day week)

to 39 million gallons (based on a 6-day week). Extending the total delay time
for the ORD sample (6,160 minutes, table 3) in the same manner yields an

annual estimate of from 2 to 2,4 million minutes of delay. Using an average
fuel cost of 42¢ per gallon and an average direct operating cost without fuel
of $10.00 per minute (reference 7, B727, extrapolated to December 1978), a range
in cost to the users due to arrival delay at ORD is estimated to be from 33 to
40 million dollars, annually. It should be emphasized at this point that, when
comparing these delay cost estimates with other estimates, the data from the
this study did not include terminal area delay that might have accrued prior

to the ARTS track acquisition point (i.e., ARTCC holding vectoring and speed
control). Also, no attempt was made to derive delay and excess fuel consump-
tion for the departure or ground operation phases of operations. Obviously,

an analysis of departure tracks and of tracks in the close-~in enroute area
would be a natural extension of the work conducted in this study, and, together,
these analyses could provide good estimates of total terminal area delay costs.

In addition to the foregoing, it would also be of interest to derive annual
estimates of delay costs at other terminal areas. Such estimates were not
made in this study for MIA, LAX, and DCA for two reasons. First, it was felt
that the sample data did not sufficiently represent the wide range of condi-
tions which cause delay at those airports (i.e., prolonged periods of IFR
weather and/or saturated traffic conditions, etc.). Second, traffic at

these airports has not reached the near steady state conditions of the 9 a.m.
to 9 p.m. traffic at ORD. Therefore, an estimate of annual delay costs would
require an analysis of the traffic conditions that occur throughout the year.
Such an analysis was beyond the scope of this study; therefore, no attempt was
made to extend the MIA, LAX, and DCA data beyond that shown in tables 3 and 4.

Concerning the delay and excess fuel consumption problem, one further point
is in order. It was found in this study that a representative commercial jet
(B727) would burn about the same amount of excess fuel as the average of the
ORD tracks (1,055 1b) if all delay (9.7 minutes) were absorbed while holding
at 20,000 feet. This does not support the argument for the postulated fuel
savings of rigid profile descent procedures where all terminal area delay is
absorbed in holding patterns at metering fixes. It does, however, support
work already started, and encourages new work relative to fuel-efficient
methods for consuming delay,
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COMPONENTS OF DELAY AND EXCESS FUEL CONSUMPTION.

In order to provide a better understanding of the impact of fuel consumption
of the various delay-absorbing methods, it was decided to partition the
delay data from the ARTS tracks into the four components shown in table 3.
The contribution each component makes to total delay and total excess fuel
consumption at each airport in the data base is shown in table 5. Salient
aspects of these data are included in the detailed discussion of each delay
component that follows.

TABLE 5. RATIO OF DELAY COMPONENTS TO TOTAL DELAY
AND TOTAL EXCESS FUEL CONSUMPTION

ORD MIA LAX DCA

% OF % OF % OF % OF % OF % OF % OF % OF
DELAY COMPONENT TOTAL  EXCESS TOTAL EXCESS TOTAL EXCESS TOTAL  EXCESS

DELAY FUEL DELAY FUEL DELAY FUEL DELAY FUEL
Holding 18.6 21.2 NIL 1.1 0 0 3.8 4.4
Path-Stretching 30.9 40.9 25.0 24,6 27.3 43,9 26.5 34.8
Early Descent/Speed Control  42.3 26.9 53.1 55.7 57.6 36.7 51.0 38.7
Procedural Routing 8.2 10.9 21.8 18.7 15.2 19.4 18.4 22.1

HOLDING. Of the four delay components shown in table 5, "holding" provides
the best index of the demand versus capacity relationship. However, to
measure demand and the holding that results when demand exceeds capacity, it
is necessary to analyze data well in advance of the point where the tracks
are acquired by ARTS, Since only ARTS track data were available to this
study, no estimate of terminal area demand was attempted, and the holding
delay shown in table 3 consists only of the holding times that could be
extracted from these tracks (see Method of Approach). In spite of this
limitation, the holding delay derived from the ORD tracks is considered
significant. For example, even though the arrival rate averaged 66 aircraft
per hour (figure 18), about 1 in every 5 aircraft encountered holding delay.
This is a good indication of the excess in demand over capacity during the
sample periods and, judging by recent traffic statistics, is probably indic-
ative of the present operation at ORD. (Obviously, this excludes the triple-
arrival runway operation which has recently been introduced during suitable
periods of wind, weather, and runway braking conditions.)

It is interesting to note that the ratio of aircraft that were held

(20.8 percent) is about the same as the ratio of total holding fuel to the
total excess fuel consumed (21.2 percent) as shown in table 5. This is due to
the large amount that each hold costs in excess fuel (1,078 1B, on thlie average).
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Regarding the holding time at ORD, it should be remembered from the Method

of Approach that when aircraft had been held by the center, only the time
subsequent to ARTS acquisition could be tabulated for this study. Of the

132 aircraft that were held, 87 were of this type, averaging 6.7 minutes of
holding time after entry into the ARTS system. Tracks of the remaining /
45 aircraft that were held were acquired prior to holding start time, which
generally indicates that approach control had instructed these aircraft to
hold. These tracks had an average hold duration of 12 minutes, Although

one might assume that the latter duration provides a good estimate of

average holding time for all aircraft that were instructed to hold (either

by ARTCC or by approach control), there was nothing in the data to verify

this assumption. Therefore, a more valid approach in estimating holding

delay cost would be to consider system holding time as opposed to per-
aircraft holding and to separate the enroute data from the terminal data.
While estimates of enroute holding delay data require separate study,
estimates for the ORD terminal data can be made by extending the holding delay
in table 3 in a manner analogous to the approach taken for total delay, above.
First, recalling that the 12 sample hours amount to about 9 actual hours of
track data, then the 1,128 minutes of holding delay computes to an average

of 125 minutes per peak hour, or 1,500 minutes for 12 consecutive hours of
peak traffic (normal ORD operations from 9 a.m. to 9 p.m.,). Simple arithmetic
yields a first-order amnnual estimate of terminal area holding at ORD of from
390,000 minutes (for 5-day week) to 468,000 minutes (for 6-day week).
Extending the excess fuel consumption at ORD due to holding delay from table 4
in a similar mammer produces an annual estimate ranging from 7.4 to 8.8 million
gallons.

It should be noted that the data used in this study were collected prior to

the implementation of profile descent procedures. The intent of these proce-
dures is to eliminate holding and other delay at low altitudes inside the
metering fix, The fact remains, however, that when aircraft are put into
holding stacks, demand on the alirport has exceeded the effective capacity of
the airport for some undefined period of time, With an equal demand/capacity
ratio, the application of profile descent alone merely shifts the holding
delay to a higher altitude, Obviously, the fuel savings by holding at higher
altitudes depends upon several factors, including type and weight of the air-
craft, holding speed, flap configuration, etc. An example of the effect of
holding altitude is presented in table 6, For the fuel consumption of the
track data, it was assumed that all aircraft held in a clean configuration.
This yielded an average holding fuel flow rate of 7,917 1lb/hr for the five
categories shown. This rate is slightly lower (2.3 percent) than the weighted
average at 10,000 feet from the UAL data (8,101 lb/hr). The difference is due,
in part, to the lower holding altitudes (overall average of about 9,000 feet),
and also to the no-flap assumption for the heavy aircraft., With the same
distribution of holding times by type of aircraft, a weighted average of

7,105 1b/hr was computed from the United Airlines (UAL) data for holding at
20,000 feet., This is 10.3 percent less than the track average, and 12.3 percent
less than the weighted average at 10,000 feet from the UAL data. For holding
times of 10 minutes per hold, these differences yield 135 and 166 1b less fuel,
respectively, At current fuel prices (42¢ per gallon), it is estimated that
an average savings of 8 to 10 dollars for each 10-minute hold would result by
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TABLE 6. HOLDING FUEL FLOW DATA

FUEL FLOW DATA FROM HOLDING FUEL CONSUMPTION FROM SAMPLE TRACKS
UNITED AIRLINES (UAL) (99.2% OF HOLDING FUEL)
FUEL FLOW (1b/hr) HOLDING HOLDING RATIO OF
(Holding @ 200 KIAS) CATEGORY FUEL TIME HOLDING TIME

A/C TYPE BURN (1b) (MINUTES) (PERCENT)
(WEIGHT) 10,000 fc 20,000 £t
B737 4,185 3,865 11 21,547 272 25,47
(90K 1b) (clean) (clean)
B727-200 7,085 6,616 13 61,014 483 45,1%
(140K 1b) (clean) (clean)
DC8-61 11,600 9,520 16 32,714 195 18.2%
(220K 1b) (10° flaps) (clean)
DC10 ’ 13,880 11,060 17 20,494 103 - 9.6%
(320K 1b) (slats) (clean)
B747 24,500 21,200 19 5,409 17 1.6%
(550K 1b) (5° flaps) (1° flaps)
Weighted Total 141,178 1,070
Average* 8,101 7,105 Average Rate 7,917 1lb/hr**

*  UAL fuel flow rates weighted by proportion of the total holding time the representative category
in the sample data was held.

*% Average holding altitude at ORD was approximately 9,000 feet,



holding at 20,000 feet as opposed to the holding altitudes in the ORD sample
data. By applying the difference in final consumption due to holding altitude
to the annual estimate made earlier, a difference ranging from 0.8 to 1 million
gallons of fuel results.

The absence of any significant amount of holding at the other airports in the
sample data is probably more reflective of the periods during which the data
were collected than anything else., However, it can be assumed that ‘the
requirement for prior reservation for landing at DCA minimizes holding delay
at that airport, except possibly during prolonged periods of IFR weather.

