
t~,, \\
~s
~
'~

'f \~ US. Department
ot Transportation

Federal Aviation
Administration

Automated En ,Route Air Traffic Control

Algorithmic Specifications Office of Systems
Engineering Management
Washington, D.C. 20591

TRAJECTORY ESTIMATION

September 1983
Report No. DOT/FAA/ES-83/4

This document il evaileble to the
U.S. public through the
National Technicel lnformetlon Service,
Springfield, Vll'linle 221 11

Volume 1

I. R.,ort No.

DO'l'/FAA/ES-83/4
4. Titlo ..,., Subtitle

Automated En Route Air Traffic Control
Algorithmic Specifications
TRAJECTORY ESTIMATION Volume 1

7. """'-•'•) J.A. Kingsburg, D.A. Pool, S.K. Ghosh
1\T .<::: M::>l thn""'"' r. .l Roni 11 i Ar R A Shenherd

Systems Engineering Service
Department of Transportation
Federal Aviation Administrat~on

3. Recl"i_. 1 C ot No.

s; t Detl

Seotember 1983 •
6. Porfe,.i"t D•.-,i•otion Code

AES-320
•• Porfe-int Ortoni•otion Report No.

FAA-ES-83-4
10. Woffc Unit No. (TRAIS)

11. Contract or Grant No.

Rnn Tnrl<=>n<=>nrlAnrA AvA q . W Washington D.C. 20591 13. T,. of R.,.ort _, Poriotl c. ... rotl
12. S,onaorint Atone, N-e ontl Atltlroaa

Same as # 9 above.

16. Abatroct

14. S,.naorint A,.ncr Cocle

AES

This Algorithmic Specification establishes the design criteria for four advanced
automation software functions to be included in the initial software package of
the Advanced Automation System (AAS). The need for each function is discussed
within the context of the existing National Airspace System (NAS). A top-down
definition of each function is provided with descriptions on increasingly more
detailed levels. The final, most detailed description of each function
identifies the data flows and transformations taking place within each function.

T~is document consists of fi~e volumes. Volu~e 1, Trajectory Estimation,
contains a functional design for deriving a predicted four-dJ.mensional (space
and time) path, or trajectory, for each participating aircraft.

The other four volumes of this specification provide design criteria f6r the
following:

0 Volume 2, Airspace Probe

0 Volume 3, Flight Plan Conflict Probe

0 Volume 4, Sector Workload Probe

0 Volume 5, Data Specification

17. Kotr Wortla 11_. Dlatriltutlon Stat--' _

I

Automation, Air Traffic Control,
Automated Decision Making, En Route
Traffic Control, Artificial
Intelligence, Advanced Automation
System

Document is available to the U.S. public
throught the National Technical Infor
mation Service, Springfield, VA 22161

19. Security Cle11if, (of tlsla ,.,.,.) 20. Securitr Clenlf. (of thla , ...) 21. Ne. of Pea•• 22. Price

Unclassified Unclassified

Form DOT F 1700.7 (1-721 Ropre4uctlon of co,.plotecf pogo outhorlao•

i

EXECUTIVE SUMMARY

This specification establishes design criteria for Trajectory Esti
mation, a part of the initial automation package for the Advanced
Automation System of the Federal Aviation Administration's (FAA's)
next generation air traffic control system. "Trajectory Estima
tion," used as the name of the specification, logically groups three
functions: Trajectory Estimation and two ancillary functions that
feed Trajectory Estimation called No~inal Plan Builder and
Resynchronization.

Nominal Plan Builder is an addition to the National Airspace System
(NAS) Stage A Route Conversion. Route Conversion provides logic to
alter pilot-requested route information to conform . to established
procedural routes into and out of major terminal areas. Nominal
Plan Builder provides an analogous service in the vertical dimen
sion. Based upon stored data describing altitude transitioning
around major terminals, Nominal Plan Builder constructs an indi
vidualized set of control actions which, when input to Trajectory
Estimation, mold the predicted vertical profile of an aircraft to
established Air Traffic Control (ATC) procedures.

Trajectory Estimation constructs a four-dimensional ground refer
enced path, or trajectory, for each candidate flight plan sub
mitted. The algorithm provides a route processing logic which
extends the current NAS route processing to four dimensions (two
horizontal coordinates, altitude and time). Methods are incor
porated into Trajectory Estimation that allow controller modifi
cation of the trajectory by controller-aided machine construction of
new planned actions. A planned action is the computer analog of a
controller's own ATC action. An estimate of the aircraft's future
position is thus obtained which reflects not only pilot intent but
also the effects of ATC actions tactically or strategically
planned. Aircraft positional uncertainty due to the inexact know
ledge of physical phenomena is incorporated into the design. Tra
jectory Estimation algorithms access diverse 'data sources to con
struct a series of (x,y,z,t) points which then define a set of
segments. These segments (actually line segments in 4-space)
reflect pilot intent, ATC standard operating procedures (through the
actions of Nominal Plan Builder), controllers' planned ATC man
euvers, and the effects of atmospheric parameters (wind, temperature
and pressure). When controller or pilot initiated flight plan
changes occur, the trajectory is reconstructed to fit current param
eters.

Resynchronization provides an analog to the NAS Stage A Route Con
version subfunction of Calculated Time of Arrival (CTA) Updating.

ii

That NAS subfunction updates time-of-arrival values at future
positions when a difference is observed between the predicted time
of arrival at a fix and the actual arrival time at that fix. Like
CTA Updating, when deviations between the predicted path for an
aircraft and that aircraft's current track position occur, Resyn
chronization provides data to "synchronize" the predicted path with
the track position. Unlike NAS CTA Updating, Resynchronization data
is used by Trajectory Estimation to construct a whole new tra
jectory, correcting the observed errors. Resynchronization provides
this real-time feedback loop into the trajectory construction pro
cess in order to improve trajectory prediction accuracy and to
theoretically reduce the rate at which future deviations from the
trajectory will be observed.

iii

TABLE OF CONTENTS

1. INTRODUCTION 1-1

1.1 Purpose 1-1
1.2 Scope 1-2
1.3 Organization of This Document 1-2
1.4 Role of Trajectory Estimation in the Overall ATC

System 1-3

1.5

System Context
Role of Trajectory Estimation in Future System
Enhancements

Trajectory Estimation Summary

Operational Description
Processing Overview

DEFINITIONS AND DESIGN CONSIDERATIONS

2.1 System Design Definitions

Modeling Environment Terms
Trajectory Terms
Planned Act ion

Design Considerations

System Interface Requirements
Controller Interface Language

TRAJECTORY ESTIMATION FUNCTIONAL DESIGN

3.1

3.1.1
3.1.2

3.2

Environment

Input Data and Activation
Output Data

Design Assumptions

Operational System Interface
External Function Design Assumptions
Internal Function Design Assumptions

iv

1-4

1-7

1-8

1-9
1-10

2-1

2-1

2-1
2-3
2-7

2-16

2-16
2-23

3-1

3-1

3-3
3-7

3-8

3-9
3-9
3-10

3.3

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6

3.4

3.4.1
3.4.2
3.4.3

TABLE OF CONTENTS
(Continued)

Functions and Subfunctions

Nominal Plan Builder
Trajectory Initialization
Planned Action Processing
Trajectory Construction
Trajectory Post Processing
Resynchronization

Expandability

Goal-Oriented Planned Actions
Uncertainty Estimations
Resynchronization Airspeed Upgrades

4. DETAILED DESCRIPTION

4.1 Nominal Plan Builder

4.1.1 Mission
4.1.2 Design Considerations and Environment
4.1.3 Nominal Plan Builder Design Logic

4.2

4.2.1
4.2.2
4.2.3
4.2.4
4.2.5

4.3

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4.3.6
4.3.7
4.3.8

Trajectory Initialization

Mission
Design Considerations and Environment
Flight Plan Acceptance Design Logic
Trajectory Repositioning Design Logic
Trajectory Replanning Design Logic

Planned Action Processing

Mission
Design Considerations and Environment
Hold Planned Action Processing Design Logic
Altitude Planned Action Processing Design Logic
Speed Planned Action Processing Design Logic
Vector Planned Action Processing Design Logic
Flight Route Follower Design Logic
Include Pending Actions Design Logic

v

3-14

3-15
3-17
3-19
3-29
3-33
3-35

3-37

3-37
3-38
3-40

4-1

4-1

4-2
4-2
4-5

4-37

4-37
4-39
4-41
4-45
4-50

4-53

4-58
4-60
4-65
4-77
4-99
4-121
4-135
4-142

TABLE OF CONTENTS
(Concluded)

4.4 Trajectory Construction

4.4.1 Mission
4.4.2 Design Considerations and Enviro~ent
4.4.3 Merging Design Logic
4.4.4 Cusp Construction Design Logic

4.5 Trajectory Post Processing

4.5.1 Mission
4.5.2 Design Considerations and Component Environment
4.5.3 Trajectory Post Processing Design Logic

4.6 Resynchronization

4.6.1 Mission
4.6.2 Design Considerations and Component Environment
4.6.3 Resynchronization Design Logic

APPENDIX A: TRAJECTORY ESTIMATION DATA BASE

APPENDIX B: TRAJECTORY ESTIMATION UTILITIES

APPENDIX C: PENDING ALTITUDE LIMITS UTILITIES

APPENDIX D: GLOSSARY

APPENDIX E: AREA PDL LANGUAGE REFERENCE SUMMARY

APPENDIX F: REFERENCES

vi

4-177

4-184
4-186
4-188
4-195

4-206

4-216
4-218
4-219

4-241'

4-241
4-241
4-249

A-1

B-1

C-1

D-1

E-1

F-1

FIGURE 1-1

FIGURE 1-2
FIGURE 1-3
FIGURE 1-4

FIGURE 2-1
FIGURE 2-2
FIGURE 2-3
FIGURE 2-4
FIGURE 2-5
FIGURE 2-6

FIGURE 3-1
FIGURE 3-2
FIGURE 3-3

FIGURE 3-4
FIGURE 3-5
FIGURE 3-6

FIGURE 3-7
FIGURE 3-8
FIGURE 3-9
FIGURE 3-10
FIGURE 3-11
FIGURE 3-12
FIGURE 3-13
FIGURE 3-14
FIGURE 3-15

FIGURE 4-1
FIGURE 4-2
FIGURE 4-3
FIGURE 4-4
FIGURE 4-5
FIGURE 4-6
FIGURE 4-7
FIGURE 4-8
FIGURE 4-9
FIGURE 4-10
FIGURE 4-11
FIGURE 4-12

LIST OF FIGURES

TRAJECTORY ESTIMATION IN THE FLIGHT PLAN
CONSTRUCTION PROCESS
PAR AMENDMENT FOR N30SC
VERTICAL PROFILE FOR N30SC
DATA SERVICES FOR TRAJECTORY ESTIMATION

AREAS, CENTERS AND PLANNING.REGIONS
AIRCRAFT CLASS CHARACTERISTICS
WIND CELL GRIDS
TRAJECTORY CONCEPTS
ALTITUDE AND HOLD MANEUVERS
SPEED AND VECTOR MANEUVERS

TRAJECTORY ESTIMATION FUNCTIONAL ENVIRONMENT
TRAJECTORY ESTIMATION INPUT DATA SOURCES
FUNCTIONAL AND SUBFUNCTIONAL BREAKDOWN OF
TRAJECTORY ESTIMATION
PROCESSING OVERVIEW
EXAMPLE
PLANNED ACTION PROCESSOR/AGO VARIABLE
CONTROL RESPONSIBILITIES
POSSIBLE ACTIVE ACTIONS AT PAST CUSP
OVERLAP RESOLUTION
PLANNED ACTION PRECEDENCE RELATIONSHIPS
AGD VECTORS
LIMITS
TRAJECTORY CONSTRUCTION PROCESSING OVERVIEW
ALTITUDE MANEUVER ENVELOPE
DATA FLOW
DELAY ABSORPTION ZIG-ZAG VECTOR

NOMINAL PLAN BUILDER CALLING SEQUENCE
NOMINAL-PLAN-BUILDER EXAMPLE
NOMINAL PLAN BUILDER
SECTOR DETERMINATION
NEXT SECTOR
DELETE ACTIONS
RESTRICTIONS RETRIEVAL
EXAMPLE RESTRICTIONS TABLE
PROCESS QUALIFIERS
PROCESS ARRIVAL_DEPARTURE_QUALIFIER
PROCESS SPEED QUALIFIER
PROCESS AIRCRAFT_QUALIFIER

vii

1-11
1-13
1-14
1-17

2-2
2-4
2-5
2-6
2-10
2-13

3-2
3-4

3-16
3-21
3-22

3-23
3-24
3-26
3-27
3-28
3-30
3-31
3-34
3-36
3-39

4-7
4-8
4-10
4-11
4-12
4-14
4-15
4-16
4-17
4-19
4-21
4-22

LIS1 OF FIGURES
(Continued)

Page

FIGURE 4-13 PLANNED ACTION GENERATION 4-23
FIGURE 4-14 TRANSLATION OF-A RESTRICTION INTO A PLANNED

ACTION 4-25
FIGURE 4-15 SELECT PLANNED ACTION RECORDS 4-26
FIGURE 4-16 DETERMINE TRANSITION TYPE 4-29
FIGURE 4-17 GENERATE RESTRICTED ALTITUDE PA 4-30
FIGURE 4-18 GENERATE-PLANNED ACTION ID 4-31
FIGURE 4-19 GENERATE-SPEED PA 4-32
FIGURE 4-20 VERIFY CRUISE PARAMETERS 4-34 - -FIGURE 4-21 GENERATE UNRESTRICTED ALTITUDE PA 4-36
FIGURE 4-22 TRAJECTORY ESTIMATION-INITIALIZATION OVERVIEW 4-38
FIGURE 4-23 FLIGHT PLAN ACCEPTANCE INITIALIZATION CALLING

SEQUENCE 4-42
FIGURE 4-24 FLIGHT PLAN ACCEPTANCE INITIALIZATION 4-43
FIGURE 4-25 CREATE-ACTIVE PLANNED ACTIONS 4-46 - -FIGURE 4-26 FILL PENDING LISTS 4-48
FIGURE 4-27 TRAJECTORY REPOSITIONING INITIALIZATION

CALLING SEQUENCE 4-49
FIGURE 4-28 TRAJECTORY REPOSITIONING INITIALIZATION 4-51 - -FIGURE 4-29 TRAJECTORY REPLANNING INITIALIZATION

CALLING SEQUENCE 4-54
FIGURE 4-30 TRAJECTORY REPLANNING INITIALIZATION 4-55
FIGURE 4-31 DETERMINE INITIAL PAST CUSP 4-57
FIGURE 4-32 PLANNED ACTION PROCESSING 4-59
FIGURE 4-33 HOLD PLANNED ACTION PROCESSING CALLING SEQUENCE 4-67
FIGURE 4-34 HOLD PLANNED ACTION PROCESSING 4-68
FIGURE 4-35 CHEcK FOR END OF ACTIVE HOLD ACTION 4-69 - - - - -FIGURE 4-36 HOLD PENDING ACTION OVERLAP 4-70
FIGURE 4-37 ARBITRATE HOLD PENDiNG VS ACTIVE ACTON 4-72
FIGURE 4-38 ELEVATE NiW HOLD TO ACTivE STATUS 4-74
FIGURE 4-39 SET HOLD PARAMETERS-FOR TRAJECTORY CONSTRUCTION 4-75
FIGURE 4-40 SET-HOLD-ACCELERATION PHAsE PARAMETERS 4-78
FIGURE 4-41 SET-HOLD-HOLD PHASE PARAMETERS 4-80 - - - -FIGURE 4-42 ALTITUDE PLANNED ACTION PHASES 4-82
FIGURE 4-43 ALTITUDE PLANNED ACTION PROCESSING

