Federal Aviation
Administration

Office of Systemns
Engineering Management
Washington, D.C. 20891

semore,  Automated En Route Air Traffic Control

Algorithmic Specifications

TRAJECTORY ESTIMATION

Volume 1

September 1983
Report No. DOT/FAA/ES-83/4

This document is svailable to the

U.S. public through the

Nationsi Technical Information Service,
Springtield, Virginia 22181 ‘



Techaicel Report Documentation Page

. Report No.

_DOT/FAA/ES-83/4

2. Gevernment Accessien Ne.

3. ini’im'l Ec'olo. No.

4. Title end Subtitle

Algorithmic Specifications
TRAJECTORY ESTIMATION Volume 1

Automated En Route Air Traffic Control

3. Report Date

|__September 1983 «
6. Perferming O_l.og_ni zation Code

AES-320
8. Perlerming Orgenizetion Report No.

7. Auther's)

N_S. Malthouse, Gl

J.A., Kingsburg, D.A. Pool, S.K. Ghosh

FAA-ES-83-4

9. Performing Orgonization Name end Addrecs

Systems Engineering Service
Department of Transportation
Federal Aviation Administration

Rouillier. R.A. Shepherd

200 Independence Ave., S.W,, Washington, D.C. 20591

10. Werk Unit No. (TRAIS)

G——
11, Contract or Grent No.

13. Type of Repert and Peried Covered

12. Sponscring Agency Neme end Address

Same as # 9 above.

' 14. Sponsering Agency Code
AES

15. Supplementery Notes

16. Abstroct

detailed levels.

following:

o

(@)

This Algorithmic Specification establishes the design criteria for four advanced
automation software functions to be included in the initial software package of
the Advanced Automation System (AAS).
within the context of the existing National Airspace System (NAS).

definition of each function is provided with descriptions on increasingly more
The final, most detailed description of each function
identifies the data flows and transformations taking place within each function.

This document consists of fiwe volumes.
contains a functional design for deriving a predicted four-dimensional (space
and time) path, or trajectory, for each participating aircraft. '

The other four volumes of this specification provide design criteria for the

o Volume 2, Airspace Probe
o Volume 3, Flight Plan Conflict Probe
Volume 4, Sector Workload Probe

Volume 5, Data Specification

The need for each function is discussed
A top-down

Volume 1, Trajectory Estimation,

17, Kev Words

Automation, Air Traffic Control,
Automated Decision Making, En Route
Traffic Control, Artificial
Intelligence, Advanced Automation
System

18, Distribution Stetement . i
Document is available to the U.S, public
throught the National Technical Infor-
mation Service, Springfield, VA 22161

¥9. Security Clossif. (of this repers)

Unclassified

20. Security Clessif. (of this poge)

Unclassified

21- No. of Pages | 22. Price

Form DOT F 1700.7 (2-72)

Ropn‘ué’lm of completed page outhorized



EXECUTIVE SUMMARY

This specification establishes design criteria for Trajectory Esti-
mation, a part of the initial automation package for the Advanced
Automation System of the Federal Aviation Administration's (FAA's)
next generation air traffic control system. "Trajectory Estima-
tion,” used as the name of the specification, logically groups three
functions: Trajectory Estimation and two ancillary functions that
feed Trajectory Estimation called Nominal Plan Builder and
Resynchronization.

Nominal Plan Builder is an addition to the National Airspace System
(NAS) Stage A Route Conversion. Route Conversion provides logic to
alter pilot-requested route information to conform to established
procedural routes into and out of major terminal areas. Nominal
Plan Builder provides an analogous service in the vertical dimen-
sion. Based upon stored data describing altitude transitioning
around major terminals, Nominal Plan Builder constructs an indi-
vidualized set of control actions which, when input to Trajectory
Estimation, mold the predicted vertical profile of an aircraft to
established Air Traffic Control (ATC) procedures.

Trajectory Estimation constructs a four-dimensional ground refer-
enced path, or trajectory, for each candidate flight plan sub-
mitted. The algorithm provides a route processing 1logic which
extends the current NAS route processing to four dimensions (two
horizontal coordinates, altitude and time). Methods are {incor-
porated into Trajectory Estimation that allow controller modifi-
cation of the trajectory by controller—-aided machine comstruction of
new planned actions. A planned action is the computer analog of a
controller's own ATC action. An estimate of the aircraft's future
position 1is thus obtained which reflects not only pilot intent but
also the effects of ATC actions tactically or strategically
planned. Aircraft positional uncertainty due to the inexact know-
ledge of physical phenomena 1s incorporated into the design. Tra-
jectory Estimation algorithms access diverse ‘data sources to con~
struct a serles of (x,y,z,t) points which then define a set of
segments. These segments (actually 1line segments in 4-space)
reflect pilot intent, ATC standard operating procedures (through the
actions of Nominal Plan Builder), controllers' planned ATC man-
euvers, and the effects of atmospheric parameters (wind, temperature
and pressure). When controller or pilot initiated flight plan
changes occur, the trajectory is reconstructed to fit current param-
eters.

Resynchronization provides an analog to the NAS Stage A Route Con-
version subfunction of Calculated Time of Arrival (CTA) Updating.

ii



That NAS subfunction updates time-of-arrival values at future
positions when a difference 1s observed between the predicted time
of arrival at a fix and the actual arrival time at that fix. Like
CTA Updating, when deviations between the predicted path for an
aircraft and that aircraft's curremt track position occur, Resyn-
chronization provides data to "synchronize” the predicted path with
the track position. Unlike NAS CTA Updating, Resynchronization data
is used by Trajectory Estimation to construct a whole new tra-
jectory, correcting the observed errors. Resynchronization provides
this real-time feedback loop 1into the trajectory construction pro-
cess In order to 1improve trajectory prediction accuracy and to
theoretically reduce the rate at which future deviations from the
trajectory will be observed.

iii



1.

3.

TABLE OF CONTENTS

INTRODUCTION

Purpose

Scope
Organization of This Document

s LN =

1.
1.
1.
1.
System

1l.4.1 System Context
1.4.2

Enhancements
1.5 Trajectory Estimation Summary

1.5.1 Operational Description
1.5.2 Processing Overview

DEFINITIONS AND DESIGN CONSIDERATIONS
2.1 System Design Definitions

1.1 Modeling Environment Terms
1.2 Trajectory Terms
1.3 Planned Action

2.2 Design Considerations

2.2.1 System Interface Requirements
2.2.2 Controller Interface Language

TRAJECTORY ESTIMATION FUNCTIONAL DESIGN
3.1 Environment

3.1.1 Input Data and Activation
3.1.2 OQutput Data

3.2 Design Assumptions

3.2.1 Operational System Interface
3.2.
3.2

iv

Role of Trajectory Estimation in the Overall ATC

Role of Trajectory Estimation in Future System

2 External Function Design Assumptions
.3 Internal Function Design Assumptions




TABLE OF CONTENTS

(Continued)
Page
3.3 Functions and Subfunctions . 3-14
3.3.1 Nominal Plan Builder 3-15
3.3.2 Trajectory Initialization 3-17
3.3.3 Planned Action Processing - 3-19
3.3.4 Trajectory Construction 3-29
3.3.5 Trajectory Post Processing 3-33
3.3.6 Resynchronization 3-35
3.4 Expandability : 3-37
3.4.1 Goal-Oriented Planned Actions 3-37
3.4.2 Uncertainty Estimations 3-38
3.4.3 Resynchronization Airspeed Upgrades 3-40
4. DETAILED DESCRIPTION 4-1
4.1 Nominal Plan Builder 4-1
4.1.1 Mission 4-2
4.1.2 Design Considerations and Environment 4-2
4,1.3 Nominal Plan Builder Design Logilc 4=5
4.2 Trajectory Initialization 4-37
4.2.1 Mission 4-37
4.2.2 Design Considerations and Environment 4~-39
4,2.3 Flight Plan Acceptance Design Logic 4-4]1
4.2.4 Trajectory Repositioning Design Logic 445
4,2,5 Trajectory Replanning Design Logic 4~50
4.3 Planned Action Processing ' 4-53
4,3.1 Mission 4-58
4.3.2 Design Considerations and Environment 4-60
4,3.3 Hold Planned Action Processing Design Logic 4-65
4.3.4 Altitude Planned Action Processing Design Logic 4-77
4,3.5 Speed Planned Action Processing Design Logic 4-99
4,3.6 Vector Planned Action Processing Design Logic 4-121
4,3,7 Flight Route Follower Design Logic 4-135
4.3.8 Include Pending Actions Design Logic 4-142



TABLE OF CONTENTS
(Concluded)

Trajectory Construction

Mission

Design Considerations and Environment
Merging Design Logic

Cusp Construction Design Logic

4,5 Trajectory Post Processing

Mission
Design Considerations and Component Environment
Trajectory Post Processing Design Logic

4.6 Resynchronization

4.6
4.6.2
4.6.3
APPENDIX A:
APPENDIX B:
APPENDIX C:
APPENDIX D:
APPENDIX E:

APPENDIX F:

.1 Mission

Design Considerations and Component Environment
Resynchronization Design Logic

TRAJECTORY ESTIMATION DATA BASE
TRAJECTORY ESTIMATION UTILITIES
PENDING ALTITUDE LIMITS UTILITIES
GLOSSARY

AREA PDL LANGUAGE REFERENCE SUMMARY

REFERENCES

vi

Page

4-177
4-184
4-186
4-188
4-195
4-206
4-216
4-218
4-219
4=241 .
4-241

4-241
4-249

B-1
c-1
D-1

E-1



FIGURE

FIGURE
FIGURE

FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

&S
| L I A T A I
N =

= O 00 NOY W

EoBE R O RO R
N = O

LIST OF FIGURES

TRAJECTORY ESTIMATION IN THE FLIGHT PLAN
CONSTRUCTION PROCESS

PAR AMENDMENT FOR N30SC

VERTICAL PROFILE FOR N30SC

DATA SERVICES FOR TRAJECTORY ESTIMATION

AREAS, CENTERS AND PLANNING.REGIONS
ATIRCRAFT CLASS CHARACTERISTICS
WIND CELL GRIDS

TRAJECTORY CONCEPTS

ALTITUDE AND HOLD MANEUVERS

SPEED AND VECTOR MANEUVERS

TRAJECTORY ESTIMATION FUNCTIONAL ENVIRONMENT
TRAJECTORY ESTIMATION INPUT DATA SOURCES
FUNCTIONAL AND SUBFUNCTIONAL BREAKDOWN OF
TRAJECTORY ESTIMATION

PROCESSING OVERVIEW

EXAMPLE

PLANNED ACTION PROCESSOR/AGD VARIABLE
CONTROL RESPONSIBILITIES

POSSIBLE ACTIVE ACTIONS AT PAST CUSP
OVERLAP RESOLUTION

PLANNED ACTION PRECEDENCE RELATIONSHIPS

AGD VECTORS

LIMITS

TRAJECTORY CONSTRUCTION PROCESSING OVERVIEW
ALTITUDE MANEUVER ENVELOPE

DATA FLOW

DELAY ABSORPTION ZIG-ZAG VECTOR

NOMINAL_PLAN BUILDER CALLING SEQUENCE
NOMINAL PLAN BUILDER EXAMPLE
NOMINAL PLAN BUILDER
SECTOR_DETERMINATION

NEXT_SECTOR

DELETE_ACTIONS

RESTRICTIONS RETRIEVAL

EXAMPLE RESTRICTIONS TABLE
PROCESS_QUALIFIERS

PROCESS_ARRIVAL DEPARTURE_QUALIFIER
PROCESS_SPEED QUALIFIER
PROCESS_AIRCRAFT QUALIFIER

vii

Page

1-11
1-13

1-17



FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE

F IGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

4-13
4=14

4-15
4~16
4-17
4-18
4-19
4-20
4-21
4-22
4-23

4-24
4-25
4-26
4-27

4-28
4-29

4-30
4-31
4-32
4-33
4-34
4~35
4-36
4-37
4-38
4-39
4~40
4-41
4-42
4-43

Ay
4=45
4—46
4=47
4—48
4—49

LIS1 OF FIGURES
(Continued)

PLANNED ACTION GENERATION

TRANSLATION OF A RESTRICTION INTO A PLANNED
ACTION

SELECT_PLANNED ACTION RECORDS

DETERMINE TRANSITION TYPE

GENERATE | RESTRICTED ALTITUDE_PA

GENERATE PLANNED ACTION_ ID

GENERATE SPEED | PA

VERIFY | CRUISE PARAMETERS

GENERATE UNRESTRICTED ALTITUDE PA
TRAJECTORY ESTIMATION INITIALIZATION OVERVIEW
FLIGHT PLAN ACCEPTANCE INITIALIZATION CALLING
SEQUENCE

FLIGHT PLAN ACCEPTANCE INITIALIZATION
CREATE ACTIVE PLANNED ACTIONS

FILL PENDING LISTS

TRAJECTORY REPOSITIONING INITIALIZATION
CALLING SEQUENCE

TRAJECTORY REPOSITIONING INITIALIZATION
TRAJECTORY REPLANNING INITIALIZATION
CALLING SEQUENCE

TRAJECTORY_REPLANNING INITIALIZATION
DETERMINE _. INITIAL PAST CUSP

PLANNED _ ACTION PROCESSING

HOLD PLANNED ACTION PROCESSING CALLING SEQUENCE

HOLD_PLANNED ACTION PROCESSING
CHECK_FOR_END_OF ACTIVE_HOLD ACTION
HOLD PENDING_ACTION OVERLAP
ARBITRATE HOLD_PENDING_VS_ACTIVE_ACTON
ELEVATE_NEW_HOLD_TO_ACTIVE STATUS

SET HOLD PARAMETERS FOR TRAJECTORY ' CONSTRUCTION

SET HOLD ACCELERATION PHASE PARAMETERS
SET_HOLD HOLD_PHASE_PARAMETERS

ALTITUDE PLANNED ACTION PHASES

ALTITUDE PLANNED ACTION PROCESSING

CALLING SEQUENCE

ALTITUDE PLANNED ACTION PROCESSING
CHECK_FOR_END OF ALTITUDE ACTION
ALTITUDE_PENDING_ACTION_ OVERLAP

ARBITRATE ALTITUDE PENDING > VS_ACTIVE ACTION
ELEVATE NEW_ALTITUDE ACTION TO ACTIVE STATUS
DETERMINE ALTITUDE END

viii

Page
4-23

4-25
4~26
4-29
4~30
4-31
4-32
4-34
4-36
4-38

4-42
4-43
446
4-48

4-49
4-51

4-54
4-55
4-57
4-59
4-67
4-68
4-69
4-70
4-72
4=74
4-75
4-78
4-80
4-82

4-84
4-85
4-86
4-87
4-88
4-90
4-92



FIGURE

FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

4-50

4-51
4-52
4-53
4-54
4-55
4-56
4-57
4-58
4-59
4-60
4-61
462
4-63
4-64
4-65
4-66
467
4-68
4-69
4-70
4-71
4-72
4-73
4-74
4-75
4-76
4-77
4-78
4-79
4-80
4-81
4-82
4-83
4-84
4-85
4-86
4-87
4-88
4-89
4-90

LIST OF FIGURES
(Continued)

SET_ALTITUDE_PARAMETERS FOR_TRAJECTORY
CONSTRUCTION

SET_UP_ALTITUDE_INFORMATION

FIND _NOMINAL CLIMB_SPEED
SET_ALTITUDE_ACCELERATION_PHASE_PARAMETERS
SET_GRADIENT PHASE PARAMETERS
SET_ALTITUDE_DESCENT PHASE_PARAMETERS
SET_ALTITUDE_ASCENT PHASE_PARAMETERS
MIN_OR_NOMINAL_GRADIENT

FIND _DISTANCE TO_RESTRICTION

SPEED PALNNED ACTION PROCESSING CALLING SEQUENCE
SPEED_PLANNED_ACTION PROCESSING
CHECK_FOR_END_OF_ ACTIVE_SPEED_ACTION
SPEED_PENDING_ACTION OVERLAP

ARBITRATE_SPEED PENDING_VS_ACTIVE ACTION
RESOLVE_SPEED VS_OTHER TYPES

ELEVATE NEW_SPEED ACTION_TO ACTIVE STATUS

SET SPEED PARAMETERS FOR TRAJECTORY CONSTRUCTION
LINEARIZED TURNS

VECTOR PLANNED ACTION PHASES

RESULTING VECTOR

VECTOR PLANNED ACTION PROCESSING CALLING SEQUENCE
VECTOR_PLANNED ACTION_PROCESSING

CHECK_FOR_END OF ACTIVE VECTOR_ACTION
VECTOR_PENDING_ACTION OVERLAP

ARBITRATE VECTOR_PENDING_ACTION_VS_ACTIVE ACTION
ELEVATE_NEW_VECTOR_ACTION TO_ACTIVE STATUS
SET_VECTOR_PARAMETERS_FOR_TRAJECTORY_CONSTRUCTION
NEW_PHASE_VECTOR

FLIGHT ROUTE_FOLLOWER

INCLUDE PENDING ACTIONS CALLING SEQUENCE
INCLUDE_FUTURE PA LIMITS

INCLUDE_HOLD PENDING_ACTION_LIMITS

COMPUTATION OF POSITION START LIMITS
INCLUDE_ALTITUDE_PENDING_ACTION_LIMITS

START MANEUVER AS A FUNCTION OF ALTITUDE
CONVERT_TO_ARD

DESCENT_TO HIGHER ALTITUDE

LAST_POINT FOR_DESCENT

CLIMB_TO_LOWER_ALTITUDE

LAST_POINT FOR_CLIMB

CALCULATE START POINT

ix

4-94
4-96
4-98
4-100
4-101
4-103
4-105
4-107
4-109
4-112
4-113
4-114.
4-115
4-117
4-119
4-122
4-124
4-125
4-126
4-128
4-129
4-130
4-131
4-132
4-133
4-136
4-138
4-140
4-143
4-146
4-147
4-148
4-151
4=152
4-154
4-155
4-157
4-160
4-162
4-164
4-166



FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

4-91
4=92

4-93

4-94

4-95

4-96

4-97

4-98

4~99

4~-100
4-101
4102
4-103
4-104
4-105
4-106
4-107
4-108
4-109
4-110
4-111
4-112
4-113
4-114
4-115
4-116
4-117
4-118
4-119
4-120
4-121
4-122
4-123
4-124
4-125
4-126
4-127
4-128
4-129
4-130
4-131
4-132

LIST OF FIGURES
(Continued)

CALCULATE_POINT TO_REACH ALTITUDE
FIND NEW_START POINT

SET_START LIMITS

INCLUDE_SPEED PENDING ACTION LIMITS
SPEED_BASED BY TIME

SPEED BASED BY COORDINATE
SPEED_BASED_BY_ ARD
INCLUDE_VECTOR_PENDING _ACTION_LIMITS
TRAJECTORY CONSTRUCTION

MERGING PROCESS CALLING SEQUENCE

AGD VECTOR LIMIT COMPUTATION

FIND WIND CELL

WIND CELL_INTERSECTION

GET Z TO T

GET SPEED_TO T

GET_ARD_TO XY

GET XY TO T

ITERATE TO FINAL ALTITUDE AND TIME
CUSP CONSTRUCTION CALLING SEQUENCE
TRUE AIRSPEED, WIND AND GROUNDSPEED VECTORS
EFFECT OF WIND ON AIRCRAFT DESCENT
CUSP_CONSTRUCTION

TIME_TO_SPEED

TIME TO X Y Z

ITERATE_TO FIND SPEED_AND Z
XY_TO_ARD

HOLDING PATTERN MANEUVER ENVELOPE
TRAJECTORY POST PROCESSING CALLING SEQUENCE
TRAJECTORY_POST_PROCESSING
BUILD_PLANNED_ ACTION DURATION
BUILD_NPB_PLANNING POINT
UPDATE_CANDIDATE TIME
CHECK_TRAJECTORY FOR MANEUVER ENVELOPES
BUILD HOLD MANEUVER ENVELOPE
COMPUTE_HOLD BOX_PARAMETERS

BUILD ALTITUDE MANEUVER ENVELOPE
FIND ARD FOR _CUSP

FIND_LAST DOWNSTREAM VERTICES

FIND PAID

PA DETAILS

VERTEX DEFINITION UNRESTRICTED
EFFECTIVE GRADIENT

Page

4-168
4-170
4-172
4-174
4-175
4-178
4-180
4-182
4-185
4-189
4-190
4-192
4-193
4-196
4-198
4-199
4-201
4~203
4-205
4-207
4-208
4-209
4-211
4-212
4-213
4-214
4-217
4-220
4-221
4-222
4-224
4-226
4-227
4-228
4-230
4-232
4-234
4-235
4-236
4-237
4-238
4-240



FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE
FIGURE

4-133
4-134
4-135
4-136
4-137
4-138
4-139
4-140
4-141
4-142
4-143
4-144

TABLE 4-1

LIST OF FIGURES
(Concluded)

VERTEX DEFINITION RESTRICTED
VERTEX_CONSTRUCTION SUPERVISOR
VERTEX_CONSTRUCTION
RESYNCHRONIZATION CALLING SEQUENCE
RESYNCHRONIZATION

XYT_TO_GROUND

DELTA

EXP_SMOOTH

XY_TO_DIRECTION

GROUND_TO_TAS
PROJECT_ONTO_XY_TRAJECTORY
DISTANCE TO_LINE

LIST OF TABLES

AGD VECTOR VARIBALE AND LIMITS FOR AN

ALTITUDE CHANGE

xi

Page

4~81



INTRODUCTION

The Federal Aviation Administration (FAA) is currently in the
process of developing a new computer system, called the
Advanced Automation System (AAS), to help control the nation's
air traffic. The AAS will consist of new or enhanced hardware
(i.e., Central Processing Units, memories, and terminals) and
new software.

The new software will retain most or all of the functions in
the existing National Airspace System (NAS) En Route Stage A
software. The algorithms will need to be recoded and, in some
cases, revised. In addition, the new AAS software will contain
several new functions that make greater use of the capabilities
of automation for Air Traffic Control (ATC). When fully
implemented, these new functions are intended to detect and
resolve many routine ATC problems.

The initial implementation of the AAS, described in the AAS
Specification [1], will provide the ability to detect some
common ATC problems. To meet the requirements of the AAS,
several new ATC functions need to be postulated and described.
Four of these functions are described in this document;
Trajectory Estimation, Flight Plan Conflict Probe, Airspace
Probe, and Sector Workload Probe (Volumes 1, 2, 3, and 4).
Together, they represent an initial level of automation and the
beginnings of the evolution of the ATC system in accordance
with the NAS Plan [2]. The NAS Plan presents an overview of
the complete set of changes proposed to NAS in the coming
decade.

l.1 Purpose

The purpose of this volume is to identify design criteria for
Trajectory Estimation. Trajectory Estimation is one of the
advanced automation functions called for im the AAS Specifi-
cation. The design criteria specified in this volume are based
on NAS and the specification of the AAS. The AAS specification
describes the Trajectory Estimation function and proposes some
high level requirements for this functiom.

Three separate functions are identified in this volume. The
first, Nominal Plan Builder, identifies procedural actions
implicit in an aircraft's filed £light plan. The second,
Trajectory Estimation, produces a predicted ground referenced
path of flight, called a trajectory, for each candidate air-
craft. These trajectories model both pilot and ATC intent.

1-1



The third, Resynchronization, provides a real-world feedback
loop into Trajectory Estimation which keeps the Trajectory
Estimation output from becoming obsolete.

The Trajectory Estimation process is meant to replace parts of
the current NAS subfunction called Flight Plan Position Proces~-
sing [3]. (Flight Plan Position Processing is a subfunction of
NAS Route Conversion [4].) In particular, Trajectory Estima-
tion becomes responsible for Initial Fix-Time Calculations and
Updating Fix Times. This specification does not address the
responsibilities of NAS Flight Plan Position Extrapolation (a
subfunction of Flight Plan Position Processing), Association
Checking, Beacon Code Assignment, or Metering. Some of these
excluded functions are specifically mentioned within this docu~-
ment in a Trajectory Estimation context. Some implications are
drawn which may be important in any redesign of those functioms.

The purpose of this document to convey design criteria for the
derivation of a four-dimensional trajectory with ground
reference for each aircraft. This document is not a vehicle
for describing the system-wide ramifications of changing to°
such trajectories. This document mentions related functions to
provide context, but only provides detalls of those functions
which constitute the system's capacity to build four-dimensional
trajectories.

1.2 Scope

This algorithmic specification presents design criteria for a
computational framework of Trajectory Estimation. The frame-
work is a set of algorithms which collectively describe how it
may be possible to construct a four-dimensional predicted path
for each candidate aircraft. It may be viewed as a candidate
for consideration in the final design. However, it 1is not
intended to be the complete final design for Trajectory
Estimation in the AAS.

The framework establishes the requireménts for input and output
data and provides a description of the flow of control of data
as it is transferred from 1nput to output. Some of the prin-
cipal requirements have been identified in the "Operational and

Functional Description of AERA 1.01" [5]. To the extent pos~
sible, the data are discussed using existing NAS terminology.

1.3 Organization of This Document

The remainder of Section 1 provides a description of Trajectory
Estimation and two related functions: Nominal Plan Builder and

1-2



Resynchronization. Each new function's role in the larger ATC
context and in future enhancements of the ATC System is
described. Both the operational considerations and processing
methods of Trajectory Estimation, Nominal Plan Builder, and
Resynchronization are summarized. Section 2 defines the
terminology used in the specification and discusses the factors
which influence the design of the algorithms.

Descriptions of the algorithms are contained in Section 3,
Trajectory Estimation Functional Design, and in Section 4,
Detailed Description. The Nominal Plan Buillder, Trajectory
Estimation, and Resynchronization functions, 1like the other
advanced automation functions, are divided hierarchically into
subfunctions, components, and elements (underlined words in
Sections 1 and 2 are critical to the understanding of this
specification and their definitions can be found 1in the
Glossary, Appendix D). Section 3 specifies the design,
environment, and assumptions of the subfunctions (e.g., Planned
Action Processing) and outlines their components (e.g., Speed:
Planned Action Processing). Section 4 provides a detailed
description of each subfunction's components, including their
mission, data requirements, and processing details, and in some
cases includes a discussion of a component's elements (e.g.,
Maneuver Envelope Construction).

Appendix A defines the data shared by the various subfunctions
of Trajectory Estimation, Nominal Plan Builder, and Resynchron-
ization. (Similarly, Volume 5 of this document contains the
global data shared by the functions defined in Volumes 1
through 4.) Appendix B provides a description of general
algorithms used in this specification. Appendix C provides a
compilation of some altitude processing routines. Appendix D,
as mentioned above, contains a glossary of those terms that are
critical to an understanding of this specification.

A Program Design Language (PDL) which describes high level
control logic using structured English 1is used as needed to
describe the algorithms in this specification. A description
of this PDL is contained in Appendix E. Finally, Appendix F
provides a complete list of references.

1.4 Role of Trajectory Estimation in the Overall ATC System

Trajectory Estimation has evolved from the limitations of the
current ATC software, especially those of NAS Flight Plan Posi-
tion Processing [3]. Trajectory Estimation must, however, fit
precisely into the logical framework of information flow in the

1-3



AAS., The limitations of the current software and the context
of Trajectory Estimation in the AAS are discussed below.

l.4.1 System Context

The Continental United States airspace is currently partitioned
among 20 centers or Alr Route Traffic Control Centers (ARTCCs).
The ARTCCs control regions are bounded horizontally by polygons
that stretch vertically from the center floor to 60,000 feet.
Each center's airspace is further .divided into areas, which are
in turn divided into sectors. Areas and sectors are polygonal
regions with floors (either a specified altitude or the center
floor), and ceilings. The sectors of each area are staffed by
a group of air traffic controllers (or controllers) specific~
ally trained for that area. 4

In the current ATC system, pilots decide their desired means to
reach their destination consistent with current navigationmal -
and ATC practices. This intent is then filed with the ATC sys-
tem as a flight plan operating under Instrument Flight Rules
(IFR). Alternatively, flight plans that are executed daily or
on a regularly scheduled basis reside in a data base and are
retrieved automatically unless altered or suspended. A flight
plan modification may be initiated by a controller or the
pllot. Advanced automation functions of the AAS can deal only
with those aircraft filing IFR flight plans.

Controllers are responsible for monitoring the flight as it
passes through their sectors and for helping pilots achieve
their objectives. They watch a symbol representing the air-
craft's radar track position as it moves across a display con-
sole; the aircraft's identity, altitude, and other information
are also displayed. Controllers institute control actions as
needed to perform such functions as helping pilots avoid close
approaches with other aircraft, honoring pilot requests for new
routes, rerouting flights to avoid special airspaces or severe
weather, and queuing aircraft into the major terminal areas.

A function which estimates the future positions of aircraft is
used in a wide variety of circumstances. Predicted paths,
ground and time referenced, can be displayed to controllers for
their use in planning the orderly transit of traffic across
their sectors. Predicted paths assist the radar-tracking fumc-
tion to associate a radar return with a given aircraft. Pre-
dicted times of arrival at future positions assist in the
assignment of time absorbing maneuvers which help sequence air-
craft properly into busy terminal areas.

1-4



1l.4.1.1 Need for Trajectory Estimation

The FAA's plans for the evolution of Air Traffic Control are
discussed in the AAS Specification [1] and in the NAS Plan [2].
According to the NAS Plan, the "early capabilities [of auto-
mated Air Traffic Control] will include [a] 4-D flight path
trajectory model.” The AAS Specification further states that
such flight information must be available for any aircraft
having submitted and conforming to an IFR Flight Plan.

The AAS Specification also states, "The Route Conversion and
Fix Time calculation functions shall provide a sufficiently
accurate aircraft flight profile [trajectory] such that meter-
ing, separation assurance, and automation functions can meet
their performance goals.” An important point of the AAS
Specification is that the alr traffic control system is being
transitioned from a basically tactical to a highly strategic
operation as prescribed in the NAS Plan [2]. In order to
perform most strategic operations, an aircraft trajectory with
known accuracy requirements is necessary.

In the early stages of automation, Trajectory Estimation
provides flight path predictions to problem identification
functions. Problem identification functions compare the
trajectory of an aircraft to other items in search of trajec-
tory problems. Such problems might be penetrations of special
airspaces restricted to the general public or the loss of
separation with another aircraft's trajectory. Three of these
problem identification functions, Airspace Probe, Flight Plan
Conflict Probe, and Sector Workload Probe are the subjects of
algorithmic specifications [Vols. 2, 3, and 4]. Such problem
identification schemes depend upon trustworthy trajectory data,
especially timing information.

As the automation implementation proceeds, the Trajectory Esti-
mation function will be called upon to serve automated routines
for problem solution. These problem solution functions, Con-
flict Resolution, Delay Absorption Planning, and Alrspace Reso-
lution, will be executed upon the automated identification of
problems as described in both the NAS Plan and the AAS Specifi-
cation [2,1]. Unlike the problem prediction routines, however,
the problem solution routines will themselves engage Trajectory
Estimation to provide flight path data necessary in the deriva-
tion of strategic maneuvers which satisfy certain goals. Here,
the automation system 1s dependent upon Trajectory Estimation's
capability to model air traffic control actions into four-
dimensional path predictions.

1-5



1.4.1.2 Current System Inadequacies

Controller-initiated control decisions today are based mostly
on the short-term, "tactical” data provided by radar tracking
and the NAS functions "Route Conversion” and "Flight Plan
Position Processing” [4,3] and specially constructed airspace
and operating rules. These flight data processing functions of
NAS Stage A receive pilot-filed route information. Checks for
consistency in filed flight plan formats are made as well as
some eligibility tests. These eligibility tests determine
whether or not the flight plan route is a candidate for altera-
tion. Route Conversion displays potential alterations in the
flight plan route, including Standard Instrument Departure
(SID) routes and Standard Terminal Arrival Routes (STARs),
among others.

Route Conversion then expands the route of the aircraft into
the component fixes making up the route. These fixes, called
converted fixes, are distinguished points in that the route can
be rederived by, essentially, connecting the dots. The fixes
are given as (x,y) points in system coordinates. The set of
fixes from Route Conversion may not be minimal; i.e., other NAS
functions might require a Route Conversion-derived fix for some
reason.,

The NAS analog to Trajectory Estimation, Flight Plan Position
Processing (FPPP) [3], does not accommodate interactive con-
troller planning. If a controller wishes to investigate the
effects of a control action on an aircraft's progress, such
investigation must be mental. FPPP can provide some route
information for display to the controller for this purpose.
However, there is no mechanism by which he can use the computer
as a tool to investigate ramifications of assigning ATC actioms
for execution.

NAS FPPP attaches an altitude (z) and time (t) to each con-
verted fix along the route. All modeling is three-dimensional
in x,y, and t with modeling in the third dimension, t, ignoring
a modeling of altitude changes. In altitude transitions, FPPP
estimates speed, altitude and time at the endpoint of the alti-
tude change by assuming that the aircraft is in level flight.
Over the extent of the altitude transition it uses a speed
which is a fraction of filed true airspeed (TAS). Times
attached to future route points are extrapolated from these
estimates. Any 1inaccuracies will not be detected until
deviations are identified between the aircraft's longitudinal
track position and the predicted position trigger an update
mechanism.

1-6



In NAS FPPP, Calculated Times of Arrival (CTAs) for aircraft in
level cruise are determined for converted fixes ahead of the
aircraft's present position, using the aircraft's filed true
airspeed (TAS) corrected for wind effects. The system then
uses these stored values to check the aircraft's CTAs using the
aircraft's tracked position. If the CTA error exceeds a param-
eter value, the later CTAs are adjusted to compensate for the
error with the simple addition of the observed time difference.
The aircraft's expected speed is not adjusted for the error and
so continued downstream error accumulation is likely.

Three problems exist in the current NAS aircraft path pre-
diction algorithms with respect to the needs of the AAS and the
advanced automation functions. The first problem is that NAS
Flight Plan Position Processing provides no mechanism to sup-
port controller modifications to the trajectory and thus cannot
support long-term strategic planning. The second problem is
inexact four-dimensional flight path modeling caused by the
omission of the effect of altitude and winds on performance in
climbs and descents. The third problem is the omission of an
updated set of flight parameters to account for the observed
progress of the aircraft when the CTAs are found in error.

The design of Trajectory Estimation specifically addresses
these problems of NAS flight path prediction. It creates a
trajectory representing the flight path across the entire plan-
ning area and provides a mechanism to allow controllers to plan
by modifying the trajectory. These data are then available to
the controller to support long-term strategic planning as well
as tactical control. The altitude estimation inaccuracies are
expected to be reduced by considering the factors affecting
performance in climbs and descents such as altitude, aircraft
performance, wind velocity, and atmospheric temperature.
Improvements to the accuracy of downstream CTAs are provided by
modifying trajectory parameters, such as estimated speed, to
account for the observed error and then recomputing all future
CTAs starting from the aircraft's current position.

1.4.2 Role of Trajectory Estimation in Future System
Enhancements

In the 1initial version of the AAS, Trajectory Estimation in-
corporates a limited controller planning repertoire which does
not fully support all of the route adjustments and automated
planning desired for full automation. This version of Trajec-
tory Estimation incorporates air traffic control actions such
as:

1-7



Altitude Change (possibly with restrictions)
Hold at a Fix

Speed Change

Fully Specified Vector

later, Trajectory Estimation will support additional actions
for metering and conflict resolution. The details of planned
evolution are discussed in the NAS Plan and "Evolution of
Advanced ATC Automation Functions” [2,6].

In the early AAS, Trajectory,K Estimation provides (x,y,z,t)
estimates to support the controller in a manual planning
process. In this manual scenario, a controller may investigate
the effects of control actions on the aircraft's flight path
before actually clearing those actions. The system incor-
porates such controller initiated changes. into the trajectory
and recomputes the (x,y,z,t) values. Future automation plans
provide for increased support from Trajectory Estimation for
metering, automating the conflict resolution process, and
decreasing the controller's responsibility for planning
maneuvers for metering and conflict resolution.

As the air traffic control system matures, it is expected that
the quality of data input to Trajectory Estimation will im-
prove. While this does not affect Trajectory Estimation design

er se, nevertheless, better input data will improve the
quality of estimated trajectories. Enhancements which affect
trajectory quality include:

e 1improved weather prediction (and prediction of winds
aloft) with the introduction of NEXRAD (a doppler
weather radar)

e implementation of a digitized two-way air/ground com-
munication system which allows the ground-based ATC
system to better determine current aircraft intent in
the microcosm (intended aircraft descent performance
characteristics, for example)

e improved vertical tracking allowing Resynchronization
to act also in the vertical dimension

1.5 Trajectory Estimation Summary

Trajectory Estimation provides a four-dimensional (x,y,z,t)
representation of an ailrcraft flight path within a limited geo-
graphical area. It creates an initial aircraft trajectory when
an aircraft enters the system, and provides for updating that

1-8



trajectory subject to controller changes or errors observed
between the predicted and actual trajectory.

1.5.1 Operational Description

Trajectory Estimation operates within the context of the AAS
[1]. Many other functions separate from Trajectory Estimation
provide Trajectory Estimation with the environmental data and
the aircraft tracking data needed to construct aircraft trajec-—
tories. These data are discussed in adaptation guidelines and
radar tracking documents [7,8,9]. Adaptation is that process
of collecting important relatively static environmental data
unique to a given 1location and storing them 1in system
accessible data bases. Included in such data are the following:

e geographical boundaries

o location of important points such as radars, naviga-
tional aids, etc.

e airway data
e alrcraft class characteristics data

Probe functions separate from Trajectory Estimation use trajec-
tory data to provide warning information about sector workload
and conflicts with aircraft or protected airspace. Performance
monitoring functions use the trajectory data to check confor-
mance tolerances between predicted and actual aircraft posi-
tions. The display generating functions outside Trajectory
Estimation use radar, Mode C, and trajectory data to create
parts of the Situation Display, and the Alert and Resolution
Display. These displays are described further in the opera-
tional description [5] and the AAS Specification [1].

From a controller's viewpoint, the primary function of Trajec-
tory Estimation 18 support of operations. implicit in the
modification of the aircraft trajectory. Using input func-
tions, a controller may propose changes to a trajectory.
Trajectory Estimation incorporates the proposed changes into a
temporary plan. This plan 1s checked by the probe functions
whose results are then available for display to the
controller. If the proposed plan is acceptable, the controller
may accept it and it becomes the current plan. If the proposed
plan 1s not acceptable, the controller may start the planning
process again. Trajectory Estimation (in combination with the
display generating functions, Flight Plan Conflict Probe, and

1-9



Airspace Probe) thus provides enough information for a con-
troller to know whether a proposed, probed aircraft plan 1is
acceptable or whether it creates problems such as encounters
with special airspaces or other aircraft.

1.5.2 Processing Overview

The Trajectory Estimation process has been constructed as an
alternative to current NAS Flight Plan Position Processing in
its capacity of providing fix time calculations and updating.
As discussed above, the NAS path prediction process 1is not
exacting enough in 1its estimation of aircraft positions in
altitude transitions to support probe functions. Trajectory
Estimation provides a path in four dimensions (supplants fix
time calculations) and ensures an estimate's fidelity with a
feed-back process (supplants fix time .updating) that also
attempts to make such trajectory updates rarer, The placement
of Trajectory Estimation within AAS Route Conversion is
detailed in Figure 1-1.

Below, an overview is given in a narrative, single thread
format, following the processing of aircraft N30SC, a privately
owned LearJet. This overview will address Figure 1-1, specifi-
cally, Nominal Plan Builder, Trajectory Estimation and
Resynchronization. It will describe the processing taking
place in each of the three functions.

N30SC, a LearJet (LR23) originating in Fort Lauderdale, Florida,
is a northbound flight to Washington Natiomal Airport (DCA) in
Washington, D.C. The Washington Air Route Traffic Control
Center (ZDC) receives flight plan information denoting the
following:

o cleared route: PANAL,AR3.IIM,.RIC..DCA
e cleared cruise speed: 440 kts, true
o cleared cruise altitude: 41000 ft.

Further information includes a coordination fix, a special
point with a time appended. In this case:

e coordination fix: PANAL
e coordination fix time: 0119

This information will be used to initialize the yet-to-be-built
trajectory. It tells us that the aircraft will be at point
PANAL (whose (x,y) coordinates are retrievable from the adapted
geographic data base) at 01:19 Zulu (Greenwich Mean Time).

1-10



11-1

New Flight
Plans

—

Pilot
Changed

Flight

Plans

AAS Route Conversion

Controller

p—ip> © 0 & =i

Conformance
Monitoring

Procedural
Actions
Route ‘
Syntax Trajectory |
Estimation
Altitude 'Y
FIGURE 1-1

Resynchronization j«g-

TRAJECTORY ESTIMATION IN THE FLIGHT
PLAN CONSTRUCTION PROCESS




The forwarded information initiates processing in ZDC's com—
puter. The route string

PANAL.AR3.IIM..RIC..DCA

is parsed and checked both for syntax and for consistency. The
computer determines that all route filelds are recognizable
(i.e, adapted in the data base).

DCA 1s a busy airport, and like many busy airports, DCA has
standardized routes of entry into the terminal area. These
routes, called PARs (Preferential Arrival Routes) help the con-
troller separate and queue traffic. N30SC, approaching the DCA
terminal area (although still many miles away) is eligible for
procedural route amendment since DCA 1s the destinmation. Route
Conversion amends the route of the aircraft to include:

New Route: PANAL.AR3.IIM.J77.J165.RIC.V376.SABBI..DCA

PAR

The PAR conducts the aircraft slightly to the west, then over
Richmond, Virginia (RIC) to proceed directly north to DCA. The
point SABBI 1s the southern arrival fix to DCA. (For details,
see Figure 1-2.)

Route Conversion continues processing with the construction of
the system (x,y) coordinates implied in the flight plan.
PANAL, IIM, RIC, SABBI and DCA are converted to system coordi-
nates from the adapted data base. After this building process,
Nominal Plan Builder, a subfunction to Route Conversion, con-
structs initial altitude information.

N30SC's route of flight is eligible for route alteration. The
flight environment, specifically the sector structure in effect
and the concommitant Standard Operating Procedures (SOPs) and
Letters of Agreement (LOAs), dictate how N30SC will be con-
ducted to DCA 1in altitude. These nominal altitude control
actions, used for every such arrival to DCA, have been adapted
into a data base for Nominal Plan Builder. Nominal Plan
Builder assigns altitude actions (Figure 1-3) to N30SC to:

1-12



DCA

@]
—
o

FIGURE 1-2
PAR AMENDMENT FOR N30SC

1-13



Altitude ——»

Altitude —m —»

1 | 1
L4 L] T LS
PANAL ILM RIC SABBI
Time——»

(a)
No Altitude Restrictions

| [

PANAL ILM STOSH EPICS SABBI
Time ———»

(b)

Procedural Actions Incorporated

Il [l

FIGURE 1-3
VERTICAL PROFILE FOR N30SC

1-14



e descend to 27000 feet for entry into Flat Rock Inter-
mediate sector

e descend to cross EPICS (on the outbound intersection of
N30SC's route with the Flat Rock Intermediate sector)
at 17000 feet

o descend to cross SABBI at 10000 feet for eﬁtry into the
DCA terminal area

At this point in the process, AAS Route Conversion has con-
structed two I1mportant data items. The first item 1is the
converted route: the filed route of flight augmented with the
PAR conducting N30SC to DCA. This route 1s stored in the
alphanumeric form 1listed previously, but, more importantly,
also as a sequence of (x,y) points. The second data item is
N30SC's plan. This initial version of the plan contains only
those altitude actions derived by Nominal Plan Builder.

Trajectory Estimation, also a part of the AAS Route Conversion
function, 1is then 1invoked to construct the aircraft's
trajectory. The construction of a full trajectory 1is an
iterative process on the comstruction of a trajectory segment.
The processing overview for Trajectory Estimation will take
place on the small scale: a description of derivation of the
first segment is given.

The trajectory begins at a profile reference point. This is a

special point which is used to initialize the path prediction
process. For N30SC, this point is simply the coordinatiom fix,

expanded to a five-dimensional point where the speed, altitude
and time of the aircraft are known.

Profile Reference Point: (216.56,187.39, 41000, 0119, 440)
PANAL Altitude Time Speed

The next trajectory point is computed so that the implied line
segment is the longest possible under the following criteria:

o The acceleration of the aircraft must remain constant
across the segment.

e The ground referenced gradient of the aircraft must
remain constant across the segment.

e The direction of the aircraft must remain constant
across the segment.

1-15



e The segment must not go beyond the next fix in the
Converted Route (i.e., next Converted Fix).

e The segment must not trespass into an area with dif-
ferent atmospheric parameters than those at the profile
reference point.

The Trajectory Estimation process examines each criterion and
provides information concerning the following:

e The next change in acceleration is at (location). The
acceleration value now is (value).

e The next change in gradient is at (location). The
gradient now is (value).

e The next direction change is at (loéation). The direc-
tion now is (value).

e The next converted fix is at (location).

e The next change in atmospheric parameters happens in
this posed direction at (location).

Information regarding the valuation of location and accelera-
tion, gradient and direction parameters is abstracted from many
sources. Altitude, speed, and ATC commanded position changes
for N30SC are listed in the plan. Position and altitude goals
are listed there also. Gradient information is obtained from
the aircraft characteristics data base for this aircraft, as
are acceleration parameters. The Converted Route provides loca-
tion information for the next Converted Fix. The atmospheric
data base gives a grid structure where atmospheric parameters
of winds and temperatures are stored.

All this varied information is combined to yield the next
trajectory point (Figure 1-4). The point itself is a four-
dimensional point (x,y,z,t) with an airspeed value attached for
Trajectory Estimation purposes. The computation of this point
involves the alteration of gradient and speed parameters with
respect to wind and temperature parameter values associated
with N30SC's profile reference point. Once this 5-tuple of
information has been derived, then the process repeats with the
just-modeled-trajectory-point replacing the profile reference
point in the next set of computations.

1-16



PARs

PDRs
Etc. Winds
Converted l
Route Route
Trajectory
~»| Estimation
Plan
Altitude
5;
Aircraft
Data
SOPs |
LOAs

FIGURE 1-4

Controller

Conformance

% ¢¢6 ——| Monitoring

Resynchro - .

nization

DATA SERVICES FOR TRAJECTORY ESTIMATION

1-17



When Trajectory Estimation exits, three distinct data 1items
have been created by AAS Route Conversion. The two items
mentioned above, the Converted Route and N30SC's plan were
input to Trajectory Estimation and remain untouched for future
reference. The alrcraft trajectory is output from Trajectory
Estimation. The trajectory is a sequence of points Cy:

N30SC trajectory: {Ci = (x4,Y4,21>t4) f1 =1, ..., tl}

Position, altitude and time values at intervening points can be
obtained by linear interpolation. The trajectory contains all
the Converted Fixes in the modeled trajectory point set. 1In
addition, areas of important changes in modeling parameters are
bounded by trajectory points. .

When N30SC's initial trajectory has been established, the tra-
jectory is then available to other system functions. Airspace
Probe and Flight Plan Conflict Probe identify penetrations of
special use airspaces and losses of separation with other"
aircraft. Conformance Monitoring wuses the trajectory to
examine N30SC's radar track progress. If the radar track does
not match the predicted trajectory position in certain
dimensions and within some system parameter distance(s) then
Resynchronization is engaged.

Resynchronization examines the "real-world” track history of an
aircraft when other system functions indicate nonconformance in

the longitudinal, or along course, dimension. Resynchronization
uses the current radar track position to form a new profile

reference point. The point includes (as before)

Profile
Reference Point: (x,y, z, t, speed).
current current time current
position altitude of scan observed
’ speed

The profile preference point 1is used as 1input along with the
Converted Route and N30SC's o0ld plan to re-establish the
trajectory in the way already described. The new trajectory
replaces the old trajectory completely: the old trajectory is
discarded. Through the 1invocation of Resynchronization,

N30SC's new trajectory should "last longer,” i.e., it will be
resynchronized less frequently,

1-18



This discussion of N30SC's processing by Nominal Plan Builder,
Trajectory Estimation and Resynchronization did not consider
controller interaction. The controller 1is also a source for
ATC maneuvers. These maneuvers can be translated and 1incor-
porated into N30SC's plan by the normal process of amending
flight plans, or otherwise as appropriate, to alter N30SC's
flight path. Trajectory Estimation, Nominal Plan. Builder and
Resynchronization would work as described above.

1-19



DEFINITIONS AND DESIGN CONSIDERATIONS

This section introduces terminology used in this specifica-
tion. Also provided is a set of design considerations which
place Trajectory Estimation, Nominal Plan Builder, and Resyn-
chronization firmly within the AAS context.

2.1 System Design Definitions

Some terms introduced in Section 1 of this specification are of
global interest across the AAS envirdnment and include (in

order of presentation):

1. Subfunction

2. Component

3. Element

4. Center

5. Area

6. Sector

7. Controller

8. Flight Plan

9. Fix

10. Converted Fix
11. Adaptation

12. Coordination Fix
13. Converted Route
14. Plan

15. Trajectory

16. Profile Reference Point

Other terms of interest only to Trajectory Estimation, Nominal
Plan Builder and Resynchronization are introduced below. All

terms are defined in Appendix D..

2.1.1 Modeling Environment Terms

A center represents a volume of airspacer for air traffic
control. Enclosing the center is the planning region. The
boundary of the planning region is considered to be some hori-
zontal distance outside that of the center: e.g., 20 to 30
minutes of flying time in all directions. Figure 2-1
1llustrates the center and planning region.

The fleet of aircraft in operation in U. S. airspace represents
a wide variety of performance capabilities. The performance
characteristics of Boeing 727 aircraft are different from those
describing the performance characteristics of DC10Q aircraft.
Even different models within the same class differ in some

2-1



Planpj N8 Regiop

A \
\ -
Center

FIGURg 2-1
AREAS, CENTERS AND PLANNING REGIONS
2-2



performance characteristics (e.g.: B727-100 vs. B727-200).
These performance parameters  are termed aircraft class
characteristics, and 1include c¢limb profile data and descent
profile data among others. Figure 2-2 shows an example of this
data for a Boeing 727-200.

The airmass enclosed within the planning region presents a
dynamically changing physical environment within which aircraft
fly. Trajectory modeling must Iincorporate airspace parameters
in its computations. It is useful for the purposes of Tra-

jectory Estimation to consider the planning region airspace
volume to be included within a grid called the wind grid.

Discrete compartments in the wind grid are called grid cells or
cells. Each cell is bounded by surfaces parallel to the coor-
dinate planes of the three-dimensional cartesian coordinate
system used by Trajectory Estimation (see Section 3.2.3.1).
Wind speed and direction and temperature parameters are stored
with each grid cell representing those variables throughout the
cell. Figure 2-3 illustrates the wind grid geometry and wind
cell data. :

The converted route created in Route Conversion is the basis
for along route distance computations. Each converted fix is
associated with its distance along the converted route from the
first converted fix. This along route distance (ard) is used
in Trajectory Estimation to reference ATC control actions to
the converted route.

2,1.2 Trajectory Terms

A trajectory 1s bullt by starting at an initial position called
a profile reference point and predicting future positions.
Each trajectory 1is conceptually a continuous, smooth curve in
four dimensions which may be modeled as a series of lines (in
space-time) called segments, joined together at their end-
points, called cusps. The data base conveys trajectory infor-
mation as a 1list of cusps: the segments are the implied
straight 1line segments joining adjacent cusps. Figure 2-4
1llustrates the profile reference point, cusp, and segment.

The trajectory 1s constructed iteratively one cusp at a time.
If Trajectory Estimation processing 1s conceptually frozen
before constructing the whole trajectory for an aircraft, then
two lmportant terms are identified. The previously constructed
cusp is termed the past cusp. The cusp to be constructed next
is called the next cusp.



Climb Data Climb Gradients Altitude

1. 526 Ft/NMI 10,000 TRMACH = .73
2. 312 " 20,000 TRIAS = 341
3. 300 " 30,000
4. 105 " . 36,000
5. 59 " 100,000
Descent Data Descent Gradlents TRIAS
1. ~286 FT/NMI 250
20 -295 " 260
3. -316 " 260
4. -359 " 260
Se -338 " 260
Speed Data

MES = 225 Knots

Min TAS = 250 KIAS
(At 10,000 Ft.)

Max IAS = 353.57 KIAS
(at 10,000 Ft.)
Ft./NMI) °

FIGURE 2-2
AIRCRAFT CLASS CHARACTERISTICS

2-4



s s

Wind Grid

-17°¢C

459

134 Knots

Wind Cell

FIGURE 2-3

WIND CELL GRIDS

2-5

NNEANEANEAN



Profile
Referencg
Point

Cusps

Segments

FIGURE 2-4
TRAJECTCRY CONCEPTS

2-6



2.1.3 Planned Action

During an aircraft's transit of a sector, a controller may
interject an ATC action in order to attain some ATC goal. Some
ATC goals are to maintain separation from other aircraft and
airspace, or maintain a position in a queue of aircraft
awaiting entry into a terminal region. When speaking to the
pilot to communicate maneuvers assoclated with these goals, the
controller uses the structured language of the clearance. This
language is described in the ATC Handbook [10] and the Airman's
Information Manual [11].

The AAS provides the controller with the capability to use
automated functions to assist in clearance planning. To use
these planning tools, the controller provides. anticipated
clearance information to the system via some interaction
mechanism, called a man-machine interface. This proposed
clearance information 1is 1internally associated (by the man-
machine interface) with a planned action. The planned action
is a data structure containing important parameters inherited
from the proposed clearance.

All planning operations in the AAS—-either controller planning
or automated planning-~-are expected to use planned actions as
an interface mechanism to Trajectory Estimation. All tra-
jectory changes result from planned actions either tactically
or strategically provided.

The following planned actions are recognized in this specifi-
cation:

Altitude Change (may be a restricted altitude change)
Hold at a Fix : :

Speed Change

Fully Specified Vector

Each planned action represents one conceptual maneuver and con-
tains information necessary to describe the maneuver. Once the
information in a planned action 1s provided (this step must be
done separate from Trajectory Estimation), then Trajectory
Estimation can translate the conceptual maneuver into a modeled
maneuver on a trajectory.

This Section discusses each planned action in detail, outlining
the content of each one and outlining how it is associated with
an ATC maneuver. The diagrams are taken from Volume 5, Data
Specifications for AERA 1.01, and are included here for con=-
venience,

2-7



Some information for a planned action exists regardless of the
maneuver 1t represents.

Data Common to All Planned Actions:

| PA ID | flight id | pa_type | pa_source | plan_time

The common data contalns system level information. A planned
action is assigned to a particular flight, hence the inclusion
of a flight identification field. In fact, this field identi-
fies a certain version of the trajectory, since several genera-
tions of an aircraft's trajectory may be present at the same
time (see discussion of Trial Plan Probe in the Operational and
Functional Description [5]). The type field, implicitly set
from lower level data input through the interaction mechanism,
further identifies the planned action as a trajectory
maneuver. Example planned action types are “vector"” and
"altitude.”

The remaining fields 1n the common data assist in breaking
ties. Because the most recent trajectory could represent
several generations of planned actions (some from system auto-
mated planning routiaes, some from different controllers,) the
effects of some may overlap. Overlapping planned actlions--that
is, trajectory maneuvers that overlap each other's extent--must
be arbitrated to determine which maneuver should be represented
in the trajectory i1f only cne can be so represented. If a
planned action interferes with another at the same place in the
trajectory (say “"descend to 27000 feet” and "descend to 17000
feet"} then the socurce and plan time f£fields provide enough
information to determine which maneuver is to be modeled. The
Trajectory Estimation preocess will mcdel a controller—entered
maneuver before modeling one that was added by an automated
planning function 1f the two interfere. 1In cases of identical
sources, the plan time~-the time of day the planned action was
entered for modeling--is wused. Trajectory Estimation will
inodel the newest action.

The data content of a planned actlon is examined next for each
planned action type: altitude, hold, speed and vector. Each
maneuver’s data set can be thought of as being appended to the
common data set to further describe the maneuver including
where the maneuver 1Is located and the goal of the maneuver.



Altitude Change

All altitude maneuvers (an example is provided in Figure 2-5(a))
must be represented by an altitude change planned action. An
altitude change is complicated by the fact that it may or may
not be restricted. The target altitude 1s assumed to be less
than or equal to the aircraft's maximum altitude. In additionm,
it is assumed that any restriction position (x,y) lies on the
aircraft's horizontal path. Trajectory Estimation does not
verify either of these assumptions. It may be desirable for a
software mechanism (either an automateéd planner or the man-
machine interface) to verify the planned action's content.

Trajectory Estimation models descents and ascents for aircraft
using information about ground referenced gradients and transi~-
tion speeds stored in the global data base. These data des-
cribe the transition profile in a no-wind environment. Tra-
jectory estimation of altitude transitions then needs only one
critical plece of information besides the new altitude: where
the transition is to be located.

All altitude maneuvers must be represented by a data set des~-
cribing the altitude change.

Data Describing an Altitude Change:

T - - - " - - - T - - - -

-

| target altitude | transition type

O I T T G B B A (< W e - D . (A B¢ S e e B BT Y M M M 2 (s - B e B e B . -

| base_value _type | base x | base y | base_t | base ard

| resume climb time |

- - - e B - - -

The information for the maneuver describes the target altitude
and a transition type field. The type field--either "ascent"”
or "descent”~-is used by Trajectory Estimation to determine the
validity of the maneuver at the position it is modeled. For
tactical altitude changes--those controller-entered maneuvers
that show the current clearance for the aircraft--this field is
obvious from the present altitude of the aircraft., For stra-
tegically placed altitude maneuvers, the value of the type



Original
Route

New
e N e

(a)

/ Hold Fix
Y /
\—Holding

Pattern

(b)

FIGURE 2-5
ALTITUDE AND HOLD MANEUVERS

2-10



field is not so clear cut. Other altitude maneuvers, either
currently placed or to be placed, could invalidate a previously
placed altitude maneuver,

In order for Trajectory Estimation to model an altitude transi-
tion, one point on that transition must be known. That point,
known as the basing point of the maneuver, can be located at
the start of transition, the end of transition, or at some
intermediate location. A basing point could be given as “coor-
dinate,"” "time,"” or “along route distance (ard).” The type of
basing desired is given in the basing value type field.

The basing type selected determines the basing point value
which must be filled (the others left unfilled). Specification
of the x and y coordinates locates a point of the altitude
transition in a plane. Specification of the time coordinate
determines the aircraft start of transition time. The along
route distance value identifies a point (or equivalent) on the
converted route of the aircraft somewhere within the transi-
tion. The resume~climb time field identifies the time the
pilot is cleared to climb to cruise altitude if the maneuver is
an ascent to some lower~than-cruise altitude.

An altitude change may be restricted to go through a certain
altitude at a point on the maneuver. A restriction point can
be placed at the current projected altitude, the target alti-
tude, or anywhere in between. The restriction point is three-
dimensional,

Restriction Information for Altitude Changes:

| discretionary | rest x | rest y | rest z

+

| rest_qualifier

e
.

The information of this portion of the plannmed action contains
the x,y, and z coordinates of the restriction and a qualifier
which indicates whether aircraft will cross the given point
above, at, or below the restriction altitude. The
"discreticnary” field relates pilot involvement in deter-
mination of the start cof transition.

The restriction point can be used to base the planned action if
the pilot is to be given discretion to seek his own transition

2-11



point. A clearance to leave an altitude immediately to cross
some point at some altitude would involve assigning both the
basing point and the restrictiom point.

Hold

All Hold maneuvers (an example 1is provided in Figure 2-5(b))
must be represented by a hold planned action.

Data Describing a Holding Action:

| hold fix x | hold fix y

| direction inbound | EFC_time | leg length type

| leg length value | turn direction

+ — +

The information contained in the hold planned action is suffi-
cient to estimate the size and shape and duration of the
holding pattern. The hold planned action contains the x,y
coordinates of the point which bases the hold action (called
the hold fix). The direction of the inbound leg 1s also
included. Other data include the leg length units, value, and
turn direction indicating a left or right turn in the holding
pattern. The time to expect further clearance (EFC time) is
that time the pilot may resume his flight plan if no other
clearance to the contrary is received from ATC. This field is
used by Trajectory Estimation to bound the hold maneuver tempo-
rally.

Speed Change

All speed maneuvers (an example is provided in Figure 2-6(a))
must be represented by a speed change planned action.

2-12



Decrease

/ Speed

L

300 290

T

(a)

X
=9 S—————yactor

.

» ‘Original
Route
(b)
FIGURE 2-6

SPEED AND VECTOR MANEUVER

2-13



Data Describing a Speed Change Action:

| speed | base value location

| base_value_type | base x | base y

| base t | base ard

The speed value given is the goal speed of the planned action.
The goal speed 1s assumed to be an alrcraft feasible speed and
is accepted by Trajectory Estimation without verification. It
may be desirable for a software mechanism (either an automated
planner or the man-machine interface) to access the aircraft
characteristics tables in order to ascertain the feasibility of
target speeds.

In order for Trajectory Estimation to model a speed change, one
point of the speed change must be known. Like altitude, that
point is called the basing point of the maneuver. Unlike alti-
tude, the speed basing point can be located only at the start
or end of the maneuver, never within the speed transition
itself. The basing value location field gives the position of
the basing point.

The basing point can be expressed in either coordinates, time,
or along route distance. The basing value type tells which
basing convention was chosen for the speed change planned
action., Depending upon the value selected for the basing
point, the point itself must be provided as an (x,y) coor-
dinate, a time value or an along route distance value.

The speed change planned action may also be restricted.

Restriction Information for Speed Change:

| rest_qualifier

+ —+

2-14



The restrictions data contains a restriction qualifier which
indicates whether the aircraft must be above, at, or below the
target speed at the basing point. Trajectory Estimation can
use this field to determine the necessity of the speed action.

Vector

ATC-initiated changes to the aircraft's horizontal route (an
example is provided in Figure 2-6(b)) must be represented by a
vector planned action. The ATC notion of vector 1s much
broader than the vector modeling capabilities of Trajectory
Estimation at this time. The vector planned action simply pro-
vides for short duration changes to the aircraft's route (say
fix-to-fix direct routings) where the route change can be fully
specified. The property of being fully specified, here, means
that the entire route change can be specified by the planning
agent and that the first point of the route change and the last
point of the route change are points on the converted route
(although not necessarily converted fixes) for the aircraft.
Trajectory Estimation does not verify the placement of these
points; therefore, it may be desirable for some software
mechanism to do so.

Data Describing a Vector Action:

A1l of the vertices of a vector maneuver are provided in this
table. The sequence of each vertex with respect to the others
for this vector action is provided along with the x,y coor-
dinates of this vertex. The first vertex 1s taken by Tra-~-
jectory Estimation to be the basing point. At this point, the
aircraft will be modeled as leaving the converted route. The
last vertex 1s assumed to be on the converted route of the air-
craft, and represents the return point.

The vertex points of a vector are used for reference purposes.
Trajectory Estimation uses an algorithm which smoothes out the
turns so that there are no large changes of direction at
cusps. The algorithm approximates a smooth curve through the
turn. The trajectory might not actually cross a vector vertex
point (see Section 4.3.6).

2-15



Terms Combining Planned Actions

The set of planned actions for an aircraft represents a plan
for the aircraft. The aircraft's plan 1s a necessary input to
the Trajectory Estimation scheme, because it allows the tra-~
jectory modeling to take place in the altitude (z) and time (t)
dimensions.

Effects of individual planned actions are processed 1nto an
internal format known as an AGD vector. The AGD vector 1s com-
prised of acceleration, gradient and direction values. Each
element of the AGD vector 1is called an AGD variable. 1In the
trajectory modeling process, the AGD vector 1s reconstructed at
each cusp and 1s assumed constant on segments. Changes in the
AGD vector happen only at the cusps.

Pending action lists, referenced to a past cusp, are lists of
all planned actions yet to be incorporated into the tra-
jectory. These are organized into separate lists for each type
of planned actionmn. Each planned action has a stimulus or
starting point which 1s one of several trajectory events
related to the planned action. The occurrence of the event in
the trajectory modeling process initiates the processing of the
planned action and its subsequent incorporation into the tra-
jectory.

2.2 Design Considerations

Trajectory Estimation, Nominal Plan Bulilder and Resynchroni-
zatlon accept Iinformation from external sources and provide
information for consumption by diverse system functions. The
deslgn of each algorithm has surfaced certain 1implications for
other operations within the AAS environment. While the speci-
fication of changes to those operations 1s beyond the scope of
this document, the identification of implications on those
operations 1s relevant to ensure the correct processing of the
functions described in this specification.

2.2.1 System Interface Requirements

Nominal Plan Builder, Trajectory Estimation, and Resynchron-

1zation, all interface with different system functions. Both
Nominal Plan Buillder and Resynchronization serve the Trajectory

Estimation function.

2-16



2.2.1.1 Implications of Nominal Plan Builder

Adaptation of Altitude Procedures

In NAS Stage A, Route Conversion is responsible for format and
syntax checks and the conversion of the alphanumeric filed
route information into the system (x,y) coordinates. NAS Route
Conversion also identifies procedural route alterations to the
controller. Based upon the flight origin or flight destina-
tion, Route Conversion determines the proper route fix in
effect to exit or enter the terminal area. This further iden-
tifies the route that the aircraft will use. When displayed,
the controller can direct the ailrcraft onto the proper entry
route 1into the terminal region or the proper exit route for
aircraft out of the terminal region.

In contrast, altitude restrictions are handled outside of the
computer in NAS Stage A by Standard Operating Procedures (SOPs)
and Letters of Agreement (IL0As). These are contractual agree-
ments between ATC facilities: for example, between sectors in a
Center or between the Center and the terminal regions it
services. Itemized within these SOPs and LOAs are the altitude
transitions and restrictions to be made by aircraft which will

enter or exit the terminal region. Like route information, the
altitude profiles implied by the flight plan's destination or
origin should show up in the planned trajectory of the aircraft.

Nominal Plan Builder gives a suggested design for incorporating
altitude information into the trajectory of the aircraft.
Altitude transition information now contained in SOPs and LOAs
must be adapted for use by the computer. A suggested scruc-
turing of such information is provided in Section 4.1.

Nominal Plan Builder should be considered an augmentation of
NAS Route Conversion. In many cases, the altitude planning for
an aircraft cannot be separated from its route planning. This
is especially true for entry and exit routes into terminal
areas.

Prior Center Planning

The trajectory for an aircraft must be initialized. This can
be done by using a radar track position for the aircraft or by
using information from the previous control region. For inter-
center transfer, NAS Stage A provides for imnitialization
through the coordination fix, Information in a coordination
fix consists of coordinates (x,y,z,t) of the expected arrival
at the coordination fix along with flight plan information to

2-17



be forwarded. In the AAS, this coordination fix is outside the
center boundary, located in the center's planning region.

Nominal Plan Builder requires that additional information be
provided from the previous control region. Since Trajectory
Estimation is supplying a four-dimensional route, the initial-
ized trajectory must contain all route and altitude alterations
made in the previous center and affecting the mode of entry
into this center. Plan information (the 1list of planned
actions) must be forwarded from thé previous center if those
planned actions maneuver the aircraft past the coordination
fix. These planned actions must be incorporated into the route
of the aircraft so that the proper entry point and entry time
into this new center can be computed. The planned action list
pending at the coordination fix must be forwarded so that the
new center's version of the aircraft's plan outside the center
boundary can be kept current with the previous center's
assigned maneuvers. Any system action incorporating plan
information at the coordination fix and not forwarded implies
an inability to provide Flight Plan Conflict Probe services at
the boundary of a center. The design of Nominal Plan Builder
assumes this transfer of update information between centers,

2.2.1.2 1Implications of Trajectory Estimation

The output of Trajectory Estimation, the trajectory, is depen-
dent upon external data sources for trajectory accuracy. Tra-
jectory Estimation can only perform at the level of quality in
its input data. As the ATC system progresses to a more auto-
mated state, it becomes important for the users of trajectory
data to understand 1its limitations. The errors contained in
the 1information used by Trajectory Estimation are passed on
through to the users of trajectory data. Errors stored in the
atmospheric data base (containing wind speeds, directions and
temperatures versus what exlsts in the atmosphere) will be
incorporated into the trajectory. Stored aircraft character-
istics determine climb and descent rates. Pilots can cause
apparent Trajectory Estimation errors by not adhering to filed
data .

Pilot Route Intent

Trajectory Estimation 1s constructed to follow the nominal
cleared path of the aircraft unless the aircraft 1s specifi-
cally planned otherwise. This path is maintained by Route Con-
verslion and is represented by (x,y) coordinates of all the air-
craft's converted fixes (with respect to this center's planning

2-18



region). ATC actions are assumed to be changes to this in-
tended route of flight.

The converted route represents a contract known to both the
pilot and the controller. The pilot-filed (or altered) route
is known both to the pilot and to the ground ATC system and
represents a relatively stable platform for planning activi-
ties. The pilot 1is expected to follow the converted route
unless a flight plan route change is. specifically requested and
granted. Such a change is entered as a flight plan amendment
which, as a contractual agreement, supercedes the initial
version.

Planning operations such as those performed by the Nominal Plan
Builder can take advantage of this permanence. Consequently,
this specification assumes that the trajectory for an aircraft
and the converted route for that aircraft remain separate data
constructs so that the converted route (i.e., pilot route
intent) can be accessed at any time. The trajectory, built and
maintained by Trajectory Estimation, perturbs the converted
route with planned control action. In the absence of planned
route control actions the converted route is built into the
trajectory.

ATC Activities

The controller may act as a planner (in the Trajectory Esti-
mation sense) in the Air Traffic Control system. While main-
taining vigilance over the aircraft in his sector, a controller
may find it necessary to assign control actions (as planned
actions) to meet ATC system goals. The computer (e.g., Tra-
jectory Estimation) must be aware of all strategic or tactical
planning assignments made by the controller or planner. The
plan for an aircraft (the aircraft's list of planned actions)
must be complete. If this is not the case, then Trajectory
Estimation might provide misleading route and timing infor-
mation to Flight Plan Conflict Probe. The system may then
falsely predict losses of separation or fail to identify real
separation violationms.

This Trajectory Estimation specification assumes an efficient
controller input mechanism for additions to or deletions from
an adircraft plan. The specification assumes that Standard
Operating Practices have been written to define controller
roles and responsibilitdies vis-a-vis the flow of information to
and from the controller and the machine. The specification
further assumes that the training necessary for the human to

2-19



interface effectively with the automation software has been
successfully completed. A controller must recognize that
incorrect or incomplete input severely degrades system activ-
ities and would allow generation and display of false or mis-
leading information over wide areas.

Atmospheric Parameters

The Trajectory Estimation algorithm assumes an adapted atmos-—
pheric data base. The shape of the wind grid in which the
atmospheric data are stored is immaterial; the stored infor-
mation is paramount. Winds at en route altitude can be as much
as one-third of the aircraft's filed speed. The i1nability to
provide an exacting estimate of current winds comprises a
potentially important error source for Trajectory Estimation.

As time progresses, the NAS Plan [2] provides for the estab-
lishment of a CWSU (Center Weather Service Unit) and a change
of alrmass monitoring activity (implementation of NEXRAD). The
quality of the wind data will improve and with that improve-
ment, estimated trajectories will also improve,

Alrcraft Capabilities

Alrcraft performance data also represent a potentially large
error source, Trajectory Estimation design assumes performance
information from the best avallable source. In the near term,
that 1information 1s adapted as ailrcraft class characteristics
data keyed on airframe type (B727), subtype (B727-200), engine
class (B727-200, Pratt-Whitney engine #JT8D-15) and even air
carrier type (B727-200, Pratt-Whitney engine #JT8D-15, American
Airlines) 1f need be. This source of 1information 1is still
statistical, and no matter how accurately characteristics are
specified, they only represent a guess as to the intent of the
individual pilot or the actual capabilities of the aircraft.

Performance characteristics in the future are expected to apply
to 1individual aircraft. Information could be transferred to
ATC via the flight plan. Intended ascent or descent speed
schedules filed in advance by the pilot greatly improve the
communication of how those maneuvers are expected to be exe-
cuted. Although better than characteristics data, flight plan
supplied ascent or descent speed schedules are prone to error
due to the changes that can occur between the time the flight
plan was filed and the start of the maneuver,

2-20



Performance characteristics downlinked via data 1link form the
best estimate of pilot current intent. These data are avail-
able in the future ATC context and represent a valuable base
upon which Trajectory Estimation uncertainty can be reduced.

2.2,1.3 Implications of Resynchronization

Resynchronization and Trajectory Estimation forms the AAS
analog to the NAS Stage A function of CTA Updating. In that
NAS function, should an aircraft deviate by more than some
number of seconds from the calculated time of arrival (CTA) at
some converted fix, the time difference between the CTA and
actual time of arrival i1s added to each CTA ahead of the
aircraft's current position. In this way, the NAS Stage A path
prediction is "synchronized” with the aircraft's returned track
position,

The requirements of automation functions find NAS CTA Updating
inadequate. The AAS trajectory for an aircraft incorporating
temporally placed planned actions may depend on the timing the
aircraft has achieved, A reassignment of timing values to
modeled cusps does not yleld a reassessment of the goals of
each planned action. What does yleld it is a reinvocation of
Trajectory Estimation with Resynchronization parameters.

The Resynchronization function described here 1s an inter-
mediary between two components that will appear in the AAS.
Tra jectory Estimation's use of Resynchronization information is
described in this Algorithmic Specification. The other com~-
ponent is one that has grown out of Assoclation Checking in the
current NAS Stage A system and will take on new duties and a
new name 1in the AAS time frame: Conformance Monitoring.
Resynchronization parameters contribute to the correct func-
tioning of Trajectory Estimation and the problem identification
functions that use the trajectorles.

Conformance Monitoring

The Conformance Monitoring function is not specified at this

time. Conformance Monitoring is that AAS function responsible
for identifying obsolete trajectories. It works with both tra-
jectory data and radar track data, and maintains a data base
for use by Resynchronization.

Periodically (every parameter number of radar scans), Confor-
mance Monitoring receives track information from the radar

2-21



tracking functions of the AAS. For each ailrcraft with a tra-
jectory, the track position is associated with the trajectory
position for the same time as the radar return. Conformance
Monitoring identifies three distinct problems:

e out laterally -~ the aircraft is out of association with
the trajectory to the left or to the right by some
distance greater than a parameter distance

e out vertically - the aircraft is out of association
with the trajectory 1in the vertical dimension by some
distance greater than a parameter distance

e out longitudinally - the aircraft's track position
either leads or follows the trajectory position by some
distance greater than a parameter distance.

The parameters used in conformance checks are given in the AAS
Specification [1].

This specification assumes that all lateral and/or vertical
(and maybe some longitudinal) deviations be identified to the
cognizant controller. It further assumes that, given the air-
craft 1s in association in both the lateral and vertical dimen-
sions, any longitudinal deviations are furnished to the Resyn-
chronization function. Conformance parameters that initiate
Resynchronization may be different from those that alert the
controller to a potential problem in the air traffic flow.

Resynchronization uses extracts of track history for a flight.
These extracts are described here as maintained and provided by

Conformance Monitoring. Track history 1s used to compute a
revised position for the tracked aircraft and to compute an

estimate of current true airspeed., Both position and speed are
input to Trajectory Estimation in the form of a "profile ref-
erence point.”

Prior Center Interface

Trajectory coordination fix parameters dealing with position
and time must be provided for purposes of trajectory initiali-
zation. Any resynchronization of a trajectory in the previous
center must force resynchronization of 1its analog in this
center if coordination fix information has already been for-
warded.,

2=22



2.2.2 Controller Interface lLanguage

A controller communicates desired maneuvers to pilots using the
procedural language of the clearance. A clearance is a
standard formatted order from the ATC system to the pilot to
execute a specific maneuver such as hold, vector, speed change
or altitude change. This specification assumes that the
controller will interact with the computer using some analog of
the clearance language he already uses. This section identi-
fies the language and certain translation functions which must
be present in the man-machine interface to create planned
actions for system use. Specification of the language and the
translation functions are outside the scope of this Trajectory
Estimation specification. In addition, a complete 1list of
expected controller tasks has not yet been constructed.

Understanding the language and translation functions 1s
important in understanding how trajectory events are modeled as
corresponding planned actions. To clarify these two design
concepts, an example of the use and translation of the language
(called a Proposed Clearance Language) is provided below.

Format for the Altitude Proposed Clearance

The altitude change proposed clearance could be expressed in
the following alphanumeric format:

1. Altitude Assignment without a Crossing Restriction

CLIMB
[FLID] [LocATION] MAINTAIN [aLT)
DESCEND

2. Altitude Assignment with a Fix and Altitude Crossing
Restriction

"CLIMB
[FLID] [LocAT ION] [aLT 1,

| DESCE

CROSS [FIX] AT
| AT/BELOW

CAT/ABOVE
[aLT 2}

2-23



3. Altitude Assignment with a Destination Fix

CLIMB AT/BELOW
[FL10] cross [FIx] l: ] [AT ][ALI}
D

DESCEN AT/ABOVE

The altitude proposed clearance supplies all the information
required for an altitude change planned action. For example,
if a controller chooses an altitude change with a fix and alti-
tude crossing restriction, the controller supplies, through the
proposed clearance, the flight identification, the target alti-
tude (ALT 1), the transition type (climb or descent), the base
value location, base value type, the base value coordinate,
time, or ARD (LOCATION), the x,y and 2z coordinates of the
restriction point (FIX, ALT 2), and the restriction point
qualifier. Some information is derived (such as planned action
type) via the man-machine interaction.



TRAJECTORY ESTIMATION FUNCTIONAL DESIGN

As discussed in the preceding sections, this specification
addresses three distinct functional entities: Nominal Plan
Builder, Trajectory Estimation, and Resynchronization. This
section establishes additional design context for these
functions.

3.1 Environment

Nominal Plan Builder, Trajectory Estimation, and Resynchroniza-
tion operate in the context of other AAS functions called Route
Conversion and Conformance Monitoring. Figure 3-1 shows the
functional environment expected to exist 1in' the AAS. The
controller is shown as an interface and labeled "Planner” to
indicate that the controller will have new planning
capabilities. AAS Route Conversion is shown absorbing Nominal
Plan Builder and Trajectory Estimation as outlined in the AAS
Specification [1].

Nominal Plan Builder, Trajectory Estimation, and Resynchron-
ization operate in the context of three system states:

e Flight Plan Acceptance~—operations prior to inbound
handoff of an aircraft £light
plan

e Trajectory Replanning-—operations to support manual and
automated planners

e Trajectory Repositioning-—operations to improve the
accuracy of trajectories

In flight plan acceptance, all Route Conversion functions
operate on aircraft filed route and altitude information. The
route processing logic of Route Conversion creates the (x,y)
representation of the aircraft's route (with procedural route
alterations). Nominal Plan Builder constructs the aircraft's
clearance plan by 1incorporating implied altitude and speed
actions. This route and clearance plan are processed further
in Trajectory Estimation to produce an initial four-dimensional
trajectory, in (x,y,z,t), which models planned mnaneuvers.

In trajectory replanning, Nominal Plan Builder and Trajectory
Estimation process controller-procposed or system—proposed
modifications to the aircraftfs trajectory. When plans are
changed, Nominal Plan Builder and Trajectory Estimation must
replan maneuvers and rebuild the trajectory.

3-1



-t

AAS Route Conversion

Controller
(Planner)

New Flight
Plans

l——-»

Pilot
Changed

Flight

Plans

Procedural
Actions

Syntax

Route
Conver-
sion
Route
Processing

Y

Nominal
Plan
Builder

Trajectory
Estimation

[\

- © ¢ ¢ ==

Conformance
Monitoring

FIGURE 3-1

ization

Resynchron-

TRAJECTORY ESTIMATION FUNCTIONAL ENVIRONMENT




In trajectory repositloning, Resynchronization and Trajectory
Estimation operate at the direction of Conformance Monitoring.
When Conformance Monitoring detects a deviation in the
longitudinal dimension between the aircraft's tracked position
and 1its ©predicted trajectory position, Resynchronization
computes trajectory initialization information using actual
positions. Trajectory Estimation 1s i1invoked to reestablish
trajectories based on improved real-time knowledge of aircraft
position and performance.

3.1.1 Input Data and Activation

Collectively, Nominal Plan Builder, Trajectory Estimation, and
Resynchronization require access to much of the data in the
global data base. Figure 3-2 shows some major data sources for
Trajectory Estimation. Activation of Trajectory Estimation
differs with respect to the three system states: flight plan
acceptance, trajectory replanning or trajectory repositioning.

3.1.1.1 Input Data

Nominal Plan Builder

At gystem startup, adaptation provides a Restrictions Table
containing altitude transition procedures. Implied altitude
transitions are air traffic control actions which are implicit
in the filed flight plan for any individual aircraft arriving
at or departing from an airport known in the planning region.
Procedural altitude changes are ascents or descents which may
be commanded through center-wide Standard Operating Procedures
(SOPs) or Letters of Agreement (LOAs). These are common around
ma jor terminal areas where transitioning traffic can be heavy.

At flight plan acceptance time, Route Conversion functions
other than Nominal Plan Builder create information for Nominal
Plan Builder. This information includes alterations made to
the filed route of tne alrcraft to account for procedural route
restrictions 1in the AAS environment. Other information
supplied to Nominal Plan Builder and Trajectory Estimation
includes the filed route, a coordination fix and data forwarded
from the previous control region's clearance plan that effect
the trajectory of the aircraft after the coordination fix.

Nowinal Plan Builder constructs the initial clearance plan for
the aircraft wusing the prior region's forwarded plan and
procedural altitude actions stored for tnis center., This 1is
the augmented plan modeled to create the 1initial four-
dimensional trajectory. Flight Plan Conflict Probe and

3-3



Planned
Actions

\__4/—_

Aircraft
Characteristics
Data

Atmospheric
Data

Tra jectory
Estimation

Data Base of
Trajectories

FIGURE 3-2
TRAJECTORY ESTIMATION INPUT DATA SOURCES

3-4



Airspace Probe wuse this initial trajectory to identify
trajectory problems.