All DCA data used in this study were collected during periods of VFR weather.
Although 3 hours of the LAX data were during IFR weather, the traffic demand
during these periods did not exceed the airport capacity to any noticeable
degree. This was generally the case throughout the LAX sample data; therefore,
it is felt that the zero holding ‘delay as well as all other delay measures at
LAX are not representative of that busy airport. At MIA, the weather, traffic
demand, and multiple runway operation, together, militate against the need for
holding delay. It i1s expected that only during seasonal periods of peak
itinerant traffic will holding delay of any substantial amount be required at
MIA.

PATH-STRETCHING VECTORS. As with holding, the delay due to path—stretching
vectors at ORD clearly stands out over the other airports. Because of the
near steady state traffic demand at ORD from 9 a.,m. to 9 p.m., it is felt
that the ORD data are representative of the path-stretching delay generally
encountered by arrival aircraft during these 12 peak hours each day in the
years when the data were collected. Data from the other airports, on the
other hand, are not considered so representative, since many factors which
cause delay were not a part of the data collection criteria for the ATC/ACAS
study.

To more clearly perceive the significance of the ORD data, consider the-

fact that the average time in the system was just over 21 minutes; viz,

from track acquisition to touchdown, not including holding. In this interval
of time, aircraft, on the average, flew about 20 percent (10.7 nmi) further
than the nominal route distance and consumed about 431 1b (64 gallons) of
excess fuel, Extending these data to form annual estimates by the method
previously described yields a range of 2.2 to 2.6 million delay miles, annu-
ally, and a range in excess fuel consumption of 13 to 16 million gallons,
Further, the average fuel burn rate over all path-stretching delays at ORD
was slightly over 40 lb/nmi or about 8,660 1b/hr. This is approximately

22 percent more than the weighted holding fuel burn rate at 20,000 feet
(7,105 1b/hr) shown in table 6. Therefore, extending this difference to the
annual estimate yields a savings of between 2.4 and 2,9 million gallons of fuel
in favor of high-altitude holding.

It should be pointed out that this finding is not in contraposition with the
discussion under "total delay," since the latter included the impact of early
descent and speed control. As will be shown, these delay-absorbing techliniques
can be highly fuel-efficient., The difference in fuel-efficiency between
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path-stretching and early descent/speed control can be seen from the data in
table 5 for ORD, LAX, and DCA. At these airports, the percentage of excess
fuel attributed to path-stretching is considerably higher than the correspond-
ing percentage of delay absorbed, while the reverse is true in the early
descent/speed control data., The incongruity in the MIA data is explained in
the next section,

EARLY DESCENT/SPEED CONTROL. As described in the "Method of Approach," delay
and excess fuel consumption attributable to early descent and speed control
were derived by an estimation method due to the lack of complete information
about the tracks. Regardless of this limitation, these data are relevant to
the objectives of the study because the findings show that (a) unintentional
delay and excess fuel consumption can result from early descent and (b) when
delay is required, early descent together with speed control are fuel-
efficient techniques for absorbing the required delay, as long as speed below
clean~flap configuration are not employed. Further, it will also be shown
that the use of speeds that require flaps is not a fuel-efficient method of
absorbing delay.

The effectiveness of the early descent/speed control method of absorbing delay
can be seen from the data in table 5. Except for MIA, the delay ratio is con-
siderably higher than the excess fuel ratio. Further, at ORD, LAX, and DCA,
the delay fuel burn rate due to early descent/speed control computes to 4,156,
4,010, and 3,096 1lb/hr, respectively. The fuel-efficiency of this method
becomes obvious when these rates are compared with the "holding" fuel burm
rates in table 6. In the MIA data, a reverse trend was exhibited. It was
found, however, that the average track velocity at MIA was 271 knots. This is
6 knots higher than the nominal terminal area speed used to compute speed
control delay. Therefore, no delay was attributed to controller speed control
instructions, leaving all delay attributed to early descent. It is not known
whether such delay was intended or not, but, if intended, it would have been
more fuel efficient to keep the aircraft longer at cruise altitude applying
speed control at altitude and during descent, as required.

The impact of altitude and speed control strategies at the four airports

is further exhibited by the level-flight data in table 7. 'In these data, the
differences in strategies between MIA and LAX are clearly evident. At LAX,

for example, the level-flight distance not used for path-stretching vectors was
less than 8 nmi, on the average; whereas, at MIA, it was more than 19 nmi.

Also the average IAS at LAX was estimated to be 208 knots, which is close to
minimum clear-flap configuration speed. At MIA, the computed IAS was 242 knots,
just under the FAA speed limit below 10,000 feet. The impact of the differences
in operational procedures is reflected in the level-flight fuel consumption.

At MIA, the average fuel consumption during level flight was computed to be

729 1b per track, while at LAX the average was 405 1lb, It is felt that this
difference of 324 1b per track is highly significant, particularly since the
average total delay (table 3) was about the same at the two airports. It
appears also that during the data collection periods of the FDDB, the LAX
operations were fairly close to profile descent procedures even though these
procedures were actually established by FAA at a later date.
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TABLE 7,. .LEVEL~FLIGHT DATA

LEVEL FLIGHT DATA

(PER-TRACK AVERAGES) . ‘952 Ezé LAX DCA
Level Flight Distance (nmi) . 27.5 22,7 11.4 . 21.7
Path-Stretch (nmi) . ' 10.7 3.6 3.5 5.2
Early Descent Distance (nmi) 16.8 19.1 7.9 ‘16.5
Ratio of Level Distance to Track Length 427 37% 227 35%
Weighted Level~-Flight Altitude (ft) 7,000 7,500 8,500 8,000
Track Velocity (knots) 214 271 236 244
Computed Indicated Airspeed* (knots) 193 242 208 216
Time in Level Flight (min) 7.7 5.0 2.9 5.3
Fuel Burn in Level Flight (1b) 999 , 729 405 375
Fuel Burn Rate (1b/nmi) ) 36.3 32.1 35.5 17.3

*  IAS was computed from track velocity (TAS) at the weighted level flight altitude with the
following equation:

68320 - 0.707 (alt. in ft)

IAS = TAS X £3320 + 0.293 (ait. in EL)
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At ORD and DCA, the level-flight distances not needed for path-stretching vec-
tors were about the same, on the average (16.8 and 16.5 nmi, respectively).
However, there is a marked difference in the average fuel consumption during
level flight (999 1b versus 375 1lb), which results from (a) differences

in aircraft-type distribution and (b) differences in speed control application.
The effect of aircraft-type distribution is shown on figures 19 and 20, In
figure 19, it can be seen that over all the FDDB samples the ratio of excess
fuel consumed by the B727 to total excess fuel consumption is about the same
as the percentage of B727's in the data base. At DCA, on the other hand,
B727's consumed about 63 percent of the excess fuel even though this type
constituted only about 38 percent of the aircraft in the sample data

(figure 20).

In connection with speed control it can be seen from table 7 that, on the
average, aircraft speeds at DCA (216 KIAS) were above clean-flap configuration.
At ORD, however, an average IAS of 193 knots indicates that speeds requiring
flaps were frequently issued by the controllers. The effect of flaps on fuel
flow rate is shown on figure 16, This effect can be more clearly demonstated
by comparing the fuel required to absorb 1 minute of delay through either

speed control, vectoring, or holding. If the example aircraft were Indicating
210 knots at 5,000 feet (276 KTAS), it would take 23 nmi for a reduction to

180 KIAS (194 KTAS) to absorb 1 minute of delay. Over this distance, 1,104 1b
would be consumed at 210 KIAS, and 1,564 1b at 180 KIAS with 15° flaps; there-
fore, the l-minute delay costs 460 1b of fuel by this speed reduction. Using
path-stretching vectors at 210 KIAS, it would take 3.8 nmi to absorb 1 minute
of delay, and the additional fuel consumption would be 182 1b., Thus, the excess
fuel for the path-stretching delay is about 40 percent that of speed control
when 15° flaps were required. The holding fuel flow rate for the example air-
craft at 20,000 feet is about 9,520 1b/hr (table 6), or 159 1b/min. This is
about 12 percent less than the path-stretching example, and 65 percent less
than speed reduction to 180 KIAS, However, now consider the case where speed
is reduced from 250 KIAS (269 KTAS) to 210 KIAS to absorb 1 minute of delay for
the example aircraft. For these speed differences, 23,5 nmi are required to
absorb 1 minute of delay. Fuel consumption over this distance is 1,128 1b at
210 KIAS and 1,010 1b at 250 KIAS; therefore, the speed control delay would
cost 118 1b of fuel. One minute of path-stretching delay at 250 KIAS would
cover a distance of 4.5 nmi and would require 193 1b of fuel. In this case,
the delay fuel cost using speed control is about 60 percent of that using path-
stretching vectors and about 75 percent of the "holding" fuel consumption

(159 1b). To summarize the above, estimated fuel consumption for the example
aircraft in figure 16 to absorb 1 minute delay with different ATC strategies
are:

1. 118 1b--Speed reduction (250 to 210 KIAS)*
2. 159 1b--Holding at 20,000 feet

3. 182 1p--Path-stretching vectors (210 KIAS)*
4, 193 1b--Path-stretching vectors (250 KIAS)*
5. 460 1b--Speed reduction (210 to 180 KIAS)#*#*

* No flaps
*% 15° flaps
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These data were based on level flight in the terminal area., It is evident

that reduced speed in the descent phase (both terminal and enroute) is more
efficient than any of the level-flight strategies, since the differences in
fuel flow during descent are small for all operationally acceptable speeds.