CALLING SEQUENCE 4-84
FIGURE 4-44 ALTITUDE PLANNED ACTION PROCESSING 4-85
FIGURE 4-45 CHECK FOR END OF-ALTITUDE ACTION 4-86
FIGURE 4-46 ALTITUDE PENDING-ACTION oVERLAP 4-87 - - -FIGURE 4-47 ARBITRATE ALTITUDE PENDING VS ACTIVE ACTION 4-88
FIGURE 4-48 ELEVATE NEW ALTITUDE ACTION TO ACTIVE STATUS 4-90
FIGURE 4-49 DETERMINE ALTITUDE END 4-92

viii

FIGURE 4-50

FIGURE 4-51
FIGURE 4-52
FIGURE 4-53
FIGURE 4-54
FIGURE 4-55
FIGURE 4-56
FIGURE 4-57
FIGURE 4-58
FIGURE 4-59
FIGURE 4-60
FIGURE 4-61
FIGURE 4-62
FIGURE 4-63
FIGURE 4-64
FIGURE 4-65
FIGURE 4-66
FIGURE 4-67
FIGURE 4-68
FIGURE 4-69
FIGURE 4-70
FIGURE 4-71
FIGURE 4-72
FIGURE 4-73
FIGURE 4-74
FIGURE 4-75
FIGURE 4-76
FIGURE 4-77
FIGURE 4-78
FIGURE 4-79
FIGURE 4-80
FIGURE 4-81
FIGURE 4-82
FIGURE 4-83
FIGURE 4-84
FIGURE 4-85
FIGURE 4-86
FIGURE 4-87
FIGURE 4-88
FIGURE 4-89
FIGURE 4-90

LIST OF FIGURES
(Continued)

SET ALTITUDE PARAMETERS FOR TRAJECTORY
CONSTRUCTION- - 4-94
SET UP ALTITUDE INFORMATION 4-96
FIND NoMINAL CLIMB SPEED· 4-98
SET ALTITUDE-ACCELERATION PHASE PARAMETERS 4-100 - - -SET GRADIENT PHASE PARAMETERS 4-101 - - -SET ALTITUDE DESCENT PHASE PARAMETERS 4-103
SET-ALTITUDE-ASCENT PHASE PARAMETERS 4-105 - - -MIN OR NOMINAL GRADIENT 4-107
FIND DISTANCE TO RESTRICTION 4-109
SPEED PALNNED-ACTION PROCESSING CALLING SEQUENCE 4-112
SPEED PLANNED ACTION PROCESSING 4-113 - - -CHECK FOR END OF ACTIVE SPEED ACTION 4-114 - - - - -SPEED PENDING ACTION OVERLAP 4-115
ARBITRATE SPEED PENDING VS ACTIVE ACTION 4-117
RESOLVE SPEED vs OTHER TYPES 4-119
ELEVATE-NEW SPEED ACTION TO ACTIVE STATUS 4-122
SET SPEED PARAMETERS FOR-TRAJECTORY CONSTRUCTION 4-124
LINEARIZED TURNS 4-125
VECTOR PLANNED ACTION PHASES 4-126
RESULTING VECTOR 4-128
VECTOR PLANNED ACTION PROCESSING CALLING SEQUENCE 4-129
VECTOR PLANNED ACTION PROCESSING 4-130
CHECK FOR END OF ACTIVE VECTOR ACTION 4-131
VECTOR PENDING ACTION OVERLAP 4-132
ARBITRATE VECTOR PENDING ACTION VS ACTIVE ACTION 4-133
ELEVATE NEW VECTOR ACTION TO ACTIVE STATUS 4-136
SET VECTOR PARAMETERS FOR-TRAJECTORY CONSTRUCTION 4-138
NEW-PHASE VECTOR 4-140
FLIGHT ROUTE FOLLOWER 4-143
INCLUDE PENDING ACTIONS CALLING SEQUENCE 4-146
INCLUDE FUTURE PA LIMITS 4-147
INCLUDE-HOLD PENDING ACTION LIMITS 4-148
COMPUTATION OF POSITION START LIMITS 4-151
INCLUDE ALTITUDE PENDING ACTION LIMITS 4-152
START MANEUVER AS A FUNCTION OF-ALTITUDE 4-154
CONVERT TO ARD 4-155
DESCENT-TO-HIGHER ALTITUDE 4-157
LAST POINT-FOR DESCENT 4-160
CLIMB TO LOWER ALTITUDE 4-162
LAST POINT FOR-CLIMB 4-164
CALCULATE START POINT 4-166

ix

FIGURE 4-91
FIGURE 4-92
FIGURE 4-93
FIGURE 4-94
FIGURE 4-95
FIGURE 4-96
FIGURE 4-97
FIGURE 4-98
FIGURE 4-99
FIGURE 4-100
FIGURE 4-101
FIGURE 4-102
FIGURE 4-103
FIGURE 4-104
FIGURE 4-105
FIGURE 4-106
FIGURE 4-107
FIGURE 4-108
FIGURE 4-109
FIGURE 4-110
FIGURE 4-111
FIGURE 4-112
FIGURE 4-113
FIGURE 4-114
FIGURE 4-115
FIGURE 4-116
FIGURE 4-117
FIGURE 4-118
FIGURE 4-119
FIGURE 4-120
FIGURE 4-121
FIGURE 4-122
FIGURE 4-123
FIGURE 4-124
FIGURE 4-125
FIGURE 4-126
FIGURE 4-127
FIGURE 4-128
FIGURE 4-129
FIGURE 4-130
FIGURE 4-131
FIGURE 4-132

LIST OF FIGURES
(Continued)

CALCULATE POINT TO REACH ALTITUDE
FIND NEW START POINT - - -SET START LIMITS
INCLUDE SPEED PENDING ACTION L~ITS
SPEED BASED BY TIME - --SPEED BASED BY COORDINATE
SPEED-BASED-BY-ARD
INCLUDE VECTOR PENDING ACTION LIMITS
TRAJECTORY CONSTRUCTION
MERGING PROCESS CALLING SEQUENCE
AGO VECTOR LIMIT COMPUTATION
FIND WIND CELL
WIND-CELL-INTERSECTION - -GET Z TO T
GET-SPEED TO T - --GET ARD TO XY
GET-XY TO T
ITERATE TO FINAL ALTITUDE AND TIME
CUSP CONSTRUCTION C~LLING-SEQUENCE
TRUE AIRSPEED, WIND AND GROUNDSPEED VECTORS
EFFECT OF WIND ON AIRCRAFT DESCENT
CUSP CONSTRUCTION
TIME TO SPEED
TIME TO X Y Z
ITERATE TO FIND SPEED AND Z
XY TO ARD-
HOLDING PATTERN MANEUVER ENVELOPE
TRAJECTORY POST PROCESSING CALLING SEQUENCE
TRAJECTORY POST PROCESSING - -BUILD PLANNED ACTION DURATION
BUILD-NPB PLANNING POINT
UPDATE CANDIDATE TIME
CHECK TRAJECTORY FOR MANEUVER ENVELOPES
BUILD-HOLD MANEUVER ENVELOPE
COMPUTE HOLD BOX PARAMETERS - - -BUILD ALTITUDE MANEUVER ENVELOPE
FIND ARD FOR CUSP
FIND LAST DOWNSTREAM VERTICES
FIND-PAID-
PA DETAILS
VERTEX DEFINITION UNRESTRICTED - -EFFECTIVE GRADIENT

X

4-168
4-170
4-172
4-174
4-175
4-178
4-180
4-182
4-185
4-189
4-190
4-192
4-193
4-196
4.,.198
4-199
4-201
4-203
4-205
4-207
4-208
4-209
4-211
4-212
4-213
4-214
4-217
4-220
4-221
4-222
4-224
4-226
4-227
4-228
4-230
4-232
4-234
4-235
4-236
4-237
4-238
4-240

FIGURE 4-133
FIGURE 4-134
FIGURE 4-135
FIGURE 4-136
FIGURE 4-137
FIGURE 4-138
FIGURE 4-139
FIGURE 4-140
FIGURE 4-141
FIGURE 4-142
FIGURE 4-143
FIGURE 4-144

TABLE 4-1

LIST OF FIGURES
(Concluded)

VERTEX DEFINITION RESTRICTED
VERTEX-CONSTRUCTION SUPERVISOR
VERTEX-CONSTRUCTION-
RESYNCHRONIZATION CALLING SEQUENCE
RESYNCHRONIZATION
XYT TO GROUND
DELTA
EXP SMOOTH
XY TO DIRECTION
GROUND TO TAS
PROJECT ONTO XY TRAJECTORY - - -DISTANCE TO LINE

LIST OF TABLES

AGD VECTOR VARIBALE AND LIMITS FOR AN
ALTITUDE CHANGE

xi

4-242
4-244
4-246
4-250
4-251
4-254
4-255
4-256
4-257
4-258
4-260
4-262

4-81

1. INTRODUCTION

The Federal Aviation Administration (FAA) is currently in the
process of developing a new computer system, called the
Advanced Automation System (AAS), to help control the nation's
air traffic. The AAS will consist of new or enhanced hardware
(i.e., Central Processing Units, memories, and terminals) and
new software.

The new software will retain most or all of the functions in
the existing National Airspace System (NAS) En Route Stage A
software. The algorithms will need to be recoded and, in some
cases, revised. In addition, the new AAS software will contain
several new functions that make greater use of the capabilities
of automation for Air Traffic Control (ATC). When fully
implemented, these new functions are intended to detect and
resolve many routine ATC problems.

The initial implementation of the AAS, described in the AAS
Specification [1] , will provide the ability to detect some
common ATC problems. To meet the requirements of the AAS,
several new ATC functions need to be postulated and described.
Four of these functions are described in this document;
Trajectory Estimation, Flight Plan Conflict Probe, Airspace
Probe, and Sector Workload Probe (Volumes 1, 2, 3, and 4).
Together, they represent an initial level of automation and the
beginnings of the evolution of the ATC system in accordance
with the NAS Plan [2] • The NAS Plan presents an overview of
the complete set of changes proposed to NAS in the coming
decade.

1.1 Purpose

The purpose of this volume is to identify design criteria for
Trajectory Estimation. Trajectory Estimation is one of the
advanced automation functions called for in the AAS Specifi
cation. The design criteria specified in this volume are based
on NAS and the specification of the AAS. The AAS specification
describes the Trajectory Estimation function and proposes some
high level requirements for this function.

Three separate functions are identified in this volume. The
first, Nominal Plan Builder, identifies procedural actions
implicit in an aircraft's filed flight plan. The second,
Trajectory Estimation, produces a predicted ground referenced
path of flight, called a trajectory, for each candidate air
craft. These trajectories model both pilot and ATC intent.

1-1

The third, Resynchronization, provides a real·-world feedback
loop into Trajectory Estimation which keeps the Trajectory
Estimation output from becoming obsolete.

The Trajectory Estimation process is meant to replace parts of
the current NAS subfunction called Flight Plan Position Proces·
sing [3]. (Flight Plan Position Processing is a subfunction of
NAS Route Conversion [4].) In particular, Trajectory Estima·
tion becomes responsible for Initial Fix·-Time Calculations and
Updating Fix Times. This specification does not address the
responsibilities of NAS Flight Pl~n Position Extrapolation (a
subfunction of Flight Plan Position Processing), Association
Checking, Beacon Code Assignment, or Metering. Some of these
excluded functions are specifically mentioned within this docu
ment in a Trajectory Estimation context. Some implications are
drawn which may be important in any redesign qf those functions.

The purpose of this document to convey design criteria for the
derivation of a four·-dimensional trajectory with ground
reference for each aircraft. This document is not a vehicle
for describing the system·-wide ramifications of changing to ·
such trajectories. This document mentions related functions to
provide context, but only provides details of those functions
which constitute the system's capacity to build four·-dimensional
trajectories.

1.2 Scope

This algorithmic specification presents design criteria for a
computational framework of Trajectory Estimation. The frame·
work is a set of algorithms which collectively describe how it
may be possible to construct a four·-dimensional predicted path
for each candidate aircraft. It may be viewed as a candidate
for consideration in the final design. However, it is not
intended to be the complete final design for Trajectory
Estimation in the AAS.

The framework establishes the requirements for input and output
data and provides a description of the flow of control of data
as it is transferred from input to output. Some of the prin·
cipal requirements have been identified in the "Operational and
Functional Description of AERA 1.01" [5]. To the extent pos·
sible, the data are discussed using existing NAS terminology.

1.3 Organization of This Document

The remainder of Section 1 provides a description of Trajectory
Estimation and two related functions: Nominal Plan Builder and

1·-2

Resynchronization. Each new function's role in the larger ATC
context and in future enhancements of the ATC System is
described. Both the operational considerations and processing
methods of Trajectory Estimation, Nominal Plan Builder, and
Resynchronization are summarized. Section 2 defines the
terminology used in the specification and discusse·s the factors
which influence the design of the algorithms.

Descriptions of the algorithms are contained in Section 3,
Trajectory Estimation Functional Design, and in Section 4,
Detailed Description. The Nominal Plan Builder, Trajectory
Estimation, and Resynchronization functions, like the other
advanced automation functions, are divided hierarchically into
subfunctions, components, and elements (underlined words in
Sections 1 and 2 are critical to the understanding of this
specification and their definitions can be found in the
Glossary, Appendix D). Section 3 specifies the design,
environment, and assumptions of the subfunctions (e.g., Planned
Action Processing) and outlines their components (e.g., Speed·
Planned Action Processing). Section 4 provides a detailed
description of each subfunction's components, including their
mission, data requirements, and processing details, and in some
cases includes a discussion of a component's elements (e.g.,
Maneuver Envelope Construction).

Appendix A defines the data shared by the various subfunctions
of Trajectory Estimation, Nominal Plan Builder, and Resynchron
ization. (Similarly, Volume 5 of this document contains the
global data shared by the functions defined in Volumes 1
through 4.) Appendix B provides a description of general
algor! thms used in this specification. Appendix C provides a
compilation of some altitude processing routines. Appendix D,
as mentioned above, contains a glossary of those terms that are
critical to an understanding of this specification.

A Program Design Language (PDL) which describes high level
control logic using structured English is used as needed to
describe the algorithms in this specification. A description
of this PDL is contained in Appendix E. Finally, Appendix F
provides a complete list of references.

1.4 Role of Trajectory Estimation in the Overall ATC System

Trajectory Estimation has evolved from the limitations of the
current ATC software, especially those of NAS Flight Plan Posi
tion Processing [3]. Trajectory Estimation must, however, fit
precisely into the logical framework of information flow in the

1-3

AAS. The limitations of the current software and the context
of Trajectory Estimation in the AAS are discussed below.