In trajectory replanning, some changes may have been made in
the plan; planned altitude and route changes have to be
verified for relevance to the new plan. To replan, Nominal
Plan Builder creates a new set of planned actions starting at
the last cusp created by controller action.

The 1list of input data needed by Nominal Plan Builder includes
the following:

Restrictions Table

approved flight plan as adapted by Route Conversion
starting point for generation of nominal plan ’
forwarded planned action list (if any)

aircraft performance data

Tra jectory Estimation

Trajectory Estimation 1is responsible for constructing a
four—dimensional path for an aircraft. To do this, Trajectory
Estimation must process data from many sources. The converted
route for an aircraft is always input. In the absence of ATC
route alterations, the converted route provides the horizontal
path on which to build the vertical and time profiles.

Envelopes of aircraft capabilities are obtained from the
aircraft characteristics data base. These data 1include
information bounding certain modeling parameters, such as
maximum and minimum speeds and maximum and minimum ascent and
descent gradients.* Cruise acceleration values are stored for
speed transition modeling. Important speed values specific to
aircraft type, such as long range cruise speed and maximum
endurance speed, are stored.

The wind data base provides data required by Trajectory
Estimation to translate between true airspeed and ground
speed. Internally, Trajectory Estimation uses true airspeed,
the speed of the aircraft relative to the air mass.
Externally, all other functions use ground speed, the speed
traveled by the aircraft's ground projection. These two speeds

* Gradients for aircraft are assumed to be stored in sufficient

detail to support accurate modeling. These no-wind gradients may
be stored as piecewise linear functions if needed.

3-5



are related by the wind speed along the aircraft's route. A
strong tailwind makes the ground speed faster than the measured
true airspeed. A headwind makes the ground speed less than the
measured true airspeed.

Wind speed information for this conversion is awailable through
the wind grid. Each cell i1in this three-dimensional grid
structure 1is assumed in this specification to be aligned with
the coordinate axes and contains the following:

e wind speed
e wind direction
e temperature

These parameters will be assumed to be indicative of those real
values averaged across the cell extent.

Trajectory initialization information must come from outside
Trajectory Estimation. This information is called a profile
reference point and will include the following parameters:

e a point (x,y)

e an altitude z at (x,y)

e a time t at (x,y)

e a true airspeed (or equivalent) at (x,y)

This construct is necessary to start or update the trajectory
construction process.

The list of input data needed by Trajectory Estimation includes
the following:

e converted route
e profile reference point in the current planning region
e a clearance plan to be modeled
e aircraft performance characteristics
e atmospheric data
Resynchronization

Resynchronization provides Trajectory Estimation with updated
estimates of aircraft position and speed. It is activated
after Conformance Monitoring functions, separate from
Resynchronization, have identified a substantial longitudinal
difference between planned and actual aircraft positions.
Resynchronization provides a radar—-based starting position and
reestimated speeds for trajectory modeling in order to correct
for expected uncertainties in the data such as errors in stored
winds.

3-6



The list of input data needed by Resynchronization includes the
following:

@ radar track history data (if the aircraft is inside the
planning region and a track start has occurred)

¢ the atmospheric data base for speed translations

3.1.1.2 Automatic Activation Sequences

Nominal Plan Builder, Trajectory Estimation, and Resynchroniza-
tion are all invoked automatically. For Nominal Plan Builder

and Trajectory Estimation, the triggering action is one of the
following three system events:

@ A flight plan is added to the data base for the first
time, or is amended by the previous control region and
reforwarded.

¢ Resynchronization has provided new position and timing
information based on radar track data.

® An aircraft's plan and trajectory, already in the data
base, are affected by an amendment from an automation
function.

Resynchronization is invoked automatically when Conformance
Monitoring functions detect a significant error between the
predicted aircraft positicn and the actual aircraft positionm.

3.1.1.3 Controller Initiating Sequences

Nominal Plan Builder and Trajectory Estimation can also be
invoked (indirectly) by controller action. The Operational and
Functional Description [5] provides the controller with a Trial
Plan Probe. Within the Trial Plan Probe context, the
controller has the capebility to suggest candidate ATC
maneuvers for an aircraft. These maneuvers are translated by
the controller's interface with the AAS to an augmented set of
planned actions from which a trajectory can be derived. The
trajectory resulting from a Trial Plan Probe can then be
processed by AAS probe functions to identify any problems.

3.1.2 Qutput Data

Collectively, Nominal Plan Builder, Trajectory Estimation, and
Resynchronization provide global cutput used by each other and
by other system functions te support strategic planning.

3~7



Nominal Plan Builder

Nominal Plan Builder further refines the converted route in the
altitude dimension by adding implied or procedural altitude
transitions for arrivals and departures. It creates a list of
planned actions 8o that modeling can take place. Other
maneuvers originating within the previous control center are
also incorporated. The initial clearance plan for the aircraft
is added to the data base.

Trajectory Estimation

Trajectory Estimation processes planned actions and route
information to produce a four-dimensional path, called a
trajectory,for an aircraft. The trajectory is an aircraft
ground referenced path represented horizontally in (x,y),
vertically in z, and temporally in t. The trajectory is a
sequence of (x,y,z,t) points, called cusps, joined by implied
line segments. These points provide a four-dimensional
estimate of aircraft positions at all locations along the filed
(or amended) route in the planning region.

Resynchronization

Resynchronization provides an updated profile reference point
and true airspeed. This information is constructed solely for
the use of Trajectory Estimationm.

Qutput to the Controller

Nominal Plan Builder, Trajectory Estimation, and Resynchroniza-
tion do not generally provide direct data for the controller.
They do maintain the trajectory which can provide predicted
route, altitude and time data for controller displays.
Trajectory data in AFERA 1, however, are secondary to conflict
data, and might not be displayed at all (see Operational and
Functional Description [5]).

3.2 Design Assumptions

The Trajectory Estimation design has assumptions which affect
the operational system interface and several functions separate
from Trajectory Estimation. Internal operation of Nominal Plan
Builder, Trajectory Estimation and Resynchronization is also
governed by a set of design assumptions.



3.2.1 Operational System Interface

This design assumes that the trajectory derived by Trajectory
Estimation replaces the path now predicted by NAS Stage A
functions. It further assumes that some method 1s provided for
the controller to know about Iimplied and procedural altitude
restrictions planned by Nominal Plan Builder. The design also
agsumes that some method is provided to help the controller

® remember the plans that are constructed

¢ Inform the pilot when clearance maneuvers should be
executed

© Jdentify a particular maneuver in a plaﬁ which needs to
be changed

¢ specify an entire plan that should be modified

Trajectory Estimation's role in the operational system is
limited. Trajectory Estimation does not handle selection of a
plan for analysis. 1% does not provide a mechanism for adding,
changing, or deleting the plars and it does not provide a
mechanism for editing parts of a planned action. Other
functions separate from Trajectory Estimation are expected to
handle

selectlion of a plan for analysis

construction of the planned action lists

interaction with a contreller to change a plan
acceptance of a new plan to replace the current plan
interaction with the data base

¢ & & 8 @

3.2.2 External Function Design Assumptions

Several references were made in Section 2.2 detailing implica-
tions of Nominal Plan Builder, Trajectory Estimation and
Resynchronization on some external functions. These implica-
tions are listed below.

® Procedural altitude restrictions must be adapted into a
date base for Nomimal Plan Builder.

¢ Interfacility transfer of information must be upgraded
to include clearance plan information.

# The convertad route must reside in the data base
separaie from the trajectory.

3~9



o A meaningful and efficient machine-human Interface must
be created, standard operating practices must be
written and new training principles must be instituted
for controllers. Aircraft plan information must be
known to the computer.

e Atmospheric parameters (such as wind speed, wind
direction, and temperature) are required. This infor-
mation is assumed to be of increasing quality so other
NAS Plan objectives may be reached.

® Alrcraft class 1information must be available to the
level necessary to be wuseful in the prediction of
aircraft position. This Information is assumed to be
capable of evolving to take full use of Flight Manage-
ment Computers and a digital data link. Protocols are
assumed to be established for formatting and storing
downlinked aircraft characteristics data.

¢ The Conformance Monitoring function must be evolved to
trigger Resynchronization. This implies the use of the
trajectory instead of the Converted Route to track
aircraft progress. Conformance Monitoring also
provides a track history for each aircraft.

Further assumptions are made concerning the responsibilities of
trajectory derivation functions. The AAS provides for dynamic
-creation and deletion of trajectory data unavailable 1in NAS
Stage A. The controller can alter a clearance plan for an
aircraft and have a trajectory rederived. This plan may have
been used to investigate alternatives; for example, 1f the
altitude of a given aircraft were changed, would that solve a
predicted separation problem?

Aircraft trajectories are used in the AAS probe functions as
well as in AAS Flight Plan Aided Tracking and Conformance
Monitoring functions. Trajectory data for these purposes
should be relatively static. This specification assumes that a
data base management function will be a part of the AAS. This
function keeps the controllers' trial trajectorles separate
from the currently accepted trajectory used by other system
functions. A design to the contrary would allow an
unacceptable instablility in data used in a systemwide context.

The design of trajectory derivation algorithms also assumes the

existence of a controlling program or programs. These software
entitles place trajectory derivation algorithms firmly within

3-10



rigid invocation sequences based upon system States. The
controlling programs must sequence trajectory derivation
functions with other system functions to ensure the
availability of input data.

3.2.3 Internal Function Design Assumptions

The construction of the three algorithms described in this
volume 1s governed internslly by a set of design assumptions
which are provided below.

3.2.3.1 Coordinate Systens

This specification 1s written using a cartesian coordinate
system. NAS Stage A uses a stereographic projection to obtain
(x,y) data and uses altimeter altitudes to obtain altitudes.
Stereographic projection is atitractive since most NAS functions
are written in that coordinate system. An extensive library
exists 1In the NAS lfterature which provides for translation
between stereographic coordinates and latitude/longitude, for
example [3,8,9].

The choice of coordinate systems 1s 8till a topic for
discussion and the eventual selection by the FAA is likely to
have implications system wide. There 1s nething in Trajectory
Estimation (or Nominal Plan Builder and Resynchronization) that
1s 1nherently cartesian. Computations could be done, for
example, 1in ellipsoldal <coordinates. The computations would
change, but not the structure.

Cartesian coordinates, and 1in particular the system used by NAS
Stage A, have definite drawbacks, definite errors induced by
the very use of the coordinate system. Addressing those errors
i1s beyond the scope of this document except to point out that
errors in predictions of traiectorlies are a function of the
length between cusps, and Trajectory Estimation can be made to
limit that distance, thereby decreasing the induced errors to
an acceptable level. What 1s gained by using a NAS coordinate
system is the abilitvy to cross reference functional entities
between NAS and advanced automation functions and, thereby,
enhance clarity.

The use of a cartesian coordinate system Jn this specification
shiould not be coustrusd as a recommendatlon for that type of
coordinate syste.



3.2.3.2 Interfacility Data Transfer

This specification 1s written to yileld a description of the
path processing algorithms that produce a four-dimensional
trajectory. Some requirements for the interfacility transfer
of data necessary to support this process have been
identified. These requirements suffice only to indicate the
processing steps and do not convey an all-things-considered
design.

Certain assumptions were made concerning the aircraft's
behavior at entry into the system. The aircraft's coordination
fix is assumed to be on the converted route of the aircraft.
This implies that no vector operation i1s actively taking place
at the planning region boundary. This assumption 18 too
restrictive for the AAS implementation, but to allow otherwise
would unnecessarily complicate the description of Trajectory

Estimation algorithms. ‘

Trajectory Estimation will require a large amount of forwarded
information. Information requirements issues are compounded by
the fact that a facility using an AAS implementation could
reside adjacent to an ATC installation still running NAS Stage
A. The requirements on such a configuration are unknown at
this time.

3.2.3.3 Nominal Plan Builder Design Assumptions

A planner is responsible for the internal generation of planned
actions. The Nominal Plan Builder is the first automated
planner in the Advanced Automation System. It shares planmer
status 1in AAS only with the controller. Later, transition
strategies [6] and the NAS Plan [2] provide for the inclusion
of other automated planners, namely Conflict Resolution,
Airspace Resolution and Delay Absorption Planning.

A planner 1s the only entity given the authority to generate
planned actions and also the only entity that can alter or
delete' existing planned actions which have not yet been
executed. Nominal Plan Builder creates or alters planned
actions s0 that trajectories conform to center standard
procedures. It can only alter actions which it has created
and can not create actions that interfere with planned actions
created by other planners (the controller).

Nominal Plan Bullder is assumed to be an 1integral part of the

AAS Route Conversion process. Nominal Plan Builder information
transmitted in this document provides design criteria necessary

3-12



to the establishment of the procedural altitude clearance
plan. Integration of procedural altitude actions into the
procedural route assignment process, already a part of NAS
Stage A Route Conversion, is beyond the scope of the present

specification.

Controller planning operations can alter the path of an
aircraft in both route and altitude. Either change category
could alter the altitude clearance plan. Nominal Plan Builder
must be invocable to assess the quality of the procedural
altitude clearance plan when the controller has changed other
aspects of the aircraft's plan.

When altitude actions are invalidated by other controller
actions, Nominal Plan Builder must be able to delete formerly
placed planned actions and institute others.

3.2.3.4 Trajectory Estimation Design Assumptions

In this specification, Trajectory Estimation 18 given a
specific structure. That structure i1s consistent with the
innerworkings of planned action processing. It seems, on the
surface, that some dimensions (read planned actions) can be
divorced from other dimensions in the modeling process. If
this initial assessment turns out to be a modeling truth, then
the £final design 1s simplified. The development of the
Trajectory Estimation algorithm has not been able to falsify
that initial impression, and the algorithmic design takes
advantage of inherent simplificationms.

To be more specific, horizontal modeling (route and vector
actions) have been separated from vertical modeling (altitude
actions). A vector, for example, specifies an ATC change to
the route of an aircraft., The shape of that change is given in
a planned action. Altitude transitions are not a factor in
achieving that specified vector shape.  The converse 1is also
truet an altitude action 18 achievable regardless of any
horizontal shape changes made to the aircraft's route.
Aircraft timing i1s changed, however, if these actions suddenly
appear. The separation of dimensions can only be taken so far.

The design of Trajectory Estimation incorporates the idea that
maneuvers may be planned separately for horizontal and vertical
dimensions. Trajectory Estimation can be broken into four
distinct parts-—Initialization, Planned Action Processing, and
Trajectory Construction and Trajectory Post Processing.
Planned Action Processing 18 responsible for deriving

3-13



information for each dimension separately, and Trajectory
Construction synthesizes this information. :

Initialization discriminates between different invocations of
Trajectory Estimation. Invocation of Trajectory Estimation by
a planner 1is different from invocation via Resynchronization.
When Trajectory Estimation is invoked by a plan change, the-
clearance plan is unstable but the aircraft's execution of the
current plan is not. When Trajectory Estimation is invoked
through trajectory repositioning, the timing or execution of
the aircraft's current plan is unstable, but the clearance plan
itself is not. . o :

Planned Action Processing derives intermediate data 1items for
Trajectory Construction. Each planned action type 18 repre-
sented by a planned action processor. In addition, when no
other route alteration planned actions are active, Trajectory.
Estimation obtains direction information based on the converted
route. Protocols have been set up describing the sequence of
execution of planned action processors. Dimensions can be
separated, but interactions with other planned actions cannot
be disregarded.

3.2.3.5 Resynchronization Design Assumptions

The Conformance Monitoring function must be evolved to trigger
Resynchronization. This implies use of trajectories computed
by Trajectory Estimation to determine the estimated positions
used by Conformance Monitoring. It also implies that
Conformance Monitoring supplies Resynchronization with track
data. Hence, historical track data must be made available.

3.3 Functions and ‘Subfunctions

The Trajectory Estimation Specification describes three
functions: Nominal Plan Builder (plans altitude transitions
for aircraft arriving or departing from terminals), Trajectory
Estimation (incorporates planned actions and builds the
trajectory), and Resynchronization (provides - trajectory
positioning information). Trajectory Estimation is composed of
four subfunctions: Trajectory Initialization (sets up the
internal processing environment), Planned Action Processing
(coordinates planned - 4dctions  and  builds intermediate
structures), Trajectory Construction (manipulates intermediate
data to construct cusps) and Trajectory Post Processing
(ensures the 1integrity of the trajectory and constructs
uncertainty areas). External information (route informationm,
aircraft performance characteristics, winds, etc.) are drawn

3-14



into the computations in the subfunctions. Figure 3-3 shows
the breakdown of the topics of this specification at the
function and at the subfunction 1levels. Each function and
subfunction is described briefly below.

3.3.1 Nominal Plan Builder

Nominal Plan Builder generates planned actions which initiate
necessary altitude and speed transitions while adhering to
applicable procedural restrictions. Nominal Plan Builder is
not concerned with route alteration or restrictions; that
function 1s performed by Route Conversion before Nominal Plan

Builder is invoked.

The majority of the altitude and speed transitions and
corresponding restrictions concern an aircraft's arrival or
departure from terminal areas. Restrictions are applied to
ensure that alrcraft enter and leave the terminal airspace in a
safe and manageable manner. In the absence of procedural
restrictions, Nominal Plan Builder generates planned actions
which create nominal ascents and descents, as required, to
appropriate altitudes and speeds.

When an aircraft enters a planning region, Nominal Plan Builder
determines in which sector the aircraft 1is entering.
Trajectory Estimation is invoked with the planned action list
from the previous center, extending the resultant trajectory
into the current center. Using the entry sector and the
destination field (among others) from the flight plan, Nominal
Plan Builder extracts - applicable restrictions from a
restrictions table. Since some restrictions apply only to
particular classes of aircraft or to certain flight routes, the
restriction table contains additional qualifiers which Nominal
Plan Builder examines when identifying appropriate
restrictions. Nominal Plan Builder outputs planned actiomns
which implement these restrictions. The final step within each
iteration of Nominal Plan Builder is to verify that the
aircraft trajectory agrees with the cleared altitude and speed,
unless prohibited by a restriction. If the trajectory is not
yet at cleared altitude and speed and 1is not prohibited from
being so, Nominal Plan Builder generates planned actions needed
to achieve the cleared parameters. Nominal Plan Builder then
repeats the procedures described above for each sector in the

center.

If Nominal Plan Builder is invoked because of trajectory
replanning, planning begins at a point following the last
planned action initiated by a higher priority planner; this

3-15



Resynchron-
ization

Procedural
Route
Processing

Nominal
Plan
Builder

-

J

Trajectory
Initialization

'

Planned Action
Processing

!

Trajectory
Construction

l,

Trajectory Post
Processing

'

Trajectory
Database

FIGURE 3-3

FUNCTIONAL & SUBFUNCTIONAL BREAKDOWN
OF TRAJECTORY ESTIMATION

3-16




point 1is determined by Trajectory Estimation. Nominal Plan
Builder begins by deleting all its planned actions following
this point, as these planned actions may now be 1nappropriate
because of the plan amendment. Nominal Plan Builder then
follows the same procedure described above for implementing
required altitude and speed transitioms.

3.3.2 Trajectory Initialization

The purpose of Trajectory Initialization 18 to provide a
uniform set of d1input information to the Planned Action
Processing and Trajectory Construction routines regardless of
system state in which Trajectory Estimation is invoked (see
Section 3.1). Because of the uniform input, the trajectory
modeling components perform in the same way in every context in
which - Trajectory ©Estimation can be called. Trajectory
Initialization provides the transition between multiple
external calling environments and the uniform inputs for the
trajectory modeling components.

Trajectory Estimation may be called in any of the contexts
described in Section 3.1: flight plan acceptance, trajectory
replanning, and trajectory repositioning. The uniform input
for the trajectory modeling components is as follows:

e an initialized partial trajectory which consists of a
single point termed a past cusp

e lists (by planned action type) of all planned actions
that are pending in this modeling process as of this
past cusp

e 1dentification of those planned actions that are in
control of each AGD variable at this past cusp

This section describes the derivation of fhe uniform 1input for
the different invocation contexts.

In the context of flight plan acceptance, Trajectory
Initialization creates the uniform input for the trajectory
modeling components for a flight that has not previously been
modeled. The 1input that must be provided to Trajectory
Initialization is as follows:

e a profile reference point, including true airspeed and
along-route distance

3-17



o identification of any planned actions that are in
control of AGD variables at the profile reference point

e lists of planned actions pending at the profile
reference point ‘

If the flight plan i1s being created at the current center, this
input 1is provided by system flight plan acquisition functions.
If the flight plan 18 being handed off from an adjacent
facility, this input is forwarded by the previous center. (The
exact description of handoff processlng and new  flight
processing 1in the AAS is Dbeyond the scope of this
specification.) = The processing steps for Trajectory
Initialization are the following:

® create the initial cusp of the trajectory, using the
profile reference point

@ create the past cusp as a éopy of the profile reference
point : , : . :

® create separate ﬁeﬂding aétibn lists by planned action
type from the input plan

e copy the identification of the AGD-controlling planned
actions

In the context of trajectory replanning, Trajectory
Initialization creates the uniform input for a flight for which
the set of planned actions has changed, but tne previously
established profile reference point has not. The input that
must be provided to [rajectory Initialization is the new set of
planned actions for the flight plan. The profile reference
point is already available as part of the AAS data base. Also
available are the beginning and ending points on the previous
trajectory where planned actions were actually controlling some
of the AGD parameters. Trajectory Initialization references
the (existing) profile reference point to initialize the
trajectory. It uses the planned action duration data to
establish which planned actions were in control of AGD vectors
at that point. The processing steps for Trajectory
Initialization are as follows: '

o designate the profile reference point as the pasf cusp

e delete trajectory cusps beyond the past cusp

3-13



e create pending action lists from those planﬁed actions
that may take effect on or after the past cusp

e copy the identification of the AGD-controlling planned
actions :

In the context of trajectory repositioning, Trajectory
Initialization creates the uniform input for a flight thnat has
a changed profile reference point, but no changes in the set of
planned actions. Combinations of replanning and repositioning
are to be resolved by repositioning first. The input tnat must
be provided to Trajectory Initialization i1is a new profile
reference point, 1including true airspeed and along-route
distance. Planned actions that control the AGD .parameters can
be determined from the existing plan. The processing steps for
Trajectory Initialization will be to:

® create a cusp of the trajectory, using tne profile
reference point and designate it the past cusp

e create pending action lists from those planned actions
that may take effect on or after the past cusp

® derive the 1dentification of the AGD-controlling
planned actions

® delete the entire existing trajectory anead of the past
cusp

3.3.3 Planned Action Processing

A marked difference between tne Trajectory Estimation describped
in this document and NAS Stage A Flight Plan Position
Processing [3] 18 the expanded ability to incorporate control
actions into the estimate of position for an ailrcraft.
Previously, some control actions were incofporated (such as new
assigned altitudes or speeds) when the controller changed such
values (via manual input) for aircraft uander his jurisdiction.
This process provided the controller with very little strategic
planning capability: instead, most planning was firmly placed
with the controller, who then had no opportunity to check the
efficaciousness of his actions.

The Trajectory Estimation algorithm extends the notion of
“control action to that of a planned action. Such a planned
action <can have temporal placemeant, an evolution from a
controller's tactical «control action which presunes a
controller 1initiated change of aircraft clearance already

3-19



acknowledged by the pilot. Trajectory Estimation allows the
controller to perform some strategic planning to investigate
the effects of proposed control actions on the route of an
alrcraft witnout changing the aircraft data used for tracking
and Conformance Monitoring. If the effects of a proposed
change in speed, for example, do not meet controller
requirements, such an action need not be initiated, and the
proposed planned actions may be eliminated.

The processing steps necessary to translate the effect of any
of the planned actions or are basically the same. The
generalized processing scheme 1is described below, and
illustrated in Figure 3-4. The example given 1in Figure 3-5
will be used to 1illustrate the steps in. planned action
proceasing. The concept and content of each planned action is
detalled in Section 2.

3.3.3.1 Control of AGD Variables

Each AGD variable may be controlled by one or more planned
action processors. For example, the acceleration AGD variable
may be controlled by the Speed or Hold Planned Action
Processors. The Speed Planned Action Processor controls the
acceleration variable by setting it to a value. The Hold
Planned Action can control the acceleration variable by setting
it to a value while the aircraft is decelerating to holding
speed or by preventing the aircraft from accelerating (forcing
acceleration to -zero) in the holding pattern. The
relationships between Planned Action Processors and AGD
variables are shown in Figure 3-6.

To determine which actions control the AGD variables the
processors must determine which actions might control the
variables and then resolve any overlaps between these actioas.
The first step is for each planned action processor to consider
the past cusp of the so-far-built trajectory. Since the
alrcraft modeled position may be in the middle of a maneuver,
planned action processing must determine which planned actions
might be active (Figure 3-7).

Overlap checks are performed to ensure the consistency of the
data flow withian the Trajectory Estimation process. These-
checks, specifically constructed for each planned action
procassing component, identify cases of potential confusion
where two or more planned action processing componeats have
control over the same aircraft AGD variable. For example,
during the execution of a speed planned action, another speed
planned action begins. Each speed planned action 1is

L3-20



Determine Planned Actions

-
Possible Active Planned Actions

Overlap Resolution

1
Active Planned Actions

AGD Valuation  — (abcel, grad, direction)
Limit Valuation —t{[Lintty J=1,...M]
FIGURE 3-4

PROCESSING OVERVIEW

3-21



PA ID Start Target Plan_Time Source
Speed List 567 373NMI «82M 11:24 Controller
‘ 348 377NMI «80M 11:45 Controller
Vector List 745 346NM1 (Direct to)A 11:16 Controller
Altitude List 936 320NM1 22,000 " 11:05 Controller
1234 420NMI 20,000 10:40 Nominal Plan
Builder
FIGURE 3-5
EXAMPLE

3-22



AGD Variable

Gradient :\t:celerat:ionI Direction
i Speed R C D
N .
n
2 Altitude C C,P D
) ]
‘: Vector D A D C
t
i
o | Houd D C,P D,C
~ FRF D D C
Legend:
D — Don't Care C —— Change
R -- Read Only P -- Prevent Change
FIGURE 3-6
PLANNED ACTION PROCESSOR/AGD VARIABLE
CONTROL RESPONSIBILITIES

3-23



Past Cusp

PA_ID PA TYPE = START TARGET PLAN TIME SOURCE
745 VEC 346 A 1:24 C
567 SPD 373 «824 ° 11:45 c
348 SPD 377 «80M 11:16 C

. FIGURE 3-7

POSSIBLE ACTIVE ACTIONS AT PAST CUSP

3-24



responsible for changing the acceleration AGD variable.
However, only one can be allowed to actually do so. An
arbitration scheme 18 1included with each planned action
processing component which allows identification of which
planned action has control over a particular AGD variable at
any one time. :

The time each Planned Action was added to the plan and the
source of the planned action are used to determine planned
action precedence when two or more planned actions of the same
type are proposed at once. Controller generated planned
actions take precedence over planned actions originating in
Nominal Plan Builder. When two actions of the same type from
the same source overlap, precedence 1s given to the most
recently planned action (Figure 3-8). Figure 3-9 provides a
suggested precedence relationship among the processors
discussed in this document. If actions overlap but do not seek
to control the same AGD variables, both actions will be
modeled. A planned action processor may return with no
specified control actions.

3.3.3.2 Assignment of AGD Values and Associated Limits

Once a planned action processing component has identified which
active planned action has jurisdiction over a particular AGD
variable, then processing proceeds in two directions.

First, the AGD variable 1is given a value (Figure 3-10).
Aircraft accelerations or gradients (both ascent and descent)
are extracted by the planned action processing component from
the aircraft characteristics table stored for this aircraft or,
conceivably, from the planned action for some new types of
planned actions. Trajectory Estimation uses the best available
information in its processing since these data have come from
the best source available (e.g., from worst to best: general
aircraft performance characteristics tables, data submitted by
flight plan,and data obtained by Mode-S data 1link interaction
with a flight management computer). The direction information
is obtained from the vector planned action, or, if a vector
planned action is not in active processing, from the underlying
filed route structure, as amended by Route Conversion.

Second, some indication must be given by a planned action
processing component about the length of time its AGD wvariable
"1s to remain valid. Such an indication is called a limit. It
conveys to the Trajectory Construction subfunction a variable
which can be translated into time. . An example 1is again
extracted from Speed Planned Action Processing.

3-25



A AU
| ¢ 73
o ‘567 348 '

Planned Action

PA ID PA TYPE Start Target_Speed Plan Time Source

567 SPD 373NMI .82M 11:24 Controller
348 SPD 377NM1 «80M 11:45 Controller

PA ID 567 Stopped at 377NMI

FIGURE 3-8
OVERLAP RESOLUTION

3-26



SPEED ALTITUDE VECTOR HOLD FRF
4 4
-
SPEED plan
time
'y
. - -
ALTITUDE plan
time
4 N
- -
VECTOR plan plan’
time time
! ) ! )
- -
HOLD - plan plan
time time
4 4
FRF
Legend: Arrow points to the planned action having precedence.

When two arrows are present, the newest (time of
creation by planner or controller) .has precedence.

FRF is considered the NULL planned action which allows
the aircraft's approved route to be followed.

FIGURE 3-9

PLANNED ACTION PRECEDENCE RELATIONSHIPS

3-27



PA_ID PA_TYPE AGD VECTOR

745 VEC (0,0,70°)

348 - SPD (1.68,0,0)

(1.68,0,70°)

. FIGURE 3-10
AGD VECTORS

3-28



The Speed Planned Action Processing component has jurisdiction

over the acceleration AGD variable. When active, the component
specifies an acceleration value. $So tnat Trajectory Construc-
tion does not accelerate the aircraft forever afterward, a
limit 1s specified; in this case a speed. In effect, this

Speed Planned Action Processing component 1is specifying “change
the aircraft's acceleration to (given parameter) until a

(1imiting speed) is attained.”

Limits will occur at points where the value of the AGD
variables change for active planned actions and at the starting
points of non-active planned actions (Figure 3-11).

3.3.3.3 Inclusion of PendiqgﬁActioﬁs Start Limits

The final responsibility of planned action  processing. ensures
that all pending actions are modeled. For each pending action
list (separated by planned action type) each individual pending
planned action 1is examined. Using information stored at the
past cusp, the start condition of each planned action 1is
computed. This 1involves translation of planned action basing
information to a maneuver begin event. That event, either a
position, an altitude, a time or an along route distance is
stored as an appropriate limit value. Eventually, a pending
action's start condition (stimulus) is identical to appropriate
parameters at a past cusp and, at that event, the planned
action may gain control over an AGD varilable.

3.3.4 Trajectory Construction

Trajectory Construction 1is a subfunction within the Trajectory
Estimation process. Trajectory Construction uses the
information from planned action processing and the atmospheric
data base to compute the four-dimensional cusps (Figure 3-12).
In addition, Trajectory Construction computes and/or stores
other information at cusps which 1s passed back to planned
action processing. . ’

Planned action processing completes the AGD vector. The
acceleration, gradient and direction variables together form an
"operator” for purposes of altering parameters stored at the
past cusp to compute similar parameters for the next cusp. The
acceleration variable indicates how to alter the speed of the
aircraft, and, therefore, its timing. The gradient variable
Indicutes changes in altitude, and the direction variable
indicates how to transform the (x,y) coordinates at the past
cusp to the new (x,y) coordinates at the next cusp. The fully
completed AGD vector 1s input to Trajectory Construction.

3-29



PA_Ip P

ATYPE  Lpyre.
74 v '
Active 3 Ec A
Actlong 345 SPD .8 .
Non~-Active [1234 _ ALIf . 420 - N.“I
Actions cr, FRP 382 NMI
CF2 - Converted Fix
FIGURE 3-11
LiMITS

3-30



Planned Actio
Processor

Atmospheric ‘ Aircraft
Data Base Characteristics
Data

v

Trajectory
Construction ‘

!

Cusp
(x,¥,2z,t)

FIGURE 3-12
TRAJECTORY CONSTRUCTION PROCESSING OVERVIEW

3-31



The AGD vector 1is used to extend past cusp values. The AGD
vector can be thought of as yielding an unbounded four-
dimensional line emanating from the past cusp. Limits toward
the next cusp, also produced by planned action processing,
indicate to what extent past cusp values should be changed.
The limits indicate where the forward bounding point ought to
~ be placed. -

- Limits 1indicate one or the other of two possibilities.

Firstly, a limit can be used: to bound the effects of an
evaluated AGD variable. -~ An acceleration change (non-zero
acceleration variable) 1is accompanied from planned action
processing with a speed limit. The two together operate on tne
speed value at the past cusp: the acceleration variable shows
how to change that speed value, tne speed limit indicates to
what extent the acceleration should be allowed. The speed
limit is a new speed value and Trajectory Construction will
place a cusp (possibly not the next cusp) at the position where
that new speed value is achieved. ‘

Secondly, - limits can ~ indicate  future ‘trajectory events .
-unassoclated with the AGD vector. These events -include the
beginning positien of -each.  peanding action. - Trajectory
. Construction will not build past . these events ensuring that
each pending planned action be allowed its -chance at changing

- the AGD vector.

The several types of limits (speed, altitude, positional, along
route distance, time) are translated in Trajectory Construction
to a common unit. In this specification, time 18 used as that
common unit. The AGD vector emanating from the past cusp 1s
used in the translation process. As indicated above, that AGD
vector represents an unbounded line from the past cusp. The
time coordinate i1s extracted for every limit found on that
line. The least time value across all limits is selected as
the bound on the 1input AGD vector. The rest of tne
four-dimensional coordinates (x,y,z) are extracted and the next
cusp constructed.

One particular value, originating in Trajectory Construction,
enters into the least limit computation. The trajectory is not
allowed to cross a wind cell boundary except at a cusp.
Trajectory Construction, using the four-dimensional line from
the past cusp constructed by using the AGD vector, finds the
time of current wind cell boundary crossing. This time value
enters into the least time limit computation.

3-32



Planned Actio
Processor

Aircraft
Characteristics
Data

Atmospheric
Data Base

y

Trajectory
Construction

,1

Cusp
(x,¥,2,t)

FIGURE 3-12
TRAJECTORY CONSTRUCTION PROCESSING OVERVIEW

3-31



The AGD vector 1s used to extend past cusp values. The AGD
vector can be thought of as yielding an unbounded four-
dimensional line emanating from the past cusp. Limits toward
the next cusp, also produced by planned action processing,
indicate to what extent past cusp values should be changed.

. The 1limits indicate where the forward bounding point ought to

~ be placed.

- Limits 1indicate one or the other of two possibilities.

Firstly, a limit can be used - to bound the effects of an
evaluated AGD variable.  An acceleration change (non-zero
acceleration variable) is accompanied from planned action
processing with a speed limit. The two together operate on the
speed value at the past cusp: the acceleration variable shows
how to change that speed value, the speed limit indicates to
what extent the acceleration should be allowed. The speed
limit is a new speed value and Trajectory Construction will
place a cusp (possibly not the next cusp) at the position where
that new speed value is achieved. '

Secondly, - limits can ~ indicate future ‘trajectory events
-unassoclated with the AGD vector. These events -include the
beginning positien _of = each.  peading - action. - Trajectory
. Construction will not build past ‘these events ensuring that
each pending' planned action be allowed 1its chance at changing

- the AGD vector.

The several types of limits (speed, altitude, positional, along
route distance, time) are translated in Trajectory Construction
to a common unit. In this specification, time is used as that
common upit. The AGD vector emanating from the past cusp 1s
used in the translation process. As indicated above, that AGD
vector represents an unbounded line from the past cusp. The
time coordinate is extracted for every 1limit found on that
line. The least time value across all limits 1s selected as
the bound on the 41input AGD vector. The rest of tne
four~dimensional coordinates (x,y,z) are extracted and the next
cusp constructed.

One particular value, originating in Trajectory Construction,
enters into the least limit computation. The trajectory is not
allowed to cross a wind cell boundary except at a cusp.
Trajectory Construction, using the four-dimensional 1line. from
the past cusp constructed by using the AGD vector, finds the
time of current wind cell boundary crossing. This time value
enters into the least time limit computation.

3-32



The AGD vector, during this process, is altered as necessary to
accommodate wind and atmospheric parameter values. In
particular, the gradient variable, entering Trajectory
Construction as a no-wind gradient, is altered to exhibit an
effective gradient to be used in Trajectory Comstruction. Wind
speed and direction values are also used in the evaluation of
time variables on the four—dimensional line from the past
cusp. The direction AGD variable 1s assumed to be the
direction the trajectory should take to the next cusp;
therefore, it represents course and not aircraft heading.

3.3.5 Trajectory Post Processing

After the entire trajectory for an aircraft has been
constructed through the iterative application of planned action
processing and Trajectory Construction, the trajectory is
examined one step further. Certain data tables are filled
which need the comstructed trajectory. Three operations are
identified.

First, the trajectory time extent of each planned action 1is
recorded. This 1information 18 obtained from data tables
constructed during planned action processing. The information
18 useful in certain reinvocations of Trajectory Estimation and
to support Sector Workload Probe [Vol.4].

Second, some Nominal Plan Builder information is accumulated.
The purpose of Nominal Plan Builder is to identify procedural
altitude and speed actions and incorporate them into the
trajectory. However, controller actions take precedence over
Nominal Plan Builder actions. Nominal Plan Builder 1is,
therefore, constructed to incorporate altitude actions into the
path of the aircraft ahead of any controller actions.
Trajectory Post Processing establishes the 1last point of
controller interaction with the route of the aircraft for
Nominal Plan Builder. Nominal Plan Builder always plans ahead
of this point.

Third, maneuver envelopes are established in path regimes where

the actual position of the aircraft 1i1s uncertain. Rectangular

areas are constructed around holding patterns, taking winds

into account. Altitude transitions are protected by trape—

zolidal areas bounded by the maximum and/or minimum gradients
for the aircraft (Figure 3-13).

3-33



Latest Point of Descent
to Meet Restriction R

Earliest Point
of Descent Wind Modified

Steepest Descent

‘ Restriction
Wind Modified Point.
Steepest
Descent
4 c 3 ‘D Zp

Zegend:
Nominal Descent

. Shadéd Area = Maneuver Envelope
L i

FIGURE 3-13
ALTITUDE MANEUVER ENVELOPE

3-34



3.3.6 Resynchronization

The purpose of Resynchronization 1s to improve trajectory
quality 1in the longitudinal dimension without controller
interaction. Resynchronization provides tracked position and
true airspeed estimates which Trajectory Estimation uses to
reestimate the trajectory. The Resynchronization function
described here is an intermediary between two components that
will appear in the AAS: Trajectory Estimation and Conformance
Monitoring. Conformance Monitoring (described 1in Section
2.2.1.3) determines when to call for trajectory repositioning
by comparing the tracked position and an estimated positiom
based on the trajectory then in use. Conformance of these two
positions 1s checked for two purposes: controller notification
and Resynchronization. Conformance tolerances that initlate
resynchronization may be different from those that alert the
controller to a potential problem in the air traffic flow.

The tracker input to Resynchronization for an aircraft includes
a track history, a closely spaced sequence of four-dimensional
positions. Track history is used to compute a revised position
for the tracked aircraft and to compute an estimate of current
horizontal true airspeed. Ground speed, observed by the
tracker, is combined with the wind-grid estimate of the winds
aloft in order to compute this true airspeed value. The
elements of this computation are illustrated in Figure 3-14.

Both position and speed are input to Trajectory Estimation in
the form of a profile reference point. The position provided to
Trajectory Estimation in the profile reference point is not the
same as the tracked position that was 1input to Resynchroni-
zation. Trajectory Estimation depends on Resynchronization to
provide it with a profile reference point so that the x,y
position is on the old trajectory for the aircraft; the tracked
position, in most instances, will not be exactly on this
route. A projection to the old trajectory ascertains this x,y
position.

After Resynchronization has been performed, Trajectory
Estimation computes and stores the trajectory that was modified
as a result of Resynchronization input. Profile reference
point updates are available for only a subset of all flight
plans: the current trajectory for some controlled flights.
Aircraft which are out of conformance laterally or vertically
and awaiting action by a controller or pilot may be ineligible
for Resynchronization, since too much uncertainty exists
concerning how the route of flight will be reestablished.

3-35



Track 2

Data Conformance [ Trajectory

Monitoring, '\5__—”//,,——.

Track
History

Resynchronization:

Position
and Speed

Trajectory
Estimation

Trajectory

FIGURE 3-14
DATA FLOW

3-36



All trajectories must have a profile reference point, but not
all profile reference points are associated with radar-based
updating. Specific trajectories may be the subject of a Trial
Plan Probe and, therefore, represent a transitory copy on which
ralar data processing is not done.

3.4 Expandability

The advanced automation functions for tne AIC System, described
in this and other specifications [Vols. 2, 3, 4] are part of an
automated system referred to as AERA [12]. AERA 1is to be
implemented 1n several stages, as outlined in the Transition
Deacription [6]. Trajectory Estimation, and its servicing
functions of Nominal Plan Builder and Resynchronization, will
be implemented as part of the first Stage, known as AERA 1.
ATC system level descriptions of the AERA 1 functions are given
in the Operational Description [5].

As the system matures along a path of progressive computer
responsibility, Trajectory Estimation services also evolve
further. In the AFRA 1 timeframe, the human controller is
responsible for the safe and expeditious flight of those
alrcraft under his jurisdiction. AERA 1 functions are
incapable of making decisions, or planning the flights of
alrcraft to achieve AIC goals. Instead, all planning
activities (with the exception of procedural route and altitude
assignments) are generated by the controller. Beyond AERA 1,
the computer will be given the capability to not only detect
problems with trajectories but to also propose solutions to
those problems.

3.4.1 Goal-Oriented Planned Actions

The beginning of automated planning for conflict resolution and
automated delay absorption 1s a big step towards computer
responsibility for everyday ATC. Goal-oriented planned actions
have effects throughout the system and especially affect
Trajectory Estimation. The introduction of automated conflict
resolution or delay absorption planning introduces the notion
of the goal-oriented planned action, a notion which 1is also
useful for controller strategic planning activities.

The goal-oriented planned action introduces a new level of
gservice in the ATC System. The translation of route and plan
data to a trajectory becomes more complicated. The most
reasonable placement of those translation responsibilities
rests squarely witn Trajectory Estimation.

3-37



-To obtain a feeling for goal-oriented planned actions, consider
the following example. Delay absorption at enroute altitudes
is accomplished by slowing the alrcraft or lengthening the path
using a vector or a hold. The shape of a delay absorbing
vector 1is well known: a serles of zigzags like those presented
in Figure 3-15. There, the aircraft departs the route at A to
return at D. Instead of the path AD, his route is lengthened
to ABCD. The exact shape is variable depending on the amount
of delay to be absorbed. It may be only a "zig"~—one half of
the vector shown in Figure 3-15. The vector is always based at
some metering subgoal point, here. the point D, beyond which a
given timing schedule must be maintained. ”

A delay absorption vector calibrated to absorb a given amount
of delay is difficult to construct mentally. However, the
off~route . angle and off-route distance are all parameters
. derivable from the delay time parameter. Hence, a computer
could determine the exact shape of the delay absorbing vector
given only the 'time delay to be absorbed and the metering
subgoal point. A controller could instruct the computer to
"coustruct a metering vector to get alrcraft N30SC to point D
by 15:37." Such a control action is goal oriented. The
resulting planned action is also goal oriented. The shape of
the maneuver is not provided by the controller (or planner) as
is the vector planned action discussed in this specification.
Instead, the input supplies information from which the shape
can be derived.

Trajectory Estimation must evolve to be able to translate goal
oriented actions. This implies the ability to initialize man-
euver shapes, to check 1f a given shape meets the goal and to
alter the shape of the maneuver if the goal is not met.

To achieve this capability with some ease of implementation, a
high degree of modularity of the Trajectory Estimation function
18 necessary. ~New planned action interpreters can then be
"plugged 1in" to use the trajectory construction framework
already in exlstence.

3.4.2 Uncertainty Estimations

Trajectory data contain 1implicit position uncertainty which
increases between invocations of Resyncnronization. To expect
uncertainty buildup (equivalently, to expect resynchroniza-
tions) may have planning implications. It may be of value for
Trajectory Estimation to provide the automated functions with
an estimate of that uncertainty. Severe wuncertainty in
position may indicate to a planner that actions resolving a

3-38



FIGURE 3-15
DELAY ABSORPTION ZIG-ZAG VECTOR

3-39



given situation should be posponed until the problem becomes
nearer (in time) or the situation becomes clearer (less
uncertainty).

Position uncertainty can exist in three dimensions:
longitudinal uncertainty (timing), lateral uncertainty (to the
left and rignt) and vertical. Altitude uncertainty during a
climb/descent 18 reflected by an altitude maneuver envelope
mentioned in Section 3.3. Flight Plan Conflict Probe uses that
vertical uncertainty in the derivation of separation violatioms.

Longitudinal uncertainty 1is based upon Trajectory Estimation's
ability to attach "good™ times at the cusps. When times are
found in error, Resynchronization provides for new modeling
parameters which are intended to reduce the resynchronization
rate. The rate of resynchronization is a measure of the past
performance of Trajectory Estimation. Past performance can be
used as a predictive measure of future performance.
Longitudinal uncertainty may be based on the predicted time of
the next resynchronization. That predicted time is a function
of the resynchronization history of this aircraft among other
things.

Lateral uncertainty is a function of several variables. First,
and foremost, it 18 a function of the type of navigation being
done. Airway navigation implies strict conformance to route in
relation to a distance from a navigational beam. Direct route
navigation implies freedom £from conformance to an airway
route. Thus, lateral wuncertainty will have different
implications when aircraft are navigating on a direct route
instead of an airway. Second, lateral wuncertainty 1is a
function of aircraft equipage. Improvements in equipage imply
more accurate position reporting and navigation, Thus, lateral
uncertainty will be reduced for aircraft equipped with a Flight
Management Computer and with Area Navigation (R-NAV).

3.4.3 Resynchronization Airspeed Upgrades

The value computed by Resynchronization as true airspeed 1is
actually the horizontal component of the true airspeed for the
aircraft. The vertical error thus introduced must be analyzed
and compared experimentally with other sources of error before
a final set of computational algorithms can be specified for
Resynchronization in the AERA 1 timeframe. In normal
operations, geaeral aviation and air carrier aircraft ascent
and descent gradients are shallow. Descent angles are
typically under 3 degrees and ascent angles are under 35
degrees, with the sharper angles occurring only for short times

3-40



and only at low altitudes. At the worst case angle, the
vertical component is8 between 8 and 9 percent of the horizontal
component. At a 3 degree angle the vertical component is about
5 percent of the horizontal. wWwhile these errors are
significant in terms of subsequent trajectory positions, there
are several other sources of error of the same or greater
magnitude that are also not taken 1into account by the
Resynchronization calculations. Considering all possible
sources of error, there is no compelling reason at this time to
expect including the vertical component of true airspeed would
decrease the resynchronization rate or the conflict probe false
alarm rate.

Trajectory Estimation uses the speed data supplied by
. Resynchronization as - the  basis for - later ~ sition.
calculations. Two .other = potential flight performance
parameters, gradient and course, are not now allowed to vary
based on radar-based observations. It may .pe desirable to
laterally or vertically resynchronize in the future, but the
present algorithm produces gradient and course values from
adapted data that are not updated dynamically.

3-41



4.

DETAILED DESCRIPTION

This section presents a detailed description for each function
specified in this volume. This section addresses subfunctions
outlined in Section 3.3. When necessary, each subfunction is
further divided into components (e.g., Speed Planned Action
Processing component of the Planned Action Processing
subfunction). A mission statement 1is provided to introduce
each subfunction, along with a ' section describing the
environment of the subfunction. Transactions with the Global
Data Bagse and the Shared Local Data Base are identified at a
high level. A detailed description of the exact contents of
the data tables can be obtained in the Global Data Tables in
Volume 5, Data Specification, and in the Shared Local Data
Tables in Appendix A of this volume.

After the data base transactions are listed for each subfunc~
tion, each of the subfunction's components is described. The
components are specified using a Program Design Language
(Appendix E). This Program Design Language (PDL) was con-
structed to make manipulation of data explicit, especially data
input from and output to the Global Data Base and the Shared
Local Data Base. The PDL descriptions of the components

. identify most data transactions.

Section 4.1 is a description of the Nominal Plan Builder func-
tion. Sections 4.2 through 4.5 describe the major subfunctions
of Trajectory Estimation: Trajectory Initialization, Planned
Action Processing, Trajectory Construction, and Trajectory Post
Processing. Section 4.6 provides a description of the Resyn-
chronization function.

4.1 Nominal Plan Builder

In the AAS, Nominal Plan Builder is considered a part of AAS
Route Conversion. In fact, Nominal Plan Builder provides an
altitude analog to current NAS Stage A route processing logic.
Altitude actions implicit in the pilot-filed flight plan are
incorporated into the trajectory Jjust as NAS Route Conversion
identifies procedural routings to the controller.

vNominal Plan Builder assumes the existence of an altitude and

speed procedural actiomns table. This information, which
describes altitude and speed profiles adapted from Standard
Operating Procedures (SOPs) and Letters of Agreement (LOAs), is
assumed to reside in an accessible data base. A candidate
structure for such a restrictions table is given in Appendix A.

4-1



4.1.1 Mission

Nominal Plan Builder is responsible for generating appropriate
planned actions to transition aircraft along adapted flight
profiles 1in accordance with any applicable ATC procedural
restriction. Nominal Plan Builder processes altitude and speed
transitions and restrictions, most of which concern aircraft
arriving and departing terminal control areas. NAS Route
Conversion, or the equivalent under AAS, processes route
alterations and restrictions. ° Thus, the planned actions
generated by Nominal Plan Builder are for altitude and speed
constraints, In the absence of procedural restrictions,
Nominal Plan Builder will generate planned actions which
transition aircraft to cleared cruise altitude and speed in an
unrestricted manner. '

4.1.2 Design Considerations and Environment

Nominal Plan Builder is invoked at least once per controlled
aircraft, when the aircraft enters the planning region. Under
this circumstance, Nominal Plan Builder assumes that necessary
coordination information, including a coordination fix and a
plan, has been forwarded by the previous facility and is

available in valid format. Nominal Plan Builder is also
invoked when a higher priority planner amends a flight plan (or
otherwise alters the trajectory of the aircraft). In this
instance, Nominal Plan Builder assumes that the clearance plan
(temporary or current) being amended also is available in a
valid format. The result of both assumptions is that Nominal
Plan Builder adds planned actions to existing clearance plans,
where those plans may or may not contain planned actionms.

Input
Input to Nominal Plan Builder consists of the following:
e System Global Data Base .
- SECTORS
This table defines all sectors within a center. The

sector number field is required to access the
SECTORS ENTERED table.



SECTORS_ENTERED

This table contains all sectors entered by a
particular  trajectory. This information 1s used to
identify each sector to be processed for procedural
restrictions.

PLANNED_ACTIONS
SPEED_CHANGE_PLANNED ACTIONS
SPEED_RESTRICTIONS_PARAMETERS
ALTITUDE_CHANGE PLANNED ACTIONS
ALTITUDE RESTRICTIONS_PARAMETERS

These tables list all of the plamned: actions for a
particular trajectory. These tables are accessed
and changed when deleting NPB-originated planned
actions.

PLANNED ACTION DURATION

This table indicates the extent of each planned
action (i.e., the start and stop times) modeled on
the previous trajectory. This information is used
to determine if an NPB-originated planned action
should be deleted because it begins after the NPB
planning point.

FLIGHT PLANS

This table contains the pilot intent for a par-
ticular flight. This information is used as a source
of data concerning the aircraft and intended route,
including identifying information used to select the
appropriate altitude and speed procedural actionms.

FLIGHT ID ASSOCIATIONS

This table i1s a cross-reference between system
. flight 1d's and flight names used in the flight plan.

AIRCRAFT MIN MAX SPEED

This table indicates an aircraft's minimum and
maximum speed capabilities over a range -of alti-
tudes. This information is needed when a procedural
restriction is based on an aircraft's speed capabil-
ities.



CURRENT_TIME

This table contains a system real-time clock. All
planned actions generated are time-stamped.

e Shared Local Data Base

NPB_PLANNING POINT

This table contains &4 single occurrence of a cusp.
This point is set by Trajectory Estimation and indi-

cates where, geographically, Nominal Plan Builder.

should begin its planning function.
PROCEDURAL RESTRICTIONS_INDEX

This table contains indices to  the ADDITIONAL
QUALIFIERS table and the PROCEDURAL RESTRICTIONS
table. These indices are accessed through look-ups
on the sector and destination for a particular
flight.

ADDITIONAL QUALIFIERS

This table contains criteria which further comnstrain
the application of procedural restrictions. A
procedural restriction is only applied 1if the
trajectory being modeled satisfies the criteria
applied by the sector, the destination, and all
additional qualifiers. Examples of additional
qualifiers 1include ‘'minimum aircraft speed' and
'standard instrument departure route.,'

PROCEDURAL RESTRICTIONS

This table contains procedural restrictions to be-

applied for a given combination of sector/destina-
tion/additional qualifiers. One planned action is
generated for each procedural restriction. This
table must contain an altitude restriction at the
destination airport, identifying a coordination
point at which control of the aircraft becomes the
responsibility of the airport. Modeling of the
trajectory will stop at this point.

b~4




Output

Primary output of Nominal Plan Builder consists of speed and
altitude planned actions which structure the aircraft
trajectory in accordance with any applicable procedural
restrictions. Other output includes flags which guide the

proper implementation of these planned actions.
e System Global Data Base

- PLANNED ACTIONS
SPEED_CHANGE_PLANNED_ACTIONS
SPEED RESTRICTIONS PARAMETERS
ALTITUDE CHANGE PLANNED ACTIONS
ALTITUDE RESTRICTIONS_ PARAMETERS

These tables are altered to 1include any planned
actions added to an aircraft's plan as a result of
an altitude or speed procedural restriction.

- PLANNED ACTION DURATION

This table 1s altered to remove duration times of
planned actions deleted by Nominal Plan Builder.

4.1.3 Nominal Plan Builder Design Logic

Organization

The Nominal Plan Builder function 1is invoked when an aircraft
enters the planning region, or when a higher priority planner
(e.g., a controller) amends the flight plan or otherwise
changes the trajectory of an aircraft within the center (e.g.,
institutes a vector). In either case, Nominal Plan Builder
requires a valid, structured plan, possibly empty. When an
aircraft enters the planning region, the previous center may
have instituted planned actions, the extent of which may enter
the current center's boundary. Because the intent of these
planned actions i1s unknown to Nominal Plan Builder, these
planned actions remain undisturbed; Nominal Plan Builder adds
necessary planned actions to any already in the plan. When a
higher priority planner changes the trajectory of an aircraft
in the center, Nominal Plan Builder begins planning at the
point where the higher priority planner last altered the
trajectory (e.g., at the end of an existing planned action).
Nominal Plan Builder first deletes, from the indicated point
onward, any planned actions it had generated on a previous
iteration. These deletions are required so that the previous

4=5



planned actions do not interfere with any planned actions
Nominal Plan Builder subsequently generates. Following this
housecleaning task, the procedure (described in the next
section) followed by Nominal Plan Builder when invoked because
of an action by a higher priority planner 1s exactly the same
as that followed when Iinvoked because an aircraft has entered
the planning region.

Figure 4-1 1indicates the 1logical structure of Nominal Plan
Builder. This function uses iterative calls to Trajectory
Estimation to model the trajectory in accordance with existing
planned actions, including those created by Nominal Plan
Builder in response to procedural restrictions. Nominal Plan
Builder also uses the system utility XY To Ard, provided in
Appendix B. ‘

Processiqg Method

Nominal Plan Bullder is an 1iterative function with one itera-
tion required for each sector through which a flight path
passes. This function includes four principal subfunctions:
Sector Determination, Restrictions Retrieval, Planned Action
Generation, and Verlify Cruise Parameters. Sector Determination
identifies the sequence of sectors to be processed for proced-
ural restrictions, and also removes obsolete planned actions
instituted by Nominal Plan Builder on previous invocations.
Restrictions Retrieval processes the procedural restrictions
table to determine 1f any procedural restrictions apply.
Planned Action Generation outputs altitude and speed planned
actions which structure the- trajectory 1in accordance with
applicable procedural restrictions. Verify Cruise Parameters
Institutes speed and altitude planned actions which allow a
trajectory to achleve cleared altitude and speed after imple-
mentation of, or in the absence of, all applicable procedural
restrictions. These subfunctions, and the various routines
each requires to accomplish stated tasks, are described in
further detail below.

The following discussion references the example in Figure 4-2.
In this example, an aircraft is being handed off at the indi-
cated coordination fix at 18,000 feet, and is bound for desti-
nation XYZ. Shown are two possible arrival routes through the
center: Route A goes through sectors 1 and 2, while Route B
goes through Sectors 1 and 3. The numbered values indicate
altitude restrictions at various points 1in the center; the
restrictions aid in positioning the aircraft for safe and
manageable hand-off to the destination center.

4=b



Nominal Plan Builder
Sector Determination
Next Sector
Trajectory Estimation
Delete Actions
Restrictions Retrieval
Process Qualifiers
Process_Arrival Departure Qualifier
Process Speed Qualifier
Process__ , Aircraft . Qualifier
Planned Action Generation
XY To Ard ~
Select Planned Action Records
Determine Transition . Type
Generate Restricted Altitude PA
Generate Planned _. Action ID
Determine ' Transition . Type
Generate Speed PA
Generate  Planned Action ID
Verify Cruise_ Parameters
Generate Unrestricted Altitude PA
Generate Planned . Action ID
Determine Transition Type
Generate Speed PA
Generate_Planned;Action_ID

FIGURE 4-1
NOMINAL PLAN_BUILDER CALLING SEQUENCE



8-%

Coordination
Fix

Planning Region Boundary

Center Boundary

8000 <:::)
6000

et 12000

Q0

% /

¢ W1oooo
4000

FIGURE 4-2

NOMINAL PLAN BUILDER EXAMPLE



Nominal Plan Builder is invoked with a flight id as an input
parameter. The logical flow of Nominal Plan Bullder appears in
Figure 4-3. Nominal Plan Builder begins processing each sector
by calling Sector . Determination (Figure 4-4). Sector Deter-
mination utilizes the element Next _Sector (Figure 4-5) “which,

when given the identity of a sector through which a traJectory
passes, returns the identity of the next sector that trajectory
will enter. To accomplish this, Next_Sector invokes Trajectory
Estimation. The resulting trajectory is used to establish an
ordered list of sectors entered by the trajectory. Trajectory
Estimation also provides a Nominal Plan Builder planning
point. This planning point identifies the geographic point
where Nominal Plan Builder should begin its planning function.
On the initial iteration, Next Sector scans the ordered list of
sectors entered to identify the sector containing the planning
point. On subsequent iterations, Next Sector scans the sector
list to determine the sector following the ome identified in
the previous iteration. The sector identification is returned
to Sector Determinationm. On the 1initial iteration, Sector

Determination then calls Delete Actions (Figure 4-6). Thie
element deletes planned actions created by Nominal Plan Builder
on previous 1invocations which follow the planning point in
time. The purpose of these deletions is to avoid any possible
conflicts with planned actions generated during the present
invocation. Sector Determination then returns the next sector
identity to Nominal _Plan Builder, which forwards this value to
Restrictions Retrieval.

Restrictions Retrieval (Figure 4-7) inspects the restrictions
table to determine if any procedural restrictions apply in the
identified sector. The restrictions table for the example is
illustrated in Figure 4-8. Restrictions_Retrieval begins by
scanning the restrictions table for the sector returnmed by
Sector Determination and the destination airport filed in the
flight plan. If there are no entries in the restrictions table
for a particular sector/destination pair, no procedural
restrictions apply, and Restrictions Retrieval is finished. If
a sector/destination pair produces one or more candidate
restrictions, Restrictions Restrieval calls Process Qualifiers
to determine the applicability of these restrictions. Process_
Qualifiers (Figure 4~9) examines candidate restrictions for
additional qualifiers, which serve to further limit the appli-
cation of procedural restrictions; any number of additional
qualifiers 1s possible. If additional qualifiers are not
present (as in sector 2 in this example), the listed restric-
tions apply to all ailrcraft. If additional qualifiers are
present (as in sector 1 in the example), Process Qualifiers
inspects the additional qualifier type field, and activates. the

4=9



ROUTINE Nominal Plan Builder;

PARAMETERS
Loc_F1_ID IN;

REFER TO SHARED LOCAL
ATLTITUDE RESTRICTED INOUT,
SPEED_RESTRICTED INOUT;

DEFINE VARIABLES

Past Sector Previous sector examined for restrictions
Present_Sector Next sector to be examined for restrictions
Loc F1 . Id Local flight id variable;

# begin algorithm #

Past Sector = NULL;
UPDATE IN ALTITUDE_RESTRICTED
(flag = 'no');
UPDATE IN SPEED RESTRICTED
(flag = 'no');
CALL Sector_ Determination(Loc Fl1 Id IN, Past Sector IN,
" Present_Sector OUT);
REPEAT WHILE Present Sector NE NULL;
CALL Restrictions Retrieval(loc F1 Id IN, Present Sector IN,
Past Sector IN)
IF ALTITUDE RESTRICTED. flag LQ 'no OR
SPEED | RESTRICTED. flag-_g no'
THEN
CALL Verify Cruise Parameters(Loc_F1 Id IN);
Past Sector = Present_Sector; - T
CALL Sector Determination(Loc F1 Id IN, Past_Sector IN,
" Present Sector ouT);
END Nominal_Plaq_Builder'

FIGURE 4-3
NOMINAL_PLAN BUILDER

4-10



ROUTINE Sector Determination,
PARAMETERS
Loc F1 Id IN,
Past Sector | IN
Present Sector OUT;
REFER TO SHARED LOCAL
LAST RESTRICTION | POINT INOUT,
NPB_| PLANNING POINT IN;
DEFINE VARIABLES

Past Sector Sector just inspected for restrictions
Preégnt Sector Next sector to be examined for restrictions
Loc F1 _ Td Local flight id variable;

# begin algorithm #

CALL Next Sector(Loc_Fl Id IN, Past_Sector IN,
Present Sector OUT),
IF Past Sector._g NULL
THEN
 UPDATE IN LAST RESTRICTION POINT
(coordinate = NPB ] PLANNING _POINT.coordinate,
altitude = NPB _PLANNING POINT.z,
speed ™ NPB PLANNING POINT.tas);
CALL Delete Actions(Loc Fl Id IN);
END Sector;Determination,

FIGURE 4-4
SECTOR_DETERMINATION

411



ROUTINE Next Sector;

PARAMETERS
Loc_F1 Id 1IN,
Past_Sector IN,
Present Sector OUT;

REFER TO GLOBAL ~
SECTORS_ENTERED 1IN,
SECTORS IN;

REFER TO SHARED LOCAL
NPB_PLANNING POINT IN;

DEFINE VARIABLES

Loc Sector Number Number of a sector
Past_Sector Exit Time Time the previous sector was exited
Past_Sector Sector just inspected for restrictioms
Present Sector Next sector to be examined for restrictions
Loc_Fl1 Id Local flight id variable;

FIGURE 4-5

NEXT_ SECTOR

4-12



begin algorithm #
CALL Trajectory_Estimation(Loc F1 Id IN);
IF Past Sector EQ NULL #first iteration of NPB#
THEN .
~ SELECT FIELDS sector_number
INTO Loc Sector Number
FROM SECTORS_ENTERED(S_E)

WHERE S_E. fl id EQ Loc_ "F1 . Id AND
S E.time _Q MIN(S E. time GE NPB_PLANNING POINT.time);

ELSE
SELECT FIELDS sector_number

INTO Loc_Sector_| Number
FROM SECTORS
WHERE SECTORS.sector name EQ Past_Sector;
SELECT FIELDS time
INTO Past_Sector Exit Time
FROM SECTORS ENTERED(S E)
WHERE S E. fl id EQ Loc " F1 _Id AND
N E.sector number_gg Loc Sector Number AND
S_E.time EQ MAX(S_E. time);
SELECT FIELDS sector | number
INTO Loc_ Sector Number
FROM SECTORS_ENTERED(S E)
WHERE S_E. fl id EQ Loc_. Fl Id AND
S E.time__g MIN(S | E. time GT Past Sector Exit Time);

IF Loc Sector Number EQ EQ NULL
THEN #past sector was last sector in center for flight#
Present Sector = NULL;
ELSE
SELECT FIELDS sector_name
INTO Present Sector
FROM SECTORS
WHERE SECTORS.sector_number EQ Loc_Sector Number;

END Next Sector;

FIGURE 4-5 (Concluded)
NEXT_SECTOR

4-13



ROUTINE Delete Actions;
PARAMETERS
Loc F1 Id IN;
REFER TO GLOBAL
PLANNED_ACTIONS INOUT,
SPEED CHANGE PLANNED ACTIONS INOUT,
SPEED RESTRICTIONS PARAMETERS INOU INOUT
ALTITUDE_CHANGE_PLANNED ACTIONS INOUT,
ALTITUDE RESTRICTIONS PARAMETERS INOUT,
PLANNED ACTION DURATION INOUT; ~—
REFFR TO SHARED LOCAL
NPB_PLANNING POINT IN;
DEFINE VARIABLES

Loc _F1 Id Local variable for flight id
Loc PA Start Time Start time for a planned action;
# begin algorithm #

REPEAT FOR EACH PLANNED ACTIONS(P_A) RECORD
WHERE P A.fl id = Loc F1 Id AND P A.pa source = 'npb';
SELECT FIELDS pa_start_time -7

INTO Loc_PA Start Time
FROM PLANNED ACTION | DURATION(P_A D)
WHERE P A D. pa id EQ PLANNED _ ACTTIONS. pa_1id;
IF Loc PA Start Time GE NPB PLANNING POINT." time
THEN
" CHOOSE CASE
WHEN PLANNED ACTIONS.pa type EQ 'altitude' THEN
" DELETE FROM ALTITUDE CHANGE PLANNED ACTIO NSZA C_P A)
WHERE A C P A.pa id_gg PLANNED ACTIONS pa__ id;
DELETE FROM ALTITUDE . RESTRICTIONS PARAMETERS(A R _P)
WHERE A R P.pa . id EQ PLANNED ACTIONS. pa_id;
WHEN PLANNED ACTIONS.pa _type EQ 'speed’ THEN
~ DELETE FROM SPEED CHANGE PLANNED ACTIONS(S CP A
WHERE S C P A.pa id Eg PLANNED ACTIONS. pa__ id,
DELETE FROM SPEED RESTRICTIONS PARAMETERS(S R P)
WHERE S R _P.pa_: - 1d EQ PLANNED ACTIONS. pa_: 1d;
DELETE FROM PLANNED AC1ION DURATION(P A D)
WHERE P A D.pa . id EQ PLANNED ACTIONS pa_1id;
DELETE FROM PLANNED ACTIONS;
fremove planned action from system#
END Delete_Actions;

FIGURE 4-6
DELETE ACTIONS

4-14



ROUTINE Restrictions Retrieval;
PARAMETERS
Loc F1 1d IN,
Present Sector IN,
Past Sector IN;
REFFR TO GLOBAL™
FILED FLIGHT PLAN IN,
FLIGHT ID ASSOCIATIONS IN;
REFFR TO SHARED LOCAL
PROCEDURAL RESTRICTIONS INDEX IN;
DEFINE VARIABLES

Destination Destination airport (fix) for flight plan
Name Of Flight Identifier of the flight
Qualifiers Matched Indicator of match on additional qualifiers
Present_Sector Next sector to be examined for restrictions
Past Sector Previous sector examined for restrictions
Loc F1 Id Local flight id variable;

# begin algorithm #

SELECT FIELDS flight name
INTO Name Of Flight
FROM FLIGHT ID_ASSOCIATIONS(F I A)
WHERE F IA. flight plan id EQ Loc Fl1 Id;
SELECT FIELDS destination
INTO Destination
FROM FILED FLIGHT PLAN
WHERE FILED FLIGHT PLAN.flight name EQ Name Of Flight;
REPEAT FOR FACH PROCEDURAL RESTRICTIONS INDEX(P R I) RECORD
WHERE P R I.sector EQ Present Sector AND
" PR I.destination EQ Destination; #May be none #
CALL Process _Qualifiers(Loc_Fl1 1d IN,
" PROCEDURAL RESTRICTIONS INDEX. qualifier index IN,
Qualifiers Matched OUT)
IF Qualifiers | " Matched _g yes'
THEN
" CALL Planned Action . Generation(Loc_F1 Id IN,
Present Sector IN, Pagt Sector IN,
PROCEDURAL RESTRICTIONS _INDEX.restriction index IN)
END Restrictions_| Retrieval

FIGURE 4-7
RESTRICTIONS RETRIEVAL

4-15



91-%

SECTOR |DESTINATION| ADDITIONAL | ADDITIONAL | RESTRICTION | RESTRICTION | RESTRICTION RESTRICTION Assume
1 QUALIFIER |QUALIFIER TYPE QUALIFIER POINT Cruise
TYPE Parameters
Preferred
1 XYz Arrival A Altitude 12000 At or Above Boundary N
Route
Preferred
1 XYZ Arrival B Altitude 10000 At Boundary N
Route
Altitude 8000 At or Below X,y N
2 XYz
Altitude 6000 At Boundary N
3 XYZ Minimum 250 Altitude 4000 At or Above Boundary N
Aircraft :
Speed Speed 250 At or Above Boundary
FIGURE 4-8

EXAMPLE RESTRICTIONS TABLE




ROUTINE Process Qualifiers;
PARAMETERS
Toc FI Id IN,
Qualifier Index 1N,
Qualifiera Matched OouT;
REFER TO SHARED LOCAL
ADDITIONAL QUALIFIERS IN;
DEFINE VARIABLES

Loc F1_1d Local flight id variable

Qualifier Index Index to one or more qualifier records

Qualifiers Matched Indicator of match on additional qualifiers;
# begin algorithm #

Qualifiers Matched = 'yes';
IF Qualifier Index EQ NULL
THEN; #Indicates restrictions apply to all flighta#
ELSE
T REPEAT FOR FACH ADDITIONAL QUALIFIERS(A Q) RECORD
WHERE A Q.qualifier . index EQ Qualifier Index;
CHOOSE CASE
WHEN ADDITIONAL QUALIFIER.qualifier type IS IN
('star’, 'sid', ‘'par', ‘pdr', 'pdar') THEN
CALL Process_. Arrival Departure Qualifier
~ (Loc_F1_ID IN,
ADDITIONALLQUALIFIER.qualifier_fype 1IN,
ADDITIONAL QUALIFIER.qualifier IN,
Qualifiers Matched OUT);
WHEN ADDITIONAL QUALIFIER qualifier type IS IN
T ('minimum speed’', 'maximum speed’) THEN
CALL Process_Speed Qualifier(Loc_ F1_Id . IN,
~ ADDITIONAL QUALIFIER.qualifier type IN,
ADDITIONAL QUALIFIER.qualifier IN,
Qualifiers Matched OUT);
WHEN ADDITIONAL QUALIFIER qualifier type 1S _IN
U 'aircraft type', 'maximum aircraft weight',
'equippage’) THEN
CALL Process__ Aircraft - Qualifier(lLoc_F1 Id IN,
" ADDITIONAL QUALIFIER qualifier type IN,
ADDITIONAL ¢ . QUALIFIER. qualifier 1N,
Qualifiers Matched OUT);

IF Qualifiers | Matched EQ 'no'

THEN #No more qualifiers need be processed#
GO TO CONTINUE; #for this index #
CONTINUE:;

END Process Qualifiers;

FIGURE 4-9
PROCESS_QUALIFIERS

4-17



appropriate qualifier processor: Process Arrival Departure
Qualifier (Figure 4-10), Process Speed Qualifier (Figure 4-11),
and Process Aircraft Qualifier ‘(Figure 4-12). The qualifier
processors “extract necessary Iinformation from appropriate
sources, and compare the actual aircraft or flight plan data
with the additional qualifier field in the restrictions table.
If the qualifiers match the actual data, the 1listed restric-
tions apply.

In the example, for sector 1, the additional qualifier type is
'preferred arrival route,' Iindicating that the listed restric-
tions apply only to a particular route through the sector.
Process_Qualifiers would call Process_Arrival Departure_

Qualifier, which would access the flight plan, identify the
arrival route being taken, and check the additlonal qualifier
field for a match. Since both routes through sector 1 are
listed, both are restricted. In sector 3, the additional
qualifier type is 'minimum aircraft speed.' Process Qualifiers
would activate Process Speed Qualifier, which would match the
actual aircraft speed capabilities, as listed in the aircraft
characteristics data, against the additional qualifier field.
In this example, aircraft not capable of maintaining 250 knots
are unrestricted.

Once Process_Qualifiers identifies that all additional quali-
fiers are satisfied, Restrictions Retrieval calls Planned_
Action Generation to implement appropriate planned actions 1in
accordance with listed restrictions. Planned Action Generation
(Figure 4-13) generates one planned action for each selected
procedural restriction. Figure 4-14 illustrates the tramnsla-
tion of a procedural restriction to a planned action, using the
first line of the restrictions table from the example. The
restriction point listed in the table may be a geographic point
or the generic classifier, 'boundary,' indicating the restric-
tion is to be applied at the sector boundary; in the latter
case, Planned Action Generation determines the geographic point
of boundary crossing. Planned Action Generation next verifies
that the restriction point follows the Nominal Plan Builder
planning point, which indicates the point at which Nominal

Plan Builder should begin planning. If the restriction point
follows the planning point, Planned Action Generation calls
Select Planned Action Records to further process the procedural
restriction.

Select Planned Action Records (Figure 4-15) determines whether
an altitude or a speed planned action is to be generated for a

particular procedural restriction. If an altitude planned
action is to be generated, Select Planned Action Records first

4~18



ROUTINE Process_Arrival Departure Qualifier;
PARAMETERS

qu_FI Id 1IN,

Qualifier Type IN,

Qualifier IN,

Qualifiers Matched OUT;
REFER TO GLOBAL

FILED FLIGHI PLAN IN,

FLIGHT ID_ASSOCIATIONS IN;
DEFINE TABLES

LOC_FLIGHT PLAN defined like global table FILED FLIGHT PLAN;
DEFINE VARTABLES

Loc F1 Id Local flight id variable
Qualifier Type Category of qualifier
Qualifier Value corresponding to Qualifier Type
Qualifiers Matched Indicator of match on additional qualifiers
Name Of Flight Name corresponding to Loc_Fl Id;

FIGURE 4-10

PROCESS_ARRIVAL DEPARTURE_ QUALIFIER

4-19



# begin algorithm #
SELECT FIELDS flight name
INTO Name Of Flight
K oM FLIGHT 1D _ASSOCIATIONS(F I A)
WHERE F1 A.flight plan id E _g Loc Fl 1d;
LOC FLIGHT PLAN = SELECT FIELDS ALL
FROM FILED FLIGHT PfKﬁlF F P
WHERE F F ] P. flight name_gg Name Of Flight;
CHOOSE CASE
WHEN Qualifier Type EQ 'sid' OR 'pdr' THEN -
IF LOC_FLIGHT PLAN. departure_procedure type EQ
Qualifier Type AND
LOC_FLIGHT PLAN. departure procedure name EQ Qualifier
THEN
Qualifiers Matched = 'yes';
ELSE
Qualifiers Matched = 'no';
WHEN Qualifier Type EQ 'star’ OR ‘par' THEN
F LOC FLIGHT PLAN.arrival procedure  type EQ
Qualifier Type AND
LOC_FLIGHT PLAN. .arrival . procedure_name EQ Qualifier
THEN
Qualifiers Matched = 'yes';
ELSE
Qualifiers Matched = 'no’';
WHEN Qualifier Type EQ ‘'pdar' THEN
IF LoC_ FLIGHT " PLAN. dep arr_procedure type EQ
Qualifier Type AND
LOQ_FLIGHI_PLAN arr_dep procedure name EQ Qualifier
THEN
Qualifiers Matched = 'yes';
ELSE
Qualifiers Matched = 'no';
END Process_Arrival Departure Qualifier-

FIGURE 4-10 (Concluded)
PROCESS_ARRIVAL DEPARTURE QUALIFIER

4-20



ROUTINE Process Speed Qualifier;
PARAMETERS

Toc FI Id IN,

Qualifier Type IN,

Qualifier IN,

Qualifiers . Matched OUT;
REFER TO GLOBAL

AIRCRAFT MIN MAX SPEED IN;
DEFINE TABLES

AIRCRAFT SPEED defined like global table ATRCRAFT MIN MAX SPEED;
DEFINE VARIABLES

Loc _F1 1d Local flight id variable

Qualifier Type Category of qualifier

Qualifier Value corresponding to Qualifier Type

Qualifiers Matched Indicator of match on additional qualifiers;
# begin algorithm #

Qualifiers Matched = 'yes';
AIRCRAFT SPEED = SELECT FIELDS ALL
- FROM AIRCRAFT MIN MAX SPEED(A MMS)
WHERE AM M_ﬁ.source _g Loc__ F1 Id, for other as appropriate#
CHOOSE CASE
WHEN Qualifier Type EQ 'minimum speed' THEN
IF AIRCRAFT SPEED.min speed LT Qualifier
THEN
Qualifiers Matched = 'no';
WHEN Qualifier TYpe EQ 'maximum speed' THEN
IF AIRCRAFT | ' SPEED.max_speed GT Qualifier
THEN
Qualifiers Matched = 'no';
END Process Speed Qualifier-

FIGURE 4-11
PROCESS_SPEED QUALIFIER

4-21



ROUTINE Process Aircraft Qualifier;
PARAMETERS
Loc_F1 Id IN,
Qualifier Type IN,
Qualifier . IN,
Qualifiers Matched OUT;
REFER TO GLOBAL
FLIGHT ID ASSOCIATIONS IN,
FILED FLIGHT_PLAN IN;
DEFINE TABLES
" LOC_FLIGHT PLAN defined like global table FILED FLIGHT PLAN;

DEFINE VARIABLES

Name Of Flight Name corresponding to a flight plan id

Loc__ F1 _Id Local flight id variable :

Qualifier Type Category of qualifier

Qualifier Value corresponding to Qualifier Type

Qualifiers Matched Indicator of match on additional qualifiers;
# begin algorithm #

SELECT FIELDS flight name
INTO Name Of Flight
FROM FLIGHT D ASSOCIATIONS(F I A)
WHERE F I A, flight plan id hQ Loc F1 1d;
LOC FLIG FLIGHT PLAN = SELECT FIELDS , ALL
FROM FILED FLIGHT PLAN
WHERE FILED FLIGHT PLAN.flight _name EQ Name Of Flight;
Qualifiers | Matched = "yes';
CHOOSE CASE
WHEN Qualifier Type EQ 'aircraft type' THEN
IF LOC FLIGHT ' PLAN.aircraft_type NE Qualifier
THEN
Qualifiers Matched = 'no';
WHEN Qualifier Type EQ 'maximum aircraft weight' THEN
IF LOC_ FLIGHT PLAN.weight GT Qualifier
THEN
Qualifiers Matched = 'no'
WHEN Qualifier Type EQ equippage THEN
IF LOC_FLIGHT | PLAN. « equippage NE Qualifier
THEN
Qualifiers Matched = 'no';
END Process Aircraft Qualifier;

FIGURE 4-12
PROCESS AIRCRAFT QUALIFIER

4-22



ROUTINE Planned Action Generation;

PARAMETERS
Loc_F1 Id 1IN,

Present Sector IN,
Past | Sector IN,
Restriction Index IN;

REFER TO GLOBAL
SECTORS_ENTERED IN,
SECTORS . IN;

REFER TO SHARED LOCAL
PROCEDURAL | RESTRICT IONS IN,
NPB PLANNING POINT IN;

DEFINE VARIABLES

Loc F1 Id Local flight id variable

Present Sector Sector being examined for restrictions

Past Sector Previous sector examined for restrictioms

Restriction Index Reference to restrictions

Number Of Sector Number corresponding to name

XY Restriction Point x,y coordinates of restriction point

Restriction_ Ard Along route distance of restriction point;
FIGURE 4-13

PLANNED_ACTION GENERATION

4-23



# begin algorithm #
REPEAT FOR EACH PROCEDURAL RESTRICTIONS(P_R) RECORD
WHERE P R.restriction_: index EQ Restriction Index;
IF PROCEDURAL RESTRICTIONS.restriction point._g 'boundary’
THEN
SELECT FIELDS sector_number
FROM SECTORS
INTO Number Of Sector
WHERE SECTORS . sector name EQ Present_Sector;
SELECT FIELDS coordinate
FROM SECTORS_ENTERED(S_E)
INTO XY Restriction Point
WHERE S E. f1 id EQ Loc F1 Id
AND S_E.sector number._g Number Of Sector AND

S E.time EQ MAX(S_E.time);

l

ELSE
XY _Restriction Point =
PROCEDURAL RESTRICTIONS.restriction ._point;
IF Past Sector._g NULL
THEN
CALL XY To_Ard(Flight Plan ID IN, XY Restriction_Point IN,
" Restriction Ard OUT),
IF Restriction . | Ard GT NPB_PLANNING POINT.Ard
THEN
CALL Select Planned Action Records(Loc F1 Id IN,
PROCEDURAL RESTRICTIONS.restriction . IN
PROCEDURAL RESTRICTIONS.restriction qualifier IN,
XY Restriction L Qualifier IN,
PROCEDURAL RESTRICTIONS .restriction L_type IN,
PROCEDURAL RESTRICTIONS.cleared IN),

ELSE
CALL Select Planned Action Records(Loc_Fl Id IN,

PROCEDURAL RESTRICTIONS.restriction IN,
PROCEDURAL | , RESTRICTIONS.restriction qualifier 1N,

XY Restriction L Qualifier IN,
'PROCEDURAL RESTRICTIONS.restriction ._type 1IN,

PROCEDURAL RESTRICTIONS.cleared IN);
END Planned Action Generation,

FIGURE 4-13 (Concluded)
PLANNED ACTION GENERATION

4-24



STy

RESTRICTIONS TABLE

Sector [Destination| Additional | Additional | Restriction | Restriction | Restriction | Restriction Assume
Qualifier | (Qualifier Type Qualifier Point Cruise
Type Parameters
1 XYz Route A Altitude 12000 At or Above Boundary N
Planned Action
Planned Action ID: System
Plan Time: System
Planned Action Type: Altitude il
Restriction Altitude: 12000 - -
Restriction Qualifier: At or Above | Boundary
Restriction Point: x,y = Translation
Algorithm
FIGURE 4-14

TRANSLATION OF A RESTRICTION INTO A PLANNED ACTION




ROUTINE Select Planned Action Records;
PARAMETERS
Loc_F1 14 IN,
Restriction IN,
Restriction Qualifier IN,
XY Restriction Point IN,
Restriction Type IN,
Cleared IN;
REFER TO SHARED LOCAL
LAST RESTRICTION_POINT INOUT,
ALTITUDE RESTRICTED INOUT,
SPEED RESTRICTED INOUT,
FLIGHT PHASE INOUT;
DEFINE VARTABLES
Loc F1 Id Local variable for flight id
Restriction Numeric altitude or speed value
Restriction Qualifier At, at or below, at or above
XY Restriction Point Geographic point where restr. applied

Restriction Type Speed or altitude

Cleared Flag to assume cleared altitude or speed

Base Type Base type of a PA - x,y or altitude

Base lLocation Base location of PA - start or end;
FIGURE 4~15

SELECT_PLANNED ACTION_RECORDS

4-26



¢ begin algorithm #
CHOOSE CASE
WHEN Restriction Type EQ 'restricted altitude change'’ THEN
T CALL Determine Transition Type(Restriction IN,
" Ascent_Descent Flag OUT);
IF (FLIGHT PHASE.phaae gg_ 'ascent') OR
(FLIGHT PHASE. phase_gg *descent' AND
Ascent Descent Flag EQ 'descent')
THEN
T CALL Generate Restricted Altitude PA(Loc F1 Id IN,
Restriction IN, Restriction Qualifier 1IN,
XY_Restriction Point IN);
UPDATE IN LAST RESTRICTION_ POINT
(coordinate = XY Restriction ._Point,
altitude = Restriction)
IF Cleared EQ 'yes'

THEN
~ UPDATE IN ALTITUDE RESTRICTED
(flag = 'no');
ELSE

UPDATE IN ALTITUDE_RESTRICTED
(flag = 'yes');
IF Ascent Descent Flag EQ 'descent'
THEN
FLIGHT PHASE.phase = 'descent’';
WHEN Restriction . Type EQ 'speed change' THEN
Base Location = 'end';
Base '  Type = 'coordinate'-
CALL Generate Speed . PA(Loc F1 Id 1IN,
" Restriction IN, Restriction L Qualifier IN, Base Type IN,
XY Restriction Point IN, Base Location IN);
UPDATE IN LAST RESTRICTION POINT
coordinate = XY Restriction L Point,
speed = Restriction);
IF Cleared EQ 'yes'
THEN
UPDATE IN SPEED RESTRICTED
(flag = 'no")
ELSE
UPDATE IN SPEED RESTRICTED
(flag = 'yes');
END Select Planned Action Records;

FIGURE 4-15 (Concluded)
SELECT PLANNED ACTION RECORDS

4=-27



ensures that the resultant planned action will not attempt to
model a climb while the aircraft is descending; the element
Determine Transition Type (Figure 4-16) aids this process by
identifying whether “the aircraft is climbing or descending at
the restriction point. If the planned action would attempt a
climb during the descent portion of flight, no planned action
is generated. If the planned action satisfies this editing,
Select Planned Action Records calls Generate Restricted_
Altitude PA (Figure 4-17) to implement the planned action. All
planned Taction generators use the routine Generate Planned
Action ID (Figure 4-18), which returns a unique system identi-
fier for each planned action. If a speed planned action is to
be generated, no additional editing 1is required, and Select_
Planned Action Records calls Generate Speed PA (Figure 4-19) to
output the planned action.