An example of this efficiency can be seen by comparing the data in

reference 5 (DC8, 220,000 1lb) for the long-range descent (0,.78M/250 KIAS) with
the high-speed descent (0.83 M/340 KIAS) data. From a final cruise altitude

of 35,000 feet, the long-range descent requires 134 nmi and burns 1,440 1b of
fuel. Starting from the same point and altitude the high-speed scenario would
require 30 nmi of level flight and 104 nmi for descent. Estimated fuel con-
sumption would be 690 1b for level flight and 1,080 1b for descent, yielding

a total of 1,770 1b. From the common point, the flying time for the long-range
descent is about 3 minutes more than for the high-speed descent profile. There-
fore, if ETA's were based on the high-speed descent, the long-range descent
profile could be used to effect 3 minutes of delay, while, at the same time,
saving 330 1b of fuel. Since these data are based on the 250 KIAS FAA speed
limit below 10,000 feet for both profiles, time, fuel, and distance, differences
accrue prior to reaching 10,000 feet. On the assumed profile, the 10,000-foot
point is 32 nmi from touchdown. The decision point for selecting the long-
range descent would therefore be 102 nmi from that point and about 72 nmi from
where the high-speed descent profile reaches 20,000 feet. Obviously, many
factors enter into that decision, including the accuracy in estimating flying
times and delay requirements. Since examination of these factors is not part
of this study, the only point that can be made here is the fuel efficiency of
the early descent (30 nmi, prior to high-speed profile) integrated with reduced
speed. In this example, fuel was saved whether the delay was needed or not.
However, early descent which causes level flight at lower altitudes 1s wasteful
of fuel if the corresponding delay is not ‘required.

PROCEDURAL ROUTING, As discussed in the "Method of Approach," a "minimum
approach route" was constructed to correspond with each '"nmominal route" in
order to assess the impact of local procedures on delay and excess fuel -
consumption., These minimum approach routes define the shortest path from the
track start point to the closest runway in use (without overflying the air-
port), taking into account aircraft performance and instrument approach
requirements., Procedural routing delay 1s defined as the difference in fly-
ing time over the nominal route as compared with the corresponding minimum
approach route, Excess fuel consumption attributed to local procedures was
derived by applying the weighted fuel flow rate in level flight to the
difference in these route lengths.,

As can be seen from table 3, the overall average delay attributed to local
procedures was less than 1 minute per track for all airports in the data

base. The average excess fuel consumption due to this delay component

(table 4) was also a modest amount, varying from 67 to 115 1b per track.

It is felt, however, that in this case average values are misleading insofar
as providing the kind of information needed for fuel conservation methodology.
It can be seen from figures 1 through 8 that many of the nominal routes
provide a fairly direct path from the terminal entry point to the close-in
approach pattern. In each configuration, however, there are a few cases
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where the minimum approach route is substantially shorter than the corresponding
nominal route. While it was not within the scope of this project to analyze

the reasons for these procedural routings, it is important to identify the
impact on excess fuel consumption.

Table 8 depicts excess route mileage and excess fuel consumption due to
procedural routing for those nominal routes where the average nominal route
mileage was 3 or more nmi longer than the average minimum approach route
distance. In these data, only nominal routes with 10 or more tracks are
included. At ORD, there were 26 nominal routes constructed to match the run-
way configurations and other conditions in the data base. Of these, only the
five shown in table 8 had an average procedural routing delay greater than

3 nmi. The 186 tracks assigned to these routes (29.3 percent of the ORD sample)
had an average delay of 7.3 nmi due to procedural routing, which resulted in
an average excess fuel consumption of 290 1b per track. Also, these tracks
accounted for 73.4 percent of the total excess fuel consumption in the ORD
data that was attributed to procedural routing delay. In actuality, route

1B (PAPI to 27R) and route 7A (VAINS to 14R) together accounted for about

54 percent of the ORD procedure routing total while accommodating about

19 percent of the sample traffic (121 tracks). By inspecting these route
geometries in figures 1 and 2, it appears that a considerable amount of air-
space is reserved for departure traffic or other ATC purposes. Whatever the
reasons may be, it would appear that a concerted effort to conserve fuel would
involve a close examination of the ORD procedures with a view toward more direct
routing of the heavy arrival traffic from the northeast when landing west and
also from the southwest when landing to the southeast.

At MIA, 3 of the 11 nominal routes accounted for about 75 percent of the
excess fuel consumption attributed to procedural routing. About 35 percent

of the MIA data base tracks were assigned to these three routes. When landing
west, route 1A traffic (through PINKS) was routed considerably east of the
most direct route (perhaps to avoid FLL airspace), resulting in procedural
delay of 7 nmi and excess fuel consumption of 258 1b, on the average.

When landing west, traffic from the northwest (route 6B through NEWER proceeded
to the MIA VORTAC before turning to intercept the downwind leg. This resulted
in 171 1b of excess fuel for the 6 extra nmi. Also in the west configuration,
traffic off of V-35 through SERPA normally vectored south of the airport to
land on runway 27L. These tracks averaged 5.9 nmi more than the minimum
approach route (north of the airport) and consumed 195 1b of additional fuel.
It is assumed that this procedure resulted from the manner in which traffic is
distributed between the "North" and "South" arrival controllers.

In the LAX data, 2 of the 12 nominal routes accounted for 89 percent of the
excess fuel consumption attributed to procedural routing. The 62 tracks
assigned to those routes (35.4 percent of the LAX tracks) were all from the
northwest sector, whether landing west (route 5A) or landing east (route 6B).
Rationale for these routings was not apparent from the data; however, noise
abatement procedures and terrain problems are well known factors in the LAX
area, '
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TABLE 8.

EXCESS MILEAGE AND FUEL CONSUMPTION DUE TO PROCEDURAL ROUTING

PERCENT
AVERAGE NO. OF NO. OF EFB-P EFB-P OF AVERAGE

AIRPORT- EFM=-P SAMPLE TRACKS PERCENT IN ON SAMPLE EFB-P
NOMINAL PER TRK TRACKS- ON OF "N" SAMPLE NOMINAL EFB-P PER TRK
ROUTE (nmi) "N ~ NOMINAL (%) “(1b) (1b) (%) (1b)
ORD- 635 7;,188

1B 7.8 64 10.1 18,798 25.7 293

638 10.4 18 2.8 5,335 7.3 296

74 7.9 57 . 9.0 20,332 27.8 356

8B 5.4 25 3.9 5,149 7.0 205

84 3.6 22 3.5 4,381 6.0 199
TOTAL - 186 29.3 53,995 73.4 -
AVERAGE 7.3 290
MIA- 217 21,734

1A 7.0 31 14,3 8,005 36.8 258

5B 5.9 19 8.8 3,715 17.1 195

6B 6.0 27 12.4 4,622 21.3 171
TOTAL - 77 35,5 16,342 75.2 -
AVERAGE 6.4 212
LAX- ' 175 11,725

6B 5.0 41 23,4 7,287 62.1 177

5A 3.6 21 12,0 3,147 26.8 149
TOTAL - 62 35.4 10,434 89.0 -
AVERAGE 4,5 168
DCA- 212 15,712

1A 3.6 32 15,1 1,930 12.3 60

1B 3.3 32 15.1 2,315 14.7 72

3B 3.6 . 21 9.9 833 5.1 39

4B 11.7 13 6.1 2,936 18.7 225

54 5.0 36 17.0 4,349 27.7 120
TOTAL - . 134 63.2 12,363 78.7 -
AVERAGE 4,7 92
Légend: EFM=-P - Excess miles due to procedural routing

EFB-P - Excess fuel burm due to procedural routing
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The five nominal routes listed in table 8 for DCA accommodated 63.2 percent of
the DCA traffic in the data base and accounted for about 79 percent of the
excess fuel consumption due to procedural routing. Of particular note are
routes 4B and 5A (Ironsides to runway 18 and Gilby to runway 36, respectively),
where 23 percent of the DCA traffic accounted for over 45 percent of the excess
fuel consumption attributed to local procedures. In both cases it appears that
traffic is vectored off the most direct route to avoid the airspace used for
departure traffic exiting through the Casanova VORTAC. Again, aircraft-type
distribution of the DCA traffic renders a less severe impact on fuel consump-
tion due to local procedures than at the other three airports. The fuel flow
rate of these aircraft averaged just under 20 1lb/nmi as opposed to 33 to

40 1b/nmi at MIA, LAX, and ORD.,

FACTORS CONTRIBUTING TO DELAY AND EXCESS FUEL CONSUMPTION.

GENERAL. From the previous discussion, it is evident that no single formula
fits the four airports in the data base relative to delay and excess fuel
consumption. This can be seen more clearly by reference to figure 21, where
excess fuel attributed to the four delay components is presented for each air-
port as a percentage of the total excess fuel consumption derived for all
tracks in the data base., It is fairly obvious that the ORD data in figure 21
are Indicative of the persistently heavy traffic demand at that airport. For
example, in the total FDDB, the ORD samples accounted for 51 percent of the
tracks, while the other three airports together produced the other 49 percent.
Also, the excess fuel consumption derived for the ORD portion of the tracks
amounted to 73 percent of the total for the entire data base. It can be
inferred, from the excess fuel attributed to each component of delay (excluding
procedural routing), that demand exceeded capacity throughout most of the
sample from ORD, while such was not the case at MIA, LAX, and DCA. The one
apparent incongruity to this inference is the ratio of the early descent/speed
control data depicted for MIA. However, as explained earlier, the MIA tracks
were generally descended early, but very little speed control was exercised.
Although it cannot be proven with certainty from the data, it appears that the
practice of descending aircraft early at MIA resulted in unintentional delay
and unperceived excess fuel consumption. Note, however, that these data were
collected before profile descent procedures were implemented. Such procedures
should minimize results of this type.

In the LAX data, the converse of MIA seems evident. Generally, the LAX tracks
conformed to a fuel-efficient profile when delay was not required. In this
regard, however, the author has some reservation with respect to how nearly
the sample data reflect true demand at either LAX or MIA, Although not
apparent from figure 21, the excess fuel consumption data at DCA were strongly
influenced by aircraft-type distribution and the requirement for landing slot
reservations., In addition, the FDDB data collected from DCA were recorded
during good VFR weather conditions, and frequently arrivals were assigned to

a secondary runway. During IFR conditions, a single arrival runway is used at
DCA. It is expected that such conditions would produce substantially different
results for DCA than those derived from the FDDB,
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In order to identify the effects of weather, runway configuration, and other
factors on excess fuel consumption, it is necessary to apply different sampling
criteria than those used for the ATC/ACAS study. However, in an attempt to
extract as much information as possible from the available FDDB collected for
that study, it was decided to organize the ORD data into the various

groupings as shown in figures 22 through 25 for comparison purposes. These
data are discussed in the subsequent sections.