1.4.1 System Context

The Continental United States airspace is currently partitioned
among 20 centers or Air Route Traffic Control Centers (ARTCCs).
The ARTCCs control regions are bounded horizontally by polygons
that stretch vertically from the center floor to 60,000 feet.
Each center's airspace is further ·divided into areas, which are
in turn divided into sectors. Areas and sectors are polygonal
regions with floors (either a specified altitude or the center
floor), and ceilings. The sectors of each area are staffed by
a group of air traffic controllers (or controllers) specific
ally trained for that area.

In the current ATC system, pilots decide their desired means to
reach their destination consistent with current navigational
and ATC practices. This intent is then filed with the ATC sys
tem as a flight plan operating under Instrument Flight Rules
(IFR). Alternatively, flight plans that are executed daily or
on a regularly scheduled basis reside in a data base and are
retrieved automatically unless altered or suspended. A flight
plan modification may be initiated by a controller or the
pilot. Advanced automation functions of the AAS can deal only
with those aircraft filing IFR flight plans.

Controllers are responsible for monitoring the flight as it
passes through their sectors and for helping pilots achieve
their objectives. They watch a symbol representing the air
craft's radar track position as it moves across a display con
sole; the aircraft's identity, altitude, and other information
are also displayed. Controllers institute control actions as
needed to perform such functions as helping pilots avoid close
approaches with other aircraft, honoring pilot requests for new
routes, rerouting flights to avoid sp~cial airspaces or severe
weather, and qUeuing aircraft into the major terminal areas.

A function which estimates the future positions of aircraft is
used in a wide variety of circumstances. Predicted paths,,
ground and time referenced, can be displayed to controllers for
their use in planning the orderly transit of traffic across
their sectors. Predicted paths assist the radar-tracking func
tion to associate a radar return with a given aircraft. Pre
dicted times of arrival at future positions assist in the
assignment of time absorbing maneuvers which help sequence air
craft properly into busy terminal areas.

1-4

1.4.1.1 Need for Trajectory Estimation

The FAA's plans for the evolution of Air Traffic Control are
discussed in the AAS Specification [1] and in the NAS Plan [2].
According to the NAS Plan, the "early capabilities [of auto
mated Air Traffic Control] will include [a] 4-D flight path
trajectory model." The AAS Specification further states that
such flight information must be available for any aircraft
having submitted and conforming to an IFR Flight Plan.

The AAS Specification also states, "The Route Conversion and
Fix Time calculation functions shall provide a sufficiently
accurate aircraft flight profile [trajectory] such that meter
ing, separation assurance, and automation functions can meet
their performance goals." An important point of the AAS
Specification is that the air traffic control system is being
transitioned from a basically tactical to a highly strategic
operation as prescribed in the NAS Plan [2]. In order to
perform most strategic operations, an aircraft trajectory with
known accuracy requirements is necessary.

In the early stages of automation, Trajectory Estimation
provides flight path predictions to problem identification
functions. Problem identification functions compare the
trajectory of an aircraft to other items in search of trajec
tory problems. Such problems might be penetrations of special
airspaces restricted to the general public or the loss of
separation with another aircraft's trajectory. Three of these
problem identification functions, Airspace Probe, Flight Plan
Conflict Probe, and Sector Workload Probe are the subjects of
algorithmic specifications [Vola. 2, 3, and 4]. Such problem
identification schemes depend upon trustworthy trajectory data,
especially timing information.

As the automation implementation proceeds, the Trajectory Esti
mation function will be called upon to serve automated routines
for problem solution. These pro.blem solution functions, Con
flict Resolution, Delay Absorption Planning, and Airspace Reso
lution, will be executed upon the automated identification of
problems as described in both the NAS Plan and the AAS Specifi
cation [2,1]. Unlike the problem prediction routines, however,
the problem solution routines will themselves engage Trajectory
Estimation to provide flight path data necessary in the deriva
tion of strategic maneuvers which satisfy certain goals. Here,
the automation system is dependent upon Trajectory Estimation's
capability to model air traffic control actions into four
dimensional path predictions.

1-5

1.4.1.2 Current System Inadequacies

Controller-initiated control decisions today are based mostly
on the short-term, "tactical" data provided by radar tracking
and the NAS functions "Route Conversion'' and "Flight Plan
Position Processing" [4,3] and specially constructed airspace
and operating rules. These flight data processing functions of
NAS Stage A receive pilot-filed route information.· Checks for
consistency in filed flight plan formats are made as well as
some eligibility tests. These eligibility tests determine
whether or not the flight plan route is a candidate for altera
tion. Route Conversion displays potential alterations in the
flight plan route, including Standard Instrument Departure
(SID) routes and Standard Terminal Arrival Routes (STARs),
among others.

Route Conversion then expands the route of the aircraft into
the component fixes making up the route. These fixes, called
converted fixes, are distinguished points in that the route can
be rederived by, essentially, connecting the dots. The fixes
are given as (x,y) points in system coordinates. The set of
fixes from Route Conversion may not be minimal; i.e., other NAS
functions might require a Route Conversion-derived fix for some
reason.

The NAS analog to Trajectory Estimation, Flight Plan Position
Processing (FPPP) [3], does not accommodate interactive con
troller planning. If a controller wishes to investigate the
effects of a control action on an aircraft's progress, such
investigation must be mental. FPPP can provide some route
information for display to the controller for this purpose.
However, there is no mechanism by which he can use the computer
as a tool to investigate ramifications of assigning ATC actions
for execution.

NAS FPPP attaches an altitude (z) and time (t) to each con
verted fix along the route. All modeling is three-dimensional
in x,y, and t with modeling in the third dimension, t, ignoring
a modeling of altitude changes. In altitude transitions, FPPP
estimates speed, altitude and time at the endpoint of the alti
tude change by assuming that the aircraft is in level flight.
Over the extent of the altitude transition it uses a speed
which is a fraction of filed true airspeed (TAS). Times
attached to future route points are extrapolated from these
estimates. Any inaccuracies will not be detected until
deviations are identified between the aircraft's longitudinal
track position and the predicted position trigger an update
mechanism.

1-6

In NAS FPPP, Calculated Times of Arrival (CTAs) for aircraft in
level cruise are determined for converted fixes ahead of the
aircraft's present position, using the aircraft's filed true
airspeed (TAS) corrected for wind effects. The system then
uses these stored values to check the aircraft's CTAs using the
aircraft's tracked position. If the CTA error exceeds a param
eter value, the later CTAs are adjusted to compensate for the
error with the simple addition of the observed time difference.
The aircraft's expected speed is not adjusted for the error and
so continued downstream error accumulation is likely.

Three problems exist in the current NAS aircraft path pre
diction algorithms with respect to the needs of the AAS and the
advanced automation functions. The first problem is that NAS
Flight Plan Position Processing provides no mechanism to sup
port controller modifications to the trajectory and thus cannot
support long-term strategic planning. The second problem is
inexact four-dimensional flight path modeling caused by the
omission of the effect of altitude and winds on performance in
climbs and descents. The third problem is the omission of an
updated set of flight parameters to account for the observed
progress of the aircraft when the CTAs are found in error.

The design of Trajectory Estimation specifically addresses
these problems of NAS flight path prediction. It creates a
trajectory representing the flight path across the entire plan
ning area and provides a mechanism to allow controllers to plan
by modifying the trajectory. These data are then available to
the controller to support long-term strategic planning as well
as tactical control. The altitude estimation inaccuracies are
expected to be reduced by considering the factors affecting
performance in climbs and descents such as altitude, aircraft
performance, wind velocity, and atmospheric temperature.
Improvements to the accuracy of downstream CTAs are provided by
modifying trajectory parameters, such as estimated speed, to
account for the observed error and then recomputing all future
CTAs starting from the aircraft's current position.

1.4.2 Role of Trajectory Estimation in Future System
Enhancements

In the initial version of the AAS, Trajectory Estimation in
corporates a limited controller planning repertoire which does
not fully support all of the route adjustments and automated
planning desired for full automation. This version of Trajec
tory Estimation incorporates air traffic control actions such
as:

1-7

• Altitude Change (possibly with restrictions)
• Hold at a Fix
• Speed Change
• Fully Specified Vector

Later, Trajectory Estimation will support additional actions
for metering and conflict resolution. The details of planned
evolution are discussed in the NAS Plan and "Evolution of
Advanced ATC Automation Functions" [2,6].

In the early AAS, Trajectory. Estimation provides (x,y,z,t)
estimates to support the controller in a manual planning
process. In this manual scenario, a controller may investigate
the effects of control actions on the aircraft's flight path
before actually clearing those actions. The system incor·
porates such controller initiated changes into the trajectory
and recomputes the (x,y ,z, t) values. Future automation plans
provide for increased support from Trajectory Estimation for
metering, automating the conflict resolution process, and
decreasing the controller's responsibility for planning
maneuvers for metering and conflict resolution.

As the air traffic control system matures, it is expected that
the quality of data input to Trajectory Estimation will im·
prove. While this does not affect Trajectory Estimation design
per !!' nevertheless, better input data will improve the
quality of estimated trajectories. Enhancements which affect
trajectory quality include:

• improved weather prediction (and prediction of winds
aloft) with the introduction of NEXRAD (a doppler
weather radar)

• implementation of a digitized two·-way air/ground com·
munication system which allows the ground·-based ATC
system to better determine current aircraft intent in
the microcosm (intended aircraft descent performance
characteristics, for example)

• improved vertical tracking allowing Resynchronization
to act also in the vertical dimension

1.5 Trajectory Estimation Summary

Trajectory Estimation provides a four·-dimensional (x, y, z, t)
representation of an aircraft flight path within a limited geo·
graphical area. It creates an initial aircraft trajectory when
an aircraft enters the system, and provides for updating that

1·-8

trajectory subject to controller changes or errors observed
between the predicted and actual trajectory.

1.5.1 Operational Description

Trajectory Estimation operates within the context of the AAS
[1]. Many other functions separate from Trajectory Estimation
provide Trajectory Estimation with the environmental data and
the aircraft tracking data needed to construct aircraft trajec
tories. These data are discussed in adaptation guidelines and
radar tracking documents [7,8,9]. Adaptation is that process
of collecting important relatively static environmental data
unique to a given location and storing them in system
accessible data bases. Included in such data are the following:

• geographical boundaries

• location of important points such as radars, naviga
tional aids, etc.

• airway data

• aircraft class characteristics data

Probe functions separate from Trajectory Estimation use trajec
tory data to provide warning information about sector workload
and conflicts with aircraft or protected airspace. Performance
monitoring functions use the trajectory data to check confor
mance tolerances between predicted and actual aircraft posi
tions. The display generating functions outside Trajectory
Estimation use radar, Mode C, and trajectory data to create
parts of the Situation Display, and the Alert and Resolution
Display. These displays are described further in the opera
tional description [5] and the AAS Specification [1].

From a controller's viewpoint, the primary function of Trajec
tory Estimation is support of operations . implicit in the
modification of the aircraft trajectory. Using input func
tions, a controller may propose changes to a trajectory.
Trajectory Estimation incorporates the proposed changes into a
temporary plan. This plan is checked by the probe functions
whose results are then available for display to the
controller. If the proposed plan is acceptable, the controller
may accept it and it becomes the current plan. If the proposed
plan is not acceptable, the controller may start the planning
process again. Trajectory Estimation (in combination with the
display generating functions, Flight Plan Conflict Probe, and

1-9

Airspace Probe) thus provides enough information for a con
troller to know whether a proposed, probed aircraft plan is
acceptable or whether it creates problems such as encounters
with special airspaces or other aircraft.

1.5.2 Processing Overview

The Trajectory Estimation process has been constructed as an
alternative to current NAS Flight Plan Position Processing in
its capacity of providing fix time calculations and updating.
As discussed above, the NAS path prediction process is not
exacting enough in its estimation of aircraft positions in
altitude transitions to support probe functions. Trajectory
Estimation provides a path in four dimensions (supplants fix
time calculations) and ensures an estimate's fidelity with a
feed-back process (supplants fix time updating) that also
attempts to make such trajectory updates rarer. The placement
of Trajectory Estimation within AAS Route Conversion is
detailed in Figure 1-1.

Below, an overview is given in a narrative, single thread
format, following the processing of aircraft N30SC, a privately
owned LearJet. This overview will address Figure 1-1, specifi
cally, Nominal Plan Builder, Trajectory Estimation and
Resynchronization. It will describe the processing taking
place in each of the three functions.

N30SC, a LearJet (LR23) originating in Fort Lauderdale, Florida,
is a northbound flight to Washington National Airport (DCA) in
Washington, D.C. The Washington Air Route Traffic Control
Center (ZDC) receives flight plan information denoting the
following:

• cleared route: PANAL.AR3.ILM •• RIC •• DCA
• cleared cruise speed: 440 kts, true
• cleared cruise altitude: 41000 ft.

Further information includes a coordination fix, a special
point with a time appended. In this case:

• coordination fix: PANAL
• coordination fix time: 0119

This information will be used to initialize the yet-to-be-built
trajectory. It tells us that the aircraft will be at point
PANAL (whose (x,y) coordinates are retrievable from the adapted
geographic data base) at 01:19 Zulu (Greenwich Mean Time).

1-10

I-'
I

I-'
I-'

Ne-w Flight
Plans

LJ
r

Pilot
Changed
Flight
Plans

Controller
AAS Route Conversion

Syntax -..

Procedural
Actions

Route

Altitude

•
1--+1 Trajectory~~ ••• ~Conformance

Estimation I ~ ~, Monitoring

•

' I Resynchroniza tion ~

FIGURE 1-1
TRAJECTORY ESTIMATION IN THE FLIGHT

PLAN CONSTRUCTION PROCESS

The forwarded information initiates processing in ZDC' s com
puter. The route string

PANAL.AR3. ILM •• RIC •• DCA

is parsed and checked both for syntax and for consistency. The
computer determines that all route fields are recognizable
(i.e, adapted in the data base).

DCA is a busy airport, and like many busy airports, DCA has
standardized routes of entry into the terminal area. These
routes, called PARs (Preferential Arrival Routes) help the con
troller separate and queue traffic. N30SC, approaching the DCA
terminal area (although still many miles away) is eligible for
procedural route amendment since DCA is the destination. Route
Conversion amends the route of the aircraft to include:

New Route: PANAL.AR3.ILM.J77.Jl65.RIC.V376.SABBI •• DCA

1-----------------------1
PAR

The PAR conducts the aircraft slightly to the west, then over
Richmond, Virginia (RIC) to proceed directly north to DCA. The
point SABBI is the southern arrival fix to DCA. (For details,
see Figure 1-2.)

Route Conversion continues processing with the construction of
the system (x,y) coordinates implied in the flight plan.
PANAL, ILM, RIC, SABBI and DCA are converted to system coordi
nates from the adapted data base. After this building process,
Nominal Plan Builder, a subfunction to Route Conversion, con
structs initial altitude information.