Once all restrictions for a particular set of additional
qualifiers have been processed, Planned Action_Generation
returns control to Restrictions | Retrieval. Reatrictions

Retrieval identifies the next set of additional qualifiers in
the restrictions table which match the corresponding flight
parameters. If another set 1is found, Restrictions Retrieval
again calls Planned Action Generation to process the selected
procedural restrictions. These two routines continue to work
together iteratively until all applicable sets of additional
qualifiers have been identified and corresponding restrictions
processed. Control then passes back to Nominal Plan Builder.

Once all restrictions in a sector have been satisfied, Nominal_

Plan Builder invokes Verify Cruise Parameters. Verify Cruise

Parameters (Figure 4-20) 1identifies if the trajectory has
achieved, or is constrained from achieving, cruise altitude and
speed. In the restrictions table, each listed restriction con-
tains a flag which 1indicates whether, after implementation of
the corresponding planned action, the trajectory is free to
assume cruise altitude and speed. A valld reason for denying
climb to cruise altitude would be the existence of subsequent
altitude restrictions, Even if a trajectory is not constrained
by a procedural restriction, the trajectory may still not be
free to attain cruise altitude and speed. As mentioned under
Select Planned Action Records, if a trajectory has begun to
descend, that trajectory can not be modeled as climbing again.
In the event that the trajectory has not yet achieved cruise
altitude and speed, and is not constrained from doing so by
either procedural restrictions or phase of flight, Verify

Cruise Parameters calls Generate Unrestricted Altitude PA
(Figure 4-21) to 1implement the applicable altitude planned
action, and calls Generate_Speed PA to implement the speed

4-28



ROUTINE Determine Transition Type;
PARAMETERS

Restriction IN,

Ascent Descent Flag OUT;
REFER TO SHARED LOCAL

LAST RESTRICTION POINT IN;
DEFINE VARIABLES -

Restriction Numeric altitude value
Ascent Descent Flag Indicates status of aircraft;
# begin algorithm #

IF LAST RESTRICTION POINT.altitude GT Restriction
THEN -
Ascent Degcent Flag ™ 'descent';
ELSE
Ascent Descent Flag = 'ascent';
END Determine Transition_Type;

FIGURE 4-16
DETERMINE TRANSITION TYPE

4-29



ROUTINE Generate Restricted Altitude PA;
PARAMETERS
Loc_F1 Id IN,
Restriction IN,
Restriction Qualifier IN,
XY Restriction Point IN‘
REFER TO GLOBAL
PLANNED ACTIONS OUT,
ALTITUDE CHANGE PLANNED ACTIONS OUT,
ALTITUDE | “RESTRICTIONS PARAMETERS_ﬁﬁT,
CURRENT TIME IN;
DEFINE VARIABLES
Loc_F1 Id Local variable for flight id
Restriction Numeric altitude or speed value
Restriction Qualifier At, at or below, at or above
XY Restriction Point Geographic point where restr. applied

Planned Action ID System id for a planned action
Ascent Descent Flag Indicates status of aircraft;
# begin algorithm #

CALL Generate_Planned Action ID(Planned Action ID OUT);
INSERT INTO PLANNED ACTIONS
(pa_1d = Planned Action_ID,
fl id = Loc F1 Id,
pa_| type = 'gltitude’
pa_source = 'npb',
plan_time = CURRENT TIME.time);
CALL Determine Transition Type(Restriction IN,
" Ascent Descent Flag OUT)
INSERT INTO ALTITUDE CHANGE PLANNED ACTIONS
zpa id = Planned . Action 1D,
transition type = Ascent Descent - Flag,
target : altitude = Restriction,
base_yalue_type = 'restriction coordinate’,
coordinate = XY Restriction Point);
INSERT INTO ALTITUDE RESTRICTIONS _PARAMETERS
(pa_id = Planned Action ID,
coordinates = XY Restriction Point,
restriction . altitudes = Restriction,
restriction;gualifiers = Restriction Qualifier);
END Generate Restricted Altitude PA; -

FIGURE 4-17
GENERATE RESTRICTED ALTITUDE_ PA

4-30



ROUTINE Generate Planned Action ID;
PARAMETERS
Planned Action ID QUT;

#This is a system routine which outputs a computer—-generated #
jidentifier used for machine identification of a unique occurrence#
#of a data structure. No PDL is provided for this routine, since #
fithe identifier is basically system software-architecture- #
#dependent #

FIGURE 4-18
GENERATE_PLANNED ACTION_ID

4-31



ROUTINE Generate Speed PA;
PARAMETFRS
Loc_F1 Id 1IN,
Restriction . IN
Restriction_Qualifier IN,
Base Type IN,
Base Value 1IN,
Base Location IN;
REFER TO GLOBAL
PLANNED ACTIONS OUT,
SPEED CHANGE PLANNED ACTIONS OUT,
SPEED RESTRICT IONS PARAMETERS OUT,
CURRENT TIME IN;
DEFINE VARTABLES

Loc_F1 1d Local variable for flight id
Restriction Target speed value
Restriction Qualifier At, at or above, at or below
Base Type Speed PA base - coordinate or altitude
BaSQ:Value Value for corresponding base type
Base Location Location of base - start or end
Planned Action ID System 1d for a planned action;

FIGURE 4~-19

GENERATE SPEED PA

4-32



# begin algorithm #
CALL Generate Planned Action ID(Planned Action ID OUT);
INSERT INTO PLANNED ACTIONS
zpa 1d = Planned . Action ID,
£f1 1d = Loc_F1 | Id,
pa_ | type = ‘speed',
pa_source = 'npb’',
plan time = CURRENT TIME.time);
CHOOSE CASE
WHEN Base Type EQ 'coordinate' THEN

~ INSERT INTO SPEED CHANGE PLANNED ACTIONS
Zpa_;d - Planned_ﬁctioq_;D
speed = Restriction,
base value location = Base_Location,
base value type ™ 'coordinate’,
coordinate = Base Value);

INSERT INTO SPEED RESTRICTIONS PARAMETERS
(pa_id = Planned Action ID,
rest_qualifier = Restriction Qualifier);

WHEN Base Type EQ 'altitude' THEN

~ INSERT INTO SPEED CHANGE | PLANNED ) ACTIONS
zpa id = Planned Action ID,
speed = Restriction,
base_value location = Base Location,
base value |  type ™= 'altitude’,
base_; = Base_Yalue)

INSERT INTO SPEED RESTRICTIONS_ PARAMETERS
(pa_1d = Planned | Action ID,
rest_qualifier = Restriction Qualifier);

END Generate_Speed_?A-

FIGURE 4-19 (Concluded)
GENERATELSPEED_?A

4-33



ROUTINE Verify Cruise Parameters;
PARAMETERS
Loc_F1 Id IN;
REFER TO GLOBAL
FILED FLIGHT PLAN IN;
REFER TO SHARED LOCAL
LAST RESTRICTION_POINT INOUT,
ALTITUDE RESTRICTED IN,
SPEED _ RESTRICTED IN,

FLIGHT PHASE IN;
DEFINE VARIABLES

Loc_F1 1d Local variable for flight id
Base Type Base for a speed PA - coordinate or altitude
Base Value Value for corresponding base type

Base:location Location of base ~ start or end;
DEFINE CONSTANTS
Speed Restriction Qualifier = 'at or above';
#default for attaining cruise#

FIGURE 4-20
VERIFY_CRUISE_PARAMETERS

4-34



# begin algorithm #
IF ALTITUDE RESTRICTED.flag EQ 'no' AND
FILED FLIGHT PLAN.filed cruise altitude GT
LAST RESTRICTION POINT.altitude AND
FLIGHT _PHASE. phase EQ 'ascent'’
THEN
" CALL Generate Unrestricted Altitude PA(Loc_F1 Id IN,
~ FILED FLIGHT PLAN. filed cruise altitude IN,
LAST RESTRICTION POINT.coordinate IN);
UPDATE IN LAST | RESTRICTION POINT
(altitude = FILED | FLIGHT PLAN.filed cruise altitude);
IF SPEED RESTRICTED. flag EQ no"' AND
FILED . ) FLIGHT PLAN. filed true air speed GT
LAST _ RESTRICTION POINT. Bpeed
THEN
~ UPDATE IN LAST " RESTRICTION POINT
(speed = FILED FLIGHT PLAN.filed true_air speed);
IF ALTITUDE RESTRICTED. flag__g 'no'
THEN
" Base  Type = 'altitude';
Base Value = FILED FLIGHT PLAN.filed cruise altitude;
Base Location = 'start'
ELSE
Base Type ™ 'coordinate';
Base Value = LAST RESTRICTION POINT.coordinate;
Base Location = 'start';
CALL Generate _Speed PA(Loc F1 1d IN,
FILED FLIGHT | PLAN. filed - true air _speed 1IN,
Speed Restriction Qualifier 1IN, Base Type 1IN,
Base | Value 1IN, Base Location IN),
END Verify_pruise_?arameters,

FIGURE 4-20 (Concluded)
VERIFY_CRUISE_PARAMETERS

4-35



ROUTINE Generate Unrestricted Altitude PA;
PARAMETERS
Loc FI_1d IN,

Destination Altitude IN,
XY Restriction Point IN

REFER TO GLOBAL

PLANNED ACTIONS OUT,
ALTITUDE CHANGE | PLANNED ACTIONS OUT,
CURRENT TIME IN,

DEFINE VARIABLES

#

Loc_F1 1d Local variable for flight id
Destination Altitude Goal altitude
XY Restriction Point Geographic point where PA initiates

PI;nned Action ID System id for a planned action
Ascent__ Descent Flag Indicates status of aircraft; ;
begin algorithm #

CALL Generate Planned Action ID(Planned Action ID OUT);
INSERT INTO PLANNED ACTIONS
— (pa_id = Planned Action ID,
fl id = Loc F1 Id, : '
pa_|  type = 'altitude',
pa_source = 'npb’',
plan time = CURRENT TIME.time);
CALL Determine Transition Type(Destination Altitude IN,
Ascent Descent - Flag OUT),
INSERT INTO ALTITUDE CHANGE . PLANNED ACTIONS
Zpa id = Planned Action ip,
transition type = Ascent Descent ._Flag,
target altitude = Destination Altitude,
base - value . type ™ 'coordinate’, .
coordinate = XY  Restriction Point);

END Generate_Unrestricteq_Altitude_PA,

FIGURE 4-21
GENERATE UNRESTRICTED ALTITUDE_PA

4-36



planned action. Verify Cruise Parameters then returns control
to Nominal Plan Builder.

Nominal Plan Builder has now completed processing for onme
sector through which the trajectory passes. The procedure
outlined in this section 1s repeated for each such sector in
the center.

4.2 Trajectory Initialization

Trajectory Estimation can be invoked in omne of three system
states, These states were described in Section 3.1. Briefly,

the three system states are:

e flight plan acceptance
e trajectory repositioning
e trajectory replanning

Invocation of Trajectory Estimation in any one state 1s dif-
ferent from an invocation in the other two states. The data
requirements for Trajectory Estimation change.

Trajectory Imitialization 18 a subfunction of Trajectory
Estimation. Component designs are provided for each system
state invocation. There is no logical interaction between the
components except for the assumption that repositioning is done
before replanning when one flight id requires both changes in
its plan and revision of its trajectory.

4.2.1 Mission

Trajectory Initialization has different input requirements for
each of three invocation sequences, but exactly the same ouctput
requirements. Figure 4-22 summarizes the common trajectory
modeling information produced by these three initialization
sequences. The figure also identifies the separate collections
of input information that are necessary to produce the common
result, Input requirements differ because the components are
called with different assumptions about the past and present
state of the trajectory for the flight under consideration.
The assumption in Trajectory Repositioning is that the set of
planned actions for the aircraft has not changed, even though
the observed position of the aircraft differs from the previous
trajectory position. The assumption in Trajectory Replanning
is that the set of planned actions has changed but the observed
poaition of the aircraft corresponds with the previous tra-
jectory position. The assumption in Flight Plan Acceptance 1is
that no trajectory for the aircraft has yet been built.

4-37



Profile l Profile
Reference Point Reference Upiated
Prior Facility Point Plan
Plan
Flight Trajectory Trajectory
Plan Repositionin Replannin
Acceptance P & P g
TRAJECTORY INITIALIZATION
I;::ial zeniing Active
ction Action
Cusp Lists

FIGURE 4-22
TRAJECTORY ESTIMATION INITIALIZATION OVERVIEW

4-38




4.2.2 Deslgn Considerations and Environment

Trajectory Initialization 1s the first ITrajectory Estimation
subfunction to be executed. It distinguishes among the three
system states by an input parameter to Irajectory Estimation.
The output of Trajectory Initialization is a set of initialized
data tables provided for the planned action proceasing
components and for the Trajectory Comstruction subfunction.

InBut

Trajectory Initialization has different input requirements for
each of the three components described in the sections below.
Data tables used by the Trajectory Initialization subfunction
include:

® System Global Data Base

- PLANNED_ACTIONS
ALTITUDE CHANGE PLANNED ACTIONS
HOLD_PLANNED_ACTIONS
SPEED_CHANGE_PLANNED ACTIONS
VECTOR_PLANNED ACTIONS

These tables contain information about the air-
craft's plan. Trajectory Initialization categorizes
each planned action for the aircraft into
appropriate pending action 1ists, and creates an
active actions list.

~ PLANNED ACTION DURATIONS

Information about the modeled start time and modeled
end time of each planned action affecting the
previously bullt trajectory is used, as appropriate,
to determine which planned actions may be active at
the initial cusp built by Trajectory Initialization.

- TRAJECTORIES
The previous trajectory for an aircraft 1is searched,

as appropriate, to identify the initial cusp to be
built by Trajectory Initialization.

4-39



WINDS

Wind data from this table is copied into the initial
cusp built by Trajectory Initialization.

e Shared Local Data Base

Outgut

SUPPLEMENTAL CUSP_INFORMATION

This table provides, when appropriate, information
to calculate values for parameters stored at the
initial cusp built by Trajectory Initialization.

TURN_POINTS

In the case of an active vector action, Trajectory
Initialization uses this table as a source of values
for fields in the active actions list. '

Trajectory Initialization refines the various inputs (depending
on the state of Trajectory Estimation invocation) into a
unified set of information to allow the further construction of
the trajectory. The following data tables are altered:

e System Global Data Base

TRAJECTORIES

Trajectory Initialization creates the initial cusp
of the trajectory.

e Shared Local Data Base

ACTIVE_PLANNED_ACTIONS

Trajectory Initialization creates this table to
indicate which planned actions are being modeled at
the initial cusp.

PAST_CUSP
The initial cusp built by Trajectory Initialization
is also stored as the past cusp for use by the

planned action processing components and by
Trajectory Construction.

4=40



- SUPPLEMENTAL CUSP_INFORMATION

A record is inserted into this table for the initial
cusp built by Trajectory Initialization.

= ALTITUDE PENDING ACTIONS
HOLD__ PENDING ACTIONS
SPEED PENDING ACTIONS
VECTOR__PENDING_ACTIONS

These tables are created and initialized by
Trajectory Initialization. The identity of each
planned action starting ahead of the initial cusp
built by Trajectory Initialization.is stored, along
with an initlalized stimulus value.

4.2.3 Flight Plan Acceptance Design Logic

In this component, no previous trajectory or supplemental cusp
information exists for this aircraft. For Trajectory Initial-
ization to work, the invoking function must have created and
stored planned actions that affect the trajectory of the flight
in question. The invoking function also must provide detailed
information about a reference point from which the flight's
trajectory can be reliably modeled. The reference point input
to this component must be on the converted route so that Flight
Plan Acceptance can derive the direction of the flight.

Organization

The component calling relationships for Flight Plan Acceptance
Initialization are shown in Figure 4-23. Levels of indentation
in the figure are used to indicate calling hierarchy. The
element Determine Altitude End 1is described in Section 4.3.
Other elements are given In design language in this section,
except the utilties Tas To las, Ias To Mach, and Wind Field.
The utilities are described in Appendix B.

Process:l.ng Method

The first processing step imn Flight Plan Acceptance In:ltiali-
zation (Figure 4-24) is to insert into the local table GIVEN
ACTIVE each of the planned actions that control some AGD
parameter. These are determined according to the active pa
elements of the REFERENCE CUSP (which is input to Trajectory
Estimation). If there is no active planned action for a par-
ticular AGD parameter, there will be no entry in the GIVEN_
ACTIVE table for this parameter.

4-41



Flight Plan Acceptance Initialization
Create Active Planned actions
Determine Altitude End
Fill Pending Lists
Wind Field
Tas_To_las
Tas_To Mach

FIGURE 4-23
FLIGHT PLAN ACCEPTANCE INITIALIZATION CALLING SEQUENCE

4~42



ROUTINE Flight Plan Acceptance Initialization;

PARAMETERS PENDING ACTIONS IN, .
REFERENCE CUSP IN, New F1 Id IN;

REFER TO GLOBAL TRAJECTORIES INOUT;

REFER TO SHARED LOCAL PAST CUSP INOUT,
SUPPLEMENTAL CUSP_INFORMATION INOUT;

DEFINE VARIABLES

New F1 _1d Flight id requiring a new trajectory;
DEFINE TABLES

GIVEN ACTIVE Table of given active planned actions

pa id Planned action controlling one of
- the AGD Parameters
REFERENCE CUSP Extended information about given point
- in a single-entry table.

X x coordinate of point
y y coordinate of point
z Altitude of point
time Time at point
ard Along-route distance at point
tas True airspeed at point
ground_speed Observed ground speed at point
pa_acceleration Pa_1d controlling acceleration
pa_gradient Pa_id controlling gradient
pa_direction Pa 1d controlling direction

position AGGREGATE (x,y)

xyz position AGGREGATE (x,y,z)

active pa AGGREGATE (pa_acceleration, pa gradient,
pa direction)

PENDING_ACTIONS Table of all pending planned actions
pa_1id Planned action declared pending;
FIGURE 4-24

FLIGHT PLAN ACCEPTANCE INITIALIZATION

4-43



GIVEN ACTIVE = SELECT FIELDS active pa
FROM REFERENCE CUSP;

CALL Create Active Planned Actions (GIVEN ACTIVE IN);

CALL Fill Pending Lists (PENDING ACTIONS IN),

PAST CUSP=SELECT FIELDS X, v, z, time, ard, tas, ground speed
FROM RE

CALL Wind Field (REFERENCE CUSP.xyz_position IN,
" PAST _CUSP.wind_field OUT);

CALL Tas _To_las (PAST CUSP. tas IN, PAST CUSP.z 1IN,
PAST CUSP.temperature IN, PAST _CUSP. {as OUT),

CALL Tas To_Mach(PAST CUSP. tas IN, PAST CUSP.z IN,
PAST CUSP. temperature IN, PAST CUSP.mach OUTT-

INSERT INTO SUPPLEMENTAL _{ CUSP INFORMATION (fl id=New F1 I1d,
time = REFERENCE CUSP. . time, acceleration = 0,
direction = FERENCELpUSP direction, gradient = 0,
agd control = REFERENCE CUSP.active pa,
ard = REFERENCE CUSP. ard tas = REFERENCE CUSP.tas,
ias = PAST CUSP. 1as, mach = PAST_CUSP. mach
wind . field = PAST CUSP.wind field)

INSERT INTO TRAJECTORIES (fl id = New__ Fl Id,
time = REFERENCE CUSP. time, z= REFERENCE CUSP.z,
position = REFERENCE_CUSP.position);

END Flight Plan Acceptance_ Initialization'

FIGURE 4-24 (Concluded)
FLIGHT_PLANAACCEPTANCE_INITIALIZATION

444



The GIVEN_ACTIVE table is used as input to the routine Create_
Active Planned Actions (Figure 4-25). This element produces
the output for the ACTIVE_PLANNED ACTIONS table. This is done
chﬂmduaﬁmtmrdwmtﬂmuduumtnhsmtm
global data.

The next processing step of Flight Plan Acceptance Initiali-
zation 1is to call Fill Pending Lists (Figure 4-26) with the
PENDING_ACTIONS parameter as input.. This element separates the
single 1ist of pending planned actions into one table for each
type of planned action.

Flight Plan Acceptance processing continues by £illing the
PAST CUSP data table. This single-record table is filled
partially from the position and speed information from the
REFERENCE CUSP and partially by calls to wutilities which
estimate the wind field at the past cusp and which provide
speed unit conversion calculations.

Next a record is added to the SUPPLEMENTAL CUSP_INFORMATION
table. The new record contains data fields extracted from the
REFERENCE CUSP and the PAST CUSP, creating a single cusp that
will be the first point of the trajectory for the planned
action processors and Trajectory Construction.

Finally, a record is added to the TRAJECTORIES table. This
completes preparation of the information needed to model the
remainder of the trajectory.

4.2.4 Trajectory Repositioning Design Logic

Invocation of Trajectory Repositioning Initialization requires
the identification of the flight to be repositioned. The (x,y)
position of the reference point given as input determines, by
reference to the previous trajectory and the  planned action
duration table, the set of planned actions controlling the
previous trajectory at the given point.

Organization

The calling relationships for Trajectory Repositioning Ini-
tialization are shown in Figure 4-27. Levels of indentation in
the figure are used to indicate calling hierarchy. Elements
specific to the Trajectory Repositioning component are speci-
fied in this section. All other referenced elements are
described in Flight Plan Acceptance Initialization.

4-45



ROUTINE Create Active : Planned Actions;
PARAMETERS PA ] LIST IN,
REFER TO GLOBAL HOLD ) PLANNED ACTIONS IN, PLANNED ACTIONS IN,
ALTITUDE CHANGE ] PLANNED ACTIONS IN TURN_| POINTS IN,
SPEED_( CHANGE PLANNED ACTIONS IN, VECTOR PLANNED ACTIONS IN;
REFER TO SHARED LOCAL ACTIVE_PLANNED_ACTIONS OUT;
DEFINE VARIABLES

Last_Apex Last position named in original vector
b 4 x coordinate of position
y y coordinate of position

Last_Point Last position - preferably a turn point

Defined like Last_Apex;
DEFINE TABLES

PA LIST One entry per active planned action
pa_id Id of active planned action;
FIGURE 4-25

CREATE_ACTIVE_PLANNED_ACTIONS

4-46



ACTIVE_PLANNED ACTIONS = SELECT FIELDS pa_id, pa_type,
pa_| source, plan time
FROM PLANNED ACTIONS
WHERE PLANNED ACTIONS.pa id EQ ANY PA LIST.pa id;
UPDATE IN ACTIVE PLANNED_ACTIONS (stop condition?'speed'
stop tas=SPEED ) CHANGE | PLANNED ACTIONS.speed)
WHERE SPEED _( CHANGE PLANNED ACTIONS. pa_id
EQ ACTIVE PLANNED ACTIONS. pa_id;
REPEAT FOR EACH ACTIVE PLANNED ACTIONS RECORD
WHERE ACTIVE ] PLANNED ACTIONS. pa_type EQ altitude'v
CALL Determine Altitude End (
ACTIVE PLANNED ACTIONS.pa id IN,
ACTIVE | ._PLANNED _ ACTIONS. stop_condition OUT,
ACTIVE PLANNED ) ACTIONS.stop_position OUT,
ACTIVE | ._PLANNED ACTIONS.stop tas ouT,
ACTIVE_PLANNED ACTIONS.stop 2 OUT);
UPDATE IN ACTIVE PLANNED ACTIONS ?htop condition-'tine ,
~ stop_t=HOLD_PLANNED ACTIONS.EFC_Time)
WHERE ACTIVE PLANNED ACTIONS.pa_: - 4d
EQ HOLD PLANNED ACTIONS. pa_id;
REPEAT FOR EACH ACTIVE PLANNED ACTIONS RECORD
WHERE ACTIVE PLANNED ACTIONS. pa_type EQ 'vector'-
SELECT FIELDS v coordinate
FROM VECTOR PLANNED ACTIONS (V_P A)
INTO Last Apex
WHERE VP A.pa _id EQ PA LIST.pa id
AND V _A.vertex sequence number is the maximum among
~ all numbers for the PA LIST.pa 1d;
SELECT FIELDS turn pt
FROM TURN_POINTS (T_P)
INTO last Point
WHERE T ] P. pa_id EQ PA LIST.pa id
AND T P.apex point _g Last _Apex
AND T P.sequence is max of numbers for Last _Apex;
IF last_ t_Point EQ NULL
THEN
Laat Point = Last_Apex;
UPDATE IN ACTIVE_PLANNED ACTIONS
Zstop condition = 'coordinate’, stop_position = Last Point)
END Create_Active_Planned_Actions,

FIGURE 4-25 (Concluded)
CREATE_ACTIVE_PLANNED_ACTIONS

4-47



ROUTINE Fill Pending_Lists;

PARAMETERS ENTIRE LIST IN;

REFER TO GLOBAL PLANNED ACTIONS IN;

REFER TO SHARED LOCAL ALTITUDE PENDING_ACTIONS OUT,
HOLD_PENDING _ACTIONS OUT, SPEED PENDING ACTIONS ouT,
VECTOR PENDING ACTIONS ouT;

DEFINE TABLES
ENTIRE_LIST Table of all pending planned actions

pa_: id One record per pending action;
ALTITUDE , PENDING_ACTIONS=SELECT FIELDS

pa_: id, pa source, plan_time

FROM PLANNED ACTIONS

WHERE PLANNED ACTIONS.pa_type EQ 'altitude'

AND PLANNED ) ACTIONS. pa_id IS IN ENTIRE LIST.pa id;
UPDATE IN ALTITUDE PENDING _ ACTIONS
" (stimulus_type=NULL);

HOLD_PENDING_ACTIONS = SELECT FIELDS pa id,pa source,plan time
FROM  PLANNED ACTIONS
WHERE PLANNED ACTIONS.pa type EQ 'hold'

AND PLANNED ) ACTIONS.pa_: ' 1d IS IN ENTIRE _LIST.pa_id;
UPDATE IN HOLD PENDING ACTIONS (stimulus type'NULL)
SPEED_PENDING ACTIONS‘SELECT FIELDS pa_: id,pa source,plan time

FROM PLANNED ACTIONS
WHERE PLANNED ) ACTIONS.pa_type EQ 'speed'

AND PLANNED ) ACTIONS.pa “1d IS IN ENTIRE_LIST.pa id;
UPDATE IN SPEED PENDING ACTIONS
" (stimulus_type=NULL);

VECTOR PENDING » ACTIONS=SELECT FIELDS pa_id,pa_source,plan time
FROM PLANNED ACTIONS
WHERE PLANNED | ) ACTIONS.pa_type EQ 'vector'
AND PLANNED ) ACTIONS.pa_id IS IN ENTIRE LIST.pa id;
UPDATE IN VECTOR_PENDING ACTIONS(stimulus_type=NULL);
END F11ll Pending Lists,

FIGURE 4-26
FILL PENDING_LISTS

4-48



Trajectory Repositioning Initialization
Create_Active Planned actions
Determine Altitude End
Fill Pending Lists
Tas_To_Ias
Tas To Mach

FIGURE 4-27
TRAJECTORY REPOSITIONING INITIALIZATION
CALLING SEQUENCE

4-49



Processing Method

The Trajectory Repositioning Initialization element is provided
in Figure 4-28. The processing sequence is about the same as
that for Flight Plan Acceptance Initialization, except the
lists of pending and active planned actions need no externmal
initialization.

The first processing step of Trajectory Repositioning Initiali-
zation is to compute the set of active planned actions. The
PLANNED ACTION DURATION table is used from the previous version
of the trajectory to determine what planned actions were in
control of some AGD variable at the time of the REFERENCE
POINT. The table ACTIVE PLANNED ACTIONS 1is created by a call
to Create_Activq_?lanneQ;Kétions (Figure 4-25).

The next processing step of Trajectory Repositioning Initial-
ization is to identify the pending planned actions and create
the pending actions tables for each type of pending planned
action. The pending planned actions are recognized by
comparing the PLANNED ACTION DURATION start time for the
planned action to the REFERENCE POINT time. The pending
actions 1lists are created by a call to the routine Fi11
Pending Lists (Figure 4-26).

The SUPPLEMENTAL CUSP_INFORMATION table is brought up to date
by copying gradiemt, time, direction, and along-route distance
values from the REFERENCE POINT. Indicated airspeed (IAS) and
Mach are computed by calls to utilities described in Appendix
B. Other fields in the record are obtained from the previous
version of the trajectory.

Finally, all cusps after the REFERENCE POINT are dropped from
both the TRAJECTORIES table and the SUPPLEMENIAL CUSP_INFORMA-
TION table.

4.2.5 Trajectory Replanning Design Logic

Trajectory Replanning Initialization is responsible for satis-
fying the initial data requirements of planned action proces-
sing and Trajectory Comstruction when changes in the plan are
made. This component has available all Trajectory Estimation
data from the previous version of the trajectory so that the
invoking routine needs to supply only the flight id.

The invocation assumption for Trajectory Replanning Initializa-

tion is that the existing modeled trajectory is correct except
insofar as it is affected by changes made to the plan for this

4-50



ROUTINE Trajectory Repositioning Initialization;
PARAMETERS F1 1d IN, REFERENCE POINT IN;

REFER TO GLOBAL PLANNED ACTION DURATION IN;

REFER TO SHARED LOCAL SUPPLEMENTAL CUSP_INFORMATION IN;

DEFINE VARTABLES
F1_1d
DEFINE TABLES
FOUND_ACTIVE
pa_id
GIVEN_PENDING
pa 1d
REFERENCE_POINT

flight id
X

y

Z

t

tas
direction

Which trajectory to reposition

Table of active planned actions
An active planned action
Table of pending planned actions
A pending planned action
Revised position of the aircraft to
be used to start the trajectory
The flight associated with this point
x coordinate at the point
y coordinate at the point
z coordinate at the point
t coordinate at the point
True airspeed at the point
Direction at reference point;

FIGURE 4-28

TRAJECTORY REPOSITIONING INITIALIZATION

4-51



FOUND_ACTIVE = SELECT FIELDS pa id
FROM PLANNED ACTION DURATION (PAD)

WHERE PAD.start _time LE REFERENCE_POINT.time
AND PAD.end time GE REFERENCE POINT.time;

CALL Create _Active Planned | Actions(FOUND_ACTIVE IN);

GIVEN PENDING = SELECT FIELDS pa_id
FROM PLANNED ACTION_DURATION
WHERE PAD.start time GT REFERENCE POINT.t;

CALL Fill Pending I1sts(GIVEN_PENDING IN);

UPDATE IN SUPPLEMENTAL CUSP_INFORMATION N (gradient = 0,
time = REFERENCE_?OINT t acceleration = 0,
direction = REFERENCE POINT.direction,
ard = REFERENCE_POINT. ard);

CALL Tas To_las (SUPPLEMENTAL CUSP_INFORMATION.tas IN,
REFERENCE POINT.z IN, SUPPLEMENTAL CUSP_INFORMATION.temperature
IN, SUPPLEMENTAL CUSP_INFORMATION.las OUT)

CALL Tas_To Mach(SUPPLEMENTAL CUSP INFORMATION tas IN,

T REFERENCE . POINT.z IN, SUPPLEMENTAL CUSP INFORMATION.temperature
IN, SUPPLEMENTAL CUSP_INFORMATION.mach OUT);

DELETE FROM TRAJECTORIES

WHERE TRAJECTORIES.time LT REFERENCE POINT.t
" AND TRAJECTORIES.f1l id EQ F1 Id;

DELETE FROM SUPPLEMENTAL CUSP INFORMATION (scI)

WHERE SCI.time LT REFERENCE POINT.t
AND SCI.f1 id EQ F1 Id;

END Trajectory Repositioning Initialization,

FIGURE 4-28 (Concluded)
TRAJECTORY_REPOSITIONINQ_INITIALIZATION

4-52



aircraft. Since this Trajectory Estimation invocation has not
involved a repositioning, the timing of the aircraft since the
last profile reference point 1s assumed correct. The set of
active planned actions at the profile reference point is
available.

Organization

The calling relationships for Trajectory Replanning Initializa-
tion are shown 1in Figure 4-29. Elements unique to the
Trajectory Replanning Initialization component are given in
this section. Some elements referenced can be found in Section
40203‘

Processing Method

The Trajectory Replanning Initialization routine is provided in
Figure 4-30. The routine Determine Initial Past Cusp (Figure
4-31) 1s invoked to find and record the initial cusp of the
previous trajectory. That cusp was built at a profile refer-
ence point and represents a point in the previous trajectory
known to be wunaffected by changes in the 1list of planned
actions for this aircraft,

Trajectory Replanning Initialization then creates the PAST CUSP
table (a single-record table) by copying values from the
initial cusp determined by Determine Initial Past Cusp. The
ACTIVE PLANNED ACTIONS table and the pending actions lists are
constructed through calls to the elements create Active
Planned Actions (Figure 4-25) and Fill Pending_Lists (Figure
4-26). ~All those planned actions previously placed and ahead
of the reference point are considered pending. Any new action
is considered pending.

4.3 Planned Action Processing

In the normal operating mode of the system, ATC maneuvers are
planned and executed by aircraft for a variety of reasons.
These actions can be immediate control actions such as those
given by a controller, or they can be planned for - subsequent
execution. The actions themselves can change aircraft routes,
altitudes, or speeds, which, in turn, continue to affect the
temporal progress of the aircraft after the maneuver has been
achieved.

The only mechanism by which the automation system is made aware
of a control action is by the presence of a planned action data

4-53



Trajectory Replanning Initialization
Determine Initial Past Cusp
Create_Active Planned Actions
Fill Pending Lists

FIGURE 4-29
TRAJECTORY REPLANNING INITIALIZATION CALLING SEQUENCE

4-54



ROUTINE Trajectory Replanning Initialization;
PARAMETERS F1 Id IN;
REFER TO GLOBAL TRAJECTORIES INOUT,
PLANNED ACTIONS IN, PLANNED ACTION_DURATION IN;
REFER TO SHARED LOCAL PAST CUSP OuT,
SUPPLEMENTAL CUSP_. INFORMATION INOUT;
DEFINE VARIABLES

F1 Id Identification of the affected flight
Initial Point Point selected as initial past cusp
x x coordinate of point

y y coordinate of point
z z coordinate of point
t t coordinate of point;
DEFINE TABLES \
FOUND_ACTIVE Table of active planned actions
pa_: " 1d An active planned action
GIVEN PENDING Table listing all planned actions that may
be used in the future
pa_1id One entry for each planned action;
FIGURE 4-30

TRAJECTORY REPLANNING_INITIALIZATION

4-55



CALL Determine Initial Past Cusp (F1_Id IN, Initial Point ouT);
PAST T_CUSP = SELECT FIELDS ard, tas, ias, mach,
ground speed, wind speed, wind | direction, temperature
FROM SUPPLEMENTAL CUSP INFORMATION, TRAJECTORIES
WHERE TRAJECTORIES. £l : id E EQ F1 Id
AND SUPPLEMENTAL ¢ CUSP INFORMATION.f1 id EQ F1_Id
AND TRAJECTORIES. time ] EQ Initial | Point.t
AND SUPPLEMENTAL CUSP_ INFORMATION. time
EQ.Initial Point. t,
UPDATE IN PAST CUSP (x=In1tial Point.x, y-Initial Point.x,
z=Initial Point.z, time=Initial Point.t);
DELETE FROM TRAJECTORIES
WHERE TRAJECTORIES.time GT Initial Point.t;
DELETE FROM SUPPLEMENTAL ( CUSP INFORMATION (s_c_ I
WHERE S C_I.time GT Initial Point.t;
FOUND AC' ACTIVE = SELECT FIELDS pa_id
FROM PLANNED ACTION DURATION (D)
WHERE D.pa_ start time LE Initial Point.t
AND D.pa_end time GE Initial Point. ts
CALL Create Active Planned Actions " (FOUND ACTIVE IN)
GIVEN PENDING = SELECT FIELDS pa_id
FROM PLANNED ACTION DURATION(D)
WHERE D. begin time GT Initial Point.t;
INSERT INTO GIVEN | PENDING (pa__ id = PLANNED_ACTIONS.pa_id)
WHERE PLANNED | ACTIONS. f1 id EQ F1 Id AND
PLANNED ACTIONS. pa_ 1d IS NoOT IN
PLANNED ) ACTION DURAIION.pa id;
CALL Fill Pending_Lists (GIVEN PENDING IN);

END Tra jectory_| Replanning Initialization,

FIGURE 4-30 (Concluded)
TRAJECTORY REPLANNING INITIALIZATION

4-56



ROUTINE Determine Initial Past Cusp;
PARAMETERS F1 Id IN, Initial Point OUT;
REFER TO GLOBAL TRAJECTORIES IN;
DEFINE VARIABLES
Initial;faint 4-dimensional point where Trajectory
Estimation modeling can begin
x coordinate
y coordinate
2z coordinate
' t coordinate;
SELECT FIELDS x, y, z, time
FROM TRAJECTORIES (TJ)
INTO Initial Point
WHERE (TJ.f1 id EQ F1 Id)
" AND (TJ.time EQ MIN(TJ.time));
END Determine _Initial | Past | _Cusp;

TN M

FIGURE 4-31
DETERMINE_INITIAL PAST CUSP

4-57



structure in the aircraft's plan. Trajectory Estimation incor-
porates each planned action as an event 1in the trajectory.
System-identified control actions as well as those of the
controller are modeled into the trajectory.

This section provides details of the processing of individual
planned actions within the Trajectory Estimation function., To

increase modularity, each planned action described in Section 2
is treated separately as an individual processing component.

In addition, two other components are described: Flight Route_
Follower and Include Future Planned Action Limits.

The sequence of processing of planned actions is important.
The order is established in the subfunction design logic for
Planned Action Processing (Figure 4-32).

4.3.1 Mission

The trajectory for an aircraft is an ordered 1list of four-
dimensional points. Trajectory Estimation 1s described in this
volume as constructing the trajectory one cusp at a time. The
trajectory 1s built through repeated executions of Planned
Action Processing and Trajectory Construction. Each execution
is responsible for constructing one cusp of the trajectory.
The process 1s described in Section 3.3.

Planned action processing provides information to Trajectory
Construction which allows the next cusp of the trajectory to be
built. Two distinct sets of information are provided: three
evaluated AGD vaiables accumulated into an AGD vector and a set
of limits which bound the extent of the supplied AGD vector,
As described in Section 3.3, the AGD vector allows the speci-
fication of a four-dimensional unbounded line emanating from
the past cusp. The limits, supplied by planned action pro-
cessing, allow the selection of a single point on that line to
be designated the next cusp.

Planned action processing must evaluate the AGD variables. It
must also represent all upcoming trajectory events as limits.
These events not only include the bounds on the AGD vector, but
also upcoming events assoclated with pending planned actioms.
Each planned action must start and end somewhere on the trajec-
tory. The starting event for each pending action must be
stated as a limit to ensure the explicit representation of that
event at a cusp.

4-58



ROUTINE Planned Action_ Processing;
PARAMETERS
Loc_F1 Id IN;

DEFINE VARIABLES :
Loc_F1 _Id The identification of the aircraft undergoing

Trajectory Estimation;
CALL Hold Planned Action Processing;
CALL Altitude Planned Action Processing(Loc_Fl Id IN);
CALL Speed Planned Action Processing;
CALL Vector Planned Action Processing(Loc F1 Id IN);
CALL Flight Route Follower(Loc F1 _Id IN);
CALL Include Future PA Limits(Loc F1 Id IN);

END Planned_Action__Processing

FIGURE 4-32
PLANNED ACTION_PROCESSING

4-59



The AGD vector consists of the acceleration, gradient, and
direction of the aircraft immediately after the past cusp.
While it is meaningful to have zero values for the acceleration
and gradient AGD variables (meaning maintain the same true
airspeed and altitude over the next segment as occurred at the
past cusp), it is not generally the case that the direction AGD
variable should be zero. The value supplied in the direction
AGD variable 1is the NAS direction emanating from the past
cusp. That direction can be evaluated by a vector action
(i.e., the direction of the aircraft is under control of ATC),
in which case the direction AGD variable is set by the Vector
Planned Action Processing Component. Generally, however, the
aircraft will proceed along the ATC-cleared route for that
aircraft. In that case, the direction AGD variable must be
inherited from the cleared route.

4.3.2 Design Considerations and Environment

A planned action is represented in the trajectory by a maneuver.
Maneuvers have (modeled) temporal extent. During the extent of
one maneuver, another maneuver could start. For example, a
vector maneuver could be modeled as starting inside the extent
of an altitude manuever. The processing cycle of planned
action processing and Trajectory Construction must be able to
incorporate these changes of maneuvers.

The cusp-by-cusp construction process implies that the temporal
extent of a modeled planned action may include several trajec-
tory cusps. Each planned action processing component must be
capable of sustaining invocation at any point in the maneuver
being modeled. The interplay of the different planned actions
could force an early ending of a maneuver being modeled; hence,
planned action processing must always be capable of determining
appropriate planned actions in control of AGD variables, evalu-
ating those AGD variables (according to the controlling planned
action) from past cusp information and setting appropriate goal
limits.

Input
In order to perform the plan action processing subfunction, the

following tables are accessed from the Global Data Base and
from the Shared Local Data Base:

4-60



e System Global Data Base

PLANNED_ACTIONS

HOLD PLANNED ACTIONS
ALTITUDE_CHANGE PLANNED ACTIONS
ALTITUDE_RESTRICTIONS_PARAMETERS
SPEED_CHANGE PLANNED ACTIONS
SPEED_RESTRICTIONS_PARAMETERS
VECTOR_PLANNED ACTIONS

These tables contain parameters necessary to
establish the positioning, extent, and intent of
planned ATC maneuvers.,

ROUTES

This table is used to value the direction AGD -
variable when the direction variable 1is not being
controlled by a vector planned action.

AIRCRAFT_MAX ENDURANCE_SPEEDS
NOMINAL CLIMB_SPEEDS

NOMINAL DESCENT SPEEDS
DESCENT_IAS_TO GRADIENT
DESCENT_MACH TO_GRADIENT
CLIMB_IAS_TO GRADIENT
CLIMB_MACH TO GRADIENT
ATRCRAFT_ACCELERATION
AIRCRAFT DECELERATION

These tables are part of the aircraft performance
characteristics data base. They provide the best
available information regarding normal aircraft
operations. The aircraft maximum endurance speed is
used as a holding speed. Aircraft altitude transi-
tions are modeled along the normal speed schedule
for the aircraft. These normal speed schedules can
be cross-referenced to gradient parameters. Speed
changes for an aircraft use the stored acceleration
and deceleration parameters.

FLIGHT PLANS
FLIGHT ID ASSOCIATIONS

The f£flight plan for an aircraft contains the

ATC-approved values for cruise altitude and speed.
In order to obtain these values, planned action

4~61



processing components use the translation facilities
of the associations table.

e Shared local Data Base

Outgut

ACTIVE PLANNED ACTIONS

This table 1identifies those planned actions con-
tributing to the construction of the past cusp.

HOLD_ PENDING_ACTIONS
ALTITUDE_PENDING_ACTIONS
SPEED PENDING ACTIONS
VECTOR_PENDING ACTIONS

These tables contain the identity of each planned
action yet to be modeled as of the past cusp.

PAST_CUSP

This table provides the modeling parameters present
at the most recently modeled cusp.

TURN_POINTS
VEC_PHASE

These tables, maintained by the Vector Planned
Action Processing component, contain the points
needed to model the turns in a vector and which turn
18 currently being modeled,

Primary output from the planned action processing component
includes parameters to Trajectory Construction for modeling the

next cusp.

Each planned action processing component also main-

tains the 1ist of active and pending planned actions. The
following data sets are altered:

AGD_VECTOR

This table is altered to include the current values
of acceleration, gradient, and direction emanating
from the past cusp. The acceleration and gradient
fields may be 1left unvalued, but the direction
variable is always evaluated.

4-62



POSITION_LIMITS
SPEED LIMITS
TIME LIMITS
ALTITUDE_LIMITS
ARD LIMITS

These tables include candidate end conditions for
the AGD vector accumulated over all the planned
action processing components. Not only are those
limits applicable to the different AGD variables
included, but also the identification of future
trajectory events where a cusp must be built.

ACTIVE PLANNED ACTIONS

This table 1is altered to eliminate any planned
action completed at the past cusp and/or include the
identity of any planned action which became active
at the past cusp.

HOLD_PENDING ACTIONS
ALTITUDE PENDING ACTIONS
SPEED PENDING ACTIONS
VECTOR PENDING ACTIONS

These tables are altered to eliminate all planned
actions starting at the past cusp. The number of
records in each table decreases as trajectory model-
ing proceeds.

PLANNED ACTION START TIMES
PLANNED ACTION END TIMES

The modeled start time and end time of each planhed
action is recorded. The start time and end time for
a planned action can be identical, meaning that the
planned action was recognized, but not modeled.

PAST CUSP_TYPE

This table may be altered to indicate that the past
cusp was a point inside a hold or altitude action.

4-63



— GRADIENT PARAMETERS

This table is used in conjuction with an altitude
change maneuver to record whether the aircraft is
modeled as transitioning at constant mach or
constant ias.

- VEC_PHASE
TURN_POINTS

These tables are created by Vector Planned Action
processing. They contain the points wused in
modeling a turn and the part of the turn currently

being modeled.

Overlap Processing

The Trajectory Estimation process allows the extents of some
planned actions to overlap. Since a planned action affects the
trajectory by designating a value for an AGD variable, only one
planned action can influence an AGD variable at any one time.
Consequently, only those planned actions which control dif-
ferent AGD variables at a designated time are allowed to over-
lap. This implies that two planned actions with the same
maneuver type can never overlap.

To expect planned actions to be distributed along the route of
the aircraft in such a way that altitude planned actions never
overlap altitude planned actions (or speeds with speeds, vec-
tors with vectors, etc.) is shortsighted. A set of protocols,
established within the planned action processing components,
allows the arbitration between planned actions competing for
the same AGD variable at the same time. Only one planned
action 1s allowed to emerge from the arbitration.

The protocols set up in the planned action processing are
established on three levels:

e maneuver priority
e planner priority
e temporal priority

. Maneuver priority refers to which type of maneuver 1is allowed.
Figure 4-32 establishes the maneuver priority. A hold maneuver
has highest priority, and is allowed access to the AGD vector
first. A hold maneuver controls the acceleration AGD variable
during the modeled temporal extent of the hold. Once the
acceleration AGD variable has been set by the Hold Planned

4-64



Action Processing component, any speed actions attempting to
start during the temporal extent of the hold will be ignored.

If two or more planned actions of the same maneuver type attempt
to control the same AGD variable at the same time, then the
winning planned action is determined on the basis of the source
of the planned action and the time the planned action was added
to the aircraft's plan. Planned action processing components
prioritize controller-placed maneuvers ahead of system—placed
maneuvers (such as those of Nominal Plan Builder). In the case
of identical sources, the newest action has top priority.

In all overlap protocols, the planned action that is not
allowed access to the AGD variable is ignored and eliminated
from further consideration.

4.3.3 Hold Planned Action Processing Design Logic

A hold planned action reflects a hold maneuver given by the
controller or planner. This component guarantees that the
trajectory shows no forward progress for an aircraft for a
given time at a given position. Holding patterns are race-
track ovals. The aircraft executing a hold circumnavigates the
oval until commanded to exit by the controller or until the
allotted time in the hold has expired.

The hold planned action processing component is responsible for
altering the AGD vector to model an aircraft hold i1in the
trajectory. This component processes, as input, a hold planned
action and data generated at the past cusp. The past cusp
resides inside, outside or at the boundaries of the hold
action. Depending upon the position of the past cusp, this
component will alter the aircraft AGD vector and set appro-
priate limits. If invoked before the hold fix, the component
ensures a speed reduction to hold speed before entry into the
holding pattern. In this state, hold planned action processing
can control the acceleration AGD variable. If invoked during
hold processing, this component controls the direction AGD
variable directly, and disallows any change to the acceleration
AGD wvariable. Altitude transitions are common in holding
patterns, so the design of this component does not preclude
such actions.

4-65



Organization

Figure 4-33 indicates the logical structure of the Hold Planned
Action Processing component. Each element 1s given in design
language in this section. The system utility Ias To_Tas is
provided in Appendix B.

Processing Method

The logical flow of the Hold Planned Action_Processing com—
ponent is indicated in Figure 4-34. In the element Check For_
End of Active Hold (Figure 4-35) any hold maneuver active at
the past cusp 1is examined. If that hold maneuver's EFC time
matches the time at the past cusp, then the maneuver is con-
sidered achieved and the planned action 1is eliminated from
further consideration. If the EFC time has not yet been
achieved, then the hold maneuver remains active.

The past cusp represents a position where one or more pre-
viously pending hold actions may compete to become active. In
Hold Pending Action Overlap (Figure 4-36), those hold actions
starting at the past cusp are processed to allow only one
candidate hold action to emerge. Pending action overlaps are
resolved using a combination of planned action source and plan
time. A controller action always emerges if one of the hold
planned actions starting at the past cusp was controller
placed. Ties are further broken by examining the plan time:
the hold action with the most recent plan time is selected.

A candidate hold action and an active hold action are examined
in Arbitrate Hold Pending Vs Active Action (Figure 4-37). No
more than one hold action is allowed to emerge from these tests.
A candidate action must have the same hold fix position to be
considered further, otherwise it is eliminated. Provided the
two actions have the same hold fix, then the same overlap
criteria as imposed in Hold Pending Action Overlap are applied
to determine whether the active hold or the candidate hold
shall emerge.

A candidate action may emerge as the winner in all the overlap
tests. In such a case, the candidate hold action is considered
no longer a candidate, but an active action. It is placed on
the active 1list by Elevate New Hold Action To Action Status
(Figure 4-38). There it will command access to the AGD vector.

Set Hold Parameters_For Trajectory Construction (Figure 4-39)
determines whether the acceleration or the direction AGD

4~66



Hold Planned Action Processing
Check For End | of Active Hold Action
Hold Pend:lng Action Overlap
Shut Down PA
Elevate New Hold Action to_Active Status
Set Hold Parameters For ' Trajectory Construction
Set Hold Acceleration Phase Parameters
Tas to ) Tas
Set Ho ld_Ho 1d Phase Parameters

FIGURE 4-33
HOLD PLANNED ACTION PROCESSING CALLING SEQUENCE

4=67



ROUTINE Hold Planned Action Proceaaing,
DEFINE TABLES

CHA CANDIDATE HOLD ACTIONS

_'Bh_;d Planned action identification
pa_source Planned action source
plan time Time planned action was added to plan;

# check for end of active hold action first
CALL Check For End Of Active Hold Action;
¥ resolve planned action overlaps among new hold actions
# wanting to become active at the past cusp
CALL Hold Pending Action Overlap(C_H A OUT);
IF COUNT(C H A) GT 0 # a new hold action has been encountered
THEN ¥ test first against other hold PAs that might already be
# active and resolve any overlaps between the new action
# and an already active action (if there is ome)
CALL Arbitrate Hold Pending vs_Active Action(C_H A INOUT);
IF COUNT(C H A) GT 0 # the new action wins #
THEN ¥ the new action has emerged from all overlap tests. #
# promote the new hold action so that it can control #
# pieces of the AGD vector (acceleration and direction) #
CALL Elevate New Hold Action To_ Active Status(C_H A INOUT);
# for an active hold action, set any parameters needed by the #
# Trajectory Construction subfunction #
CALL Set Hold Parameters For Trajectory_ Construction;
END ) Hold Planned Action Proceasing,

B T B W - ™

FIGURE 4-34.
HOLD PLANNED ACTION PROCESSING

4-68



ROUTINE Check For End Of Active Hold Action;
SHARED LOCAL
ACTIVE PLANNED ACTIONS INOUT,
PLANNED ACTION | | END_TIMES INOUT,

PAST_CUSP IN;

DEFINE VARIABLES
Loc Pa_Id Planned action identifier for local use
Loc_EFC_Time Expect further clearance time from active

hold planned action;
IF ‘hold' IS IN ACTIVE PLANNED ACTIONS.pa_ type
THEN # hold active - check for end condition, record data and
# eliminate PA if the end condition has been achieved
SELECT FIELDS pa id,stop value
~ FROM ACTIVE PTANNED ACTIONS (A_P_A)
INTO Loc_Pa_Id,Loc_EFC Time
WHERE A P A.pa type gg.'hold'
IF Loc_ Loc EFC Time LE PAST CUSP.time
THEN # The end has been achieved -- eliminate PA
T INSERT INTO PLANNED ACTION END TIMES
Zpa id = Loc_Pa Id,
pa_end time = PAST CUSP.time);
# erase last trace of PA in TUE
DELETE FROM ACTIVE PLANNED ACTIONS (A P A)
WHERE A P _A.pa_: 1d = Loc Pa Id,
END Check For__ End Of Active  Hold Action,

FIGURE 4-35
CHECK_FOR_END OF ACTIVE HOLD ACTION

4-69



ROUTINE Hold Pending Action Overlap;
PARAMETERS C_H A OUT; # this table will contain no more than ome

# entry vhen this routine exits

REFER TO SHARED LOCAL

HOLD _ PENDING ACTIONS INOUT,
PLANNED ACTION START TIMES INOUT,

PAST ¢ CUSP IN;
DEFINE TABLES
CHA
pa_1id
pa_source
plan_time

DA
pa_id

CANDIDATE HOLD ACTIONS
Unique planned action identifier
Source of planned action
Time hold action was added to the
plan
DELETE ACTIONS
Planned action identification to
delete;

FIGURE 4-36
HOLD_PENDING_ACTION_OVERLAP

4-70



# build C H A table containing the identity of all PAs now #
# coming active at the past cusp #
C H A = SELECT FIELDS pa id,pa source,plan time
FROM HOLD PENDING ACTIONS (H P A)
H P A stimulus value is equal to the appropriate
PAST " CUSP value

IF COUNT(C H A) GT O # many 'hold' actions starting now ¢#
THEN
# first record each start time #

REPEAT FOR EACH C_H A RECORD;
INSERT INTO PLANNED ACTION START TIMES
Zpa id = CH A.pa id,
pa_start time = TAST CUSP. time);
IF COUNT(C_H A.pa_source = Tcontroller') GT 0 # at least one #
THEN # controller action coming alive #
D A = SELECT FIELDS pa id
FROM C H A
WHERE C H A.pa source NE 'controller';
CALL Shut_Down_PA(D A IN,"hold' IN);
DELETE FROM C H A # delete the C_H A record being examined #
WHERE C H A.pa id IS IND A.pa 14d;
# eliminate all the PAs that have an other than maximum #
# plan time ’
D A = SELECT FIELDS pa id
mon C__H_A
FRE C H_A.plan_time NE MAX(C_H A.plan time);
CALL L Shut Down PA(D A IN, hold' IN);
DELETE FROM C H A # delete the C H A record being examined
T WHERE C_H A.pa_id IS IN D A.pa Id;
END Hold Pending Action | Overlap,

FIGURE 4-36 (Concluded)
_HOLD_PENDING_ACTION OVERLAP

4-71



ROUTINE Arbitratq_Holq_Pending_vq_Activq_Action;
PARAMETERS C H A INOUT; # this table will contain no more than one #
. # entry when this routine exits ¢#
REFER TO GLOBAL
HOLD_PLANNED ACTIONS IN;
REFFR TQ SHARED LOCAL
~ ACTIVE_PLANNED ACTIONS INOUT,
PLANNED ACTION END TIMES INOUT;
DEFINE TABLES

CHA CANDIDATE HOLD ACTIONS

pa_id Planned action identification

pa_source Planned action source

plan time Time planned action was added to plan
ACTIVE HOLD ACTIVE HOLD PLANNED ACTION

pa_id Planned action identification

pa_source Planned action source

plan time Time planned action was added to plan
DA DELETE ACTIONS

pa 1id Table of planned action ids for deletion;

DEFINE VARIABLES
Active Hold Fix Position(2) x,y coordinates of the hold fix for
the active hold planned action
New_Hold Fix Position(2) x,y coordinates of the hold fix for
the candidate hold planned
action;

FIGURE 4-37
ARBITRATE_HOLD PENDING VS_ACTIVE ACTION

4-72



IF 'hold' IS IN ACTIVE PLANNED ACTIONS.pa_ type
THEN # competing hold actions = one has to yield #
ACTIVE HOLD = SELECT FIELDS pa_id,pa_source,plan time
FROM ACTIVE_PLANNED ACTIONS (A P A)
WHERE AP A.pa L type gg *hold';
SELECT FIELDS hold fix position
FROM HOLD PLANNED ACTIONS (H_P_A)
INTO Active Hold Fix Position
WHERE HP A.pa id EQ_ACTIVE HOLD.pa_1d;
SELECT FIELDS hold fix position
FROM HOLD PLANNED ACTIONS (H P A)
INTO New Hold Fix Position
WHERE H . P A.pa id" . EQ C H A.pa id;
CHOOSE CASE
WHEN ZActive Hold Fix Position NE New | Hold Fix Position) OR
((ACTIVE 'HOLD. pa source EQ *controller') AND
(C_H_A.pa source NE 'controller')) THEN
# new hold 1s not old O OR controller placed the action #
# on the route. In either case, get rid of the candidate #
D A = SELECT FIELDS pa 1id
FROM C H A;
CALL Shut Down _PA(D_A 1IN, 'hold' IN);
DELETE FROM C_| H | A; ?'deletes all C CHA —— only one #
WHEN ACTIVE HOLD., pa source EQ C H A.pa 'source THEN
IF ACTIVE HOLD. plan time GE C H A.plan time
THEN # the active hold is newer-shut down the candidate #
)) A = SELECT FIELDS pa_ id
FROM C H A;
CALL Shut Down_PA(D A IN, 'hold' IN);
DELETE FROM C H A; ¥ deletes all C H A —- only one #
EISE E ¥ the candidate is newer-shut down the active hold #
" INSERT INTO PLANNED ACTION END TIMES
Zpa id = ACTIVE 'HOLD. pa_  1d,
pa_end time = PAST CUSP. time)
DELETE FROM ACTIVE | PLANNED ACTIONS (A P A)
WHERE A P A.pa 1d = ACTIVE HOLD.pa id'
WHEN ACTIVE HO. HOLD pa_source NE 'controller’ AND
~ C_H A.pa_source EQ 'controller' THEN # controller wins #
‘INSERT INTO PLANNED ACTION_END ' TIMES
zpa id = ACTIVE_| HOLD. pa_: id
pa_ end time = PAST CUSP time );
DELETE FROM ACTIVE | PLANNED ACTIONS
WHERE ACTIVE PLANNED ACTIONS.pa type = 'hold';
END Arbitrate | Hold P | Pending vs Active  Action;

FIGURE 4-37 (Concluded)
ARBITRATE HOLD PENDING VS ACTIVE ACTION

4-73



ROUTINE Elevate New_Hold Action To Active Status;
PARAMETERS CH_ A INOUT; ¥ this table will contain no more than one
# entry when this routine exits

REFER TO GLOBAL

HOLD PIANNED ACTION IN;
REFER TO SHARED LOCAL

ACTIVE PLANNED ACTIONS INOUT,

PAST | CUSP IN,

PLANNED ACTION END TIMES INOUT,

HOLD PENDING ACTIONS INOUT;
DEFINE TABLES

CHA CANDIDATE HOLD ACTIONS
pa_id Planned action identification
pa_source Planned action source
plan_time Time planned action was added to plan;
DEFINE VARIABLES
Loc_EFC Time Expect further clearance time for the hold

planned action;
SELECT FIELDS efc time # get info for later inclusion
FROM HOLD | PLANNED ACTION (H P A)
INTO Loc EFC Time
WHERE H | P A.pa id EQ C_H A.paid;
DELETE FROM HOLD ) PENDING ACTIONS # take PA off pending list
WHERE HOLD_PENDING_ACTIONS.pa id = C H A.pa id;
IF Toc E EFC Time LE PAST CUSP.time
THEN # - target EFC ' , Time already achieved —- shut down PA
T INSERT INTO PLANNED ACTION END TIMES
(pa_id = C_H A.pa_id,
pa_end time = PAST _ CUSP time);
ELSE # hold is necessary —— elevate pa to active status
— INSERT INTO ACTIVE PLANNED ACTIONS
say new hold is now active #
(pa_id = C_H A.pa id,
pa_type = " 'hold'
pa_source = C H A.pa _source,
plan_time = C H_A.plan time,
stop_:  condition = 'time’
stop_value = Loc_EFC Time);
DELETE FROM C H A; # get rid of planned action as candidate #
END Elevate New Speed Action To Active Status;

FIGURE 4-38
ELEVATE_NEW_HOLD_TO_ACTIVE STATUS

4-74

#
#



ROUTINE Set Hold Parameters For Trajectory Comstruction;
REFER TO GLOBAL ~ -7 -
HOLD PLANNED ACTIONS IN;
REFER TO SHARED LOCAL
PAST CUSP 1IN,
ACTIVE_PLANNED ACTIONS IN;
DEFINE VARIABLES
Loc Pa Id Local planned action identifier
Loc_Hold Fix Position(2) Local x,y coordinates of the hold fix
position from a hold planned action

Loc_Position(2) X,y coordinates of the past cusp

Loc_Time Time at the past cusp

Loc Z Altitude at the past cusp

Loc_Temperature Temperature at the past cusp;
FIGURE 4-39

SET_HOLD PARAMETERS FOR_TRAJECTORY CONSTRUCTION

4-75



IF 'hold' IS IN ACTIVE PLANNED ACTIONS.pa_type
THEN # hold Is now active - get Trajectory Construction info
# get the planned action id to access the hold pa table
SELECT FIELDS pa id
FROM ACTIVE PLANNED ACTIONS (A P A)
INTO Loc_Pa . 1d
WHERE A P A.pa_type EQ 'hold';
¥ get the hold fix from the hold pa for later testing
SELECT FIELDS hold fix position
~ FROM HOLD_PLANNED ACTIONS (H P_A)
INTO Loc | Hold Fix Position
WHERE H P A.pa 1d . EQ Loc_Pa_ I1d;

¥ get the position and time from the past cusp for passing #

SELECT FIELDS position,,z,time temperature
FROM PAST CUSP
INTO Loc Position Loc_Z,Loc_Time,Loc Temperature;
¥ always call to set t _he acceleration phase parameters

#

# the blocking of the acceleration AGD variable will occur #
# 1if the position of the past cusp coincides with the hold #

# fix position

CALL Set_Hold Acceleration Phase Parameters(
Loc Hold Fix . Position IN Loc Position IN,Loc_Z 1IN,
Loc_Time IN,Loc_Temperature IN);

IF Loc_Position EQ Loc_Hold Position

THEN

# hold fix position, then block the direction AGD
# variable
CALL Set Hold_Hold Phase Parameters(Loc_Pa_Id IN);
END Set | Hold Parameters For Trajectoty Construction;

FIGURE 4-39 (Concluded)
SET HOLD PARAMETERS FOR TRAJECTORY CONSTRUCTION

4-76

# 1f the position of the past cusp coincides with the

#

¢
#
#



variables (or both) needs to be set for an active hold action.
This element commands two routines to do the computations.

In Set_Hold Acceleration Phase Parameters (Figure 4-40), the
speed at the past cusp is examined. If the holding speed for
this aircraft has not yet been achieved, then the deceleration
value for this aircraft is inserted into the acceleration AGD
variable. The holding speed is attached as the limit to the
acceleration. If holding speed was achieved at the past cusp,
then the acceleration AGD variable ‘is blocked, thus preventing
access by other planned action processing components. If the
hold fix has not yet been achieved, then the position of the
hold fix is entered as a limiting value to ensure construction

of a cusp at the hold fix.

The element Set Hold Hold Phase Parameters (Figure 4-41) 1is
responsible for setting the direction AGD variable when the
aircraft has reached the hold position. The direction and
acceleration variables are "blocked" thus preventing access by
other planned action processing components. The EFC time of
the hold action is entered to 1imit the blocked direction

variable.

4.3.4 Altitude Planned Action Processing Design Logic

The Altitude Planned Action Processing component is responsible
for determining new AGD variables and their durations for alti-
tude changes. The component uses information from an altitude
planned action and from the aircraft characteristic data base
to determine these values. The component will set the acceler-
ation variable when modeling the aircraft as accelerating to
climb speed or cruise speed. When modeling the aircraft in a
climb or descent the gradient variable will be set.

The altitude planned action processing component will break an
Altitude Planned Action into a number of phases. These phases
are assoclated with changes in apeed and with the linearization
of the altitude tramsition. For each speed change, a constant
acceleration can be used. The altitude transition will be
broken into a number of phases such that each phase will have a
constant gradient. In addition there will be a phase change
for aircraft switching from flying a constant IAS (Mach) to a
constant Mach (IAS) for an ascent (descent). The variables set
in each phase are given in Table 4-1. An example of the phases
is shown in Figure 4-42. 1In each phase, the Altitude Planned
Action Processing component will set AGD variables. Since the
Altitude Planned Action Processing component may be invoked
during any phase of an altitude action, the component must be

4-77



ROUTINE Set Hold Acceleration Phase Parameters;
PARAMETERS Loc Hold Fix Position IN Loc_Position IN,Loc Z IN,
Loc_Time IN, Loc Temperature IN'
REFER TO GLOBAL
ATRCRAFT MAX ENDURANCE SPEED IN,
AIRCRAFT—DECELERAIION IN;
REFER TO SHARED LOCAL
~ PAST CUSP IN,
AGD__ VECTOR 1) INOUT,
POSITION LIMITS . INOUT,
SPEED | LIMITS INOUT,
ACTIVE PLANNED ACTIONS IN;
DEFINE VARIABLES

Target Speed Holding speed value (max endurance
speed)
Loc_Deceleration Deceleration value for this aircraft

from the global deceleration table
Loc_Hold Fix Position(2) Local value of a hold fix position
from a hold planned action

Loc_Position(2) X,y,coordinates of the past cusp

Loc_Time Time at the past cusp

Loc Z Altitude at the past cusp

Loc_Temperature Temperature at the past cusp;
FIGURE 4-40

SET_HOLD ACCELERATION PHASE PARAMETERS

4-78



SELECT FIELDS speed
FROM ATRCRAFT MAX ENDURANCE SPEED (A M E S)
INTO Target . Speed
WHERE A M | E S.source is the best available AND PAST CUSP.z
is in the appropriate altitude range;
CALL Ias To Tas(Target Speed IN,Loc 2 IN,Loc_Temperature IN,
~ Target Speed OUT);
IF PAST ¢ CUSP. tas NE Target Speed
# the aircraft has not yet achieved modeled hold speed
# set the acceleration AGD variable and a speed limit
# assume a deceleration is necessary since maximum endurance
# speed 1s the minimum speed for an aircraft (or just about)

# and so an acceleration to max endurance speed is impossible

THEN
# get deceleration value from the aircraft class tables
SELECT FIELDS deceleration
FROM AIRCRAFT DECELERATION (A D)
INTO Loc | Deceleration
WﬁERE A D source is the best available AND PAST CUSP.z
T 18 1in the appropriate altitude range;
# put the deceleration into the AGD vector
INSERT INTO AGD VECTOR
~ (acceleration = Loc Deceleration);
# bound the extent of the deceleration
INSERT INTO SPEED LIMITS
(speed = Target Speed);
ELSE
# the target speed is achieved -~ block the acceleration
# from other planned action processors
INSERT INTO AGD VECTOR
acceleration ™ 'blocked');
1IF Loc Hold Fix Position NE Loc Position
THEN
# the position of the hold has not yet been reached
# 1imit the extent of the speed change further so that
# the next cusp is not built beyond the hold fix
INSERT INTO POSITION LIMITS
(position = Loc_Hold Fix Position);
END Set_ﬁolq_Accelerat1on_Phasq_Parameters;

FIGURE 4~40 (Concluded)
SET_HOLD_ACCELERATION_PHASE_PARAMETERS

4-79

L e e N W N



ROUTINE Set_Hold Hold Phase Parameters;
PARAMETERS Loc Pa Id-
REFER TO GLOBAL
T HOLD_PLANNED ACTIONS IN
REFER TO SHARED LOCAL
PAST CUSP 1IN,
AGD_VECTOR INOUT,
TIME LIMITS INOUT,
PAST CUSP TYPE INOUT;
DEFINE VARIABLES

Loc Pa Id Passed planned action identification to use
- locally. Identifies the active speed planned
action.
Loc EFC Time Local value of expect further clearance time

from the active planned action;
SELECT FIELDS EFC time
# get the time goal for the hold from the planned action #
FROM HOLD PLANNED ACTIONS (H P _A)
INTO Loc_ EFC Time
WHERE H | P A.pa id EQ Loc_Pa_Id;
INSERT INTO AGD_YECTOR
¥ block the acceleration and AGD variable. this block
# characterizes a hold action. the gradient variable can
# still be set so that an altitude action can take place
# with the limits of the hold.
(direction = 'blocked',
acceleration = 'blocked');
INSERT INTO TIME LIMITS
set the time goal for the hold for Trajectory Comstruction #
(time = Loc_EFC Time);
INSERT INTO PAST CUSP TYPE
¥ tell Trajectory Construction that the PAST ' CUSP is an entry #
# point or a continuation of a hold #
(hold present = 'yes');
END Set_Hold Hold Phase Parameters;

M W N

FIGURE 4-41
SET_HOLD HOLD PHASE PARAMETERS

4-80



TAELE 4-1

AGD VECTOR VARIABLE AND LIMITS
FOR AN ALTITUDE CHANGE

AGD VECTOR FIGURE
PHASES CHANGED REFER-
LIMIT VARIABLE ENCE
(blocked)
Before the Beginning of the - : 1
planned action maneuver point
Acceleration to Climb speed acceleration 2
climb speed* (gradient)
Altitude change** Interim altitudes gradient 3,5
Transition altitudes (acceleration)
Target altitudes '
Cruise altitudes
Level off between Resume climb time acceleration 4
target altitude (gradient)
and resume climb
time
Accelerate or Cruise speed or acceleration 6

decelerate* to
cruise speed or
250 knots

250 knots

*Provided a hold is not active

*% -~ Interim altitudes--altitudes

constant

between which gradients

are

- Transition altitude-—altitude to change from climbing at a
constant IAS to a constant mach and descending at a constant
mach to a constant IAS

- Cruise altitude 18 a limit if the planned action includes an
expect to resume climb time.

4-81



Gradient /Grad ient
Constant 3 3

Mach

Legend:
ssemmnns Actual Path

= e w== linearized Path

FIGURE 4-42
ALTITUDE PLANNED ACTION PHASES

4-82



able to determine which phase the aircraft is in and what
further modeling must be done to complete the planned action.

Organization

The Altitude Planned Action Processing component provides data
needed by Trajectory Construction to construct the next cusp.
This component will be called each time a cusp is constructed
to provide information about altitude actions effecting the

next cusp.

Figure 4-43 indicates the logical structure of the Altitude_
Planned Action Processing Component. Each element is given in
Program Design Language within this section. The four system
utilities, Mach Ias_Switchover, Mach To Tas, Ias_To _Tas, and
Shut_Down PA are provided in Appendix B, “while the element XY_

To__ Ard is provided in Section 4.4.

Processing Method

The logical flow of the Altitude Planned Action Processing
component is indicated in Figure 4-44. In Check For End Of

Active Altitude Action (Figure 4—45) the list of active planned
actions is examined to see if any active altitude actions were
completed at the past cusp. If an active altitude action has
been completed it is eliminated from the table of active
actions. Otherwise, any active altitude action will remain

active.

Altitude Pending Action Overlap (Figure 4-46) selects all
actions from the altitude pending actions table that are
scheduled to become active at the past cusp. The source of
each candidate action and the time the action was added to the
plan are then examined to resolve any overlaps. From this
element emerges at most one candidate altitude action.

When both a candidate altitude action and an active altitude
action are present then Arbitrate Altitude Pending Vs Active

Action (Figure 4-47) eliminates one of them. The overlaps are
resolved based on source and plan time as described earlier.

If the candidate altitude action is not eliminated in Arbi-
trate Altitude Pending Vs_Active Action then it is elevated to
active status by Elevate New Altitude Action To Active Status
(Figure 4-48). This element sets the end condition for this
new active action. This 1is done by Determine Altitude End

4-83



Altitude Planned Action Processing
Check For__ End 0f Active Altitude Action
Altitude Pending Action | _Overlap
Shut_Down PA
Arbitrate Altitude  Pending Vs_Active . Action

Shut Down PA
Elevate New Altitude Action To Active Status
Determine Altitude End

Set Altitude Parameters For Trajectory Construction

Set . Up . Altitude Information
Find Nominal Climb _Speed
Mach Ias_ Switchover
Mach ° . To Tas
IAS ° To Tas
Set Altitude Acceleration Phase Parameters
Ias_’ To Tas
Set | Gradient Phase Parameters
Set Altitude Ascent Phase Parameters
Mach Ias Switchover
Set . Altitude Descent_Phase Parameters
Mach Ias Switchover
Min Or_Nominal Gradient
Find Distance To Restriction
XY To_Ard

FIGURE 443
ALTITUDE PLANNED ACTION PROCESSING CALLING SEQUENCE

4-84



ROUTINE Altitude Planned Action Processing;

PARAMETERS
F1 Id IN;
DEFINE VARIABLES : A
Fl Id Identity of aircraft for Trajectory Estimation
DEFINE TABLES
CAA CANDIDATE ALTITUDE ACTION
pa_id Planned action 1id
pa_source Planned action source
plan time Time action was added to the plan;

#begin logic#
CALL Check For_End Of Active Altitude Actiom;
#find candidate altitude action #

CALL Altitude Pending Action Overlap(C A A OUT),
TF COUNT(C A A) GT 0

THEN #decide which altitude action should be active#
CALL Arbitrate Altitude Pending Vs Active Action(Fl Id IN,
T C A A INOUD);
IF COUNT(C A A) EQ 1
THEN ¥ new action controls gradient #
CALL Elevate New Altitude Action To Active Status(Fl Id IN
- C AA INOUT)
#set 1imits on the use of acceleration and gradient#

CALL Set_Altitude Parameters_For Trajectory Construction
(F1L_1d IN);
END Altitude Planned Action Processing;

FIGURE 4-44
ALTITUDE PLANNED ACTION_PROCESSING

4-85



ROUTINE Check For End Of Active . Altitude Action;
REFER TO GLOBAL
KLTITﬁDE RESTRICTIONS PARAMETERS IN;
REFER TO SHARED LOCAL
PLANNED ACTION END TIMES INOUT,
PAST CUSP IN,
ACTIVE_PLANNED_ACTIONS INOUT;
DEFINE VARIABLES

Loc Pa Id Planned action id

Altitude Planned action end altitude
Coordinate Planned action end point
Speed Planned action speed value
ggndition Planned action stop conditionm;

IF 'altitude’' IS IN ACTIVE PLANNED ACTIONS.pa type
THEN #check to see 1f action has been completed #
" SELECT FIELDS pa . 1d,pa_source,stop condition,stop_speed,
stop . altitude, »8top_« coordinate
FROM ACTIVE PLANNED ACTION
INTO Loc_Pa_. Id Source ,Condition,Speed, Altitude Coordinate
WHERE ACTIVE PLANNED ) ACTION.pa type EQ altitude"
IF(Z dition EQ. ‘altitude’) AND (PAST CUSP.z gg_Altitude))OR
((Condition EQ 'coordinate’) AND
(PAST_CUSP. position EQ Coordinate))
OR((Condition EQ 'speed at altitude') AND
(PAST_CUSP.z EQ Altitude) AND (PAST CUSP.tas EQ Speed))
THEN #this 1s end of actionf
T INSERT INTO PLANNED ACTION_END TIMES
zpa id = Loc Pa Id
plan_end time = PAST ' CUSP.time);
DELETE FROM ACTIVE PLANNED ACTIONS
WHERE ACTIVE PLANNED ACTIONS pa_1id EQ Loc Pa_Id;
END Check_. For End of Altitude Action,

. FIGURE 4~45
CHECK_FOR_END OF ALTITUDE_ACTION

4-86



ROUTINE Altitude Pending_Action Overlap;
PARAMETERS C A A OUT;
REFER TO SHARED LOCAL
PAST CUSP 1IN,
PLANNED ACTION START TIMES INOUT,
ALTITUDE PENDING ACTIONS INOUT'
DEFINE TABLES

CAA CANDIDATE ALTITUDE ACTION
pa_1id Planned action id
pa_source Planned action source
plan_time Time action was added to plan
D A DELETE ACTIONS
pa id Planned action 1d;

# begin logic #
#find actions that might be active at past cusp#
C_A A = SELECT FIELDS pa_id,pa_source,plan_time
FROM ALTITUDE PENDING ACTIONS
WHERE ALTITUDE . PENDING ACTIONS stimulus value equals
appropiate PAST CUSP value;
IF COUNT(C A A) GT 0
THEN ffrecord start times#
REPEAT FOR EACH C A A RECORD
~ INSERT INTO PLANNED ACTION START TIMES
(pa_id = C A A.pa id,
pa_start_ time = PAST CUSP.time);
# must narrow C A A down to one candidate #
IF COUNT(C A A.pa |_source EQ 'controller') GT 0
THEN N #eliminate actions from other sources ¥
D _A = SELECT FIELDS pa_: id
FROM C A A
WHERE C_A A.pa source NE 'controller'
CALL Shut Down Pa( D A IN,'altitude' IN)
DELETE FROM C_. A A
WHERE C A A, pa id IS IN D A.pa i1d;
#eliminate all but newest action#
D A = SELECT FIELDS pa id
FROM C A A
WHERE C A A.plan_time NE MAX(C A A.plan time);
CALL Shut Down_Pa(D A IN, 'altitude' IN);
DELETE FROM C A A ~ -
WHERE C A . A. pa_id IS IN D A.pa : id;
END Altitude P Pending Action Overlap,

FIGURE 4-46
ALTITUDE PENDING ACTION_ OVERLAP

4-87



ROUTINE Arbitrate Altitude Pending Vs_Active Action;
S C_A A INOUT;
REFER TO SHARED LOCAL
PLANNED ACTION END TIMES INOUT,
ACTIVE_PLANNED ACTIONS INOUT;

DEFINE TABLES

CAA CANDIDATE ALTITUDE ACTION #1 or 0 recordsf
pa_1id Planned action 1d
pa_source Planned action source
plan_time Time action was planned

ACTIVE_ALTITUDE ACTIVE ALTITUDE ACTION #1 recordf
pa_1id Planned action 1id
pa_source Planned action source
plan_time Time action was planned

DA DELETE ACTIONS #1 record#
pa_id Planned action 1d;

FIGURE 4~47
ARBITRATE ALTITUDE PENDING VS_ACTIVE ACTION

4-88



IF 'altitude' IS IN ACTIVE_PLANNED ACTIONS.pa_type
THEN # select active altitude action #
ACTIVE ALTITUDE = SELECT FIELDS pa id,pa source,plan time

FROM ACTIVE_ PLANNED ACTIONS '

WHERE ACTIVE | PLANNED  ACTIONS. pa_type EQ 'altitude';
IF ACTIVE ALTITUDE. pa_i source EKC A . A.pa_source
THEN # 1f source same eliminate older action#

IF ACTIVE ALTITUDE.plan time GE C A A.plan t:lne

THEN

) ) A = SELECT FIELDS pa_:ld
FROM C A A;
CALL Shut_Down_Pa(D_A IN,'altitude' IN);
DELETE FROM C A A;#only one record in table#
ELSE
T INSERT INTO PLANNED ACTION END TIMES
zpa id = ACTIVE . ALTITUDE. pa__ :ld
pa_ . end | time = PAST _CUSP. time)
DELETE FROM ACTIVE ] PLANNED ACTIONS(A P A)
~ WHERE A P A.pa_id EQ ACTIVE ALTITUDE,pa id;
ELSE # eliminate noncontroller planned action#
IF ACTIVE_ALTITUDE.pa source EQ 'comtroller'’
THEN # eliminate candidate action #
D A = SELECT FIELDS pa_: id
FROM C A W-H
CALL Shut . Down Pa( D A IN, 'altitude’ IN)
DELETE FROM C_ A A;#only one record in table#
EISE feliminate active action#
INSERT INTO PLANNED ., ACTION END TIMES
(pa_1d = ACTIVE ALTITUDE.pa id,
pa_end_time = PAST CUSP.time);
DELETE FROM ACTIVE PLANNED ACTIONS
WHERE ACTIVE PLANNED ACTIONS pa_type EQ 'altitude';
END Arbitrate Altitude Pend:lng Vs Active Action,

FIGURE 4—47 (Concluded)
ARBITRATE ALTITUDE PENDING VS_ACTIVE ACTION

4-89



ROUTINE Elevate New_Altitude Action To_, Active Status;
PARAMETERS F1 Id IN, C . A A INOUT,
REFER TO SHARED LOTAL —
ACTIVE PLANNED _ ACTIONS INOUT,
ALTITUDE PENDING ; ACTIONS INOUT;
DEFINE TABLES

CAA CANDIDATE ALTITUDE ACTION #single record#
pa 1id Planned action identification
pa source Planned action source
plan time Time action was added to the plan;
DEFINE VARTABLES
End Condition End condition of altitude action
End_Speed End speed
End Altitude End altitude

End_Coordinate(2) End coordinate(x,y);
#fbegin logic # '
DELETE FROM ALTITUDE PENDING ACTIONS
WHERE ALTITUDE PENDING . ACTIONS. pa_id EQ C A A.pa_1d;
CALL Determine . Altitude End(Fl Id IN, End Condition OUT, End
T Speed OouT, End Altitude OUT End ¢ Coordinate ouT, CA. , A A.pa_: 1d
IN); :
INSERT INTO ACTIVE ._PLANNED ACTIONS(
pa_1id = CA A.pa id,
pa_source ™ (4 A A.pa source,
pa_type ='gltitude’
stop_condition = End Condition,
stop_  speed = End Speed
stop__ y altitude = End | Altitude,
stop position = End | Coordinate,
plan time = C_A A.plan time);
DELETE FROM C A , A;#candidate 1s now active#
END Elevatq_NeQ;Altitudq_Act1oq_Tq_Activq_Statua;

FIGURE 4—48
ELEVATE NEW_ALTITUDE_ACTION_TO ACTIVE STATUS

4-90



(Figure 4-49). In this element the ALTITUDE CHANGE PLANNED
ACTIONS and the ALTITUDE RESTRICTION ! PARAMETERS tables are
examined to determine end conditions as follows:

o For actions having a resume climb time, the end condi-
tion 18 cruise speed at cruise altitude.

e For actions whose target altitudes are equal to their
restriction crossing altitudes, the end condition 1is
the restriction point.

e For climbs to target altitudes greater them or equal to
cruise altitude, the end condition is cruise speed at
the target altitude.

e For descents to 10,000 feet, the end condition 1is 250
knots IAS at 10,000 feet.

e Otherwise the end condition is the target altitude.