EFFECT OF WEATHER. In the ORD sample, 3 data hours were collected during IFR
weather when the parallel 14L/14R runway configuration was in use, and 3 hours
were collected during VFR conditions with the same runway configuration.
Figure 22 depicts average delay time and excess fuel consumption per track for
these two conditions. In these data, delay during IFR exceeded delay during
VFR by 19 percent (12.3 versus 10.3 min), and excess fuel consumption in the
IFR data was 26 percent greater than in the VFR data (1,415 versus 1,118 1b
per track). Although, these results may appear to be as expected, there was
considerable variation among the sample hours as shown in figure 23. Note,
for example, the holding data from example I], as compared to samples I, and
I3, and in sample V] as compared to V2 and V3. Also note that the average
vector delay in sample V3 (14.7 nml) was almost twice that in sample Vo

(7.9 nmi)., These differences do not seem to correlate with the landing rates
shown at the top of figure 23, nor can they be explained from other aspects

of the ORD data base. Evidently, such differences are a result of other
factors, such as short-term demand, controller strategy, differing center/tower
procedures, etc., which require more information to isolate than was available
in the FDDB,

EFFECT OF RUNWAY CONFIGURATION., From discussions with ORD personnel, it was
found that the 32L/27R, or "dual," configuration was considered to be the most
efficient runway configuration for arrival aircraft (departures use 32R/27L).
This seems to be confirmed by the sample data on figure 22, where delay with
the dual configuration (7.7 min) was about 25 percent less than the average
delay with the parallel, 14L/14R configuration (10.3 min) where both operations
were during VFR weather. However, as shown on figure 23, inconsistencies
between the dual-sample data also exist, Note the average delay mileage in
the D2 sample (22,7 nmi) as compared with 6.6 and 8.8 nmi in D1 and D3,
respectively. Also, the average delay in the V) sample (8.5 nmi) is about the
same as the better dual samples., Again, the reasons for such variation between
samples were.not detectable from available data.

EFFECT OF APPROACH PATTERN GEOMETRY. (Note: Programing support for the proj-
ect was canceled before it was decided to analyze delay and excess fuel con-
sumption due to early descent and speed control. Consequently, these data

could not be extracted for all data groupings, such as those shown in
figures 24 and 25).

Nominal route geometry was classified as being either a straight-in, a base

leg, or a trombone (downwing/base leg) pattern. These geometries provide
differing degrees of controllability and therefore require different control
strategies to produce the required spacing in the arrival sequence. Accordingly,
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it is of interest to determine the results of such strategies on delay and
excess fuel consumption.

As shown in figure 24, aircraft that flew a trombone pattern (most control-
lability) had the most delay (25.5 nmi), while the straight-ins (least con-
trollability) had the least delay (12.6 nmi). Average delay for tracks on a
base leg pattern (23.0 nmi) also seems to correlate with controllability; i.e.,
slightly less than trombone and substantially more than straight-in. This
relationship between delay and controllability is a more or less natural
characteristic of a radar (ATC) environment, where, generally, "the end
justifies the means." It is unfortunate, however, that speed control data
were not available for these comparisons, since ailrcraft on a straight-in are
more likely to be given lower speeds than aircraft on the other patterns. As
shown earlier, speeds requiring flaps have a pronounced effect on fuel con-
sumption relative to the amount of delay absorbed. Also, the matter of
"holding" by ARTCC should be considered. Feeder (holding) fixes on a straight-
in pattern are normally closer to the final approach gate than the feeder fixes
on base leg and trombone patterns. This may very well influence the decision
by the center to put aircraft in a holding pattern, and, when held, the shorter
distance could affect the handoff time from ARTCC relative to other arrivals,
Whether or not this is true could not be ascertained from the FDDB, since

ARTCC holding data were not available.

EFFECT OF ENTRY SECTOR. The data on figure 25 were organized in order to see
if a relationship exists between excess fuel consumption and terminal entry
sector., From the 12 sample hours at ORD, there does appear to be a définite
relationship between these factors. Note that the average excess fuel
consumption for the 193 tracks through the southeast (SE) sector was about
half that for the 135 tracks through the southwest (SW) sector. Part of this
difference can be attributed to the percentage of straight—ins from the SE
(43 percent) versus a nearly equal ratio (51 percent ) of base 1eg patterns
from the SW.

More noticeable, however, in the differences in holding data (321 versus

48 1b) and in procedural routing (215 versus 40 1b). Actually, "holding"

and procedural routing combine to account for most of the differences between
all entry sectors. From visual inspection of arrival and departure tracks

in the ORD data, it appears that the small amount of procedural delay in the
SE sector, as compared to other sectors, is a direct result of the way the
airspace is segregated between arrivals and departures. However, there is

no explanation from the data regarding the reduced amount of holding in the
SE sector. Possibly because the traffic flow is somewhat heavier, there may

be a different arrangement between approach control and the terminal sector
in the ARTCC,

OTHER FACTORS AND CONSIDERATIONS. Undoubtedly there are numerous other
B.that should be considered relative to excess fuel consumption.
Jd¥Nore, most factors are closely interrelated. However, to identify
all factors, and their interrelationship would require a data collection and
analysis effort far beyond the scope of this project. It is felt, however,
that the discussion in thils section,. together with the discussion in the
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previous section, should impart pertinent information relative to the consump-
tion of excess fuel in terminal areas. These data were reduced from real-world
tracks with the only motivation being to extract and disseminate maximum know-
ledge relative to this most important problem.

DESCRIPTION OF METHODOLOGY

GENERAL.,

It was pointed out in the "Method of Approach" section that data recorded by
ARTS require a considerable amount of processing and editing before being
effectively applied to operational analyses. It was found that in order to
derive credible delay data from ARTS tracks it is necessary to provide for
manual intervention at various points in the process. Figure 26 depicts a
simplified block diagram of the methodology developed to derive delay and
excess fuel consumption in the terminal area. Subsequent sections briefly
describe each functional block.

Before proceeding with a description of the process, i1t should be pointed out
that the cornerstone of the approach taken was the use of nominal routes
against which track data were compared, While other methods for deriving
delay, such as a relative frequency distribution of flying times, could have
been applied, it was felt that a direct, one-to-one comparison of track versus
nominal route ylelded the most accurate and complete information regarding
path-stretching delay, controller strategy, procedures, and other factors,

It can be seen from figure 26 that a considerable amount of work preceded the
development of nominal routes. On the surface, this may appear overdone. As
it turns out, however, very small deviations can cause substantial differences
in the final results, particularly when dealing with high-density terminal
area traffic,

TRACK DATA BASE PREPARATION.

For the most part, the data-recording capability was established at selected
ARTS facilities to monitor system performance and assist in maintenance and
modification needs. The data tapes are retained for a 15-day period for
legal purposes and following that period may normally be obtained from the
facility, provided appropriate coordination and administrative procedures
are followed. However, since the recording of ARTS data are not directed
towards analysis of the ATC system, considerable effort is required in the
selection and preparation of data elements needed to meet specific analytical
objectives, Figure 27 depicts an overview of the data preparation steps
followed during the ATC/ACAS Interaction Study which resulted in the FDDB
used in this delay and fuel consumption analysis, A detailed discription

of the software and other data preparation activities may be found in
reference 3 and associated program documentation. Although this data prepara-— .
tion process was designed specifically for the ATC/ACAS work, it is probably
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representative of the effort required to prepare field data for most analytical
applications., Accordingly, a brief description of the principal program
functions follows.

CONV 79 (Block 1.1). This is a straightforward conversion of data on seven-
track ARTS tapes to nine-track tapes compatible with the National Aviation
Facility Experimental Center (NAFEC) computers.

TLP (Block 1.2). This "Track Listing Program” performs the following functions:
a, Selects tracks for a specif:f.ed sample hour from the source data.

b. Converts the ARTS position coordinates to a coordinate system common
to all locations in the FDDB.

c. Provides a listing of tracks in the sample. hour together with data
describing the quality of each track. '

d. Produces an output tape containing selected elements of information
needed for succeding steps.

DATSYN (Block 1.3). This program has two primary functions:

a. Adds altitude information to tracks which do not have mode C
transponder data. On the ATC/ACAS project, altitude data were taken from
pilot/controller voice tapes and encoded for input to computer program DATSYN.

b. Performs editing of track data to eliminate anomalies and spurious
data which can normally be expected in field-derived data. Some of the
abnormalities can be screened by program logic, while others require manual
inspection and evaluation of the track data. For example, in the ATC/ACAS
project an altitude change rate criterion was used wherein the program could
detect most of the spurious altitude data. On the other hand, gaps in the
track positional data required manual evaluation and input editing commands
for the program to make the necessary track modifications.

DATA TRANSLATION PROGRAM (DTP) (BLOCK l.4). The primary functions of this
program are:

a. Performs parabolic (nine-point) smoothing of track position and
altitude which renders the data more suitable for fine-grain analysis than
results from the ARTS alpha-beta smoothing algorithm.

b. Performs between-point interpolation to produce track data points at
l-second intervals. This was necessary for the ATC/ACAS project, since ACAS
logic was predicated on a 3-second cycle time; whereas, ARTS data are acquired
at approximately 4-second intervals (antenna rotation rate of 15 revolutions
per minute (rpm)).

c. Produces an output tape of smoothed, l-second "snapshot" data of all

tracks in the system. It was the set of DTIP output tapes that provided the
data source for this study,
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TRACK SIMPLIFICATION AND PLOTTING.

At the outset, it was apparent that plots of the arrival tracks would be
required in the development of nominal routes and, later on, in associating
individual tracks with the appropriate nominal routes for path-stretching
computation. In the interest of efficiency in plotting and other processing, -
it was desirable to (a) reformat DTP data from interleaved scan form to
chronological track history form and (b) reduce the number of data points that
defined each track., The programs shown on figure 28 were developed to reformat,
simplify, and provide visual presentation of the FDDB tracks.