N30SC' s route of flight is eligible. for route alteration. The
flight environment, specifically the sector structure in effect
and the concommitant Standard Operating Procedures (SOPs) and
Letters of Agreement (LOAs), dictate how N30SC will be con
ducted to DCA in altitude. These nominal altitude control
actions, used for every such arrival to DCA, have been adapted
into a data base for Nominal Plan Builder. Nominal Plan
Builder assigns altitude actions (Figure 1-3) to N30SC to:

1-12

STOSH

PANAL

FIGURE 1-2
PAR AMENDMENT FOR N30SC

1-13

l

PAN'AL ILM

l

PANAL IU1

RIC SABSI
Time .,

(a)
No Altitude Restrictions

STO.:>H EPICS
Time .,

(b)

Procedural Actions Incorporated

FIGURE 1-3
VERTICAL PROFILE FOR N30SC

1-14

SABBI

• descend to 27000 feet for entry into Flat Rock Inter
mediate sector

• descend to cross EPICS (on the outbound intersection of
N30SC's route with the Flat Rock Intermediate sector)
at 17000 feet

• descend to cross SABBI at 10000 feet for entry into the
DCA terminal area

At this point in the process, AAS Route Conversion has con
structed two important data items. The first item is the
converted route: the filed route of flight augmented with the
PAR conducting N30SC to DCA. This route is stored in the
alphanumeric form listed previously, but, more importantly,
also as a sequence of (x,y) points. The second data item is
N30SC 's plan. This initial version of the plan contains only
those altitude actions derived by Nominal Plan Builder.

Trajectory Estimation, also a part of the AAS Route Conversion
function, is then invoked to construct the aircraft's
trajectory. The construction of a full trajectory is an
iterative process on the construction of a trajectory segment.
The processing overview for Trajectory Estimation will take
place on the small scale: a description of derivation of the
first segment is given.

The trajectory begins at a profile reference point. This is a
special point which is used to initialize the path prediction
process. For N30SC, this point is simply the coordination fix,
expanded to a five-dimensional point where the speed, altitude
and time of the aircraft are known.

Profile Reference Point: (216.56,187.39, 41000,
PANAL Altitude

0119,
Time

440)
Speed

The next trajectory point is computed so that the implied line
segment is the longest possible under the following criteria:

• The acceleration of the aircraft must remain constant
across the segment.

• The ground referenced gradient of the aircraft must
remain constant across the segment.

• The direction of the aircraft must remain constant
across the segment.

1-15

• The segment must not go beyond the next fix in the
Converted Route (i.e., next Converted Fix).

• The segment must not trespass into an area with dif
ferent atmospheric parameters than those at the profile
reference point.

The Trajectory Estimation process examines each criterion and
provides information concerning the following:

• The next change in accel~ration is at (location). The
acceleration value now is (value).

• The next change in gradient is at (location). The
gradient now is (value).

• The next direction change is at (location). The direc
tion now is (value).

• The next converted fix is at (location).

• The next change in atmospheric parameters happens in
this posed direction at (location).

Information regarding the valuation of location and accelera
tion, gradient and direction parameters is abstracted from many
sources. Altitude, speed, and ATC commanded position changes
for N30SC are listed in the plan. Position and altitude gqals
are listed there also. Gradient information is obtained from
the aircraft characteristics data base for this aircraft, as
are acceleration parameters. The Converted Route provides loca
tion information for the next Converted Fix. The atmospheric
data base gives a grid structure where atmospheric parameters
of winds and temperatures are stored.

All this varied information is combined to yield the next
trajectory point (Figure 1-4). The point itself is a four
dimensional point (x,y,z,t) with an airspeed value attached for
Trajectory Estimation purposes. The computation of this point
involves the alteration of gradient and speed parameters with
respect to wind and temperature parameter values associated
with N30SC 's profile reference point. Once this 5-tuple of
information has been derived, then the process repeats with the
just-modeled-trajectory-point replacing the profile reference
point in the next set of computations.

1-16

PARs

~Hnds Controller

Converted !
Route Route

Trajectory Conformance
Estimation --+ ••• .__. Monitoring

Plan
Altitude

t
t

Aircraft Resynchro-

Data
nization

......

FIGURE 1-4
DATA SERVICES FOR TRAJECTORY ESTIMATION

1-17

When Trajectory Estimation exits, three distinct data items
have been created by AAS Route Conversion. The two items
mentioned above, the Converted Route and N30SC's plan were
input to Trajectory Estimation and remain untouched for future
reference. 1he aircraft trajectory is output from Trajectory
Estimation. The trajectory is a sequence of points Ci:

N30SC trajectory: { ci = (xi,yi,zi, ti) I i ... 1, ••• ' n}

Position, altitude and time values at intervening points can be
obtained by linear interpolation. The trajectory contains all
the Converted Fixes in the modeled trajectory point set. In
addition, areas of important changes in modeling parameters are
bounded by trajectory points.

When N30SC's initial trajectory has been established, the tra
jectory is then available to other system functions. Airspace
Probe and Flight Plan Conflict Probe identify penetrations of
special use airspaces and losses of separation with other ·
aircraft. Conformance Monitoring uses the trajectory to
examine N30SC's radar track progress. If the radar track does
not match the predicted trajectory position in certain
dimensions and within some system parameter distance(s) then
Resynchronization is engaged.

Resynchronization examines the "real-world" track history of an
aircraft when other system functions indicate nonconformance in
the longitudinal, or along course, dimension. Resynchronization
uses the current radar track position to form a new profile
reference point. The point includes (as before)

Profile
Reference Point: (x,y,

current
position

z,
current
altitude

t,
time

of scan

speed).
current
observed

speed

The profile preference point is used as input along with the
Converted Route and N30SC's old plan to re-establish the
trajectory in the way already described. The new trajectory
replaces the old trajectory completely: the old trajectory is
discarded. Through the invocation of Resynchronization,
N30SC's new trajectory should "last longer," i.e., it will be
resynchronized less frequently.

1-18

This discussion of N30SC 's processing by Nominal Plan Builder,
Trajectory Estimation and Resynchronization did not consider
controller interaction. The controller is also a source for
ATC maneuvers. These maneuvers can be translated and incor
porated into N30SC' s plan by the normal process of amending
flight plans, or otherwise as appropriate, to alter N30SC' s
flight path. Trajectory Estimation, Nominal Plan- Builder and
Resynchronization would work as described above.

1-19

2. DEFINITIONS AND DESIGN CONSIDERATIONS

This section introduces terminology used in this specifica
tion. Also provided is a set of design considerations which
place Trajectory Estimation, Nominal Plan Builder, and Resyn
chronization firmly within the AAS context.

2.1 System Design Definitions

Some terms introduced in Section 1 of this specification are of
global interest across the AAS environment and include (in
order of presentation):

1. Subfunction
2. Component
3. Element
4. Center
5. Area
6. Sector
7. Controller
8. Flight Plan
9. Fix
10. Converted Fix
11. Adaptation
12. Coordination Fix
13. Converted Route
14. Plan
15. Trajectory
16. Profile Reference Point

Other terms of interest only to Trajectory Estimation, Nominal
Plan Builder and Resynchronization are introduced below. All
terms are defined in Appendix D •.

2.1.1 Modeligg Environm~nt Terms

A center represents a volume of airspace· for air traffic
control. Enclosing the center is the planning region. The
boundary of the planning region is considered to be some hori
zontal distance outside that of the center: e.g., 20 to 30
minutes of flying time in all directions. Figure 2-1
illustrates the center and planning region.

The fleet of aircraft in operation in U. S. airspace represents
a wide variety of performance capabilities. The performance
characteristics of Boeing 727 aircraft are different from those
describing the performance characteristics of DClO aircraft.
Even different models within the same class differ in some

2-1

I
I

------ ---

FIGURe 2·1
AREAS, CEfiiTERs AND PLANNING REGIONS

'2-2

-- --
II

performance characteristics (e.g.: B727-100 vs. B727-200).
These performance parameters are termed aircraft class
characteristics, and include climb profile data and descent
profile data among others. Figure 2-2 shows an example of this
data for a Boeing 727-200.

The airmass enclosed within the planning region presents a
dynamically changing physical environment within which aircraft
fly. Trajectory modeling must incorporate airspace parameters
in its computations. It is useful for the purposes of Tra
jectory Estimation to consider the planning region airspace
volume to be included within a grid called the wind grid.
Discrete compartments in the wind grid are called grid cells or
cells. Each cell is bounded by surfaces parallel to the coor
dinate planes of the three-dimensional cartesian coordinate
system used by Trajectory Estimation (see Section 3.2.3.1).
Wind speed and direction and temperature parameters are stored
with each grid cell representing those variables throughout the
cell. Figure 2-3 illustrates the wind grid geometry and wind
cell data.

The converted route created in Route Conversion is the basis
for along route distance computations. Each converted fix is
associated with its distance along the converted route from the
first converted fix. This along route distance (ard) is used
in Trajectory Estimation to reference ATC control actions to
the converted route.

2.1.2 Trajectory Terms

A trajectory is built by starting at an initial position called
a profile reference point and predicting future positions.
Each trajectory is conceptually a continuous, smooth curve in
four dimensions which may be modeled as a series of lines (in
space-time) called segments, joined together at their end
points, called cusps. The data base convey~ trajectory infor
mation as a list of cusps: the segments are the implied
straight line segments joining adjacent cusps. Figure 2-4
illustrates the profile reference point, cusp, and segment.

The trajectory is constructed iteratively one cusp at a time.
If Trajectory Estimation processing is conceptually frozen
before constructing the whole trajectory for an aircraft, then
two important terms are identified. The previously constructed
cusp is termed the past cusp. The cusp to be constructed next
ls called the next cusp.

2-3

Climb Data

Descent Data

Climb Gradients

1. 526 Ft/NMI
2. 312
3. 300
4. 105
s. 5'J

~ent Gradients
l. -286 FT/NMI
2. -295
), -316
[._ -359

,,
c _,. -338

Speed Data

MES 22 5 Knots
Min lAS = 250 KIAS

(At 10,000 Ft.)
Max lAS = 353.57 KIAS

(at 10,000 Ft.)
Ft. /NMI) •

FIGURE 2·2

Altitude

10,000 TRMACH = .ld
20,000 TRIAS = 341
30,000
36,000
100,000

TRIAS
250
260
260
260
260

AIRCRAFT CLASS CHARACTERISTICS

2-4

-17°c
134 Knots
45°

Wind Grid

Wind Cell

FIGURE 2-3
WIND CELL GRIDS

2-5

Profile

Cusps

FIGURE 2-4
TRAJECTORY CONCEPTS

2-6

2.1.3 Planned Action

During an aircraft's transit of a sector, a controller may
interject an ATC action in order to attain some ATC goal. Some
ATC goals are to maintain separation from other aircraft and
airspace, or maintain a position in a queue of aircraft
awaiting entry into a terminal region. When speaking to the
pilot to communicate maneuvers associated with these goals, the
controller uses the structured language of the clearance. This
language is described in the ATC Handboqk [10] and the Airman's
Information Manual [11].

The AAS provides the controller with the capability to use
automated functions to assist in clearance planning. To use
these planning tools, the controller provides. anticipated
clearance information to the system via some interaction
mechanism, called a man-machine interface. This proposed
clearance information is internally associated (by the man
machine interface) with a planned action. The planned action
is a data structure containing important parameters inherited
from the proposed clearance.

All planning operations in the AAS--either controller planning
or automated planning--are expected to use planned actions as
an interface mechanism to Trajectory Estimation. All tra
jectory changes result from planned actions either tactically
or strategically provided.

The following planned actions are recognized in this specifi
cation:

• Altitude Change (may be a restricted altitude change)
• Hold at a Fix
• Speed Change
• Fully Specified Vector

Each planned action represents one conceptual maneuver and con
tains information necessary to describe the maneuver. Once the
information in a planned action is provided (this step must be
done separate from Trajectory Estimation), then Trajectory
Estimation can translate the conceptual maneuver into a modeled
maneuver on a trajectory.

This Section discusses each planned action in detail, outlining
the content of each one and outlining how it is associated with
an ATC maneuver. The diagrams are taken from Volume 5, Data
Specifications for AERA 1. 01, and are included here for con
venience.

2-7

Some Information for a planned action exists regardless of the
maneuver it represents.

Data Common to All Planned Actions:

+----------------------·------------------------------
1 PA_ID I flight_id I pa~type I pa_source I plan_time
+------·----"-----·--------------------------------------

The common data contains system level information. A planned
action is assigned to a particular flight, hence the inclusion
of a flight identification field. In fact, this field identi
fies a certain version of the trajectory, since several genera
tions of an aircraft's trajectory may be present at the same
time (see discussion of Trial Plan Probe in the Operational and
Functional Descript:i.on [5]). The type field, implicitly set
from lower level data input through the interaction mechanism,
further identifles the planned action as a trajectory
maneuver. Example planned action types are "vector" and
"altitude."

The remaining fields in the common data assist in breaking
ties. Because the most recent trajectory could represent
several generations of planned actions (some from system auto
mated planning routi:ues, some from different controllers,) the
effects of some may overlap. Overlapping planned actions--that
is, trajectory maneuvers that overlap each other's extent--must
be arbitrated to determine which maneuver should be represented
in the trajectory if only one can be so represented. If a
planned action interferes with another at the same place in the
trajectory (say "descend to 27000 feet" and "descend to 17000
feet") then the source and plan time fields provide enough
information to determine which maneuver is to be modeled. The
Trajectory Estimation process will model a controller-entered
maneuver before modeling one that was added by an automated
plannir~ function if the two interfere. In cases of identical
sources, the plan ti.me--the time of day the planned action was
entered for modeling--is used. Trajectory Estimation will
model the newest action.

The data content of a planned action is examined next for each
planned action type: altitude, hold, speed and vector. Each
maneuver ·J s data set can be thought of as being appended to the
common data set to further describe the maneuver including
where the maneuver is located and the goal of the maneuver.

2-8

Altitude Change

All altitude maneuvers (an example is provided in Figure 2·-5(a))
must be represented by an altitude change planned action. An
altitude change is complicated by the fact that it may or may
not be restricted. The target altitude is assumed to be less
than or equal to the aircraft's maximum altitude. In addition,
it is assumed that any restriction position (x,y) lies on the
aircraft's horizontal path. Trajectory Estimation does not
verify either of these assumptions. It may be desirable for a
software mechanism (either an automated planner or the man-
machine interface) to verify the planned action's content.

Trajectory Estimation models descents and ascents for aircraft
using information about ground referenced gradients and transi·
tion speeds stored in the global data base. These data des·
cribe the transition profile in a no·-wind environment. Tra·
jectory estimation of altitude transitions then needs only one
critical piece of information besides the new altitude: where
the transition is to be located.

All altitude maneuvers must be represented by a data set des·
cribing the altitude change.