When an altitude planned action is active, then Se;_Altitude_
Parameters For_ Trajectory Construction (Figure 4-50) estab-
lishes which phase the action is in and calls the appropriate

~routines to set the AGD variables and the 1limits for the
current phase. Before this can occur, the process Set Up

Altitude Information (Figure 4-51) retrieves information needed
by Set _Altitude Parameters For Trajectory Comstruction and
establishes a position limit at any restriction point that has
not yet been met. In addition, before deciding which phase of
a climb to model, the nominal climb speed must be determined by
Find Nominal Climb Speed (Figure 4-52).

The various phases that the aircraft might be modeled as being
in or about to start include:

o Accelerating to climb speed
e Accelerating to cruise speed

e Accelerating to 250 knots IAS at 10,000 feet for
descents ~

e Flying level until a resume climb time is met
e Flying level until & restriction point is met

e Climbing or descending to some altitude

4-91



ROUTINE Determine_. Altitude End;
PARAMETERS F1 Id IN End Condition OUT,End Coordinate OUT,
End_Speed OUT, ‘ﬁnd ATtitude OUT“IJoc Pa_Id IN;
REFER TO SHARED LOCAL PAST CUSP,
REFER TO GLOBAL
ALTITUDE CHANGE PLANNED ACTIONS IN,
ALTITUDE | RESTRICTIONS PARAMETERS 1] 1IN,
FLIGHT | PLANS IN,
FLIGHT ID . ASSOCIAIIONS IN;
DEFINE VARIABLES

F1 Id Identification of flight undergoing Trajectory
Estimation

Loc_Pa_Id Planned action id

End Condition Final goal condition of the planned action

End_Coordinate Final position

End_Speed Final speed

End Altitude Final altitude

Tran Type Transition type

Altitude Goal altitude

Value Type Value denotes where action is tied down

Resume Time Resume climb time

Rest Count Count of restrictions found

Rest Alt Restriction altitude

Flight Name Flight name

Cruise Speed Approved crulse speed

Cruise Altitude Approved cruise altitude;

FIGURE 4-49
DETERMINE ALTITUDE END

4-92



SELECT FIELDS flight name
FROM FLIGHT ID ASSOCIATIONS(F I A)
INTO INTO Flight Name
WHERE F IA. flight_plaq_id‘gg F1 Id;
SELECT FIELDS approved true_air speed,approved cruise altitude
FROM FLIGHT_ PIANS
INTO Cruise |  Speed,Cruise Altitude
WHERE FLIGHT ~_PLANS, flight name EQ Flight Name;
SELECT FIELDS transition type, base_value_type, target_altitude,
resume_climb time
FROM ALTITUDE CHANGE PLANNED ACTIONS
INTO Tran Type Value TYpe Altitude, Resume Time
WHERE ALTITUDE CHANGE PLANNED ACTIONS.pa 1d _g Loc_Pa_Id;
SELECT FIELDS rest_pt reat z
FROM ALTITUDE ] RESTRI CTIONS _PARAMETERS
RETURN COUNT(Rest_Count)
INTO End Coordinate, Rest Alt
WHERE ALTITUDE RESTRICTIONS PARAMETERS.pa_id EQ Loc_Pa_Id;
CHOOSE CASE
WHEN Resume Time NE NULL THEN #end = cruise speed/cruise alt#
T End Condition = 'speed at altitude';
End | Speed = Cruise_ Speed;
End Altitude = Cruise  Altitude;
WHEN (Tran L Type EQ ‘climb') AND ((Rest Count EQ 0)
" OR (Rest_Alt IT Altitude) THEN #goal is target altitude + ?#
IF Altitude GE Cruise Altitude
THEN # change speed at target altitude#
" End | Condition = 'speed at altitude';
End Speed = Cruise Speed-
EISE #just an altitudef
End Condition = ‘altitude’;
End Altitude = Altitude;
WHEN (Tran_Type EQ 'descent') AND ((Rest_Count EQ 0)
" OR(Rest_Alt GT Altitude)THEﬁ_? goal is target alt + ?#
IF Altitude EQ 10000
THEN #must slow to 250 knots Ias#
End Condition = 'speed at altitude'’
CALL Ias To_Tas(250 IN,Altitude IN,
T PAST_CUSP.temperature IN,End Speed OUT);

ELSE
End Condition = 'altitude';
End Altitude = Altitude;
OTHERWISE # goal is restriction point#
End Condition = 'coordinate';
END Determine Altitude End;

FIGURE 4-49 (Concluded)
DETERMINE_ALTITUDE_END

. 4-93



ROUTINE Set_. Altitude Parameters For Trajectory Construction;

PARAMETERS F1 _Id IN;

REFER TO SHARED LOCAL
ACTTVE PLANNED KETIONS IN,

PAST _{ CUSP IN,

TIME | " LIMITS INOUT

DEFINE TABLES
CRUISE
speed
alt
REST TABLE
rest x
rest y
rest alt
qualifier
rest point
DEFINE VARIABLES
F1 1d

Loc_Pa_Id
Target Alt
Tran Type

Goal Speed
Resume Time

Ias

Nom Climb Speed
Rest Ard

CRUISE DATA

Approved default cruise speed
Approved default cruise speed

RESTRICTION TABLE

Restriction point x value

Reatriction point y value

Restriction altitude

Restriction qualifier at at/above at/below

AGGREGATE(rest_x,rest_y);

Identity of aircraft undergoing Trajectory
Estimation

Planned action 1id

Target altitude

Transition type climb or descent

Speed goal for this segment

Resume climdb time

Indicated airspeed

Nominal climb speed

Along route distance of restriction point;

FIGURE 4-50

SET_ALTITUDE_PARAMETERS FOR_TRAJECTORY_CONSTRUCTION

4-94



IF 'altitude' IS IN ACTIVE PLANNED ACTIONS
THEN

" CALL Set_Up Altitude Information(Fl_Id IN,Loc Pa Id OUT,
Target Alt ouT, Tran _Type OUT, REST TABLE OUT
CRUISE ouT, Resume Time OUT, Rest Ard OUT),

IF Tran Type EQ_'ascent'

THEN #aircraft may need to accelerate to climb speed#
" CALL Find Nominal Climb Speed(Nom Climb_Speed OUT);

CHOOSE CASE ¥ determine phase of altitude ‘change

WHEN(PAST CUSP.z EQ Target Alt) AND (Target Alt GE
T CRUISE.alt)

AND ('hold' IS NOT IN ACTIVE PLANNED ACTIONS)

THEN #accelerate to cruise speed#

CALL Set_Altitude Acceleration Phase Parameters
~ (Loc . Pa_Id IN,CRUISE.speed IN);

WHEN (PAST CUSP.z _g Target Alt) AND (Resume_Time NE 'null’)
~ AND(Resume _Time GT PAST CUSP.time)THEN
figrad=0 until resume time#

INSERT INTO TIME LIMITS
(time = Resume Time);

WHEN (PAST CUSP.z EQ 10000) AND (Tran Type EQ 'descent') AND
(PAST CUSP.1as GT 250 knots) THEN # slow to 250knots#
CALL Tas_To_Tas(250 IN,10000 IN,

T PAST cusp temperature IN, Goal_Speed OUT);

CALL Set . Altitude Acceleration Phase Parameters
~ (Loc Pa Id IN, Goal Speed IN);

WHEN (Tran_Type EQ 'ascent') AND (PAST CUSP.z LT Target Alt)
~ AND ('hold' IS | IS NOT_IN ACTIVE PLANNED ACTION_T AND (PAST
CUSP.tas LT Goal Speed) THEN #accelerate to climb speed¥
CALL Set Altitude Acceleration Phase Parameters

(Loc_Pa_Id IN,Nom Climb ) Speed IN);

WHEN (REST TABLE.rest alt E _Q.PAST CUSP.z) AND (Tran _Type
~ EQ 'ascent') AND (Rest_Ard GT PAST CUSP.ard) AND
((REST_TABLE.qualifier EQ 'at') OR
(REST TABLE.qualifier EQ 'at or below'))

THEN; #goal 1is rest_point which has already been set#

WHEN zREST TABLE.rest alt EQ PAST CUSP.z) AND (Tran . Type
EQ *descent') AND ?Rest Ard GT PAST CUSP. P.ard) THEN
#goal 1s rest point which has already been set?

OTHERWISE # altitude transition #

CALL Set Gradient Phase Parametrs( Loc_Pa_Id IN,
REST TABLE iN, " Tran Type IN, Resume ' " Time IN,
CRUISE.alt IN Target Alt IN, Goal Alt OUT),

END Set_Altitude Parameters For Trajectory Construction,

FIGURE 4-50 (Concluded)
SET;ALTITUDE_PARAMETERS_FOR_IRAJECTORX_CONSTRUCTION

4-95



ROUTINE Set Up Altitude Information;
PARAMETERS F1 Id IN, Loc Pa Id OUT, Target Alt OUT, Tran Type OUT,
REST_TABLE OUT, CRUISE 0OUT, 'Re_ume Time OUT, Rest Ard OUT;
REFER TO GLOBAL
ALTITUDE CHANGE PLANNED ACTIONS IN,
ALTITUDE RESTRICTIONS PARAMETERS IN,
FLIGHT PLANS IN,
FLIGHT ID_ASSOCIATIONS IN;
REFER TO SHARED LOCAL
T ACTIVE PLANNED ACTIONS IN,
PAST_CUSP IN, ~ -
POSITION LIMITS INOUT;
DEFINE TABLES

CRUISE CRUISE DATA
speed Approved default cruise speed
alt Approved default cruise altitude
REST TABLE RESTRICTION TABLE
rest x Restriction point x value
rest_y Restriction point y value
rest _alt Restriction altitude
qualifier Restriction qualifier at at/above at/below
rest_point AGGREGATE(rest_x,rest y);
DEFINE VARIABLES
F1 1d Identification of flight undergoing Trajectory
Estimation
Loc Pa_Id Planned action id
Target Alt Target altitude
Tran_Type Transition type climb or descent
Flight Name Flight name
Resume Time Resume climb time :
Rest_Ard Along route distance of restriction point;
FIGURE 4-51

SET_UP_ALTITUDE_INFORMATION

4-96



#£ind cruise speed and altitude #
SELECT FIELDS flight name
FROM FLIGHT_ID . ASSOCIATIONS
INTO Flight Name
FLIGHT ID ASSOCIATIONS.fl id EQ F1_Id;
CRUISE = SELECT FIELDS approved | true airapeed
approved cruise altitude
FROM FLIGHT PLANS
WHERE FLIGHT PLANS.flight name EQ Flight Name;
#£find target altitude #
SELECT FIELDS pa id
INTO Loc_Pa . Id
FROH ACTIVE PLANNED ACTIONS
WHERE ACTIVE PLANNED ACTIONS.pa_type _g. ‘altitude’;
SELECT FIELDS target altitude, transition ._type, resume climb time
INTO Target Alt,Tran Type, Resume Time
FROM ALTITUDE CHANGE PLANNED ACTIONS(A C_P A)
WHERE A C P A.pa 1d EQ Loc Pa Id;
IF Pa Pa 1d IS IN ALTITUDE RESTRICTIONS PARAHETERS
THEN #find restriction alitude#
REST TABLE = SELECT FIELDS rest pt, rest z, rest qualifier
FROM ALTITUDE RESTRICTIONS PARAMETERS
WHERE ALTITUDE RESTRICTIONS PARAMETERS.pa id E Loc_Pa_Id;
CALL XY _To Ard(REST TABLE.point IN, Rest_. Ard ( ouT);
IF Rest . - Ard GT PAST | " CUSP.ard
THEN #then restriction point will be a limit#
INSERT INTO POSITION LIMITS
(position = REST TABLE.rest point);
END Set Up_ Altitude Information,

]

FIGURE 4-51 (Concluded)
SET_UP_FOR_ALTITUDE INFORMATION

4-97



ROUTINE Find Nominal Climb Speed,
PARAME TFRS Nom Climb ) Sp OUT;
REFER TO GLOBAL
NOMINAL CLIMB SPEEDS IN;
REFER TO SHARED TOCAL
PAST CUSP 1IN;
DEFINE VARIABLES
Nom Climb Sp Nominal climb speed in tas

Climb Ias Climb indicated airspeed
ClimQ_Mach Climb mach

Tran Alt Transition altitude between mach and 1ias;
# begin logic # .
SELECT F1ELDS ias,mach
FROM NOMINAL CLIMB SPEEDS(N C S)
INTO Climb Ias Climb ) Mach
WHERE N C §.source is equal to the best available;
# must find out which speed to use#
CALL Mach Ias Switchover(Climb Mach IN, Climb _Ias IN,
~ Tran_ATt OUT);
IF PAST CUSP.z GE Tran_, Alt
THEN #Above Tran__ n Alt return mach converted to tas#
CALL Mach To Tas(Climb Mach IN, PAST CUSP.temperature IN,
Nom Climb Sp OUT);
ELSE #below return ias converted to tas#
T CALL Ias To _Tas(Climb Ias IN,PAST CUSP.z IN,
PAST CUSP. temperature IN, Nom_| Climb_Sp OUT),
END Finq_NominaL_ClimQ_Speed'

FIGURE 4-52
FIND_NOMINAL CLIMB SPEED

4-98



If the phase 1involves a speed change then Set Altitude
Acceleration Phase Parameters (Figure 4-53) is called. This
element sets the acceleration AGD variable (if a hold 1s not
present) and sets a limit on the acceleration variable of the
goal speed. If the action involves flying level until reaching
a time or a point then no AGD variables will be set but a limit
associated with the time or the point will be set. ' In the
altitude transition phase, Set Gradient Phase Parameters 1is
called (Figure 4-54). -

Set_Gradient Phase Parameters establishes the next major goal
for the altitude transition. This may be the . restriction
altitude or the target altitude. In cases of descents through
10,000 feet, 10,000 feet is a possibility, since the aircraft
will need to decelerate at this altitude. Next, either Set_
Altitude Descent Phase Parameters (Figure 4-55) or Set
Altitude Ascent Phaae Parameters (4~56) 18 called depending on
whether the aircraft 1is descending or climbing. These routines
set the gradient AGD variable to be used for this part of the
altitude transition and establish a l1limit on the use of the
gradient variable. The 1l1limit will be the next major goal
altitude, the altitude to transition from a constant mach to a
constant indicated airspeed (or vice versa), or the altitude
that signals the end of the linear segment used to model the
altitude change.

In addition, an acceleration value of 'blocked' will be set if
a hold is not active. For climbs, the gradient wused will
always be the nominal gradient, but for descents it is neces-
sary to decide between a nominal and a minimum gradient.
Min Or_Nominal Gradient (Figure 4-57) is used to make this
decision. It uses Find | Distance To Restrictiom (Figure 4-58)
to compute the distance available for the descent. A minimum
gradient may be used when an action gives a fixed place to
start a descent and also a point with a crossing restriction.
The aircraft will be modeled as following the minimum gradient
as long as possible and then switching to the nominal gradient
to meet the restriction point.

4.3.5 Speed Planned Action Processing Design Logic

The speed planned action processing component 1s responsible
for altering the aircraft AGD vector to accomplish the
acceleration or deceleration to a planned new speed in the
trajectory. This component processes, as 1input, a speed
planned action and data generated at the past cusp. The past
cusp resides either inside, outside or on the boundaries of a
speed action. Depending upon the position of the past cusp,

4-99



ROUTINE Set Altitude Acceleration Phase_ Parameters;
PARAMETERS Loc Pa 1d . IN,Goal Speed IN;
REFER TO SHARED LOCAL
ACTIVE PLANNED ACTIONS IN,
PAST CUSP 1IN,
AGD ! VECTOR 1I INOUT,
AIRCRAFT ACCELERATION IN,
AIRCRAFT DECELERATION IN,
.~ SPEED _ LIMITS INOUT;
DEFINE VARIABLES

Loc Pa_Id Planned action 1d
Goal Speed Goal for this phase of pa
Loc Acc Acceleration set in this routine;

# begin logic #
IF 'hold' IS NOT IN ACTIVE_PLANNED ACTIONS.pa type
THEN #altitude action can set acceleration#
~ IF PAST CUSP.tas GT Goal Speed
THEN #slow to goal speed¥
SELECT FIELDS deceleration
FROM AIRCRAFT_DECELERATION (A D)
INTO Loc Acc
WHERE A D.source 1s the best available AND
PAST CUSP.z is in appropiate range;
EISE #accelerate to goal speed#
" SELECT FIELDS acceleration
FROM AIRCRAFT ACCELERATION(A A)
INTO Loc_Acc
WHERE A A.source 1is the best available AND
PAST CUSP.z is in appropriate range;
UPDATE IN AGD "~ VECTOR
acceleration = Loc : Acce,
pa_id acceleration = Loc_Pa Id);
INSERT INTO SPEED LIMITS
(speed = Goal Speed),
END Set_Altitude Acceleration Phase Parameters;

FIGURE 4-53
SET_ALTITUDE ACCELERATION_PHASE PARAMETERS

4-100



ROUTINE Set_Gradient Phase Parameters;
PARAMETERS Loc Pa | 1d IN,REST TABLE IN,Tran Type IN,
Resume Time IN, Cruise Alt IN, Target Alt IN, Goal Alt OUT;
REFFR TO SHARED LOCAL
PAST CUSP 1IN,
PAST ¢ CUSP TYPE INOUT;
DEFINE ] TABLES
RESI_IABLE RESTRICTION TABLE

rest x Restriction point x value

rest_y Restriction point y value

rest_alt Restriction altitude

qualifier Restriction qualifier at at/above at/below

rest_point AGGREGATE(rest x,rest_y);
DEFINE VARIABLES

Loc Pa 1d Planned action id
Tran Type Transition type
Resume Time Resume climb time
Cruise_Alt Cruise altitude
Target Alt Target Altitude
Goal Alt .Goal altitude;
FIGURE 4-54

SET_GRADIENT PHASE PARAMETERS

4-101



Goal_Alt = Target Alt;#target altitude is the default goal#
UPDATE IN PAST CUSP TYPE (altitude » present = 'yes');
IF COUNT(REST TABLE) GT 0
THEN ¥ find restrictions #
lz(Traq_Type.gg 'descent') AND (REST TABLE.rest_alt LT
PAST CUSP.z
THEN #restriction altitude is always at or above target alt#
#therefore goal alt = restriction alt#
Goal Alt = REST TABLE.rest alt;
UPDATE IN PAST CUSP TYPE
(altitude restriction_present = 'yea );
ELSE
" IF(Tren TYPe.Eg 'ascent') AND (REST TABLE.rest_alt GT
PAST CUSP.z
THEN frestriction altitude is always at or below target #
#altitude therefore goal alt is restriction alt#
Goal Alt = REST TABLE.rest alt;
UPDATE IN PAST CUSP_TYPE
(altitude reatrictioq_preaent = 'yes');
IF (Resume Time NE 'null') AND (PAST CUSP.time GE Resume Time)
THEN
Goal Alt = Cruise Alt;
IF (Tran  Type EQ '‘descent') AND (Goal Alt LT 10000) AND
(PAST_CUSP.z GT 10000)
THEN #must level off at 10000 to slow down to 250 kias#
Goal Alt = 10000;
IF Tran Type EQ 'descent’
THEN

CALL Set_Altitude Descent Phase Parameters
(Loc Pa Id 1IN, Goal Alt IN, REST_TABLE IN);
ELSE
CALL Set_Altitude Ascent Phase Parametera
(Loc Pa Id 1IN, Goal Alt IN),

END Set Gradient Phaae Parametera'

FIGURE 4-54 (Concluded)
SET_GRADIENT PHASE PARAMETERS

4-102



ROUTINE Set Altitude Descent Phase Parameters;
PARAMETERS Loc Pa Id IN, Goal . Alt IN, REST TABLE IN;
REFER TO ELODAL -

NOMINAL DESCENT SPEEDS 1IN,

DESCENT | " MACH TO GRADIENT IN,

DESCENT IAS TO GRADIENT IN-
REFER TO SHARED LOCAL

ACTIVE PLANNED ACTIONS IN,

ALTITUDE LIMITS INOUT

GRADIENT PARAMETERS 0O ouT,

AGD VECTOR INOUT,

PAST Cusp IN,
DEFINE TABLES '

DESCENT GRADIENT DESCENT GRADIENT DATA

grad Rradient
end alt End altitude
3radient ._type Nominal or non-nominal
REST TABLE RESTRICTION TABLE
resg_x Restriction point x value
rest y Restriction point y value
rest_alt Restriction altitude
qualifier Restriction qualifier at at/above at/below
rest point AGGREGATE(rest_x,rest _y);
DEFINE VARIABLES
Goal Alt Goal altitude
Nom Ias - Nominal descent 1ias
End Alt End of the linear segment
Alt First break altitude
Grad Gradient
Tran Alt Altitude to transition from ias to mach;
FIGURE 4-55

SET ALTITUDE DESCENT PHASE PARAMETERS

4-103



SELECT FIELDS ias #find nominal descent ias#
~ FROM NOMINAL DESCENT_ SPEEDS(N D S)
INTO Nom _ Ias
WHERE N D S.source is equal to best available;
CALT Mach_TYas Switchover(PAST_CUSP.mach IN, Nom las IN,
T Tran Alt OUT);
IF PAST CUSP.z GT Tran Alt
THEN #1imit is at or above tran alt ,find mach gradients #
Goal Alt = MAX(Goal Alt,Tran Alt),
DESCENT GRADIENT = SELECT FIELDS gradient,end alt,gradient type
FROM DESCENT MACH TO GRADIENT (D M T G) -
WHERE(D | M T ¢ G.source is equal to best available) AND
(D M T ' G. beg alt GE PAST CUSP.z) AND (DM T G.end alt LT
PAST CUSP.z) AND (D M T G.speed EQ PAST CUSP.mach);
UPDATE IN GRADIENT PARAMETERS
(transition speed | type = 'mach’,
transition_speed = PAST CUSP. msch)
EISE #select gradients associated with ias speed#
T DESCENT GRADIENT = SELECT FIELDS gradient,end | alt,gradient_type
FROM DESCENT IAS”TO GRADIENT (D I T G)
WHERE(D S T G.source is equal to best available) AND
~ (D I_T G.beg alt GE PAST CUSP.z) AND (D I T G.end alt LT
PAST CUSP.z) AND T— DIT G speed EQ PAST CUSP.ias);
UPDATE IN GRADIENT PARAMETER
(transition speed | type = 'ias',
transition_speed = PAST CUSP.ias);
UPDATE IN GRADIENT PARAMETERS# descent gradients are negative #
(max_gradient = MIN(DESCENT GRADIENT,gradient),
min gradient = MAX(DESCENT GRADIENT.gradient))
#determine whether to use nominal or minimum gradient#
CALL Min Or Nominal Gradient(DESCENT GRADIENT IN, Grad OUT,
~ End Alt OUT,REST TABLE IN );
UPDATE IN AGD VECTOR
(gradient> Grad,
pa_id gradient = Loc Pa Id );
Alt = MAX(Goal Alt,End Alt); S#altitude where gradient might change#
INSERT INTO ALTITUDE . LIMITS ( altitude = Alt);
IF 'hold' IS NOT IN ACTIVE , PLANNED ACTIONS.pa_type
THEN #altitude will block changes in speed #
~ UPDATE IN AGD_VECTOR
(acceleration = 'blocked’,pa id acceleration = Loc_Pa Id);

END Set Altitude Descent Phase Parameters;

FIGURE 4-55 (Concluded)
SET_ALTITUDE DESCENT PHASE PARAMETERS

4-104



ROUTINE Set Altitude Ascent Phase Parameters,
PARAMETERS ~Loc_Pa 1d IN, Goal Alt IN ;
REFER TO GLOBAL™
. CLIMB_MACH TO GRADIENT IN,
NOMINAL ¢ CLIMB }_SPEEDS IN,
CLIMB IAS TO GRADIENT 1 IN;
REFER TO SHARED LOCAL
ACTIVE PLANNED ACTIONS IN,
ALTITUDE LIMITS INOUT,
GRADIENT PARAMETERS OUT;
AGD_VECTOR  INOUT,
PAST CUSP E!»

DEFINE TABLES
CLIMB GRADIENT CLIMB GRADIENT DATA
grad Gradient
end alt - End altitude

gradient_type Nominal or non-nominal;
DEFINE VARIABLES

Loc Pa 1d Planned action id
Goal Alt Goal altitude
Nom Mach Nominal climb mach
Tran_Alt Altitude to switch from ias to mach
End Alt End of the linear segment
Alt First break altitude
Grad Gradient;
FIGURE 4-56

SET_ALTITUDE_ASCENT PHASE PARAMETERS

4-105



SELECT FIELDS mach #find nominal mach climb speed#
FROM NOMINAL CLIMB SPEEDS (N C S)
INTO Nom _ Mach
WHERE N C S.source 18 equal to best available;
CALL Mach Ias Switchover(Nom Mach IN, PAST CUSP.ias IN,
" Tran ATt OUT);
IF PAST CUSP.z LT Tran L Alt
THEN # Timit will be at or below tran alt. find ias gradient#
Goal Alt = MIN(Goal Alt;Tran Alt);
UPDATE IN GRADIENT PARAMETERS
(transition speed | type = ‘las’,
transition_speed ™ PAST CUSP. :I.as) '
CLIMB GRADIENT = SELECT FIELDS gradient, end alt, gradient type
FROM CLIMB IAS TO GRADIENT (C IT G)
WHERE(C I T G.source 1s equal to best ‘available) AND
— (C_IT G.beg alt LE PAST CUSP.z) AND (C I T G.end alt
GT | PAST CUSP.z) AND (C I T G.speed E PAST CUSP.1as);
EISE #select gradients associated with mach speedf
~ CLIMB _GRADIENT = SELECT FIELDS gradient,end alt,gradient type
FROM CLIMB MACH TO_GRADIENT (C M T G)
WHERE(C M T ' G. source 1s equal to best available) AND
(C M T G.beg alt LE PAST ' CUSP.z) AND (C M T G. end alt GT
PAST CUSP.z) AND (C M_T G.speed EQ PAST CUSP.mach);
UPDATE IN GRADIENT PARAMETERS
(transition speed type ™ 'mach',
transition . speed = PAST CUSP. mach),
SELECT FIELDS gradient,end alf?belect nominal gradient#
FROM CLIMB_GRADIENT (C_G)
INTO Grad, End | Alt
WHERE (C_ G gradient type EQ 'nominal');
UPDATE IN AGD VECTOR
(gradient = Grad,
pa_id gradient- Loc_Pa_ld );
Alt = MIN (Goal Alt,End Alt);
INSERT INTO ALTITUDE LIMITS (altitude = Alt);
UPDATE IN GRADIENT PARAMETERS #Store.gradient extremes#
(max gradient = MAX(CLIMB GRADIENT. gradient),
min_gradient = MIN(CLIMB GRADIENT.gradient))
IF 'hold' IS NOT IN AC ACTIVE | PfANNED ACTIONS.pa_type
#altitude blocks any ptoposed change in speed#
DATE IN AGD_VECTOR
(acceleration = 'blocked’',
pa_id acceleration = Loc Pa Id );
END Set . Altiude Ascent Phase  Parameters;

FIGURE 4-56 (Concluded)
SET_ALTITUDE_ASCENT_PHASE_PARAHETERS

4-106



ROUTINE Min Or Nominal Gradient;
PARAMETERS DESCENT GRADIENT IN, Grad OUT, End Alt OUT, REST TABLE IN;
REFER TO SHARED LOCAL
PAST CUSP IN;
DEFINE TABLES
DESCENT GRADIENT DESCENT GRADIENT DATA

grad Gradient
end alt End altitude
gradient_type Nominal or non-nominal,
REST TABLE RESTRICTION TABLE
rest x Restriction point x value
rest_y Restriction point y value
rest alt Restriction altitude
qualifier Restriction qualifier at at/above at/below
rest point AGGREGATE(rest_x,rest_y);
DEFINE VARTABLES
Grad Gradient for this segment
End Alt Altitude end of linear descent segment
Min Grad Minimum gradient
Min End Alt End of segment assoclated with min grad
Rest_Ard Along route distance of rest point
Dist_Rest Pt Distance to restriction point
New _Tas Tas at end of action
Avg Tas - Average tas
Interim Alt Altitude to change from min to nom. grad
Numerator Temporary used in computation;
FIGURE 4-57

MIN_OR_NOMINAL GRADIENT

4-107



SELECT FIELDS gradient,end alt #select nominal gradient#
FROM DESCENT GRADIENT
INTO Grad,End Alt
WHERE DESCENT GRADIENT. gradient type EQ 'nominal';
IF ZCO T(REST TABLE) EQ 1) AND
(PAST CUSP.z GT REST TABLE.rest alt)
THEN # must decide between minimum and nominal gradient #
#determines min grad and end altitude#
SELECT FIELDS grad,end alt
FROM DESCENT ! GRADIENT
INTO Min ( Grad, Min End Alt
WHERE DESCENT GRADIENT.grad EQ MAX(DESCENT GRADIENT.grad);
Dist Rest Pt = 0;
CALL Find Distance To Restriction(REST TABLE 1IN,
T Dist_Rest Pt INOUT);
IF Dist Rest Pt GT 0
THEN # calculate altitude to switch from min to nominal grad #
" Numerator = Dist Rest Pt * Min Grad * Grad *PAST CUSP.tas
/PAST_CUSP.ground speed - PAST CUSP.z * Grad
+ Min Grad * REST TABLE.rest alt,
Interim Alt = Numerator / (Min Grad - Grad);
IF Interim Alt LT PAST CUSP.z
THEN #gradient for current segment should be min grad #
T Grad = Min ._Grad;
End Alt = MAX (Min End Alt,Interim Alt);
END Min Or_| Nominal Gradient;

FIGURE 4-57 (Concluded)
MIN OR_NOMINAL GRADIENT

4-108



ROUTINE Find Distance To Restrictiom;
PARAMETERS REST TABLE . IN sAvg Tas IN,Dist Pt INOUT;
REFER TO GLOBAL™
ATRCRAFT MAX ENDURANCE SPEED IN;
HOLD PLANNED ) ACT IONS IN,
VECTOR PLANNED ACTIONS . IN;
REFER TO SHARED LOCAL

PAST CUSP 1IN,
ACTIVE_PLANNED ACTIONS IN;

DEFINE VARIABLES

DEFINE TABLES

REST TABLE RESTRICTION TABLE
rest x Restriction point x value
rest_y Restriction point y value
rest alt Restriction altitude
qualifier Restriction qualifier at at/above at/below
rest_point AGGREGATE(rest_x,rest_y),

VECTOR_POIN'IS VECTOR POINTS
coord x X coordinate
coord_y y coordinate
sequence Vector sequence
coord AGGREGATE(coord_x,coord_y);

Avg Tas Average true air speed

Dist Pt Distance to restriction point
Hold Fix(2) Hold fix (x,y)

Hold Ard Along route distance of hold fix
Efc Time Expect further clearence time
Coord(2) Coordinate point (x,y)
Sequence Vector sequence number
01d_Coord(2) 0ld coordinate (x,y)
Coord_Ard Coordinate ard

Time Time of interest

M E Speed Max endurance speed

Rest Ard Restriction points ard;

FIGURE 4-58

FIND DISTANCE TO RESTRICTION

4-109



CALL XY To Ard(REST TABLE.rest point IN,Rest Ard OUT);
01d ¢ Coord = PAST CUSP.position;
IF Tvector' IS IN ACTIVE PLANNED ACTIONS.pa_type
.THEN # Add distance traveled in vector #
~ VECTOR POINTS = SELECT FIELDS vertex sequence number,
veffeg_coordinate -
FROM VECTOR PLANNED ACTIONS (V P A)
WHERE V_P A.pa id IS IN ACTIVE PLANNED ACTIONS.pa id
ORDERED BY vertex sequence number;
REPEAT FOR EACH VECTOR POINTS RECORD
CALL XY To Ard(VECTOR POINTS.coord IN,Coord Ard OUT);
TF (Coord Ard GT PAST CUSP.ard) AND—(Coord Ard LE Rq Rest ._Ard)
THEN # it contributes to distance #
Dist Pt = Dist Pt + DIST(0ld Coord,VECTOR POINTS.coord);
01d Coord = VECTOR POINTS coord,
Sequence = VECTOR POINTS. sequence;
IF Sequence LT MAX(VECTOR_POINTS.sequence)
THEN # rest of distance is along vector #
Dist Pt = Dist Pt + DIST(0ld_Coord,REST TABLE. rest_point)
IF (COUNT(VECTOR POINTS) E EQ Q 0) OR (Sequence _g
MAXUVECTOR POINTS.sequénce) ~
THEE_I get distance from along route distance #
" CALL XY _To_Ard(0ld_Coord IN,Coord Ard OUT);
Dist Pt = Dist Pt + Rest Ard - Coord Ard'
IF 'hold" Is IN ACTIVE PLANNED ACTIONS. pa type
THEN # check if restriction is after hold fix #
T Time = PAST CUSP.time;
SELECT FIELDS hold fix position,efc time
FROM HOLD | PLANNED ACTIONS(H P A)
INTO Hold Fix, Efc Time
WHERE HP,  A.pa_: id IS IN ACTIVE PLANNED ACTIONS;
CALL XY _To_Ard(Hold Fix IN,Hold Ard OUT);
SELECT FIELDS speed
~ FROM AIRCRAFT MAX ENDURANCE SPEEDS(M E_S)
INTO M E | Speed
WHERE M E S.source is best available AND
PAST "CUSP.z 1s in altitude range;
Del Time = (M E . Speed - PAST CUSP.tas)/
AGD VECTOR .acceleration);
Time = Time + MAX (0,Del Time)
IF Hold Ard LT Res | Ard
Then # rest of time is spent in holding #
Dist Pt = Dist Pt + (Efc_Time - Time)*M E Speed;

END Find_ Distance To Restriction,

FIGURE 4-58 (Concluded)
FIND_DISTANCE TO RESTRICTION

4-110



this processing component alters the acceleration AGD variable
and sets a limit value to bound the extent of the acceleration
in the trajectory.

Organization

Speed planned action processing is an intermediate step in the
construction of an aircraft's trajectory represented by its
1list of cusps. The Speed Planned Action Processing component
guides the modeling of changes to the aircraft's modeled
speed. Results from this process are used by Trajectory
Construction.

Figure 4-59 indicates the logical structure of the Speed
Plahned Action Processing component. Each element is given in
design language in this section. The three system utilities,
Mach To Tas, Ias To Tas, and Shut Down PA are provided in
Appendix B.

ProcessingﬁMethod

The logical flow of the Speed Planned Action Processing com-
ponent is indicated in Figure 4-60.  In Check For End Of _

Active Speed Action (Figure 4-61), the 1list of active planned
actions is examined. If a speed action is on that 1list, then
it was partially responsible for the positioning of the past
cusp. Past cusp values are examined to see if the objective of
the active speed action has been achieved. If the speed
achieved at the past cusp matches the speed action's speed
goal, then the active speed action is eliminated from further
consideration. If the speed objective has not yet been
reached, the speed action is left active.

The past cusp represents a position where one or more pre-
viously pending speed actions may compete to become active. In
Speed Pending Action Overlap (Figure 4-62), those speed actions
starting at the past cusp are processed to allow only one
candidate speed action to emerge. Pending action overlaps are
resolved using the source and plan time fields of each planned
action in the usual way.

A candidate speed action and an active speed action are
examined in Arbitrate Speed Pending Vs_Active Action (Figure
4-63). No more than one action 1s allowed to emerge from these
tests. If an altitude and/or hold action are active, then no
speed action 18 allowed access to the acceleration AGD
variable. All speed actions wanting such access are eliminated
in Resolve Speed Vs Other_ Active Types (Figure 4-64). If

4-111



Speed_Planned Action Processing
Check for_ End | of _ Active  Speed_Action
Speed_ Pending Action Overlap
Shut Down PA
Arbitrate Speed Pending Ve Actfive Action
Resolve Speed Vs_ Other ’f‘ype‘
Shut_Down__PA
Shut Down PA
Elevate New Speed Action To Active Status
Mach_To_Tas -
Ias To Tas
Set Speed Parameters_For_Trsjecsory Coanstruction

FIGURE 4-59
SPEED PLANNED ACTION PROCESSING QALLING SEQUENCE

4-112



ROUTINE Speed Planned Action Processing;
DEFINE TABLES

CSA CANDIDATE SPEED ACTIONS
pa id Planned action identification
pa_source Planned action source
plan time Time planned action was added to plan;

# check for the end of an active speed action first

CALL Check For End Of Active Speed Action;
¥ resolve planned action overlaps only with respect to the
# new speed actions wanting to become active

CALL Speed Pending Action Overlap(C_S A OUT);

IF COUNT(C S A) GT 0 # a new speed action has been encountered
THEN # test first . against other PAs wanting acceleration varlable
# resolve any overlaps between the new action and an

# already active action (if there is ome)
CALL Arbitrate Speed Pending vs Active Action(C_S_A INOUT);
IF COUNT(C S _A) GT O # the new action wins
THE N # the new action has emerged from all overlap tests
# promote the new speed so that it can control
# the AGD vector (acceleration variable)
CALL Elevate New Speed Action To Active Status(C S_A INOUT)
# for the active speed action, set any parameters needed by
# Trajectory Comstruction
CALL Set Speed Parameters For_ Trajectory Construction;

END Speed Planned Action Processing,

5 M N N B W N N N W L]

Wi W= we

FIGURE 4-60
SPEED_PLANNED ACTION_PROCESSING

4-113



ROUTINE Check For End Of Active Speed Action;
REFER T0 SHARED LOCAL™

ACTIVE_PLANNED ACTIONS INOUT,

PLANNED ACTION END TIMES INOUT,

PAST | CUSP IN;
DEFINE VARIABLES

Targeq_SpeeJ Speed which is being achieved
Loc Pa Id Planned action identifier for local use;
T

IF 'speed' IS IN ACTIVE PLANNED ACTIONS.pa_type
THEN # speed active - check for end condition, record data and
# eliminate PA if the end condition has been achieved
SELECT FIELDS pa id,stop_value
FROM ACTIVE_PLANNED ACTIONS (A P A)
INTO Loc_Pa__. " Id Target Speed
WHERE A | P A.pa L type ™= 'speed';
IF Target . Speed §g PAST CUSP.tas
THEN # the end condition has been achieved -- eliminate PA
INSERT INTO PLANNED ACTION END TIMES
zpa id = Loc Pa 1d,
pa_end time = PASI_CUSP.time)
# erase last trace of PA in TJE
DELETE FROM ACTIVE PLANNED ACTIONS (A P A)
WHERE A P A.pa . id = Loc__ Pa I14;
END Check For End of Active  Speed Action,

FIGURE 4-61
CHECK FOR_END OF ACTIVE SPEED ACTION

4-114

2 W



ROUTINE Speed Pending Action_Overlap;
PARAMETERS C_ S A OUT; “# this table will contain no more than one

# entry when this routine exits

REFER TO SHARED LOCAL

SPEED PENDING ACTIONS INUUT,
PLANNED ACTION | START TIMES . INOUT

PAST _ CUSP IN;
DEFINE TABLES
CSA
pa id
pa_source
plan_time
D A
pa_id

CANDIDATE SPEED ACTIONS

Planned action identification

Planned action source

Time planned action was added to plan
DELETE ACTIONS

Planned action identification to delete;

FIGURE 4-62
SPEED_PENDING_ACTION OVERLAP

4-115



# build C_S A table containing the identity of each PA now #

# coming active at the past cusp #
C S A = SELECT FIELDS pa 1d,pa_source,plan time

FROM SPEED_PENDING_ACTIONS (S_P A)

WHERE S P A stimulus value is equal to the appropriate

" PAST CUSP value;

IF COUNT(C_S A) GT 0 # "many” speed actions starting now #
THEN

# first record each start time ¢#
REPEAT FOR EACH C S_A RECORD;
INTO PLANNED ACTIO! ) ACTION_ START TIMES
(pa_1d = C_S_A.pa_: id,
pa_start | time = PAST CUSP.time);
IF COUNT(C S A. pa_source _Q_ controller') GT 0 # at least one #
THEN ¥ controller action coming alive #
# eliminate all the PAs not placed by the controller #
D A = SELECT FIELDS pa 1id
FROM C S . A
WHERE C S _A.pa source NE 'controller';
CALL Shut_Down_PA(D A IN,7speed' IN);
DELETE FROM C_ S A ¥ delete the C_S_. S A record with loop pa_id#
WHERE C S A.pa id IS IN D A.pa id,
# eliminate all the PAs that have an other than maximum #
# plan time #
DA= SELECT FIELDS pa . id
FROM C S A
WHERE C S A .plan_time NE MAX(C S A.plan time);
CALL Shut_Down PA(C S_A.pa_: 1d 1IN, "speed’ INJ;
DELETE FROM C S A # delete CS . A record with loop pa_id #
WHERE C__ S A pa_id IS IN D . A.pa id;
END Speed Pend: Pending Actions Overlap,

FIGURE 4-62 (Concluded)
SPEED PENDING ACTION OVERLAP

4-116



ROUTINE Arbitrate Speed Pending vs Active Action;
PARAMETERS C S A INOUT; # this table will contain no more than one #
# entry when this routine exits #
REFER TO SHARED LOCAL
ACTIVE PLANNED ACTIONS INOUT,
PLANNED ACTION END TIMES INOUT;

DEFINE TABLES
CSA CANDIDATE SPEED ACTIONS
pa id Planned action identification
pa_source Planned action source
plan time Time planned action was added to plan
ACTIVE_SPEED ACTIVE SPEED PLANNED ACTION
pa_id Planned action identification
pa_source Planned action source
plan _time Time planned action was added to plan
D A DELETE ACTIONS
pa_id Planned action identifications to delete;

FIGURE 4-63
ARBITRATE SPEED PENDING VS_ACTIVE ACTION

4-117



# resolve first overlaps with other PA types
CALL Resolve Speed Vs Other Types(C S A IN);
IF (COUNT(C H A) GT 0) AND
" ("speed' IS IN ACTIVE PLANNED ) ACTIONS.pa_type)
THEN # competing speed actions —- one has to yield
~ ACTIVE ._SPEED = SELECT FIELDS pa id,pa source,plan_time
FROM ACTIVE PLANNED ACTIONS (A P A)
WHERE AP A.pa type = 'gpeed';
IF ACTIVE SPEED. pa_source EQ C S _A.pa_source
THEN # plan time wins —- shut down oldest pa
IF ACTIVE SPEED.plan time GE C S A.plan time
THEN # active speed action 1s newer — keep it
) ) A = SELECT FIELDS pa_id
FROM C S _A;
CALL Shut Down  PA(D_A IN,'speed' IN);
DELETE FROM C S A; ¥ deletes all C S _A;
ELSE ¥ candidate . speed action is newer —— keep it
INSERT INTO PLANNED ACTION END TIMES
(pa_id = ACTIVE . SPEED. pa id,
pa_end time = PAST *_CUSP. time),
DELETE FROM ACTIVE ] PLANNED ACTIONS (A _P_A)
¥ gets rid of pa in ACTIVE structure
WHERE A P A.pa_id = ACIVE SPEED.pa_id;
EISE # different source fields ~- controller wins
IF ACTIVE SPEED.pa source EQ 'controller'
THEN # keep the active speed -~ controller placed
) A = SELECT FIELDS pa_id
FROM C S A;
CALL Shut Down_PA(D_A IN, 'speed');
DELETE FROM C S A; ¥ get rid of candidate pa
ELSE E # keep candidate -- controller placed
~ INSERT INTO PLANNED ACTION END TIMES
zpa id = ACTIVE SPEED.pa id,
pa_end time = PAST ’_CUSP. . time);
DELETE FROM ACTIVE | PLANNED ACTIONS
WHERE ACTIVE ] PLANNED ACTIONS. PA_type = 'speed’;
END Arbitrate Speed Pending v8s Active Action;

FIGURE 4-63 (Concluded)
ARBITRATE SPEED PENDING VS_ACTIVE ACTION

4-118



ROUTINE Resolve Speed Vs Other Types;
PARAMETER S C_S_A INOUT; ¥# this table will contain no more than ome #
- # entry when this routine exits #
REFER TO SHARED LOCAL

ACTIVE PLANNED ACTIONS INOUT,

PLANNED ACTION END TIMES INO INOUT;

DEFINE TABLES
CSA CANDIDATE SPEED ACTIONS
pa id Planned action identification
pa_source Planned action source
plan_time Time planned action was added to plan
ACTIVE_ 'SPEED ACTIVE SPEED PLANNED ACTION
pa 1d Planned action identification
pa_source Planned action source
plan_time Time planned action was added to plan
D A DELETE ACTIONS
pa_1id Planned action identifications to delete;
DEFINE VARIABLES
Loc_Pa_Id Planned action identification for the active
speed;
FIGURE 4-64

RESOLVE_SPEED VS_OTHER TYPES

4-119



IF ('hold' OR 'altitude' ) IS IS IN ACTIVE PLANNED ACTIONS.pa_type
THEN # competing types active now - check for speed shutdown
IF AGD_VECTOR.acceleration = 'blocked'
THEN # acceleration variable is blocked to speed.
# Get rid of the new and the candidate action.
D A = SELECT FIELDS pa id
FROM C S A;
CALL Shut_Down_PA(D_A IN, 'speed');
DELETE FROM C_ S _A;
IF COUNT(ACTIVE PLANNED ACTIONS.pa_type = 'speed') GT 0
THEN # an active speed action was present at the past
# cusp. bring it into local storage for testing
ACTIVE SPEED = SELECT FIELDS ALL
FROM ACTIVE_PLANNED ACTIONS
WHERE ACTIVE PLANNED ACTIONS.pa_type EQ 'speed';
# shut down the speed PA by stating the end time
INSERT INTO PLANNED ACTION_END TIMES
Zpa id = ACTIVE | SPEED. pa id
pa_end time = PAST CUSP. time)
# gets rid of pa in ACTIVE structure
DELETE FROM ACTIVE PLANNED ACTIONS (A P A)
WHERE A P A.pa_: 14 = ACTIVE SPEED. pa_: id'
END Resolve Speed Vs_ Other Type,

FIGURE 4~64 (Concluded)
RESOLVE_SPEED VS_OTHER TYPES

4-120



another speed is active, then the same overlap criteria imposed
in Speed Pending Action Overlap are applied to determine
whether the active speed or the candidate speed shall emerge.

A candidate speed action may emerge as the winner from all the
overlap tests. In such a case, the candidate speed action is
considered no longer a candidate, but active, and is placed on
the active 1list by Elevate New Speed Action To Active Status
(Figure 4-65).

In the element Set_Speed | Parameters _For Trajectory_ Comstruction
(Figure 4-66), an active speed action 18 allowed access to the
AGD vector. Acceleration or deceleration parameters are
obtained from the aircraft characteristics data base and
entered into the acceleration AGD variable. £ The target speed
of the active planned action 1s entered to 1limit the
acceleration.

4.3.6 Vector Planned Action Processing Design Logic

The Vector Planned Action Processing component is responsible
for determining the new AGD variables and their durationms
needed in modeling a planned horizontal deviation from the
converted route. This component uses information from a vector
planned action to determine the direction variable in the AGD
vector. The information from this component will be merged by
Trajectory Construction with the AGD variables from the other
planned action processing components to construct the next cusp.

The vector planned action 1is composed of a number of apex
points, where an apex point is the point at which the old
course and the new course intersect. When changing course, the
aircraft's path will not change direction instantaneously at
the apex point. Therefore, to model the actual path of an
aircraft a number of linear segments are used (Figure 4-67).
The Vector Planned Action Processing component will break the
turn at each apex point into a number of segments. For each
segment it will set a single direction value.

Vector Planned Action Processing may be invoked before the
vector, inside a turn or between two turns. On invocation, the
component must be able to determine where in the vector the
past cusp 1s and what further processing must be done. The
various phases of modeling a vector action are illustrated in
Figure 4-68.

4-121



ROUTINE Elevate New Speed Action To Active Status;
PARAMETERS C_S 4 A INOUT, # this table will contain no more entries #
# when this routine exits #
REFER TO GLOBAL
SPEED ) CHANGE PLANNED_ACTIONS IN;
REFER TO SHARED LOCAL
ACTIVE | PLANNED ACTIONS INOUT,
PAST cUspP IN,
PLANNED ACTION END ' TIMES INOUT,
SPEED _ PENDING ACTIONS INOUT,
DEFINE TABLES

CSA CANDIDATE SPEED ACTIONS
pa_1id Planned action identification
pa_source Planned action source
plan_time Time planned action was added to plan;
DEFINE VARIABLES
Target Speed Speed value to achieve from planned action
Loc 2 Altitude from the past cusp

Loc_Temperature Temperature of air at the past cusp;

FIGURE 4-65
ELEVATE_NEW_SPEED ACTION TO_ACTIVE STATUS

4-122



# get info for test and later inclusion #
SELECT FIELDS speed
FROM SPEED CHANGE PLANNED ACTIONS (S CP A)
INTO Target Speed
WHER.ESCPA.paid_Q‘CSA.paid‘
¥ get airspace parameters for speed conversion ¢
SELECT FIELDS z,temperature :
FROM PAST CUSP
INTO Loc_ Z,Loc > Temperature;
IF Target Speed LT 2 # mach units for speed ‘ #
THEN
T Call Mach To Tas(Target Speed IN,Loc_Temperature IN,
Target Speed OUT);
EISE # ias units for the speed value #
T Call las_To_Tas(Target Speed IN,Loc_Z IN,Loc_Temperature IN,
Target_Speed OUT);
DELETE FROM SPEED | PENDING ACTIONS # take PA off pending list #
WHERE SPEED PENDING ACTIONS. pa_id = C_ S_A.pa 1d;
IF Target Speed._g PAST _CUSP.tas
THEN # target speed already achieved -- shut down planned action #
~ INSERT INTO PLANNED ACTION_ END TIMES
Zpa id =CS A.pa id,
pa_ end time = PAST CUSP. time);
ELSE # speed change 18 necessary -- elevate pa to active status #
~ INSERT INTO ACTIVE PLANNED ACTIONS
say new speed 18 now active #
(pa_id = C_S A.pa id,
pa_| | type = 'speed?',
pa_source = C_S A,pa source,
plan_time = C_S_A.plan_time), y
stop ¢ y condition = 'speed', .
stop value = Target Speed)
DELETE FROM C S _A; # get rid of planned action as candidate #
END Elevate New Speed Action To Active Status;

FIGURE 4-65 (Concluded)
ELEVATE NEW_SPEED_ACTION TO ATIVE STATUS

4-123



ROUTINE Set Speed Parameters_ For_ Trajectory Construction;
REFER TO GLOBAL
AIRCRAFT _ACCELERATION IN,
AIRCRAFT " DECELERAT ION IN
REFER TO SHARED LOCAL
PAST CUSP 1IN,
AGD VECTOR INOUT,
SPEED LIMITS INOUT,
ACTIVE PLANNED ACTIONS IN;
DEFINE VARIABLES

Target Speed Tas stop value
Loc Acceleration Acceleration value from aircraft
- data
Loc Deceleration Deceleration value from aircraft
data;

IF 'speed’ IS IN ACTIVE PLANNED ACTIONS.pa type
THEN # speed is now active - get Trajectory Construction info
~ SELECT FIELDS stop_value
FROM ACTIVE PLANNED ACTIONS (A P A)
INTO Target Speed -
WHERE A P A.pa_type = 'speed’;
IF Target . Speed GT PAST CUSP.tas
THEN # acceleration indicated - get acceleration value
~ SELECT FIELDS acceleration
FROM ATRCRAFT ACCELERATION (A A)
INTO Loc_. Acceleration
WHERE A_A.source is best available AND
PAST CUSP.z IS IN the appropriate altitude range;
UPDATE IN AGD ) VECTOR ¥ help construct AGD_VECTOR
(acceleration = Loc  Acceleration);
EISE # deceleration indicated - get deceleration value
" SELECT FIELDS deceleration # get info for later inclusion
FROM ATRCRAFT DECELERATION (A D)
INTO Loc_ Deceleration
WHERE A ] D.source 1s best available AND
PAST CUSP.z IS IN the appropriate altitude range;
UPDATE IN AGD _VECTOR R # help construct AGD _VECTOR
acceleration = Loc : Deceleration);
# set 1limit speed to bound acceleration value
INSERT INTO SPEED LIMITS
(speed = Target Speed);
END Seq_Speeq_Parameterq_Fop_Trajectory_Construction;

FIGURE 4-66
SET SPEED PARAMETERS FOR TRAJECTORY CONSTRUCTION

4-124

#

#



4_———"’——————

Course In Course Out

Modeled
Path

Act;;I\\\\\s‘
Path y/
p/

Course Out

' Course In

Modeled Path
Actual Path

—

Course Out

Course In

Modeled

Course Out

Course In

Actual Path

FIGURE 4-67
LINEARIZED TURNS

4-125



Phase

Phase 2 — "
Phase 3 //*
=T
*/
I f /

| / Phase 2 //
/
/i

Phase 3 | /

I
/ Legend:
%K  Apex Points

/ |
/' / o= e «» Original Route

Phase 2, = = === Vector
esmessms Turns
Phase 1-/7
/4
FIGURE 4-68

VECTOR PLANNED ACTION PHASES

4-126



Vector actions with overlapping extents are arbitrated in the
standard fashion. However, this specification assumes a more
stringent handling of vector route amendments. This
specification assumes that if a planner conceptually adds a
vector that ends on another vector, then the two vector actioms
are combined into a single planned action by that planner or a
planned action interface with that planner. An example 1is
given in Figure 4-69.

Organization

The Vector Planned Action Processing component provides data
needed by Trajectory Construction to construct the next cusp.
The component will be called each time a cusp is constructed to
provide information about the next cusp.

Figure 4-70 indicates the 1logical structure of the Vector
Planned Action Processing component. The wutilities Linear

Turn, Shut Down PA, and Route Direction At Point are provided
in design language in Appendix B. Each of the other elements
is given in design langugage in this sectiom.

Processing Method

The logical flow of the Vector Planned Action ._Processing com-
ponent is indicated in Figure 4-71. The first element in the
Vector Planned Action Processing sequence is Check For End Of

Active Vector Action (Figure 4-72). The active planned actions
are examined to see if the past cusp is the end of an active
vector action. If a vector has been completed then the action
i8 removed from the l1list of active actions.

The next step, Vector_ Pending Action Overlap (Figure 4-73),
determines which of the vector pending actions start at the
past cusp. These will be referred to as candidate vector
actions. Vector Pending Action Overlap must narrow the number
of candidate vector actions to at most one action. If one of
the vector planned actions was planned by the controller then
any not planned by the controller, can be eliminated. Further
elimination is based on examining plan times. All but the most
recently planned action will be eliminated.

If a new vector action starts at the past cusp and a vector
action was already active, then Arbitrate Vector Pending Vs

Active Action (Figure 4-~74) determines which one will be
active. This decision is based on the planned action source
and the plan time as in Vector Pending Action Overlap.

4-127



(1)

(2)

(3)

[ 4
/
~
\.\- /  New
\\N/ Vector
Added

Resulting
Vector

FIGURE 4-69
RESULT'NG VECTOR

4~128



Vector_Planned Action_ Processing
Check For End of Active Vector
Vector Pending Action Overlap

Shut Down PA
Arbitrate Vector _Pending Vs_Active Action

Shut__ Down PA
Elevate New Vector Action To Active Status
Set Vector Parameters For Tra Jectory Construction

New Phase Vector
Route_Direct:l.on_At_Po:lnt
Linear Turn

FIGURE 4-70
VECTOR PLANNED ACTION PROCESSING CALLING SEQUENCE

4-129



ROUTINE Vector Planned Action Processing;
PARAMETERS F1__ 1d IN;
REFER TO SH! SHARED LOCAL

AGD_ VECTOR IN,

ACTIVE PLANNED ACTIONS INOUT;

DEFINE TABLES
CVvVa CANIDATE VECTOR ACTION
pa_1id Planned action 1id
pa_source Planned action source
plan_time Time vector action was added to planj;
DEFINE VARIABLES :
F1l Id Identification of flight undergoing Trajectory
Estimation;
# 4

CALL Check For End Of Active Vector Action;# check for end point#
CALL Vector Pending Action Overlap(C V A OUD);
#Find vectors that might be active#
IF COUNT(C V A)GT O
THEN #must narrow it to at most one action#

" CALL Arbitrate Vector_Pending Vs Active Action(C_V_A INOUT);
IF COUNT(C V A) EQ 1
THEN

CALL Elevate New Vector Action To Active Status(C_V A INOUT);
CALL Set | Vector Parameters . For Trajectory ConstructioﬁTFl Id 1 IN);

END Vector Planned Action Processing,

FIGURE 4-71
VECTOR_PLANNED ACTION PROCESSING

4-130



ROUTINE Check For End Of Active Vector_ Action;
REFER TO SHARED LOCAL
PLANNED ACTION END TIMES INOUT;
VEC__ PHASE INOUT
ACTIVE ._PLANNED _ INED ACTIONS INOUT,
PAST CUSP IN;
DEFINE VARIABLES
Loc _Pa 1d planned action id
Loc Stop vector stopping point;
#check to see if vector is active #
IF 'vector' IS IN ACTIVE PLANNED ACTION.pa_type
THEN #check for completion#
~ SELECT FIELDS pa id, stop_coordinate
INTO Loc__ Pa Id,Loc Stop
FROM ACTIVE PLANNED ACTIONS
WHERE ACTIVE PLANNED ACTIONS.pa type EQ 'vector';
IF Loc Stop__g PAST CUSP.coordinate
THEN #eliminate planned action#
~ INSERT INTO PLANNED ACTION END TIMES
Zpa id = Loc_Pa Id,pa end time =PAST CUSP.time)
DELETE FROM VEC_ " PHASE;
DELETE FROM ACTIVE PLANNED ACTIONS
WHERE ACTIVE ] PLANNED ACTIONS pa_type EQ 'vector'
END Check For__ r End | Of . Active Vector _Action;

FIGURE 4-72
CHECK_FOR_END_OF ACTIVE_VECTOR_ACTION

4-131



ROUTINE Vector Pending Action Overlap;
PARAMETERS C VA OuT;
REFER TO SHARED LOCAL
VECTOR_PENDING ACTIONS INOUT,
PLANNED ACTION START TIMES 1] INOUT,

PAST_CUSP IN,
DEFINE TABLES
CVA CANDIDATE VECTOR ACTION
pa_id Planned action id
pa_source Planned action source
plan time Time vector was added to the plan
DA DELETE ACTIONS
pa 1d Planned action id;

#create table of possible vector actions#
C V_ A = SELECT FIELDS pa id,pa source,plan time
#set up list of possible actions
FROM VECTOR . PENDING_ACTIONS
WHERE VECTOR PENDING _ " ACTIONS. stimulus value is equal to
T the approplate PAST CUSP value;
IF COUNT(C_V A) GT 0
THEN # record start times for candidate actions #
REPEAT FOR EACH C_V_A RECORD
INSERT INTO PLANNED ) ACTION START TIMES
Zpa id=cCyV A.pa id,
pa start_time =PAST CUSP time) ;
IF COUNT(C \ A.pa source Eg controller') GT 0
THEN #shut down all actions whose source in not controller#
) ) A = SELECT FIELDS pa_id
FROM C V A
WHERE C_V_A.pa source NE 'controller';
CALL Shut_Down_Pa(D_A IN, 'vector' IN);
DELETE FROM C_ V A # delete action if source not controller#
WHERE C V A.pa id IS IN D A.pa id;
#eliminate all but newest record#
D_A = SELECT FIELDS pa_id
FROM C V A
WHERE C V _A.plan time NE MAX (C \' A.plan time);
CALL Shut Down Pa (D A IN, 'vector' N);
DELETE FROM C V A #delete oldest actions#
WHERE C V A.pa id IS IN D A.pa_id;
END Vector Pen Pending Action Overlap,

FIGURE 4-73
VECTOR_PENDING ACTION OVERLAP

4-132



ROUTINE Arbitrate Vector Pending Vs Active Action;
PARAMETERS C V_A INOUT;
REFER TO SHARED LOCAL
PLANNED ACTION END TIMES INOUT,
VEC_PHASE INOUT,
ACTIVE PLANNED ACTIONS INOUT;
DEFINE TABLES

cCva CANDIDATE VECTOR ACTION

pa_id Planned action id

pa_source Planned action source

plan time Time vector was added to the plan
ACTIVELVECTOR ACTIVE VECTOR PLANNED ACTION

pa_1id Planned action id

pa_source Planned action source

plan_time Time action was added to the plan
DA DELETE ACTION
" pa_1id Planned action id

FIGURE 4-74

ARBITRATE VECTOR_PENDING ACTION VS_ACTIVE ACTION

4-133



IF 'vector' IS IN ACTIVE PLANNED ACTIONS
TﬁEN #decide ownership based on source and time #
ACTIVE VECTOR = SELECT FIELDS pa_id,pa source,plan time
FROM ACTIVE PLANNED ACTIONS
WHERE ACTIVE PLANNED ACTIONS pa_type EQ 'vector';
CHOOSE CASE
WHEN C V_A.pa source _Q.ACTIVE VECTOR.pa_| source THEN
# plan time decides active action#
IF ACTIVE VECTOR.plan time GT C V_A.plan time
THEN
D A = SELECT FIELDS pa id
FROM C V A
CALL Shut_Down_Pa(D A IN,'vector' IN);
DELETE FROM C V A;
ELSE #shut dowm ACTIVE_VECTOR#
INSERT INTO PLANNED ACTION END TIMES
(pa_id = ACTIVE VECTOR.pa id,
pa_t _end time = PAST CUSP. time),
DELETE FROM VEC PHASE,
DELETE FROM ACTIVE PLANNED ACTIONS(A P A)
WHERE A P A.pa_: 1d _g_ACTIVE VECTOR.pa 14;
WHEN ACTIVE VE( VECTOR pa_source EQ 'controller' AND
—C V_A. source NE 'controller’ THEN #controller wins#
D, A = SELECT FIELDS pa_1id
FROM C V_A;
CALL I Shut | Down » Pa(D_A IN, 'vector' IN);
DELETE FROM Cc V A;
WHEN ACTIVE VECTOR.. pa_source NE 'controller' AND
C v A.pa source Eg ‘controller' THEN
INSERT INTO PLANNED ACTION END TIMES
(pa_ id = ACTIVE VECTOR. pa id,
~pa_end_time = PAST " CUSP. time),
DELETE FROM VEC | PHASE;
DELETE FROM ACTIVE PLANNED ACTIONS(A P A)
WHERE A P A.pa_: 1d EQ_ACTIVE VECTOR. pa i14;
END Arbitrate Vector Pending Vs __ Active  Action;

FIGURE 4-74 (Concluded)
ARBITRATELYECTOR;PENDINQ;ACTION;VS_ACTIVE_ACTION

4-134



If the old vector action was eliminated, or if no vector action
existed, then the candidate action is placed on the active
action 1list by Elevate New Vector Action To_ Active Status
(Figure 4-75).

When there is a vector action (new or old) on the active action
list, and a hold action i1s not blocking the direction AGD
variable, then the vector will control the direction variable.
The direction variable is set by Set Vector Parameters For
Trajectory Construction (Figure 4-76). This element determines
the direction AGD variable. If the aircraft's modeled position
is at the start or middle of a turn, then the next- point in the
turn will be set as a limit on the direction variable. When
the past cusp 18 at the end of a turn then New Phase Vector
(Figure 4-77) and the utility Linear Turn (Appendix B) are used
to determine the points used to linearize the next turn in the
vector. The first point in the next turn is then set as a
limit value on the extent of the direction variable.

4.3.7 Flight Route Follower Design Logic

Flight Route Follower exists to guide the construction of the
trajectory along the aircraft's converted route when appro-
priate. Some planned actions induce alterations in the modeled
route of flight for an aircraft to achieve something different
than the converted route. In the absence of control maneuvers
that redirect the aircraft off its approved route, the Trajec-
tory Estimation process respects the converted route.

The converted route of the aircraft 1is an ordered 1list of
points known in planning region coordinates which are executed
in order. Between points, a line segment can be constructed
which yields direction information. The s8equence of route
parameters, when joined on a map, gives the path the aircraft
has agreed to take (in the absence of planned actions to the
contrary). The pilot knows that path.and will follow it unless
instructed otherwise by ATC.

Vector and hold planned actions imply regimes of flight where
the direction of the aircraft is under the control of ATC. 1In
all other phases, direction of the aircraft is the pilot's
responsibility given the converted route. Route following
logic establishes the direction of the aircraft in non-vector
and non-hold regimes.

As its name implies, the Flight Route Follower component forces

the Trajectory Construction algorithm to build a route coin-
ciding (in (x,y) coordinates) with the pilot's filed route, as

4-135



ROUTINE Elevate New Vector Action To Active Statua,
PARAMETERS C V A INOUT;
REFER TO GLOBAL
VECTOR_PfZﬁﬁEQ;ACTIONS IN;
REFER TO SHARED LOCAL
PAST CUSP 1IN,
VECTOR_PENDING ACTIONS INOUT,
ACTIVE . PLANNED ACTIONS INOUT,

VEC_PHASE OUT;
DEFINE TABLES
CVA CANDIDATE VECTOR ACTION
pa_id Planned action 1id
pa_source Planned action source
plan time Time action was added to the plan;
DEFINE VARTABLES
Num Points Number of points
Points(*,2) Array of points (x,y) in the vector
First Point(2) First point (x,y) in vector;

FIGURE 4-75
ELEVATE_NEW_VECTOR_ACTION TO ACTIVE STATUS

4-136



DELETE FROM VECTOR_PENDING_ACTIONS #action is now active#
WHERE VECTOR | PENDING ACTIONS. pa_id EQ C V A.pa_id;
SELECT FIELDS vertex coordinate
FROM VECTOR PLANNED ACTIONS (V_P A)
INTO Points
WHERE V P A.pa id EQ C V_A.pa id
ORDERED BY V_ P A.vertex _sequence number
RETURN COUNT (Num Points),
INSERT INTO VEC PHAS
#VEC_PHASE used to determine parts of vector #
(pa_1d=C V_A.pa id,
phase point= Points(1l),
phase turn = PAST CUSP.coordinate);
INSERT INTO ACTIVE | PLANNED ACTIONS
(pa_id = C_V_A.pa id,
pa type =  'yvector',
pa_source = C V_A.pa_source,
plan time = C v A.plan time,
stop_  condition = " 'point?,
stop_ y coordinate ™ Points(Num » Points));
DELETE FROM C V_ A; #candidate is now active#
END Elevate New Vector Action To Active Status;

FIGURE 4-75 (Conclude@)
ELEVATE NEW_VECTOR_ACTION TO_ACTIVE_STATUS

4-137



ROUTINE Set Vector Parameters For Trajectory Construction;
PARAMETERS F1 Id IN;
REFER TO S| SHARED LOCAL
ACTIVE PLANNED ACTIONS IN,
VEC PHASE  INOUT,
POSITION LIMITS  INOUT,
PAST CUSP 1IN,
AGD_ VECTOR INOUT,
TURN POINTS IN,
DEFINE TABLES

LOC TURN LOCAL TURN POINT
~ turn x x coordinate of turn point
turn_y y coordinate of turn point
turn_pt_course Turn point course
index Order of turn points

turn_pt AGGREGATE(turn x,turn y);
DEFINE VARIABLES

F1 1d Identification of flight undergoing Trajectory
Estimation
Loc_Direction Direction for turn segment
- Value Last turn point in vector
Loc_Pa Id Planned action id
. Lim Turn Limit on direction
Turn_Index Index of turn point;
FIGURE 4~76

SET_VECTOR PARAMETERS FOR_TRAJECTORY CONSTRUCTION

4-138



IF('vector' IS IN ACTIVE PLANNED ACTIONS) AND
(AGD VECTOR.direction | NE *blocked')
THEN #vector has control of direction#
T SELECT FIELDS pa_1d,stop condition
FROM ACTIVE | PLANNED ACTIONS(A P A)
INTO Loc_Pa Id Value
WHERE A P A.pa . type EQ 'vector';
Loc Direction = AGD VECTOR. direction,
IF PAST CUSP.coordinate NE VEC PHASE.phase_turn
THEN #direction is unchanged set limit#
T INSERT INTO POSITION | LIMITS (position=VEC_|] PHASE.phaae turn);
ELSE E ¥ select all points used to model current turn #
" SELECT FIELDS turn pt,turn pt course,sequence
FROM TURN_ POINTS
INTO LOC_TURN
WHERE (TURN POINTS.pa_id EQ Loc_Pa Id) AND
(TURN_POINTS.apex point EQ VEC PHASE"'Ease  point);
SELECT FIELDS turn pt course,index
#direction at current point#
FROM LOC_TURN
Loc | Direction,Turn Index
WHERE L0C , TURN. turn pt _g PAST CUSP.coordinate;
IF Turn Turn Index LT MAX(LOC TURN. index)
THEN #Find Next point in turn #
SELECT FIELDS turn pt
FROM LOC _TURN
INTO Lim Turn
WHERE LOC , TURN.index EQ Turn Index+l;
UPDATE IN VEC ,_PHASE(phase_| turn=Lim Turn)
ELSE #FIND first point in next turn #
CALL New Phase Vector(Fl Id IN,Loc_Pa Id IN,Value
INOUT Iim Turn OUT, Loc Direction IN);
INSERT INTO POSITION LIMITS(position'Lim Turn)
UPDATE IN AGD VECTOR(direction = Loc_Direction,
pa_id_direction = Loc_Pa Id);
UPDATE IN ACTIVE PLANNED ACTIONS(stop condition = Value)
WHERE ACTIVE | PLANNED ACTIONS. pa_type EQ 'vector';
END Set Vector Parameters For Trajectory Construction;

FIGURE 4-76
SET VECTOR _PARAMETERS FOR TRAJECTORY CONSTRUCTION

4-139



ROUTINE New Phase Vector;
PARAMETERS Fl I1d IN Loc Pa_Id 1IN, Value INOUT,Lim Turn OUT,
Loc | Direction IN
REFER IQﬁGIDBAL
VECTOR_PLANNED ACTIONS IN;
REFER TO SHARED LOCAL
VEC PHASE INOUT,
TURN POINT§ INOUT;
DEFINE TABLES

TURN TURN # used to transfer linear turn data#
sequence Order of turn points
turn x x coordinate used to linearize turn
turn y y coordinate used to linearize turn

turn pt course Course out of turn pt
turn_pt AGGREGATE (turn_x,turn y);
DEFINE VARTABLES

Fl Id Identification of flight undergoing
_ Trajectory Estimation
Loc_Pa Id Planned action id
Value(2) Last turn point(x,y) in vector
Lim Turn(2) Limit on turn segment(x,y)
Loc_Direction Direction into apex point
First Point(2) First point(x,y) in vector
Apex Point (2) Apex point(x,y)
Course2 Course out of apex point
Num Points Number of points in points
Points(*,2) Array of points(x,y) in the vector
Index Index to array points;
FIGURE 4-77

NEW_PHASE_VECTOR

4-140



SELECT FIELDS vertex coordinate
FROM VECTOR | PLANNED ACTIONS (V P A)
INTO Points
RETURN COUNT(Num 1 Points)
WHERE V_ P A.pa : id EQ Loc_Pa 1d
ORDERED BY \R P A.vertex sequence number;
Index = O;¥ find apex point after VEC_PHASE.phase pt#
REPEAT UNTIL Points(Index) EQ VEC_PHASE.phase_point;
Index = Index + 1;
Apex Point = Points(Index + 1);
IF (Index + 1) EQ Num Points
THEN #course out of last apex point is along the route#
QALL Route Direction At Point(Fl Id IN, Apex Point IN,
Course2 OUT)

ELSE
Course2 = DIRECTION(Apex Point,Points(Index + 2));
CALL Linear Turn(Loc Direction IN,Course2 IN, Apex Point IN,
"~ TURN OUT,F1 Id IN);
DELETE FROM TURN_POINTS(T_P)
WHERE T P.pa : 1d EQ Loc Pa Id AND T P.apex point = Apex Point;
REPEAT FOR EACH TURN RECORD ¥store turn data¥
INSERT INTO TURN POINTS(pa id = Loc_Pa Id,apex point =
Apex Point, sequence = TURN.sequence, turn_pt = TURN.turn pt,
turn_pt course = TURN.turn pt_course);
SELECT FIELDS turn pt
FROM TURN
INTO Lim Turn
WHERE TURN. sequence EQ 1;
IF ‘(Index + 1) E EQ Num _ Points
THEN # set stop condition for vector to last turn point #
~ SELECT FIELDS turn L pt
FROM TURN
INTO Value
WHERE TURN.sequence EQ MAX(TURN.sequence);
UPDATE IN VEC PHASE(phase | point = Apex_Point, phase turn
= Iim Turn);
# keep track of current goals#
END New_Phase Vector;

FIGURE 4-77 (Concluded)
NEH_PHASE_YECTOR

4141



amended through Route Conversion or pilot/controller inter-
action., The planned action processing environment provides a
convenient mechanism to allow route following to take place.

Organization

The flight route following logic is an intermediate step in the
construction of an aircraft's trajectory represented by its
list of cusps. The component is invoked to guide the modeling
of trajectory direction. Results of this process are used by
Trajectory Construction.

The flight route following logic 1s invoked after other route
processing logic. This design assumes that vector and hold
planned action processing has already completed, and their
results stored.

Processing Method

In Flight Route Follower (Figure 4-78), checks are first
performed to ensure that vector or hold actions are not being
actively modeled. A vector action commands the direction AGD
variable if it appears in the active planned action 1list. A
hold action commands the direction variable only if the hold
processing logic has entered a "blocked" value into the direc-
tion AGD variable. This check 1s necessary since a hold opera-
tion may 1imply a speed reduction where the direction AGD
variable is left unvalued.

Provided flight route following logic is allowed to operate,
the along route distance measure at the past cusp 1s used to
determine on which route segment the past cusp is located. The
converted route segment containing that distance value 1is
identified and the endpoints of the segment extracted into
local storage. The two points are used to obtain a direction
value for insertion into the AGD  vector. The along route
distance at the further of the two points is entered as the
limit bounding the extent of the direction variable.

4.3.8 Including Pending Actions Design Logic

Planned actions may be strategically placed along the route of
the aircraft. Some plamned actions may, in fact, represent
aircraft maneuvers several minutes (or even tens of minutes) in
the future. All planned actions must undergo processing by
Trajectory Estimation's planned action processing components.
A planned action may, indeed, never reach the status necessary
to command an AGD variable, but 1t must always have the

4-142



ROUTINE Flight Route Follower;
PARAMETERS F1_Id IN
REFER TO GLOBAL
ROUTES 1N;
REFER TO SHARED LOCAL
PAST CUSP 1IN,
ACTIVE PLANNED ACTIONS IN,
AGD_VECTOR INOUT,
ARD LIMITS INOUT,
DEFINE VARIABLES
F1 Id Flight identification
Loc Ard Along-route distance value of the converted
- fix next on the aircraft's converted route
Start Point(2) Converted fix at the start of the current
- converted route segment for this modeling
o pass
End Point(2) Converted fix at the end of the current
‘ converted route segment for this modeling
pass;

FIGURE 4-78
FLIGHT ROUTE_ FOLLOWER

4-143



IF AGD VECTOR.direction NE ‘blocked'
THEN # a hold action doesn't control the direction variable #
T IF 'vector' IS NOT IN ACTIVE PLANNED ACTIONS.pa |_type
THEN # a vector action doesn't control the direction variable #
# Get the converted fix that the aircraft is at or has

# passed. The result is the converted fix with the #
# maximum along route distance among all those that the 4
# aircraft has passed (or is at). ¢
SELECT FIELDS ccordinate
~ FROM ROUTES

INTO Start_Point
WHERE (ROUTES f1 1d EQ F1 Id) AND
(ROUTES.along route ¢ distance
MAX(ROUTES .along_route distance LE PAST CUSP.ard);
# Get the converted fix that is next for the aircraft #
# to achieve. The result is the converted fix with the #
# minimum along route distance among’all those that the #
# aircraft has yet to pass. L
SELECT FIELDSS along route distance,coordinate
~ FROM ROUTE:

INTO Loc_Ard ,End Point
WHERE (ROUTES fl id EQ F1 Id) AND
(R OUTES.along route_ distance E EQ
MIN(ROUTES .along route distance GT PAST CUSP.ard);
# Flight Route Follower is allowed access to the AGD ¢
# direction variable. The direction put into the vari~ #
# able is the direction between the start and end pointsl
# for this converted route segment. ’
UPDATE IN AGD VECTOR
(direction = DIRECTION(Start Point,End Point)),
# The direction is good only until the next converted #
. # fix. Set the limit (in ard). 4
INSERT INTO ARD LIMITS
(ard = Loc_Ard);
END Flight Route Follower;

FIGURE 4-78 (Concluded)
FLIGHT ROUTE FOLLOWER

4=144



chance. These two items imply a mechanism by which planned
actions ahead of a given past cusp are allowed to affect the
construction of the trajectory. The trajectory must include
the explicit identification of events necessary to trigger a
pending planned action and allow it to be processed by planned
action processing components.