HALFTRACK (Block 2.1). Due to the age of the DTP tapes, numerous read errors
occurred. Also, for some locations, a sample hour required two DTP tapes.
The HALFTRACK Program was written to copy the DTP data onto one tape by
eliminating odd-second data points. Also most read errors were eliminated.

TRACKS (Block 2.2). This program converts interleaved scan data into a
chronological track history format. The choice of formats depends upon project
requirements. The ATC/ACAS project was interested in the instantaneous rela-
tionship of one aircraft to another; whereas, this project needed entire track
histories for delay and fuel computations.

SIMTRACK (Block 2.3). This program performs the following range of functions
to facilitate manual and computer-based analysis of track data:

a. Eliminates overflight tracks from the data base.

b. Eliminates arrival and departure tracks with track durations less
than specified values.

C. Detects and flags data gaps and computes an estimate of distance
flown during the gap in the track data.

d. Reduces the number of data points in the track history by redefining
straight-line segments with intervals of 30 seconds (parameter) between data
points. A linear regression technique was used to determine straight-line
track segments. When the error sum of squares value exceeded a specified
value, the track was assumed to be turning. When thils occurs intervals of
4-second spacing are retained in the track history.

e, SIMTRACK also computes an estimate of the aircraft's final track
heading and velocity. Normally, these data have little meaning for departures;
however, for arrivals the data can be used to determine landing runway, an
estimate of landing time, and other uses depending upon project requirements.

AREAPLOT (Block 2.4). The plotting program developed for the project was
designed to satisfy a wide range of requirements. This includes plotting
combinations of routes, fixes, runways, track histories, and other data. In
view of the magnitude of the data base and the fact that all tracks had to be
plotted one or more times, the program was designed so that a complete tape of
track histories could be plotted in a single operation of the program. This
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is accomplished by fitting six, 20 x 20 inch x, y grids into the basic CALCOMP
grid and plotting up to eight (option) tracks on each grid. When data for the
six grids have been plotted, the program stops, allowing the operator to posi-
tion new paper on the plotter bed and then restart the program. This continues
until all tracks on the tape have been plotted. Some of the more important
options of the AREAPLOT program are:

a. Information to be plotted, i.e., arrival tracks, departure tracks,
nominal routes, reference fixes, boundary circle, etc. Also, tracks to be
plotted may be selected by alrcraft identification or, if not selected, all
tracks on the tape will be plotted, with an option of up to eight tracks on
each x, y grid.

b. Plotting scale - 6 nautical miles (nmi) per inch was used in this
project. ' '

C. Color coding - i.e., routes and background data of one color and
three tracks each of a different color enhanced the readability for this
project.

d. Fix identification may or may not be plotted, as desired. If plotted,
the height of the fix identification (ID) lettering can be controlled separately
from other lettering.

e, Real time assoclated with track position may be plotted with control
over height of the plotted numbers.,

f. The center and radius of a boundary circle can be controlled. For
this terminal area work, a circle with 55-nmi radius centered at the primary
alrport was used.

Ze Compass roses, strategically located at various points on the grid,
may be plotted to the desired size. This facilitates the measurement of bear-
ing data. .

From the list of user options, it is obvious the AREAPLOT program provided a
key interface between the analyst and the computer. As will be seen, this
program box will appear as an integral part of most of the steps in the
methodology developed for the project. Its description at this point is for
continuity purposes only. '

ATRWAY DATA BASE PREPARATION.,

As shown on figure 26, the preparation of airway data and terminal area
geometry can be performed in parallel with the preparation of track data,
leading up to the development of nominal routes. In a general sense, the
purpose of the system of programs depicted on figure 29 is (a) to establish
readily usable disk files of real world data which are available from
different sources, and (b) to provide a convenient method to extract data
needed for specific project requirements.
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Through use of this system, three interrelated files are created on the Sigma 8
disk pack for ready access. The programg which process the FAA Airport Master
tapes (blocks 3.1, 3.2, and 3.3) produce an alphabetized file of alrports with
three-letter identification where all extraneous (i.e., administrative) data
have been removed. Also, three programs (blocks 3.4, 3.5, and 3.6) are used
to provide a similar file of navigation aid (NAVAID) data from the FAA NAVAID
Master tape. The EXPER program (block 3.7) creates a file of ailrway, route,
and associated fix data from the Controllers Chart Supplement Subscriber tape
established and maintained by National Ocean Survey, National Oceanographic
Atmospheric Administration (NOAA), The AIREDIT program (block 3. 12) provides
the capability to enter manual corrections to the airway/route file, based on
the diagnostics provided by the EXPER program. Manual corrections to the
airway/route data base are made on the tape input to AIREDIT through use of
the TRANSFORM 3 program (block 3.10) together with the AIRWAY 3 program

(block 3.9). AIRPULL (block 3.8) is an extractor program which selects,

from the disk files, airway and route data contained within a specified
lat/long box of up to eight sides (convex polygon). The OMNIPLOT program
(block 3.11) plots, under a wide range of options, the airway/route data
selected by AIRPULL,

Several of the programs shown on figure 29 (asterisked) were developed during
a previous area navigation high-altitude network study. Detalled description—
ing these programs are contained in reference 4. In particular, programs
TRANSFORM 3 and AIRWAY 3 are network design oriented where route or airway
design is primarily a manual function. Through the use of simple command
codes, design decisions can be transformed into an airway/route structure data
base which is amenable to further computer processing required for effective
network design, Further, these programs together with AREAPLOT provided the
essential software used in this project for nominal route development.

TERMINAL ARFA GEOMETRY EXTRACTION,

Once the airway/route data have been stored on disk files, the software shown
on figure 30 can then be used to select and plot data for the particular
terminal area of interest. In this project, the selected data provided the
starting point for nominal route development, discussed in the next section.
The CALCOMP plots served as initial worksheets where the plotted data could be
cross-referenced with preferred route descriptions, prestored flight plan data,
operating manuals, letters of agreement, etc. The programs shown on figure 30
were briefly discussed in previous sections of this report.

NOMINAL ROUTE DEVELOPMENT.

As discussed in the "Method of Approach" section, nominal routes were developed

in order to derive estimates of path~stretching delay. A schematic of the

steps taken in the development process is presented in figure 31. The programs

shown on figure 31 have been discussed in earlier sections and the ground rules

and procedures used in constructing nominal routes were presented in the "Method
of Approach."
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From previous RNAV work, it was recognized that development of route structures
is a highly judgmental process which can only be automated to a limited degree.
Therefore, as can be seen from figure 31, nominal route development was centered
around a manual design effort, assisted, to the extent practicable, by computer
techniques, The development effort proceeded in an iterative fashion so that
configurations could be checked against representative track data and modified
as necessary. This process has broad applications for studies dealing with
terminal area traffic control.

ASSOCTATION OF TRACKS WITH NOMINAL ROUTES.

Following the development of nominal routes, the next step in the process was
to associate each track with the appropriate nominal route for subsequent path-
stretching delay computation. This step is depicted in figure 32. Although
program logic could have béen developed which would make the correct associa-
tion most of the time, considerable manual review would still be required due
to the many vagaries in the track data., Therefore, it was decided to leave
track association as a manual function. In addition to associating tracks with
nominal routes, other additions and/or changes to the track history data base
were required. Manually derived data were encoded for input to the TRAMP
program which interpreted the command functions and made the appropriate addi-
tions and changes to the data base. The following input commands were used in
this project. '

ASSIGN TRACK (AT). With this command, the program stored the assigned nominal
route in the track file and automatically put in runway coordinates as the last
track position (for arrivals).

DELETE TRACK (DT). If the track was considered inadequate for mileage compu~
tation, the DT command was used. Track data were not deleted from the file
with the DT command; however, a flag was set indicating that the track was not
to be included in mileage computation., Holding data, on the other hand, could
be retained and processed for deleted tracks (see "HOLD," below).

CHANGE STATUS (CS). For various reasons the "arrival, departure, overflight"
status code was sometimes in error in the ARTS data. When the error was
detectad from the plotted track, the CS command was used to correct the data
base.

HOLD. This command was used to input "start" and "end" holding times as
observed on the track plot, The program computed estimated distance flown
during these times and stored holding times, distance flown, and holding
altitudes in the data base, Track histories were also modified so that holding
distances were not included in track mileage, since holding data were treated
as a separate delay component., Holding data were retained for deleted tracks
as well as for tracks associated with a nominal route, In this way, hourly
holding data could be tabulated for the terminal area.

MODIFY TRACK (MT). Due to the fact that the FDDB samples were 1l=hour slices

in time from the ARTS recorded data, track data at the beginning and at the
end of each sample were frequently of insufficient duration for delay analysis.
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In lieu of deleting all incomplete tracks, however, it was found that many
tracks could be salvaged through additions and/or slight modifications to the
track history. In this process, the overriding consideration was not to impose
bias in track distance., If this could not be done, then the track would be
deleted from the mileage computation. In addition to incomplete tracks, there
were other reasons why track history data required modification. As mentioned
earlier, holding data needed to be extracted. Also, on occasion, the plots
would show that the aircraft landed on a different runway than the one in the
corresponding nominal route. To avoid bias .in the distance computation, it
was necessary to replace the runway of the nominal route with the actual run-
way. Bilas could also be introduced if the beginning portion of the track was
too far from the nominal, This section of the track could easily be truncated
by use of the MT command.

Several input commands for TRAMP were programed to aid in the modification
process. These commands, used in conjunction with the MT command, were as
follows: '

a. New Fix (NF). This command established an identifiable position
which can subsequently be used to insert, through MT, additional points in
the track history in order to make an incomplete track usable for mileage
computation, This method of track modification was only used if it could be
judged from the available track data that the actual track would have had to
pass in close proximity to the added points, A good example of this applica-
tion was where the last few data points of the track history indicated that
the aircraft had made the turn onto base leg just before the end of the sam-
ple hour, In all probability, a normal approach with no further path-
stretching was made from that point on. By adding one or more track "fixes,"
track mileage could be computed without bias,

b. Take Nominal From (Fix) to (Fix). Another way of inserting*ggaféf“
tional data in track history was to use portions of the assigned nominal route
as track position data. Again, precautions were taken with the use of this
command, so as not to introduce bias in the track length computation.