Data Describing an Altitude Change:

I target_altitude I transition_type

I base_value_type I base_x I base_y I base_t I base_ard

I resume_climb_time I

The information for the maneuver describes the target altitude
and a transition type field. The type field--either "ascent"
or "descent'' --is used by Trajectory Estimation to determine the
valid! ty of the maneuver at the position it is modeled. For
tactical altitude changes -··those controller-entered maneuvers
that show the current clearance for the aircraft--this field is
obvious from the present altitude of the aircraft. For stra
tegically placed altitude maneuvers, the value of the type

2-9

y

z

\
\

Original
~Route

\.._ - - _,.,...._ ___ New
Altitude

>--------------------x

(a)

z

) Hold

- c_: _____,)
Y / '--Holding

Fix X

Pattern
(b)

FIGURE 2-5
ALTITUDE AND HOLD MANEUVERS

2-10

field is not so clear cut. Other altitude maneuvers, either
currently placed or to be placed, could invalidate a previously
placed altitude maneuver.

In order for Trajectory Estimation to model an altitude transi
tion, one point on that transition must be known. That point,
known as the basing point of the maneuver, can be located at
the start of transition, the end of transition, or at some
intermediate location. A basing point could be given as "coor
dinate," "time," or "along route distance (ard)." The type of
basing desired is given in the basing value type field.

The basing type selected determines the basing point value
which must be filled (the others left unfilled). Specification
of the x and y coordinates locates a point of the altitude
transition in a plane. Specification of the time coordinate
determines the aircraft start of transition time. The along
route distance value identifies a point (or equivalent) on the
converted route of the aircraft somewhere within the transi
tion. The resume-climb time field identifies the time the
pilot is cleared to climb to cruise altitude if the maneuver is
an ascent to some lower-than-cruise altitude.

An altitude change may be restricted to go through a certain
altitude at a point on the maneuver. A restriction point can
be placed at the current projected altitude, the target alti
tude, or anywhere in between. The restriction point is three
dimensional.

Restriction Information for Altitude Changes:

I discretionary I rest_x I rest_y I rest_z

-------------------+
I rest_qualifier I

-------------------+
The information of this portion of the planned action contains
the x,y, and z coordinates of the restriction and a qualifier
which indicates whether aircraft will cross the given point
above, at, or below the restriction altitude. The
"discretionary" field relates pilot involvement in deter
mination of the start of transition.

The restriction point can be used to base the planned action if
the pilot is to be given discretion to seek his own transition

2-11

point. A clearance to leave an altitude immediately to cross
some point at some altitude would involve assigning both the
basing point and the restriction point.

Hold

All Hold maneuvers (an example is provided in Figure 2-5(b))
must be represented by a hold planned action.

Data Describing a Holding Action:

I hold_fix_x I hold_fix_y

I direction_inbound I EFC_time I leg_length_type

--------------------------------------+
I leg_length_value I turn_direction I

--------------------------------------+
The information contained in the hold planned action is suffi
cient to estimate the size and shape and duration of the
holding pattern. The hold planned action contains the x,y
coordinates of the point which bases the hold action (called
the hold fix). The direction of the inbound leg is also
included. Other data include the leg length units, value, and
turn direction indicating a left or right turn in the holding
pattern. The time to expect further clearance (EFC time) is
that time the pilot may resume his flight plan if no other
clearance to the contrary is received from ATC. This field is
used by Trajectory Estimation to bound the hold maneuver tempo
rally.

Speed Change

All speed maneuvers (an example is provided in Figure 2-6 (a))
must be represented by a speed change planned action.

2-12

y

y

z

z

Decrease r Speed

t----~1""""'"-~'
300 290

>------------------x

(a)

>---------------------X lit'-.. .,_ ___ Vector

// ~
~ .

(b)

FIGURE 2·6

'Original
Route

SPEED AND VECTOR MANEUVER

2-13

Data Describing a Speed Change Action:

I speed I base_value_location

I base_value_type I base_x I base_y

I base t I base ard - -

The speed value given is the goal speed of the planned action.
The goal speed is assumed to be an aircraft feasible speed and
is accepted by Trajectory Estimation without verification. . It
may be desirable for a software mechanism (either an automated
planner or the man-machine interface) to access the aircraft
characteristics tables in order to ascertain the feasibility of
target speeds.

In order for Trajectory Estimation to model a speed change, one
point of the speed change must be known. Like altitude, that
point is called the basing point of the maneuver. Unlike alti
tude, the speed basing point can be located only at the start
or end of the maneuver, never within the speed transition
itself. The basing value location field gives the position of
the basing point.

The basing point can be expressed in either coordinates, time,
or along route distance. T"he basing value type tells which
basing convention was chosen for the speed change planned
action. Depending upon the value selected for the basing
point, the point itself must be provided as an (x,y) coor
dinate, a time value or an along route distance value.

The speed change planned action may also be restricted.

Restriction Information for Speed Change:

-------------------+
I rest_qualifier I

-------------------+

2-14

The restrictions data contains a restriction qualifier which
indicates whether the aircraft must be above, at, or below the
target speed at the basing point. Trajectory Estimation can
use this field to determine the necessity of the speed action.

Vector

ATG-initiated changes to the aircraft's horizontal route (an
example is provided in Figure 2 -6(b)) must be represented by a
vector planned action. The ATC notion of vector is much
broader than the vector modeling capabilities of Trajectory
Estimation at this time. The vector planned action simply pro·
vides for short duration changes to the aircraft's route (say
fix-to-fix direct routings) where the route chaD,ge can be fully
specified. The property of being fully specified, here, means
that the entire route change can be specified by the planning
agent and that the first point of the route change and the last
point of the route change are points on the converted route
(although not necessarily converted fixes) for the aircraft.
Trajectory Estimation does not verify the placement of these
points; therefore, it may be desirable for some software
mechanism to do so.

Data Describing a Vector Action:

·-·--·-·----·-- --·------ -·---------------------+
I VERTEX_SEQUENCE_NUMBER I v_x I v_y I

--+
All of the vertices of a vector maneuver are provided in this
table. The sequence of each vertex with respect to the others
for this vector action is provided along with the x,y coor
dinates of this vertex. The first vertex is taken by Tra
jectory Estimation to be the basing point. At this point, the
aircraft will be modeled as leaving the converted route. The
last vertex is assumed to be on the converted route of the air
craft, and represents the return point.

The vertex points of a vector are used for reference purposes.
Trajectory Estimation uses an algor! thm which smoothes out the
turns so that there are no large changes of direction at
cusps. The algor! thm approximates a smooth curve through the
turn. The trajectory might not actually cross a vector vertex
point (see Section 4.3.6).

2-15

Terms Combining Planned Actions

The set of planned actions for an aircraft represents a plan
for the aircraft. The aircraft's plan is a necessary input to
the Trajectory Estimation scheme, because it allows the tra
jectory modeling to take place in the altitude (z) and time (t)
dimensions.

Effects of individual planned actions are processed into an
internal format known as an AGD vector. The AGD vector is com
prised of acceleration, gradient and direction values. Each
element of the AGD vector is called an AGD variable. In the
trajectory modeling process, the AGD vector is reconstructed at
each cusp and is assumed constant on segments. Changes in the
AGD vector happen only at the cusps.

Pending action lists, referenced to a past cusp, are lists of
all planned actions yet to be incorporated into the tra
jectory. These are organized into separate lists for each type
of planned action. Each planned action has a stimulus or
starting point which is one of several trajectory events
related to the planned action. The occurrence of the event in
the trajectory modeling process initiates the processing of the
planned action and its subsequent incorporation into the tra
jectory.

2.2 Design Considerations

Trajectory Estimation, Nominal Plan Builder and Resynchroni
zation accept information from external sources and provide
information for consumption by diverse system functions. The
design of each algorithm has surfaced certain implications for
other operations within the AAS environment. While the speci
fication of changes to those operations is beyond the scope of
this document, the identification of implications on those
operations is relevant to ensure the correct processing of the
functions described in this specification.

2.2.1 System Interface Requirements

Nominal Plan Builder, Trajectory Estimation, and Resynchron
ization, all interface with different system functions. Both
Nominal Plan Builder and Resynchronization serve the Trajectory
Estimation function.

2-16

2.2.1.1 Implications of Nominal Plan Builder

Adaptation of Altitude Procedures

In NAS Stage A, Route Conversion is responsible for format and
syntax checks and the conversion of the alphanumeric filed
route information into the system (x,y) coordinates. NAS Route
Conversion also identifies procedural route alterations to the
controller. Based upon the flight. origin or flight destina
tion, Route Conversion determines the proper route fix in
effect to exit or enter the terminal area. This further iden
tifies the route that the aircraft will use. When displayed,
the controller can direct the aircraft onto the proper entry
route into the terminal region or the proper. exit route for
aircraft out of the terminal region.

In contrast, altitude restrictions are handled outside of the
computer in NAS Stage A by Standard Operating Procedures (SOPs)
and Letters of Agreement (LOAs). These are contractual agree
ments between ATC facilities: for example, between sectors in a
Center or between the Center and the terminal regions it
services. Itemized within these SOPs and LOAs are the altitude
transitions and restrictions to be made by aircraft which will
enter or exit the terminal region. Like route information, the
altitude profiles implied by the flight plan's destination or
origin should show up in the planned trajectory of the aircraft.

Nominal Plan Builder gives a suggested design for incorporating
altitude information into the trajectory of the aircraft.
Altitude transition information now contained in SOPs and LOAs
must be adapted for use by the computer. A suggested s .:rue
turing of such information is provided in Section 4.1.

Nominal Plan Builder should be considered an augmentation of
NAS Route Conversi.on. In many cases, the altitude planning for
an aircraft cannot be separated from its route planning. This
is especially true for entry and exit routes into terminal
areas.

Prior Center Planning

The trajectory for an aircraft must be initialized. This can
be done by using a radar track position for the aircraft or by
using information from the previous control region. For inter
center transfer, NAS Stage A provides for initialization
through the coordination fix. Information in a coordination
fix consists of coordinates (x,y,z,t) of the expected arrival
at the coordination fix along with flight plan information to

2-17

be forwarded. In the AAS, this coordination fix is outside the
center boundary, located in the center's planning region.

Nominal Plan Builder requires that additional information be
provided from the previous control region. Since Trajectory
Estimation is supplying a four-dimensional route, the initial
ized trajectory must contain all route and altitude alterations
made in the previous center and affecting the mode of entry
into this center. Plan information (the list of planned
actions) must be forwarded from the previous center if those
planned actions maneuver the aircraft past the coordination
fix. These planned actions must be incorporated into the route
of the aircraft so that the proper entry point and entry time
into this new center can be computed. The planned action list
pending at the coordination fix must be forwarded so that the
new center's version of the aircraft's plan outside the center
boundary can be kept current with the previous center's
assigned maneuvers. Any system action incorporating plan
information at the coordination fix and not forwarded implies
an inability to provide Flight Plan Conflict Probe services at
the boundary of a center. The design of Nominal Plan Builder
assumes this transfer of update information between centers.

2.2.1.2 Implications of Trajectory Estimation

The output of Trajectory Estimation, the trajectory, is depen
dent upon external data sources for trajectory accuracy. Tra
jectory Estimation can only perform at the level of quality in
its input data. As the ATC system progresses to a more auto
mated state, it becomes important for the users of trajectory
data to understand its limitations. The errors contained in
the information used by Trajectory Estimation are passed on
through to the users of trajectory data. Errors stored in the
atmospheric data base (containing wind speeds, directions and
temperatures versus what exists in the atmosphere) will be
incorporated into the trajectory. Stored aircraft character
istics determine climb and descent rates. Pilots can cause
apparent Trajectory Estimation errors by not adhering to filed
data •

Pilot Route Intent

Trajectory Estimation is constructed to follow the nominal
cleared path of the aircraft unless the aircraft is specifi
cally planned otherwise. This path is maintained by Route Con
version and is represented by (x,y) coordinates of all the air
craft's converted fixes (with respect to this center's planning

2-18

region). ATC actions are assumed to be changes to this in
tended route of flight.

The converted route represents a contract known to both the
pilot and the controller. The pilot-filed (or altered) route
is known both to the pilot and to the ground . ATC system and
represents a relatively stable platform for planning activi
ties. The pilot is expected to follow the converted route
unless a flight plan route change is. specifically requested and
granted. Such a change is entered as a flight plan amendment
which, as a contractual agreement, supercedes the initial
version.

Planning operations such as those performed by the Nominal Plan
Builder can take advantage of this permanence. Consequently,
this specification assumes that the trajectory for an aircraft
and the converted route for that aircraft remain separate data
constructs so that the converted route (i.e., pilot route
intent) can be accessed at any time. The trajectory, built and
maintained by Trajectory Estimation, perturbs the converted
route with planned control action. In the absence of planned
route control actions the converted route is built into the
trajectory.

ATC Activities

The controller may act as a planner (in the Trajectory Esti
mation sense) in the Air Traffic Control system. While main
taining vigilance over the aircraft in his sector, a controller
may find it necessary to assign control actions (as planned
actions) to meet ATC system goals. The computer (e.g., Tra
jectory Estimation) must be aware of all strategic or tactical
planning assignments made by the controller or planner. The
plan for an aircraft (the aircraft's list of planned actions)
must be complete. If this is not the .case, then Trajectory
Estimation might provide misleading route and timing infor
mation to Flight Plan Conflict Probe. The system may then
falsely predict losses of separation or fail to identify real
separation violations.

This Trajectory Estimation specification assumes an efficient
controller input mechanism for additions to or deletions from
an aircraft plan. The specification assumes that Standard
Operating Practices have been written to define controller
roles and responsibilities vis-a-vis the flow of information to
and from the controller and the machine. The specification
further assumes that the training necessary for the human to

2-19

interface effectively with the automation software has been
successfully completed. A controller must recognize that
incorrect or incomplete input severely degrades system activ
:ities and would allow generation and display of false or mis
leading information over wide areas.

~\tmospheric Parameters

The Trajectory Estimation algorithm assumes an adapted atmos
pheric data base. The shape of the wind grid in which the
atmospheric data are stored is immaterial; the stored infor
mation is paramount. Winds at en route altitude can be as much
as one-th:i.rd of the aircraft's filed speed. The inability to
provide an exacting estimate of current winds comprises a
potentially important error source for Trajectory Estimation.

As time progresses, the NAS Plan [2] provides for the estab
lishment of a CWSU (Center Weather Service Unit) and a change
of airmass monitoring activity (implementation of NEXRAD). The
quality of the wind data will improve and with that improve
ment, estimated trajectories will also improve.

}drcraft Capabilities

Aircraft performance data also represent a potentially large
error source. Trajectory Estimation design assumes performance
information from the best available source. In the near term,
that information is adapted as aircraft class characteristics
data keyed on airframe type (B727), subtype (B727-200), engine
class (B727-200, Pratt-Whitney engine IIJTBD-15) and even air
carrier type (B727-200, Pratt-Whitney engine IIJTBD-15, American
Airlines) if need be. This source of information is still
statistical, and no matter how accurately characteristics are
specified, they only represent a guess as to the intent of the
individual pilot or the actual capabilities of the aircraft.

P<erformance characteristics in the future are expected to apply
to individual aircraft. Information could be transferred to
ATC via the flight plan. Intended ascent or descent speed
schedules filed in advance by the pilot greatly improve the
communication of how those maneuvers are expected to be exe
cuted. Although better than characteristics data, flight plan
supplied ascent or descent speed schedules are prone to error
due to the changes that can occur between the time the flight
plan was filed and the start of the maneuver.