The limiting mechanism which bounds an AGD vector provides a
convenient method by which pending action starting events can
be explicitly identified. All cusps are constructed at limit
values identified by planned action processing components.
(However, not all 1imit values result 1in cusps.) Starting
conditions of pending actions are listed in 1limit structures.
When the starting condition 1limit results in a cusp, then
planned action processing components can identify the event as
a stimulus to begin processing the planned action responsible
for setting the starting event limit.

Organization

This component 1is invoked to compute pending action stimulus
values to ensure that pending planned actions will (eventually)
be considered by planned action processing. These stimulus
values are included into the pending actions table and also
into the various 1limit tables. Results from this process are
ugsed by Trajectory Construction and by planned action
processing (after the next cusp is built).

Figure 4-79 indicates the logical structure of Include Pending
Actions component. Each element is given in design language in
this section. The system utilities Get Time For_Speed Change,
Mach To Tas, Ias To Tas, and Linear Turn are provided in
Appendix B, Additional utilities referenced in Include Alti-
tude Pending Action Limits are given in Appendix C.

Processing Method

The logical flow of Include Future PA Limits is indicated in
Figure 4-80. The element Include Hold | Pending Action Limits
(Figure 4-81) processes each hold planned action on the hold
pending actions 1list for this aircraft. The hold fix is
obtained from the hold planned actions table. The speed at the
past cusp 1indicates the need for a speed change for this
aircraft., If the speed at the past cusp is greater than
maximum endurance speed (MES) for this aircraft, then the time
length of deceleration 18 computed. A position 1is then
computed on the line between the past cusp and the hold fix

4-145



Include Future PA Limits
Include Hold Pending Action Limits
Get ' Time-For Speed Change
Include Altitude : Pending Action Limits
Convert To . Ard
Descent To Higher Altitude
Calculate Point To Reach Altitude
Calculate Start Point
Find | New Start Point
Last_Point_ For Descent
Calculate_Start_Point
Climb_To Lower Altitude
Calculate Point To Reach Altitude -
, Calculate Start Point
Find | New Start _Point
Last Point For | - Climb
Calculate Start Point
Set Start Limits
Include_Speed Pending Action Limits
Speed Based By Time
Get Time For Speed Change
Mach To Tas
Ias_To Tas
Speed Based By Coordinate
Get_Time For Speed Change
Mach To_° Tas
Speed Based | By Ard
Get Time For ~_Speed_Change
Include Vector Pending Action Limits
Linear_lurn

FIGURE 4-79
INCLUDE PENDING ACTIONS CALLING SEQUENCE

4-146



ROUTINE Include Future PA Limits;
PARAMETERS F1 1d IN;
REFER TO SHARED LOCAL
SPEED PENDING . ACTIONS INOUT,
ALTITUDE PENDING ACTIONS INt INOUT
VECTOR __ PENDING _ ACTIONS INOUT,
HOLD PENDING ACTIONS INOUT;
DEFINE VARIABLES

Fl1l Id Input flight identifier;
H

IF COUNT(HOLD_PENDING ACTIONS) GT 0
THEN

CALL Include Hold Pending Action Limits;
IF COUNT(ALTITUDE PENDING ACTIONS) GT 0
THEN
T CALL Include_Altitude Pending Action Limits(Loc_F1 Id IN);
IF COUNT(SPEED PENDING ACTIONS) GT 0
THEN
CALL Include Speed Pending Action Limits;
IF COUNT(VECTOR PENDING ACTIONS) GT 0
THEN
T CALL Include Vector Pending Action Limits(Loc_F1 Id IN);
END Include Future " PA Limita,

FIGURE 4-80 .
INCLUDE_FUTURE PA LIMITS

4-147



ROUTINE Include Hold Pending Action Limits,

REFER TO GLOBAL

HOLD_PLANNED ACTIONS IN,

AIRCRAFT MAXIMUM ENDURANCE SPEEDS IN;

REFER TO SHARED LOCAL

HOLD PENDING ACTIONS INOUT,

PAST CUSP IN,
AGD_VECTOR IN,
POSITION LIMITS INOUT;
DEFINE TABLES
LOC_HOLD PA

pa_id

hold fix x

hold fix y
direction inbound

EFC_time
leg length type
leg length value
turn direction
hold fix position
DEFINE VARTABLES
Loc_Position(2)
loc Z
Loc_Tas
Loc_Temperature
Loc_Mes

Loc_Direction
Average Tas

Time For Speed Change
New X

New Y

New_Position

Local copy of the speed planned action
record
Planned action identification
x coordinate at the hold fix
y coordinate at the hold fix
Direction of flight on leg inbound to

the hold fix

Expect further clearance time
Units used on the leg length
Measure of the leg length
Direction of turns in the hold
AGGREGATE (hold fix x,hold fix y);

x,y coordinates of the PAST CUSP

Altitude value at the PAST CUSP

Tas value at the PAST CUSP

Temperature value at the PAST CUSP

The value of maximum endurance speed from
the aircraft characteristics tables

Direction from the PAST CUSP to the hold
fix

Average of tas values for start and end
speeds

Time it takes for the deceleration to MES
x coordinate of hold start point

y coordinate of hold start point;
AGGREGATE (New_x,New_y)

FIGURE 4-81

INCLUDE_HOLD_ PENDING ACTION LIMITS -

4-148



REPEAT FOR EACH HOLD PENDING ACTIONS RECORD;
LOC HOLD PA = SELECT FIELDS ALL
FROM HOLD PTANNED _ ACTIONS
WHERE HOLD PLANNED ACTIONS.pa_id EQ
" HOLD PENDING ACTIONS. pa_1id;
SELECT FIELDS position,z,tas,temperature
FROM PAST CUSP
INTO Loc Position Loc_ Z Loc_Tas,Loc_Temperature;
SELECT FIELDS speed
FROM AIRCRAFT MAX ENDURANCE SPEED (A ME S)
Loc Mes
WHERE A ] M E S.source is best available for this aircraft AND
" Toc Z IS IN the appropriate altitude range; ,
CALL Get_ Time For_Speed Change('tas' IN, Loc_Tas IN,Loc_Z IN,
T loc Temperature IN, {as’ IN,Loc | Mes . IN Loc Z IN,
Loc . Temperature 1IN, Time For Speed Change OUT
Average Tas OUT),
Loc_Direction = - DIRECTION(Loc _Position,
LOC_HOLD PA.hold fix position);
(New X,New Y) = Average Tas * Time For Speed Change *
(SIN(Loc Direction),C0S(Loc_Direction));
New Position = MAX(Loc Position,LOC HOLD PA.hold fix position -
?New X,New YTY_
# MAX function taken to obtain the further of the two points along #
# Toute of the aircraft #
INSERT INTO POSITION LIMITS
(position = New Positiom);
UPDATE IN HOLD PENDING ACTIONS
(stimulus type = "position”,
stimulus position = New  Position)
WHERE SPEED PENDING . ACTIONS. pa_1id EQ LOC_HOLD PA.pa_id;
END Include Hold Pending Action , Limits;

FIGURE 4-81 (Concluded)
INCLUDE_ﬂOLD_PENDINQ_ACTION_LIMITS

4-149



where the speed action should start. This start position of
the planned action is computed to allow deceleration to MES by
the hold fix. (That computed position 1s the hold fix 1if the
aircraft is at MES at the past cusp.) This position value is
inserted into both the pending action 1list entry for this hold
action and into the position limits table.

The method used to determine the start position for the hold is
one that 1s common to several types of planned actions. The
method is 1illustrated in Figure 4-82, The past cusp is .
The a_priorl position of the next cusp is at C ,,. The hold
fix indicated in the figure is used to compute the hold start
point (position to start deceleration) on the line between C,
and the hold fix. The start position is included as a position
limit. The 1imit value can not be chosen, however, by
Trajectory Construction since it does not lie 1in the proper
direction from C,. This insertion into the position 1limit
structure is guaranteed not to affect the position of the next

cusp, Chy1-

However, when C,4; 1s the past cusp, the method will yield
the correct start point. Special allowances have been
established in the planned action processing components should
the basing position of the planned action be close to the
actual position of the next cusp.

The element Include Altitude Pending Action Limits (Figure
4-83) processes each altitude planned action on the altitude
pending actions list. The actions on the pending 1list fit into
one of two categories; either their start conditions are
explicitly given or their start condition is based on a
restriction point. These restriction points may have been
placed in the middle of the action or at the end of the
action. The procedure in modeling an action with a starting
point based on a restriction point is to model a descent as
late as possible and a climb as soon as possible. Therefore,
the active actions and the other planned actions may change an
altitude action's starting point (Figure 4-84). Since climbs
are modeled as starting as soon as possible, it 1s necessary to
know whether any other altitude changes are scheduled between
now and the latest point to start a c¢limb. Convert To Ard
(Figure 4-85) is used to convert start conditions to a common
unit: along-route distance. When the start condition must be
determined, one of the following four routines is called:

® Descent To Higher Altitude (Figure 4-86) for descents

to an altitude greater than or equal to the past cusp
altitude

4-150



/’D
7

-
”
//3 Hold Fix
-

”
~// -/\Start Point
i /

FIGURE 4-82
COMPUTATION OF POSITION START LIMITS

4-151



ROUTINE Include Altitude Pending Action Limits
PARAMETERS F1 Id IN;
REFER TO GLOBAL
KLTITUDE CHANGE PLANNED ACTION IN,
ALTITUDE | RESTRICTIONS PARAMETERS . IN;
REFER TO SHARED _LOCAL
ACTIVE PLANNED ACTIONS 1IN,
PAST CUSP IN,
ALTITUDEu?ENDINQ_ACTIONS IN;
DEFINE TABLES

RESTRICTION RESTRICTION POINT TABLE
altitude Restriction altitude
rest x X coordinate
rest y y coordinate
point AGGREGATE(rest_x,rest_y)
ALT START POINT ALTITUDE START POINTS
pa id Planned action id
start_time Time to start maneuver
start_ard Along route distance to start
start altitude Altitude to start maneuver
start x x value to start action
start_y y value to start action
stimulus_type Type of stimulus
last type Temporary start type
start_point AGGREGATE(start_x,start_y);
DEFINE VARIABLES
Fl Id Identity of aircraft for Trajectory
- Estimation
Tran_Type Transition type climb or descent
Base Type Base type altitude,point,time,etc
Base Point(2) Base point (x,y)
Base Time Base time
Base Ard Base distance
Loc Pa Id Planned action 1id;
FIGURE 4-83

INCLUDE ALTITUDE PENDING ACTION_LIMITS

4-152



REPEAT FOR EACH ALTITUDE PENDING ACTIONS RECORD
SELECT FIELDS pa 1id, transition L_type,
base value type, base position base_t,base ard
INTO Loc_Pa 1d,Tran Type,Base Type,
" Base Point, Base Time,Base Ard

FROM ALTITUDE CHANGE PLANNED ACTIONS

WHERE ALTITUDE CHANGE PLANNED ACTIONS.pa id EQ
ALTITUDE PENDING ACTIONS. pa id;

IF Base Type NE restriction coordinate'

THEN #Record ~point to start maneuver #
T IF 'altitude' IS NOT IN ACTIVE PLANNED ACTIONS.pa_ type
THEN # translate start point to ard #

T CALL Convert_To_Ard(Fl Id IN,Base_Type IN,
Base Ard INOUT,Base Time IN,Base Point IN);

INSERT INTO ALT START POINT (pa id = Loc Pa Id
start_time= Base Time,start ard = Base Ard,
start point = Base Point stimulus type = Base Type),

EISE # point to start maneuver is determined by #

#restriction point#

RESTRICTION = SELECT FIELDS rest z,rest_position
FROM ALTITUDE RESTRICTIONS PARAMETERS(A R P)
WHERE A R P.pa 1d EQ Loc . Pa I1d;

IF (Tran Type EQ 'descent')

THEN # calculate latest point to start descent#
IF PAST CUSP.z LE RESTRICTION.altitude
THEN #determine if action makes sense #

CALL Descent_To Higher Altitude(Fl Id IN,
ALT START POINT INOUT, RESTRICTION IN,
Loc_Pa Id IN);

ELSE
CALL Last Point For_ Descent(Fl Id IN,
ALT START POINT INOUT RESTRICTION IN,
Loc_Pa Id IN);
EISE #calculate latest point to climb#
~ IF PAST CUSP.z GE RESTRICTION.altitude
THEN #determine if action makes sense#
CALL Climb _To_Lower Altitude(Fl ID IN,
ALT START POINT INOUT RESTRICTION IN,
Loc_Pa Id IN);
ELSE -
" CALL Last Point ._For Climb(Fl Id IN,ALT START POINT
~ INOUT,RESTRICTIONS IN,Loc_Pa T "H IN)G
CALL Set Start Limits(ALT START POINT IN);
END Includq:Altitudq_Pending_Actioq_Limits,

FIGURE 4-83 (Concluded)
INCLUDE_ALTITUDE_PENDING_ACTION_LIMITS

4-153



Start of Descent-\\\‘
33000
1{\
AN
3 SN
o |
: \.
E I \
| ?
|
I
+—
Distance '
|
' L Resgtriction
) I Point
Start of
Descent_-—\\\\ |
|
37000 < |
33000 \1\
) N
- |
o | \
z \
3 I i
|
|
I
|
L
Distance
FIGURE 4-84

START MANEUVER AS A FUNCTION OF ALTITUDE

4-154



ROUTINE Convert_To Ard;

PARAMETERS F1 _ Id IN Loc_Type IN, Pa_Ard INOUT,
Pa_Time IN Pa_ _ Point IN-

REFER TO GLOBAL
HOLD PLANNED ACTIONS IN;

REFER TO SHARED LOCAL
AGD VECTOR Tﬁ

PAST *_CUSP IN
DEFINE VARIABLES
F1 1d Identity of aircraft for Trajectory
Egtimation
Loc_Type Base type of action
Pa_Ard Actlons start ard
Pa_Time Action start time
Pa_Point(2) Action start x,y
Loc_Ard Local along route distance
Target Speed Active actions target speed
EFC _Time Expect further clearence time
Coord(2) Coordinate (x,y)
Target Speed Speed to be used until del_time
Del Time Time to pa_time
Holq_Fix Holding fix
Acc_Time Actlive actions acceleration time
Avg Speed Active actions average speed;

FIGURE 4-85
CONVERT_TO_ARD

4-155



CHOOSE CASE
WHEN Loc_Type EQ 'ard' THEN; # no need to convert#
WHEN Loc _Type EQ *position’ THEN
CALL XY To_Ard(F1_Id IN, Pa Point IN,Loc_Ard OUT);
Pa_. Pa Ard = Loc Ard;
WHEN Toc Type._g 'time' THEN
start dependent on active actions#
Coord = PAST CUSP.position;
Target_ Speed = PAST CUSP.tas;
Avg Speed = PAST CUSP tas;
Acc Time = (;
Del . Time = Pa _Time - PAST CUSP.time;
IF (AGD VECTOR .acceleration NE 0) AND
(AGD VECTOR.acceleration HE *blocked')
THEN # find target speed #
CALL Calculate Speeds And Times(Fl_Id IN,Acc_Time INOUT,
" Del Time INOUT, Target . -~ Speed INOUT,Awg_Speed INOUT,
Pa Time IN5
IF 'hold' IS IN ACTIVE PLANNED . ACTIONS
THEN
. SELECT FIELDS hold fix position,efc time
FROM HOLD_PLANNED ACTIONS (H_P_A)
INTO Hold Fix,EFC  Time
WHERE H P, A.pa id" EQ AGD_VECTOR.pa_id_acceleration;
IF Del Time GE 0
THEN # will aircraft be out of hold at pa_time #
" CALL XY To Ard(FL Id IN, Hold Fix IN, Loc Ard OUT);
Del Time = MAX(0,(Pa_Time ~ EFC_Time));
Acc_Iime =0;
Coord = Hold Fix;
CALL Point At Time(F1_Id IN,Acc_Time IN,
T AGD VECTOR gradient IN, Avg | ~Speed 1IN, PAST CUSP.z IN,
Coord INOUT);
CALL Point At Time(Fl Id 1IN, Del . Time IN,AGD _VECTOR.gradient
~ IN,Target Speed IN,PAST CUSP.z IN, Coord INOUT);
CALL XY To Ard(Fl Id 1] IN Coord 1IN, Loc Ard 0UT5
Pa__. Pa Ard = loc Ard,

END Convert To_. Ard;

FIGURE 4-85 (Concluded)
CONVERT_TO_ARD

4-156



ROUTINE Descent To_Higher Altitude;
PARAMETERS F1 | 1d IN, ALT START POINT INOUT, RESTRICTIONS IN, .
Loc_Pa ID IN'
REFER TO GLOBAL
ALTITUDE CHANGE PLANNED ACTIONS IN;
REFFR TO SHARED LOCAL
ACTIVE PLANNED ACTIONS 1IN,
PAST CUSP IN
. AGD VECTOR IN-
DEFINE TABLES

RESTRICTION RESTRICTION POINT TABLE
altitude Restriction altitude
rest x x coordinate
rest_y y coordinate
point AGGREGATE (rest x, rest y)
ALT START POINT ALTITUDE START POINTS
pa id Planned action id
starq_time Time to start maneuver
start_ard Along route distance to start
start_altitude Altitude to start maneuver
start p 4 X value to start action
start_y y value to start action
stimulus type Type of stimulus
last_type . Temporary start type
start_point AGGREGATE(start_x,start_y);
DEFINE VARIABLES
Fl 1d Identity of aircraft for Trajectory
_ Estimation
loc_Pa_1d Planned action 1id
Target Ard Ard of point where active action
reaches target alt
Target Alt Actions target altitude
Start_Point Point to start action
Time Time at point
Speed Speed at point
Target Pt . Point to reach target altitude
Act Pa Id Active actions pa 1d
Start Ard Starting condition ard;
FIGURE 4-86

DESCENT_TO HIGHER_ALTITUDE

4-157



IF 'altitude' IS IN ACTIVE PLANNED ACTIONS.pa_type
THEN # find target altiude #
CALL Find Target Altitude(Fl Id IN,Target Alt OUT,
T Act_Pa_Id OUT);

CHOOSE CASE

~ WHEN (AGD_VECTOR.gradient EQ 0) AND (PAST CUSP.z EQ
T RESTRICTION.altitude )THEN faction starts at restrictionf

CALL XY To_ Ard (Fl Id IN, RESTRICTION.point 1IN,
~ Start_Ard OUT)
INSERT INTO ALT_START_POINT
(pa_id=Loc_Pa_Id,
stimulus _type = 'position’,
start_point = RESTRICTION.point,
start_ard = Start_Ard);
WHEN (AGD VECTOR.gradient LE 0) OR ((AGD_VECTOR.gradient GT 0)
AND (Target Alt LT RESTRICTION. altitude))THEN
Fcan't set start to descent point#
INSERT INTO ALT START POINT
(pa_id = Loc Pa_. id ,
stimulus_type = 'mome');
OTHERWISE #a climb is being executed a descent is possible #
SELECT FIELDS tas,position,time
FROM PAST CUSP
INTO Speed,Target Pt,Time;
CALL Calculate Point _To Reach Altitude(Fl Id_IN,Target Alt
IN yTarget . Ard OUT Target Pt INOUT, PAST CUSP.z IN,
Time INOUT,Speed INOUT,Act Pa_Id IN),
CALL Calculate Start Point(Fl 1d . IN Target Pt IN,
Target Alt IN RESTRICTION IN Start Point OUT
Loc_Pa_Id IN,Time IN,Speed IN,Start Ard OUT)
IF Start Ard LT Target Ard
THEN # action starts before the completion of current#
#actioné
INSERT INTO ALT START POINT
(pa_id = Loc Pa__ 1d,
stimulus_type = 'altitude s
start altitude = RESTRICTION.altitude);
EISE faction starts at start point #
~ INSERT INTO ALT START POINT
zpa id = Loc Pa_ld
stimulus_type = 'position’,
start point = Start_Point);
END Descent To_Higher Altitude;

FIGURE 4-86 (Concluded)
DESCENT_TO_HIGHER_ALTITUDE

4~158



e Last Point For Descent (Figure 4-87) for descents to an
altitude below the past cusp altitude

e Climb To Lower Altitude (Figure 4-88) for climbs to an
altitude less than or equal to the past cusgsp altitude

¢ Last Point For Climb (Figure 4-89) for climbs to an’
altitude above the past cusp altitude

The first step in these routines 1a. to see if the action is
possible. If it 1is feasible and nc altitude action is
currently active, then the element Calculate Start Point
(Figure 4-90) calculates the latest point to start the
maneuver. This 1s done by assuming the action starts at the
past cusp and then using the elment Calculate Point To Reach
Altitude (Figure 4-91) to compute the point to arrive at the
restriction altitude. When this point 1s before the restric~
tion point, the element Find New Start Point (Figure 4-92) is
used to displace the start point and the process is repeated
until the 1latest point to start the maneuver is found. If
there 18 an altitude action already active, then the end point
of the active action is found by use of Calculate Point To
Reach Altitude. Calculate Start Point then uses the end of the
active action as its start point.

Once the latest start point for all altitude actions (note if
the start condition is given explicitly, then the start condi-
tion point is the latest point) has been determined, Set Start_
Limits (Figure 4-93) is called. This element determines the
earliest point to begin climbs, updates pending action stimulus
values, and stores the various start conditions as limits for
use by Trajectory Construction.

Include Speed Pending Action Limits (Figure 4-94) controls the
computation of a speed pending action stimulus value, In the
element Speed Based By Time (Figure 4-95), pending speed
actions based by a time value are processed. If the basing
time value 1s at the start of the speed maneuver, that time
value is inserted into the speed pending actions record and the
time limits structure. If the basing point occurs at the end
of the action, then the time to accelerate (decelerate) 1s
computed using the speed value stored at the past cusp. The
acceleration (deceleration) time 1is subtracted from the basing
time value and this difference inserted as stimulus for the
pending action and as a time limit.

4-159



ROUTINE Last Point For Descent;
PARAMETERS Fl Id IN ALT START POINT INOUT, RESTRICTIONS IN,
Loc_Pa_ID IN
REFER TO GLOBATL
ALTITUDE CHANGE PLANNED ACTIONS IN;
REFER TO SHARED LOCAL
ACTIVE PLANNED ., ACTIONS IN,
AGD VECTOR 1IN,

PAST CUSP IN
DEFINE TABLES

RESTRICTION RESTRICTION POINT TABLE
altitude Restriction altitude
rest x x coordinate
rest y y coordinate
point AGGREGATE(rest_x,rest y)

ALT START POINT ALTITUDE START POINTS
pa id Planned action id
start_time Time to start maneuver
start_ard Along route distance to start
start_altitude Altitude to start maneuver
start_x x value to start action
start y : y value to start action
stimulus_type Type of stimulus
last_type Temporary start type
start_point AGGREGATE(start_x,start_y);

DEFINE VARIABLES
F1 Id Identity of aircraft for Trajectory
Estimation

Loc Pa_Id Planned action id,

Target Alt Actions target altitude

Target Ard Point where target altitude is reached

ard

Act Pa Id Active actions pa id

Time Time at point in

Speed Speed at point

Target Pt Point to reach target altitude

Start Point Point to start action

Start_Ard Starting condition ard;

FIGURE 4-87

LAST_POINT FOR_DESCENT

4-160



SELECT FIELDS tas,position,time
FROM PAST CUSP
INTO0 Speed,Target Pt ,Time;

CALL Calculate Start_ Point(Fl Id IN,Target Pt IN,PAST CUSP.z IN,
T RESTRICTION . IN, Start Point OUT Loc_Pa__. Td IN Time TN,
Speed IN,Start Ard OUT);

IF 'altitude' IS IN ACTIVE PLANNED ACTIONS.pa_type

THEN # find target altiude #

CALL Find Target Altitude(F1l_Id IN,Target Alt OUT,
" Act_Pa_Id OUT);

IF (PAST CUSP.ard G GE Start Ard) OR (AGD VECTOR.gradient _9.0)

THEN
IF (PAST CUSP.ard GT Start Ard)

THEN # start now #
Start Point = PAST CUSP.position;
Start__ " Ard = PAST | CUSP.ard;
INSERT INTO ALT _ START _POINT
fpa id = Loc Pa__ 1d,stimulus _type ™ 'position',
start_point = Start_Point,start_ard = Start Ard);

ELSE # calculate descent from target altitude#

CALL Calculate Point To Reach . Altitude(F1l _Id IN,Target Alt IN,
Target Ard OUT Target Pt INOUT PAST CUSP.2 IN,

Time INOUT Speed INOUT Act Pa 1d IN),

CALL Calculate Start Point(Fl Id IN,Target Pt IN,Target Alt IN,
T RESTRICTION . 1N, Start Point OUT Loc_Pa_ 1d IN Time 1IN,
Speed 1IN, Start_Ard OUT);

CHOOSE CASE
WHEN Start_Ard GE Target Ard THEN #start at start point#

T INSERT INTO ALT START POINT
Zpa id = Loc Pa__ Id,
stimulus type - 'position ,
start _point = Start Point);
WHEN (AGD VECTOR. gradient LT O)THEN
#start maneuver but interupt at rest.alt#
INSERT INTO ALT START POINT
( pa_id = Loq_?a 1d,
astimulus  type = 'altitude
start altitude = RESTRICTION.altitude),
OTHFRWISE #start maneuver now#
INSERT INTO ALT START POINT
(pa_1id = Loc_Pa Id,
stimulus_type = 'position’,
start_point = PAST CUSP.postion);
END Last Point For Descent;

FIGURE 4-87 (Concluded)
LAST POINT FOR_DESCENT

4-161



ROUTINE Climb To_Lower_Altitude;

PARAMETERS Fl 1d . IN,ALT START POINT INOUT, RESTRICTIONS N,
Loc_Pa_ID lﬁf

REFFR TO SHARED LOCAL

~ PAST CUSP 1IN,
ACTIVE PLANNED ACTIONS IN,
AGD VECTOR IN,

DEFINE TABLES

RESTRICTION RESTRICTION POINT TABLE
altitude Restriction altitude
rest x x coordinate
rest y y coordinate
, point AGGREGATE(rest_x,rest_y)
ALT START POINT ALTITUDE START POINTS
pa_id Planned action id
start_time Time to start maneuver
start_grd Along route distance to start
start altitude Altitude to start maneuver
start_x x value to start action
start y value to start action
stimulus_type Type of stimulus
last_type Temporary start type
start_point AGGREGATE(start_x,start_y);
DEFINE VARTABLES
F1 1d Identity of aircraft for Trajectory
Estimation
Loc_Pa_1Id Planned action id
Target ALt Pctions target altitude
Targeq_Ard Point where target altitude is reached
ard
Start _Point Latest point to start action
Time Time at point
Speed Speed at point
Target Pt Point to reach target altitude
Act ] Pa Id Active planned action id
Starq_Ard Starting condition ard;
FIGURE 4-88

CLIMB_TO LOWER ALTITUDE

4-162



IF ‘altitude' IS IN ACTIVE PLANNED ACTIONS.pa_type
THEN # find target altiude #
" CALL Find | Target Altitude(F1 _Id IN,Target Alt OUT,
Act_Pa_Id OUT);
CHOOSE CASE
" WHEN (AGD_VECTOR.gradient kQ 0) AND (PAST CUSP.z EQ
T RESTRICTION.altitude )THEN
CALL XY To Ard(Fl Id IN RESTRICTION.point IN,
Start Ard OUT),
INSERT INTO ALT START POINT
zpa id =Loc | Pa Id,
stimulus type = ‘pogition’,
start_point =RESTRICTION.point,
start_ard = Start_Ard);
WHEN (AGD_VECTOR.gradient GE 0)OR( (AGD _VECTOR. gradient LT 0)
T AND (Target Alt GT RESTRICTION.altitude))THEN
#can't set start to climb #
INSERT INTO ALT START POINT
(pa 1d = Loc Pa Id s
stimulus_type = 'nomne');
OTHERWISE #a climb is possible since descent is active #
SELECT FIELDS tas,position,time
FROM PAST CUSP
INTO Speed, Target Pt,Time;
CALL Calculate Point To Reach_Altitude(F1l_Id IN, Target Alt
IN sTarget . Ard OUT Target Pt INOUT, PAST CUSP.z IN,
Time INOUT,Speed INOUT,Act Pa Id IN)
CALL Calculate Start Point(Fl 1d . IN Target Pt IN,Target Alt
IN RESTRICTION IN Start Point OUT Loc_. Pa Id IN,Time IN,
Speed IN,Start_Ard OUI);
IF (Start Ard LT Target Ard)
THEN #action starts before the completion of current#
#action#
INSERT INTO ALT START POINT
(pa_1d = Loc _Pa Id,
stimulus _type = 'altitude', )
start altitude = RESTRICTION.altitude);
EISE #action starts at start point#
T INSERT INTO ALT START POINT
fpa id = Loc Pa_id
stimulus _type = ‘positiomn’,
start point = Start_Point);
END Climb_Io_LowermAltitude,

FIGURE 4-88 (Concluded)
CLIMB_TO LOWER ALTITUDE

4~-163



ROUTINE Last Point For Climb;
PARAMETERS Fl Id IN ALT START_POINT INOUT, RESTRICTIONS IN,
Loc Pa _ID IN
REFFR TO SHARED LOCAL
PAST CUSP 1IN,
ACTIVE PLANNED _ACTIONS IN,
AGD VECTOR IN;
DEFINE TABLES

RESTRICTION RESTRICTION POINT TABLE
altitude Restriction altitude
rest x X coordinate
rest y y coordinate
point AGGREGATE(rest_x,rest_y)
ALT START POINT ALTITUDE START POINTS
pa_id Planned action id
start_time Time to start maneuver
start_ard Along route distance to start
start altitude Altitude to start maneuver
start x x value to start action
star{Zy y value to start action
stimulus type _ Type of stimulus
last type Temporary start type
start_point AGGREGATE(start_x,start_y);
DEFINE VARIABLES
Fl Id Identity of aircraft for Trajectory
Estimation
Loc Pa Id Planned action id
Target Alt Actions target altitude
Target_Ard Point where target altitude is reached
ard
Target Pt Point where target altitude is reached
Time Time at point
Speed Speed at point
Start Point Start point of action
Act_Pa Id Active planned action id
Start_Ard Starting condition ard;
FIGURE 4-89

LAST POINT FOR CLIMB

4-164



SELECT FIELDS tas,position,time
FROM PAST_CUSP
INTO Speed,Target Pt,Time;

IF 'altitude’ IS IN ACTIVE_PLANNED . ACTIONS.pa_type

THEN # find target altiude 4
T CALL Find Target Altitude(F1 Id IN,Target Alt OUT,

" Act_Pa_Id OUD);

CALL Calculate Start _Point(F1 Id IN,Target Pt IN,PAST CUSP.z IN,
RESTRICTION IN,Start_Point OUT-Eoc Pa Id IN_Time IN,Speed 1IN,
Start_Ard OUT); :

CHOOSE CASE
WHEN PAST CUSP.ard GE Start ARD THEN #action starts now#

" INSERT INTO ALT START POINT
(pa_id = Loc Pa Id,stimulus _type = 'position'
start_point = PAST CUSP.position,
start_ard = PAST CUSP.ard),
WHEN AGD_VECTOR.gradient EQ O THEN #at or before last point#
" INSERT INTO ALT START _ POINT
(pa id = Loc Pa__ Id, stimulus _type = 'not set’,

last type = 'position
starg_point = Start Point start_ard = Start_Ard);
OTHERWISE
SELECT FIELDS tas,position,time
FROM PAST CUSP
INTO Speed Target Pt Time,
CALL Ca. Calculate | Polnt To Reach Altitude(Fl_Id IN,Target Alt
IN ,Target . Ard OUT Target Pt INOUT, PAST | CUSP.z IN,
Time INOUT, Speed INOUT, Act Pa_1d IN)
CALL Calculate Start. Point(Fl 1d . IN Target Pt IN,
Target Alt IN RESTRICTION IN Start Point OUT
Loc_Pa_1d EN Time IN, Speed 1I 1IN, Start Ard OUT),
CHOOSE CASE
WHEN Start_Ard GE Target Ard THEN #start at start point#
" INSERT INTO ALT START | POINT
Zpa id = Loc Pa_ 1d,stimulus  type = 'position’,
start_point = Start __Point);
WHEN AGD VECTOR.gradient GT 0 THEN #interupt at rest.alt#
~ INSERT INTO ALT START POINT
Zpa id = Loc Pa__ 1d,stimulus  type = 'altitude’,
start altitude = RESTRICTION.altitude),
OTHERWISE #start maneuver now#
INSERT INTO ALT START POINT
fpa id = Loc . - Pa_1d, Lstimulus _type ™ 'position’,
start point- PAST CUSP.postion);
END Last Point For Climb

FIGURE 4-89 (Concluded)
LAST POINT FOR_CLIMB

4165



ROUTINE Calculate Start Point;
PARAMETERS F1 1d IN Coord IN,Altitude .IN,RESTRICTIONS IN,Start Point

OUT,Loc_Pa__ 1d IN Time IN N, Speed 1IN, Start Ard OUT;
DEFINE TABLES

RESTRICTIONS RESTRICTION POINT
altitude Restriction altitude
rest x x coordinate of restriction point
rest y y coordinate of restriction point
point AGGREGATE (rest x,rest y)
DEFINE VARIABLES
~ FL_1d Identity of aircraft for Trajectory
Estimation
Coord(2) (x,y) position
Altitude Altitude at coord
Start_Point(2) Point(x,y) to start maneuver
Loc Pa Id Planned action id tat we're finding start of
Time Time at coord
Speed Speed at coord
Start_Ard Ard of start point
Del Dist Overshoot distance
Goal Alt Crossing altitude
Earliest Pt(2) Earliest (x,y) to start maneuver
Earliest Time Earlriest time to start manmeuver
Earliest Alt Altitude at earliest point
Earliest Sp Speed at earliest point
Dist to_Rest Distance to restriction point
Dist_Coord Distance to latest trials end point
Res Ard Restriction point ard
Goal Ard Ard at restriction point;
FIGURE 4~90

CALCULATE START POINT

4-166



Goal Alt = RESTRICTION.altitude;
Start_Point = Coord;
Earliest Pt = Coord;
Earliest Time = Time;
Earliest Speed = Speed;
Earliest . “Altitude = Altitude;
#this is first trial to reach restriction point exactly#
CALL Calculate Point To Reach Altitude(Fl Id IN,Goal Alt 1IN,
~ Goal Ard OUT, Coord INOUT Altitude IN,Time INOUT Speed INOUT,
Loc Pa_Id IN);
CALL XY To Ard(Fl Id IN,RESTRICTION.point IN,Res Ard OUT);
Del Dist = 0;
IF Goal Ard GT Res Ard
THEN # can't make restriction point #
T CALL XY_To_Ard(F1_Id IN,Start_Point IN,Start_Ard OUT);
Start Ard = Start Ard - Goal Ard - Res _Ard;
EISE #possible to make restriction find latest point to start #
T CALL Find Distance To_Point(Fl_Id IN,RESTRICTION.point IN,
ﬁist To Rest OUT Earliest Coord 1 IN,Earliest Time IN,
Earliest Alt IN, Earliest Sp IN);
REPEAT UNTIL Goal Ard E EQ Res Ard
#compute distance to end of trial #
CALL Find Distance To Point(Fl1_Id IN,Coord IN,
T Dist Coord ouT, Earliest Coord IN, Earliest Time IN,
Earliest Alt 1 IN, Earliest - Sp INT-
Del Dist = Dist To Rest - Dist Coord,
# del Dist 1s amouat to displace start point #
Start Point = Earliest Point;
Time = Earliest Time,
Speed = Earliest . . Sp;
Altitude = Earliest - Alt;
CALL Find New Start -~ Point(F1l_Id IN,Del Dist IN,
~ Start_Point INOUT,Time INOUT,Speed IN,Altitude IN);
Coord = Start Point,
CALL Calculate Point_To_Reach Altitude(Fl 1d IN,
Goal Alt IN, Goal Ard ¢ ouT, Coord INOUT,Altitude IN,
Time INOUT,Speed INOUT,L Loc_Pa_Id IN5
CALL XY To Ard(Fl Id IN,Start__ Point IN Start Ard OUT);
END Calculate Start Point,

FIGURE 4-90 (Concluded)
CALCULATE_STARI_POINT

4~167



ROUTINE Calculate Point To Reach Altitude ;
PARAMETERS F1 Id IN Final Alt IN sTarget Ard OUT,Coord INOUT,
Altitude IN, Time INOUT Speed INOUT , Loc Pa_Id IN ;
REFFR TO GLOBAL
HOLD PLANNED ACTIONS IN;
REFER TO SHARED LOCAL
ACTIVE PLANNED ACTIONS IN;
DEFINE TABLE

STATE STATE MODELED TO
position x x position
positioqu y position
tas Tas
las las
mach Mach
z Altitude
time Time
ard Along route distance
temp Temperature
position AGGREGATE(position_x,position y);
DEFINE VARIABLES
~ F1 1d Identity of aircraft for Trajectory
Estimation
Final Alt Target altitude
Target Ard Along route distance where target altitude is
- reached
Speed Current speed
Alt Current altitude
Time Current time
Ias Indicated air speed
Mach Mach
Avg Speed Average speed
Del Time Time to be accounted for
Grad Current gradient
Goal Pt(2) Restriction point (x,y)
Coord(2) Coordinate(x,y)
Acc Acceleration at point
Loc_Ard Current Ard '
Tran Type Transition type climb or descent;
Loc Pa_Id Planned action id
EFC Time Expect further clearance time
Type Phase type
Goal Alt Phase altitude goal
Speed Type Ias or Machj;
FIGURE 4-91

CALCULATE_POINT TO REACH ALTITUDE

4-168



CALL Set Up State(Speed IN,Coord IN,Alt IN,Time IN,STATE OUT);
EFC Time = "nomne'; -
lf_'hold' IS IN ACTIVE PLANNED ACTIONS
THEN
~ SELECT FIELDS efc_time,hold fix position
FROM HOLD_| PLANNED ACTIONS(H P A)
NTO EFC Time Hold Fix
WHERE H P A.pa id IS IN ACTIVE PLANNED ACTIONS.pa id;
IF Time ¢ GT EFC Time
THEN
EFC Time = 'none';
REPFAT WHILE Alt NE Final Alt;
CALL Find Next Phase(Fl Id IN,Loc Pa Id IN,STATE IN,Type OUT,
Avg_Speed 0UT,Goal Alt OUT Speed Type OUT,Grad O OouT, Del Tis _Time
OUT,Speed T —'GUT Goal Pt ou'r Tran_Type WT‘)
CHOOSE CASE
WHEN Type EQ 'time' THEN
Time = Time + Del Time;
IF EFC Time NE 'none'
THEN ~
" CALL Hold During Time Phase(Fl Id IN,Del Time INOUT,
" Coord INOUT Speed INOUT,EFC Time INOUT
Hold Fix IN,Alt IN, STATE IN);
CALL Point At Time(Fl 1d IN, Del Time IN,Grad IN,
Avg Speed IN Alt IN,Coord INOUT),
WHEN Type EQ ‘ard’ THEﬁ—I goal will be some point #
~ Acc = 0}
IF EFC Time NE 'none’
THEN # determine effect of hold #
CALL Hold | During Ard Phase(Fl Id IN,EFC Time INOUT,
~ Hold Fix IN, Goal Pt IN,Ace INOUT Coord INOUT,
Time INou‘)'
CALL Time At Point(Fl 1d IN,Goal Pt IN,Time INOUT,
" Grad IN Coord IN, Alt IN,Speed INOUT Acc INS
Coord = Goal _Pt;
OTHERWISE # altitude transition #
CALL Time And Point At _Al1t(F1_Id IN,Speed Type IN,
Speed INOUT Goal . TAlt IN, Grad IN Coord INOUT,
Time INOUT Altitude INOUT Hold Fix 1IN, EFC T , Time INOUT,
Tran_Speed IN,Tran Type IN),
Alt = Goal_Alt,
DELETE FROM STATE;#one record only #
CALL Set Up State(Speed IN,Coord IN,Alt IN,STATE OUT);
END Calculate Point To Reach Altitude,

FIGURE 4-91 (Concluded)
CALCULATE_POINT TO REACH ALTITUDE

4-169



ROUTINE Find New Start Point;
PARAMETERS F1 Id IN,Del Dist IN,Coord INOUT,Time INOUT,
Speed IN, Altitude IN .

REFER TO GLOBAL

HOLD PLANNED ACTION;
REFER TO SHARED LOCAL

ACTIVE_PLANNED ACTIONS;

DEFINE TABLES
VECTOR_POINTS
sequence
position x
position y
position
ROUTE_POINTS
ard
position x
position y
position
DEFINE VARIABLES

Fl1 1d

Del Dist
Coord(2)
Time
Speed
Altitude
Coord_Ard
Hold Fix
EFC Time
H Dist
Total Dist

POINTS IN VECTOR YET TO BE MODELED
Sequence of vector points
Apex x position
Apex y position
AGGREGATE(position x,position y),
POINTS IN ROUTE YET TO BE MODELED
Along route distance
x position of route point
y position of route point
AGGREGATE(position_x,position_y);

Identity of aircraft for Trajectory Estimation
Desired displacement

Point(x,y) moved to

Time at coord

Speed at coord

Altitude at coord

Coordinate along route distance
Hold fix

Expect furter clearence time
Distance in hold

Distance accounted for ;

FIGURE 4-92
FIND NBW_START POINT

4-170



CALL XY To Ard(F1_Id IN,Coord IN,Coord Ard OUT);
CALL Set Up Vector And Route Points(Coord Ard IN,ROUTE POINTS OUT,
~ VECTOR POINTS OUT),
IF 'hold' IS IN ACTIVE ._PLANNED ACTIONS
THEN
~ SELECT FIELDS efc time,hold fix;position
FROM HOLD_ PLANNED ACTIONS(H P A)
INTO EFC Time, Hold Fix
WHERE HP A.pa id IS IN ACTIVE PLANNED ACTIONS. pa_ id;
CALL XY XY _To Ard(Fl Id IN, Hold Fix IN Hold . Ard ouT);
IF Time GE EFC Time =
THEN
EFC Time = 'none’;
ELSE
EFC Time *= ‘'nomne’;
Total Dist = 0;
REPEAT WHILE Total Dist LT Del Dist
IF(EFC Time NE 'none') AND (Coord EQ Hold Fix)
THEN #compute distance travelled in hold ¥
H Dist = (EFC Time - Time) * Speed;
IF H Dist LT (Del Dist - Total Dist)
THEN | # move to end of hold #
T Time = EFC . Time;
EFC_Time = 'none'; # hold is complete #
Total Dist = Total Dist + H Dist ;
ELSE # travel del ¢ dist - total dist in hold #
" Time = (Del Dist - Total Dist)/Speed + Time;
Total Dist = Del . Dist;
EISE # must " be on route or vector #
T CALL Find New_Place On Route Or Vector(Fl Id IN,
EFC Time IN Hold Fix IN, Coord INOUT, VECTOR_ P! . POINTS INOUT,
ROUTE POINTS INOUT Time INOUT,Total Dist INOUT,
Del Dist IN, Speed IN),
END Find New | Start Point,

FIGURE 4~92 (Concluded)
FIND NEW START POINT

4-171



ROUTINE Set Start Limits;
PARAMETERS ALT START POINT IN;
REFER TO SHARED LOCAL
PAST CUSP 1N,
ALTITUDE_PENDING_ACTIONS IN,
ACTIVE PLANNED ACTIONS IN,
POSTION LIMITS INOUT,
ALTITUDE LIMITS INOUT,
ARD_LIMITS INOUT,
TIME LIMITS  INOUT;
DEFINE TABLES

ALT START POINT ALTITUDE START POINTS
pa_id Planned action id !
start time Time to start maneuver
start_ard Along route distance to start
start_altitude Altitude to start maneuver
start x x value to start action
start_y y value to start action
stimulus type Type of stimulus
last_type Temporary start type
start_point AGGREGATE(start_x,start_y);

DEFINE VARIABLES
First Ard Along route distance of start of first

altitude action;

FIGURE 4-93
SET_START_LIMITS

4-172



IF 'altitude' IS NOT IN ACTIVE PLANNED ACTIONS.pa_type
THEN #some climb may start before its latest start point#
T First_Ard = MIN(ALT START POINT.start_ard);
REPEAT FOR EACH ALT START POINT RECORD
WHERE ALT START POINT.stimulus type EQ 'not set';
" IF ALT START POINT.start_ard GT First_Ard
THEN #action will not start before first action#
~ UPDATE IN ALT START POINT
(stimulus_type = last_type);
EISE #action will start at cusp#
~ UPDATE IN ALT START POINT

(stimulus t _type = - 'ard',

start_ard = PAST CUSP.ard);
REPEAT FOR EACH ALT START " POINT RECORD

UPDATE IN AL ALTITUDE PENDING ACT IONS:A P A)
(stimulus_type = ALT START POINT.stImulus type)
WHERE A ] P .  A.pa 1d j ALT START _POINT. pa_: 1d'

CHOOSE CASE
WHEN ALT START POINT.stimulus type EQ 'time' THEN

" INSERT INTO ° TIME LIMITS

(time = ALT START '_POINT.start_time);
UPDATE IN ALTITUDE PENDING ACTIONS(A_P_A)

(stim time = ALT START POINT.start time)
WHERE A P A.pa _id EQ ALT START POINT.pa id;
WHEN ALT START POINT.stimulus type.EQ ‘position' THEN
~ INSERT INTO POSITION LIMITS

(position = ALT START '’ POINT.start_point);
UPDATE IN ALTITUDE PENDING ACTIONS(A P A)

(stirulus position = ALT ' START POINT.start _point)
WHERE A P A.p& id EQ ALT START POINT. pa_: id;

WHEN ALT ST START _POINT. ‘stimulus type.EQ ‘altitude’ THEN

" INSERT INTO . ALTITUDE_LIMITS
altitude = ALT START ' POINT.start_altitude);

UPDATE IN ALTITUDE . PENDING ; ACTIONS(A P A)
Zstim z= ALT START POINT.start altitude)
WHERE AP A.pa id j_ ALT START POINT.pa i1d;

WHEN ALT START ' POINT.stimulus type.§g 'ard' THEN

~ INSERT INTO . ARD LIMITS
(ard = ALT START _POINT.start_ard);

UPDATE IN ALTITUDE PENDING ACTIONS(A P _A)

Zstim ard = ALT START POINT.start ard)
WHERE . A P A.pa id Q ALT START POINT.pa id;

OTHERWISE; # stimulus type = 'mome' set nothing#
END Set_Start_Limits,

FIGURE 4-93 (Concluded)
SET_START_LIMITS

4-~173



ROUTINE Include Speed Pending Action Limits;

REFER TO GLOBAL SPEED CHANGE _ PLANNED ACTIONS IN;

REFER TO SHARED LOCAL SPEED PENDING ACTIONS INOUT,ALTITUTE LIMITS
INOUT

DEFINE TABLES

LOC_SPEED PA Local copy of the speed planned action
record :
pa_id Planned action identification
speed Target speed of the planned action
base_value location Location of ' the planned action
basing
value - either "start” or "end”
base_value type: Type of base value enumeration
base x x coordinate of base point
base_y y coordinate of base point
base t Time value of base point
base z Altitude of base point
base ard Along route distance at base point
base |  poaition AGGREGATE (base_x,base_y);

REPEAT FOR EACH SPEED PENDING ACTION RECORD;
LOC_SPEED PA = SELECT FIELDS ALL
FROM SPEED CHANGE PLANNED ACTIONS
WHERE SPEED CHANGE PLANNED ACTIONS.pa id EQ
~— SPEED PENDING ACTIONS. pa id;
CHOOSE CASE
WHEN LOC_SPEED PA.base value type EQ "time" THEN
T CALL Speed Based By Time(T.OC_ SPEED_PA NG
WHEN LOC SPEED PA. base “value type EQ Fecoordinate” THEN
" CALL Speed Based By | Coordinate(LOC SPEED PA IN);
WHEN LOC SPEED PA.base value  type EQ Vard" THEN
" CALL Speed Based By Ard(LOC_SPEED PA IN);
WHEN LOC_SPEED.PA. base value type EQ "altitude THEN
~ INSERT INTO ALTITUDE LIMITS
(altitude = LOC_SPEED PA.base z);
UPDATE IN SPEED PENDING ACTIONS
(stimulus_type = 'altitude’,
stim z = LOC_SPEED PA.base z),
END Include Speed Pending Action Limits,

FIGURE 4-94
INCLUDE SPEED PENDING ACTION LIMITS

4-174



ROUTINE Speed Based By Time;
PARAMETERS LOC_SPEED PA IN;
REFER TO SHARED LOCAL ~
PAST_CUSP IN,
TIME LIMITS INOUT,
SPEED_PENDING_ACTIONS INOUT;
DEFINE TABLES

LOC_SPEED PA Local copy of the speed planned action
record
pa_1d Planned action identification
speed Target speed of the planned action
base_value location Location of the planned action basing
value
base_value_type Type of base value enumeration
base X x coordinate of base point
base_y y coordinate of base point
base t Time value of base point
base 2z Altitude at base point
base_ard Along route distance at base point
base position AGGREGATE (base_x,base_y);
DEFINE VARIABLES

Loc Z altitude value at the PAST CUSP

ILoc T time value at the PAST CUSP

Loc Tas tas value at the PAST CUSP

Loc Temperature temperature value at the PAST CUSP

Time For_Speed Change Time it takes to accelerate from
start speed to end speed

New_Time Time value for time limit
Average Tas Average tas value for start and end
speeds;
FIGURE 4-95

SPEED_BASED_BY TIME

4-175



IF LOC_SPEED PA.base_ location EQ "start”
THEN
INSERT INTO TIME LIMITS
(time = LOC_SPEED_PA.base_t);
UPDATE IN SPEED PENDING ACTIONS
(stimulus type = "time",
stim t = LOC_SPEED PA.base t)
WHERE SPEED PENDING ACTIONS.pa_id EQ LOC_SPEED PA.pa id;
ELSE .
SELECT FIELDS z,time,tas,temperature
FROM PAST CUSP .
INTO Loc_ Z, Loc _T,Loc_Tas,Loc_Temperature;

IF LOC_SPEED PA. speed LT 2 #speed assumed to be in mach units#

THEN
" CALL Get . Time For - Speed_Change( 'tas' IN, Loc_Tas IN,
Ioc Z IN Loc :_Temperature In, 'mach’ IN,
LOC SPEED PA.speed IN,Loc_Z IN,Loc_Temperature IN,
- Time For_Speed Change OUT,Average Tas OUT);
ELSE
CALL Get_ Time For_Speed Change('tas' IN, Loc Tas IN,
" Loc_Z IN,Loc_Temperature In,'iae"TN,
LOC SPEED PA.speed IN,Loc_Z IN,Loc Temperature IN,
Time _For Speed Change OUT Awerage Tas OUT);
Nev Time = Loc T + Time For Speed Change,
INSERT INTO TIME LIMITS
(time = MAX(Loc T,New Time));
UPDATE IN SPEED PENDING ACTIONS
(stimulus type = "time",
stim t = MAX(Loc T,New Time));
WHERE SPEED P! PENDING ACTIONS. pa_id EQ LOC_SPEED PA.pa 1d;

END Speed Based By Time;

FIGURE 4-95 (Concluded)
SPEED_BASED BY TIME

4-176



Speed actions based by a coordinate are handled in Speed Based

By Coordinate (Figure 4-96). If the basing coordinate speci-
fies a position to begin the speed change, the position 1s
entered as the speed pending action stimulus value, and as a
position limit. If the basing coordinate specifies a point by
which the speed must be achieved, then the acceleration (de-
celeration) time of the speed action is obtained by comparison
of the final speed with the speed at the past cusp. The
acceleration (deceleration) time value 1s translated to a
stimulus point on the line between the speed basing point and
the past cusp. The stimulus position is entered as the
stimulus value for the speed pending action as well as entered
into the position limits table.

The last element, Speed Based By Ard (Figure 4-97), processes
speed pending actions based by along route distance. If the
speed action is based at its start, then the basing along route
distance is entered as the stimulus point and as an along route
distance limit. If the speed action is based at its end, then
the time for the speed acceleration (deceleration) to take
place is computed using the speed stored at the past cusp. The
distance of the speed change is calculated and then subtracted
from the basing along route distance. This difference is
entered as the speed pending action stimulua value and as an
along route distance limit.

Include Vector Pending Action Limits (Figure 4-98) provides for
the computation of position stimulus for a pending vector
action. The basing point of the vector action is obtained from
the vector planned action table. An allowance is made for the
pilot to initiate the turn before the basing point in the
observed wind field. The initiate-turn-position is a position
on the line between the past cusp and the vector basing point.
This position is inserted into both the pending actions record
for this vector action and into the position limits structure
for Trajectory Comnstruction.

4.4 Trajectory Construction

Trajectory Construction uses information from the planned
action processing components and the available wind data base
to compute the four-dimensional (x,y,z,t) cusps and their
associated dynamics (true airspeed, along route distance).
Planned action processing components supply an AGD vector and
several limits. A merging process determines a unique limit
which is the minimum of all the AGD vector limits.

4-177



ROUTINE Speed Based | By Coordinate;

PARAMETERS LOC SPEED PA IN;

REFER TO SHARED LOCAL
PAST CUSP IN,
POSITION | LIMITS ANouT,

SPEED PENDING ACTIONS INOUT;

DEFINE TABLES .
~ LOC_SPEED PA

pa_id
speed
base_value location

base value_type

base x

base y

base t

base z

base_ard

base position

DEFINE VARTABLES

Loc_Position(2)
New_Position(2)
Position Delta

loc Z

Loc T

loc_Tas

Loc > _Temperature
Loc_Direction

Average Tas

Time For Speed Change

Local copy of the speed planned action

record

Planned action identification

Target speed of the planned action

Location of the planned action basing
value

Type of base value enumeration

x coordinate of base point

y coordinate of base point -

Time value of base point

Altitude at base point

Along route distance at base point

AGGREGATE (base_x,base_y);

X,y position from the PAST CUSP
X,y position of the limit
x,y coordinates of the vector representing

distance and direction of speed

"transition
Altitude value at the PAST CUSP
Time value at the PAST CUSP
Tas value at the PAST CUSP
Temperature value at the PAST CUSP
Direction from the PAST CUSP to the base

point of the speed change

Average of tas values for start and end

speeds

Time it takes for the change in speed;

FIGURE 4-§6

SPEED_BASED BY COORDINATE

4~178



IF LOC SPEED PA.base location EQ "start”

THEN
T INSERT INTO POSITION_LIMITS
(position = LOC_SPEED PA.base position);
UPDATE IN SPEED PENDING ACTIONS
(stimulus type = “"position”
stimulus_position = LOC_SPEED PA.base position)
WHERE SPEED PENDING _ ACTIONS. pa_: - 1d EQ LOC_SPEED PA.pa 1d;
ELSE
SELECT FIELDS position,z,time,tas,temperature
FROM PAST CUSP
INTO Loc Position,Loc Z,Loc_T,Loc_Tas,Loc_Temperature;
IF TOC_SPEED PA.speed LT 2 #speed assumed to be in mach units#
CALL Get_Time For_Speed Change('tas' IN, Loc_Tas IN,
T Loc Z IN,Loc _Temperature In, ‘mach' I IN,
LOC_ SPE_D PA.speed IN,Loc_Z IN,Loc_Temperature IN,
Time For Speed Change OUT,Average Tas OUT);

ELSE
CALL Get_Time For_Speed Change('tas' IN, Loc_Tas IN,

Loc z IN, Loc Temperature In,'ias’ IN
LOC SPEED PA.speed IN,Loc_Z IN,Loc Temperature IN,
Time For Speed Change OUT,. Ayerage Tas OUT);
Loc Direction = DIRECTION(Loc Pi  Position,
(LoC_SPEED PA.base x,LOC_SPEED PA.base_y);
Position Delta = Average Tas * Time For Speed Change *
(SIN(Loc Direction),C0S(Loc  Direction);
New Position = MAX(Ioc;Position,(LOC SPEED PA.base position -
Position Delta));
# MAX function taken to obtain the further of the two points along #
# Toute of the aircraft #
INSERT INTO POSITION LIMITS
(position = New_Position);
UPDATE IN SPEED PENDING ACTIONS
Zstimulus_type = "pogition”,
stimulus _position = New Position)
WHERE SPEED PENDING . ACTIONS. pa_id EQ LOC_SPEED PA.pa : id;

END Speed Based By | Coordinate,

FIGURE 4-96 (Concluded)
SPEED_BASED BY COORDINATE

4-179



ROUTINE Speed Based By Ard;
PARAMETERS LOC SPEED PA IN;

REFER TO SHARED LOCAL
PAST CUSP IN,
ARD TIMITS 1] INOUT

SPEED PENDING . NG ACTIONS INOUT ;

DEFINE TABLES
LOC_SPEED PA

pa_id
~ speed
base_value location

base_value_type
base x
base_y
base t
base z
base ard
base_position
DEFINE VARIABLES
Loc _Z
Loc T
Loc_Ard
Loc_Tas
Loc_Temperature
Average Tas

New_Ard
Time For Speed Change

Local copy of the speed planned action
record
Planned action identification
Target speed of the planned action
Location of the planned action basing

value

Type of base value enumeration
x coordinate of base point
y coordinate of base point
Time value of base point
Altitude at base point
Along route distance at base point
AGGREGATE (base x,base_y);

Altitude value at the PAST CUSP
Time value at the PAST CUSP

Ard from PAST CUSP

Tas value at the PAST_CUSP

Temperature value at the PAST CUSP

Average of tas values for start and end
speeds

New ard value for limit

Time to change speeds;

FIGURE 4-97
SPEED BASED BY ARD

4-180



IF LOC_SPEED PA.base location EQ "start”
THEN
INSERT INTO ARD LIMITS
(ard = LOC SPEED PA.base_ard);
UPDATE IN SPEED PENDING ACTIONS
Zstimulua_type = "ard",
stim ard = LOC_SPEED PA.base_ard)
WHERE SPEED PENDING ACTIONS.pa_id EQ LOC_SPEED_PA.pa_id;

ELSE
SELECT FIELDS z,time,ard,tas, temperature '
CUSP !
INTO Loc Z Loc_T,Loc_Ard,Loc _Tas,Loc_Temperature;
IF LOC SPEED PA.speed LT 2 #speed assumed to be in mach units#
THEN
CALL Get_Time For Speed Change(' tas' IN, Loc_Tas IN,
Ioc Z IN, Loc Temperature In, ‘mach’ IN
LOC SPEED ) PA.speed IN,Loc_Z IN,Loc Temperature 1N,
. Time For_Speed Change OUT,Average Tas OUT);
ELSE
CALL Get Time For Speed Change('tas' IN, Loc_Tas IN,
Loc Z IN, Loc Temperature In, '1as' 1IN,
LOC SPEED PA.speed IN,Loc_Z IN,Loc_Temperature IN,
Time_For Speed Change OUT,Average Tas OUT);
New Ard = MAX(Loc Ard, (LoC__ SPEED PA, base ard ~ Average Tas *
Time For_Speed_ Change)),
INSERT INTO ARD LIMITS
(ard = New_Ard);
UPDATE IN SPEED_PENDING ACTIONS
(stimulus_type = "ard",
stim ard = New 7 Ard)
WHERE SPEED PENDING ACTIONS.pa_id EQ LOC_SPEED PA.pa id;
END Speed Based By . Ard;

FIGURE 4-97 (Concluded)
SPEED BASED BY ARD

4-181



ROUTINE Include Vector_ Pending Action Limits;
PARAMETERS F1 Id IN;
REFER TO GLOBAL
VECTOR_PLANNED ACTIONS IN;
REFER _TO | ‘SHARED LOCAL
AGD VECTOR IN,
POSITION LIMITS INoUT,
VECTOR _. PENDING ACTIONS INOUT,
TURN | POINTS OUT,
DEFINE T, TABLES

"TURN - Linear turn data
sequence order of the points
turn x x coordinate in turn
turn y y coordinate in turn
turn pt course course from turn
turn_pt AGGREGATE (turn_x,turn y);
DEFINE VARIABLES
F1 Id Input flight identifier

First_Point(2) First point(x,y) in vector
Sequence Number Sequence number of first point
Second Point(2) Second point(x,y) in vector

Loc_Pa_Id Planned action id

Course_In Course into apex point

Course Out Course out of apex point

Stimulus(2) Start point(x,y) of vector;
FIGURE 4-98

INCLUDE_VECTOR_PENDING_ACTION_LIMITS

4~182



REPEAT FOR EACH VECTOR PENDING ACTIONS RECORD
E S pa_: id,vertex coordinate
FROM VECTOR PLANNED ACTIONS (V_P A)
INTO Loc Pa_ 1d, First Point
WHERE V_ P A.pa id EQ VECTOR PENDING ACTIONS.pa_id AND
VP A.vector *_8sequence | number _g_l
SELECT FIELDS vertex coordinate
FROM VECTOR PLANNED ACTIONS (V_P A)
INTO Second Point
WHERE V_P . A.pa L_1d EQ VECTOR_PENDING ACTIONS. pa id
T AND V P _A.sequence number EQ 2;
Course In = AGD VECTOR.dIrectionmj
Course Out = DIRECTION(First Point,Second Point);
# calculate points to model turn #
CALL Linear Turn(Course_In IN, Course Out IN,First Point,
" TURN OUT,F1 Id IN);
DELETE FROM TURN POINTS(T P)
WHERE T P.pa id._g VECTOR PENDING ACTIONS.pa 1id AND
T P.apex point = First Point,
REPEAT FOR EACH TURN RECORD
INSERT INTO TURN POINTS
zpa id = VECTOR PENDING ACTIONS.pa_1id,
apex;point = First Point,
sequence = TURN.sequence,
turn pt = TURN.turn pt,
turn_pt_course = TURN.turn pt course);
SELECT FIELDS turn pt
INTO Stimulus
FROM TURN
WHERE TURN.sequence EQ 1;
UPDATE IN VECTOR_PENDING ACTIONS
stimulus value = Stimulus);
INSERT INTO POSTION LIMITS

(position = Stimulus);

END Include Vector_Pending Action Limits;

FIGURE 4-98 (Concluded)
INCLUDE VECTOR PENDING ACTION LIMITS

4-183



The following sections describe the components of the Trajec-
tory Construction subfunction in detail. These are: Merging
and Cusp Construction. Figure 4-99 provides the processing
details for the element Trajectory Construction.

4.4.1 Migsion

For purposes of Trajectory Construction, a past cusp always
exists: the very first past cusp 1is provided by Trajectory
Initialization. Not only does there exist a past cusp, but
Trajectory Construction is also provided with a complete AGD
vector and a set of 1limits., This latter information is con-
structed in the different planned action processing components.

The AGD vector provides a means to establish a four-dimensional
line emanating from the past cusp. Using the AGD variables as
"operators,” values at the past cusp can be transformed to
values along that four-dimensional line. Omne point in par-
ticular, is important: it will become the next cusp. The
means of choosing which point shall be the next cusp 1is
available through the limit values.

The limit values represent bounds on the AGD variables. The
bounds are represented as goals to achieve in position, time,
altitude, along Troute distance, and speed. Information
derivable from the past cusp and the AGD vector (the four-
dimensional line) allows the determination of a point on the
line emanating from the past cusp for each 1limit supplied to
Trajectory Construction. Between the past cusp and the nearest
such point, all planned action processing component guarantee
the validity of the AGD vector. The nearest point assoclated
with a 1imit must represent the next cusp.

For purposes of maintaining a ground referenced path for the
aircraft, the trajectory should be broken at every change in
atmospheric data. These changes could induce different ground
speeds due to the presence of a different set of wind speed,
direction, and temperature parameters. The next cusp is then
placed at the boundary of a wind cell or at the closest limit
point, whichever produces the smaller segment.

The next cusp, once constructed, becomes the past cusp for
purposes of planned action processing. All information neces-
sary to the proper functionig of planned action processing must
be accumulated and stored in accessible data bases.

4-184



ROUTINE Trajectory Construction;
PARAMETERS
Loc_F1 Id IN;
REFER TO SHARED LOCAL
AGD_VECTOR IN;
DEFINE VARTABLES

Loc F1 14 Flight identification for this aircraft
undergoing Trajectory Estimation
AGD Vector_Limit Final agd vector limit in time;
##

# Find the time equivalent of all the limit values input from
# planned action processing. Further reduce these to one single
# limit in time.

CALL AGD_Vector Limit _Computation(Loc F1_Id IN, -
AGD_Vector_Limit OUT);
: Construct the next cusp, and store other information at the

cusp.

CALL Cusp Construction(Loc_F1 Id IN,AGD Vector_ Limit IN);

END Trajectory_Construction;

FIGURE 4-99
TRAJECTORY CONSTRUCTION

4-185

e W



The Merging Process 1s respongible for formulating a single
limit. The variables from the AGH vector control the dynamics
of the aircraft until this 1{mit iw reached. The output infor-
mation 18 routed to Cusp Comstructienm.

4.4.2 Design Considerations and Environment

The trajectory 1s bullt one cusp at a time. Planned Action
Processing and Trajectory Construction repeat the same con-
struction sequence for each cusp.. Since the trajectory 1is a
ground referenced path for the alrcraft, information contained
in the global data base regarding winds and temperatures are
used to obtain ground speeds.

Ingut

In order to perform the Trajectexy Construction subfunction,
the following data sets are used:

e System Global Data Base
- ROUTES

The ROUTES structure allows the translation between
along route distamce and (x,y) coordinates.

- WINDS
Global wind data 1s used to translate between air-
craft parameters relative to the air mass and the
respective couynterparts relative to the ground.
o Shared Local Data Base
=~ AGD VECTOR
The AGD vector eontains the'values of a~cceleration,

gradient, and direction necessary to compute the
next cusp. '

4~186



Outm._lt

ARD_LIMITS
TIME_LIMITS
POSITION_LIMITS
SPEED LIMITS
ALTITUDE_LIMITS

These structures contain information which' bounds
the extent of the AGD vector. These limits could be
direct bounds to certain AGD variables or trajectory
where events cusps should be built. '

PAST_CUSP

The past cusp table stores information concerning
the position, altitude, time, etc., at the past
cusp. These values will be transformed, via the AGD
vector, to build the next cusp.

GRADIENT PARAMETERS

This table contains the identification of maximum
and minimum gradient values if an altitude action 1is
being modeled. These values are stored at the past
cusp for use by Trajectory Post Processing. This
table also contains a transition. speed type and
value during an altitude transition which are used
for speed conversion.

PAST_CUSP_TYPE
This one record table allows a parameter to be

placed in the last cusp record identifying certain
actions emanating from the past cusp.

Output from the Trajectory Comstruction’ subfunction includes
the next cusp in the trajectory along with information to be
used by planned action processing.

e System Global Data Base

TRAJECTORIES

The next cusp for this aircraft is built.

4-187



e Shared Local Data Base

- PAST CUSP
SUPPLEMENTAL CUSP_INFORMATION

Information for planned action processing is stored
in these two tables. The second table is used by
Trajectory Initialization should Trajectory
Estimation be invoked again for this aircraft.

- AGD_VECTOR
ARD LIMITS
TIME LIMITS
POSITION LIMITS
SPEED LIMITS
ALTITUDE _LIMITS

All information in these tables is purged and the
tables initialized.

4.4.3 Merging Design Logic

AGD Vector Limit Computation converts all the limits into time
units. This process also computes a limit in time when the
path defined by the AGD vector intersects the wind boundary.
The minimum of all the limits is the resulting limit up to
which the AGD vector controls the ailrcraft trajectory. This
point is the next cusp along the aircraft's trajectory.

Figure 4-100 provides the calling hierarchy for the Merging
Process component of Trajectory Construction. Design language
descriptions are provided for each element in this document.
This component also uses the following utilitites which are
described in Appendix B: Mach To Tas, Ias To Tas, Newton_
Raphson, and Get Route Segment And XY For_ Ard.

Processingr Method

AGD Vector Limit Computation (Figure 4-101) accepts limits in
one or more of the following forms: altitude, target speed,
along route distance, position, or time. This element first
calls Find Wind Cell (Figure 4-102) which retrieves the
relevant wind cell information from the global data table
WINDS. The intersection of the AGD vector with this wind cell
is determined in Wind Cell Intersection (Figure 4-103). This
intersection is included as a position limit to influence the
construction of the next cusp.

4-188



AGD Vector_Limit Computation
Find Wind Cell
Wind_Cell Intersection
Get Z To T
Get_Ard To XY
Get_XY To T
Newton Raphson
Iterate to Final Altitude And Time
Get_Speed_To T

FIGURE 4-100
MERGING PROCESS CALLING SEQUENCE

4-189



ROUTINE AGD_Vector Limit Computation;

PARAMETERS
Loc_F1 Id IN,
Limit OUT,

REFER TO SHARED LOCAL
AGD_VECTOR 1IN,
ALTITUDE LIMITS IN,
ARD LIMITS IN,
TIME LIMITS IN,
POSITION LIMTTS 1N,
SPEED LIMITS IN,

DEFINE TABLES
ALT LIMS IN TIME

alt lim
SPD LIMS IN TIME
spd 1im
ARDLLIMS_IN_IIME
ard lim
POS_LIMS IN TIME
pos_lim
ARD LIMS IN XY

< M|

arq_lim
DEFINE VARIABLES
Loc_FI _1d

Altitudq_Indicator
Limit

Altitude Limits

1list of altitude limits converted to time
Speed limits

list of speed limits converted to time
Along route distance limits

list of ard 1limits converted to time
Position limits

1list of position limits converted to time
Equivalent xy points

x coordinate

y coordinate
AGGREGATE (x,y);

The flight identification for the aircraft
undergoing Trajectory Estimation

0 for level, 1 for climb, -1 for descent

Final Limit in Time;

FIGURE 4-101

AGD_VECTOR_LIMIT COMPUTATION

4-190



Altitude_Indicator = SIGNUM(AGD_ VECTOR.gradient);
# Find Wind Cell will fi11 up the data structure WIND CELL
# defining the wind cell containing the past cusp; if the past
# cusp was on the wind cell boundary then it will £i1ll the
# WIND CELL with info for the adjacent wind cell in the direction
# the aircraft is going
CALL Find Wind Cell(Loc Fl Id _IN, Altitude_Indicator IN),
# routine Wind Cell Intetrsection. will insert a limit in
# position (x,y) for a level section into ‘the shared local table
# POSITION LIMITS and insert an.altitude limit into the shared
# local table ALTITUDE LIMITS for a section with altitude change
CALL Wind Cell Intersection,
IF COUNT(ALTITUDE LIMITS) NE 0
THEN
CALL Get_Z To T(ALT LIMS IN TIME OUT)
IF COUNT(POSITION LIMITS) NE 0
THEN
~ CALL Get XY To T(POS LIMS IN TIME OUT),
IF COUNT(ARD LIMITS) NEO
THEN
CALL Get_Ard To XY(Loc F1 Id IN,ARD LIMS IN XY OUT),
CALL Get XY To T(ARD LIMS IN_XY IN, ARD LIMS _IN TIME OUT)
IF COUNT(SPEED LIMITS) NE 0
THEN
CALL Get_Speed To T(SPD LIMS IN TIME OUT)
Limit = MIN(CONCAT(ALT LIMS _IN TIME SPD_] LIMS _IN TIME,
~ POS_LIMS_IN TIME,ARD LIMS IN TIME,TIME LIMITS))
# Here CONCAT function is expected to produce a vector of all the
# elements of the tables mentioned inside the parens of the
# CONCAT function, and MIN will take the minimum element
END AGD Vector Limit Computation;

FIGURE 4-101 (Concluded)
AGD_YECTOR;LIMII_COMPUTATION

4-191

#
#
$
#
#

#
#
#

N e N



ROUTINE Find Wind Cell;
PARAMETERS
Loc_F1 Id 1IN,
Altitude Indicator IN
REFER TO GLOBAL WINDS IN
REFER TO SHARED LOCAL
AGD_VECTOR IN,
PAST CUSP IN,
WIND CELL INOUT-
DEFINE VARIABLES _
Loc_F1 Id Flight identification for this aircraft
undergoing Trajectory Estimation
Altitude Indicator -1 for descent,+l for climb,0 for level

Alr TemﬁEtature Wind cell temperature
wind | Speed Speed
Wind Direction Direction
F1b(3) xyz of front left bottom corner of wind cell
Frb(3) xyz of front right bottom corner of wind cell
B1t(3) xyz of back left top corner of wind cell
Next X x for a point Epsilon distance away
Next Y y for the same point
Next Z z for the same point;
DEFINE CONSTANTS
Epsilon 1.00E+01 10 feet parameter;

##
Next X = PAST CUSP.x + Epsilon * SIN(AGD_VECTOR.direction);
Next Y = PAST ' CUSP.y + Epsilon * COS(AGD VECTOR.direction);
Next Z= PAST CUSP.z + Epsilon * AGD VECTOR.gradient,
# by choosing a point 10 ft away from the given one for the
# select clause that follows, ambiguity of which cell to
# select when original point falls on a boundary of a cell
# 1s avoided.
SELECT FIELDS f1b coordinate,frb coordinate,blt_coordinate,
temperature,speed,direction
FROM WINDS
INTO F1b,Frb,Blt,Air Temperature,Wind Speed Wind | Direction
WHERE
Next Z LT WINDS.blt z AND Next Z GE WINDS.flb z AND
Next X LT WINDS. frb x AND Next X GE WINDS.f1b ) X AND
Next Y LT WINDS.blt : .y AND Next Y GE WINDS. flbLy,
INSERT INTO WINQ_CELL
(f1b = F1b,frb = Frb,blt = Blt,air _temp = Air Temperature,
wind speed = Wind Speed,wind direction = Wind Direction);
END Find Wind | Cell;

e e Y

FIGURE 4-~102
FIND WIND CELL

4-192



ROUTINE Wind Cell Intersection
REFER TO SHARED LOCAL
AGD_VECTOR 1IN,
WIND CELL IN,
PAST CUSP IN,
POSITION LIMITS OUT,
ALTITUDE LIMITS OUT,
DEFINE VARIABLES

Dist 1 Distance to east or west boundary
Dist 2 Distance to north or south boundary
Min Dist The minimum value of Dist 1 and Dist 2

Intersect(2) The xy coordinates of the intersection of
the path of the aircraft with the wind cell
boundary in the horizontal plane;

FIGURE 4-103
WIND_CELL INTERSECTION

4-193



Dist 1 = 'infinite';
Dist 2 = 'infinite';

CHOOSE CASE
WHEN (AGD_VECTOR.direction LT 180 degrees) AND

(AGD VECTOR.direction GT 0) THEN
# find east intersection #
Dist 1 = (WIND_CELL.frb x - PAST CUSP.x) /
SIN(AGD VECTOR. direction),
WHEN (AGD VECTOR.direction LT 360 degrees ) AND
(AGD VECTOR.direction GT 180 degrees) THEN
# find west intersction #
Dist 1 = (WIND CELL.f1b x -~ PAST CUSP.!) /
SIN(AGD VECTOR.direction);
CHOOSE CASE
WHEN (AGD ) VECTOR.direction GT 90 degrees) AND
ZAGD VECTOR.direction LT 270 degrees)THEN
# find south intersection #
Dist 2 = (WIND_CELL.flb y - PAST CUSP.y) /
COS(AGD VECTOR. direction);
WHEN (AGD_VECTOR.direction GT 270 degrees) OR
(AGD_VECTOR.direction LT 90 degrees)THEN '
# find north intersection #
Dist 2 = (WIND_CELL.blt_y - PAST CUSP.y) /
COS(AGD_VECTOR.direction);
# at least one of the distances must be set — take the minimum #
Hin Dist = MIN(Dist 1,Dist 2),
Intersect = Min Dist x (SIN(AGD VECTOR.direction),
COS(AGD_VECTOR.direction));
INSERT INTO POSITION LIMITS
position = Intersect);
IF AGD VECTOR.gradient GT 0
THEN # climbing #
~ INSERT INTO ALTITUDE LIMITS
altitude = Max Alt);
ELSE -
IF AGD_VECTOR.gradient LT 0
THEN # descent#
~ INSERT INTO ALTITUDE_LIMITS
(altitude = Min Alt);

END Wind Cell Intersection;

FIGURE 4-103 (Concluded)
WIND CELL INTERSECTION

4-194



If there are any altitude limits present, times to reach these
altitude limits are computed in Get _Z To T (Figure 4-104). Any
speed limits are similarly converted to time units in Get
Speed To T (Figure 4-105). If there are any limits in terms of
along route distances then corresponding (x,y) points at these
along routed distance limits are computed in Get_ Ard To XY
(Figure 4-106). These (x,y) points along with any other posi-
tion (x,y) limits are converted to time units in Get XY To T
(Figure 4-107). While converting the points to corresponding
time limits, the Newton Raphson process (Appendix B) is used
for segments with nonzero acceleration but no change 1in
gradient. For nonzero gradients, final altitude and time at a
limit's given (x,y) point 1is determined by iteration in
Iterate_To Final Altitude_And Time (Figure 4-108). AGD_Vector_
Limit Computation then computes the first limit reached along
the AGD vector line by taking the minimum of all the limits
converted to time as described above and the time limits that
required no conversion. This final AGD Vector Limit is sent to
Cusp Construction.

4.4.4 Cusp Construction Design logic

Cusp Construction is supplied with the AGD vector and the AGD
vector limit formulated in the Merging Process. Cusp Construc—
tion uses information from the last cusp, the wind and the AGD
vector 1limit to compute x,y,z,t, true airspeed and along-route
distance at the next cusp.

Organization

Cusp Construction is invoked in Trajectory Construction after
the Merging Process has been completed. The newly formed cusp
with all associated information is added to the string of cusps.
Figure 4-109 is a description of the calling sequence in this
process. Cusp Construction uses the following utilities: Tas

To Mach, Ias To_Tas, Mach To Tas, Get Groundspeed, Tas_To Ias,
and Get Route Segment And XY For Ard. These utilities are
described in Appendix B.

Processing Methods

Processing follows in one of two paths:
® AGD vector dictates a level flight.

e AGD vector dictates that the gradient of the aircraft
trajectory is changing.