C. Take To, From, or From/To (Times). With these three separaté com—
mands, track histories could be modified through use of the real time data
associated with track position. Generally these commands were used for
extracting holding data or to remove positional data at the beginning of a
track which would cause blas in mileage comparisons.

The inputs to the TRAMP program were encoded in free format which generally
resembled a high-order computer language. Diagnostics were provided to
detect input errors, and plots of the associated track histories were made
for manual review. Corrections were encoded and processed in the same manner
as the original data,
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ROUTE MILEAGE AND DELAY COMPUTATION.

At the completion of the track association function, a data base of usable
tracks was avallable for route mileage and delay computation (block 7.0,
figure 26). As shown on figure 33, this function consists of two computer
programs (NOMLEN and TRKDAT), plus some manual work which was added during
the analysis phase of the project. The rationale for manually derived early
descent and speed control data (block 7.3) was discussed in the '"Method of
Approach" section.

The NOMLEN program (block 7.l1) computed route lengths for nominal and minimum
approach routes which served as an input to the TRKDAT program. In this com-
putation, adjustments were made at each turn in the route to account for air-
craft turn radius.

The TRKDAT program performed a range of functions necessary to derive delay
due to path-stretching, holding, local procedures, early descent, and speed
control. The principal functions of TRKDAT are embodied in the discussion of
these dela® components in the "Method of Approach" section.

EXCESS FUEL COMPUTATION AND DATA SUMMARY,

The final step .in the process to derive estimates of excess fuel consumption
in the terminal area from ARTS tracks is shown on figure 34. This process
consists of the FUELBURN program, which computed excess fuel consumption due
to excess mileage and holding, and the SUMMARY 3 program, which provided a
wide range of higher order summaries of these data. In addition, a manual
effort was added during the analysis phase of the project to derive an esti-
mate of excess fuel consumption due to early descent. Details of excess fuel
computation are presented in the "Method of Approach" section.

As shown on figure 34, the SUMMARY 3 program provides the capability to produce
higher level summaries in accordance with a range of input options. These
higher level summaries for the ORD data in the FDDB are included as an
appendix to this report.

36



CONCLUSIONS AND RECOMMENDATIONS

Based on the results of this study, it is concluded that:

1. Analysis of ARTS track data is an effective method to derive credible
estimates of terminal area delay and excess fuel consumption., However, delay
to arrivals may start to accrue while aircraft are still under center control.
Therefore, for more complete analysis of terminal area delay, data should also
be collected from appropriate sectors of the ARTCC.

2, To avoid misleading results, the process used to derive delay estimates
from track data should provide for manual intervention at appropriate points.
This follows from the fact that the recorded data are characterized by
anomalies, spurious data, and other vagaries,

3. The need for fuel-efficient, delay-absorbing techniques is clearly evident
from the delay and excess fuel consumption data derived in this project for

the Chicago O'Hare (ORD) airport. From these data, it was estimated that
annual delay costs to ORD arrivals is in the range of 33 to 40 million dollars.
Although ORD represents a 'worst case'" situation at the present time, delay at
other major hubs is rapidly increasing due to the accelerating traffic growth,

4, Rigid procedures that absorb all terminal area delay in high-altitude
holding stacks do not provide the most fuel-efficient way to absorb delay.
Fuel-efficient scenarious to absorb delay should include appropriate com-
binations of the following strategies, which are listed in descending order
of fuel efficiency:

a, Reduced speed while descending from enroute altitude to metering fix
altitude,

b. Reduced speed at enroute cruising altitude,

c. Descent to an appropriate lower cruising altitude to effect further
speed reduction, :

d. Reduced speed between the metering fix and the approach gate, but not
to speeds requiring flaps,

e, High-altitude holding,
f. Path-stretching vectors, and
g. Lower speeds near the approach gate for fine-grain control.
From the conclusions, it is recommended that:
1. The methodology developed for this project be expanded and/or modified;

as necessary, to provide a general purpose capability for the analysis of
terminal area operations from the data being recorded by ARTS.

37



2, Procedures and techniques be developed which incorporate the delay-absorbing
strategies listed in conclusion number 4.

3. A data collection program be established to measure the efficiencies of
the delay-absorbing strategies after implementation.
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FIGURE 1.

4A

NOMINAL ROUTE (NR) 78-40-7
————— MINIMUM APPROACH ROUTE {MAR)

NOMINAL ROUTES--ORD CONFIGURATION A
(PARALLEL OPERATIONS—=RUNWAYS 14L/14R)

40



FIGURE 2.

NOMINAL ROUTE (NR)
MINIMUN APPROACH ROUTE (MAR)

NOMINAL ROUTES--ORD CONFIGURATION B
(DUAL OPERATIONS-~RUNWAYS 32L/27R)
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NOMINAL ROUTE (NR)
------ MINIMUM APPROACH ROUTE (MAR)

78-40-9

FIGURE 3. NOMINAL ROUTES--MIA CONFIGURATION A
(EAST OPERATIONS--RUNWAYS 9L/9R)
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FIGURE &,

NOMINAL ROUTE (NR)
MINIMUM APPROACH ROUTE (MAR)

NOMINAL ROUTES—--MIA CONFIGURATION B
(WEST OPERATIONS--RUNWAYS 27L/27R)
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FIGURE 5.

———— NOMINAL ROUTE (NR)
————— MINIMUM APPROACH ROUTE (MAR)

NOMINAL ROUTES--LAX CONFIGURATION A
(EAST OPERATIONS~-RUNWAYS 6/7)
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78-40-12

——— NOMINAL ROUTE (NR)
—— - —- MINIMUM APPROACH ROUTE {(MAR)

FIGURE 6. NOMINAL ROUTES~-LAX CONFIGURATION B
(WEST OPERATIONS--RUNWAYS 24/25)
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78-40-13

NOMINAL ROUTE (NR)
————— MINIMUM APPROACH ROUTE (MAR)

FIGURE 7. NOMINAL ROUTES—--DCA CONFIGURATION A
(NORTH OPERATIONS~--RUNWAY 36)
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FIGURE 8.

NR)
NOMINAL ROUTE (
o — - MINIMUM APPROACH R

OUTE (MAR}

NOMINAL ROUTES=--DCA CONFIGURATION B
(SOUTH OPERATIONS--RUNWAY 18)
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.é NOMINAL ROUTE DISTANCE
COMPUTATION STARTS HERE

_ 8y
/
/
2
=

ARC THROUGH
FIRST TRACK POINT

ARTS ACQUISITION

MINIMUM APPROACH

ROUTE DISTANCE
COMPUTATION ALONG

THIS LINE TO ILS INTERCEPT

ARC CENTER 78-40-17

FIGURE 9. METHOD TO DERIVE COMPARABLE NOMINAL AND MINIMUM APPROACH ROUTE DISTANCES
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FIGURE 13. _LEVEL-FLiGHT DATA SUMMARY
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4 30 SECONDS

I I TRACK GRADIENT IS COMPUTED THROUGH
I | : _ : 1 22/ USE OF A 2nd DEGREE REGRESSION MODEL

TRACK PROFILE

1. FUEL BURN IS COMPUTED AT 30-SECOND INTERVALS ON LEVEL SEGMENTS OF THE TRACK PROFILE AS A
FUNCTION OF (a) AIRCRAFT TYPE, (b) ALTITUDE, (c) SPEED. GRADIENTS OF LESS THAN (00 FT. PER
NAUTICAL MILE ARE CONSIDERED LEVEL.

2. FUEL BURN AND LEVEL DISTA“CE ARE SUMMED FOR ALL LEVEL SEGMENTS.
3. A WEIGHTED FUEL FLOW RATE IS DERIVED BY DIVIDING TOTAL FUEL BURN BY TOTAL LEVEL DISTANCES.

4. THE WEIGHTED FUEL FLOW RATE (Ib/nmi) IS APPLIED TO EXCESS MILEAGE TO DERIVE EXCESS FUEL CONSUMPTION.
” 78-40-23

FIGURE 14. METHOD FOR DERIVING A WEIGHTED FUEL FLOW RATE



FUEL FLOW RATE (1b/nmi)

Ap Ay )
2 0 -1
SL 1.511x10 -7.209x107 | 1.270x10
sk | 1.160x10% | -4.822x10°( 8.002x10"2
10k | 9.836x10 | -3.722x10°| 5.813x10"2
15k | 8. 604x10 | -3.002x10°| 4.368x10"2
60
2
FUEL FLOW = Ag + AjX + A,X
SL WHERE X = TAS
10
55}
MINIUM NO FLAP SPEED BELOW 10,000 FT,
\
sol- LINEAR INTERPOLATION
[ ]
5,000 ‘/////’BETWEEN ALTITUDES
45|
10, 000"
40 \
[ \
15, 000"
351
30L L L L L |
150 200 250 300 350 400 450
TRUE AIRSPEED (KTS) 184024
FIGURE 15. EXAMPLE OF FUEL FLOW RATE COMPUTATION

(DC8--220,000 1b~-NO FLAPS)
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FUEL FLOW RATE (1b/nmi)

90
25° FLAPS AT 160 KIAS
80 |- ,
FF = 503.3 - 37.83X + 0.79X
‘//”//// X = TAS
10
70 o
15° FLAPS AT 180 KIAS
60 [~
10° FLAPS AT 200 KIAS
¢ FF = 116 - 4.82X + 0.08%X%
' X = TAS
50 |- 10
NO FLAPS
40 | | [ | | |
160 220 240 260 280

180 200

TRUE AIRSPEED (KTS)

FIGURE 16. EFFECT OF FLAPS ON FUEL FLOW RATE
(DC8--220,000 1b-~5,000 ft)
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78-40-25




OPERATIONS MANUAL

FUEL FLOW BASED ON ISA I TOTAL FUEL FLOW - LB/HR
ADJUST FUEL FLOW ¢ 1%
PER + 5°C,ISA DEVIATION | (i)
PRESS GROSS WEIGHT - 1000 LB
ALT-FT
15A-°c| 115| 110 105| 100{ 95 |90 | 85 |80 |75 | 70 | 65
35901 |5480|5120| 4790 [4a80{a250| 40303830 (3640 3470] 3310
30000

-44 5340|5070)4810| 4620 143904190 39903820 |3660 [ 3500{ 3360

2§ggo 5270(50704850) 4620 |4410| 4230( 4050 13890 |3730 | 3580( 3450
- 20000
-25

15000] 5440| 5230| 5020| 4810 [4640| 4480| 4320 |4170 4030 | 3900 3770

10000
-5

(:)< 50905780/ 5600 5400 5200 {5030 | 4870| 4720|4590 {4460 | 4330] 4200
1500
12

S.L.