2-20

Performance characteristics downlinked via data link form the
best estimate of pilot current intent. These data are avail
able in the future ATC context and represent a valuable base
upon which Trajectory Estimation uncertainty can be reduced.

2.2.1.3 Implications of Resynchronization

Resynchronization and Trajectory Estimation forms the AAS
analog to the NAS Stage A function of CTA Updating. In that
NAS function, should an aircraft deviate by more than some
number of seconds from the calculated time of arrival (CTA) at
some converted fix, the time difference between the CTA and
actual time of arrival is added to each CTA ahead of the
aircraft's current position. In this way, the NAS Stage A path
prediction is "synchronized" with the aircraft's returned track
position.

The requirements of automation functions find NAS CTA Updating
inadequate. The AAS trajectory for an aircraft incorporating
temporally placed planned actions may depend on the timing the
aircraft has achieved. A reassignment of timing values to
modeled cusps does not yield a reassessment of the goals of
each planned action. What does yield it is a reinvocation of
Trajectory Estimation with Resynchronization parameters.

The Resynchronization function described here is an inter
mediary between two components that will appear in the AAS.
Trajectory Estimation's use of Resynchronization information is
described in this Algorithmic Specification. The other com
ponent is one that has grown out of Association Checking in the
current NAS Stage A system and will take on new duties and a
new name in the AAS time frame: Conformance Monitoring.
Resynchronization parameters contribute to the correct func
tioning of Trajectory Estimation and the problem identification
functions that use the trajectories.

Conformance Monitoring

The Conformance Monitoring function is not specified at this
time. Conformance Monitoring is that AAS function responsible
for identifying obsolete trajectories. It works with both tra
jectory data and radar track data, and maintains a data base
for use by Resynchronization.

Periodically (every parameter number of radar scans), Confor
mance Monitoring receives track information from the radar

2-21

tracking functions of the AAS. For each aircraft with a tra
jectory, the track position is associated with the trajectory
position for the same time as the radar return. Conformance
Monitoring identifies three distinct problems:

• out laterally - the aircraft is out of association with
the trajectory to the l~ft or to the right by some
distance greater than a parameter distance

• out vertically - the aircraft is out of association
with the trajectory in the vertical dimension by some
distance greater than a parameter distance

• out longitudinally the aircraft's track position
either leads or follows the trajectory position by some
distance greater than a parameter distance.

The parameters used in conformance checks are given in the AAS
Specification [1].

This specification assumes that all lateral and/or vertical
(and maybe some longitudinal) deviations be identified to the
cognizant controller. It further assumes that, given the air
craft is in association in both the lateral and vertical dimen
sions, any longitudinal deviations are furnished to the Resyn
chronization function. Conformance parameters that initiate
Resynchronization may be different from those that alert the
controller to a potential problem in the air traffic flow.

Resynchronization uses extracts of track history for a flight.
These extracts are described here as maintained and provided by
Conformance Monitoring. Track history is used to compute a
revised position for the tracked aircraft and to compute an
estimate of current true airspeed. Both position and speed are
input to Trajectory Estimation in the form of a "profile ref
erence point."

Prior Center Interface

Trajectory coordination fix parameters dealing with position
and time must be provided for purposes of trajectory initiali
zation. Any resynchronization of a trajectory in the previous
center must force resynchronization of its analog in this
center if coordination fix information has already been for
warded.

2-22

2.2.2 Controller Interface Language

A controller communicates desired maneuvers to pilots using the
procedural language of the clearance. A clearance is a
standard formatted order from the ATC system to the pilot to
execute a specific maneuver such as hold, vector, speed change
or altitude change. This specification assumes that the
controller will interact with the computer using some analog of
the clearance language he already uses. This section identi
fies the language and certain translation functions which must
be present in the man-machine interface to create planned
actions for system use. Specification of the language and the
translation functions are outside the scope of this Trajectory
Estimation specification. In addition, a complete list of
expected controller tasks has not yet been constructed.

Understanding the language and translation functions is
important in understanding how trajectory events are modeled as
corresponding planned actions. To clarify these two design
concepts, an example of the use and translation of the language
(called a Proposed Clearance Language) is provided below.

Format for the Altitude Proposed Clearance

The altitude change proposed clearance could be expressed in
the following alphanumeric format:

1. Altltude Assignment without a Crossing Restriction

(FLID] (LOCATION] [
CLIMB ~
MAINTAIN
DESCEND

(ALT}

2. Altitude Assignment with a Fix and Altitude Crossing
Restriction

(FLID] (LOCATION]

CROSS (FIX]

[

CLIMB l
DESCEN1li

[!~/ABOVE] AT/BELOW

2-23

(ALT J],

(ALT 2].

3. Altitude Assignment with a Destination Fix

f!i'LI~ CROSS ~IX] rcLIMB J
LDESCEND [

AT/BELOWJ
AT I!J.~.
AT/ABOVE

The altitude proposed clearance supplies all the information
required for an altitude change planned action. For example,
if a controller chooses an altitude change with a fix and alti
tude crossing restriction, the controller supplies, through the
proposed clearance, the flight identification, the target alti
tude (ALT 1), the transition type (climb or descent), the base
value location, base value type, the base value coordinate,
time, or ARD (LOCATION), the x,y and z coordinates of the
restriction point (FIX, ALT 2), and the restriction point
qualifier. Some information is derived (such as planned action
type) via the man-machine interaction.

2-24

3. TRAJECTORY ESTIMATION FUNCTIONAL DESIGN

As discussed in the preceding sections, this specification
addresses three distinct functional entities: Nominal Plan
Builder, Trajectory Estimation, and Resynchronization. This
section establishes additional design context for these
functions.

3.1 Environment

Nominal Plan Builder, Trajectory Estimation, and Resynchroniza
tion operate in the context of other AAS functions called Route
Conversion and Conformance Monitoring. Figure 3-1 shows the
functional environment expected to exist in the AAS. The
controller is shown as an interface and labeled "Planner" to
indicate that the controller will have new planning
capabilities. AAS Route Conversion is shown absorbing Nominal
Plan Builder and Trajectory Estimation as outlined in the AAS
Specification [1].

Nominal Plan Builder, Trajectory Estimation, and Resynchron
ization operate in the context of three system states:

• Flight Plan Acceptance--operations prior to inbound
handoff of an aircraft flight
plan

• Trajectory Replanning--operations to support manual and
automated planners

• Trajectory Repositioning--operations to improve the
accuracy of trajectories

In flight plan acceptance, all Route Conversion functions
operate on aircraft filed route and alti~ude information. The
route processing logic of Route Conversion creates the (x, y)
representation of the aircraft's route (with procedural route
alterations). Nominal Plan Builder constructs the aircraft's
clearance plan by incorporating implied altitude and speed
actions. This route and clearance plan are processed further
in Trajectory Estimation to produce an initial four-dimensional
trajectory, in (x,y,z,t), which models planned mnaneuvers.

In trajectory replanning, Nominal Plan Builder and Trajectory
Estimation process controller-proposed or system-proposed
modifications to the aircraft's trajectory. When plans are
changed, Nominal Plan Builder and Trajectory Estimation must
replan maneuvers and rebuild the trajectory.

3-1

w
I

N

New F
Pla

Pi
Cha

Fl
Pl

light

rs

r
lot
nged
ight
ans

Controller

AAS Route Conversion (Planner)

Procedural
Actions

Route
Conver-
sian '
Route

Syntax -- Processing - Trajectory Conformance
Estimation

-~ ... --.
Monitoring

Nominal
Plan ~

Builder

Resynchron-
~

ization

~--- -- -- ---

FIGURE 3-1
TRAJECTORY ESTIMATION FUNCTIONAL ENVIRONMENT

In trajectory repositioning, Resynchronization and Trajectory
Estimation operate at the direction of Conformance Monitoring.
When Conformance Monitoring detects a deviation in the
longitudinal dimension between the aircraft's tracked position
and its predicted trajectory position, Resynchronization
computes trajectory initialization information using actual
positions. Trajectory Estimation is invoked to reestablish
trajectories based on improved real-time knowledge of aircraft
position and performance.

3.1.1 Input Data and Activation

Collectively, Nominal Plan Builder, Trajectory Estimation, and
Resynchronization require access to much of the data in the
global data base. Figure 3-2 shows some major data sources for
Trajectory Estimation. Activation of Trajectory Estimation
differs with respect to the three system states: flight plan
acceptance, trajectory replanning or trajectory repositioning.

3.1.1.1 Input Data

Nominal Plan Builder

At system startup, adaptation provides a Restrictions Table
containing altitude transition procedures. Implied altitude
transitions are air traffic control actions which are implicit
in the filed flight plan for any individual aircraft arriving
at or departing from an airport known in the planning region.
Procedural altitude changes are ascents or descents which may
be commanded through center-wide Standard Operating Procedures
(SOPs) or Letters of Agreement (LOAs). These are common around
major terminal areas where transitioning traffic can be heavy.

At flight plan acceptance time, Route Conversion functions
other than Nominal Plan Builder create information for Nominal
Plan Builder. This information includes· alterations made to
the filed route of tne aircraft to account for procedural route
restrictions in the AAS environment. Other information
supplied to Nominal Plan Builder and Trajectory Estimation
includes the filed route, a coordination fix and data forwarded
from the previous control region's clearance plan that effect
the trajectory of the aircraft after the coordination fix.

Noillinal Plan Builder constructs the initial clearance plan for
the aircraft using the prior region's forwarded plan and
procedural altitude actions stored for tnis center. This is
the augmented plan modeled to create the initial four
dimensional trajectory. Flight Plan Conflict Probe and

3-3

Planned
Actions

Aircraft
Characteristics

Data
Atmospheric

Data

Flight
Plan
Data

Trajectory
Estimation

Data Base of
Trajectories

FIGURE 3-2

Track
History

Data

TRAJECTORY ESTIMATION INPUT DATA SOURCES

3-4

Airspace Probe use this initial trajectory to identify
trajectory problems.

In trajectory replanning, some changes may have been made in
the plan; planned altitude and route changes have to be
verified for relevance to the new plan. To replan, Nominal
Plan Builder creates a new set of planned actions starting at
the last cusp created by controller action.

The list of input data needed by Nominal Plan Builder includes
the following:

• Restrictions Table

• approved flight plan as adapted by Route Conversion

• starting point for generation of nominal plan

• forwarded planned action list (if any)

• aircraft performance data

Trajectory Estimation

Trajectory Estimation is responsible for constructing a
four-dimensional path for an aircraft. To do this, Trajectory
Estimation must process data from many sources. The converted
route for an aircraft is always input. In the absence of ATC
route alterations, the converted ronte provides the horizontal
path on which to build the vertical and time profiles.

Envelopes of aircraft capabilities are obtained from the
aircraft characteristics data base. These data include
information bounding certain modeling parameters, such as
maximum and minimum speeds and maximum and minimum ascent and
descent gradients.* Cruise accelPration values are stored for
speed transition modeling. Important speed values specific to
aircraft type, such as long range cruise speed and maximum
endurance speed, are stored.

The wind data base provides data required by Trajectory
Estimation to translate between true airspeed and ground
speed. Internally, Trajectory Estimation uses true airspeed,
the speed of the aircraft relative to the air mass.
Externally, all other functions use ground speed, the speed
traveled by the aircraft's ground projection. These two speeds

* Gradients for aircraft are assumed to be stored in sufficient
detail to support accurate modeling. These no-wind gradients may
be stored as piecewise linear functions if needed.

3-··5

are related by the wind speed along the aircraft's route. A
strong tailwind makes the ground speed faster than the measured
true airspeed. A headwind makes the ground speed less than the
measured true airspeed.

Wind speed information for this conversion is available through
the wind grid. Each cell in this three-dimensional grid
structure is assumed in this specification to be aligned with
the coordinate axes and contains the following:

• wind speed
• wind direction
• temperature

These parameters will be assumed to be indicative of those real
values averaged across the cell extent.

Trajectory initialization information must come from outside
Trajectory Estimation. This information is called a profile
reference point and will include the following parameters:

• a point (x,y)
• an altitude z at (x,y)
• a time t at (x,y)
• a true airspeed (or equivalent) at (x,y)

This construct is necessary to start or update the trajectory
construction process.

The list of input data needed by Trajectory Estimation includes
the following:

• converted route
• profile reference point in the current planning region
• a clearance plan to be modeled
• aircraft performance characteristics
• atmospheric data

Resynchronization

Resynchronization provides Trajectory Estimation with updated
estimates of aircraft position and speed. It is activated
after Conformance Monitoring functions, separate from
Resynchronization, have identified a substantial longitudinal
difference between planned and actual aircraft positions.
Resynchronization provides a radar-based starting position and
reestimated speeds for trajectory modeling in order to correct
for expected uncertainties in the data such as errors in stored
winds.

3-6

The list of input data needed by Resynchronization includes the
following:

• radar track history data (if the aircraft is inside the
planning region and a track start has occurred)

• the atmospheric data base for speed translations

3.1.1.2 Automatic Activation Sequences

Nominal Plan Builder, Trajectory Estimation, and Resynchroniza
tion are all invoked automatically. For Nominal Plan Builder
and Trajectory Estimation, the triggering action is one of the
following three system events:

• A flight plan 1s added to the data base for the first
time, or is amended by the previous control region and
reforwarded.

• Resynchronization has provided new position and timing
information based on radar track data.

• An aircraft's plan and trajectory, already in the data
base, are affected by an amendment from an automation
function.

Resynchronization is invoked automatically when Conformance
Monitoring functions detect a significant error between the
predicted aircraft position and the actual aircraft position.

3.1.1.3 Controller Initiating Sequences

Nominal Plan Builder and Trajectory Estimation can also be
invoked (indirectly) by controller action. The Operational and
Functional Description [5] provides the controller with a Trial
Plan Probe. Within the Trial Plan ·Probe context, the
controller has the capability to suggest candidate ATC
maneuvers for an aircraft. These maneuvers are translated by
the controller's interface with the AAS to an augmented set of
planned actions from which a trajectory can be deri~ed. The
trajectory resulting from a Trial Plan Probe can then be
processed by AAS probe functions to identify any problems.

3.1.2 Output Data

Collectively, Nominal Plan Builder, Trajectory Estimation, and
Resynchronization provide global output used by each other and
by other system funetions to support strategic planning.

3-7

Nominal Plan Builder

Nominal Plan Builder further refines the converted route in the
altitude dimension by adding implied or procedural altitude
transitions for arrivals and departures. It creates a list of
planned actions so that modeling can take place. Other
maneuvers originating within the previous control center are
also incorporated. The initial clearance plan for the aircraft
is added to the data base.

Trajectory Estimation

Trajectory Estimation processes planned actions and route
information to produce a four-dimensional path, called a
trajectory,for an aircraft. The trajectory is an aircraft
ground referenced path represented horizontally in (x,y),
vertically in z, and temporally in t. The trajectory is a
sequence of (x,y ,z, t) points, called cusps, joined by implied
line segments. These points provide a four-dimensional
estimate of aircraft positions at all locations along the filed
(or amended) route in the planning region.

Resynchronization

Resynchronization provides an updated profile reference point
and true airspeed. This information is constructed solely for
the use of Trajectory Estimation.