4-195



ROUTINE Get Z To_T;
PARAMETERS
— ALT LIMs_IN TIME OUT;
REFER TO SHARED LOCAL
AGD_VECTOR 1IN,
GRADIENT PARAMETERS 1IN,
PAST_CUSP 1IN,
ALTITUDE LIMITS IN,
WIND CELL IN;
DEFINE TABLES
ALT LIMS_IN_TIME  Altitude limits

alt lim list of altitude limits converted to time;
DEFINE VARIABLES
Limit Limit converted to time
Delta Z Altitude 1limit minus past cusp 2z
Tasl True airspeed at past cusp
Tas2 True airspeed at limit
Delta S Over ground distance
Delta Sz Point to point distance;
FIGURE 4-104
GET Z TO T

4-196



REPEAT FOR EACH ALTITUDE LIMITS RECORD
IF AGD VECTOR. gradient EQ 0
THEN
~— IF ALTITUDE LIMITS.altitude EQ PAST CUSP.z
THEN
Limit = 0;
ELSE
Limit = 'infinite';
ELSE
Delta Z = ALTITUDE LIMITS.altitude - PAST CUSP.z,
IF ((AGD_VECTOR.gradient GT 0) AND (Delta Z LT 0)) OR
((AGD_VECTOR.gradient LT 0) AND (Delta Z GT 0))
THEN # the 1imit altitude is impossible to achieve #
T Limit = 'infinite';
EISE # the 1limit altitude can be achieved - translate #
Tasl = PAST CUSP.tas;
IF GRADIENT | " PARAMETERS.transition speed type EQ 'ias'
THEN # transition speed is ias - get tas #
~ CALL Ias .To Tas
ZGRADIENT PARAMETERS .transition speed IN,
ALTITUDE LIMITS.altitude IN,
WIND CELL.air _temp IN,Tas2 OUT);
ELSE # transition speed is mach —- get tas #
~ CALL Mach To Tas
ZGRADIENT PARAMETERS. transition speed IN,
WIND_ CELL.air _temp IN,Tas2 OUTY
Delta S = Delta Z / AGD VECTOR gradient,
Delta Sz = SQRT(Delta S ** 2 + Delta 2 ** 2);
Limit = Delta Sz / AVG(Tasl ,Tas2);
INSERT INTO ALT LIMS IN TIME
“(alt _1im = Limit) -
END Get_Z To ' T'

FIGURE 4-104 (Concluded)
GET Z TO T

4-197



ROUTINE Get . Speed_To T;
PARAMETERS
SPD_LIMS IN TIME OUT;
REFER TO SHARED LOCAL
AGD_VECTOR 1IN,
PAST CUSP IN,
SPEED LIMITS IN;
DEFINE TABLES

SPD_LIMS IN TIME Speed limits
apd 1Im — List of speed limits converted to time;
14

REPEAT FOR EACH SPEED LIMITS RECORD;
IF AGQ_VECTOR acceleration EQ 0
‘THEN
~ IF SPEED_LIMITS.speed NE PAST CUSP.tas
THEN
INSERT INTO SPD LIMS IN TIME
(spd 1im = 'Infinite");
ELSE -
" INSERT INTO SPD_LIMS IN TIME
(spd_lim = 0);

ELSE
~ IF (AGD VECTOR.acceleration GT 0) AND
(PAST CUSP.tas LE SPEED LIMITS.speed)
THEN
" INSERT INTO SPD_LIMS IN TIME
(sdp_1im = (SPEED LIMITS.speed - PAST CUSP.tas) /
AGD VECTOR.acceleration);
ELSE
~ IF (AGD VECTOR.acceleration LT 0) AND
(PAST _CUSP.tas GE SPEED LIMITS.speed)
THEN
INSERT INTO SPD_LIMS IN TIME
(sdp 1im = (SPEED LIMITS.speed - PAST CUSP.tas) /
AGD VECTOR.acceleration);
ELSE
T INSERT INTO SPD_LIMS_IN TIME
(spd_lim = 'infinite');
END Get_Speed_To T;

FIGURE 4-105
GET_SPEED TO T

4-198



ROUTINE Get_Ard To XY;
PARAMETERS
Loc_F1 1d 1IN,
ARD LIMS IN XY OUT;
REFER TO SHARED LOCAL
ARD LIMITS IN,
AGD VECTOR IN,
PAST CUSP IN,
DEFINE TABLES
ARD LIMS IN XY
x coord
y:boord
xy position
DEFINE VARIABLES
Loc_F1 1d

Ard
Node_S(2)

Node F(2)
Ard Point(2)
A

B
C
Al

Bl
C1
A2

B2
c2
X_Out

Y Out
Dir

Ard limits
x coordinate of ard limit in xy
y coordinate of ard 1limit in xy
AGGREGATE (x coord,y _coord);

Flight identification for this aircraft
undergoing Trajectory Estimation

Along route distance

Starting node xy of route segment containing
given ard

Ending node xy of route segment containing
given ard

x,y corresponding to given ard on route
segment

x coefficient of line Ax+By=C defining
route segment

y coefficient of same line

Constant term in same line

x coefficient of perpendicular line on route
segment at Ard Point

y coefficient of the same line

Constant term in same line

x coefficient of line A2x+B2y=C2 defining
AGD_VECTOR line

y coefficient of same line

Constant term of same line

x coordinate of point on AGD_VECTOR line
corresponding to given ard

y coordinate of same point

Route segment direction;

FIGURE 4-106
GET_ARD_TO_XY

4-199



REPEAT FOR EACH ARD LIMITS RECORD
CALL Get_Route Segment And XY For_Ard (Loc_Fl Id IN,
" ARD_LIMITS.ard IN,Node S OUT, Node F OUT, Ard_Point OUT);
A,B,C = LINE(Node S, S Node  F);
Al = B;
Bl = —A
Cl = Al * Ard Point(l) + Bl * Ard Point(Z),
CHOOSE CASE # line 2 1s the line of the AGD direction #
WHEN AGD_VECTOR.direction EQ 90 degrees OR 270 degrees THEN
A2 B2 C2 = 1,0,PAST CUSP.x;
WHEN AGD VECTOR. direction__g 0 degrees OR 360 degrees THEN
" A2,B2,C2 = 0,1,PAST CUSP.y;

OTHERWISE

A2 = -TAN(AGD VECTOR.direction);
B2 = 1;
c2 = BZ * PAST CUSP.y — A2 * PAST CUSP.x;
CHOOSE CASE

WHEN ABS(Al * B2 - A2 * Bl) LE 1. 00E-04 THEN
¥ agd vector is perpendicular to route segment f#
IF ABS (C1 / Bl - C2 / B2) * SIN(AGD VECTOR.direction) LE

1.00E-04

THEN # lines Alx+Bly=Cl, A2x+B2y=C2 are very close #
X Out,Y Out = Ard Point;
ELSE - -
print error message ' no solution ';
OTHERWISE
X Out,Y Out = (Al,B1,C1)INTERSECTION(A2,B2,C2);
EE_AGD VECTOR direction LE 0 OR
(360 degrees - AGD_VECTOR.direction) LE 0 OR
ABS(AGD_VECTOR.direction - 180 degrees) LE O
THEN
Dir = SIGNUM(Y;put—PAST_FUSP.y) / COS(AGD VECTOR.direction);
ELSE
T Dir = SIGNUH(X Out-PAST CUSP.x) / SIN(AGD _VECTOR.directiomn);
IF Dir LE 0
THEN
X Out,Y Out = PAST CUSP.x,PAST CUSP.y;
INSERT INTO ARD LIMS IN XY
(x_coord = X_Out,y coord=Y Out);
END Ard_To_. XY;

FIGURE 4-106 (Concluded)
GET_ARD TO XY

4-200



ROUTINE Get XY To T;
PARAMETERS
POS_LIMS IN TIME OUT
REFFER TO SHARED LOCAL
AGD_VECTOR T
PAST CUSP IN,
POSITION LIMITS IN,
WIND_¢ CELL IN;
DEFINE TABLES
POS_LIMS IN TIME
pos_lims
DEFINE VARIABLES
Delta 2
Delta S
Delta Theta
Wind Cross_Track
Wind Along Track
Ground Speed
Next Cusp Tas

o
— ¥

Pogsition limits
list of position limits in time;

z difference from past cusp to limit

xy distance from past cusp to limit

AGD vector direction minus wind direction
Wind vector cross track component

Wind vector along track component
Equivalent ground speed

True airgpeed at next cusp

Delta T - Time
F1d(5) Spare field for general use, used here as
coefficients of a fourth degree polynomial
Limit Time to given x,y position;
DEFINE CONSTANTS
Epsilon T (to be assigned) Convergence parameter time
Epsilon Z (to be assigned) Convergence parameter for
distance;
FIGURE 4-107
GET XY _TO T

4-201



REPEAT FOR EACH POSITION LIMITS RECORD
IF AGD VECTOR. direction NE DIRECTION(PAST CUSP.position,
POSITION LIMITS. position
THEN # point does not lie in the direction of the alrcraft #
Timit = 'infinite';
EISE # point can be achieved in this direction #
T Delta S = DIST(PAST_CUSP.position,POSITION LIMITS.position);
Delta ' | Theta = AGD VECTOR direction -
WIND CELL.wind | direction;
Wind Cross_Track = WIND_CELL.wind speed * SIN(Delta Theta);
Wind Along Track = WIND CELL.wind_speed * COS(Delta_Theta);
IF AGD VECTOR. gradient__g 0
THEN # no alt change - groundspeed not changed by gradient #
~ IF AGD _VECTOR. acceleration EQ 0
THEN # no acceleration —— groundspeed stable #
~ Ground | Speed = SQRT(PAST CUSP.tas ** 2 -
Wind Cross_Track ** 2) + Wind_Along ' Track-
Delta ' T = Delta . S/Ground_Speed;
ELSE # acceleration —— need to iterate a quartic #
¥ first calculate Delta T by assuming no wind, use this #
# as a starting value for a Newton-Raphson iteration #
Next Cusp_Tas = SQRT(PAST CUSP.tas ** 2 +
2 AGD_VECTOR. acceleration * Delta L S)3
Delta T = Delta S / AVG(PAST CUSP. tas,Next _Cusp_Tas);
F1d(1) = .25 * PAST_CUSP.tas;
F1d(2) = PAST_CUSP. tas * AGD VECTOR.acceleration,
F1d(3) = PAST CUSP.tas ** 2 -
WIND CELL.wind | speed ** 2;
F1d(4) = 2 * Wind . | Along Track * Delta S;
F1d(5) = -Delta S ** 2;
CALL Newton Raphaon(Delta T INOUT,F1d IN,
~ Epsilon T IN);
ELSE # iterate to converge on final altitude and time #
CALL Iterate To Final Altitude And Time(Delta S IN,
Epailon Z . IN, Delta T OUT, Delta Z oUT);
Limit = Delta T;
INSERT INTO POS_LIMS IN TIME
(pos_lim = Limit);
END Get_XY To T;

FIGURE 4-107 (Concluded)
GET XY _TO_T

4-202



ROUTINE Iterate To- Final Altitude And Time;
¥ this routine will return final altitude and time to that altitude#
# when past cusp, agd vector, wind and next position(x,y) are given#

PARAMETERS
Delta_S IN,
Epsilon Z IN
Delta T OUT
Delta Z OUT~
REFER TO SHARED LOCAL
PAST CUSP 1IN,
WIND CELL IN,
AGD VECTOR 1I 1IN,
GRADIENT PARAMETER
DEFINE VARIABLES
Tas Initial
Tas_Final
Gs Initial
Gs Final
Avg Gs
Avg Tas
Delta Theta

01d Del Z

New | Del Z

Delta_s

Delta T

Delta Z

Final Z

Effective Gradient

Grad Angle

Tas__ Initial Horz

Taq_Final;ﬁorz

Gs_Initial Horz

Gs__ Final Horz

Wind Crosa Track

Wind Along Track

Temp -

Change Del Z
DEFINE CONSTANTS

S IN;

Past cusp true airspeed

True airspeed at 1limit altitud

Ground speed at past cusp

Ground speed at 1limit altitude

Ground speed average

True airspeed average

Difference of wind and AGD vector
directions

Altitude difference start

Altitude difference new

Distance over ground

Time difference

z difference from past cusp to limit

Final altitude

Wind corrected gradient

Gradient angle (horizontal)

Horizontal component of initial tas

Horizontal component of final tas

Horizontal component of initial gs

Horizontal component of final gs

Cross wind

Along track wind

Local wind cell temperature

Change in z difference;

Epsilon;z (to be assigned) Altitude convergence param;

FIGURE 4-108

ITERATE TO FINAL ALTITUDE AND_TIME

4-203



Delta Theta = AGD VECTOR.direction - WIND CELL.wind direction;

Wind Cross Track = WIND CELL.wind speed * SIN(Delta Theta),

Wind | Along ' " Track = WIND CELL.wind | speed * COS(Delta Theta),

Gs Initial = SQR (PAST_CUSP tas *%* 2 - Wind Cross_ Track ** 2) +
“Wind | Along_Track ;

Gs Final = Gq_Initial;

Tas Initial = PAST CUSP.tas;

Tas__  Final = Tas  Initial;

Avg Gs = G8__ Initial

Avg Tas = Tas Initial,

Temp = WIND_CELL air temp;
#

# Iteration Loop #
01d Del Z = 0;
Change Del Z = 1.00E+03;
REPEAT UNTIL (Change Del 2 LE Epsilon Z)
" New Del Z = AGD_VECTOR.gradient * (Avg Tas / Avg_Gs) * Delta S;
Final Z = PAST CUSP.z + New Del Z;
Change Del Z = ABS(New Del Z - Old Del Z);
01d Del 2 = New Del Z;
IF ‘GRADIENT PARAMETERS transition speed type EQ 'ias’
THEN # translate ias to tas #
CALL Ias_To_Tas(GRADIENT PARAMETERS.transition speed IN,
" Final Z IN,Temp IN,Tas Final OUT); ‘
EISE # translate mach to tas  #
CALL Mach To_Tas(GRADIENT PARAMETERS.transition speed IN,
~ Temp IN,Tas Final OUT),
Gs Final = SQRT(Tas Final ** 2 - Wind Cross_Track ** 2)+
“Wind Along Track
Avg Gs = AVG(Gs_. Initial Gs_Final);
Avg Tas = AVG(Tas Initial,Tas Final),
Effective Gradient = AGD VECTOR.gradient * Avg Tas/Avg Gs;
Grad_Angle = ARCTAN(Effective  Gradient);
Tas_Initial Horz = Tas Initial * C0S(Grad_Angle);
Gs_Initial Horz = SQRT(Tas Initial Horz ** 2 -
Wind Cross _Track ** 2) + Wind Along Track;
Tas Final Horz = Tas Final * COS(Grad Angle)
Gs Final Horz = SQRT RT(Tas Final Horz ** 2 -
Wind Cross Track ** 2) + Wind | Along Track;
Delta T = Delta S / AVG(Gs__ Initial Horz,Gs Final _Horz);
Delta Z = New Del Z;
END Iterate To__ Final , _Altitude And Time;

FIGURE 4-108 (Concluded)
ITERATE_TO FINAL ALTITUDE AND TIME

4-204



Cusp_Construction
Time To Speed
Time To X Y Z
Get_Ground Speed
XY To_Ard
Tas_To las
Tas_To Mach

FIGURE 4-109
CUSP CONSTKRUCTION CALLING SEQUENCE

4-205



In the first case, the aircraft is assumed to maintain the same
direction as 1is called for in the direction component of the
AGD vector. The true airspeed direction (aircraft's heading)
1s different than the direction the AGD vector specifies. When
modified by wind, the resultant groundspeed has the same direc-
tion as the AGD vector direction (Figure 4-110). In the second
case, the aircraft will maintain the direction as per  AGD
vector direction, but will not be able to maintain the AGD
vector gradient. Winds will change the gradient from the
nominal one obtained from AGD veéctor gradient variable. This
modified gradient is called effective gradient and is used for
cusp construction (Figure 4-111).

The Cusp Construction process (Figure 4-112) accepts the AGD_
Vector Limit, which 18 a time value, as a pdrameter. This time
value 1s the time at the cusp to be constructed. True airspeed
at this next cusp time 1s computed in Time To Speed (Figure
4-113), The equivalent position (x,y) and altitude (z) at the
next cusp 1s computed in Time To X Y Z (Figure 4-~114) which
uses the element Iterate To_. Find Speed And Z (Figure 4-115).
Ground speed at the cusp is computed by the utility Get_Ground_
Speed. Next, along route distance at the cusp 1is computed in
XY To Ard (Figure 4-116). The indicated airspeed (ias) and
mach values are computed using utilities Tas To las and
Tas To Mach.

4.5 Trajectory Post Processing

The Trajectory Post Processing subfunction of Trajectory Esti-
mation derives trajectory data needed by other system func-
tions. This trajectory data requires that all planned actions
have already been incorporated into a completed trajectory.

In particular, this section discusses the construction of
trajectory-related information for use by Nominal Plan Builder
(this volume), Sector Workload Probe .[Vol. 4], and Flight Plan
Conflict Probe [Vol. 3]. These data are separate from the
trajectory and include:

e A point is provided to Nominal Plan Builder referencing
the latest point in the trajectory on the boundary on a
controller—-placed planned action.

e A data table is constructed for Sector Workload Probe
indicating the modeled time extents of each planned
action in the plan of the aircraft.

4-206



True Airsgpeed Vector

> =

Wind Vector
AGD Vector

Direction 7
True Airspeed

Direction "~ \_
Ground Speed Vector

FIGURE 4-110
TRUE AIRSPEED, WIND AND GROUNDSPEED VECTORS

4-207



True Descent

AGD Vector Descent

Altitude————=>»

Along Route Distance—

ABCD: Modeled Aircraft Profile
BF/FE: AGD Vector Gradient

BF/FC: True Gradient

FIGURE 4-111
EFFECT OF WIND ON AIRCRAFT DESCENT

4-208



ROUTINE Cusp_Construction;

this routine constructs the next cusp and fills up #
# PAST CUSP, TRAJECTORIES, SUPPLEMENTAL CUSP_INFORMATION #
PARAMETERS

Loc F1_Id IN,

AGD Vector Limit IN;
REFER_TO_GOLBAL

TRAJECTORIES INOUT;
REFFR TO SHARED LOCAL

AGD_VECTOR INOUT,

GRADIENT PARAMETERS IN,

PAST_CUSP 1IN,

SUPPLEMENTAL CUSP_INFORMATION INOUT,

WIND_CELL IN,

PAST CUSP_TYPE IN;
DEFINE VARIABLES

Loc_F1 1d Flight identification for this
aircraft undergoing Trajectory
Estimation
AGD_Vector_ Limit Agd vector limit
Next X Next cusp x
Next Y Next cusp y
Next 2 Next cusp z
Next T Next cusp time
Next Tas True airspeed at next cusp
Next_ Groundspeed Groundspeed at next cusp
Next Ias Indicated airspeed at next cusp
Next Mach Mach number at next cusp
Next Ard Ard at next cusp
Flag(2) Past cusp type flag (literals)
Past_Cusp_Type Past cusp type;
FIGURE 4-112

CUSP_CONSTRUCTION

4-209



Next T = AGD Vector Limit;
CALL Time To_Speed(Next T IN,Next Tas OUTI);
CALL Time °  To X Y Z(Next T IN Next X OUuT, Next Y OUT,Next Z OUT),
CALL Get Ground Speed(Next Tas IN Next Groundspeed OUT)
CALL XY To Ard(Loc F1 Id IN Next X IN, Next Y IN, Next_. Ard ouT);
CALL Tas To Ias(Next Tas IN Next Z IN WIND ) CELL.air temp IN
~ Next Ias OUT);
CALL Tas To Mach(Next Tas IN,Next Z IN,WIND ! CELL.air temp IN,
Next Mach OUT);
SELECT FIELDS altitude  present,hold present
FROM PAST CUSP TYPE
INTO Flag;
Past Cusp_Type = "regular” * BOOL(Flag._Q no no') +
“vertical maneuver"” * BOOL?Flag EQ 'yes no') +
"hold" * BOOL(Flag EQ "no yes') +
“vertical hold" * BOOL(Flag EQ 'yes yes');
UPDATE IN TRAJECTORIES
(cusp_type = Past_Cusp_Type)
WHERE TRAJECTORIES.time = PAST CUSP.time;
INSERT INTO TRAJECTORIES
Zfl id = Loc_F1 Id,time = Next T,x = Next X,y = Next Y,
z = Next Z,ground speed = Next Groundspeed)
UPDATE IN PAST CUSP
(x = Next X,y = Next Y,z = Next _Z,time = Next T,ard = Next_Ard,
tas = Next Tas,ground speed = Next Groundspeed
wind speed = WIND CELL.wind | _speed,
wind direction = WIND CELL.wind | direction,
temperature = WIND i CELL.air temp,ias = Next las,
mach = Next Mach),
INSERT INTO SUPPLEMENTAL CUSP_INFORMATION
(f1 id = Loc_F1 Id, time = PASI_CUSP time,
acceleration = AGD ) VECTOR.acceleration,gradient =
AGD_VECTOR. gradient,direction = AGD _VECTOR.direction,
pa__ id | acceleration = AGD VECTOR.pa_. 1d |_acceleration,
pa_id gradient = AGD__ VECTOR. pa_id gradient,pa id direction =
AGD VECTOR. pa id direction ard = Next Ard,tas =
Next Tasg,max grad = GRADIENT PARAMETERS . max _gradient,
min grad = GRADIENT PARAMETERS . max gradient ias = Next las,
mach = Next Mach, wind direction = WIND CELL.wind direction,
wind speed = WIND CELL.wind | speed, temperature =
WIND CELL.air_temp);
END Cusp_ Construction,

FIGURE 4-112 (Concluded)
CUSP_CONSTRUCTION

4-210



ROUTINE Time To_Speed;

PARAMETERS

~ TIme 1IN,

Altitude IN,
Speed OUT;

REFER TO SHARED LOCAL
PAST CUSP 1IN,
AGD_VECTOR IN,
GRADIENT PARAMETERS IN;,
WIND CELL IN;

DEFINE VARIABLES

Time Elapsed time since past cusp
Speed Speed at new point
Altitude Altitude of new point;

##
IF(AGD_VECTOR.acceleration EQ 0) AND (AGD_VECTOR.gradient EQ 0)
THEN
~ Speed = PAST CUSP.tas
ELSE
IF AGD VECTOR.gradient EQ O
THEN # calculate new speed #
" Speed = PAST CUSP.tas + AGD_VECTOR.acceleration * Time;
ELSE
IF GRADIENT PARAMETERS.transition speed type EQ 'mach'
THEN
CALL Mach To_Tas(GRADIENT PARAMETERS.speed IN,
WIND CELL.air _temp IN,Speed OUTS
ELSE
CALL Ias To Tas(GRADIENT PARAMTERS .speed IN,
~ Altitude . IN,WIND_ ¢ CELL.air_temp in,Speed d OUT);

END Time To Speed;

FIGURE 4-113
TIME_TO_SPEED

4-211



ROUTINE Time To X Y_Z;
PARAMETERS
Time IN,
X OUT,
Y OUT,
Z OUT;
REFER TO SHARED LOCAL
AGD VECTOR 1IN,

PAST CUSP IN,
DEFINE VARIABLES
X x coordinate
Y y coordinate
Z z coordinate
Tas True air speed
Tas2 New true air speed

Ground Speed Ground speed
New G Speed New ground speed
Avg G Speed Average ground speed

Time Elapsed time;
#

IF AGD_VECTOR. gradient NE 0
THEN

" Tas = Tas * COS(ARCTAN(AGD_VECTOR.gradient);
CALL Get_Ground Speed(PAST CUSP.tas IN,Ground_Speed OUT);
IF AGD VARIABLE. gradient EQ O
THEN
T Z = PAST CUSP.z;
IF AGD_VECTOR.acceleration NE 0
THEN
"~ CALL Time To_Speed(Time IN,Z IN, Tas2 OUT);
CALL Get_Ground Speed(Tas2 IN,N New . G_Speed our),
ELSE
New G_Speed = Ground_Speed;
Avg G ; Speed = (New G _Speed + Ground Speed) / 2;
ELSE
CALL Iterate To_Find Speed And Z(Time IN,Tas IN, Z OUT,
Avg G_Speed OUT);
X = PAST | CUSP.x + Avg G_Speed * Time * SIN(AGD VECTOR.direction);
Y = PAST CUSP.y + Avg G Speed * Time * COS(AGD VECTOR. direction),

END Time To XY 7

FIGURE 4-114
TIME TO X Y Z

4-212



ROUTINE Iterate To Find Speed_And Z;
PARAMETERS
Time IN,
Tas IN,
Z OUT,
Avg | g G _Speed OUT;
REFER TO SHARED LOCAL
— PAST_CUSP IN,
AGD_VECTOR 1IN,
GRADIENT PARAMETERS IN,
WIND CELL IN;
DEFINE VARIABLES

Time Elapsed time
Z Altitude at new point
Avg G Speed Average ground speed
H_ﬁfst Horizontal distance w.r.t. alrmass
01d z Last quess for z
Del 2 ' Change in z
Tas 01d tas
Avg Tas Average tas
New_Tas New tas;
DEFINE CONSTANTS
‘Small Value Defined;

#H
Z = PAST CUSP.z;
H Dist = PAST CUSP.tas * Time;

REPEAT UNTIL Del Z LT Small Value

01d z = Z;
zZ= AGD VECTOR gradient * H Dist + PAST CUSP.z;

IF ‘mach’ EQ GRADIENT PARAMETERS transition ._speed_type

THEN
CALL Mach To Tas(GRADIENT PARAMETERS.speed IN,

T WIND CELL.air _temp IN, New Tas OUT);

ELSE
CALL Ias_To Tas(GRADIENT PARAMETERS .speed IN, Z IN,
WIND CELL.air _temp IN,New Tas ouT);
New Tas = New Tas * COS(ARCTAN(AGD VECTOR.gradient));
Avg Tas = (New_Tas + PAST CUSP.tas)/2;
H_ Dist = Avg Tas * Time;
Del Z = ABS(0ld_Z - Z);
CALL Get__Gfound_Speed(Avg_Tas IN,Avg_G Speed OUT);
END Iterate To Find Speed_And Z;

FIGURE 4-115
ITERATE TO_FIND SPEED_AND Z

4-213



ROUTINE XY _To_ Ard;
PARAMETERS
Loc FI Id IN,
Input X IN,
Input_Y IN,
Ard OUT;
REFER TO SHARED LOCAL
PAST CUSP IN;
DEFINE VARIABLES

Loc F1 Id Flight identification for this aircraft

-7 undergoing Trajectory Estimation
Ard Along route distance
Node S(2) Starting node xy of route segment

- containing past cusp
Node F(2) Ending node xy of same route segment
Ard Point(2) xy corr. to given ard on route segment
A x coefficient of line Ax+By=C defining

route segment
B y coefficient of same line
C constant term of same line
Al x coefficient of a perpendicular line from
given (xy) route segment
Bl y coeff of same line
Cl Constant term of same line
Ratio Ard - past cusp ard over route segment length;
DEFFINE CONSTANT
Epsilon (to be assigned) Convergence parameter;
FIGURE 4-116
XY_TO_ARD

4-214



CALL Get Route_ Segment And XY For_Ard(Loc_Fl Id IN,
T PAST_CUSP.ard IN,Node S OUT,Node F OUT,Ard Point OUT);.
A,B,C = LINE(Node _S,Node_ v F);
Al = B;
Bl = —A;
Cl = Al * Input X + Bl * Input Y;
CHQOOSE CASE
WHEN ABS(Node F(1) - Node S(1)) LT Epsilon THEN
T Ratio =(Node S(1) - Inmput X)'7_(Node S(1) - Node  F(1));
WHEN ABS(Node F(2) - Node S(Z)) LT Epsilon THEN
" Ratio = (Node  5(2) -~ Input Y) /7 ( Node_s(2) - Node F(2));
OTHERWISE
ZEH Point = (A,B,C)INTERSECTION(A1l,B1,Cl);
Ratio = (Node S(1) - Ard _Point(1)) / (Node  S(1) -
Node F(1));
Ard = PAST CUSP.ard + DIST(Node S,Node F) hd MAX(O.,HIN(I.,RatiO)),
END XY_To_Ard;

FIGURE 4-116 (Concluded)
XY_TO_ARD

4-215



e Maneuver envelopes are provided to enclose portions of
the trajectory where the position of the aircraft is
uncertain. These airspace volumes are protected by
Flight Plan Conflict Probe which identifies any pene-
trations into the manuever envelopes made by other
aircraft trajectories.

4.5.1 Mission

Nominal Plan Builder requires the identification of the last
point in the trajectory which was actively influenced by a
controller-placed planned action. This point, called the NPB
Planning Point, indicates where procedural altitude modeling
should start.

Sector Workload Probe computes measures of workload associated
with the traffic content of individual sectors. These measures
factor temporally placed planned actions into the numerical
estimate of workload since these actions represent future
controller involvement. Trajectory Estimation supplies a list
of which planned actions are modeled in a trajectory and gives
the trajectory time duration each planned action 1s in effect.
Sector Workload Probe can then cross reference a planned
action, a trajectory and a sector to incorporate the effects of
planned ATC maneuvers in workload estimates.

Flight Plan Conflict Probe processes trajectory information,
comparing a set of trajectories to identify areas where separa-
tion between aircraft trajectory positions fall below some
minimum. The aircraft's position cannot always be predicted
adequately in certain flight maneuvers. In cases where posi-
tion cannot be adequately predicted, Trajectory Estimation
provides- both an aircraft expected position and a maneuver
envelope. A maneuver envelope is a geometrical construct which
portrays positional uncertainty. Flight Plan Conflict Probe
then identifies penetrations of these maneuver envelopes.
Maneuver envelopes are associated with hold maneuvers and
altitude change maneuvers.

The maneuver envelope construction process is responsible for
defining and computing four-dimensional (x,y,z,t) vertices
which are associated with trajectory cusps. Each cusp with a
hold maneuver or an altitude maneuver is associated with four
vertices which describe the maneuver envelope. Figure 4-117
shows a maneuver envelope enclosing a holding pattern.

4-216



Hold Fix

FIGURE 4-117
HOLDING PATTERN MANEUVER ENVELOPE

4-217



4.5.2 Design Considerations and Component Environment

Trajectory Post Processing is called by Trajectory Estimation

after a complete trajectory has been built, The process
utilizes and generates the following data:

Input
The following data are used in Trajectory Past Processing:
e System Global Data Base
- TRAJECTORIES

This table is accessed to obtain information about
the positions where maneuver envelopes must be built.

= PLANNED ACTIONS

The source field 18 wused to detérmine the
positioning of the NPB planning point

- HOLD_PLANNED ACTIONS

This table provides hold maneuver information to
compute the size and shape of the holding pattern.

- ALTITUDE_CHANGE PLANNED ACTIONS

This table provides the target altitude related to a
specific planned action.

=~ ALTITUDE RESTRICTIONS PARAMETERS
This table provides (x,y,z) coordinates of a
restriction point for an. altitude change planned
action, if restriction exists.
e Shared Local Data Base -
= SUPPLEMENTAL CUSP_INFORMATION
" This table provides planned action identifiers,

along route distance, maximum, minimum and nominal
gradient values and speed information at the cusps.

4-218



Qutput
e System Global Data Base

- PLANNED ACTION DURATION

The trajectory time interval associated with each
planned action is recorded.

~ MANEUVER ENVELOPE
The vertices describing the maneuver envelope are
inserted along with flight 1identification and cusp
time to which the four vertices apply.
e Shared Local Data Base
- NPB_PLANNING POINT

The latest position of a controller involvement with
the trajectory is recorded.

4.5.3 Trajectory Post Processing Design Logic

Organization

The Trajectory Post Processing subfunction follows the calling
sequence given in Figure 4-118., The elements of the Trajectory
Post Processing subfunction are provided in this section. The
element Determine Turn Rate is provided in Appendix B.

The post processing operation utilizes a completed trajectory.
The Program Design Language manipulations of the global data
base have ensured that no segments of zero length (four-
dimensional) are included in the trajectory.

Processing Method

The Trajectory Post Processing element is provided in Figure
4~119. The first operation performed is the building of the
planned action duration table. In Build Planned Action_
Duration (Figure 4-120), locally stored information concerning
the modeled start time and modeled end time of each planned
action is paired and inserted into the global table.

4-219



Trajectory_ Post_Processing
Build Planned Action Duration
Build NPB_Planning Point
Update Candidate Time
Check Trajectory For Maneuver Envelope
Build Hold Maneuver Envelope
Compute | Hold Box Parameters
Determine Turn Rate
Build Altitude | Maneuver _Envelope
Find Ard _ For _Cusp
Find Last Downstream Vertices
Find Paid
Pe_Details
Vertex Definition Unrestricted
Effective Gradient
Vertex Definition Restricted
Effective Gradient
Vertex Construction Supervisor
Vertex Construction

FIGURE 4-118
TRAJECTORY POST PROCESSING CALLING SEQUENCE

4-220



ROUTINE Trajectory Post_ Processing;

PARAMETERS
Loc F1_1d IN
DEFINE TABLES
TRAJECTORY Same as global table TRAJECTORIES
but ordered by time
fl id Flight id
time Time
x x coordinate of cusp
y y of cusp
z z of cusp
ground speed Ground speed at cusp
cusp_type Type of cusp;
DEFINE VARIABLES
Loc_F1_1d The identity of the aircraft undergoing
" Trajectory Estimation;

CALL Build Planned Action Duration;
CALL Build NPB_Planning Point(Loc_F1_Id IN,TRAJECTORY OUT);
CALL Check ._Trajectory_For_ Maneuver Envelope(Loc F1 Id IN,
T TRAJECTORY IN);
END Post Processing,

FIGURE 4-119 .
TRAJECTORY POST PROCESSING

4-221



ROUTINE Build Planned Action Duration;
REFER TO GLOBAL
PLANNED ACTION DURATION IN;
REFER TO SHARED LOCAL
PLANNED ACTION STARI TIMES INOUT,
PLANNED ACTION END ° TIMES INOUT;

DEFINE VARTABLES ~
Loc_Pa Id Local planned action identifier
Loc . Start - Time Start time for planned action
o Loc _ " End Time End time for the planned action;

REPEAT FOR FACH PLANNED ACTION START TIMES RECORD;
SELECT FIELDS pa : id,pa start time
FROM PLANNED . ACTION START TIMES
INTO Loc_Pa_Id,Loc Start Time;
SELECT | FIELDS pa_t¢ end time
FROH PLANNED ACTION_END TIMES
INTO Loc_End Time;
DELETE FROM PLANNED ACTION DURATION (P_A D)
WHERE P A D.pa idlgg Loc Pa_Id;
INSERT INTO PLANNED ACTION DURATION
Zpa id = Loc Pa . Id
pa_start time = Loc Start_Time,
pa_end_time = Loc_End Time);
END Build | Planned | Action Duration,

FIGURE 4-120
BUILD PLANNED_ACTION DURATION

4-222



Build NPB Planning Point (Figure 4~121) controls the construc-
tion of the planning point for Nominal Plan Builder. Each cusp
and its associated planned actions are examined in sequence.
Those planned actions active at a cusp are examined and, if the
action's source is “controller,” the NPB planning point is
moved to the cusp. This stepping i1s done in Update Candidate

Time (Figure 4-122). When all cusps have been examined, then
the resulting cusp is the last point on the trajectory actively
influenced by a controller-placed planned action.

Maneuver envelopes are constructed next. Check Trajectory For_
Maneuver Envelopes (Figure 4-123) controls the construction
process by sequentially examining each cusp. If the cusp is a
point inside a holding pattern, a hold maneuver envelope 1is
constructed by Build Hold Maneuver_ Envelope (Figure 4~124).
Compute_Hold Box Parameters (Figure T4-125) does the computa-
tions necessary to derive the four maneuver envelope vertices.

If an altitude change is present and a hold is not, then an
altitude maneuver envelope is constructed by Build Altitude
Maneuver_ Envelope (Figure 4-126). The process begins by
associating an along-route distance at each of three cusps——the
previous, the present, and the next cusp~-in Find Ard For_Cusp
(Figure 4-127).

The set of cusps describes the segment's altitude change due to
the interaction of a planned action and physical phenomena. In
order to make the pieces of the altitude maneuver envelope
"hook up” properly, the next maneuver envelope section may have
common vertices with the most previous section built. These
vertices for the previous section are retrieved by Find lLast
Downstream Vertices (Figure 4-128).

The planned action responsible for the gradient at the cusp
under consideration is obtained in Find Paid (Figure 4~129).
If the altitude maneuver representa a restricted altitude
change, the restriction point 1s retrieved in Pa Details
(Figure 4-130).

Next, the actual positions of the four vertices associated with
this section of the altitude maneuver envelope are determined.
In Vertex Definition Unrestricted (Figure 4-131), the computa-
tion of the vertex points for this maneuver envelope section
are set up when the altitude change does not contain a restric-
tion. The gradient parameters used to determine the sides of
the maneuver envelope section are augmented by the effects of
wind in the element Effective-Gradient (Figure 4-132). A
process analogous to Vertex Definition Unrestricted takes place

4-223



ROUTINE Build NPB Planning Point;
PARAMETERS
~ Loc_FI_1d IN,

TRAJECTORY INOUT;
REFER TO GLOBAL

PLANNED ACTIONS IN,

TRAJECTORI ES 1IN,

SUPPLEMENTAL ¢ CUSP INFORMATION IN;
REFER TO SHARED LOCAL

NPB_PLANNING POINTS INOUT;
DEFINE TABLES

CUSP PLANNED ACTIONS Planned actions identified at the cusp

pz;;q_gcczleration Identification of the planned action
controlling the acceleration variable
pa 1d gradient Identification of the planned action
- controlling the gradient variable
pa_id direction Identification of the planned action
controlling the direction variable
TRAJECTORY Same as global table TRAJECTORIES
but ordered by time
f1 id Flight id
time _ Time
x x coordinate of cusp
y y of cusp
z z of cusp
ground speed Ground speed at cusp
cusp_type Type of cusp;
DEFINE VARTABLES
Loc_Fl 1d Identification for flight undergoing
Trajectory Estimation
Candidate Time Candidate time for the NPB planning point
Cusp T Time at NPB Planning point
Cusp X X coordinate at NPB planning point
Cusp_Y Y coordinate at NPB planning point
Cusp Z Altitude coordinate at NPB planning point
Cusp_Ard Along route distance at NPB planning point
Cusp_Tas True airspeed at the NPB planning point;
FIGURE 4-121

BUILD NPB_PLANNING_ POINT

4-224



TRAJECTORY = SELECT FIELDS ALL
FROM TRAJECTORIES
WHERE TRAJECTORIES.f1 id EQ Loc F1 Id
ORDERED BY TRAJECTORIES. time;
Candidate Time = MIN(ORDERED CUSPS.time);
REPEAT FOR EACH TRAJECTORY RECORD; RECORD;
CUSP_PLANNED ACTIONS = SELECT SELECT FIELDS pa_1id acceleration,
pa_id gradient,pa id direction
FROM SUPPLEMENTAL_CUSP_INFORMATION (S_C_I)
WHERE S CI.fl id__g Loc F1 Id AND S _C I.time EQ
~ TRAJECTORY.time;
IF CUSP_PLANNED ACTIONS.pa id_acceleration NE NULL
THEN
CALL Update_Candidate Time(Candidate Time INOUT,
T TRAJECTORY.time EN
CUSP_PLANNED ACTIONS.pa id acceleration IN);
IF CUSP | PLANNED ACTIONS. pa_ 1d gradient NE NULL
THEN
CALL Update Candidate Time(Candidate Time INOT,
~ TRAJECTORY.time EN
CUSP_PLANNED ACTIONS.pa id gradiemt IN);
IF CUSP_] PLANNED ACTIONS. pa_: id direction NE NULL
THEN
~ CALL Update_Candidate Time(Candidate Time INOUT
T TRAJECTORY.time IN,
CUSP_PLANNED ACTIONS pa_id direction IN),
SELECT FIELDS - time,x,y,z
FROM TRAJECTORIES
INIO Cusp_Time,Cusp X,Cusp Y,Cusp Z
WHERE TRAJECTORIES.fl id EQ Loc_. F1 ._Id AND
~ TRAJECTORIES. time_gg Candidate Time,
SELECT FIELDS ard,tas
FROM SUPPLEMENTAL , CUSP_INFORMATION (S _C I)
INTO Cusp_Ard Cusp Tas
WHERE S_ C I. fl id_gg Loc_F1 Id AND
TS5  C . I.time EQ Candidate Time,
INSERT INTO NPB _PLANNING POINTS
Zflight id = Loc F1 Id x = Cusp X, y = Cusp_¥Y,
z = Cusp Z, t = Cusp T ard = Cusp Ard,
tas = Cusp Tas);
END Build NPB Planning Point;

FIGURE 4-121 (Concluded)
BUILD NPB_PLANNING POINT

4-225



ROUTINE Update Candidate Time;
PARAMETFRS
Candidate Time INOUT,
Cusp_Time IN
Loc_: Pa Id IN;
REFER T0 GLOBAL
PLANNED ACTIONS IN;
DEFINE VARIABLES

Candidate Time Candidate time for the NPB planning point
Cusp_Time The time of a cusp being checked

Loc__ Pa I1d Identification of a planned action

Ioc Source Source of the planned action referred to by

the planned action identifier;
##
SELECT FIELDS pa source
FROM PLANNED . ACTIONS
INTO Loc_ Source
WHERE PLANNED ACTIONS.pa id EQ Loc Pa Id;
IF Loc_Source Eg ‘controller’

Candidate Time = MAX(Candidate time,Cusp Time);
END Update Candidate Time;

FIGURE 4-122 -
UPDATE_CANDIDATE TIME

4-226



ROUTINE Check Trajectory For Maneuver Envelopes;
PARAMETERS
Loc_F1 1d IN
TRAJECTORY IN;
REFER TO GLOBAL
PLANNED ACTION DURATION 1IN,
PLANNED ACTIONS IN,
MANEUVER ENVELOPE . INOUT;
REFER TO SHARED LOCAL
SUPPLEMENTAL CUSP INFORMATION IN;
DEFINE TABLES ~ — :
TRAJECTORY Same as global table TRAJECTORIES

but ordered by time
£f1 id Flight id
time Time
x x coordinate of cusp
y y of cusp
4 z of cusp
ground speed Ground speed at cusp
cusp_type Type of cusp;
DEFINE VARIABLES
Loc_F1 Id Flight id of aircraft being modeled
Ioc Time The time at a cusp for this aircraft
Loc Tas True airspeed at the cusp
Loc Wind Speed Speed of the wind at the cusp
Loc | : Pa__ 1d Identification of a planned action for this
alrcraft
Loc_Pa_Type - Type of planned action;

#H
REPEAT FOR EACH TRAJECTORY RECORD;
IF TRAJECTORY.cusp type NE 'regular'’
THEN
CHOOSE CASE
WHEN TRAJECTORY.cusp type_gg 'hold' OR
TRAJECTORY.cusp type EQ vertical hold' THEN
CALL Build Hold Maneuver_ Envelope(Loc F1 . T1d . 1IN,
" TRAJECTORY.Z IN,TRAJECTORY.time IN);
WHEN TRAJECTORY. cusp | _type EQ *vertical maneuver' THEN
CALL Build Altitude Maneuver Envelope(Loc F1 I1d IN IN,
~ TRAJECTORY. time IN,TRAJECTORY IN);
END Check_Irajectory_?oq_ﬂaneuver_Envelopes°

FIGURE 4-123
CHECK_TRAJECTORY FOR MANEUVER ENVELOPES

4-227



ROUTINE Build Hold Maneuver_ Envelope;
PARAMETERS
Loq_FI_Id IN, Loc_Time IN, Loc Alt IN;
REFER TO GLOBAL
HOLD PLANNED ACTION IN, MANEUVER ENVELOPE INOUT;
REFER TO SHARED LOCAL
SUPPLEMENTAL CUSP_INFORMATION IN;
DEFINE TABLES

LOC_HOLD PA Local copy of speed planned action record
pa_: id~ Planned action identification
hold fix x x coordinate at the hold fix
hold : fig_y y coordinate at the hold fix

direction_inbound Direction of flight on leg inbound to
the hold fix

EFC_time Expect further clearance time
leg length type Units used on the leg length
leg length value Measure of the leg length
turn direction Direction of turns in the hold

hold_fix;position AGGREGATE (holq_fi;_;,holq_fig_y);
DEFINE VARIABLES

Loc Pa_Id Identification of a planned action for this
aircraft

Loc_Alt Altitude at cusp

Loc Time The time at a cusp for this aircraft

Loc_ Fl Id Flight id of aircraft being modeled

Loc Tas True airspeed at the cusp

Loc_Wind Speed Wind speed at the cusp

Enq_Bog;fnteraect(Z) The point of intersection of the hold box
with the direction inbound after the
hold fix

Start_Box Intersect(2) The point of intersection of the hold box
with the direction inbound before the
hold fix

Right Side Box Width Size of the box on the right side

left Side Box Width Size of the box on the left side

Unit Vbctor Cross(Z) Unit vector perpendicular to the direction
of the inbound leg direction

Loq_RD_Position(Z) X,y coordinates of the right downstream
' corner of the hold box ,
Loc_RU_Position(2) x,y coordinates of the right upstream
corner of the hold box
Loc_LU Position(2) x,y coordinates of the left upstream
corner of the hold box
Loc_LD Position(2) X,y coordinates of the left downstream

corner of the hold box;

FIGURE 4-124
BUILD HOLD MANEUVER_ENVELOPE

4-228



SELECT FIELDS pa_id direction,tas,wind speed
FROM SUPPLEMENTAL CUSP_INFORMATION
INTO Loc Pa_Id, Loc Tas, Loc Wind Speed
WHERE SUPPLEMENTAL CUSP ' INFORMATION. time EQ Loc_Time;
LocC HOLD PA = SELECT FIELDS ALL
FROM HOLD_PLANNED ACTION (H_P_A)
WHERE HP A.pa id". EQ Loc_Pa Id,
CALL Compute Hold Box Parameters(LOC HOLD PA IN,Loc_Tas IN
Loc Wind Speed IN, End Box . Intersect OUT
Start Box Intersect OUT Right Side Box Width ouT,

Left . Side Box Width OUT)
Unit Vector Cross , Track = (—COS(LOC HOLD PA.inbound directionm),

SIN(LOC_HOLD PA.inbound direction));
Loc RD | Position = Start_ Box Intersect - Right_Side Box Width *
Unit Vector_Cross;
Loc RU Position = End Box Intersect - Right Side Box Width *
Unit vector Cross,
Loc LU Position = End Box Intersect + Left Side Box Width *
Unit Vector Cross,
Loc LD Position = Start_ Box . Intersect + Left Side Box Width *
Unit Vector_Cross;
INSERT INTO MANEUVER ENVELOPE
Zfl id = Loc_F1 Id time = Loc _Time,
(rdx,rdy) = Loc  RD Position,rdz = Loc_Alt,rdt = Loc_Time,
(rux,ruy) = Loc_RU Position,ruz = Loc_Alt,rut = Loc_Time,
(lux,luy) = Loc LU Position,luz = Loc Alt,lut = Loc_Time,
(ldx,ldy) = Loc Ld Position,ldz = Loc Alt,1dt = Loc_Time);

END Build_Hold_Maneuvep_Envelope'

FIGURE 4-124 (Concluded)
BUILD HOLD MANEUVER ENVELOPE

4-229



ROUTINE Compute_Hold Box Parameters;

PARAMETERS
iﬁc HOfD PA IN Loc_Tas

IN,Loc_Wind Speed IN,

End | Box . Intersect OUT Start Box Intersect OUT
Right Side Box width ¢ our, Left Side Box | width OUT;

REFER TO GLOBAL
HOLD _. PK PARAMETERS IN;
DEFINE TABLES

LOC | HﬁfD PA Local copy of the speed planned action record
pa_: 1d Planned action identification
hold fix x x coordinate at the hold fix
hold : | fix .y y coordinate at the hold fix
directioq_inbound Direction on leg inbound to the hold fix
EFC time Expect further clearance time

leg_length type
leg length value
turn direction
holq_fiproaition
DEFINE VARIABLES
Loc Tas
Loc_Wind Speed
Loc_Buffer
Time In Turn

Turn Rate
Circumference Of Turn

Diameter_ Of RaceTrack
Time In Leg

Loc Leg length

Unit Vector_Inbound(2)

End_Box Intersect(2)
Start_Boc_Intersect(2)

DEFINE CONSTANTS

Units used on the leg length
Measure of the leg length
Direction of turns in the hold
AGGREGATE (hold fix x,hold fix y);

True airspeed at the cusp

Wind speed at the cusp

Protection buffer from global data table

Time it takes for the aircraft to make a U
turn (180 degrees)

Turn rate of the aircraft

The distance of the rounded part of the
holding pattern racetrack oval

Diameter of the rounded part of the holding
pattern racetrack oval

Time taken to traverse one leg of the hold

Distance measure of the leg

Unit vector in the direction towards the
hold fix

The point of intersection of the hold box
with the direction inbound after the hold
fix

The point of intersection of the hold box
with the direction inbound before the
hold fix;

Pi 3.1415926535 Ratio of the circumference of a circle

to its diameter

Degrees 180 3.1415926535 180 degrees in radiacs;

FIGURE 4-125

COMPUTE_HOLD_BOX_PARAMETERS

4-230



SELECT FIELDS holding pattern buffer
FEOM HOLD )_PA PARAMETERS
INTO Loc Buffer,
CALL Determine Turn Rate(Loc Tas IN,Turn L Rate OUT);
Time In Turn = Degrees 180 / Turn K Rate ;
Circumference of Turn = Loc_Tas A Time In Turn;
Diameter_of Race Track = (2 * Circumference Of Turn) / Pi +
Time In Turn Loc_Wind Speed ;
IF 1LOC HQLD PA.leg length type = 'time
THEN
" Loc_Leg Length = LOC_HOLD PA.leg length * (Loc_Tas +
Loc Wind Speed);

ELSE
~ Time _In Leg = LOC_HOLD PA. legL;ength / Loc_Tas ;
Loc_Leg Length = Time In Leg * (Loc_Tas + Loc_Wind Speed);
Unit Vector Inbound = (SIN(LOC HOLD PA,inbound direction),
'COS(LOC_HOLD_PA.inbound diTection));
Fnd Box Intereection = 10C HOLD ) PA.hold fix position +
(.5% Diameter Of Race Track + Loc_Buf) Unit _Vector_ Inbound;
Start_Box Intersection = LOC_HOLD PA.hold fix position -
(.5* Diameter 0f Race  _Track + Loc Buf + Loc _Leg Length) *
Unit Vector Inbound,
IF LOC_ﬂOLD_PA.turn;direction = 'right'
THEN
Right Side Box Width = Loc Buf + Diameter of Race Track;
Left Side Box Width = Loc_ Buf'
ELSE
Right Side Box Width = Loc Buf;
Left Side Box Width = Loc__ Buf + Diameter of Race Track;
END Compute Hold Box Parametera-

FIGURE 4-125 (Concluded)
COMPUTE_FOLD_}OX_?ARAMETERS

4-231



ROUTINE Build Altitude Maneuver Envelope;

PARAMETERS

Loc_ FI Id IN,Loc Time IN,TRAJECTORY 1IN,

Rdv INOUT, Ldv INOUT;

REFER TO SHARED LOCAL

SUPPLEMENTAL CUSP_INFORMATION IN;

DEFINE TABLES
TRAJECTORY

f1 1id
time
X

y
z

ground speed

cusp_type
LAST CUSP

time

b ¢

y

z

ground speed

cusp_type
THIS CUSP
NEXT_CUSP

DEFINE VARIABLES -

Loc F1 1d

Loc Time
Ard(3)
This_Cusp_Paid
lLast Ousp _pa:ld
Pa Type
Restriction(3)
Target Altitude
Vertex1(5)
Vertex2(5)
Vertex3(5)
Vertex4(5)

Same as global table TRAJECTORIES

but ordered by time
Flight id

Time

x coordinate of cusp
y of cusp

z of cusp

Ground speed at cusp

Type of cusp

Last cusp processed

Time

x coordinate at last cusp
y coordinate at last cusp
Altitude at last cusp
Ground speed at cusp
Cusp_type at last cusp

This cusp - defined like LAST CUSP
Next cusp - defined like LAST ¢ '_CUSP;

Identity of the aircraft undergoing
Trajectory Estimation

Time at the cusp under consideration
Ard at last,this,and next cusp
Pa id controlling gradient fr this cusp
Pa_: - 1d controlling gradient fr next cusp
Pa _type 1i.e. " alt or alr "

X,y,z of restriction point
Target altitude
X,y,2,t,ard of right upstream vertex
Same of right downstream vertex
Same of left downstream vertex
Same of left upstream vertex;

FIGURE 4-126

BUILD ALTITUDE MANEUVER ENVELOPE

4-232



LAST CUSP = SELECT FIELDS ALL
FROM TRAJECTORY
WHERE TRAJECTORY. time EQ MAX MAX(TRAJECTORY. time LT Loc Time),
THIS CUSP = SELECT FIELDS ALL
FROM TRAJECTORY
WHERE TRAJECTORY.time EQ Loc_Time;
NEXT CUSP = SELECT FIELDS ALL
FROM TRAJECTORY
WHERE TRAJECTORY.time EQ MIN(TRAJECTORY.time GT Loc_Time);
CALL Find Ard For Cusp(Loc Fl Id IN,LAST CUSP IN,
T THIS CUSP IN NEST CUSP IN Ard OUT),
CALL Find Last Downstream Vertices(Loc F1 _1d IN,
" LAST_CUSP IN,THIS_CUSP IN,Rdv OUT,Ldv OUT);
# find paid for gradient component from this cusp #
CALL Find Paid (THIS_CUSP IN,This Cusp_Paid OUT);
CALL Pa ] Details (This Cusp__. y Paid IN Restriction | ouT,
T Target Alt OUT);
CALL Find Paid (LAST CUSP IN,Last Cusp Paid OUT)
IF Restrictions EQ NULL # Unrestricted altitude change #
THEN
" CALL Vertex Definition Unrestricted(Loc F1_Id IN,
T This Cusp Paid IN, Last ._Cusp_Paid IN Target Alt IN,
LAST CUSP . IN, THIS CUSP IN, NEXT CUSP IN, Ard . IN,
Ldv INOUT,Rdv INOUT,Vertexl OUT Vertex?2 OUT,
Vertex3 OUT Vertex4 OUT);

ELSE
CALL Vertex Definition Restricted(Loc_Fl Id IN,
" This Cusp Paid IN, Last . Cugp Paid IN Restrictions IN,
Target Alt IN, LAST CUSP IN,THIS CUSP IN,NEXT CUSP IN,
Ard IN Rdv INOUT 1dv INOUT Vertexl ouT, VertexZ OUT
Vertex3 our, Vertex4 oun);
CALL Vertex Construction Supervisor(LAST CUSP 1IN,
THIS CUSP IN, NEXT CUSP IN, Rdv INOUT, Ldv INOUT,Vertexl IN,
Vertex2 IN, ,Vertex3 IN, Vertexé IN,This Cusp_Paid IN,
Last_Cusp | Paid IN;

END Build Altitude Maneuver _Envelope;

FIGURE 4-126 (Concluded)
BUILD ALTITUDE MANEUVER ENVELOPE

4-233



ROUTINE Find Ard For_Cusp;
PARAMETERS

LToc FI Id IN,

LAST CUSP 1IN,

THIS_CUSP 1IN,

NEXT_CUSP IN,

Ard OUT;
REFFER_TO_SHARED LOCAL

SUPPLEMENTAL CUSP_INFORMATION IN;
DEFINE TABLES

LAST CUSP Last cusp processed

time Time

X x coordinate at last cusp

y y coordinate at last cusp

z Altitude at last cusp

ground speed Ground speed at cusp

cusp_type Cusp_type at last cusp
THIS_CUSP This cusp - defined like LAST CUSP
NEXT CUSP Next cusp - defined like LAST _CUSP;

DEFINE VARIABLES

Ard(3) Ard at cusps;

SELECT FIELDS ard
FROM SUPPLEMENTAL CUSP INFORMATION (S C I)
INTO Ard(1)
WHERE § C I.f1 id.§g Loc F1 . Id AND
LAST " CUSP.time EQ S_ C I. time,
SELECT FIELDS ard
FROM SUPPLEMENTAL CUSP_INFORMATION (S C I)
INTO Ard(2)
WHERE S CI.fl: id E EQ Loc_F1 Id AND
THIS " CUSP.time EQ S C I. time,
SELECT FIELDS ard
FROM SUPPLEMENTAL , CUSP_INFORMATION (S C I)
INTO Ard(3)
WHERE s C1I. f1l id‘_g Loc F1 . Id AND
T NEXT ¢ CUSP time EQ S C I.time;
END Finq_Arq_For_pusp,

FIGURE 4-127
FIND_ARD_FOR_CUSP

4-234



ROUTINE Find last Downstream Vertices;
PARAMETERS

Loc_ F1 _Id IN,

LAST CUSP IN,

THIS_CUSP 1N,

Rdv 0UT,

Ldv OUT;
REFER TO GLOBAL

MANEUVER ENVELOPE IN;

DEFINE TABLES
LAST CUSP Last cusp processed
time Time
x x coordinate at last cusp
y y goordinate at last cusp
z Altitude at last cusp
ground speed Ground speed at cusp
cusp_type Cusp_type at last cusp
position AGGREGATE (x,y)
THIS_CUSP Defined like LAST CUSP;
DEFINE VARIABLES
Rdv(5) X,y,2,t,ard for right downstream vertex
of last cusp
Ldv(5) Same of left downstream vertex
of last cusp
#

SELECT FIELDS right downstream vertex,left downstream vertex
FROM MANEUVER_ENVELOPE (M_E)
INTO Rdv(1),Rdv(2),Rdv(3),Rdv(4),Ldv(1),Ldv(2),Ldv(3),Ldv(4)
WHEREMEflid_g_Loc F1 IdANDMEtime_Q

LAST CUSP.time;

Rdv(5) = (Rdv(1) - THIS_CUSP.x) /
SIN(DIRECTION(THIS_CUSP.position, (Rdv(1),Rdv(2))));

Ldv(5) = (Ldv(1) - LAST CUSP.x) /
SIN(DIRECTION(LAST CUSP.position,(Ldv(1),Ldv(2))));

END Find last Downstream Vertices;

FIGURE 4-128
FIND LAST DOWNSTREAM VERTICES

4-235



ROUTINE Find Paid;

PARAMETERS
CUSP 1IN,
Paid OUT;
REFER TO SHARED LOCAL
~ SUPPLEMENTAL CUSP INFORMATION IN;
DEFINE TABLES ~ _
Cusp Information for only one cusp
time Time
x : x coordinate at last cusp
y y coordinate at last cusp
z Altitude at last cusp
ground speed Ground speed at cusp
cusp_type Cusp_type at last cusp;
DEFINE VARIABLES .
Paid Planned action controlling gradient
' from the cusp with this given time;

SELECT FIELDS pa id gradient
FROM SUPPLEMENTAL CUSP_INFORMATION (S_C I
INTO Paid '
WHERE CUSP.time EQ S _C I.time;

END Find Paid;

FIGURE 4-129
FIND_PAID

4-236



ROUTINE Pa Details;
PARAMETERS
Paid IN,
Restriction OUT,
Target Alt OUT;
REFFR TO GLOBAL
ALTITUDE CHANGE PLANNED ACTION IN,
ALTITUDE RESTRICTION PARAMETERS IN; IN;
DEFINE VARIABLES

Paid Pa_id
Restriction(3) x,y,z of restriction point
Target Alt Target altitude;

##

SELECT FIELDS rest x,rest_y,rest z
FROH ALTITUDE RESTRICTIONS PARAMETERS (A R _P)
INTO Restriction
WHERE Paid EQ AR P.pa id;

SELECT FIELDS target "altitude

: FROM ALTITUDE_( CHANGE PLANNED ACTION (A C P A)
INTO Target Alt
WHERE Paid EQ_A C P A.pa 1id;
END Pa Deta:llr

FIGURE 4-130
PA_DETAILS

4-237



ROUTINE Vertex Definition Unrestricted;
PARAMETERS
Loc_ FI Id IN,This Cusp Paid IN,Last Cusp_Paid IN,
Target TAlt I IN LAST CUSP IN, THIS CUSP IN, NEXT CUSP IN,
Ard IN Last " Ldv IN Last | Rdv IN, Ruv OUT Rdv OUT Ldv Ol OUT Luv OUT;
REFER TO SHARED LOCAL
SUPPLEME If CUSF INFORMATION IN,
Srp IN,Sop IN Rop IN;
DEFINE TABLES

LAST_pUSP Last cusp processed
time Time
X x coordinate at last cusp
y y coordinate at last cusp
z Altitude at last cusp
ground speed Ground speed at cusp
cusp_type Cusp_type at last cusp
position AGGREGATE (x,y)
THIS_CUSP This cusp ~ defined like LAST CUSP
NEXT_CUSP Next cusp — defined like LAST CUSP'
DEFINE VARTABLES
Loc_F1 1d Identity of aircraft for Trajectory
Estimation
Ard(3) The along route distance at the last,
this, and next cusp
Ruv(5) X,y,z,t,ard of right upstream vertex
Rdv(5) Same of right downstream vertex
Ldv(5) Same of left downstream vertex
Luv(5) Same of left upstream vertex
Last_Ldv(5) The last 1dv
Last_Rdv(5) The last Rdv
Max Gradient Maximum descent gradient
Min Gradient Minimum descent gradient
Gradient Nominal gradient used in trajectory
construction; )
Last_Cusp Paid Pa id for gradient from last cusp
Target Alt Altitude goal of planned action ‘
This Cusp Paid Pa_id for gradient from this cusp
Direction Direction from this to next cusp
Direction last Direction from last to this cusp;
FIGURE 4-131

VERTEX DEFINITION UNRESTRICTED

4-238



CALL Effective Gradient(LOC_PA ID IN,Max Gradient OUT,
T Min Gradient our, Gradient OUT THIS CUSP IN,NEXT | CUSP IN,
Ard IN);

Direction = DIRECTION(THIS CUSP. position,NEXT CUSP.position);

Direction Last = DIRECTION(LAST CUSP.position, THIS CUSP.position);

Luv(3),Ruv(3) = THIS_CUSP.z;

Ldv(3),Rdv(3) = NEXT CUSP.z;

IF Last . Cusp_Paid NE . This _Cusp_Paid

THEN
T Ruv(5) = Ard(2)+ Sop;

Ruv(1l) = THIS CUSP.x + Sop * SIN(Direction);
Ruv(2) = THIS_CUSP.y + Sop * COS(Direction),
Rdv(5) = Ruv(5) + (NEXT_CUSP.z - THIS_CUSP.z) /

Min Gradient;
RAv(1) = Ruv(1l) + (Rdv(5) - Ruv(5)) * SIN(Direction);
Rdv(2) = Ruv(2) + (Rdv(5) ~ Ruv(5)) * COS(Direction),
Luv(5) = Ard(2) - Srp;
Luv(l) = THIS CUSP.x — Srp * SIN(Direction Last).
Luv(2) = THIS CUSP.y ~ Srp * COS(Direction Last),
Ldv(5) = Luv(5) + (NEXT_CUSP.z - THIS_CUSP.z) /

Max Gradient;
Ldv(1) = Luv(1l) + (Ldv(5) - Luv(5)) * SIN(Directiom);
Ldv(2) = Luv(2) + (Ldv(5) - Luv(5)) * COS(Direction);

IF Last Cusp Paid EQ This Cusp Paid

THEN
T Ruv = Last . Rdv;

Iuv = lLast_Ldv;
Rdv(5) = Ruv(5) + (NEXT _CUSP.z ~ THIS_CUSP.z) /

Min Gradient;
Rdv(1) = Ruv(1l) + (RAv(5) - Ruv(5)) * SIN(Directiom);
RAv(2) = Ruv(2) + (Rdv(5) - Ruv(5)) * COS(Direction);
Ldv(5) = Luv(5) + (NEXT_CUSP.z - THIS_CUSP.z) /

Max Gradient;
Ldv(1) = Luv(1l) + (1dv(5) - Luv(5)) * SIN(Direction);
Ldv(2) = Luv(2) + (Ldv(5) = Luv(5)) * COS(Direction);

END Vertex Definition Unrestricted;

FIGURE 4-131 (Concluded)
VERTEX DEFINITION UNRESTRICTED

4-239



ROUTINE Effective Gradient;
PARAMETERS
Loc FI Id IN,

Max ( Gradient ouT,
Min_Gradient UUT
Gradient OUT,
THIS | CUSP IN IN,
NEXT CUSP IN,
Ard IN

REFER TO | SHARED LOCAL
SUPPLEMENTAL CUSP_INFORMATION;
DEFINE TABLES

THIS_CUSP This cusp
time Time
x x coordinate at last cusp
y y coordinate at last cusp
z Altitude at last cusp
ground speed Ground speed at cusp
cusp_type Cusp_type at last cusp
NEXT_CUSP Next cusp - defined like THIS CUSP;
DEFINE VARIABLES
Loc Fl1 1d Identification of aircraft undergoing
Trajectory Estimation
Ard(3) . The along route distance at the last,
this, and next cusp
Max Gradient Maximum gradient from this cusp
Min Gradient Minimum gradient from this cusp
Gradient Nominal gradient used for trajectory
- Effective Gradient Wind adjusted effective gradient

#H#

SELECT FIELDS gradient,max grad,min grad

FROM SUPPLEMENTAL CUSP_. INFORMAT ION (s_C_ I

INTO Gradient ,Max Gradient Min Gradient

WHERE Loc_F1 . Id Eﬂ s CI. fl id AND

THIS CUSP.time E S C I. time- '

Effective Gradient = NEXT_CUSP z - THIS_CUSP.z) /

(Ard(3) - Ard(2));
Max Gradient = Max Gradient * Effective Gradient/Gradient;
Min Gradient = Min | Gradient * Effective Gradient/Gradient,
Gradient = Effective  Gradient;

END Effective Gradient;

FIGURE 4-132
EFFECTIVE GRADIENT

4-240



for restricted altitude changes in Vertex Definition Restricted
(Figure 4-133).

The maneuver envelope vertices are positioned by Vertex
Construction Supervisor (Figure 4-134). Depending on the type
of altitude (restricted or unrestricted) operation present,
calls to Vertex Construction (Figure 4-135) are made to . compute
the maneuver envelope vertices.

4.6 Resynchronization

Resynchronization is the third of the functions described in
this specification. It is further defined in this section as a
separate component, intended to be invoked after the AAS func-
tion of Conformance Monitoring determines that the track posi-
tion for an aircraft and the trajectory position for the
aircraft do not match. This form of the description is not
intended to impose a design requirement on the AAS, but only to
express the separable nature of the Resynchronization

calculations.

4.6.1 Mission

An estimated trajectory for an aircraft is 1likely to degrade
over time due to different sources of uncertainty. In order to
maintain a trajectory with the property that it accurately
reflects the "now” position of an aircraft, it may be necessary
to rebuild or "resynchronize" the trajectory, when appropriate,
based on the aircraft's current position.

The requirement satisfied by Resynchronization is to return a
"reference point” and observed speed for a given flight. The
reference point is an (x,y,z,t) position near to the observed
position of the aircraft that can be used as a starting point
for a trajectory. The reference point is on the old trajectory
of the aircraft (whether the observed position was exactly on
this path or not). The speed returned is true airspeed with
respect to the estimated wind field. :

4.6.2 Design Considerations and Component Environment

The input calling parameter is a flight id from a restricted
set of flight ids that may be legitimately used as input to
Resynchronization. It is assumed that the flight id passed to
Resynchronization 1s a "current"” flight 1id, not any of the
possible temporary or special-purpose flight ids such as those
used in a Trial Plan Probe (described in Operational Descrip-
tion [3]). This restriction exists because Resynchronization
works with track data; it cannot process a trajectory that is
not directly tied to the tracking functionm.

4-241



ROUTINE Vertex | Definition | Restricted;

PARAMETERS
r3c FI Id IN,This_Cusp_Paid IN,Last Cusp Paid IN,

Thrget ALt 1 1IN, LAST CUSP IN, THIS CUSP 1IN, NEXT CUSP IN,

Ard IN, Restriction . IN, Last Ldv IN Last_ t Rdv IN Ruv OUT,
Rdv UUT Idv OUT, Luv’UUT

REFER TO SHARED LOCAL

SUPPLEMENTAL CUSP_INFORMATION IN,
Srp IN,Sop IN ,Rop | IN;

DEFINE TABLES

LAST CUSP Last cusp processed
time Time
X x coordinate at last cusp
y y coordinate at last cusp

z

ground_speed

Altitude at last cusp
Ground speed at cusp

cusp_type Cusp_type at last cusp
THIS_ CUSP This cusp - defined like LAST CUSP
NEXT CUSP Next cusp - defined like LASI_CUSP

DEFINE VARIABLES

Loc_FL 1d Identity of aircraft for Trajectory
» Estimation

Target Alt Altitude goal of planned action

Ard(3) Along route distances at past, next,

and this cusp

Restriction(4) X,y,2,ard of restriction point

Ruv(5) X,y¥,2,t,ard of right upstream vertex

Rdv(5) Same of right downstream vertex

Ldv(5) Same of left downstream vertex

Luv(5) Same of left upstream vertex

Max Gradient
Min Gradient

Maximum descent gradient
Minimum descent gradient

Gradient Nominal gradient used in trajectory
construction;

Last_Rdv(5) Right downstream vertex at last cusp

Last Ldv(5) Left downstream vertex at last cusp

Lasﬁ:Cuep_Paid
This Cusp_Paid

Pa_id for gradient from last cusp
Pa . 1d for gradient from this cusp;

FIGURE 4-133
VERTEX DEFINITION RESTRICTED

4-242



CALL Effective_Gradient(Loc_F1_Id IN,Max Gradient OUT,

Min Gradient OUT,Gradient OUT THIS CUSP IN,NEXT " CUSP IN);
Direction = DIRECTION(THIS CUSP position, NEXT CUSP. position),
Direction Last = DIRECTION(LAST CUSP. position THIS_CUSP.position);
Luv(3),Ruv(3) = THIS_CUSP.z; Ldv(3),Rdv(3) = NEXT CUSP.z,

CHOOSE CASE
WHEN Last Cusp_Paid NE This Cusp_Paid AND Restriction(1,2,3) EQ
~ (NEXT_CUSP.x ,NEXT_CUSP.y,NEXT CUSP.z) THEN
Rdv(5) = Ard(3) + Rop; Luv(5) = Ard(2) - Srp;

Rdv(1) = NEXT CUSP.x + Rop * SIN(Direction);

Rdv(2) = NEXT CUSP.y + Rop * COS(Direction),

Ruv(5) = RAv(5) - (Rdv(3) - Ruv(3)) / Max Gradient;

Ruv(l) = THIS CUSP.x + (Ruv(5) - Rdv(5)) * SIN(Direction);
Ruv(2) = THIS CUSP.y + (Ruv(5) - Rdv(5)) * COS(Direction),
Luv(l) = LAST CUSP.x + (Ard(l)-Luv(S))*SIN(Direction _Last);
Luv(2) = LAST CUSP.y + (Ard(1)-Luv(5))*COS(Direction_Last);
Ldv(5) = Luv(5) + (Ldv(3) - Luv(3)) / Max Gradient;

Ldv(1) = Luv(1l) + (Ldv(5) - Luv(5)) * SIN(Direction);
Ldv(2) = Luv(2) + (1dv(5) - Luv(5)) * COS(Direction);

WHEN Last Cusp_Paid NE This Cusp Paid AND Restriction(1,2,3)
NE (NEXT CUSP. x,NEXT CUSP.: y,NEXT CUSP.z) THEN
Restriction(4) = Ard(2) + (Restriction(3) - THIS _CUSP.z) /

Max Gradient;
Ruv(5) = Ard(2) + (Restriction(3) - THIS_CUSP.z) *
(1/Gradient - 1/Max Gradient);
Ruv(1l) = THIS_CUSP.x + " (Ruv(5) - Ard(2)) * SIN(Direction);
Ruv(2) = THIS CUSP.y + (Ruv(5) - Ard(2)) * COS(Direction);
Rdv(1,2,5) = INTERPOLATE(Ruv(l 2,5), Restriction(l 2,4),
(NEXT CUSF.z-THIS CUSP.z)/(Restriction(3)-THIS CUSP. z));
Luv(5) = Ard(2) - Srp;
Luv(l) = THIS_CUSP.x - Srp * SIN(Direction_ Last);
Luv(2) = THIS CUSP.y - Srp * COS(Direction Last),
Ldv(5) = Luv(5) + (Ldv(3) - Luv(3)) / Max Gradient;
Ldv(1) = Luv(1l) + (Ldv(5) - Luv(5)) * sxﬁ?birection),
Ldv(2) = Luv(2) + (Ldv(5) = Luv(5)) * COS(Direction);

WHEN Last Cusp_Paid EQ This Cusp Paid. THEN
T Ruv = Last . Rdv; Luv = Last Ldv,

Rdv(5) = Ruv(5) + (NEXT CUSP.z ~ THIS_CUSP.z)/Max Gradient;
Rdv(1) = Ruv(1) + (Rdv(5) - Ruv(5)) * SIN(Direction);
Rdv(2) = Ruv(2) + (Rdv(5) = Ruv(5)) * COS(Direction),
Ldv(5) = Luv(5) + (NEXT CUSP.z - THIS_CUSP.z)/Max Gradient;
Ldv(1) = Ldu(1l) + (1dv(5) - Luv(5)) * SIN(Direction),
Ldv(2) = Ldu(2) + (Ldv(5) - Luv(5)) * COS(Direction),

END Vertex Definition Restricted;

FIGURE 4-133 (Concluded)
VERTEX_DEFINITION_RESTRI CTED

4-243



ROUTINE Vertex Construction Supervisor;

PARAMETERS
Loc_ Fl Id 1IN,
LAST CUSP IN,
THIS | "~ CUSP Tf}
NEXT CUSP IN,
Ard IN
Vertexl 1N,
Vertex2 IN
Vertex3 lﬂ,
Vertex4 1IN,

Last Vertex2 IN,
Last -~ Vertex3 IN,

Last Paid 1IN,
This Paid IN,
REFER TO GLOBAL

TRAJECTORIES IN,

MANEUVER : ENVELOPE INOUT;

DEFINE TABLES
LAST CUSP
time

b

y

z

ground speed

cusp_type
THIS_CUSP
NEXT ¢ " CUSP

DEFINE VARIABLES

Loc F1 1d

Ard(3)
Vertex1(5)
Vertex2(5)
Vertex3(5)
Vertex4(5)

Last _Vertex2(5)
Last Vertex3(5)
Last Paid

This Paid

Last Cusp_Type

Last cusp processed
Time
x coordinate at last cusp
y coordinate at last cusp
Altitude at last cusp
Ground speed at cusp
Cusp type at last cusp
This cusp - defined like LAST CUSP
Next cusp - defined like LAST | _CUSP;

Identity of aircraft undergoing
Trajectory Estimation

Ard at last,this,and next cusp

X,y,2,t, ard right upstream vertex

Same of right downstream vertex

Same of left downstream vertex

Same of left upstream vertex

Same of last right downstream vertex

Same of last left dowmstream vertex

Pa_id of last cusp

Pa_id of this cusp

Last cusp type indicator: vertical
maneuver type or not;

FIGURE 4-134
VERTEX CONSTRUCTION SUPERVISOR

4-244



Time L = LASI_CUSP.time;

Time T = THIS CUSP.time;

Time N = NEXT_CUSP.time;

Last . Cusp_Type = LAST CUSP.cusp type;
CHOOSE CASE

WHEN ZThis Paid NE Last Paid AND
Last . Cusp_ p_Type NE “vertical maneuver") THEN

CALL Vertex Comstruction (THIS_CUSP IN,

" Time L IN,Time T IN,Time N IN,Vertexl OoUT);
CALL Vertex ( Construction (Vertexl IN,

" Time L IN,Time T IN,Time N IN,Vertex2 OUT);
CALL Vertex | x Construction (LAST CUSP 1IN,

Time L IN Time T IN,Time N IN,Vertexé ouT);
CALL Vertex ( Construction (Vertex4 IN,

" Time L IN Time T IN,Time N IN, Vertex3 OUT);

WHEN (This Pald NE Last Paid AND
Last _Cusp_’ p Type EQ "vertical maneuver") THEN

CALL Vertex Construction (THIS_CUSP 1IN,

~ Time L IN,Time T IN,Time N 1IN, Vertexl ouT) ;
CALL Vertex Construction (Last Vertex3 IN,

Time L IN Time T IN,Time N IN Vertexé4 OUT)
CALL Vertex Construction (Vertexl IN,

~ Time L IN,Time T IN,Time N IN,VeTtex2 OUT);

CALL Vertex Construction (Vertexé 1IN,
Time L IN,Time T IN,Time N IN,Vertex3 OUT);
WHEN (This | Paid._g_Last “Paid) THEN
~ Vertexl = last _Vertex2;
Vertex4 = Last_Vertex3
CALL Vertex Construction (Vertexl IN,
Time L IN Time T IN,Time N IN, Vertex2 OUT)
CALL Vertex Construction (Vertex4 IN,
" Time L IN,Time T IN,Time N IN,Vertex3 QUT);
INSERT INTO MANEUVER ENVELOPE
Zfl id = Loc_F1 . Id,time = This _Cusp T,
right_upstream vertex = Vertexl1(1,2, 3 y4),
right downstream vertex = Vertex2(1,2,3,4),
left downstream vertex = Vertex3(1,2, 3 4),
left i _upstream vertex = Vertex4(1,2,3,4));
END Vertex;ponstructioq_Supervisor,

FIGURE 4-134 (Concluded)
VERTEX_CONSTRUCTION SUPERVISOR

4-245



ROUTINE Vertex Construction;
PARAMETERS

Last _Point IN,
Last ¢ - Cusp__ T L 1N,
This . _Cusp_ T IN,
Next | Cuap T IN,
Next Point INOUT

REFER TO SHARED LOC, LOCAL
SUFPTEEENTAL EUSP INFORMATION IN;
DEFFINE VARIABLES

#

Last Point(4) X,y,Z,t of last point in that order
This_Point(4) X,y,2,t of this point in that order
Next Point(4) X,¥,z,t of next point in that order
last Cusp T Last cusp time

This Cusp T This cusp time

Next Cusp T Next cusp time

Tas_Last Last cusp true airspeed

Tas_This This cusp true airspeed

Tas_Next Next cusp true airspeed;

Delta Sz Point to point distance between

this point and next point;

SELECT FIELDS tas
FROM SUPPLEMENTAL CUSP_INFORMATION (S_C I)
INTO Tas_last
WHERE SCI. time EQ Last Cusp_T;

SELECT FIELDS tas
FROM SUPPLEMENTAL CUSP_INFORMATION (S_C I)
INTO Tas_This
WHERE S ¢ C I.time EQ This Cusp_T;

SELECT FIELDS tas
FROM SUPPLEMENTAL CUSP INFORMATION (S C I)
INTO Tas_Next
WHERE 5 C I.time EQ Next Cusp_T;

Delta Sz = SQRT((This Point(1l) - Next_Point(1)) ** 2 +
(This Po nt(2) - Next . Point(2)) X% 2 4
(This__ - Point(3) - Next Point(3)) x% 2);

IF This Point(3) EQ Next _ “Point(3)

THEN
Nexq_Point(4) = This Point(4) + Delta Sz / Tas_This;

ELSE
T Next_Point(4) = This  Point(4) +

Delta Sz / AVG(Tas_This,Tas Next);

END Verteg_Construction,

FIGURE 4-135
VERTEX CONSTRUCTION

4-246



The explicit values are returned from Resynchronization in a
table with one record in it. The table is defined to have all
the fields needed by Trajectory Repositioning Initialization:
four-dimensional position, speed, direction, and along-route
distance. The cre-record form of output was chosen in order to
make unnecessarv assumptions about the details of defining a
new flight and copying trajectory details and planned actioms
to the new flight id. :

The processing of Resynchronization is not directly tied to the
criteria used in the decision to call Resynchronization. The
observed deviations of the aircraft position from the expected
values are treated identically whatever the reason for invoca-
tion. When the controller has to be notified because of
conformance violations, Resynchronization is not invoked until
a plan exists to account for the observed position of the
aircraft.

Ingut

Data transactions for the Resynchronization function include:

e System Global Data Base
= FLIGHT IDS ASSOCIATIONS

This table provides Resynchronization with a cross
reference from the flight id form of reference to
the flight name form of reference. A flight name
represents & unique aircraft; it may be associated
with multiple f£flight ids. Every flight 1d 1s
associated with only one flight name.

- AIJRCRAFT TRACKED POSITION

Resynchronization data requirements 1include some
track history for each controlled aircraft.
Multiple observations of recent positions are used
to improve the quality of estimated used by Trajec-
tory Estimation.

This table provides the track history for a given
aircraft. The most recent entry for this aircraft
provides the information to compute the reference
point. This history of points also provides the
ability to compute a weighted estimate for aircraft
ground speed which, in turn, is used to obtain a
value of true airspeed at the reference point.

4-247



The AIRCRAFT TRACKED POSITION table represents data
processed by tracking and flight analysis
functions. There is as yet no detailed
specification of these functions, so the form of the
table as it appears here may be subject to some
revision.

WINDS

The WINDS data is used by the Wind Field utility
element to provide information about the atmospheric
parameters at the point of resynchronization. Wind
speed and wind direction determine the relatiomship
between true airspeed and observed ground speed.

TRAJECTORIES

The TRAJECTORIES table provides Resynchronization
with the (x,y) route of the aircraft.
Resynchronization ignores small deviations between
the observed (x,y) position of the aircraft and the
expected (x,y) position. The (x,y) position of the
returned reference point 18 the point on the
trajectory that is nearest to the observed point.

® Shared local Data Base

Outgut

SMOOTHING PARAMETERS

The Smoothing Parameters used by Xyt To Direction
and by Xyt _To Ground are adapted values to be used
in exponential smoothing approximation. These
parameters are between 0 and 1. The proper choice
of these parameters for the AAS will depend on
testing and experimentation.

° System Global Data Base

AIRCRAFT TRACKED POSITION

Resynchronization assumes that multiple observations
are provided for 1its sole use. After the observa-
tions have been processed by Resynchronization they
are deleted from the AIRCRAFT TRACKED POSITION
table. The number of multiple observations that are
stored, the timing of stored observations, and the

4-248



maintenance (deletions) of excess observations aré
1ssues that can be changed without changing the
fundamental algorithm presented for Resynchroniza-

tion.
e Shared Local Data Base
- RESYNCHRONIZATION HISTORY

The RESYNCHRONIZATION HISTORY table stores summary

information of each filght resynchronization action.
No present use 1is made of this table by any other

function. It 1s anticipated that Resynchronizatiom
and Trajectory Estimation will use this information
in the AERA 1.02 time frame.

4.6.3 Resynchronization Design Logic

Organization

Resynchronization logic involves nine elememts. The calling
relationships among these elements 1is described in Figure
4-136. Elements called by more than one of the other routines

are shown separately under each calling routine. The element
Wind Field can be found in Appendix B.

Processing Method

The routine named Resynchronization (Figure 4-137) 1s called
with one input parameter, Tracked Id, and one output table,
PRP_UPDATE. The output table represents reference point
information intended for Trajectory Initialization. In order
to provide the output data, Resynchronization reviews the
recent track history for the flight, computes an estimated
ground speed and direction, translates these data to estimated
true airspeed, and translates the observed (x,y) point to the
nearest (x,y) point on the old trajectory. The resulting data
are output, and a collection of summary information is stored
in a resynchronization history table for possible future
reference. The detalls of this processing are described below.

Resynchronization begins by making the cross reference from the
Tracked Id given as input to the (unique) flight name asso-
ciated with it. It is assumed that the Tracked Id will be a
flight id with a type of “"current,” but this assumption is not
checked or enforced.