15
~ 3273113
HOLDING SPEED: 210 KIAS OR MINIMUM DRAG AIRSPEED - CLEAN. FUEL
FLOW IS BASED ON HOLDING IN A RACE TRACK PATTERN.
REDUCE FUEL FLOW BY 5% IF HOLDING STRAIGHT AND
LEVEL.

NOTE: IF HOLDING BELOW 200 KIAS IS REQUIRED, FLAPS POSITION 1
’ AND 190 KIAS MAY BE MAINTAINED WITH A RESULTING FUEL FLOW
INCREASE OF 10%.

5290(5070(4850) 4670 |4500|4330( 4170 (4020 | 3880 | 3740) 3620

5590|5420(5220( 5000 (4820|4660( 4510|4360 (4220|4090 3990

5940)5760|5550( 5340 [5170|5040| 4890 14740 |4610 (4490) 4360

6030{5830 5620 5430 |5270(5110) 4960 |4820 2690 4560 4420

1. SELECT ASSUMED WEIGHT = i.e., 90,000 Ib.
| 2. SELECT ALTITUDE BAND - i.e., 0 = 15,000 ft.
3. USE REGRESSION ANALYSIS TO FIND FUEL FLOW (FF) EQUATION-
i.e., FF (Ib/br) = 5112 = 5.125 2 + .006 2

WHERE Z = ALT
100 78-40-26

FIGURE 17, METHOD FOR DERIVING HOLDING FUEL FLOW RATE
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AVERAGE EXCFSS FUEL BURN PER TRACK (1b)

1,700

1,000

800

-600

400

200

FIGURE 18, EXCESS FUEL CONSUMPTION AND ARRI

IN THE SAMPLE DATA

VAL RATES FOR MAJOR AIRPORTS

EXCESS FUEL BURN - HOLDING
S
B N N\ EXCESS FUEL BURN - PROCEDURES .75
ﬁi EXCESS FUEL BURN - EARLY DESCENT
66 7] EXCESS FUEL BURN - VECTORS
— 3 —{-60
\Q E AVERAGE HOURLY ARRIVAL RATE
284
* NIL AMOUNT OF HOLDING AT MIA
AND DCA; NONE AT LAX |
| » -45
537
q *
100N
N 34
N \ 31
- 299 29 , d-30
n 15
| | [
| | l
l . 1 0
i I i
: | | 78-40-27
| | ’

AVERAGE HOURLY ARRIVAL RATE



{ 1 i

TURBO- | EXEC | DC9 : BT27 : DC8 pCclo : B747
40 PROP |, JET | B737 | y B707 | LIOIl
: : | : 38.7 : : :
v ! | | | { |
] ! | I ! I I
= 304 ‘ I | | | |
" ' ' 1 I | |
o | | | ( | |
e ! I I | ] |
O ! I 208 ! ' ! !
< 20- | ! | ! I |
& [ | | [ | |
149 | I i I | [
: : | | 123 : |
|0J ! | | 1 a3 ]

2 1 2.1

0 < i

1.9 4 \\ § §

N\ N D

10— ‘ § §

-y
(- -]

20~

777

PER CENT OF EXCESS FUEL BURN
=
®

30—

0

40

DISTRIBUTION OF AIRCRAFT TYPES VS PROPORTION OF EXCESS FUEL BURNED BY TYPE
(ALL SAMPLES) 78-40-28

FIGURE 19. DISTRIBUTION OF AIRCRAFT TYPES VS. PROPORTION
OF EXCESS FUEL BURNED BY TYPE (ALL SAMPLES)

58



PERCENT OF TRACKS AND EXCESS FUEL BURN

70—
AIRCRAFT TYPES
9 : 62.8
N\ EXCESS FUEL BURN
60— N
50—
40—
382
30—
26.9
25.0.41
20
o 9.9
70 | " I |
§ ARNE |
\ | \ | |
N NN
TURBO-PROP ' EXEC JET ' DCY B727
| | B737

DISTRIBUTION OF AIRCRAFT TYPES VS
PROPORTION OF EXCESS FUEL BURNED BY TYPE (DCA SAMPLES)

78-40-29

FIGURE 20, DISTRIBUTION OF AIRCRAFT TYPES VS. PROPORTION
OF EXCESS FUEL BURNED BY TYPE (DCA SAMPLES)
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% 80
RATIO OF EXCESS FUEL BURN
PROCEDURAL ROUTING
] EARLY DESCENT
HOLDING
PATH - STRETCHING VECTORS
E]RA&IO OF TRACKS
51
. )
2
/M
&
3
=
| =
[}
= * NIL AMOUNT OF
s HOLDING AT MIA
E AND DCA; NONE AT
LAX
b
B 30— BSOS
29.8
20~ 18
17
] -
14
12.7 =
10}~
6.6 ;7‘7h.
1.5 @
% 2.4% [
. B B A .
H3.l“ 2.9 2.7
0 il Hi i
ORD LAX A
MIA 78-40-30
FIGURE 21,

RATIO OF‘EXCESS FUEL CONSUMPTION AND NUMB
ER OF TRACKS
FOR EACH AIRPORT WITH RESPECT TO THE TOTAL DATA BASE
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1,600 : 16
ﬂ AVERAGE EXCESS FUEL BURN (1b)
1,415 - D AVERAGE DELAY (min)
1,400~ [ 14
{ 12.3 A
1,200 F . -1 12
1,118
1~y )
o)
y 10 3
3 u
g 1,000 —10 o,
3 g
[+ -]
=1 12
& 884 »
2 )
-
/m >
g 800 | 7.7 -8 3
(2] (2]
E ] a
’ =
v
’ :
(8] | g
<] ]
g 600 |~ Jd6
=
-
o
400 |~ A
200 |~ P
| |
| I
I |
I I
B N i
0 | 4 V]
IFR | VFR | VFR
14L/14R i 14L/14R i 32L/27R
| |

j9—————— WEATHER ————DI 78-40-31

RUNWAY

FIGURE 22, EFFECT OF WEATHER AND RUNWAY CONFIGURATION ON DELAY
AND EXCESS FUEL CONSUMPTION (ORD)
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29

40

LANDING RATES

L 69 62 66 71 66 66 74 69 70 61 65 55
35
= 31.3 HOLDING DELAY
g 30.4 - TZ0.0
~ 30 18.7 VECTOR DELAY
Q
E 28.1
- 18.2
& 26.0*
> 8.0
5 25
a
x 22.7
5 5.7
(53]
3
5 20 19.6
E 4.9
=
& 18.0
' 17.0 .
g
< 15k
e 13.6 14.7
2
[&]
=
5 1.3
S 10
w 85 ‘ 8.8
Q 2.0
= 7.4
m
=z

o v
—
w
—
—
~
=
©
=~
v
IS
-
o
®
—— —— —
-~ N
w w|o

NOONDAY TRAFFIC
* RWY CHANGE 78-40-32

Iy I, b | W1 V2 Vs | Dy D, Dy Ny N, N3
IFR ' VFR ! VFR VFR
14L/ 14R | 16L/14R : 32L/27R 32L/27R
|
| |

FIGURE 23, SAMPLE-TO-SAMPLE .VARIATION IN HOLDING AND PATH-STRETCHING VECTOR DELAY (ORD)



AVERAGE EXCESS FUEL BURN PER TRACK (1b)

1,200

1,000

800

600

400

200

EXCESS FUEL

PROCEDURES

N\ HOLDING

VECTORING

EXCESS MILEAGE

PROCEDURES

] HOLDING

* DATA FOR EARLY DESCENT/SPEED CONTROL NOT INCLUDED

N\

|

-30

AVERAGE EXCESS MILEAGE PER TRACK (nmi)

TROMBONE
(231 TRACKS)

FIGURE 24,

EFFECT OF APPROACH PATTERN GEOMETRY ON EXCESS

BASE -
(233 TRACKS)

LEG

————— e - —

STRAIGHT - IN
(171 TRACKS)

MILEAGE AND EXCESS FUEL CONSUMPTION (ORD)
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AVERAGE EXCESS FUEL BURN PER TRACK (1b)

EXCESS FUEL BURN

HOLDING

UL

VECTORING

APPROACH PATTERN GEOMETRY

BASE LEG (%)

STRAIGHT - IN (%)

N

TROMBONE (%)

* DATA FOR EARLY DESCENT/SPEED CONTROL NOT INCLUDED

1,200
1,000
51 100
800 é
o)
&
g
600 §
400 — X 427 \ 40 &
\ 383 \ o
} §§§§§ F §§§§§ E
2001~ \§ ! ! | \ 20
| | | \\\\\\
i \ | : | | \
| (
. i N\l ! | ! \\ 0
123" : N i N o SE
(135 TRKS) | (156 TRKS) | (151 TRKS) : (193 TRKS) o /o oy
FIGURE 25. EFFECT OF ENTRY SECTOR ON EXCESS FUEL CONSUMPTION (ORD)
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1.0 3.0
TRACK DATA BASE AIRWAY DATA BASE
PREPARATION .- -~ — — - - |  PREPARATION
(SOURCE : ARTS) (SOURCE:NOS*)