Output to the Controller

Nominal Plan Builder, Trajectory Estimation, and Resynchroniza
tion do not generally provide direct data for the controller.
They do maintain the trajectory which can provide predicted
route, altitude and time data for controller displays.
Trajectory data in AERA 1, however, are secondary to conflict
data, and might not be displayed at all (see Operational and
Functional Description [5]).

3.2 Design Assumptions

The Trajectory Estimation design has assumptions which affect
the operational system interface and several functions separate
from Trajectory Estimation. Internal operation of Nominal Plan
Builder, Trajectory Estimation and Resynchronization is also
governed by a set of design assumptions.

3-8

3.2.i Operational System Interface

This design assumes that the trajectory derived by Trajectory
Estimation replaces the path now predicted by NAS Stage A
functions. It further assumes that some method is provided for
the controller to know about implied and procedural altitude
restrictions planned by Nominal Plan Builder. The design also
assumes that some method is provided to help the controller

et remember the plans that are constructed

e inform the pilot when clearance maneuvers should be
executed

GJ :i_dentify a particular maneuver in a plan which needs to
be changed

o specify au entire plan that should be modified

Trajectoiy Eatimation's role in the operational system is
limited. Trajectory Estimation does not handle selection of a
plan for analysis. It does not provide a mechanism for adding,
changing, or deleting the plans and it does not provide a
mechanism for editing parts of a planned action. Other
functions separate from Trajectory Estimation are expected to
handle

o selection of a plan .for analysis
e construction of the planned action lists
e interaction with a controller to change a plan
• acceptance of a new plan to replace the current plan
• int€raction with the data base

3. _2_. ? ___ External Function Design Assumptions

Several references were made in Section 2.2 detailing implica
tions of Nominal Plan Builder, Trajectory Estimation and
Resynchrcnization on some external funetions. These implica
tions are listed below.

·e Procedural altitude restrictions must be adapted into a
da.ta base for Nominal Plan Builder.

c, Inte.cfacLLit:y transfer of :lnformation must be upgraded
to include clearanc.e plan information.

!!I The ..::onv·•::rt :=d route must reside in the data base
separale fr•J'll th2 trajectory.

J-9

• A meaningful and efficient machine-human interface must
be created, standard operating practices must be
written and new training principles must be instituted
for controllers. Aircraft plan information must be
known to the computer.

• Atmospheric parameters (such as wind speed, wind
direction, and temperature) are required. This infor
mation is assumed to be of increasing quality so other
NAS Plan objectives may be reached.

• Aircraft class information must be available to the
level necessary to be useful in the prediction of
aircraft position. This information is assumed to be
capable of evolving to take full use of Flight Manage
ment Computers and a digital data link. Protocols are
assumed to be established for formatting and storing
downlinked aircraft characteristics data.

• The Conformance Monitoring function must be evolved to
trigger Resynchronization. This implies the use of the
trajectory instead of the Converted Route to track
aircraft progress. Conformance Monitoring also
provides a track history for each aircraft.

Further assumptions are made concerning the responsibilities of
trajectory derivation functions. The AAS provides for dynamic
creation and deletion of trajectory data unavailable in NAS
Stage A. The controller can alter a clearance plan for an
aircraft and have a trajectory rederived. This plan may have
been used to investigate alternatives; for example, if the
altitude of a given aircraft were changed, would that solve a
predicted separation problem?

Aircraft trajectories are used in the AAS probe functions as
well as in AAS Flight Plan Aided Tracking and Conformance
Monitoring functions. Trajectory data for these purposes
should be relatively static. This specification assumes that a
d.ata base management function will be a part of the AAS. This
function keeps the controllers' trial trajectories separate
from the currently accepted trajectory used by other system
functions. A design to the contrary would allow an
unacceptable instability in data used in a systemwide context.

The design of trajectory derivation algorithms also assumes the
existence of a controlling program or programs. These software
entities place trajectory derivation algorithms firmly within

3-10

rigid invocaU.on sequences based upon system states. The
controlling programs must sequence trajectory derivation
functions with other system functions to ensure the
availability of input data.

3. 2. 3 Internal Funct:i.on Des~_&!l Assumptions

The construction of the three algorithms described in this
volume is governed internally by a set of design assumptions
which are provided belm~.

3.2.3.1 Coordinate Sys~~

This specification is written using a cartes+an coordinate
system. NAS Stage A uses a stereographic projection to obtain
(x, y) data and uses altimeter altitudes to obtain altitudes.
Stereographic projection is attractive since most NAS functions
are written in that coordinate system. An extensive library
exists in thf; NAS literature which provides for translation
between stereographic coordinates and latitude/longitude, for
example [3,8,9].

The choice of coordinate systems is still a topic for
discussion and the eventual selection by the FAA is likely to
have implications system wide. ·:rnere is nothing in Trajectory
Estimation (or Nominal Plan Builder and Resynchronization) that
is inherently cartesian. Computat:tons could be done, for
example, in ellipsoidal coordinates. The computations would
change, but not the structure.

Cartesian coordinates, and in parti.cular the system used by NAS
Stage A, have definite drawbacks, definite errors induced by
the very use of the coordinate system. Addressing those errors
is beyond the scope of this document except to point out that
errors in predicttons of trajectories are a function of the
length between cusps, and Tra.jectory Estimation can be made to
limit that distanee, thereby decreasing the induced errors to
an acceptable level. What is gained by using a NAS coordinate
system is the ability to cross reference functional entities
between NAS and advaneed automation functions and, thereby,
enhance clarity.

TLe use of a cartes:L:m coord:tnate system Jn this specification
should not be cons tru:::(l as a r.eco!.lfilendation. .for that type of
coordinate syste.tn .•

3.2.3.2 Interfacility Data Transfer

This specification is written to yield a description of the
path processing algorithms that produce a four-dimensional
trajectory. Some requirements for the interfacility transfer
of data necessary to support this process have been
1.dentified. These requirements suffice only to indicate the
processing steps and do not convey an all-things-considered
design.

Certain assumptions were made concerning the aircraft's
behavior at entry into the system. The aircraft's coordination
fix is assumed to be on the converted route of the aircraft.
This implies that no vector operation is actively taking place
at the planning region boundary. This assumption is too
restrictive for the AAS implementation, but to allow otherwise
would unnecessarily complicate the description of Trajectory
Estimation algorithms.

Trajectory Estimation will require a large amount of forwarded
information. Informat:f..on requirements issues are compounded by
the fact that a facility using an AAS implementation could
reside adjacent to an ATC installation still running NAS Stage
A. The requirements on such a configuration are unknown at
this time.

3.2.3.3 Nominal Plan Builder Design Assumptions

A planner is responsible for the internal generation of planned
actions. The Nominal Plan Builder is the first automated
planner in the Advanced Automation System. It shares planner
status in AAS only with the controller. Later, transition
strategies [6] and the NAS Plan [2] provide for the inclusion
of other automated planners, namely Conflict Resolution,
Airspace Resolution and Delay Absorption Planning.

A planner is the only entity given the authority to generate
planned actions and also the only entity that can alter or
delete existing planned actions which have not yet been
executed. Nominal Plan Builder creates or alters planned
actions so that trajectories conform to center standard
procedures. It can only alter actions which it has created
and can not create actions that interfere with planned actions
created by other planners (the controller).

Nominal Plan Builder is assumed to be an integral part of the
1~ Route Conversion process. Nominal Plan Builder information
transmitted in this document provides design criteria necessary

3-12

to the establishment of the procedural altitude clearance
plan. Integration of procedural altitude actions into the
procedural route assignment process, already a part of NAS
Stage A Route Conversion, is beyond the scope of the present
spec if ica tion.

Controller planning operations can alter the path of an
aircraft in both route and altitude. Either change category
could alter the altitude clearance plan. Nominal Plan Builder
must be invocable to assess the· quality of the procedural
altitude clearance plan when the controller has changed other
aspects of the aircraft's plan.

When altitude actions are invalidated by .other controller
actions, Nominal Plan Builder must be able to delete formerly
placed planned actions and institute others.

3.2.3.4 Trajectory Estimation Design Assumptions

In this specification, Trajectory Estimation is given a
specific structure. That structure is consistent with the
innerworkings of planned action processing. It seems, on the
surface, that some dimensions (read planned actions) can be
divorced from other dimensions in the modeling process. If
this initial assessment turns out to be a modeling truth, then
the final design is simplified. The develop~nt of the
Trajectory Estimation algorithm has not been able to falsify
that initial impression, and the algorithmic design takes
advantage of inherent simplifications.

To be more specific, horizontal modeling (route and vector
actions) have been separated from vertical modeling (altitude
actions). A vector,. for example, specifies an ATC change to
the route of an aircraft. The shape of that change is given in
a planned action. Altitude transitions are not a factor in
achieving that specified vector shape. · The converse is also
true: an altitude action is achievable regardless of any
horizontal shape changes made to the aircraft's route.
Aircraft timing is changed, however, if these actions suddenly
appear. The separation of dimensions can only be taken so far.

The design of Trajectory Estimation incorporates the idea that
maneuvers may be planned separately for horizontal and vertical
dimensions. Trajectory Estimation can be broken into four
distinct parts--Initialization, Planned Action Processing, and
Trajectory Construction and Trajectory Post Processing.
Planned Action Processing is responsible for deriving

3-13

information for each dimension separately, and Trajectory
Construction synthesizes this information.

Initialization discriminates between different invocations of
Trajectory Estimation. Invocation of Trajectory Estimation by
a planner is different from invocation via Resynchronization.
When .Trajectory Estimation is invoked by a plan change, the
clearance plan is unstable but the aircraft's execution of the
current plan is not. When Trajectory Estimation is invoked
through trajectory repositioning, the· timing or execution of
the aircraft's·current plan is unstable, but the clearance plan
itself is not.

Planned Action Processing derives intermediate data items for
Trajectory Construction. Each planned action type ls repre
sented by a planned action processor. In addition, when no
other route alteration planned actions are active, Trajectory.
Estimation obtains direction information based on the converted
route. Protocols have been set up describing the sequence of
execution of planned action processors. Dimensions can be
separated, but interactions with other planned actions cannot
be disregarded.

3.2.3.5 Resynchronization Design Assumptions

The Conformance Monitoring function must be evolved to trigger
Resynchronization. This implies use of trajectories computed
by Trajectory Estimation to determine the estimated positions
used by Conformance Monitoring. It also implies that
Conformance Monitoring supplies Resynchronization with track
data. Hence, historical track data must be made available.

3.3 Functions and Subfunctions

The Trajectory Estimation Specifi.cation describes three
functions: Nominal Plan Builder (plans altitude transitions
for aircraft arriving or departing from ·terminals), Trajectory
Estimation (incorporates planned actions and builds the
trajectory), and Resynchronization (provides trajectory
positioning information). Traje~tory Estimation is composed of
four subfunctions: Trajectory Initialization (sets up the
internal processing environment), Planned Action Processing
(coordinates planned actions and builds intermediate
structures), Trajectory Construct:ion (manipulates intermediate
data to construct cusps) and Trajectory Post Processing
(ensures the integrity of the trajectory and constructs
uncertainty a~eas). External information (route information,
aircraft performance characteristics, winds, etc.) are. drawn

3-14

into the computations in the subfunctions. Figure 3-3 shows
the breakdown of the topics of this specification at the
function and at the subfunction levels. Each function and
subfunction is described briefly below.

3.3.1 Nominal Plan Builder

Nominal Plan Builder generates planned actions which initiate
necessary altitude and speed transltions while adhering to
applicable procedural restrictions. Nominal Plan Builder is
not concerned with route alteration or restrictions; that
function is performed by Route Conversion before Nominal Plan
Builder is invoked.

The majority of the altitude and speed transitions and
corresponding restrictions concern an aircraft's arrival or
departure from terminal areas. Restrictions are applied to
ensure that aircraft enter and leave the terminal airspace in a
safe and manageable manner. In the absence of procedural
restrictions, Nominal Plan Builder generates planned actions
which create nominal ascents and descents, as required, to
appropriate altitudes and speeds.

When an aircraft enters a planning region, Nominal Plan Builder
determines in which sector the aircraft is entering.
Trajectory Estimation is invoked with the planned action list

·from the previous center, extending the resultant trajectory
into the current center. Using the entry sector and the
destination field (among others) from the flight plan, Nominal
Plan Builder extracts applicable restrictions from a
restrictions table. Since some restrictions apply only to
particular classes of aircraft or to certain flight routes, the
restriction table contains additional qualifiers which Nominal
Plan Builder examines when identifying appropriate
restrictions. Nominal Plan Builder outputs planned actions
which implement these restrictions. The final step within each
iteration of Nominal Plan Builder is to verify that the
aircraft trajectory agrees with the cleared altitude and speed,
unless prohibited by a restriction. If the trajectory is not
yet at cleared altitude and speed and is not prohibited from
being so, Nominal Plan Builder generates planned actions needed
to achieve the cleared parameters. Nominal Plan Builder then
repeats the procedures described above for each sector in the
center.

If Nominal Plan Builder is invoked because of trajectory
replanning, planning begins at a point following the last
planned action initiated by a higher priority planner; this

3-15

Resynchron-
Procedural Nominal

Route Plan
ization Processing Builder

"' ,/,

Trajectory
Initialization

Planned Action
Processing

Trajectory
Construction

Trajectory Post
Processing

Trajectory
Database -......

FIGURE 3·3
FUNCTIONAL & SUBFUNCTIONAL BREAKDOWN

OF TRAJECTORY ESTIMATION

3-16

point is deterained by Trajectory Estimation. Nominal Plan
Builder begins by deleting all its planned actions following
this point, as these planned actions may now be inappropriate
because of the plan a~~endment. Nominal Plan Builder then
follows the salle procedure described above for implementing
required altitude and speed transitions.

3.3.2 Trajectory Initialization

The purpose of Trajectory Initialization is to provide a
uniform set of input information to the Planned Action
Processing and Trajectory Construction routines regardless of
system state in which Trajectory Estimation is invoked (see
Section 3.1). Because of the uniform input, the trajectory
modeling components perform in the same way in every context in
which Trajectory Estimation can be called. Trajectory
Initialization provides the transition between multiple
external calling environments and the uniform inputs for the
trajectory modeling components.

Trajectory Estimation may be called in any of the contexts
described in Section 3.1: flight plan acceptance, trajectory
replanning, and trajectory repositioning. The uniform input
for the trajectory modeling components is as follows:

• an initialized partial trajectory which consists of a
single point termed a past cusp

• lists (by planned action type) of all planned actions
that are pending in this modeling process as of this
past cusp

• identification of those planned actions that are in
control of each AGD variable at this past cusp

This section describes the derivation of the uniform input for
the different invocation contexts.