4-249



Resynchronization
Xyt To Ground
Delta
Exp Smooth
-Xy_To_Direction
Delta
Exp Smooth
Ground To Tas
Wind Field
Project Onto Xy Trajectory
Distance_To_Line

FIGURE 4-136
RESYNCHRONIZATION CALLING SEQUENCE

4-250



ROUTINE Resynchronization;

PARAMETERS Tracked Id IN, PRP _UPDATE QUT;

REFER TO GLOBAL AIRCRAFT TRACKED POSITION INOUT,
FLIGHT ID . ASSOCIATIONS;

REFER TO SHARED LOCAL RESYNCHRONIZATION HISTORY INOUT;

DEFINE VARIABLES

Trackeq_ld , Flight id to be resynchronized

Tracked Name Flight name corresponding to id

X Now Updated x coordinate

Y Now Updated y coordinate

Z_Now Updated altitude

T_Now Updated time

Ard Now Updated along-route distance

Ground Speed Now Updated ground speed

Direction_ Now Updated direction

Tas_Now Updated true airspeed

Ximage x coordinate of nearest point on trajectory

Yimage y coordinate of nearest point on trajectory;

DEFINE TABLES

PRP_UPDATE Output table (with only one record)
flight id : Flight id of observed flight
time Time at observed point
x_coord x coordinate at observed point
y_coord y coordinate at observed point
altitude Altitude at observed point
speed True airspeed at observed point
direction Direction at the observed point
ard Along route distance at the observed

point
FLIGHT TRACK HISTORY Local table to store tracking data for
Tracked 1d
time Time of tracked observation
x _coord x coordinate of tracked observation
y_coord y coordinate of tracked observation
altitude Altitude of tracked observation
distance Along-route distance of tracked
observation

xy position AGGREGATE (x coord,y coord)
xyt_position AGGREGATE (x coord,y coord,time);

FIGURE 4-137
RESYNCHRONIZATION

4-251



# make cross reference to flight name #
SELECT FIELDS flight name

FROM FLIGHT ID_ASSOCIATIONS

INTO Tracked Name

WHERE FLIGHT ID ASSOCIATIONS.fl . id EQ Tracked Id;

¥ extract tracking data for this flight ¢#

FLIGHT TRACK HISTORY = SELECT FIELDS time,x coord,y coord,
altitude,distance
FROM AIRCRAFT TRACKED POSITION (ATP)

WHERE ATP.flight name EQ Tracked Name
ORDERED BY ATP.time;
# remove tracking data from global table #

DELETE FROM AIRCRAFT TRACKED POSITION
WﬁEEE KIRCRAFT TRACKED POSITION flight name EQ Tracked Id;

# capture the most recent tracking point ¥

SELECT FIELDS time,x coord,y coord,altitude,distance
INTO T Now,X Now,Y  Now,Z | Now, Ard Now
FROM FLIGHT TRACK HISTORY (FTH)

WHERE FTH.tIme EQ MAX (FTH.time);
# compute estimated ground speed #

CALL Xyt To Ground (FLIGHT TRACK HISTORY.xyt position IN,
Ground_Speed Now OUT);

compute estimated direction #

CALL Xy To_Direction (FLIGHT TRACK HISTORY.xy position IN,
Direction Now OUT);

# translate to speed in air mass #

CALL Ground To_Tas (Ground Speed Now IN,Direction Now IN,
X Now IN, Y | ' Now IN, Z Now IN, Tas Now ouT);

“# aggregate data returned to caller #

CALL Project_Onto Xy Trajectory (Tracked Id IN, T Now IN,
" X Now IN, Y Now IN, Ximage OUT, Yimage OUT);

INSERT INTO PRP UPDATE (flight id = Tracked 14,

x coord = Ximage, y_¢ coord = Yimage,
altitude= Z _Now, time = T Now,
direction'Direction;wa :
speed = Tas Now);

INSERT INTO RESYNCHRONIZATION HISTORY(flight name=Tracked Name,
time = T Now, actual x = X Now, actual y = Y Now, -
ard = Ard Now, image x ™ Ximage, image y ™ Yimage,
direction = Direction Now, true_airspeed = Taq_Now);

END Resynchronization;

FIGURE 4-137 (Concluded)
RESYNCHRONIZATION

4-252



Resynchronization then copies the aircraft's track history into
a local table. The data copied concern only one flight,
Tracked Name, so that not all fields of the original table are
copied.” The local table is filled by records that are stored
in increasing order by the time of the observation. This order
is important when the columns of the local table are used as
vectors for the exponential smoothing estimation procedures.
After copying data from AIRCRAFT TRACKED POSITION concerning
the current flight, Resynchronization assumes that the original
history is no longer needed, and deletes it.

The first processing action is to extract the most recent track
point. This point serves as the basis for the eventual output
of a reference point for use by Trajectory Estimation. Past
tracked points are used only to refine estimates about flight
behavior at the most recent track point.

Next, a smoothed estimate of ground speed at the most recent
track point 1is computed. Since this speed may have been
changing, and since errors of observation can lead to error in
the apparent speed between any two points, the estimation is
done using exponential smoothing based on the time series of
available tracker points. The details of this calculation are
contained in Xyt To Ground (Figure 4-138) and in the sub-
ordinate wutility routines Delta (Figure 4-139) and Exp
Smoothing (Figure 4-140). -

Another exponential smoothing estimate is used to compute the
observed (ground) direction being flown by the aircraft at the
most recent tracker point. This quantity 1is like ground speed
in that it is changing between pairs of observations and 1is
especially sensitive to errors of observation. The same type
of exponential smoothing estimation is used for directionm,
although the smoothing parameter 1is chosen independently. The
details of this calculation are contained in Xy To_. Direction
(Figure 4-141), and in the subordinate utility routines.

True airspeed is computed using the most recent tracker point,
the estimated ground speed, and the estimated (ground) direc-
tion. This computation depends on the winds aloft. Ground To_

Tas (Figure 4-142) utilizes the Wind Field utility to provide
this information based on the best and most current now-cast of
wind speed and wind direction in the wind cell containing the
most recent track point.

The final processing step is to translate the (x,y) position of
the most recent tracker point into the (x,y) position of the
point on the old trajectory that is nearest as projected onto

4-253



ROUTINE Xyt To_Ground;

PARAMETERS X Series IN, Y Series IN, T Series IN,
Estimated ¢ | Ground Speed OuT;

REFER TO SHARED LOCAL Ground | |_Speed Ratio IN;

DEFINE VARIABLES

X_Series(¥) x coordinates of positions
Y_Series(*) y coordinates of positions

T Series(*) t coordinates of positions
Eatimated Ground Speed smoothed point estimate

X _Del(*) ~ first difference of x

Y Del(*) first difference of y

T Del(%*) first difference of t
G_Series(*) ground speeds computed on each

of the increments;

e

CALL Delta (X_Series IN, X Del OUT);
CALL Delta (Y Series IN, Y Del OUT)

CALL Delta (T Series IN, T Del OUT);
G_Series = SQRT(X Del**2 +°Y Delfiz) / T Del;
CALL Exp Smooth(G Series IN, “Ground | Speed Ratio IN,
Estimated Ground_Speed OUT);
END Xyt To Ground-

FIGURE 4-138
XYT_TO_GROUND

4-254



ROUTINE Delta;

PARAMETERS Original IN, Increments OUT;

DEFINE VARIABLES

Original(*) Vector of input data

Increments(*) First (forward) differences of o:iginﬁi;

#

FOR I = 2 TO COUNT(Original);
Increments(I-I) = Original(I) - Original(I-1);
END Delta;

FIGURE 4-139
DELTA

4-255



ROUTINE Exp Smooth;

PARAMETERS Data_ Series N, Decay Ratio IN, Predicted Value OUT
DEFINE VARIABLES

Data_Series(*) Vector of input data

Decay Ratio Smoothing parameter

Predicted | Value Smoothed point estimate

X Intermediate value;
#

Predicted Value = Data Series(l);
FORI = 2 T0 COUNT (Data Series),
T X = (1 - Decay Ratio) * Predicted Value;
Predicted Value = X + Decay Ratio % Data . Series(I);
END Exp_Smooth'

FIGURE 4~140
EXP_SMOOTH

4-256

b



ROUTINE Xy To Direction;

PARAMETERS X Positions IN, Y Positions IN, Estimated Direction OUT

REFER TO SHARED LOCAL Direction L Ratio IN'
DEFINE VARIABLES

X Positions(*) Vector of x coordinates

Y Positions(*) Vector of y coordinates

Estimated Direction Measured 360 clockwise from true north
Directions(*) Vector of incremental directions

X Del(*) First difference of x

Y Del(*) First difference of y;

CALL Delta (X Positions IN, X Del OUT);
CALL Delta (Y Positions IN, Y Del OUT);
Directions = ARCSIN (Y D?I X Del);
IF ABS(MEDIAN(Directions) - 180) LT 90
THEN
Add 360 to every value of Directions less than 90;
CALL Exp Smooth(Directions IN, Direction Ratio IN,
" Estimated Direction OUT);
Estimated Direction = MOD (Estimated Direction,360);
END Xy_To Direction,

FIGURE 4-141
XY_TO_DIRECTION

4-257

3



ROUTINE Ground To Tas;

PARAMETERS Ground | Speed IN, Ground Direction IN, Xyz Position IN,
Ta_Speed OUT;

DEFINE VARIABLES
— Xyz Position Location of the aircraft

x x coordinate

y y coordinate

z z coordinate
Wind Speed Current wind speed at aircraft location
Wind Direction Current wind direction at the location
Ta_Speed True airspeed
Temperature Current temperature at the location
Ground_Speed Observed ground speed of aircraft
Ground Direction Observed ground direction of aircraft
X - Intermediate value;

CALL Wind Field(Xyz_Position 1IN,
T Wind Speed OuT, Wind Direction OUT, Temperature OUT),
X = Ground Spe'a‘* wind_Speed *
cos (Ground Direction - Wind Direction);

Ta Speed = SQR' RT(Ground | Speed**2 + Wind Speed**2 - 2#X);
END Ground To_Tas;

FIGURE 4-142 -
GROUND_TO_TAS

4-258



the (x,y) plane. To prevent accidental translation to a
trajectory point that is close in ground position, but distant
in time, the candidate portion of the trjectory 1s reduced to
include only points within 3 minutes of the most recent tracker
point. The details of this calculation are contained Project_
Onto Xy Trajectory (Figure 4~143) and in the Distance _To_Line
(Figure 4-144).

After the processing steps are complete, Resynchronization
stores output data in the PRP UPDATE table and in the RESYN-
CHRONIZATION HISTORY table. The Resynchronization processing
is completed by returning to the calling routine.

4-259



ROUTINE Project Onto_ Xy Trajectory;
PARAMETERS This Flight IN, This Point IN, Base Point OUT;
REFER T0 GLOBAL ™ TRAJECTBEIES INy
DEFINE TABLES
NEARBY POINTS Points selected from the flight trajectory

time time coordinate
X x coordinate
y y coordinate
z z coordinate

xy_point AGGREGATE(x,y)
DISTANCES Distances to segments between selected points

d Minimum distance from This Point to segment
b 4 x coordinate of base of minimum vector
y y coordinate of base of minimum vector;
DEFINE VARIABLES
This Flight Flight Id for the flight to be referenced
This Point Observed position
time Time coordinate
X x coordinate
y y coordinate
First _Time Earliest time appearing in NEARBY POINTS
Start_Point Segment starting point
X X coordinate
y y coordinate
To_Dist -Distance from This Point to a segment
Base Point Segment reference point defined like Start Point;
FIGURE 4-143

PROJECT_ONTO_XY_TRAJECTORY

4-260



NEARBY POINTS = SELECT FIELDS time,x,y,z
FROM TRAJECTORTES (1J)
WHERE (TJ.£1 id EQ This Flight) AND
(ABS (TJ.time - This_Point.time) LE 3 minutes)
ORDERED BY NEARBY _POINTS. time;
First Time = MIN(NEARBY POINTS.time);
SELECT FIELDS x,y
FROM NEARBY POINTS
INTO Start__ “Point
WHERE NEARBY POINTS.time EQ First_Time;
REPEAT FOR EACH NEARBY POINTS RECORD
WHERE NEARBY POINT. time NE First_Time; #still ordered by time#
CALL Distance To Line(This Point.x IN, This_Point.y IN,
Start Point IN NEARBY POINTS.xy point IN
To_ Dist ouT, Base Point ouT);
INSERT INTO DISTANCES(x = Base  Point.x, y = Base_ Point.y,
d = To_Dist);
Start_Point ™ NEARBY POINTS. xy_point; #prepare next iteration#
SELECT FIELDS x,y
FROM DISTANCES
INTO Base Point
WHERE DISTANCES.d EQ MIN(DISTANCES.d);

END Project Onto Xy Trajectory;

FIGURE 4-143 (Concluded)
PROJECT_ONTO_XY_TRAJECTORY

4-261



ROUTINE Distance To_ Line;
PARAMETERS PO IN, P1 IN, P2 IN, Distance QUT, Pnear OUT;
DEFINE VARIABLES

PO 2-dimensional point lying off line P1-P2

x x coordinate

y y corrdinate
Pl 2—dimensional point defined like PO
P2 2-dimensional point defined like PO
Pnear 2—dimensional point defined like PO
Cosines 2—dimensional unit vector defined l1like PO
Distance Distance between PO and Pnear
Seg Length Distance between Pl and P2
Tnear Line paramenter for P1-P2 line chosen so

that Pnear = Pl + Tnear*Cosines; ‘
#

Seg Length = DIST(P1,P2);
Cosines = (P2-P1)/Seg Length; # element-wise arithmetic #

Tnear = DOT(Cosines, (PO - P1)); # element-wise arithmetic #
Tnear = MIN(Seg Length,MAX(Tnear,0)); # O LE Tnear LE length #
Pnear = P1 + Tnear * Cosines; # element—wise arithmetic #
Distance = DIST(PQ,Pnear);

End Distance To_Line;

FIGURE 4-144
DISTANCE TO LINE

4-262



APPENDIX A

TRAJECTORY ESTIMATION DATA BASE

Tables in this appendix are described with the same definitions and
formats as used in the Data Specification for AERA 1.0 [11]). Data

tables are described here for any data that must be stored for use

by any Trajectory Estimation routine except for those global tables
provided in the Data Specification.

ACTIVE_PLANNED ACTIONS:

| PA ID | pa_type | pa_source | plan_time |

T

stop_condition | stop_x I stop_y | stop_z |

stop_t | stop_ard | stop_tas

P Tpe—

This structure identifies the planned actions that are currently
being modeled. No more than one planned action of a given type can
appear in this table. This table is maintained by the planned
action processors.

This table is destroyed when all data sets pertaining to the flight
1d are destroyed, and so the table exists between invocations of
Trajectory Estimation.

pa_1id Unique identifier of a planned action
that was being modeled at the
PAST CUSP.

pa_type Type of planned action

("speed”,"altitude”, "vector”, "hold").

pa_source Source of planned action (“"system”,
"controller”) responsible for placement
of this planned action into the
aircraft's plan. »

plan time Time this planned action was added to
the aircraft's plan.

A-1



stop condition

stop x
stop y
stop z
stop t
stop_ard
stop_tas

stop_position

Condition ending this planned action
("time”, “"position”, "altitude”,
"speed” ,"ard”,"speed at altitude”).

X coordinate of stop position when
"position” stop condition is chosen.

Y coordinate of stop position when
"position” stop condition is chosen.

Altitude of stop position when
"altitude” stop condition is chosen.

Time of stop position when "time”
condition 1s chosen.

Along Route Distance at stop position

when the "ard” stop condition is chosen.

True airspeed at stop positioh when
"speed"” stop condition is chosen.

AGGREGATE (stop x,stop_y)

A2



ADDITIONAL QUALIFIERS:

+—+

QUALIFIER INDEX | QUALIFIER TYPE | qualifier

This table contains additional qualifiers as necessary to further
1imit application of procedural restrictions. The table is used by
Nominal Plan Builder.

The table is set upon data adaptation for the AAS and exists
irregardless of the invocation state of Nominal Plan Builder.

qualifier index Identifier serving to distinguish a
unique set of qualifiers.

qualifier type Qualifier category which indicates the
aspect of flight or aircraft qualified.
For example: "sid”, "star”, "par”,
"pdr”, “"pdar”, "minimum aircraft speed”.

qualifier Qualifier value that must be matched to
something relating to the aircraft in
order to assign this restriction to the
flight. For example: "Calverton”, "250
knots”.

A-3



AGD_VECTOR:

acceleration | gradient | direction | pa id_acceleration ]

+ —+

pa id gradient | pa id direction

+ —

This structure carries intermediate information from the planned
action processors to Trajectory Construction. The AGD vector is set
by the planned action processing components of Trajectory Estimation
in the construction of the next modeling point of reference, or
cusp. The AGD vector is handed off to the Trajectory Construction
subfunction as an "operator”, telling Trajectory Construction how to
transform the modeling values stored at the most recently placed
cugsp into values to store at the next cusp.

A planned action may block one of the variables in the AGD vector.
This means that the variable, while not being set, is not available
to be set by some other action.

This table has only a single record, and is initialized at each
modeled cusp by Trajectory Construction. It is destroyed when
Trajectory Estimation exits.

acceleration Acceleration (ft/sec/sec)value set by
the Speed, Altitude, or Hold Planned
Action Processors. This field may take
the value “blocked”.

gradient Gradient (ft/ft) value set by the
: Altitude Planned Action Processor when
modeling an altitude transition. This
field may take the value "blocked”.

direction Direction (radians, compass) set by
either the Vector Planned Action ‘
Processor or by Flight Route Follower.
This field may take the value "blocked”.

The direction variable cannot exit from

planned action processing without being
set.

A-4



pa_id acceleration

pa_1id gradient

pa_id direction

Identifier for planned action setting
the acceleration variable.

Identifier for planned action setting
the gradient variable. '

Identifier for planned action setting
the direction variable.

A-5



ALTITUDE LIMITS:

| ALTITUDE |

v L

This table presents a list of 1limits of planned actions which are
given as altitudes. The table is constructed by the planned action
processing components of Trajectory Estimation for the Trajectory

Construction subfunction. The altitude limits are joined with all
the other 1limit types to determine the position of the next cusp.
This table is destroyed when Trajectory Estimation exits.

altitude The altitude value (ft) of limit.

A-6



ALTITUDE PENDING ACTIONS:

| PA ID | pa_source | plan_time | stimulus_type |

stim x | stim y |

+ —_—

stim z | stim ard | stim t

This table contains altitude

planned actions that may gain active

control of some AGD parameter at some trajectory point after the
past cusp. The stimulus value i1s set by the planned action
processing elements (each time they are invoked) to be a future
trajectory event. This stimulus value is checked each time the
processing elements are reinvoked.

The table is destroyed when Trajectory Estimation exits.

pa_id

pa_source

plan_time

stimulus_type

stim x

stimLy

stiq_;

stiq_grd

Unique identifier of a planned actionm.

Source of planned action, either
controller or system.

Time of day the planned action was
added to the 1list of planned actions
for this aircraft.

Stimulus that will activate the planned
action. May be:

“ard”
"altitude”
"speed”
"position”
"time”,

X coordinate of the stimulus when a
type of position is chosen.

Y coordinate of the stimulus when a
type of position is chosen.

Altitude value when a stimulus type of
altitude is chosen.

Along Route Distance value when a
stimulus type of ard is chosen.

A-7



stim t Time value when a stimulus type of time
has been chosen.

stimulus_position AGGREGATE (stim x,stim y)

A-8



ALTITUDE RESTRICTED:
$mmmeet,
| flag |
PR

This table is used by Nominal Plan Builder in a single invocation to
store information for several routines.

This table is set by Nominal Plan Builder and is destroyed when that
process exits.

flag Identifies if altitude remains
restricted after implementation of each
restriction in the restrictions table.
Field values:

llyesﬁ
"no”.

ARD LIMITS:
+—m—t
| ARD |
+o———t

This table presents a list of limits of planned actions which are
given as along route distances (ard). The table is constructed by
the planned action processing components of Trajectory Estimation
for the Trajectory Construction subfunction. The ard limits are

Joined with all the other limit types to determine the position of
the next cusp.

This table is destroyed when Trajectory Estimation exits.

ard Along route distance value of limit.

A-9



FLIGHT PHASE:

TR
| phase |
et

This table is used by Nominal Plan builder. It is a single record
table. This structure indicates the phase of flight for modeling

purposes - either ascent or descent. A flight in the ascent phase
may be modeled as ascending, cruising, or descending. A flight in
the descent phase may stay level or descend, but may not climb.

This table is set by Nominal Plan Builder and is destroyed when that
process exits.

phase Indicator for flight phase:

"ascent”
"descent"”.

A-10



GRADIENT PARAMETERS:

I transition speed_type | transition speed | max gradient |

g
L]

min gradient

- — -

This structure carries intermediate information from the planned
action processors to Trajectory Construction. An altitude
transition is modeled by setting the gradient and the speed
schedule. It is assumed that the aircraft will maintain a constant
MACH or IAS value on the descent depending on the flight phase
(above switchover altitude, below switchover altitude).

This table has no more than one record. There is no record in the
case where there is no active altitude planned action. The gradient
parameters stored reflect those of the active altitude action. The
table i8 destroyed when Trajectory Estimation exits.

transition speed type Type of speed units used on this
section of the tramsition:

"ias"

"mach”,
transition speed Speed value to be used on the descent.
max gradient Maximum gradient of this aircraft.
min gradient Minimum gradient for this aircraft.

A-11



HOLD PENDING ACTIONS:

4+ —+

PA_ID | pa source | plan time | stimulus_type |

stim x | stim y | stim z | stim ard | stim t

o —

This table contains hold planned actions that may gain active
control of some AGD parameter at a trajectory point after the past
cusp. The stimulus value is set by the planned action processing
elements (each time they are invoked) to be a future trajectory
event. This stimulus value is checked éach time the processing

elements are reinvoked.

The table 18 destroyed when Trajectory Estimation exits.

pa_1id

pa source

plan time

stimulus type

stim x

stim y

stim z

stim ard

stim t

stimulus position

Unique identifier of a planned action.

Source of planned action whether
controller or system.

Time of day that planned action was
added to the list of planned actions
for this aircraft.

Stimulus that will activate the planned
action. May be:"position”.

X coordinate of the stimulus when a
type of position is chosen.

Y coordinate of the stimulus when a
type of position is chosen.

Altitude value when a stimulus type of
altitude is chosen.

Along Route Distance value when a
stimulus type of ard is chosen.

Time value when a stimulus type of time
has been chosen.

AGGREGATE (stim x,stim y).

A-12



LAST RESTRICTION POINT:

| x | y | altitude | speed

.
T

-+ —

This table is used by Nominal Plan Bullder to store information
about the last restriction point processed by the routine. This 1is
a single record table.

This table 18 set by Nominal Plan Builder and is destroyed when that
process exits.

X The x coordinate at the last
restriction point processed.

y The y coordinate at the last
restriction point processed.

altitude The altitude at the last restriction
point processed.

speed The speed at the last restriction point
processed.
coordinate AGGREGATE (x,y)

MAX_ANGLE SIZE:

 —— —t
| size |
N —t
size Largest turn that will be modeled as an

instantaneous change in direction.

A-13



NPB_PLANNING POQINTS:

| FLIGHT ID | x | y | z | t | ard | tas

- — -

B

This table contains the point (on an aircraft's given trajectory) at
which Nominal Plan Builder begins its planning functions. There 1is
only one of these points per flight identification. Nominal Plan
Builder will not plan over an existing route where the controller

has assigned ATC actions.

This point, then, represents the last

point on the trajectory of the aircraft where there was some

controller interaction.

The table is set by Trajectory Estimation and is destroyed when the
data set pertaining to the flight id is destroyed.

flight id

ard

tas

coordinate

A unique identifier that distinguishes
one alrcraft's trajectory from another,
and also distinguishes one version of
an ailrcraft's trajectory from another
version.

The x coordinate of the point of last
controller interaction with the
trajectory.

The y coordinate of the point of last
controller interaction with the
trajectory.

The altitude of the point of last
controller interaction with the
trajectory.

The time at the point of last
controller interaction with the
trajectory.

The along route distance (referenced to
the aircraft's converted route) at the
point of last controller interaction
with the trajectory.

The true airspeed at the NPB planning
point.

AGGREGATE (x,y)

A-14



PAST_CUSP:

| x|yl z| time | ard | tas | 1as | mach | ground speed |

-3
T

wind speed | wind direction | temperature

g o

This table 1lists information derived at the most recently modeled
cusp. This information i1s used by the planned action processing
components of Trajectory Estimation in certain tests that determine
the starting and ending points of planned actions.

This is a single record table which is destroyed when Trajectory
Estimation exits.

X The x coordinate associated with this
point.

y The y coordinate associated with this
point.

z Altitude at the point.

time Time at the point.

ard Along route distance at the cusp

referenced to the aircraft's ROUTE.

tas Value of true airspeed assoclated
with this cusp.

ias Value of indicated airspeed
assoclated with this cusp.

mach ' Value of mach associated with
this cusp.

ground speed Speed (referenced to the ground) of

the aircraft at this cusp.

wind speed The speed of the wind at this point.
wind direction The direction of the wind at this
point.

A-15



temperature

position

wind field

The temperature of the airmass at the
position of the past cusp.

AGGREGATE (x,y)

AGGREGATE (wind speed, wind directionm,
temperature)

A-16



PAST_CUSP_TYPE:

| altitude present | hold present |

b
+

+ — +

altitude restriction present

This table stores information for the Trajectory Construction
Process. It allows that process to assign a type value to the next
cusp, as follows:

altitude present hold present’ next cusp type
no no "regular”
yes no "vertical maneuver”
no yes "hold"
yes yes ‘ "vertical hold”

The values are assumed "no,no” unless changed by either the hold or
the altitude planned action processing component. This is a single
record table which is destroyed when Trajectory Estimation exits.

altitude present Indicates the presence of a change
: in gradient for the next segment.
hold present Indicates the presence of a hold
maneuver emanating from the next
cusp.
altitude restriction present Indicator telling whether

("yes™) or not ("no”) there is a
restrictied altitude maneuver
present.

A~17



PLANNED ACTION END TIMES:

| PA ID | pa end time |

This table contains the end time for planned actions attached to the
aircraft being modeled. The table is set by the planned actiomn
processing elements of Trajectory Estimation for use by the Post
Processing component. The values of end times from this table are
joined with the values of start times given in the table PLANNED
ACTION_START TIMES to comstruct the global table
PLANNED ACTION DURATIONS.

This table is destroyed when Trajectory Estimation exits.

pa_1id Distinguishes one planned action from
all other planned actions defined
in the system.

pa_end time The time that this plamned action
ends in the modeling process. The
time is a time associated with the
trajectory of the aircraft and so
could represent a future time.

A-18



PLANNED ACTION START TIMES:

o ——

| PA ID | pa start time

T

This table contains the start time for planned actions attached to
the aircraft being modeled. The table is set by the planned action
processing elements of Trajectory Estimation for use by the Post
Processing component. The values of start times from this table are
joined with the values of end times given in the table PLANNED
ACTION END TIMES to comstruct the global table PLANNED ACTION
DURATIONS.

This table is destroyed when Trajectory Estimation exits.

pa_1id A unique identifier which
distinguishes one planned action from
all the other planned actions defined
in the system.

pa_start_time The time that this planned action
starts in the modeling process. The
time is a time associated with the
trajectory of the aircraft and so
could represent a future time.

POSITION LIMITS:
B S —— Y
x|yl
'S

This table presents a list of limits of planned actions which are
given as positions. The table is comstructed by the planned action
processing components of Trajectory Estimation for the Trajectory
Construction subfunction. The position limits are joined with all
the other limit types to determine the position of the next cusp.

This table is destroyed when Trajectory Estimation exits.

x X coordinate of the position limit.
y Y coordinate of the position limit.
position AGGREGATE (x,y) ’

A-19



PROCEDURAL RESTRICTIONS:

| RESTRICTION INDEX | RESTRICTION TYPE | RESTRICTION |

RESTRICTION QUALIFIER | RESTRICTION POINT X |

+ —

RESTRICTION_POINT Y | cleared

This table contains restriction information for the use of Nominal
Plan Builder. It provides a restriction point by which a certain
action is to be performed. That action may be to attain a certain
altitude or speed.

The table is set upon data adaptation for the AAS and exists
irregardless of the invocation state of Nominal Plan Builder.

restriction index A unique identifier that
distinguishes one unique set of entries
in this table from another.

restriction type Type of restriction to be achieved
by the restriction point:
"altitude”
"speed”.
restriction Numeric quantity related to the

restriction type which identifies the
specifics of the restriction; e.g,
12000 ft., 250 knots.

restriction qualifier Indicator relating the restriction
type to the restriction point,
indicating how the maneuver is to be
performed:
"at or above”
"at or below".
restriction point x The x coordinate of the restriction

point (where the maneuver must be
achieved). ;

A-20



resttiction;poinq_y

cleared

testtiction;point

The y coordinate of the restriction
point (where the maneuver must be
achieved).

Indicates whether or not an aircraft
may resume cleared altitude or speed
after implementation of the
restriction:

"yesn

"no”.

AGGREGATE (restriction point_ x,
restriction point_y)

A-21



PROCEDURAL RESTRICTION INDEX:

o e

SECTOR | DESTINATION | QUALIFIER INDEX |

restriction;}ndex

- —

This table is used by Nominal Plan Builder and contains indexing
information to allow access to all information about procedural
restrictions in the sector referenced.

The table is set upon data adaptation for the AAS and exists
irregardless of the invocation state of Nominal Plan Builder.

sector

destination

qualifier index

reatriction_}ndex

Unique sector identification that
allows the system to distinguish this
sector from all other sectors in the
data base,

The end point fix for a flight. This
named point can be an arrival fix
or an airport, for example.

Identification of additional
qualifiers (besides destination) that
distinguish one set of restrictions
from another. This jidentification is
used a8 an entry key into the
Additional Qualifiers table.

Identification of the set of
restrictions that apply to this
sector/destination/ additional
qualifier combination. This field is
used as an entry key to the Procedural
Restrictions table.

A-22



PROFILE REFERENCE POINT:

- —

| FLIGHT ID | X | Y | z | tas

+

The profile reference point is input to the Trajectory Estimation
process to initialize the Trajectory Construction and planned action
processing computations. The table is structured to contain a
history of these profile reference points. Since the table is input
to the computations, it exists regardless of the invocation state of
Trajectory Estimation, and is destroyed at the appropriate time
(such as when the aircraft leaves the planning region).

flight 1d Unique identification of the aircraft
plan that the profile reference
point relates to.

p 4 The x coordinate of the position in
the profile reference point. This
position is derived by
Resynchronization, and is a
projection onto the previous
trajectory.

y The y coordinate of the position in
the profile reference point. This
position is derived by
Resynchronization, and is a
projection onto the previous
trajectory.

z The altitude coordinate of the
position in the profile reference
point. This position is derived by
Resynchronization, and is a
projection onto.the previous

trajectory.

tas The true airspeed observed by
Resynchronization at the position
glven.

position AGGREGATE (x,y)

A-23



RESYNCHRONIZATION HISTORY:

| FLIGHT NAME | TIME | actual x | actual y | altitude |

wind speed | wind direction | ard | image x |

image y | direction | true_ airspeed |

+

This table stores a history of the resynchronizations made for each
controlled aircraft., The resynchronization history is a
distillation of information present at the time of a
resynchronization. The table is constructed by Resynchronization
and 1s destroyed at the appropriate time (such as when the aircraft
exits the planning regiom).

flight name - The universal identifier for a flight
in the systenm.

time The time of the resynchronization.

actual x The x coordinate of the tracked
position of the aircraft at the given
time.

actual y The y coordinate of the tracked
position of the aircraft at the given
time.

altitude The altitude of the aircraft at the

time of resynchronization.

wind speed The speed of the wind at the track
position and altitude at the time of
resynchronization.

wind direction The direction (NAS) of the wind at

the track position and altitude at
the time of resynchronization.

ard The (equivalent) along route distance
of the track position at the time of
resynchronization.

A-24



image x

image y

direction

true airspeed

The x coordinate of the perpendicular
projection of the track position at
the time of resynchronization onto
the (old) trajectory of the aircraft.

The y coordinate of the perpendicular
projection of the track position at
the time of resynchronization onto
the (old) trajectory of the aircraft.

The direction of flight for the
aircraft at the point of
resynchronization.

The true airspeed of the aircraft

at the track position at the time of
resynchronization.

A-25



SPEED LIMITS:
e
| SPEED |
tom———t

This table presents a list of limits of planned actions which are
given as speeds. The table is constructed by the planned action
processing components of Trajectory Estimation for the Trajectory
Construction subfunction. The speed limits are jJoined with all the
other limit types to determine the position of the next cusp.

This table 1s destroyed when Trajectory Estimation exits,

speed Value (tas, ft/sec) of the speed limit.

A-26



SPEED PENDING ACTIONS:

| PA_ID | pa_source | plan time | stimulus_type |

+

stim x | stim y | stim z | stim ard | stim t

. — -

This table contains speed planned actions that may gain active
control of some AGD parameter at some trajectory point after the
past cusp. The stimulus value is set by the planned action
processing elements (each time they are invoked) to be a future
trajectory event. This stimulus value is checked each time the
processing elements are reinvoked.

The table is destroyed when Trajectory Estimation exits.

pa_id

pa_source

plan time

stimulus type

stim x

stimLy

stim z

stiq_grd

Unique identifier of a planned action.

Source of planned action whether.
controller or system.

Time of day the planned action was
added to the l1list of planned actioms
for this aircraft.

Stimulus that will activate the
planned action. May be:

“ard”

“position”

“time"

"altitude”.

X coordinate of the stimulus when a
type of position is chosen.

Y coordinate of the stimulus when a
type of position is chosen.

Altitude value when a stimulus type of
altitude is chosen.

Along Route Distance value when a
stimulus type of ard is chosen.

A=-27



stim t Time value when a stimulus type of
time is chosen.

stimulus_position AGGREGATE (stim x,stim y)

A-28



SPEED RESTRICTED:
STEED_

| flag |
———t

This table is used by Nominal Plan Builder in a single invocation to
store information for several routines.

This table is set by Nominal Plan Builder and is destroyed when that
process exits.

flag Indicator, tells if speed remains
restricted after implementation of
each restriction in the
restrictions table. Field values:
Jes”
no”.

A-29



SUPPLEMENTAL CUSP_INFORMATION:

| FL_ID | TIME | acceleration | gradient | min grad |

L

max grad | direction | pa id acceleration |

pa_id gradient | pa 1d direction | ard | tas |

ias | mach | wind direction | wind speed |

temperature

-+ — 4

This structure contains information supplemental to the cusp. This
table is set by the Trajectory Construction process of Trajectory
Estimation. This information is necessary for the reinitialization
of Trajectory Estimation and for Resynchronization. The information
in this table is referenced to both a flight id and a time which
keys a record to a particular cusp for a flight's trajectory.

This table is destroyed when all data sets pertaining to the flight
id are destroyed (when a flight leaves the center), and so the table
exists between invocations of Trajectory Estimation.

- f1 44 » Identification of the flight
to which this structure
is attached.

time Time coordinate of the cusp with which

this supplemental information is
assoclated.
acceleration Value of the acceleration emanating

from this cusp.

gradient Value of the gradient emanating
from this cusp.

A-30



min grad

max grad

direction

pa_1d acceleration

pa_id gradient

pa_id direction

ard

tas
ias

mach
wind direction
wind speed

temperature

Value of the minimum gradient for the
aircraft over the segment joining the
past cusp to the next cusp if the
gradient variable is set.

Value of the maximum gradient for

the aircraft over the segment joining
the past cusp to the next cusp if

the gradient variable is set.

Value of the direction emanating
from this cusp.

Identification of the planned action
controlling the acceleration variable.
A (-1) value will be used to denote
no action changing speed.

Identification of the planned action
controlling the gradient variable.

A (~1) value will be used to denote
no action changing altitude,

Identification of the planned action
controlling the direction variable.

A (-1) value will be used to denote
no action changing direction, that is,

a direction parameter placed by Flight
Route Follower.

Along route distance (ft) of the
cusp referenced to the aircraft's
ROUTE.

Value of true airspeed associated
with this cusp.

Value of indicated airspeed for this
cusp.

Value of mach for this cusp.
Direction of the wind at this cusp.
Speed of the wind at this cusp.

Alr temperature at this cusp.

A-31



agd vector AGGREGATE (acceleration,gradient,
direction).

wind field AGGREGATE (wind_speed, wind direction).

A-32



TIME LIMITS:
tmm———t
| TIME |
tom———t

This table presents a list of limits of planned actions which are

given as times. The table is constructed by the planned action
Processing components of Trajectory Estimation for the Trajectory

Construction subfunction. The time limits are joined with all the
other limit types to determine the position of the next cusp.
This table is destroyed when Trajectory Estimation exits.

time Time value of limit.

A-33



TURN_POINTS:

PA_ID | APEX POINT X | APEX_POINT Y | SEQUENCE |

turn pt x | turn pt y | turn pt course

+ —

The Trajectory Estimation process approximates the curvilinear path
of the aircraft in a turn by a sequence of line segments. This
modeling is used to approximate the sometimes large turns that are
present in the estimation of a vector path. This table is filled
with the approximating line segments, represented by a sequence of
points, called the turn points. This plecewise linearization of the
turn is always referenced to a route point, called the apex point of
the turn.

The table is set by the Vector Planned Action processing component
of Trajectory Estimation and is destroyed when the data sets
associated with this flight id are destroyed.

pa id The planned action identifier
- distinguishes one planned action from
all the other planned actions defined
in the system. In this case, the
planned action identifier relates to
a vector maneuver.

apex point x The x coordinate of the vector apex
point around which the turn is being
approximated.

apex point y The y coordinate of the vector apex
point around which the turn is being
approximated.

sequence The sequence number of this turn

point which allows an ordering of the
turn points to' take place.

turn pt x The x coordinate of this turn point.
turn pt y The y coordinate of this turn point.
turn_pt course The course to be flown out of this

turn point.
apex point AGGREGATE (apex;poin;_x,apex;poinq_y)

turn _pt AGGREGATE (turn pt x,turn pt_y)

A-34



VECTOR_PENDING ACTIONS:

| PA_ID | pa_source | plan_time | stimulus_type |

Ll

stim x | stim y | stim z | stim ard | stim t

+ _— 4

This table contains vector planned actions that may gain active
control of some AGD parameter at some trajectory point after the
past cusp. The stimulus value is set by the planned action
processing elements (each time they are invoked) to be a future
trajectory event. This stimulus value is checked each time the
processing elements are reinvoked.

The table is destroyed when Trajectory Estimation exits.
pa_id Unique identifier of a planned action.

pa_source Source of planned action, either
controller or systenm.

plan_time Time of day the planned action was
added to the list of planned actions
for this aircraft.

stimulus_type Stimulus that will activate the
planned action. May be:
“"position”.
stim x X coordinate of the stimulus when a

type of position is chosen.

stim y Y coordinate of the stimulus when a
. type of position 1s chosen.

stim z Altitude value when a stimulus type of
altitude is chosen.

stim ard Along Route Distance value when a
stimulus type of ard is chosen.

stim t Time value when a stimulus type of
time 18 chosen.

stimulus position AGGREGATE (stim x,stim y)

A-35



VEC_PHASE:

| PA_ID | phase point x | phase point y | phase turn x |

phase turn y

& —

This structure is used by the vector planned action processing logic
of Trajectory Estimation to keep track of which turn in a vector is
being modeled.

This table is set by the Vector Planned Action processing component
of Trajectory Estimation and is destroyed when Trajectory Estimation
exits.

pa_1id The planned action identifier
: distinguishes one planned action from
all the other planned actions defined
in the system. In this case, the
planned action identifier relates to
a vector maneuver,

phase point x The x coordinate of the apex point
where the turn is taking place.

phase point y The y coordinate of the apex point
where the turn is taking place.

phase turn x The x coordinate of a turn point
which references one segment of a
plecewise linear turn.

phase turn y The y coordinate of a turn point
which references one segment of a
plecewise linear turn.

phase point AGGREGATE (phase point x,
phase_point_y).

phase_turn AGGREGATE (phase turn x,phase turn y).

A-36



WIND CELL:

| £1b x | flby | £f1b z | frb x | frb y | frb z |

T

blt x | blt y | blt z | air temp |

wind speed | wind direction

- — e

This table is used by the Trajectory Construction subfunction of
Trajectory Estimation. This table consists of one record containing
information about the wind cell where the past cusp is located.

This table is updated each time Trajectory Construction is invoked
and is destroyed when Trajectory Estimation exits.

flb x The x coordinate of the front left
bottom point of the wind cell.

flb y The y coordinate of the front left
‘ bottom point of the wind cell.

f1lb 2z The z coordinate of the front left
bottom point of the wind cell.

frb x The x coordinate of the front right
bottom point of the wind cell.

frb y The y coordinate of the front right
bottom point of the wind cell.

frb =z The z coordinate of the front right
bottom point of the wind cell.

blt x | The x coordinate of the back left
top point of the wind cell.

blt y The y coordinate of the back left
top point of the wind cell.

blt z The z coordinate of the back left
top point of the wind cell.

A-37



air temp

wind speed

wind_girection

£1b
frb

blt

The temperature of the air in the
wind cell.

The speed of the wind in this wind
cell.

The direction of the wind in this
wind cell.

AGGREGATE (f1b x,flb y,flb z)
AGGREGATE (frb_x,frb y,frb z)

AGGREGATE (blt x,blt y,blt z)

A-38



Parameters:

Ground Speed Ratio

Direction Ratio

Starting Reaction
Parameters (Srp)

Starting Overshoot
Parameters (Sop)

Restriction Overshoot
Parameters (Rop)

When used in exponential smoothing,
this ratio determines the relative
weight given to the current observation
of ground speed with respect to past
observations.

When used in exponential smoothing,
this ratio determines the relative
weight given the current observation of
direction with respect to past
observations.

The difference between the time a
controller delivers an ATC request and
the time the pilot begins to implement
the request.

The time or along route distance,
measured from the Starting Reaction
Parameters (Srp) time, by which the ATC
System expects the pilot to leave an
altitude.

During a restricted altitude change,
the along route distance (plus or
minus) from the restriction point
through which the pilot must cross to
satisfy the restriction.

A-39



APPENDIX B

TRAJECTORY ESTIMATION UTILITIES

The utilities in this appendix are those used by the Trajectory
Estimation Routines in this Specification. They provide
computational services on data known to Trajectory Estimation.

B.l Pressure Ratio

This routine computes a pressure ratio used frequently in speed
conversion routines to tramslate accurately between true airspeed
and indicated airspeed. It requires the pressure altitude (in feet)
as input. The returned parameter is the ratio of the total pressure
at the the inlet of the pitot tube to the static pressure at that
altitude. The computations are performed using ICAO Standard Day
values of static air pressure and temperature at sea level. These
values are functionally related to the total pressure at the pitot
tube (which i1s dependent on the mach value for the speed the
aircraft is currently flying).

This routine returns the pressure ratio depending on whether the
input pressure altitude is below or above the ICAQ Standard Day
value of the troposphere (38069 feet).

ROUTINE Pressure Ratio;
PARAMETERS

Pres Alt IN,

Pres | Ratio OuT;
DEFINE VARIABLES

- Pres_Alt The altitude of the aircraft in feet
measured by altimeter
Pres_Ratio The ratio of the total pressure at the

pitot tube to the static pressure at
the input altitude;
IF (Pres_Alt LE 36089)
THEN
Pres Ratio = (1 - (Pres_Alt * .000006876)) ** 5,256;

ELSE
Pres Ratio = .2234 * EXP((36089 - Pres Alt) / 20806),

END Pressure  Ratio;

B~-1



B.2 1Ias To Tas

This routine translates between knots of indicated airspeed and
knots of true airspeed at a given pressure altitude in feet, and a
given temperature in degrees Rankine.

ROUTINE Ias To Tas;
PARAMETERS ~
In Speed IN,
In Alt IN,
In Temp IN,
Out__Speed OuT;
DEFINE VARIABLES
In Speed

In Alt
In Temp
Out_Speed

Out_Mach

Indicated airspeed value (in knots) of the
speed to be translated

The altitude (in feet) where the conversion
i1s to take place

The temperature (degrees Rankine) of the air
where the conversion i1s to take place

The true airspeed value (knots) output from
this routine

The mach value for the given input indicated
airspeed at the given altitude;

CALL Ias To Mach(In . Speed IN,In Alt IN,Out | Mach OUT);
Out Speed =39 * Out Mach * SQRT T(5 ¥ In  Temp / 9);

END Ias To_Tas;



B.3 Tas To Mach

This routine translates from knots of true airspeed to mach number
for a given temperature in degrees Rankine.

ROUTINE Tas_To_ Mach;
PARAMETERS

In Speed IN,

In . | Alt IN,

In ._Temp IN

Out | Mach‘EUT-
DEFINE VARIABLES

In_Speed

In Alt
In Temp

Out_yach

Speed input to be translated at this
altitude and temperature. The units are
assumed to be in knots of true airspeed

The altitude (feet) whére the translation
18 to take place

Temperature of the air (degrees Rankine)
where the translation is to take place

The mach equivalent to the input true
airspeed value at the altitude and
temperature input;

Out_Mach = In Speed / (39 * SQRI(5 * In Temp / 9)) ;

END Tas To Mach'

B-3



B.4 Ias To Mach

This routine translates between knots of indicated airspeed and the
mach number at a given pressure altitude in feet.

ROUTINE Ias To Mach;
PARAMETERS -
In Speed 1IN,
In . L Alt IN
Out Mach ouT;
DEFINE VARIABLES
In Speed The speed input for conversion. The input
speed is assumed to be in knots of
indicated airspeed.

In Alt The pressure altitude (feet) where the
translation to mach number will take
place.

Out Mach The mach equivalent to the indicated

airspeed input to this routine at the
altitude given

Pres Ratio The ratio of total pressure to static
pressure at the altitude given
Terml Value for an intermediate processing step in
' the computations
Term2 Value for an intermediate processing step in

the computations;
CALL Pressure Ratio(In Alt IN,Pres Ratio OUT);
Terml = (1 + .2 * (In Speed_/ 661.5) % 2) #% 3.5 — 1;
Term2 = (1 + Terml / Pres Ratio) ** (1 / 3. 5) - 1;
 Out_Mach = SQRT(5 * Term2) ;
END Ias_To_Mach

B~4



B.5 Mach To Tas

This routine translates from the mach number to knots of true
airspeed at a given temperature in degrees Rankine. '

ROUTINE Mach To Tas;
PARAMETERS
In_Mach IN,
In_Temp IN,
Out Speed OUT;

DEFINE VARIABLES
In Mach The speed of the aircraft expressed as a
percentage of the speed of sound at the
altitude in question
In Temp The temperature of the air in degrees Rankine
at the position of translation
Out_Speed The speed of the aircraft expressed in knots

true airspeed;
Out Speed = 39 * In Mach * SQRT(5 * In Temp / 9);
END Tas To Mach;

B-5



B.6 Tas To Ias

This routine translates from knots true airspeed to knots of ‘
indicated airspeed at a given pressure altitude in feet, at a given
temperature in degrees Rankine.

ROUTINE Tas_To_las;
PARAMETERS

In Speed IN,

In Alt IN

In Temp IN,

Out Speed ouT;
DEFINE VARIABLES

In_Speed The speed of the aircraft (knots TAS) to be
translated

In Alt The altitude where the translation will take
place (feet)

In_Temp The temperature of the air (degrees Rankine)
where the translation will take place

Out_Speed The speed of the aircraft (knots IAS) of the

: aircraft at the input altitude and

temperature

Out Mach The mach equivalent of the input TAS value;

GALL Tas_To Mach(In Speed IN,In Temp IN,Out Mach OUT);
CALL Mach_To Ias(Out Mach IN,In_ Alt IN,Out Speed OUT),
END Tas_To_| Mach;



B.7 Mach To Ias

This routine translates from the mach number to knots of 1ndicated
airspeed at a given pressure altitude in feet.

ROUTINE Mach To las;
PARAMETERS
In Mach IN,
In Alt IN,
Out Speed OUT;
DEFINE VARIABLES .
In Mach The speed of the aircraft given as a ration
of the speed of sound at the altitude of
the tramnslation

In Alt The altitude of the tramslation (in feet)
Terml Value for an intermediate processing step in
' the computations
Term2 Value for an intermediate processing step in
the computations
Pres Ratio The ratio of the total pressure to the

static pressure at the pitot tube;
CALL Pressure Ratio(In Alt IN, Pres Ratio OUT);
Terml = (1 + .2 * (In Mach ;7'2)) #x 3.5 = 1;
Term2 = (1 + Terml * Pres Ratio) ** (1 / 3. 5) - 1;
Out _Speed = 661.5 * SQRT(5 * Term2);
END Mach To_Ias;

B~7



B.8 Tas To Ground

This routine translates between an input true airspeed and the
assoclated ground speed. The computation uses the AGD vector to
obtain the direction of the aircraft. It obtains the wind value from
the past cusp and forms a direction difference between the direction
of the aircraft and that of the wind. The ground speed obtained is
the addition of the true airspeed to the component of the wind
velocity vector which lies along the course of the aircraft.

ROUTINE Tas_To_Ground;
PARAMETERS Ground | speed OUT;
REFER TO SHARED LOCAL
AGD_VECTOR 1IN,
PAST CUSP IN;
DEFINE VARIABLES
Del Angle direction - wind directionm;
#Del Angle is aircraft direction - wind direction#
Del Angle = AGD VECTOR.direction ~ PAST CUSP.wind direction;
Ground Speed = PAST CUSP.wind | _speed * COS(Del Angle)+
SQRT(Tas ** 2 — (PAST CUSP.wind speed * SIN(Del Angle)) ** 2);
END Tas_To_Ground;




B.9 Mach Ias Switchover

This routine computes the pressure altitude (in feet) at which a
given mach number will have the same translated true airspeed ‘(knots)
value as a given indicated airspeed (given in knots).

ROUTINE Mach Ias Switchover;

PARAMETERS
In Macﬁ IN,
In . _Ias IN,
Out Alt OUT;
DEFINE VARIABLES
In Mach The mach value associated with this
switchover point
In Ias v The indicated airspeed (knots) associated
with this switchover point
Out Alt The pressure altitude (in feet) at the
switchover point
Terml ' Value for an intermediate processing step in
the computations
Term2 _ Value for an intermediate processing step in
the computations
Pres Ratio The ratio of the total pressure to the

static pressure at the pitot tube;

Terml = (1 + 2 % (In_Ias / 661.5) ** 2) -1;
Term2 = (1 + .2 * (In Mach *%2)) ** 3.5 - 1-
Pres_Ratio = Terml / Term2;
Ternl = (1 - (Pres Ratio ** (1 / 5.256))) / .000006876;
Term2 = 36089 - 20806 * LOG(Pres Ratio / .2234);
IF Term 2 GT 36089
THEN

Out_Alt = Term2;
ELSE

Out Alt = Terml;

END Mach Tas _Switchover;



B.10 ILinear Turn

This utility is used to model a turn as a number of linear

segments. For each turn it must be supplied with the course before
the turn and the course after the turn, aircraft speed, wind data,
and turn rates. Figure B-1 shows that the aircraft's path is
described in two ways. The first is a ground based system using the
course before the turn, course after the turn, and the ground track
during the turn. In the second way, the aircraft's path can be
described with respect to the airmass in terms of heading before the
turn, heading after the turn, and the turn relative to the airmass.
This airmass system can be converted to a ground based system by the
addition of wind data.

This routine‘linearizes the change in heading and then converts the
acquired data to course angles and distances relative to the ground.

The utility's first task is to determine the heading change. Based
on the heading change, the routine will decide how many segments are
needed to model the turn. Each turn segment will be of equal
length. Figure B-2 ghows how a two segment turn could be used to
model the heading change in Figure B-1. The points A (where the
aircraft starts the heading change), C (where the aircraft starts to
fly the new heading,) and B the new modeling point can then be
translated to the ground based system using wind data. Figure B-3
shows the path created by this translation. '

This utility calculates the turn points and the course to be
followed between turn points.

B~10



11-d

Course
Before
Turn

/

/

3 Heading Change

S~

Relative
To Afir
Mass

FIGURE B-1
TURNS

Actual

- Path

Flown

Wind Component

Course
After
Turn



H = Heading Change
AB = BC

FIGURE B-2
LINEARIZING CHANGE IN HEADING

. B-12



Apex Point

Actual
A, Al Path

, FIGURE B-3
TRANSLATION TO GROUND BASED SYSTEM

B-13



ROUTINE Linear Turn;
PARAMETERS
Course_l1 1IN,
Course 2 1IN,
Apex Point IN,
TURN OUT,
F1 Id IN;
REFER TO SHARED LOCAL
PAST CUSP 1IN,
MAX ANGLE SIZE IN;
DEFINE TABLES

TURN TURN POINT TABLE .

sequence
turn pt
turn pt_course
DEFINE VARIABLES
~Course 1
Course 2
Apex Point(2)
F1 Id

Heading 1

Heading 2

Del Heading

Length

Heading

Rate

J

Ground Speed

H_Ch_Pt(*,2)

Points(*,2)

Wind Dir

Wind Speed

Mult

Ard

First _Point(2)

Number Segments
DEFINE CONSTANTS

Py (3.14159265)

Order of point
Point in the turn
Course out of point;

Course into apex point

Course out of apex point

Apex of turn (x,y) ’

Identification of flight undergoing Trajectory
Estimation

Heading before turn

Heading after turn

Change in heading

Length each segment should be

Segment heading

Turn rate

Index

Alrcraft ground speed

Heading change point(x,y)

Turn point(x,y)

Wind direction

Wind speed

Wind factor wind in air to ground conversion

Along route distance

Along route start point(x,y)

Number of segments needed to model turn;

circumference/diameter;

B-14



Wind Speed = PAST CUSP.wind speed;
Wind Dir = PAST CUSP.wind direction;
Heading 1 = Course 1 + ARCSIN(Wind Speed *
SIN(Course 1 - Wind Dir)/PAST CUSP.tas);
Heading 2 = Course 2 + ARCSIN(Wind Speed*
SIN(Course 2 - Wind Dir)/ PAST CUSP.tas);
Del Hbading = Heading 2 - Hbading 1;
correct Del . Heading to be between -PI and PI;
Number Segments = FLOOR(Del Heading/MAX ANGLE SIZE.size);
IF Number -_Segments EQ ' EQ 0
THEN #turn modeled by one point#
~ INSERT INTO TURN
(sequence™ 1,turn pt = Apex Point,
turn pt_course = Course2);
ELSE #Find length each turn segment should be#
T CALL Determine : Turn Rate(PAST CUSP.tas IN,Rate OUT);
Length=ABS (PAST CUSP.tas*2*SIN(Del Heading/(z*ﬁiisér Segments))
/Rate); feach segment will be the same length#
Heading=Heading 1+Del_ Heading/(2*Number Segments);
CALL Tas To _Ground(Ground | Speed OUT);
H Ch_Pt(1)=Apex Point ~ Ground Speed*ABS(TAN(Del Heading/2))/
Rate* (SIN(Course_1),C0S(Course 2));
CALL XY To Ard (H Ch Pf?'? IN, Ard OUT);
IF Ard LT PAST CUSP.ard
T_EN # we've missed the start of turn start turn nowf
H Ch Pt(1) = PAST_ CUSP.coordinate
E # insure turn point is on route #
CALL Ard Translation To Route(Fl Id IN, Ard IN, First Point
TouT);
H CH"t(l) = Pirst Point,
Point(1)=H _Ch Pt(1)
"FOR J=2 TO  Number _Segments+l:#calculates turn point #
T H_Ch Pt(J) = H Ch Pt(J-1)+Length*(SIN(Heading),COS (Heading))
Mult*Wind Speed*(J-l)*(Del Heading/(Number Segments*Rate)
Points(J) = H Ch Pt(J)+MultA(SIN(Wind Dir),COS(Wind Dir),.
Heading=Heading + Del Headin§7__ ber segment,
FOR J=1 TO Number Segments,
~ INSERT INTO TURNS
(sequence = J, turn pt = Points(J),
turn pt course = DIRECTION(Points(J),Points(J+1)));
INSERT INTO TURNS
(sequence = Number _Segments+l, turn point =
Points(Number_Segments+l),turn_pt_course = Course 2);
END Linear_ Turn;

B-15



B.11 Newton Raphsoh

This routine supplies the ability to solve a fourth degree
polynomial through the use of Newton's method. The coefficients of
the quartic are input to this routine. These values are used to
compute the derivative of the quartic (a cubic polynomial). The
Newton's method solution of the quartic is then an iterative
(quadratic convergence) operation until successive iterations fall
within a tolerance limit.

ROUTINE Newton Raphson;

PARAMETERS
X INOUT,
A IN,
Convergence IN;
DEFINE VARI
01ld X 01d value before iteration
New_X New value after the iteration
Delta Differrence of 0ld Value, New Value
X Root of fourth degree equation
A(5) Coefficients of a fourth degree equation of the
form a*x**4{+bRx*R3ichxrr24déxte = 0
F _Prime X Differential of above fn at x
F X Fn described above in A(S5)
Convergence Convergence parameter to stop iteration;
0l1d X = X;

Delta = 2 * Convergence;
REPEAT UNTIL (Delta LE Convergence)
F X = A(1) * 01d X X *% 4 + A(2) * 0ld X ** 3 +
A(3) * 01d X ** 2 + A(4) * 01d | X + A(5);
F Pripe X = 4% A1) *x01d X ** 3 4+ 3 = A(Z) * 01d X ** 2 +
2 ® A(3) * 01d X + A(4);
NewX = 0ld X - F X/F Prime X;
Delta = ABS(New X - 0Id X);
01d X = New X;
X= Nev_x-
END Newton Raphson;

B~16



B.12 Shut Down Pa

This routine is used by all the planned action processing
components. For an input list of planned actions, the routine fills
in the planned action end times as the time at the past cusp and
deletes each planned action from the proper pending action list.

ROUTINE Shut Down PA;
PARAMETERS
D A 1IN,
Table ' > Type IN;
REFER TO SHARED LOCAL
PAST _CUSP 1IN,
PLANNED ACTION END TIMES INOUT,
SPEED_PENDINQJACTIONS INOUT,
ALTITUDE PENDING ACTIONS INOUT,
VECTOR _. PENDING ACTIONS INOUT,
HOLD PENDING ACTIONS INOUT;
DEFINE TABLES

D A DELETE ACTIONS
pa_id planned action identifications to delete;
DEFINE VARIABLES
Table Type input table type to work with:
"gpeed”
"hold"
"altitude”
"vector”
. Table Name Variable name of table to delete from;
F

# first set the end time of the planned action that is #
# shutting down #
REPEAT FOR EACH D A RECORD;
INSERT INTO PLANNED ACTION END TIMES
(pa id = D A.pa id,
pa_end time = PAST ' CUSP.time);
CHOOSE CASE
WHEN Table Type EQ 'speed' THEN
" Table Name = SPEED_ PENDING_ACTIONS;
WHEN Table  Type EQ '‘altitude' THEN
Table | Name = ALTITUDE . _PENDING KCTIONS'
WHEN Table > Type EQ ‘vector' THEN
Table | Name = VECTOR ._PENDING __ ACTIONS'
WHEN Table  Type EQ "hold' THEN
" Table  Name = HOLD PENDING . NG ACTIONS;
DELETE FROM Table Name ¥ now delete from the appropriate table #
~ WHERE Table Name. pa_id IS IN D A.pa 1id;
END Shut Down_PA;

B-17



B.13 Get Time For Speed Change

This routine is used by several of the routines responsible for the
computation of stimulus values for speed planned actions. For an
input speed and a target speed (either value in either Ias, Mach, or
Tas), the routine computes the time needed for the speed change.

For the time value, it uses the value of acceleration or
deceleration for this aircraft from the aircraft class
characteristics tables.

ROUTINE Get Time For_ Speed Change;
PARAMETERS
Start_Speed Type IN,
Start Speed Value 1] IN,
Start__ “Altitude IN,
Start Temperature IN,
End Speed Type IN,
End | Speed Value 1 IN
End | | Altitude IN,
End Temperature 1IN,
Time For Speed | Change ouT,
Ayerage_ihs QHI-
REFER TO GLOBAL
AIRCRAFT ACCELERATION IN,
AIRCRAFT DECELERATION IN;
DEFINE VARIABLES

Start_Speed Type Type of speed units for start speed

Start Speed Value Value of start speed

Start_Altitude Altitude at start speed

Start_ﬂbmperature Temperature at start speed

End Speed_ Type Type of speed units for end speed

End Speed Value Value of end speed

End_Altitude Altitude at end speed

End_Temperature Temperature at end speed

Time For_ Speed Change Time it takes to accelerate from

: start 'speed to end speed

Average Tas Average value of start and end tas's

Start_Tas Tas equivalent for start speed

End_Tas Tas equivalent for end speed

Loc_Acceleration Acceleration value from aircraft
characteristics tables

Loc Deceleration Deceleration value from aircraft

characteristics tables;

B-18



CHOOSE CASE
WHEN Start_Speed Type EQ 'mach' THEN
CALL Mach  To Tas(Start_Speed Value IN,Start Temperature IN,
" Start_Tas OUT);
WHEN Start Speed | Type EQ 'ias' THEN
CALL Ias To Tas(Start _Speed | Value IN, Start_Altitude IN,
"~ Start_Temperature IN, Start_Tas OUT)
CHOOSE CASE
WﬁEN End | Speed Type EQ 'mach' THEN
CALL Mach To Tas(End | Speed Value IN,End Temperature IN,
~ End_Tas OUT);
WHEN End Speed Type EQ 'ias' THEN
CALL Ias To Tas(End | Speed Value IN, End Altitude IN,
T End Temperature IN, End Tas OUT),
Average Tas = AVG(Start_Tas,End Tas),
IF Start Tas - End Tas LT 0
THEN .
SELECT FIELDS acceleration # get info for later inclusion #
FROM AIRCRAFT_ACCELERATION (A_A)
INTO Loc Acceleration
WHERE A A.source is best available for this aircraft AND
Start Altitude 1S IN the appropriate altitude range;
Time For_Speed Change = (End Tas - Start _Tas) /
Loc_Acceleration,

ELSE
SELECT FIELDS deceleration # get info for later inclusion #
~ FROM AIRCRAFT DECELERATION (A_D)
INTO Loc__ Deceleration
WHERE A ] D.source 1s best available for this aircraft AND
T Start _Altitude IS IN the appropriate altitude range;
Time For_Speed Change = (Start_Tas — End Tas) /
Loc Deceleration,
END Get_Time_For_Speed;Change;

B-19



B.14 Determine Turn Rate

This routine provides the turn rate for an aircraft that is modeled
in a turn. The method is to obtain one of two values:

o three degrees per second

o the turn rate produced by a 25 degree bank angle
whichever 1is least.

ROUTINE Determine Turn Rate;
PARAMETERS

In Speed IN,

Turn Rate OUT;
DEFINE VARIABLES

In_Speed input speed of the aircraft (tas)
Turn Rate turn rate of the aircraft;
DEFINE CONSTANTS |
G 32,1725 acceleration due to gravity (ft/sec/sec)
T 0.05236 three degrees/sec turn (radians)
D25 0.43633 twenty five degrees in radiamns;

#while the computations presented are radians/sec, it is assumed #

#that this routine returns the answer in the units necessary —— any#

#conversion to other units is obvious #
Turn Rate = MIN(T,G * TAN(D25) / In_Speed);

END Determine Turn Rate;

B-20



B.15 Ard Translation To Route

This routine accepts an along route distance for an aircraft and
returns the point on the converted route which has that along route
distance. The flight identification input is used to access the
converted route stored in the ROUTES table.

ROUTINE Ard Tramslation To Route;
PARAMETERS

Loc_Fl Id 1IN,

Ard IN,

Coordinate OuT;
REFER TO GLOBAL

ROUTES IN;
DEFINE VARIABLES
Loc _Fl1 1d flight identification for this flight undergoing
Trajectory Estimation
Ard along route distance
Coordinate point on route corresponding to ard
Route Node(*,2) array of nodes x,y in route
Total Dist accumulated distance
Index index to Route Nodes
F1 Name flight name
Angle course direction;

#select route #
SELECT FIELDS flight name
FROM FLIGHT ID_ASSOCIATIONS(F I A)
INTO Fl . Name
WHERE FIA.fl . 1d EQ Loc_F1 Id;
SELECT FIELDS coordinate
FROM ROUTES
INTO Route Node
WHERE ROUTES. flight name EQ F1 Name
ORDERED BY ROUTES.along route diatance,
Total Dist = 0;
Index = 0;
# find route segment where ard is located#
REPEAT WHILE Total Dist LT Ard;
Index = Index + 1;
Total Dist = Total Dist + DIST(Route Node(Index),
Route  Node(Index+1));
Angle = DIRECTION(Route Nbde(Index+l) Route_Node(Index));
Coordinate = Route Nodé?lndex+l) + (Total Dist - Ard)®
(SIN(Angle) ,C0S(Angle));
EEB_Ard_Iranslation;Io_Boute,

B-21



B.16 Route Direction At Point

This routine accepts a point on the converted route of an aircraft
and returns the direction the aircraft will fly at that point if the
aircraft proceeds along the converted route.

ROUTINE Route | Direction At Point;
PARAMETERS
~ Toc FI _1d 1IN,
Point IN,
Route Direction OUT;
REFER TO GLOBAL
FLIGHT ID ASSOCIATIONS 1IN,
ROUTES IN,
DEFINE VARIABLES

Loc F1 1d flight plan 1d
Point(2) point (x,y)on the route
Route Direction direction at point
Fl Name flight name
Rthq_Nodes(*,Z) nodes(x,y) on the route

. Index index to route nodes; 4

#select route#

SELECT FIELDS flight name
FROM FLIGHT ID_ASSOCIATIONS(F I A)

INTO F1 _Name
WHERE F . ' I A.fl id‘_g Loc_ Fl 14;

SELECT FIELDS coordinate
FROM ROUTES
INTO Route Nodes
WHERE ROUTES. flight name EQ F1 Name
ORDERED BY ROUTES.along route distance;

Index = 0;

# find route segment point is on#

REPEAT UNTIL (DIRECTION(Route Nodes(Index),Point)
(DIRECTION(Route Nodes(Index),Route Nodes(Index+l)) AND
(DIST(Route Nodes(Index), Point) LT
DIST(Route_Nodes(Index),Route Nodes(Index+l))),
Tndex = Index+l,

Route Direction =
DIRECTION(Route Nodes(Index),Route Nodes(Index+l));

END Route Direction At Point;

B-22



B.17 Wind Field

This routine finds wind speed, wind direction and temperature at an
xyz position. '

ROUTINE Wind Field;

‘PARAMETERS XYZ POSITION 1IN,
WIND FIELD OUT;

REFER TO GLOBAT WINDS IN;

DEFINE TABLES

XYZ POSITION Pogition of aircraft needing wind data

x x coordinate of position
y y coordinate of position
z z coordinate of position
WIND FIELD All components of wind data
speed wind speed
direction wind direction
temp air temperature;
# -4
WIND FIELD = SELECT FIELDS wind field
FROM WINDS

WHERE WINDS.frb GE XYZ_POSITION # compare elt-by-elt #
" AND WINDS.blt LT XYZ_POSITION;# compare elt-by-elt #
END Wind Field'

B~23



B.18 Speed To Ground

This routine converts from speed (tas) to ground speed.

ROUTINE Speed To_Ground;

PARAMETERS
Coord IN
Alt IN
Speed N
Course IN
Ground OUT; )
DEFINE VARIABLES
Coord(2) X,Y position
Alt Altitude
Speed Tas '
Course Direction at Coord
Ground Ground Speed

Del Angle Direction - Wind Direction
Wind Speed Wind Speed

Wind Dir Wind direction

Temp Temperature;

CALL Wind Field (Coord IN,Alt IN,Wind Speed OUT,Wind Dir OUT,
Temp OUT); T -

Del Angle = Course — Wind Dir;

Ground = Wind Speed * COS (Del Angle) + SQRT (Speed **2 -
(Wind Speed * SIN (Del Angle) **2);

- END Speed To_Ground;

B-24



B.19 Get Groundspeed

This routine translates given true airspeed to corresponding
groundspeed using wind cell information from current wind cell

(WIND CELL).

ROUTINE Get_Groundspeed;
PARAMETERS Tas IN, Groundspeed OUT
REFFR TO SHARED LOCAL

WIND CELL IN,
AGD VECTOR 1IN;
DEFINE VARIABLES _
Tas Input true airspeed
Groundspeed Equivalent groundspeed
Wind Cross Cross track wind component
Wind Along Along track wind component
Delta Theta Difference between agd vector direction
and wind direction;
# -4

Delta Theta = AGD VECTOR.direction — WIND CELL.wind direction;

Wind Tross = WIND CELL.wind speed*SIN (Delta Theta);

Wind Along = WIND CELL.wind speed*COS (Delta_Theta);

Groundspeed = SQRT (Tas***2 - Wind Cross**Z) + Wind Along;
END Get_Groundspeed;

B-25



APPENDIX C

PENDING ALTITUDE LIMITS UTILITIES

The utilities in this appendix are used in establishing the starting
conditions of actions in the altitude pending actions table. The
major routines used in establishing these starting conditions are
given in 4.3.8 (see Include Altitude Pending Action limits, Figure
4-79). The Speed Conversion elements as well as the element Wind
Field can be found in Appendix B. The elements XY To_Ard and
Determine Wind Cell are located in Section 4.4.

Cc-1



C.1 Find Target Altitude

This routine 1is used to find the target altitude for the active
altitude action.

ROUTINE Find Target Altitude;
PARAMETERS F1 Id IN Target Altitude OUT,Act Pa Id OUT;
REFER TO GLOBAL
FLIGHT PLANS IN,
FLIGHT . 1D ASSOCIATIONS IN,
ALTITUDE CHANGE | PLANNED A ) ACTIONS IN;
REFER TO SHARED LOCAL
ACTIVE PLANNED ACTIONS IN;
DEFINE VARTIABLES

F1 1d Identity of aircraft undergoing Trajectory
Estimation
Target Altitude Target altitude
Act Pa 1d Actlive actions id
Flight Name Flight name
Resume_Time Resume climb time
# -+

SELECT FIELDS pa id,target altitude,resume climb time
FROM ALTITUDE « CHANGE PLANNED ACTIONS(A'U P A)
INTO Act Pa Id,Target Altitude,Resume Time
WHERE A C P ' A.pa_id EQ ACTIVE_ PLANNED _ ACTIONS pa_id AND

~ ACTIVE | PLANNED _ACTIONS.pa_type EQ Taltitude';

IF (Resume Time NE 'mome')

THEN # target altitude is cruise altitude #

SELECT FIELDS flight name
INTO Flight Name
FROM FLIGHT_ID_ASSOCIATIONS (F_I A)
WHERE F I A.fl id EQ Fl1 Id;
SELECT F1ELDS approved cruise  altitude
FROM FLIGHT PLANS
INTO Target . “Altitude '
WHERE FLIGHT ' PLANS.flight name EQ Flight Name;
END Find Target Altitude,

c-2



C.2 Calculate Speeds And Times

This routine finds the goal speed for the active actions and
determines how long it will take to accelerate. It also determines

1f the goal can be met in the given amount of time and calculates
the average speed during acceleration.

ROUTINE Calculate Speeds And Times;
PARAMETERS F1_Id IN, Acc_Time INOUT, Del Time INOUT, Target_Speed
INOUT, Avg_Speed INOUT, Pa Time IN);
REFER TO GLOBAL
ALTITUDE_CHANGE PLANNED ACTIONS IN,
SPEED CHANGE PLANNED ACTIONS IN,
ATRCRAFT MAX ENDURANCE SPEED IN-
REFER TO SHARED LOCAL -
ACTIVE PLANNED ACTIONS IN,
PAST CUSP 1IN,
AGD_VECTOR IN;
DEFINE TABLES

STATE STATE MODELED FROM
position x X position
position y Y position
tas Tas
ias  Ias
mach Mach
z Altitude
time Time
ard Along route distance
temp Temperature
position AGGREGATE (position x, position y);
DEFINE VARIABLES
~ FL_1d Identity of aircraft for Trajectory
Estimation
Acc Time Time required to accelerate
Del Time Remaining time
Target Speed Speed to accelerate to
Avg Speed Average speed during acceleration
Pa_Time Time to be accounte for
Tran_Type Transition type climb or descent;

c-3



CHOOSE CASE
WHEN 'speed' IS IN ACTIVE_PLANNED ACTIONS.pa type
~ THEN # find target speed #
SELECT FIELDS target speed
INTO Target Speed
FROM SPEED | CHANGE PLANNED ACTIONS(S C_P_A)
WHERE S P | C . A.pa__ 1d EQ_AGD VECTOR. pa : id acceleration,

WHEN 'hold' IS IN ACTIVE PLANNED )_ACTIONS THEN
¥ select holding speed #

SELECT FIELDS speed
FROM ATIRCRAFT MAX ENDURANCE SPEED(A M E §)
INTO Target Speed
WHERE A M E S.source is equal to the best available
~ AND PAST " CUSP.z 1s in A ME S altitude range;
OTHERWISE ¥ due to an altitude maneuver #
SELECT FIELDS transition type

FROM ALTITUDE CHANGE PLANNED ACTIONS(A cCP A)
INTO Tran Type
WHERE A C P A.pa 1d_§$ AGD_YECTOR.pa;;q_geceleration;
IF Tran Type _g ‘descent
THEN # must be slowing to 250 IAS#
T CALL Ias_To_Tas(250 IN,10000 IN, PAST CUSP.temperature
~ 1IN, Target_ Speed OUT),
ELSE #must be changing to climb speed#
CALL Set_Up_State (Fl Id IN, PAST CUSP.tas IN,
PAST CUSP position IN, PAST_ CUSP.z IN, PAST CUSP.time
IN, STATE OUT);

CALL Nominal Climb _Speed(STATE IN, Target Speed OUT);
Acc_Time = (Target Speed - PAST CUSP.tas)/
AGD VECTOR.acceleration,

Acc_Time = MIN(Acc Time,(Pa_Time - PAST | CUSP.time));
Avg Speed = PAST ' CUSP.tas + AGD VECTOR.aceeleration ®
Acc_Time/2;

Del Time = MAX(0,(Pa_Time - PAST CUSP.time - Acc _Time));
END Calculate Speeds And | Times;

C-4



C.3 Set Up State

This routine sets up STATE , which is a modeled position similiar
to PAST CUSP.

ROUTINE Set Up_ State;
PARAMETERS F1__ 1d IN, Speed IN,Coord IN,Altitude IN, Time

IN,STATE OUT,

DEFINE TABLES
STATE STATE MODELED TO
position x X position
position y Y position
tas Tas
ias las
mach Mach
z Altitude
time Time
ard Along route distance
temp ' Temperature
position AGGREGATE(position x,position y);
DEFINE VARIABLES .
F1 Id Identity of aircraft for Trajectory
Estimation
Speed - Speed at coord
Coord(2) Last modeled point(x,y)
Altitude Altitude at coord
Time Time at coord
Ias Indicated air speed at coord
Mach ‘ Mach at coord
Loc_Ard Along route distance at coord
Wind Speed Wind speed
Wind Direction Wind direction;
# begin #

CALL Wind_Field (Coord IN, Altitude IN, Wind_Speed OUT, Wind_
" Direction OUT, STATE.Temp OUT);
CALL Tas To_las (Speed IN, Altitude IN,STATE.temp IN, las OUT);
CALL Taa to_Mach(Speed IN Altitude IN,STATE temp IN, Mach OUT OoUT);
CALL XY To Ard(Fl Id IN, , Coord IN, Loc  Ard OUT)
INSERT INTO STATE
(position = Coord,
tas = Speed,
ias = Ias,
mach = Mach,
z = Altitude,
time = Time,
ard = Loc_Ard);
END Set_Up_ State;

C=5



C.4 Nominal Climb Speed

This routine returns the nominal climb speed in knots tas for the
supplied altitude.

ROUTINE Nominal Climb Speed;
PARAMETERS Nom Climb Sp OUT, STATE IN;
REFER TO GLOBAL

NOMINAL CLIMB SPEEDS IN;
DEFINE TABLES

STATE STATE MODELED TO.
position x X position
position y Y position
tas Tas
ias Ias
mach Mach
z Altitude
time Time
ard Along route distance
temp Temperature
position AGGREGATE (position x,position y);
DEFINE VARIABLES
Nom Climb Sp Nominal climb speed in tas
Climb las Climb indicated airspeed
Climb Mach Climb mach
Tran_Alt Transition altitude between mach and ias;
# begin #

SELECT FIELDS ias,mach
FROM NOMINAL CLIMB SPEEDS(N_C S)
INTO Climb_. Ias Climb Mach
WHERE NC S.source 18 equal to the best available;
# must f£ind out which speed to usef
CALL Mach Ias_Switchover(Climb Mach IN,Climb Ias IN,Tran Alt OUT),
IF STATE.z GE Tran . Alt
THEN #Above Tran Alt return mach converted to tas#
CALL Mach To Tas(Climb Mach IN,STATE.z IN, STATE.temp IN,
~ Nom Climb Sp OUT);
ELSE #below return 1as converted to tas#
" CALL Ias To Tas(Climb Ias IN,STATE.z IN ,STATE.temp IN,
" Nom_CIimb Sp OUT);™
END Nominal | Climb Speed-

c-6



C.5 TIME AT POINT

This routine calculates the speed and the time at a given point.

ROUTINE Time At Point;
PARAMETERS Fl Id IN, Goal Point IN,New Time INOUT,Gradient IN,
New Coord IN, Speed INOUT Altitude IN, Acc IN,

DEFINE TABLES
VECTOR_POINTS POINTS IN VECTOR YET TO BE MODELED
sequence Sequence number of point
position x X position of point
position y Y position of point
position AGGREGATE(position x,positi ),
ROUTE POINTS POINTS IN ROUTE YET TO BE HODELE'Ey
ard Along route distance
position x X position of point
position y Y position of point
position AGGREGATE(position x,position_y); .
DEFINE VARIABLES
F1_1d Identity of aircraft undergoing Trajectory
Estimation
Goal Point(2) Point to model to
New Time Time Accounted for
Gradient Gradient at current position
Speed Speed to be used
Altitude Altitude at position
New Coord(2) (X,Y) Coordinate at elapsed time
Ace Acceleration
Goal Ard Along route distance of goal point
Course Course at current position
Ground Ground speed
M Dist Minimum distance
01d_Speed 01d speed
Avg Speed Average speed
W_Ard Distance to wind boundary
Vec_Point(2) Point in vector (x,y)
Rout_Point(2) Point on route (x,y)
Loc_Ard Pogition ard
Boundary Point(2) Wind cell intersection (x,y)
Z Intersection Altitude wind cell intersection;



01d Speed = Speed;
CALL XY To Ard(FL Id IN, New Coord IN,Loc_Ard OUT);
CALL Set Up Vector And Route points?'l Id IN,Loc_Ard IN,
~ ROUTE_POINTS OUT, VECTOR POINTS OUT);
#find possible cl changes in direction#
CALL XY To_Ard(FlL_Id IN, Goal Point IN,Goal Ard OUT);
REPEAT WHILE Loc Ard LT Goal . Ard
IF COUNT (VECTOR_POINTS) NE 0
THEN #find course from vector points#
SELECT FIELDS position
FROM VECTOR_POINTS
INTO Vec_| Point
WHERE VECTOR POINTS .sequence %Q
MIN(VECTOR ._POINTS .sequence
Course ™ DIRECTION(NEw Coord,Vec_Point);
ELSE # find course from route #
DELETE FROM ROUTE POINTS
WHERE ROUTE POINTS.ard LE Loc__ Ard;
SELECT FIELDS position
“FROM ROUTE_POINTS
INTO Rout Point
WHERE ROUTE POINTS.ard EQ MIN(ROUTE POINTS.ard);
Course = DIRECTION(New Coord,Rout_Point);
CALL Wind Intersection(New ! Coord IN,Altitude IN,Course
~ IN, Gradient IN,Boundary . Poinf_UUT Z Intersection ouT);
CALL XY To Ard(F1_1d IN, Boundary Point IN,W Ard ouT);
CALL Find Next Ard Break(Fl Id IN, Goal Ard IN,W Ard 1IN,
M Dist OuT, “New y Coord IN Boundary Point IN Goal Point IN,
ROUTE POINTS INOUT VECTOR ._POINTS INOUT Loc Ard IN),
New_Coord = New C oofﬁ + M Dist * (SIN zCourse) ,C0S(Course));
Speed = SQRT(Speed**2 + 2 * Acc * M Dist);
Avg_Speed = (01d_Speed + Speed)/2;
01d | Speed = Speed;
CALL Speed To Ground (New Coord IN,Altitude IN,Avg Speed 1IN,
~ Course IN,Ground OUT);™
CALL XY To Ard(Fl Id IN IN, New Coord IN,Loc_Ard OUT),
New Time = New Time + M Disf7Cround
END Time At . _Point;

c-8



C.6 Set Up Vector And Route Points

This routine creates tables of vector points and route points.

ROUTINE Set_Up Vector And Route Points;
PARAMETERS F1 Id IN, Loc Ard IN,ROUTE POINTS OUT,VECTOR_POINTS OUT;
REFER TO GLOBAL

VECTOR PLANNED )_ACTIONS IN;
REFER TO SHARED LOCAL
~ ACTIVE_PLANNED ACT.

| IONS IN;
DEFINE TABLES
VECTOR PQINTS POINTS IN VECTOR YET TO BE MODELED
sequence Sequence number of points
position x X position of point
position y Y position of point
position AGGREGATE(position x,position y),
ROUTE POINTS POINTS IN ROUTE YET TO BE MODELED
ard Along route distance
position x X position of point
position y Y position of point
position AGGREGATE(position x,position y);
DEFINE VARIABLES
F1 Id - Identity of aircraft undergoing Trajectory
Estimation
Sequence Vector point sequence
Vec Point(2) Point in vector(x,y)
Rout_Point(2) Point on route(x,y)
Point Ard Along route distance of point
Loc_Ard Position ard;

c-9



IF 'vector' IS IN ACTIVE PLANNED ACTIONS
THEN
REPEAT FOR EACH VECTOR PLANNED ACTIONS RECORD
SELECT FIELDS vertex coordinate,vector_sequence number
INTO Vec_Point,Sequence
FROM VECTOR PLANNED ACTION;
CALL XY To Ard(F1_Id IN, Vec_Point IN,Point Ard OUT);
'f oint Ard GT Loc Ard
THEN
T INSERT INTO VECTOR POINTS
sequence ™ Sequence,
position = Vec Point); .
ROUTE_POINTS = SELECT FIELDS along_toute distance,coordinate
FROM ROUTES
WHERE ROUTES.along route distance GT Loc_Ard AND
~ ROUTES. fl id EQ F1 Id°
END Set_Up Vector_And Route Points;

C-10



C.7 WIND INTERSECTION

This routine finds the first intersection with the viﬁd cell
horizontial boundary and with the vertical boundary.