2.0 l 4.0 1

TRACK SIMPLIFICATION TERM-INAL AREA
hACK STHPL - - - — — — — > GEOMETRY
EXTRACTION
5.0
L NOMINAL ROUTE o« |
DEVELOPMENT
6.0
ASSOCIATION OF
TRACKS WITH
NOMINAL ROUTES
7.0
ROUTE MILEAGE
AND
DELAY COMPUTATION
. % = NATIONAL OCEAN -SURVEY
6.0 RIVERDALE, MD. 20840
EXCESS FUEL
COMPUTATION
AND DATA
S Y
MMAR 78-40-1
FIGURE 26. METHODOLOGY TO COMPUTE DELAY AND EXCESS FUEL CONSUMPTION

IN THE TERMINAL AREA
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SAMPLE HR

&

ARTS
DATA
TAPE

1.1

CONV79

7 TO 9 TRACK
CONVERSION

9-TRACK
TAPE

TLP

LISTINGS

COORDINATE
DATA

DIAGNOSTICS
SUMMARIES

TRACK LISTING
PROGRAM

|

DATSYN

DATA
SYNTHESIZER
PROGRAM

DIAGNOSTICS

1.4

I

DTP

DATA
TRANSLATION
PROGRAM

K}

DIAGNOSTICS

SMOOTHED
TRACK
DATA

78-40-2

FIGURE 27, TRACK DATA BASE PREPARATION
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w

PARAMETERS

SMOOTHED

TRACK
DATA

HALF TRACK

ELIMINATES :
ODD -~ SECOND
DATA POINTS

2.2

TRACKS

CONVERTS SCAN
PORMATS TO
TRACK HISTORIES

2.3

SIMTRACK

e

PLOT
OPTIONS

REDUCES STRAIGHT
LINE SEGMENTS

TO 30 - SEC INTERVALS

2.4

AREA PLOT

FIGURE 28. TRACK SIMPLIFICATION AND PLOTTING

PLOTS TRACKS,
ROUTES, FIXES,
ETC.

67

TRACK
SUMMARIES

DATA
PLOTS

78-40-3



89

FAA AIRPORT FAA NAVAIDS

MASTER TAPES(3) MASTER TAPE :
3.8 * - PROGRAM DEVELOPED
DURING RNAV STUDY
AIRPULL _
.1 g 3.4 _
AIRWAY
* * TOUT MODIFICATION
CONSOLIDATE REFORM COMMANDS
3.2 3.5 3.9 3.10
* * * — . *
REDUCE SORT AIRWAY 3 TRANSFORM 3
3.3 4 3.6
* ATRWAY .
N )
AIRPORTS * AVALDS RTEOUT 3.11
_| oMNIPLOT *
3.12
NOS CONTROLLER _
CHARTS SUBSCRIBER AIREDIT
TAPE \ ATRWAY :
DATA AIRWAY
PLOTS
"~ [ s1GMA 8
3.7 ) DISK PACK
*
EXPER
DIAGNOSTICS | 78-40-4

FIGURE 29,  AIRWAY DATA BASE PREPARATION



AIRWAY
DATA

PLOT
OPTIONS

FIGURE 30,

4.1

COORDINATES

AIRPULL

AIRWAY DATA
EXTRACTOR

4.2

AIRWAY 3

FILE UPDATE
MANAGEMENT

4,3

TERMINAL
AREA
GEOMETRY

v

AREAPLOT

PLOTTER PROGRAM

TERMINAL AREA GEOMETRY EXTRACTION

69

TERMINAL
AREA
GEOMETRY

\Dy

DATA
PLOTS

78-40-5




TERMINAL
GEOMETRY
PLOTS

TERMINAL

PLOTS OF
SIMPLIFIED AREA
TRACKS GEOMETRY

DATA

SIMPLIFIED TERMINAL AREA

OPERATING
PROCEDURES

AND OTHER DATA

"\FORMULATION OF
NOMINAL ROUTE
DESIGN

' 5.2

TRANSFORM 3

DESIGN COMMAND
TRANSLATOR

- - - - -

Yy 5.3

ATRWAY 3

TERMINAL
AREA

GEOMETRY MANAGEMENT

FILE UPDATE ———

NOMINAL

AREAPLOT

DESIGN
WITH TRACK

OVERLAY

NOMINAL
ROUTE
STRUCTURE

FIGURE 31. NOMINAL ROUTE DEVELOPMENT

70

78-40-6

*DASHED LINES INDICATE AN ITERATIVE
DESIGN PROCESS, WHERE EACH LEVEL
OF NOMINAL ROUTE DESIGN 1S MODIFIED
TO FORM THE SUCCESSIVE DESIGN LEVEL.




FIGURE 32.

>
WITH NOMINAL

HISTORIES

6.4

AREAPLOT XYNOM

..L, A TO XY
CONVERSION

TRACK &
NOMINAL
PLOTS

TRACK
ASSOCTATION

WITH NOMINAL
ROUTES

TRACK
ASSOCIATION
COMMANDS

| e

TRAMP
ASSOCIATE TRACKS

NOMINAL
[ rovTE
STRUCTURE

ROUTES

ASSOCIATED
TRACK
HISTORIES 78-40-15

ASSOCIATION OF TRACKS WITH. NOMINAL ROUTES
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NOMINAL

ROUTE
STRUCTURE
®
L )
L )
[ 4
NOMLEN .
ROUTE LENGTH

PARAMET ERS —P COMPUTATION

ROUTE
LENGTH
DATA

TRKDAT

M DELAY
~ COMPUTATION

DELAY
- LISTING

MANUAL
DATA
REDUCTION

78-40-16

FIGURE 33, ROUTE MILEAGE AND DELAY COMPUTATION
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DELAY

DATA
8.1
. FUELBURN
PARAMETERS
. COMPUTES EXCESS
FUEL CONSUMPTION
* FUEL
BURN
DATA
8.2 a
SUMMARY 3
SUMMARY - DETAIL
e SUMMARIZES
OPTIONS DELAY & EXCESS SUMMARIES
FUEL COMSUMPTION
HIGH- MANUAL
LEVEL s e o0 DATA
SUMMARIES REDUCTION
78-40-22
FIGURE 34,

EXCESS FUEL COMPUTATION AND DATA SUMMARY
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TRE FELLOWING FILES EXI®T €N TFE CLRRENY DET_AILEE DATA BASE 6UTPI Y TAPE]
4
4 1o MEMINAL/MINIMUM PATR CATA FILEG - o

_ LRI _XYNBF FREM 11353 NEV 16737 12 SAMPLES FUELFLEW DAYE 22148 FAR 16,'78
Ze CETAILEC SAFPLE DATA FICE Rée 1; COPIED FILE?

Crisl 1y TRKDAT DATE 2CiCA ACV 232'77;3 TRAMPIICHI I 1 FERGED 08iC3 SEP 16s'77nerS8 15348 JLL 184777 TRAMP 20335 AUG 86,177
tTHIS CEPIED FILE WAE CETATLED CaYa INPLY FILE REe I

3¢ CETAILEC SAMPLE DATA F.lLE nen 25 COPIED FILES
CrIsl 20 TRKDAT D 21771 TRAMPGIGH
(THIS CEPIED FILE hAS CETAILED CATA INPUT FILE NOe 2)

4 CETAILED GAMPLE DATA FILE NEe 3J COPIED FILE! )
Crls] 3, TRKDAT DATE 21338 a8v 29s'77; TRAMPIICHI I 3 TRACKS 17:82 APR 264 '77hrrS 22348 ALG 264177 TRAMP 23:25 SEP 02,177
(THIS CEPIED FILE WAE CETAILED CAT# INPUT FILE KEe¢ 3] - : -

__ Be CETAILED SAMPLE DATA HLE r\e- I COPIED FILE' .
Crlav 1, TRKDAT $ v T [3 H 2 e 7
(THIB CEPIED FILE ®AE CETHLED DA'I'A INPUT FILE ANOs &)

€v LETAILED GAMPLE DATA FILE hev 5J COFIED FILEY -
_ Crlav 25 TAKDAT DATE 22311 ABV 292'77; TRAFPIICHA v +RACKSE 10:29 SEP 20, '77nerS 11:83 hEV 162177 TRAMP 18105 NOV 28,177
(THIS CBPIED FILE WAS CETAILED CATR INPUT FILE §O¢ 97 .
Te CETAILE'D SAMPLE DATA FILE Nee 63 COPIED FILES .
Crisv 3 TRKDAT URTE €2ie5 \EV 2957775 YRAFPIICHI V 3 TRATKE 22739 APR 297 Y 77RfPY TITSY NEV 187777 TRAMP I778% WOV RO v77
(THIS CEPIED FILE wAE CETAJILED CATA INPUT FILE NOe &) .
' 10 TEU FILET — =
Cr1sD 1, TAKDAT DATE 21345 r\ev 30:'77: TRAMPIICHI D 1 TRACKS 21320 SEP 08,'77NemS 22336 .BEF 21,177 TRAMP 20353 6CT 202177
H U L UY FILE N8e 7]

9. CETAILED smm.{ DATA FILE r\e. 8 copiEo FILE:
43 (1 BT T
(THIS COPIED FILE WaS CETAILED DATA INPUT FILE N8+  8) :

16, AlL XEU FILEY

CrIsD 3 TRKDAT DATE 22i14 r\QV 3021773 TRAPPIICHI D 3 vERGED 173954 SEP 26, '77navs 15188 JLL 18277 TRAMP 22120 AUG R6s177
TTHRIS GCBPIED FILE WAS CETAILED UAYA INPUY FILE KO¢ %) -

11v GCETAILED SAMPLE DATA FILE Nee 105 COPIED FILES
CrIoN 1, N ] ¢ T
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