ROUTINE Wind Intersection

PARAMETERS Coordinate IN,Altitude IN,Course IN,Gradiemt IN,
X_Intersect OUT, Y Tn_tersect ouT, 2 Intersect OUT;

DEFINE VARIABLES

Coordinate(2) Point of interest(x,y)

Altitude - Altitude of interest

Course Direction of track

Gradient Gradient at poinmnt

West WEST BOUNDARY of wind cell

East EAST BOUNDARY of wind cell

North - NORTH BOUNDARY of wind cell

South - SOUTH BOUNDARY of wind cell

Min Alt ' Minimum altitude of wind cell

Max Alt Maximum altitude of wind cell

Dist 1 Distance to east or weat boundary

Dist 2 Distance to north or south boundary

X Value 1 X intersection on east or west boundary
Y Value 1 =~ Y intersection on east or west boundary
X Value 2 X intersection on north or south boundary
Y Value 2 Y intersection on north or south boundary
X Intersect First intersection x value

Y _Intersect First intersection y value

Z Intersect First z intersection;

Cc-11



CALL Determine Wind Cell(Coordinate IN, Altitude IN,
T West OUT,East OUT,North OUT , South ouT,
Min Alt OUT, Max Alt OUTS_—'returns wind cell boundaries#
CHOOSE CASE
WHEN (Course LT 180 degrees) AND
T (Course GT 0) THEN #find east intersection#
Dist 1 ~ (East - Coordinate(1))/SIN(Course);
X Value 1l = East;
Y Value 1 = Coordinate(2) + Dist_1 * COS(Course);
WHEN (Course LT 360 degrees ) AND
( Course GT 180 degrees) THEN # find west inters#
Dist 1 = (West - Coordinate(I))/SIN(Course);
X Value 1l = West;
Y Valuq_; = Coordinate(2) + Dist 1 * COS(Course);
CHOOSE CASE
WHEN ( Course GT 90 degrees) AND
Course LT 270 degrees)THEN [EN # find south inters#
Dist_2 = (South - Coordinate(2))/ COS(Course);
X Value 2 = Coordinate(l) + Dist 2 * SIN(Course)
Y Value 2 = South;
WHEN (Course GT 270) OR
(Course LT 90 degrees)THEN # find north intersec#
Dist 2 = (North - Coordinate(1))/COS(Course);
X Value 2 = Coordinate(l) + Dist_Z ¥* SIN(Course);
Y Value 2 = North;
IF (Dist_2 is unassigned) OR ((Dist 1 is assigned)
AND (Dist 1 LT Dist_2))
THEN
X_Intersect = X Value 1;
Y Intersect = Y Value 13
ELSE
X Intersect = X Value 2;
Y Intersect = Y Value 2;
IF Gradient GT 0
THEN # climbing #
Z Intersection ™ Max Alt;
ELSE
T Z _Intersection = Min L Alt;
END Wind | Intersection;

C-12



C.8 FIND NEXT ARD BREAK

This routine finds the along route distance (ard) and distance
associated with the first break point. A break point occurs at wind
boundaries, vector points, route nodes, and at a specified ard.

ROUTINE Find | Next Ard Break;

PARAMETERS F1_Id IN, Goal Ard IN,W_Ard IN, M Dist OUT,New Coord IN,
" Boundary Pt IN,Goal Point IN,ROUTE | ponr.rs INOUT,
VECTOR_POINTS INOUT,Loc Ar&'m,

DEFINE TABLES
VECTOR POINTS
sequence
position x
position y
position
ROUTE_POINTS
ard '
position x
position y
position
DEFINE VARIABLES

F1 1d

Goal Ard

W Ard

M Dist
New_Coord(2)
Boundary Pt
Goal Point
Loc_Ard

M _Ard
Sequence
Vec_Point(2)
V_Ard

R Ard
Coord Ard
Rout_Point(2)

"POINTS IN VECTOR YET TO BE MODELED

Sequence number of points

X position of point

Y position of point
AGGREGATE(position x,position y),

POINTS IN ROUTE YET TO BE MODELED

Along route distance

X position of point

Y point position of point
AGGREGATE (position x,position y);

Identity of aircraft undergoing Trajectory
Estimation

Along route distance of goal point

Along route distance of wind boundary

Distance to first break

Current point (x,y)

Wind boundary point

Goal point

Ard of current point

. First ard break

Vector point sequence
Vector point (x,y)

Ard to next vector point
Ard to mext route point
Current ard

Point on route(x,y);

Cc-13



IF COUNT(VECTOR POINTS) GT 0
THEN # find first vector point #
~ SELECT FIELDS sequence,position
FROM VECTOR POINTS
INTO Sequence Vec_Point
WHERE VECTOR_] POINTS.sequence EQ
" MIN(VECTOR POINTS.sequence),
~ # find distance to next vector point #
CALL XY _To Ard(Fl1_Id IN, Vec Point IN,V Ard OUT);
M . M Ard = MIN(Goal Ard W_ Ard \'J ARD),
CHOOSE CASE
WHEN M Ard EQ V_Ard THEN # distance vector point #
" DELETE FROM VECTOR POINTS
WHERE VECTOR ] POINTS. sequence Sequence;
M Dist = DIST(New Coord,Vec_Point
WHEN M _Ard EQ Goal Ard THEN # dist to goal #
H Dist = DIST(New Coord,Goal Point);
OTHERWISE # M Ard EQ W_Ard dist to wind cell boundary #
M Dist = DIST(New Coord, Boundary Pt); .
EISE # find next route point #
~ DELETE FROM ROUTE ,_POINTS
WHERE ROUTE POINTS.ard LE Loc_Ard;
SELECT FIELDS erd,position
FﬁOM ROUTE . POINTS
INTO R Ard Rout Point
WHERE ROUTE , POINTS.ard EQ MIN(ROUTE_ POINTS.ard);
# find distance to next route point #
M_Ard = MIN(R Ard,Goal Ard,W_Ard);
IF M_Ard EQ R_Ard
THEN
~ DELETE FROM ROUTE POINTS
WHERE ROUTE_ POINTS .ard EQ R Ard;
CALL XY To Ard(Fl Id IN, New Coord IN,Coord Ard OUT),
M Dist = M | Ard ~ Coord . | Ard;
END Find Next Distance Break;

Cc-14



C.9 Time And Point At Altitude

This routine finds the speed and time associated with arrival at a
given altitude.

ROUTINE Time And Point At Altitude;
PARAMETERS F1 1d IN, Speed | Type IN,Speed INOUT,Goal Alt IN,Grad IN,

DEFINE VARIABLES

Vec_Point(2)
Rout_Point(2)
Loc Ard

Alt Break
Boundary_ Point(2)
Z Intersection

— Coord INOUT, Time INOUT, ATtitude IRGUT Hold ] Fix_in EFCTime
INOUT,Tran Speed IN, Tran Type IN;
DEFINE TABLES .
VECTOR_POINTS POINTS IN VECTOR YET TO BE MODELED
sequence Sequence number of points
position x X position of point
position y Y position of point
position AGGREGATE(position x,positELzﬁy).
ROUTE POINTS POINTS IN ROUTE YET TO BE MOD
ard Along route distance
position x X position of point
position y Y position of point
position AGGREGATE(position x,position y);

F1 Id Identity of aircraft undergoing Trajectory
- Estimation

Speed_Type Ias or mach

Speed Speed 1in tas

Goal Alt End of altitude segmant

Grad Gradient to be used for segment

Coord(2) X,y modeled point

Time Time at point

Altitude Altitude at point

Hold Fix Holding fix

EFC_Time End of hold time

Tran_Speed Transition speed

Tran_Type Climb or descent

Course Course at current position

Point in vector(x,y)

Point on route(x,y)

Position ard

First altitude break

Wind cell intersection(x,y)
Altitude wind cell intersection;

C-15



CALL XY To_Ard(F1_Id IN, Coord IN,Loc_Ard OUT);
CALL Set Up Vector And | | Route Points(Fl Id IN, Loc_Ard 1IN,
~ ROUTE_POINTS OUT, VECTOR_POINTS OUT);
#£1nd possible changes in direction#
REPEAT UNTIL Altitude EQ Goal Alt;
IF COUNT (VECTOR_POINTS) NE 0
THEN #find course from vector points#
™ SELECT FIELDS position
FROM VECTOR_POINTS
INTO Vec Point
WHERE VECTOR POINTS. sequence _1)33
~ MIN(VECTOR_POINTS.sequence
Course = DIRECTION(Coord,Vec Point);
ELSE # find course from route :
"~ CALL XY_To Ard(Fl1_Id IN, Coord IN,Loc_Ard OUT);
DELETE FROM ROUTE POINTS(R P)
WHERE R P.ard LE Loc_i Ard'
SELECT FIELDS position
FROM ROUTE_POINTS
INTO Rout Point
WHERE ROUTE_POINTS.ard EQ MIN(ROUTE POINTS.ard);
Course = DIRECTION(Coord,Rout Point),
CALL Wind Intersection(Coord IN, Altitude IN,Course
~ IN, Gradient IN,Boundary Point OUT,Z . Tntersection ouT);
IF Tran _Type EQ Tclimb'
THEN
Alt Break ™ MIN(Z Intersection,Goal Alt);
ELSE
Alt Break ™ MAX(Z Intersection,Goal Alt);
CALL Find Dist Break{Alt Break IN, Boundary_Point IN,
~ Course IN, ROUTE POINTS INOUT VECTOR POINTS INOUT,Loc_ Ard
IN Coord INOUT, Hold Fix 1IN IN,EFC_° Time INOUT Tran Speed
IN Speed Type IN ,Speed 1 INOUT, Time INOUT Altitude INOUT Grad
IN)
END Point__At_Time;

Cc-16



C.10 Find Dist Break

This routine 1is used to determine the first break, where ‘a break

point occurs when a wind boundary 1s crossed, the goal altitude 1is
reached,a vector point is reached,or a route node is reached.

ROUTINE Find Dist Break;
ERS Alt Break IN, Boundary Pt IN,Course IN,ROUTE POINTS
INOUT, VECTOR POINTS INOUT, Loc_, Ard IN Coord INOUT, Hold Fix
IN, EFC , Time INOUT,Tran Speed IN Speed Type IN Speed INOUT,
Time INOUT Altitude INOUT,Grad . INOUT'
DEFINE TABLES

VECTOR POINTS POINTS IN VECTOR YET TO BE MODELED
sequence Sequence number of points
position x X position of point
position y Y position of point
position AGGREGATE(position x,position y),

ROUTE_POINTS
ard

POINTS IN ROUTE YET TO BE MODELED

Along route distance

position x X position of point
position y Y position of point
position AGGREGATE (position x,position y);

DEFINE VARIABLES

Alt Break
Boundary Pt(2)
Course

First altitude break
Wind cell intersection(x,y)
Course at current position

Coord(2) X,y modeled point

Hold Fix Holding fix

EFC Time End of hold time

Tran L Speed Transition speed

Speed_Type Ias or mach

Speed Speed in tas

Time Time at point

Altitude Altitude at point

Grad Gradient for segment

Ground Ground speed

M Dist Minimum distance

New_Speed Speed at end of altitude segment
Avg Speed Average speed for segment

Alt Time Time to change altitude

A Dist Distance required for altitude change
H Dist Distance to hold fix

Avg Alt Average altitude for transition
Dir * To_Hold Direction to holding fix:

W Dist Distance to wind boundary;

c-17



CALL New_Speed For _Transition(Speed Type IN,Tran Speed IN,
" New _Speed OUT,Coord IN,Alt Break IN);
Avg Speed = (Speed + New Speed)/ 2;
Alt Time = (Alt_Break - Altitude)/(Avg _Speed * Grad * C0S(Grad));
Avg Alt = (Alt Break + Altitude)/2;
CALL Speed To Ground(Coord IN, Avg Alt IN, Avg Speed IN,
" Course IN, Ground OUT);
A Dist = Alt Time * Ground;
W Dist = DIST(Boundary Pt Coord),
IF EFC Time NE 'none’
THEN # may need to consider the holding fix #
~ Dir - To_Hold = DIRECTION(Coord,Hold Fix);
IF Dir_To_Hold EQ Course
THEN # hold fix may be a break point #
" H_Dist = DIST(Hold Fix,Coord);
ELSE
H Dist = 'none';
CHOOSE CASE
WHEN Hold Fix EQ Coord And EFC Time GT Time THEN
break point will be at alt break or at efc time #
CALL Break Pt In Hold(EFC Time IN,Alt Time IN,Time INOUT,
" Altitude INOUT,Avg Speed IN, Grad IN,M Dist OUT);™
WHEN COUNT(VECTOR POINTS) NE 0 THEN # find distances #
" CALL Break Pt In Vector(VECTOR_POINTS INOUT,H Dist IN,
W _Dist IN Coord IN,Avg | Speed 1N, Grad 1IN, 1N, Ground IN A Dist
IN,M Dist OUT);
OTHERWISE ¥ break is along route #
CALL Break Pt On Route(ROUTE POINTS INOUT,H Dist 1IN,
W _Dist IN Coord IN,Avg ! Speed IN,Grad 1IN, Ground IN A Dist
IN,M _Dist ou'r)
CALL New Speed For Transition( Speed_Type IN Tran_Speed IN,
T New Speed OUT,Coord IN,Altitude IN);
Avg Speed = (New 7 Speed + Speed)/2
CALL Speed_To Ground(Coord IN,Altitude IN,Avg Speed IN, Course
1IN, Ground OUT);
SpeT = New_Speed;
IF M Dist GT 0
THEN # compute new point #
~ Coord = Coord + M_Dist * (SIN(Course),COS(Course));
Altitude = Altitude + M Dist * cos(cRAnT* Grad * Avg Speed/
Ground;
Time = Time + M _Dist/Ground;
END Find Dist Break;

Cc-18



C.1l1 New Speed For Tramsition

This routine calculates the speed in tas at an altitude given
the speed in ias or mach.,

ROUTINE New Speed For Transition;
‘PARAMETERS Speed Type IN,Tran Speed IN,New Speed OUT,Coord IN,

titude IN;

DEFINE VARIABLES
Speed Type las or mach
Tran Speed Transition speed
New_Speed Tran-speed converted to tas at altitude
Coord(2) (x,y) coordinate
Altitude Altitude at coordinate
Dir Wind Wind direction
Spd Wind Wind speed
Temp Temperature;

# begin #

CALL Wind Field (Coord IN, Altitude IN, Spd Wind OUT, Dir *_Wind
5UT, Temp OUT);

IF Speed_'l‘ype EQ 'lIas '

THEN
CALL Ias To Tas(Tran Speed IN, Altitude IN, Temp IN, New Speed

ToouT);

ELSE

CALL Mach To Tas (Tran Speed IN, Temp IN, New Speed OUT);

END New Sp _Speed For Tranaition,

Cc-19



C.12 Break Pt In Hold

This routine calculates the break point when the aircraft is in
hold. This break point can be the expect further clearence time or
the end of the altitude tramsition.

ROUTINE Break Pt In Hold;

fKRZEE_ERS EFC Time IN,Alt Time IN,Time INOUT, Altitude INOUT,
Ayg_Speed IN Grad I INM Dist INOUT,

DEFINE VARIABLES

, Time Expect further clearence time
Alt_Time Time to change altitude
Time New time
Altitude Segment altitude
Avg Speed Average speed
Grad Gradient from segment
M Dist Minimum distance
M Time Minimum time;
# begin #

M Dist = 0; #fno along route distance travelled in hold #
M_Time = MIN(EFC Time,Alt Time + Time);
IF EFC Timelgg M Time
THEN #hold has been completed #
T EFC , Time = ' none ';
Altitude = Grad * Avg_Speed *COS(Grad)* M time +Altitude;
ELSE
Altitude = Alt Break;
Time = M Time;
END Break | Pt In Hold;

C-20



C.13 Break Pt In Vector

This routine finds the distance to the first break point when the

aircraft is in a vector. This point may be at a turn in the vector,
a wind boundary,a hold fix, or at the end of the altitude transition.

ROUTINE Break Pt In Vector;
PARAMETERS VECTOR POINTS INOUT,H Dist IN,W Dist 1IN, Coord IN,
Avg Speed IN, Grad IN,Ground IN A Dist IN M Dist OouT;
DEFINE TABLES _
VECTOR;FOINTS 'POINTS IN VECTOR YET TO BE MODELED

sequence Sequence number of poimnts
position x X position of point
position y Y position of point
position AGGREGATE(position x,position_y);
DEFINE VARIABLES :

H Dist Distance to hold fix

W_Dist Distance to wind boundary

Coord(2) ~ Current coord(x,y)

Avg Speed Average speed

Grad Segment gradient

Ground Ground speed

A Dist Distance to altitude break

M Dist Minimum distance

V_Dist Distance to vector point

Vec Point Vector point;

# begin logic #
SELECT FIELDS position
FROM VECTOR_POINTS(V_P)
INTO Vec Point
WHERE V P.sequence EQ MIN(V_P.sequence);
V_Dist = DIST(Vec Point Coord);
IF H Dist EQ EQ 'nomne’
THEN | # exclude H dist in search for break distance #
~ M_Dist = MIN(V Dist,W Dist,A Dist);
ELSE
~ M_Dist = MIN(V Dist,W Dist,H Dist,A Dist);
IF M Dist EQ V Dist
TEEN
" DELETE FROM VECTOR . POINTS
WHERE VECTOR POINTS position EQ Vec_Point;
END Break Pt In Vector-

Cc-21



C.1l4 Break Pt On Route

This routine finds the distance to the first break point when the
aircraft's path is along route. The point can be the next route
node, the holding fix, a wind boundary, or the end of the altitude
transition.

ROUTINE Break Pt On_ Route;

PARAMETERS ROUTE POINTS INOUT,H Dist IN,W Dist IN, Coord IN,
Avg Speed IN, Grad IN, Ground IN,A Dist IN M Dist ouT; .

DEFINE TABLES

ROUTE_POINTS POINTS IN VECTOR YET TO BE MODELED
ard ‘ Along route distance
position x X position of point
position y Y position of point
position AGGREGATE(position x,position y);
DEFINE VARIABLES
H Dist Distance to hold fix
W _Dist Distance to wind boundary
Coord(2) Current coord(x,y)
Avg Speed Average speed
Grad Segment gradient
Ground Ground speed
A Dist Distance to altitude break
M Dist Minimum distance
R Dist Distance to route point
Rout_ Pt Next point on route;
. # begin #

SELECT FIELDS position
FROM ROUTE_POINTS(R_P)
INTO Rout__ Pt
WHERE R_P.ard EQ MIN(R P.ard);
R Dist = DIST(Rout_Pt,Coord);
IF H D:lst EQ 'none’
THEN | # exclude H | dist in search for break distance #
T M [ Dist = MIN(R Dist,W Dist,A Dist);
ELSE
M | Dist = MIN(R Dist,W Dist,H Dist,A | Dist);
IF M Dist Eg R Dist
THEN
" DELETE FROM ROUTE , POINTS
WHERE ROUTE POINTS position EQ Rout Point;
END Break Pt On Route,

C-22



C.15 Hold During Time Phase

Given a time, this routine decides how much of the delta time 1is
spent in the hold.

ROUTINE Hold During Time Phase;

PARAMETERS F1 Id IN, Del Time INOUT,Coord INOUT,Speed INOUT,EFC Time
INOUT, Hold Fix IN Altitude—Iﬁ_grATE INF'-_-

REFER TO GLOBAL
AIRCRAFT MAX ENDURANCE SPEED IN;

REFER TO SHARED LOCAL
AGD_VECTOR IN;

DEFINE TABLES

STATE STATE MODELED TO
position x X position
position y Y position
tas Tas
ias Ias
mach Mach
z Altitude
time ’ Time
ard Along route distance
temp Temperature
position AGGREGATE(position x,position y);
DEFINE VARIABLES
Fl Id Identity of aircraft for Trajectory
- Estimation
Del Time Time to be accounted for
Coord(2) (x,y) position
Speed Speed at coord
EFC Time Expect further clearence time
Hold Fix Holding fix
Altitude Altitude at coordinate
Grad Gradient
Acc_Time Acceleration time
M E Speed Max endurance speed
Avg_Speed Average speed;

c-23



Grad = 0;
Acc Time = 0;
SELECT FIELDS speed
~ FROM AIRCRAFT MAX_ENDURANCE SPEEDS(A M E S)
INTO ME Speed
WHERE A M E S.source is best available and Altitude
T 1s in A M E S altitude range;
IF STATE.speed GT M_E Speed
THEN #slow to endurance speed #
" Acc Time = (M _E Speed -~ STATE.speed)/ AGD VECTOR.acceleration ;
Acc_Time = MIN(Del Time,Acc_Time);
Del Time = MAX(0,Del Time - Acc _Time);
Avg_Speed = STATE. speed + AGD VECTOR.acceleration ®
Acc_Time/2;
Speed = STATE.speed + AGD_VECTOR.acceleration * Acc_Time;
CALL Point At _Time(F1l_Id IN, Acc_Time IN,Grad IN Avg_Speed IN
T Altitude IN,Coord INOUT);
IF Del Time GT 0
THEN # aircraft flies in holding pattern #
T Coord = Hold | Fix;
IF((STATE. time + Acc_Time + Del Time) LT EFC Time) AND
(Del_Time GT 0)
THEN # aircraft remains in hold #
T Del Time = 0;
EISE # model from end of hold #
~ EFC > Time = 'none';
Del . Time = STAIE.time + Acc Time + Del Time - EFC , Time;
END Hold_During_Time_Ptmse,

C-24



C.16 Point At Time

This routine calculates the aircraft position at a given time. It
assumes that the gradient 1is zero and holds have already been
accounted for. :

ROUTINE Point At Time;

PARAMETERS Fl Id IN, Elapsed Time IN,Gradient IN Speed 1IN,
Altitude IN, New Coord INOUT;

DEFINE TABLES

R POINTS POINTS IN VECTOR YET TO BE MODELED
sequence Sequence number of points
position x X position of point
position y Y position of point
position AGGREGATE(position x,positELEby),

ROUTE_POINTS POINTS IN ROUTE YET TO BE MOD
ard Along route distance
position x X position of point
position y Y position of point
position AGGREGATE(position x,position y);

DEFINE VARIABLES

Elapsed_Time Time to Be Accounted for
Gradient Gradient at current position
Speed " Speed to be used

Altitude Altitude at position

Course Course at current position
New_Coord(2) (x,y)Coordinate at elapeed time
Ground Ground speed :
M Dist Minimum distance

T Dist Distance for time

W _Dist Distance to wind boundary
Sequence Vector point sequence

Vec_Point(2)
Rout_Point(2)

loc Ard
Boundary_Point(2)
Z_Intersection

Point in vector(x,y)

Point on route(x,y)

Position ard

Wind cell intersection(x,y)
Altitude wind cell intersection;

Cc-25



CALL XY To Ard(Fl Id IN, New Coord IN,Loc_Ard OUT)
CALL Set Up Vector And Route Pointsz_l Id . IN, Ioc Ard 1IN,
ROUTE POINTS OUT, VECTOR POINTS OUTT
~ #find possible changes in direction#
REPEAT UNTIL Elapsed Time LE 0
" IF COUNT (VECTOR POINTS) NE 0
THEN #find course from vector points#
~ SELECT FIELDS position
FROM VECTOR POINTS
INTO Vec Point
WHERE VECTOR . POINTS .sequence %Q
MIN(VECTOR POINTS .sequence
Course = DIRECTION(New Coord,Vec_Point);
ELSE # find course from route #
~ DELETE FROM ROUTE_POINTS
WHERE ROUTE_] POINTS .ard LE Loc_Ard;
SELECT FIELDS position
FROM ROUTE POINTS
INTO Rout Point
WHERE ROUTE POINTS.ard EQ MIN(ROUTE POINTS. ard),
Course = DIRECTION(New Coord,Rout_Point);
CALL Speed To_Ground (New Coord 1IN, Altitude IN,Speed 1IN,
~ Course IN,Ground OUT);
CALL Wind I‘tersecuE(New Coord IN,Altitude IN,Course
IN, Gradient IN,Boundary Point O OUT Z_Intersection OUT);
T Dist = Ground * Elapsed Time, '
W_Dist = DIST(New_Coord,Boundary Point);
CALL Find Next Distance Break(T Dist IN,W Dist IN,M Dist
ouT ROUTE POINTS INOUT VECTOR POINTS INOUT Toc Ard IN);
New Coord = New Coord ¥ M ] Dist * TSIN(Course) cos(Coura_Y),
CALL XY To Ard(Fl Id 1IN, New Coord IN IN,Loc Ard OUT),
Elapsed Time = Elapsed Time - M Dis—7Cround,
END Point At Time,

C-26



C.17 Find Next Distance Break

This routine finds the distance to the next break point. The break
point can be a change in direction, wind, or a specified distance.

ROUTINE Find Next Distance Break;

‘PARAMETERS T Dist IN W_ Dist IN, M_Dist OUT,ROUTE_POINTS INOUT,
VECTOR POINTS INOUT Loc__ Ard IN;

DEFINE TAELES

VECTOR _POINTS POINTS IN VECTOR YET TO BE MODELED
sequence Sequence number of points
position x X position of point
position y Y position of point
position AGGREGATE(position x,position_ y),

- ROUTE POINTS POINTS IN ROUTE YET TO BE MODELED
ard Along route distance
position x X position of point
position y Y position of point
position AGGREGATE(position_x,position y);
DEFINE VARIABLES

T Dist Distance to achieve time

W _Dist Distance to wind boundary

Loc_Ard Current coordinates ard

M Dist Distance to first break

Sequence Vector point sequence

Vec Point(2) Vector point (x,y)

V_Dist Distance to next vector point

R Dist Distance to next route point

Point Ard Along route distance of point

Rout_Point(2) Point on route(x,y);

Cc-27



IF COUNT(VECTOR POINTS) GT 0
THEN ¥ find first vector point #
SELECT FIELDS sequence,position
FROM VECTOR_POINTS
INTO Sequence Vec_Point
WHERE VECTOR POINTS sequence EQ
MIN(VECTOR POINTS .sequence) ;
# find distance to next vector point #
V_Dist = DIST(New Coord,Vec Point);
M _Dist = MIN(V _Dist,T Dist,W Dist),
IF M Dist _Q V Dist
THEN
~ DELETE FROM VECTOR _POINTS
WHERE VECTOR . POINTS. sequence EQ Sequnce;
ELSE # find next route point #
" DELETE FROM ROUTE_POINTS
WHERE ROUTE POINT ard LE Loc_Ard;
SELECT FIELDS ard,position
FROM ROUTE_POINTS
INTO Point Ard ,Rout_Point
WHERE ROUTE POINTS ard EQ MIN(ROUTE_POINTS.ard);
# find distance to next route point #
R Dist = DIST(New_Coord,Rout Point);
M Dist = MIN(R Dist,T Dist,W Dist);
IF M Dist EQ EQR Dist

THEN
" DELETE FROM ROUTE , POINTS

WHERE ROUTE POINTS.ard EQ Point Ard;
END Find Next Diatance Break-

c-28



C.18 Hold During Ard Phase

This routine is used to account for the time spent in a hold.

ROUTINE Hold During Ard Phase;

PARAMETERS Fl Id 1IN, EFC Time INOUT,Hold Fix IN Goal Pt IN,
Acceleration INOUT, Coord INOUT Time INOUT,

REFER TO SHARED TOCAL
AGD_VECTOR IN;

DEFINE VARIABLES

~ FI_1d Identity of aircraft undergoing Trajectory
Estimation ‘
EFC_Time End of hold time
Hold Fix(2) Hold fix
Goal Pt(2) (x,y) Goal of this phase
Acceleration Accleration
Coord(2) (x,y) modeled position
Time Time at coord
H F Ard Along route digtance of hold fix
Goal Ard Along route distance of goal point;
#begin #

CALL XY To_Ard(F1_Id IN, Hold Fix IN,H F Ard OUT);
CALL XY To_  Ard (Fl Id 1] IN, Goal Pt IN Goal Ard OUI),
IF Goal Ard GT H F TArd
THEN # start modeling from end of hold #
Time = EFC_Time;
EFC_Time = 'nomne';
Coord = Hold Fix;
ELSE
T Acceleration = AGD _VECTOR.acceleration;
END Hold During_Ard Phase;

Cc-29



C.19 Find Next Phase

This routine determines what the next phase in an altitude action
should be.

Cc-30



ROUTINE Find Next Phase;
PARAMETERS F1 Id IN, Loc Pa Id IN,STATE IN,Type OUT,Avg Speed OUT,
Goal Alt QUT,Speed Type OUT,Grad QOUT,Del Time QEI,GOQI;Speea

INOUT, Goal Pt OUT,Tran Type OUT,Tran Speed OUT;

DEFINE TABLES ~
— STATE

position x
position y
tas
ias
mach
z
time
ard
temp
position
CRUISE
speed
alt
REST TABLE
rest x
rest y
rest alt
qualifier
rest point

DEFINE VARIABLES

FI_1d

Loc_Pa Id
Target Alt
Tran_Type
Goal Speed
Goal Pt(2)
EFC Time
Tran_Speed
Resume Time
Ias

Del Time
Goal Alt
Speed Type
Grad

Avg Speed
Type

Rest_ Ard

STATE MODELED TO

X position
Y position
Tas

Ias

Mach
Altitude
Time

Along route distance
Temperature

AGGREGATE(position x,position_y),
CRUISE DATA

Approved default cruise speed
Approved default cruise speed ,

RESTRICTION TABLE

Restriction point x value

Restriction point y value

Restriction altitude

Restriction qualifier at at/above at/below
AGGREGATE(rest_x,rest_y);

Identity of aircraft for Trajectory
Estimation

Planned action id:

Target altitude

Transition type climb or descent

Speed goal for this segment

Restriction point(x,y)

Expect further clearence time

Transition speed

Resume climb time

Indicated airspeed

Time delta

Altitude goal

Constant tas or ias or mach

Gradient for segment

Average speed

Type of phase

Along route distance of restriction point;

c-31



Grad = 0;
CALL Altitude  Information(Fl_Id IN, Loc Pa_Id IN,Target Alt OUT,
T Tran ._Type OUT REST_TABLE OUT ' CRUISE OUT Resume Time ¢ OUT,
Rest_Ard OUT,] EFC  Time OUT,STATE IN);
IF Tran ' ._Type _Q_ ‘agcent '
THEN #aircraft may need to accelerate to climb speed#
" CALL Nominal Climb Speed(Goal Speed OUT,STATE IN);
CHOOSE CASE
T WHEN (STATE.z EQ Target Alt) AND (Resume Time NE 'none')
" AND (STATE.time LT Resume Time) THEN
Type = 'time’;
Del Time = Resume Time - STATE. time;
Avg_Speed = STATE.tas;
WHEN (STATE.z EQ 10000)AND (Tran Type EQ 'descent') AND
(STATE.ias GT 250 knots)THEN ¥ slow to 250knots# =~
CALL Ias To Tas(250 IN, 10000 IN, STATE.temp IN,
~ Goal_Speed OUT);

CALL Find Acceleration . Time(Goal Speed IN,Avg Speed
"~ OUT,Del Time OUT,STATE IN);

Type = 'time';

WHEN (Tran Type.gg ‘ascent')AND(STATE.z LT Target Alt)
" AND (EFC_Time EQ 'mone') AND
‘(STATE. tas LT Goal Speed)THEN
faccelerate to climb speed¥
CALL Find Acceleration Time(Goal Speed IN,Avg Speed OUT,

" Del Time OUT,STATE IN);
Type = 'timeT—

WHEN (REST TABLE.rest_alt EQ STATE.z) AND (Tran Type EQ

"ascent’ )AND (Rest Ard GT STATE.arE)_AND

((REST_TABLE.qualiffer EQ 'at') OR (REST TABLE.qualifier
EQ 'at or below')) THEN
Type = 'ard’';
Goal Pt = REST ' _TABLE.rest point;
WHEN (REST TABLE.Test alt EQ STATE.z) AND (Tran Type
EQ 'descent') AND(Rest Ard GT SIATE .ard) THEN;
Type = ‘ard’';
Goal Pt = REST TABLE.rest point;
OTHERWISE
CALL Goal Altitude( F1 Ida IN, REST TABLE IN,Tran Type IN,
" Resume Time 1IN, CRUISE.alt IN Target Alt IN, Goal Alt ouT
,Grad OUT Speed | Type OUT Loc Pa_Id IN STATE IN 1N, Type
OUT Tran Speed OUT);
END Find | Nex___hase-

c-32



C.20 Altitude Information

This routine is used to set up CRUISE and REST TABLE and to fetch
information about the specified altitude action.

c-33



ROUTINE Altitude Information;
PARAMETERS F1 Id IN, Loc Pa_Id IN,Target Alt OUT,Tran Type OUT,
REST TABLE OUT CRUISE OUT Resume Time OUT,Rest Ard OouT, T,EFC ,_Time
OUT, 'STATE IN,
REFER TO GLOBAL
ALTITUDE CHANGE PLANNED ACTIONS IN,
ALTITUDE " RESTRICIONS PARAMETERS IN,
HOLD PLANNED ACTIONS IN,
FLIGHT PLANS IN
FLIGHI_ID_ASSOCIAIIONS IN;

REFER TO § LOCAL
Wﬁm_ IONS IN;

DEFINE TABLES

STATE STATE MODELED TO
position x X position
position y Y position
tas Tas
ias las
mach Mach
z Altitude
time Time
ard Along route distance
temp Temperature
position AGGREGATE(position x,position y)
CRUISE CRUISE_DATA -
speed Approved default cruige speed
alt Approved default cruise altitude,
REST TABLE RESTRICTION TABLE
rest x Regtriction point x value
rest_y Restriction point y value
rest_alt Restriction altitude
qualifier Restriction qualifier at at/above at/below
rest_point AGGREGATE(rest_x,rest_y);
DEFINE VARIABLES
F1 1d Identity of aircraft undergoing Trajectory
' Estimation
loc Pa 1d Planned action 1d
Target Alt Target altitude
Tran_Type Transition type climb or descent
Flight Name Flight name
EFC_Time Expect further clearence time
Resume Time Resume climb time
Rest Ard Along route distance of restriction point;

Cc-34



# find cruise speed and altitude #
SELECT FIELDS flight name
INTO Flight Name =~ .
FROM FLIGHT ID ASSOCIATIONS
WHERE FLIGHT i) ) ASSOCIATIONS.f1 id EQ F1 Id;
CRUISE = SELECT FIELDS approved_true airspeed
approved cruise altitude
FROM FLIGHT PLANS
WHERE FLIGHT PLANS.flight name EQ Flight Name;
#find target altitude #
SELECT FIELDS target altitude,transition type,resume climb time
INTO Target_Alt, Tran ._Type, Resume Time
FROM ALTITUDE CHANGE PLANNED ACTIONS(A CP A)
WHERE A C P A.pa_id EQ Loc_Pa_lId;
IF Loc Pa_. Id IS IN ALTITUDE RESTRICTIONS PARAMETERS pa_id
THEN #find restriction alitude#
" REST_TABLE = SELECT FIELDS rest_pt,rest z,rest qualifier
FROM ALTITUDE RESTRICTIONS PARAMETERS
WHERE ALTITUDE RESTRICTIONS PARAMETERS.pa_id EQ Loc Pa Id;
CALL XY _To_Ard(F1_Id IN, REST TABLE.point IN,Rest Ard OUT);
EFC Tim  Time = " 'none’;
1F "hold' IS IS IN ACTIVE_PLANNED ACTIONS.pa type
" SELECT FIELDS efc time
— FROM HOLD_PLANNED ACTIONS(H P A)
INTO EFC Time
WHERE H_ P ' A.pa_id IS IN ACTIVE PLANNED ACTIONS.pa 1d;
IF STATE. time GE EFC ,_Time
THEN
EFC Time = 'none';
END Set Up Altitude Information;

Cc-35



C.21 Find Acceleration Time

This routine determines if a deceleration or an acceleration is
required, determines the time neccesary to perform the speed change,
and determines the average speed during the acceleration. ’

ROUTINE Find Acceleration Time;
PARAMETERS Goal Speed IN,Avg_Speed OUT,Time OUT,STATE IN;
REFER TO SH! SHARED LOCAL
ATRCRAFT ACCELERATION IN,
ATRCRAFT DECELERATION m-
DEFINE TABLES

STATE ~ 'STATE MODELED TO
position x X position
position y Y position
tas Tas
ias Ias
mach ‘ Mach
z . Altitude
time Time
ard Along route distance
temp Temperature
position AGGREGATE(position x,position y);
DEFINE VARIABLES ' _
Goal Speed Goal for this phase of pa
Loc_Acc Acceleration set in this routine
Time Time to accelerate
Avg Speed Average speed for acceleration;
# begin #

IF STATE.tas GT Goal Speed
THEN #slow to goal speed#
T SELECT FIELDS deceleration
FROM AIRCRAFT DECELERATION (A D)
INTO Loc_Acc
WHERE A D.source is the best available AND
T STATE.z is in approplate range;
EISE #accelerate to goal speed#
SELECT FIELDS acceleration
FROM ATRCRAFT_ACCELERATION(A A)
INTO Loc_Acc
WHERE A A.source 1s the best available AND
T STATE.z is in approplate range;
Avg_Speed = (STATE.speed + Goal Speed)/2;
Time = (Goal Speed - STATE. apeed)/Loc Acc;
END Finq;Acceleratioq_Time,

Cc-36



C.22 Goal Altitude

This routine establishes the next major goal for the altitude
transition. Then it calls the routines that determine the gradient
to be used.

ROUTINE Goal Altitude,

PARAMETERS F1_Id IN, REST_TABLE IN Tran Type IN,Resume Time IN,
Cruise Alt IN, Thrget Alt IN, Goal Alt ouT, Grad ouT, Speed Type
OUT,Loc_Pa _H'IN, STATE IN,Type OUT Tran Speed OUT,

DEFINE TABLES

STATE - STATE MODELED TO

position x X position

position y Y position

tas Tas

ias Ias

mach Mach .

z ~ Altitude

time - Time

ard .. Along route distance

temp - Temperature

position AGGREGATE(position x poeition;y),
REST TABLE RESTRICTION TABLE

rest x Restriction point x value

rest_y Regtriction point y value

rest alt Restriction altitude

qualifier Restriction qualifier at at/above at/below

rest point

DEFINE VARIABLES

AGGREGATE(rest_x,rest y);

Fl Id Identity of aircraft for Trajectory
Estimation
Tran_Type Transition type
Resume Time 'Regume climb time .
Cruise_Alt Cruise altitude
Target Alt Target Altitude
Goal Alt Goal altitude
Grad Segment gradient
Speed_Type Ias or mach
Loc__ Pa L Id Planned action id
Type Phase type
Tran Speed Transition speed;

c-37



Goal Alt = Target Alt;#target altitude is the default goal#
IF COUNT(REST TABLE) GT 0
THEN # find restrictions #
IF(Tran . Type EQ 'descent') AND (REST TABLE.rest alt LT
STATE. z)
THEN #restriction altitude is always at or above target alt#
#therefore goal alt = restriction alt#
Goal Alt = REST TABLE.rest alt;
ELSE - -
IF(Tran L Type EQ 'ascent') AND(REST TABLE.rest_alt GT
STATE.z)
THEN #restriction alitude is always at or below target #
#altitude therefore goal alt is restriction alt#
Goal Alt = REST TABLE.rest_alt;
%II;E (Resume_Time NE 'null’) AND (STATE.time GE Resume Time)
N
~ Goal . Alt = Cruise_Alt;
IF (Tran . Type EQ *descent') AND (Goal Alt LT 10000) AND
(STATE.z GT 10000)
THEN #must level off at 10000 to slow down to 250 kias#
~Goal Alt = 10000;
IF (Tran_Type EQ 'descent' )
THEN

CALL Descent Phase(Fl Id IN, Goal Alt INOUT, REST TABLE IN,Grad
OUT, Speed Type OUT Loc Pa_Id IN Tran_Speed OUT STATE IN),
ELSE
T CALL Ascent Phase(Fl_Id IN, Goal Alt INOUT, Grad OUT,
Speed Type OUT, Tran Speed OUT,STATE IN);
Type = ‘'altitude’;
END Goal Altitude;

Cc-38



C.23 Descent Phase

This routine 1is used
for a descent.

ROUTINE Descent Phase,

in determining the gradient and its duration

PARAMETERS Fl_ Id 1N, Goal . Alt INOUT, REST TABLE IN, Grad our,
Speed_Type OUT, Loc_Pa_Id IN,Tran Speed OUT,STATE IN;

REFER TO GLOBAL

NOMINAL DESCENT SPEEDS IN,
DESCENT MACH_TO_( GRADIENTFTN

DESCENT IAS TO GRADIENT IN,

REFER TO SHARED LOCAL

ACTIVE PLANNED ACTIONS IN,

DEFINE TABLES

STATE STATE MODELED TO

position x X position

position y Y position

tas Tas

ias las

mach Mach

z Altitude

time Time

ard Along route distance

temp Temperature '

position AGGREGATE(position x,position y);
DESCENT_GRADIENT DESCENT GRADIENT DATA

grad Gradient

end alt End altitude

gradient type Nominal or non-nominal,
REST TABLE RESTRICTION TABLE

rest x Restriction point x value

rest_y Restriction point y value

rest alt Restriction altitude

qualifier Restriction qualifier at at/above at/below

rest_point
DEFINE VARIABLES
FL_Id

Goal Alt
Nom Ias
End Alt
Grad

Loc _Pa_Id
Tran Alt

AGGREGATE(rest_x,rest_y);

Identity of atrcraft for Trajectory
Estimation

Goal altitude

Nominal descent ias

End of the linear segment

Gradient

Planned action 1d

Altitude to transition from ias to mach;

c-39



SELECT FIELDS ias #find nominal descent ias#
FROM NOMINAL DESCENT SPEEDS(N D S)
INTO Nom . Ias
WHERE N | D ) S.source is equal to best available;
CALL Mach Tas Switchover(STATE.mach IN, Nom Ias IN, Tran Alt OUT);
IF STATE.z GT Tran Alt
THEN #1imit is at or above tran alt ,find mach gradients #
T Goal Alt = MAX(Goal Alt,Tran Alt),
DESCENT GRADIENT = SELECT FIELDS gradient,end alt,gradient_type
FROM | DESCENT_MACH TO_GRADIENT(D M T G)
WHERE(D M T G.source is equal to best available)AND
(D M T G.beg alt GE STATE.z)AND (D_M T G.end alt LT
STATE.z) AND (D M T G.speed EQ STATE.mach);
Speed Type = 'mach’;
Tran Speed = STATE.mach;
ELSE #select gradients assoclated with ias speed#
DESCENT GRADIENT = SELECT FIELDS gradient,end alt,gradient type
FROM DESCENT_IAS_ TO GRADIENT(D I T G)
WHERE(D S T G.source is equal to best available) AND
(D_I T G.beg alt GE STATE.z)AND (D_I T G.end alt LT
STATE._)AND TD I T G. speed‘gg STATE.ias);
Speed Type = ‘Tas';
Tran Speed = STATE.ias;
#determine whether to use nominal or minimum gradient#
CALL Min Or_Nominal Grad(Fl_Id IN, DESCENT GRADIENT IN, Grad OUT,
" End Alt OUT,REST TABLE IN,loc Pa Id IN, STATE IN),
Goal ATt = MAX(Goal Alt,End Alt), -
#altitude where gradient might changef
END Descent_Phase;

C-40



C.24 Min Or Nominal Grad

This routine 18 used to determine the altitude to switch from
minimum to a nominal gradient.

ROUTINE Min Or Nominal Grad;
PARAMETERS Fl Id 1IN, DESCENT GRADIENT IN,Grad OUT,End Alt OUT,
REST ° TABLE . IN, Loc Pa Id Iﬁ STATE IN—_

DEFINE VARIABLES

DEFINE TABLES
STATE STATE MODELED TO
position x X position
position y Y position
tas Tas
ias Ias
mach Mach
z Altitude
time Time
ard Along route distance
temp Temperature
position AGGREGATE(position x,positioq_y)
DESCENT GRADIENT DESCENT GRADIENT DATA
grad Gradient
end alt End altitude
gradient type Nominal or non-nominal
REST TABLE RESTRICTION TABLE
rest x Restriction point x value
rest_y Restriction point y value
rest alt Restriction altitude
qualifier Restriction qualifier at at/above at/below
rest_point AGGREGATE(rest_x,rest y);

FI_1d Identity of aircraft for Trajectory
Estimation
Grad Gradient for this segment
End Alt Altitude end of linéar descent segment
Min Grad Minimum gradient
Min End Alt End of segment associated with min grad
Dist Rest Pt Distance to restriction point
- Interim Alt Altitude to change from min to nom. grad
Loc Pa Id Planned action id
Ground Ground speed
Course Course direction
Numerator Temperary used in computation,

C-41



SELECT FIELDS gradient,end alt # select nominal gradient#
FROM DESCENT_| GRADIENT
INTO Grad, End Alt
WHERE DESCENT GRADIENT. gradient type EQ 'nominal’;
IF (COUNT(REST TABLE) EQ 1) AND
(STATE.z GT REST TABLE.rest alt) AND (Loc_Pa_Id IS IN
ACTIVE PLANNED ACTIONS.pa_id)
THEN # must decide between minimum and nominal gradient #
#determines min grad and end altitude#
SELECT FIELDS grad, end alt
FROM DESCENT GRADIENT
INTO Min Grad, Min End Alt
WHERE DESCENT GRADIENT.grad‘_g MAX(DESCENT GRADIENT. grad);
CALL Find Distance To Point(Fl Id IN, REST TABLE.rest _point
IN, Dist Rest | Pt OUT STATE. position IN, STATE.time IN STATE.z
1IN, STATE. speed INT_
IF Dist Rest Pt GT 0
THEN # calculate altitude to switch from min to nominal grad #
~ Course = DIRECTION(STATE.position,REST TABLE.resq_point)
CALL Speed To Ground(STATE.position IN,STATE.z IN,Course IN,
~ STATE.tas IN,Ground QUT);
Numerator = Dist Rest Pt Pt * Min Grad * Grad * STATE.tas/
Ground - STATE.z * Grad + Min Grad * REST TABLE.rest_alt;
Interim Alt = Numerator / (Min_Grad - Grad);
IF Interim Alt LT STATE.z
THEN #gradient for current segment should be min grad #
T Grad = Min Grad;
End Alt = MAX (Min End Alt,Interim Alt);
END Min Or Nominal Grad; '

C~42



C.25 Find Distance To Point

This routine is used to find the distance between two points.

ROUTINE Find Distance To Point;
PARAMETERS Fl Id IN, Goal Pt IN,Dist Pt QUT,Coord IN,Time
IN, Altitude IN s Speed IN-
REFFER TO GLOBAL
AIRCRAFT MAX ENDURANCE SPEED IN,
HOLD PLANNED ) ACTIONS IN,
VECTOR PLANNED ACTIONS | IN;
REFER TO SHARED LOCAL
ACTIVE PLANNED ACTIONS IN,
AGD | VECTOR IN;
DEFINE TABLES

VECTOR_POINTS

POINTS IN VECTOR YET TO BE MODELED

coord x X coordinate
coord_y Y coordinate
sequence Apex point sequence number
coord AGGREGATE(coord_x,coord_y);

DEFINE VARIABLES

F1 Id Identity of aircraft for Trajectory
Estimation

Goal Pt(2) Point(x,y) trying to find distance to

Dist Pt Distance to point

Coord(2) Current point

Altitude Altiude at coord

Speed Speed at coord

Hold Fix(2) Hold fix(x,y)

Hold Ard Hold fix ard

EFC_Time Expect further clearence time

Sequence Vector apex point sequence number

01d_Coord(2) 0ld(x,y)

Coord Ard Ard of coord

Time Time of interest

M_E Speed Max endurance speed

Goal Pt Ard Goal Points ard

Start_Ard Ard of starting point;

C=43



Dist Pt = 0;

01d Coord = Coord;

CALL XY To Ard(Fl_Id IN, Coord IN,Start_Ard OUT);
CALL XY ' To Ard(Fl 1d 1IN, Goal Pt IN Goal Pt . Ard ouT);

IF 'vector' IS IN ACTIVE PLANNED ACTIONS. pa_  type
THEN # add distance inside vector #

VECTOR POINTS = SELECT FIELDS vertex sequence number,
vertex coordinate
FROM VECTOR_PLANNED ACTIONS (V_P_A)
WHERE V_P A.pa id IS IN ACTIVE ] PLANNED ACTIONS.pa 1d
ORDERED BY vertex sequence number;

REPEAT FOR EACH VECTOR POINTS RECORD

CALL XY _To Ard(Fl Id IN, VECTOR POINTS.coord IN,Coord_Ard
Tooum);
IF (Coord_Ard GT Start_Ard) AND (Coord Ard LE Goal Pt Ard)
THEN # This Segment Counts In Distance Calculation¥
~ Dist Pt = Dist_Pt + DIST(0ld_Coord,VECTOR POINTS.coord);

01d ¢ Coord = Coord
Sequence = VECTOR . POINTS .sequence;
IF Sequence LT MAX(VECTOR POINTS .sequence)
THEN # rest of distance is along vector segment #
" Dist_Pt = Dist_Pt + DIST(0ld_Coord,Goal Pt);
IF (Disq_Pt EQ 0) OR (Sequence__g MAX(VECTOR POINTS.sequence))
THEN # Find distance along route
" CALL XY_To_Ard(F1_Id IN, 0ld Coord, Coord Ard);
Dist Pt = Dist Pt + Goal Pt_. Ard - Coord Ard;
IF 'hold' IS IN ACTIVE PLANNED ) ACTIONS
THEN # Check for relationship between hold fix and goal #
~ SELECT FIELDS hold fix position,efc time
FROM HOLD PLANNED ACTIONS(H P A)~
INTO Hold Fix, EFC Time
WHERE H__ P A.pa id IS IN ACTIVE _PLANNED ACTIONS.pa 1id;
CALL XY To Ard(Fl Id IN, Hold Fix IN Hold Ard OUT);
SELECT FIELDS speed
FROM AIRCRAFT MAX ENDURANCE SPEED(A M E S)
INTO M _E Speed
WHERE A M E S.source is best available AND Altitude 1s
T InAME S altitude range;
Del Time =(M_E Speed - Speed)/AGD VECTOR.acceleration;
Time = Time + MAX(O Del Time)
IF(Hold_Ard LT Goal Pt Ard) AND (Hold Ard GE Start_Ard)
THEN
T Dist Pt = Dist Pt + (EFC_Time - Time) * M_E Speed;
END Find Distance To Point,

C-44



C.26 Ascent Phase

This routine determines the gradient and the duration of
gradient for a climb.

ROUTINE Ascent_Phase;
PARAMETERS F1 Id IN, Goal Alt INOUT,Grad OUT Speed_Type OUT,
Tran Speed OUT STATE IN-
REFER TO GLOBAL
CLIMB MACH TO_GRADIENT IN,
NOMINAL CLIMB . SPEEDS IN,
CLIMB . IAS _TO_( GRADIENT 1 IN;
REFER TO SHARED LOCAL
ACTIVE PLANNED ACTIONS IN,
DEFINE TABLES

STATE STATE MODELED TO
position x X position
position y Y position
tas Tas
ias Ias
mach Mach
z Altitude
time Time
ard Along route distance
temp Temperature
position AGGREGATE(position x,position y);

DEFINE VARIABLES

F1 Id Identity of aircraft for Trajectory
Estimation

Goal Alt Goal altitude

Nom Mach Nominal climb mach

Tran Alt Altitude to switch from ias to mach

End Alt End of the linear segment

Grad Gradient

Speed_Type Ias or mach

Tran _Speed Transition speed;

C-45

the



SELECT FIELDS mach #find nominal mach climb speed#
FROM NOMINAL CLIMB_SPEEDS(N C_S)
INTO Nom | Mach
WHERE N_( C S.source is equal to best available;
CALL Mach Ias  Switchover(Nom Mach IN,STATE.ias IN, Tran Alt OUT);
F STATE.z LT Tran Alt
THEN # 1imit will be at or below tran alt#
Goal Alt = MIN(Goal Alt,Tran Alt);
Speed_Type = 'ias';
Tran Speed = STATE.ias;
#find gradient associated with ias#
SELECT FIELDS gradient,end alt
FROM CLIMB IAS_TO GRADIENT(C IT G)

INTO Grad, End Alt
WHERE(C IT ' G.source is equal to best available)AND

(CITG. beg alt LE STATE.z)AND (C_ I T G.end alt
GT STATE.z)AND (C_I T G.speed EQ STATE.1as)AND
(C_I T G.gradient_type EQ ‘'mominal');
EISE #select gradients associated with mach speed#
~ SELECT FIELDS gradient,end alt
INTO Grad,End_Alt
FROM CLIMB MACH TO GRADIENT(C M_T G)
WHERE(C M T G.source is equal to best available)AND
— (C_M T G.beg alt LE STATE.2z)AND (C M T G.end alt GT
STATE.z)AND (C M T G.speed gg Q STATE.mach)AND
(C_M T G.gradient type._g 'nominal');
Speed Type = 'mach';
Tran Speed = STATE.mach;
Goal Alt = MIN (Goal Alt,End Alt),
END Ascent Phase,

C-46



C.27 Find New Place On Route Or Vector

This routine moves along the path of the aircraft to the next break
point and returns this point and the time it reaches this point.

ROUTINE Find New Place On Route Or_Vector;

PARAMETERS Fl Id IN, EFC Time IN Hold Fix IN,Coord INOUT,
VECTOR _. POINTS INOUT ROUTE T POINTS INOUT Time INOUT Total Dist
INOUT, Del _Dist 1IN, Speed IN

DEFINE TABLES

VECTOR _POINTS POINTS IN VECTOR YET TO BE MODELED

sequence Sequence of vector points
position x Apex x position

position y Apex y position

position AGGREGATE(position x,position y)

ROUTE_POINTS
ard

POINTS IN ROUTE YET TO BE MODELED

Along route distance

position x X position of route point
position y Y position of route point
position AGGREGATE(position x,position_y);

DEFINE VARIABLES

F1 1d Identity of aircraft for Trajectory
Estimation

EFC Time Expect further clearence time

Hold Fix Holding fix

Coord(2) Point(x,y)

Time Time at coordinate

Total Dist Total distance accounted for

Del Dist Distance to account for

Speed Speed at coord

Hold Ard Ard of hold fix

Vec_Point(2) Point in vector

Rout Pt(2) Point on route

V Dist Distance to vec point

Dist_To Hold Distance to holding fix

R Dist Distance to route point

Course Course flown at coord

Ground Ground speed

Next Dist Next distance break

Vec Ard Ard of Vec_Point

Coord_Ard Ard of coordinate

R _Ard Rout pt ard;

C-47



CALL XY To Ard(Fl Id IN, Hold Fix IN Hold Ard OUT),
IF COUNT(VECTOR POINTS) NE 0
THEN ¥ travel in vector ¥
SELECT FIELDS position
FROM VECTOR POINTS(V_P)
INTO Vec_Point
WHERE V P.sequence EQ MIN(V_P.sequence);
Course = DIRECTION(Coord,Vec_ Point);
CALL XY To szl I1d IN, Vec Point IN,Vec Ard OUT)
IF (EFC Time EQ 'none "y OR (Vec Ard L’ LT Hold Ard)
THEN # end segment at del dist or at vector point #
T V Dist = DIST(Coord,Vec_Point);
Next Dist = MIN(V_Dist,(Del Dist - Total Dist));
IF Next Dist EQ EQ V Dist
THEN # remove point from vector #
" DELETE FROM VECTOR_] POINTS
WHERE VECTOR POINTS. position E V Dist;
ELSE # Must examine hold fix #
~ Dist_To Hold = DIST(Coord,Hold Fix);
Next | - Dist = MIN(Dist To Hold,(Del Dist - Total Dist));
ELSE # distance is along route
CALL XY _To_Ard(F1 Id IN, Coord IN, Coord Ard OUT);
DELETE FROM ROU'I'E POINTS
WHERE ROUTE_ POINTS .ard LE Coord_Ard;
SELECT FIELDS ard,pos:ltion
FROM ROUTE POINTS
INTO R Ard Rout Pt
WHERE ROUTE POINTS .ard EQ MIN HIN(ROUTE POINTS .ard)
Course = DIRECTION(Coord Rout_Pt);
IF (EFC_Time EQ 'none') OR (R Ard LT Hold Ard)
THEN # end segment at del dist or at route point #
" R _Dist = DIST(Coord, Rout . Pt);
Next Dist = MIN(R Dist,(Del Dist - Total . Dist));
EISE # Must examine hold fix #
~ Dist . To_Hold = DIST(Coord,Hold Fix);
Next_. “Dist = MIN(Dist To_Hold, (Del Dist ~ Total Dist));
CALL Speed_To_Ground(Coord IN, Altitude 1N, Course IN, Speed
~ IN,Ground. OUT)
Total Dist = Total Dist + Next Dist;
Time = Time + Next " Dist/Ground;
Coord = Coord + Next . Dist * (SIN(Course) »C0S(Course)) ;
END Find New Place On Route Or Vector'

C-48



APPENDIX D

GLOSSARY

Numbers in parenthesis at the end of the definition refer to the
section in which the term is first used.

AAS

~Adaptatfon

‘Along Route - -

Distance

AERA

AGD
Variable

AGD Vector

Air Traffic
Controller

Area

ARTCC

Cell

Advanced Automation System (1.1).

The process of collecting environmental data and

"storing. it in system data bases (1.5.1).

‘The distance of a converted fix on the route from
- the first converted fix (2.1.1).

The concept of automated en route air traffic
control described in "The AERA Concept” [12] (3.4).

An AGD variable is an element (gradient, direction
or acceleration) of the AGD Vector (2.1.3). (See
also "AGD Vector")

The AGD vector is the 3-tuple (acceleration, gra-
dient and direction) controlling the construction
of a segment (2.1.3).

See "Controller" (1.4.1).

An area 1i1s a second level division of the conti-
nental United States Airspace. Controllers are
specially trained for an area's airspace, a region
bounded horizontally by a polygon and having some
vertical extent (1.4.1). ' (See also "Center" and
"Sector") -

Air Route Traffic Control Center (1.4.1). (See
algo”Center”)

Air Traffic Control (1.1).

A discrete compartment of the wind grid (2.1.1).

D-1



Center

Clearance

Component

Controller

Converted Fix

Converted
Route

Coordination
Fix

Cusp

FAA
Fix

Grid Cells

A center is the administrative headquarters and the
operational facility for control of the first-level
division of the Continental United States Airspace.
The center controls a region bounded horizontally
by a polygon and vertically by the Center floor and
an altitude of 60,000 feet (1.4.1). (See also
"Area" and "Sector”)

A specially formatted order from the controller to
the pilot which commands the pilot to execute a
maneuver (2.1.3).

Third~level algorithmic unit in the breakdown of an
automation function (1.3). (See also "Subfunction”
"Element")

An en route radar controller as defined in (1.4.1).

A fix that 1is a component of the aircraft route
after Route Conversion processing (1.4.1.2). (See
also "Fix" and "Coordination Fix")

The filed route of flight as augmented in Route
Conversion with preferred arrival routes, among
others (1.5.2).

A special purpose fix hsed for a reference location
when flight plans are transmitted to the next con-
trol area (1.5.2). (See also "Fix" and "Converted
Fix")

An aircraft trajectory 1is represented as a series
of points called cusps. The cusps are the points
of possible AGD vector discontinuity (2.1.2).

Fourth-level algorithmic unit in breakdown of an
automation function (1.3). (See also "Subfunction”
and "Component”)

Federal Aviation Administration (1.1).

A named x,y location (1.4.1.2).

Discrete compartments of the wind grid (2.1.1).

D-2



Man—Machine
Interface

NAS

Next Cusp

Past Cusp

PDL

Pending
Action List

Plan

Planned
Action

Planning
Region

Profile
Reference
Point

Sector

Interaction mechanism provided by the computer
system to translate human input 1into internal
format and translate internal format into human
readable form (2.1.2).

National Airspace System (1.1).

The next position to which the aircrft route will
be modeled (2.1.2),

The position to which the aircraft route has been
modeled (2.1.2). (This point may be at some future
position in terms of the current actual aircraft
position.)

Program Design Language (1.2 and Appendix E).

A 1list which contains planned actions which may
effect the aircraft trajectory from the past cusp
onward (2.1.3). (See also "Past Cusp” and "Planned
Action”)

A set of planned actions for an aircraft (1.5.2).
(See also the definition of "Planned Action™)

An internal representation of a proposed change of
aircraft clearance which can be modeled into the
aircraft trajectory (2.1.2).

The geographic area over which the Trajectory Esti-
mation algorithm operates. This area includes the
extent of an entire Air Route Traffic Control
Center (ARTCC) and also includes a buffer area
(2.1.1).

A 4-space position used to initialize Trajectory
Estimation (1.5.2).

A sector 1s the third level division of the Conti~
nental United States airspace. A sector 1s the
division to which a controller is assigned (1.4.1).
(See also the definition of "Center” and "Area")

D-3



Segment

Stimulus

Subfunction

Trajectory

Wind Grid

A segment 1s a part of an aircraft trajectory'
represented by an implied line between two adjacent
cusps. The gradient, direction, and acceleration

of the aircraft are constant across the segment
(2.1.2). _

A stimulus is one of several flight path events
related to a planned action which initiate the
planned action processing component (2.1.3).

The second-level algorithmic unit in the breakdown
of an automation function (1.3). (See also
"Component” and "Element”)

A description of an aircraft's position in
(x,y,z,t) space, produced by applying altitude and
timing assumptions to the filed flight plan and
revising when necessary (1.4.1.2).

A grid structure overlaid on the planning region to
relate geographic coordinates to wind speed,
direction and temperature at that location (2.1.1).



APPENDIX E
AERA PDL LANGUAGE REFERENCE SUMMARY

E.1 Overview of the Use of AERA PDL

The AERA Program Design Language (PDL) has been created for the
single purpose of presenting algorithms in this apecification

document. It evolves from previous AERA wuses, and from MITRE
WP-81W552, "All About E,” October 198l.

The description of this appendix is intended to support readers and
users of AFRA PDL. AERA PDL supports readable, yet structured and
consistent, descriptions of algorithms.

AFRA PDL Features

® Relational data tables can be defined and manipulated by
constructs in the language.

e Builtin functions are used to provide routine calculations
without showing all of the detail.

® Routines are used to modularize logic paths and data scope.

e Indentation is8 used to Iindicate statement grouping,
statement continuation, and levels of nesting.

e Routines explicitly define data or refer to predefined data.

AERA PDL Statements

The types of statements used in AERA PDL are:

English language statements
assignment statements

routine declaration statements
data manipulation statements
flow of control statements

E.2 Elements of AERA PDL

Keywords

Keywords are words reserved for the usage of AERA PDL. Figure
E-1 presents all the keywords used in the current version of
AFRA PDL, grouped for convenience.

E-1



routine construction keywords

CALL END ROUTINE

data reference keywords

PARAMETERS IN
REFER TO GLOBAL OUT

REFER TO SHARED LOCAL INOUT
DEFINED IN GLOSSARY

data definition keywords

DEFINE CONSTANT(S)
DEFINE VARIABLE(S)
DEFINE TABLE(S)

common arithmetic builtin function keywords

AVG MIN ABS EXP Ccos ARCCOS
SUM MAX CEIL  LOG SIN ARCSIN
PROD  MEDIAN FLOOR SQRT TAN ARCTAN
SIGNUM
MoD

coordinate geometry builtin function keywords

DIST DOT INTERSECTION
MAGNITUDE CROSS INTERPOLATE
DIRECTION LINE

set builtin function keywords

UNIQUE COUNT CONCAT BOOL

FIGURE E-1
KEYWORD GROUPINGS

E-2



set operator keywords

UNION  INTERSECT

table manipulation keywords

SELECT FIELDS
INSERT INTO
DELETE FROM
UPDATE IN

value constant keywords

TRUE FAISE

comparison keywords

Nor  Gr
R GE
Ap IT

LE

flow of control keywords

IF ... THEN ... EISE

ALL

FROM

INTO

WHERE
ORDERED BY
RETURN COUNT

|18

IS IN
IS NOT IN

CHOOSE CASE ... WHEN ... THEN ... OTHERWISE

FOR ... T0
REPEAT WHILE
REPEAT UNTIL

REPEAT FOR EACH ... RECORD

GO TO

FIGURE E-1 (Concluded)

KEYWORD GROUPINGS

E-3



Operators
The operators of AERA PDL are summarized in Figure E-2.

The Assignment Operator

o The format of the assignment statement is:
"target” = "expression”

e The target may be any type of data allowed by AERA PDL.

e The assignment operator includes the ability to £fill a table
from data contained in other tables. The form of this use

of the assignment operator is:
"table name"™ = "table expression” ;

Builtin Functions

The builtin functions of AERA PDL accept either an single value
or data organized into an array. The author of a routine must
make it clear in comments and text what form of data 1is being
processed by the builtin function. Builtin functions are
listed in Figure E-3.

E.3 Routine Construction

The order of appearance of constructs in a routine 1is:

ROUTINE -- required

PARAMETERS —- optional

REFER TO GLOBAL -- optional

REFER TO SHARED LOCAL -—- optional

DEFINED IN GLOSSARY -~ optional

DEFINE CONSTANTS -- optional

DEFINE VARIABLES —- optional

DEFINE TABLES -- optional

logic flow — required, but will vary by routire.
END ~- required

Three of the constructs are noted below:

The ROUTINE Construct

e The ROUTINE construct names the routine.

o The syntax of the ROUTINE comstruct is:
ROUTINE "routine name” ;

E-4



assignment operator
A=B A 18 assigned the value of B

arithmetic operators

A+B A plus B

A-B A minus B

A*B A times B

A/B A divided by B

A ** B A to the power of B

comparison operators

A 18 less than B

A is less than or equal to B

A is greater than B

A 18 greater than or equal to B
A 18 equal to B

A 18 not equal to B

> >
it i
Ww o =

logical operators

NOT A The logical opposite of A
AORB Logical OR of A and B
A AND B Logical AND of A and B

set operators

A INTERSECT B The set intersection of A and B

A UNION B The set union of A and B

AISINGB A 18 an element of the set B

A IS NOT IN B A 18 not an element of the set B
FIGURE E-2

GROUPINGS OF AERA PDL OPERATORS



FUNCTION MEANING

ABS(x) Absolute value of x

ARCCOS (x,y) Inverse cosine of the ratio of y to x

ARCSIN(x,y) Inverse sine of the ratio of y to x

ARCTAN(x,y) Inverse tangent of the ratio of y to x

AVG(A) Mean of the elements in A

BOOL(x) Numerical equivalent of logical condition:
1 1f x is TRUE, O if x 1is FALSE

gg;g(x) Smallest integer greater than or eqqal to x

CONCAT(81,82,...,8N) Concatenation of strings sl through sN

€0s(x) Cosine of x

COUNT(A) Number of elements of a set A

CROSS(v1,v2) Cross product of vectors vl and v2

DIRECTION(pl,p2) Direction of p2 from pl in degrees from the
north; usually will be expressed in degrees
clockwise from true morth

DIST(pl,p2) EFuclidean distance between points pl and p2

DOT(v1,v2) Dot product of vectors vl and v2

Egg(i) e to the x power

_El_op_g(x) Greatest integer less than or equal to x

FIGURE E-3
BUILTIN FUNCTIONS

E-6



FUNCTION

MEANING

INTERPOLATE(a,b,t)

INTERSECTION(L1,L2)

LINE(pl,p2)

LOG(x)
MAGNITUDE(v)
MAX(A)
MEDIAN(A)
MIN(A)
MOD(x1,x2)
PROD(A)

SIGNUM(x)

SIN(x)
SQRT(x)
SUM(A)

TAN(x)

UNIQUE(A)

The point (1-t)a+tb

The point of intersection of the lines Il and

L2
Vector (a,b,c)
pl and p2

Log of x In base e

Length (i.e., norm) of the vector v

corresponding to
ax + by = ¢ which passes through

the 1line
the points

Largest of the elements in the set A

Median value of the elements in set A

Smallest of the values in set A
Remainder when x1 is divided by x2

Product of the elements in A

Function yielding 1 if x GT 0, -1 1if x LT O,

and 0 1f x EQ 0
Sine of x

Square root of x

Sum of the elements in A

Tangent of x

The set A with no duplicate elements

FIGURE E-3 (Concluded)

BUILTIN FUNCTIONS



The CALL Construct

e The CALL construct invokes use of another routine as a
subroutine and passes to it the data on which it is to
operate, .

e The syntax of the CALL construct is:
CALL "routi.me_name== ( "data_usage list™ ) ;

e The data usage list in the CALL statement must match in
number and data utilization (IN, OUT, INOUT) the PARAMETERS
statement of the called routine.

The END Construct

e The END construct shows the formal end of the routine.

e The syntax of the END construct 1is:
END "routine name" ;

E.4 Data Definitioms

Data usage is defined in the constructs placed at the beginning of
each routine.

The structures, or organization of data, recognizable to AERA PDL
include constants, atomic variables, hierarchically structured
variables, arrays, tables, and field-types. The hierarchically
structured variables are the same as the structure variables of PL/I.

Within a table, the values corresponding to the definition of a
field-type are called fields when they are referred to individ-
ually. The values for a whole column of a table (or a subset of the
whole column) may be referred to as a set of fields.

The following data definition constructs appear in the order shown,
1f any are needed. The first line of each construct begins in
column 1, aligned with the ROUTINE construct.

The PARAMETERS Construct

e This construct provides usage information about the data

that are being provided by the calling routine in the form
of specification of read-only 'IN', write-only 'OUT', or
modification of an existing value 'INOUT'.

E-8



e Variables appearing in the PARAMETERS construct are still
local data for the routine being defined and as such appear
in the definition constructs. ‘

e The syntax of the PARAMETERS comstruct is:
PARAMETERS "data;psage_IIst” H

The REFER TO GLOBAL Construct

e This construct provides reference to, and usage information
for, data from the Global data model.

e The gyntax of the REFER TO GLOBAL construct is:
REFER TO GLOBAL "data usage list” ;

The REFER TO SHARED LOCAL Construct

e This construct provides reference to, and usage information
for, data from the Shared Local data model described in
Appendix A of the specification.

o The syntax of the shared local construct is:
REFER TO SHARED LOCAL “"data_usage list" ;

The DEFINED IN GLOSSARY Comstruct

e This construct provides reference to, and usage information
for, data from a specially prepared Glossary that central-
izes the definition of data variables that are used re-
peatedly within a given function of the algorithmic
specification. ‘

o The syntax of the shared local construct is:
DEFINED IN GLOSSARY "data usage 1list” ;

The DEFINE CONSTANTS Construct

e The use of named constants instead of 1in-line numerical
constants is available at the discretion of the author of an
algorithm. Named constants, if present, are to be declared
with this construct.

e The syntax of the DEFINE CONSTANTS comstruct is:
DEFINE CONSTANTS ='const:ant:_.clef:l.nit:l.on.___blo<:k" 3

E-9



E.5

The DEFINE VARIABLES Construct

e The syntax of the DEFINE VARIABLES comstruct is:
DEFINE VARIABLES “"variable definition block” ;

The DEFINE TABLES Construct

e The syntax of the DEFINE VARIABLES comnstruct is:
DEFINE TABLES "table definition block";

Flow of Control Constructs

The IF...THEN...ELSE Construct

o The syntax of the IF...THEN...ELSE construct is:
IF "condition”
THEN

“statement_plock”

[ ELSE

I'st:atement_block" ]

The CHOOSE CASE Construct

e This construct provides a choice of one of several alterna-
tive loglic paths depending on the first condition satisfied
among the conditions specified.

e The OTHERWISE phrase is optional.

o The syntax of the CHOOSE CASE construct is:
CHOOSE CASE
WHEN “"condition” THEN
“statemenq_plocﬁ'
[ WHEN phrases repeated as necessary |
[ OTHERWISE
“statemenq_block" ]

The REPEAT WHILE Construct

e The syntax of the REPEAT WHILE construct is:
REPEAT WHILE "condition” ;
"statement_block"

The REPEAT UNTIL construct

e The syntax of the REPEAT UNTIL construcf is:

REPEAT UNTIL "condition™ ;
*btatement_plock”

E-10



The REPEAT FOR EACH RECORD Construct

e This construct explicitly loops over all records in table,
or the subset of a table as specified in a WHERE phrase.

e The syntax of the REPEAT FOR EACH construct is:
REPEAT FOR EACH table name” RECORD
T WHERE "condition™ ] ;
statement block”

e Within the statement block of this loop, the construct of
"table name”."field name” means only the ONE value that is
associated with the record for that iteration of the loop.

e If it is necessary to refer to entire columns of the table
that is being looped on, the correct form of the reference
is  ALL("table name”."field name"). This construct means
exactly what “"table name"."field name” would have meant if
the loop had not been in effect.

The GO TO Construct

e The syntax of the GO TO comnstruct is:
GO TO "label”™ ;

The FOR...TO... Construct

e The syntax of the FOR...TO... construct is:
FOR "loop_index" = "initial value” TO "last_value” ;
"statement - block"

Table Manipulation Constructs

The SELECT FIELDS Construct

e This construct extracts data from a table, or from a collec-
tion of tables, and makes it avallable to the routine.

e The syntax of the SELECT FIELDS comstruct is:
SELECT FIELDS [ UNIQUE ]} I "field 1ist” | ALL]
FROM tabie name list"
[ INTO "local variable  name_list” ]
[ WHERE "condition” ]
[ ORDERED BY "field name" ]
[ RETURN COUNT ( "local variable” ) ] ;

E-11



E.7

The INSERT INTO Comstruct

e This construct allows a new record to be inserted into a
table.

o The syntax of the INSERT INTO conmstruct 1is:
INSERT INTO "table name” ("field assignments”)
[ WHERE "condition”] ;

e All insertions will preserve the assumption of no duplicate
records allowed in the table.

The UPDATE IN Construct

e This construct allows existing records in a table to have
certain of their values changed.

o The syntax of the UPDATE IN construct 1s:
UPDATE IN "table name” i"fielq_gssignments")
[ WHERE "condition” ]} ;

The DELETE FROM Comnstruct

e This construct removes selected records from a table.
e The syntax of fhe DELETE FROM comstruct is:
DELETE FROM "taEIe_pame“
[ WHERE "condition” ] ;

Glossary

"comparison”

o There are four possible syntaxes for the comparison. These
are not given separate names, but will all be shown as if
they shared the same element of the language.

o The firat syntax is for arithmetic comparisons:
"individual™ GE|LE|GT|LT "individual®

e The second syntax is for general comparisons:
"individual”™ EQ|NE "individual”

e Both of these syntaxes are also valid if they are used to
compare two variables with the same complex organization,
for example two vectors of the same length or two field
types from the same table. In this case the result has as
many answers as there are elements in the compared variables.

E-12



o The third syntax is for arithmetic comparisons:
"individual” GE|LE|GT|LT ANY|ALL "set”
o The fourth syntax is for general comparisons:
"individual”™ IS IN|IS NOT IN “set”
e The latter two syntaxes are used to qualify an individual
based on any value in a set of values.
"condition”
e The syntax of the condition is:
"comparison” [ANDIAND NOT|OR|OR NOT “comparison”]
e The optional part of this syntax can be repeated as often as

required.

"constant definition block”

The content of the constant definition block 1s three
columns: the constant names, the constant values, and the
constant descriptionms.

The constant names are aligned in a column 3 spaces indented
from the DEFINE CONSTANTS line.

The other two columns are aligned as convenient, so that
there 18 no visual overlap between the columns.

“data usage list”

A routine must declare the type of use for all of its data

°
that are known outside the routine.
e The three types of use are: read only (IN), create (OUT),
and modify an existing copy (INOUT). :
e The format of a data usage list is:
"variable name” "usage type”, ...
e An example of the format for data usage list 1s:
An Input Parameter IN, A LOCAL TABLE INOUT
“expression”
o Variables may be formed implicitly 1nv expressions without

being separately named or defined.

E-13



Expressions are combinations of defined variables with the
operators and builting functions of AERA PDL.

In an expression, the implicit variable output from any
builtin function may be used as the input to any other
builtin function or operator.

An expression, when fully evaluated, yields one variable.

"field assignments"

This term only appears in statements referring to exactly
one table: INSERT and UPDATE.

The form of the term is a comma-separated list:
"field assignment”, ...

The form of a single assignment is:
"field name” = "value expression”

In this term the field names do not have to be qualified by
the table name (that is given in the statement).

"table definition block"

Three types of definition are made in this block: table defi-
nitions, field-type definitions, and AGGREGATE definitioms.

Table definition lines are formatted as:
"table name” "table_pefinition"

Field-type definitions lines are formatted as:
"field name” "field definition”

Aggregate definitions are formatted as:
"aggregate name” AGGREGATE ("field name 1list")

Fields will contain only atomic (single-valued) variables.
Aggregates may be used 8o that a program can manipulate

multiple fields in one statement when it makes sense to do
80.

"table—-expression”

Tables may be used implicitly in assigﬁments or comparisons
being separately named or defined.

E-14



A table expression is either a table name or a SELECT state-
ment specifying the contents of the implicit table.

"table name”

Generally, this is just the name of a table.

In a few statements, there i1s a syntax that allows a user to
define a synonym and use it in the rest of that statement.
The intent of this option 1s to allow shorter where clauses
that are easier to read. The format of the synonym refer-
ence is: ‘ :
"existing_table name” ( "synonym” )

The statements that allow this use are those that have the
where clause: SELECT, INSERT, DELETE, UPDATE, and REPEAT.

"variable definition block”

The content of the variable definition block is two columns:
variable names and variable descriptions.

Align variable names in a column that is indented 3 spaces
from the DEFINE VARTABLES line.

Align variable definitions in a column as convenient; when a
structure element is defined, both the variable name and the
variable definition should be indented three spaces from the
name and definition of the next higher level variable.

Three types of variables may be defined in this block:
atomic variables, arrays, and structured variables.

Each element variable is described by a linme:
"variable name" "variable definition”

Each array variable is described by a line:
"variable name” ("dimensions”) "variable definition”

Each structured variable is described by multiple lines, one
line per lowest level element, and one line for each named
level of grouping/structure, with indentation levels used to

indicate the grouping.

The names of subordinate elements of a structured variable

" are named in all lower case letters.

E-15



E.8

The use of complex structured variables is not encouraged;
one reasonable use for them is to receive the values of
AGGREGATEs.

Other Uses and Conventions

Use of Special Characters in AERA PDL

e Parentheses are used for grouping statements and setting off
special parts of the constructs.

e Semicolons are used as statement terminators.

@ Colons are used to terminate labels.

o Underscore 18 wused to separate words in multi-word
identifiers.

e The symbols '+','-','®*'  and '/' are used as arithmetic
operators.

e The pound sign '#' is used as a comment delimiter, for
beginning and end of each comment line.

e Commas are used as separators in lists of operands.

o Perlods are used to separate fully qualified names.

Naming Conventions

e Keyword 1identifiers use only uppercase letters and are
underlined. They are the only underlined identifiers in the
PDL.

e Table identifiers from the relational data base also use
only uppercase letters.

o AGGREGATE identifiers for combinations of fields use no
uppercase letters.,

o References to fields in a table, used in the normal course

of reference 1in AERA PDL, will be fully qualified by
including the table name.

E-16



Other Identifiers

Identifiers for constants, routines, labels, arrays, and
hierarchically structured variables are all be named using
word-initial capitals.

For hierarchically structured variables, all of the sub-
ordinate elements within the structure use only lowercase
letters.

For hierarchically structured variables, all references to
the subordinate elements in the structure will be in fully
qualified form using separate identifiers.

Global data and shared local data can include both tables
and parameters. The 1individual parameters are named using
word-initial capitals.

Use of the Formal Constructs in AERA PDL Statements

Statements may use formal constructs or clear English
descriptions to specify the intended test or action.

Any AFRA PDL statement 18 terminated by a semicolon,
including any English statement outside of a comment.

Below the level of statement, some statements have a finer
organization in terms of "phrases”, usually occupying a line
per phrase and indented one level from the first line of the
original statement.

Statement Ogsgnization

Indentation 1s wused to 1indicate statement groupiﬁg,
statement continuation, and levels of nesting.

Any statement may have a label starting in columm 1.

Continuation 1lines are 1indented three spaces from the
original line of the statement.

Comments are used as needed, bracketed by the special
character '#'.

E-17



4.

8.

APPENDIX F

REFERENCES

U.S. Department of Transportation, Federal Aviation
Administration, “Advanced Automation System: System Level
Specification,” FAA-ER-130~005D, April 1983.

U.S. Department of Transportation, Federal Aviation
Administration, "National Airspace System Plan: Facili- ties,
Equipment, and Associated Development,"” April 1983.

U.S. Department of Transportation, Federal Aviation
Administration, "National Airspace System Configuration
Management Document, Flight Plan Position Processing & Beacon
Code Assignment,” NAS-MD-313, August 198l.

U.S. Department of Transportation, Federal Aviation
Administration, “"National Airspace System Configuration
Management Document, Route Conversion & Posting,” NAS-MD-312,
August 1982.

W. J. Swedish et al., "Operational and Functional Description of
AERA 1.01," MTR-83W69, The MITRE Corporation, McLean, Virginia,
September 1983.

W. J. Swedish, "Evolution of Advanced ATC Automation Functions,’
WP-83W149, The MITRE Corporation, McLean, Virginia, March 1983.

U.S. Department of Transportation, Federal Aviation
Administration, "National Airspace System Configuration
Management Document, Adaptation Collection Guidelines,™
NAS-MD-326, August 1982.

U.S. Department of Transportation, Federal Aviation
Administration, "National Airspace System Configuration
Management Document, Multiple Radar Data Processing,”
NAS-MD-320, August 1982.

U.S. Department of Transportation, Federal Aviation
Administration, "National Airspace System Configuration
Management Document, Automation Tracking,” NAS-MD-321, August
1982.

F-1



10.

11.

12.

U.S. Department of Transportation, Federal Aviation
Administration "Air Traffic Control,” order 7110.65C, Chg.
5, May 1983.

U.S. Department of Transportation, Federal Aviation Admin-
istration, "Airman's Information Manual: Basic Flight
Information and ATC Procedures,” January 1982.

L. Goldmuntz et al., "The AERA Concept,” FAA-EM-81-3,
U.S. Department of Transportation, Federal Aviation
Administration, March 1981.