In the context of flight plan acceptance, Trajectory
Initialization creates the uniform input for the trajectory
modeling components for a flight that has not previously been
modeled. The input that must be provided to Trajectory
Initialization is as follows:

• a profile reference point, including true airspeed and
along-route distance

3-17

• identification of any planned actions that are in
control of AGD variables at the profile reference point

• lists of planned actions pending at the prof~le
reference point

If the flight plan is being created at the current center, this
input is provided by system flight plan acqu·i.sition functions.
If the flight plan is being handed of.f froll an adjacent
facility, this input is forwarded by the previous center. (The
exact description of handoff processing and new . flight
processing in. the AAS is beyond the scope of this
sp~cification.) The processing steps for Trajectory
Initializationare the following:

• create the ini·tial cusp· of the trajectory, using the
profile reference point

• create the past cus.p as a copy of the profile reference
point

• create separate pending action lists by planned action
type from the input plan

• copy the identification of the AGO-controlling planned
actions

In the context of trajectory replanning, Trajectory
Initialization creates the uniform input for a flight for which
the set of planned actions has changed, but tne previously
established profile reference point has not. The input that
must be provided to trajectory Initialization is the. new set of
planned actions for the flight plan. The profile reference
point is already available as part of the AAS data base. Also
available are the beginning and ending points on the previous
trajectory where planned actions were actually controlling some
of the AGD parameters. Trajectory Initialization references
the (existing) profile reference point to initialize the
trajectory. It uses the planned action duration data to
establish which planned actions were in control of AGD vectors
at that point. The processing steps for Trajectory
Initialization are as follows:

• designate the profile reference point as the past cusp

• delete trajectory cusps beyond the past cusp

3-ld

• create pending action lists from those planned actions
that may take effect on or after the past cusp

• copy the identification of the AGO-controlling planned
actions

In the context of trajectory repositioning, Trajectory
Initialization creates the uniform input for a flight that has
a changed profile reference point, but no changes in the set of
planned actions. Combinations of replanning and repositioning
are to be resolved by repositioning first. The input tnat must
be provided to Trajectory Initialization is a new profile
reference point, including true airspeed and along-route
distance. Planned actions that control the AGD .parameters can
be determined from the existing plan. The processing steps for
Trajectory Initialization will be to:

• create a cusp of the trajectory, using tne profile
reference point and designate it the past cusp

• create pending action lists from those planned actions
that may take effect on or after the past cusp

• derive the identification of the AGO-controlling
planned actions

• delete the entire existing trajectory anead of the past
cusp

3.3.3 Planned Action Processing

A marked difference between tne Trajectory Estimation described
in this document and HAS Stage A Flight Plan Position
Processing [3] is the expanded ability to incorporate control
actions into the estimate of position for an aircraft.
Previously, some control actions were incorporated (such as new
assigned altitudes or speeds) when the controller changed such
values (via manual input) for aircraft under his jurisdiction.
This process provided the controller with very little strategic
planning capability: instead, most planning was firmly placed
with the controller, who then had no opportunity to check the
efficaciousness of his actions.

The Trajectory Estimation algorithm extends the notion of
· control action to that of a planned action. Such a planned
action ~an have temporal placement, an evolution from a
controller's tactical control action whicn presumes a
controller initiated change of aircraft clearance already

3-19

acknowledged by the pilot. Trajectory Estimation allows the
controller to perform soaae strategic planning to investigate
the effects of proposed control actions on the route of an
aircraft without changing the aircraft data used for tracking
and Conformance Monitoring. If the effects of a proposed
change in speed, for example, do not meet controller
requirements, such an action need not be initiated, and the
proposed planned actions may be eliminated.

The processing steps necessary to translate the effect of any
of the planned actions or are basically the same. The
generalized processing scheme is described below, and
illustrated in Figure 3-4. The example given in Figure 3-5
will be used to illustrate the steps in planned action
processing. The concept and content of each planned action is
detailed in Section 2.

3.3.3.1 CQ.lttrol .of AGD l/ariables

Each AGD variable may be controlled by one or more planned
action processors. For example, the acceleration AGD variable
may be controlled by the Speed or Hold Planned Action
Processors. The Speed Planned Action Processor controls the
acceleration variable by setting it to a value. Tne Hold
Planned Action can control the acceleration variable by setting
it to a value while the aircraft is decelerating to holding
speed or by preventing the aircraft from accelerating (forcing
acceleration to ·zero) in the holding pattern. The
relationships between Planned Action Processors and AGD
variables are shown in Figure 3-6.

To determine which actions control the AGD variables the
processors must determine which actions might control the
variables and then resolve any overlaps between these actions.
The first step is for each planned action processor to consider
the past cusp of the so-far-built trajectory. Since the
aircraft modeled position may be in the middle of a maneuver,
planned action processing must determine which planned actions
might be active (Figure 3-7).

OVerlap checks are performed to ensure the consistency of the
data flow within the Trajectory Estimation process. These
checKs, specifically constructed for each planned action
proc~ssing component, identify cases of potential confusion
where two or more planned action processing components have
control over the same aircraft AGD variable. For example,
during tne execution of a speed planned action, another speed
planned action begins. Each speed planned action is

3-20 ..

Determine Planned Actions
I

Possible Active Planned Actions
t

Overlap Resolution

I
Active Planned Actions

t
AGD Valuation (accel, grad, direction)

Limit

•
Valuation (Limitj

FIGURE 3-4
PROCESSING OVERVIEW

3-21

J•l, ••• M]

PA ID

Speed List 567
348

Vector List 745

Altitude List 936
1234

Start Target

373NMI .82M
377NMI .SOM

346NMI (Direct

320NMI 22,000
420NMI 20,000

FIGURE 3-5
EXAMPLE

3-22

Plan Time Source

11:24 Controller
11:45 Controller

to)A 11:16 Controller

11:05 Controller
10:40 Nominal Plan

Builder

Legend:

p

1
a
n
n
e
d

A
c
t
i
0

n

Speed

Altitude

Vector

Hold

FRF

D - Don't Care
R -- Read Only

AGD Variable
I I

Gradient Acceleration Direction

R c D

c C,P D

"

D D c

D C,P D,C

D D c

C -- Change
P -- Prevent Change

FIGURE 3-6
PLANNED ACTION PROCESSOR/AGO VARIABLE

CONTROL RESPONSIBILITIES ..

3-23

PA ID

745
567
348

PA TYPE

VEC
SPD
SPD

START

346
373
377

TARGET

A
.82M
.SOM

. FIGURE 3-7

PLAN TIME

1:24
11:45
11:16

POSSIBLE ACTIVE ACTIONS AT PAST CUSP

3-24

SOURCE

c
c
c

responsible for changing the acceleration AGD variable.
However, only one can be allowed to actually do so. An
arbitration scheme is included with each planned action
processing component which allows identification of which
planned action has control over a particular AGD variable at
any one time.

The time each Planned Action was added to the plan and the
source of the planned action are used to determine planned
action precedence when two or more planned actions of the same
type are proposed at once. Controller generated planned
actions take precedence over planned actions originating in
Nominal Plan Builder. When two actions of the same type from
the same source overlap, precedence is given. to the most
recently planned action (Figure 3-8). Figure 3-9 provides a
suggested precedence relationship among the processors
discussed in this document. If actions overlap but do not seek
to control the same AGD variables, both actions will be
modeled. A planned action processor may return with no
specified control actions.

3.3.3.2 Assignment of AGD Values and Associated Limits

Once a planned action processing component has identified which
active planned action has jurisdiction over a particular AGD
variable, then processing proceeds in two directions.

First, the AGD variable is given a value (Figure 3-10).
Aircraft accelerations or gradients (both ascent and descent)
are extracted by the planned action processing component from
the aircraft characteristics table stored for this aircraft or,
conceivably, from the planned action for some new types of
planned actions. Trajectory Estimation uses the best available
information in its processing since these data have come from
the best source available (e.g., from wor!iJt to best: general
aircraft performance characteristics tables, data submitted by
flight plan,and data obtained by Mode-S data link interaction
with a flight management computer). The direction information
is obtained from the vector planned action, or, if a vector
planned action is not in active processing, from the underlying
filed route structure, as amended by Route Conversion.

Second, some indication must be given by a planned action
processing component about the length of time its AGD variable
is to remain valid. Such an indication is called a limit. It
conveys to the Trajectory Construction subfunction a variable
which can be translated into· time. An example is again
extracted from Speed Planned Action Processing.

3-25

PAID

567
348

PA ID 567

[()]
567 348

Planned Action

PA TYPE Start Target_Speed

SPD 373NMI .82M
SPD 377NMI .aoM

Stopped at 377NMI

FIGURE 3-8
OVERLAP RESOlUTION

3-26

Plan Time

11:24
11:45

Source

Controller
Controller

SPEED ALTITUDE VECTOR HOLD FRF

.. • • • SPEED plan
time .. •• ALTITUDE plan

time (...
VECTOR plan plan

time time • HOLD • plan plan
time time

• • FRF

Legend: Arrow points to the planned action having precedence.
When two arrows are present, the newest (time of
creation by planner or controller) .has precedence.
FRF is considered the NULL planned action which allows
the aircraft's approved route to be followed.

FIGURE 3-9
PLANNED ACTION PRECEDENCE RELATIONSHIPS

3-27

PAID

745

348

PA TYPE

VEC

SPD

FIGURE 3-10
AGO VECTORS

3-28

AGD VECTOR

(1.68,0,0}

The Speed Planned Action Processing component has jurisdiction
over the acceleration AGD variable. When active, the component
specifies an acceleration value. So tnat Trajectory Construc
tion does not accelerate the aircraft forever afterward, a
limit is specified; in this case a speed. In effect, this
Speed Planned Action Processing component is specifying "change
the aircraft's acceleration to (given parameter) until a
(limiting speed) is attained."

Limits will occur at points where the value
variables change for active planned actions and at
points of non-active plannedactions (Figure 3-11).

3.3.3.3 Inclusion of Pending Actions Start ~mits

of the AGD
the starting

The final responsibility of planned action processing. ensures
that all pending actions are modeled. For each pending action
list \separated by planned action type) ~ach individual pending
planned action is examined. Using information stored at the
past cusp, the start condition of each planned action is
computed. This involves translation of planned action basing
information to a maneuver begin event. That event, either a
position, an altitude, a time or an along route distance is
stored as an appropriate limit value. Eventually, a pending
action's start condition (stimulus) is identical to appropriate
parameters at a past cusp and, at that event, the planned
action may gain control over an AGD variable.

3.3.4 Trajectory Construction

Trajectory Construction is a subfunction within the Trajectory
Estimation process. Trajectory Construction uses the
information from planned action processing· and the atmospheric
data base to compute the four-dimensional cusps (Figure 3-12).
In addition, Trajectory Construction computes and/or stores
other information at cusps which is ·passed back to planned
action processing.

Planned action processing co~pletes the AGD vector. The
acceleration, gradient and direction variables together form an
"operator•• for purposes of altering parameters stored at the
past cusp to compute similar parameters for the next cusp. The
acceleration variable indicates how to alter the speed of the
aircraft, and, therefore, its timing. The gradient variable
indicates changes in altitude, and the direction variable
indicates how to transform the · (:x:,y) coordinates at the past
cusp to the new (:x:,y) coordinates at the ne:x:t cusp. The fully
completed AGD vector is input to Trajectory Construction.

3-29

PA_Il) -
{ 145 Active

Actions
34S

Non-Active {1234
Actions

CP'2

CF2 • Converted Fix

PA TYPE -
VEe

SPD

ALT

P'RF

FIGURE 3-tt
uurrs

3-30

LIMIT·

A

.a

420
Nlfi

382 NMI

Atmospheric
Data Base

Trajectory
Construction

Cusp
(x,y,z,t)

FIGURE 3-12

Aircraft
Charac teris tic.s

Data ·
~--.J

TRAJECTORY CONSTRUCTION PROCESSING OVERVIEW

3-31

'nle AGD vector is used to extend past cusp values. The AGD
vector. can be thought of as yielding an unbounded four
dimensional line ell&nating froa the past cusp. LiJDits toward
the next cusp, also produced by planned action processing,
indicate to what extent past cusp values should be changed.
The liJDi ts indicate where the forward bounding point ought to
be placed.

Limits indicate one or the other of two possibilities.
Firstly, a limi-t can be used· to bound the effects of an
evaluated AGD variable. An acceleration change (non-zero
acceleration variable) is accompanied from planned action
processing w~th a speed limit. The two together operate on tne
speed value at the past cusp: the acceleration variable shows
how to change that speed value, tne speed limit indicates to
what extent the acceleration should be allowed. The speed
limit is a new speed value and Trajectory Construction will
place a cusp (possibly not the next cusp) at the position wnere
that new speed value is acnieved.

Secondly, limit-s can · indicate f:uture · · trajec-tory events
unas:aoc·iated with. the AGD vector. these -events -include tne
beginn-ing p()S.ition - of - each-- '·pendi-ng ' act:iou.. -. Trajectory
Conatr.uction W'ill, not-. build ·past. these event-s ensuring that
each pendillg planned action be allowed i'ts · cbanee at changing
the :AGD vector.

The several types of limits (speed, altitude, positional, along
route distance, time) are translated in Trajectory Construction
to a common unit. In this specification, time is used as that
common unit. The AGD vector emanating from the past cusp is
used in the translation process. As indicated above, that AGD
vector represents an unbounded line from the past cusp. The
time coordinate is extracted for every limit found on that
line. The least time value across all limits is selected as
the bound on the input AGD vector. '!he rest of tne
four-dimensional coordinates (x,y,z) are extracted and the next
cusp constructed.

One particular value, originating in Trajectory Construction,
enters into the least limit computation. The trajectory is not
allowed to cross a wind cell boundary except at a cusp.
Trajectory Construction, using the four-dimensional line from
the past cusp constructed by using the AGD vector, finds tne
time of current wind cell boundary crossing. Tnis time value
enters into the least time limit computation.

3-32

Atmospheric
Data Base

Trajectory
Construction

Cusp
(x,y,z,t)

FIGURE 3-12

Aircraft
Characteristic.&

Data ·

TRAJECTORY CONSTRUCTION PROCESSING OVERVIEW

3-31

The AGD vector is used to extend past cusp values. The AGD
vector can be thought of as yielding an unbounded four
dimensional line eaaanating froa the past cusp. Limits toward
the next cusp, also produced by planned action processing,
indicate to what extent past cusp values should be changed.
The limits .indicate where the forward bounding point ought to
be placed.

Limits indicate one or the other of two possibilities.
Firstly, a limit can be used· to bound the effects of an
evaluated AGD variable. An acceleration change (non-zero
acceleration variable) is accompanied from planned action
processing w~th a speed limit. The two together operate on tne
speed value at the past cusp: the acceleration variable shows
how to change that speed value, tne speed limit indicates to
what extent the acceleration should be allowed. The speed
limit is a new speed value and Trajectory Coastruction will
place a cusp (possibly not tb.e next cusp) at the position wnere
that new speed value is achieved.

Secondly, limit-s can · indicate f:uture · · trajec-tory events
· unassociated with. the AGD vector.. The-&e events . include the
beginning positian _ of . each.· .pendin-g . act-ion.. -. Trajectory
Constr.uction will, not-. build · past . these event-s ensuring that
each pending planned action &e allowed i"ts chance at changing
the AGD vector.

The several types of limits (speed, altitude, positional, along
route distance, time) are translated in Trajectory Construction
to a common unit. In this specification, time is used as that
common unit. The AGD vector emanating from the past cusp is
used in the translation process. As indicated above, that AGO
vector represents an unbounded line from the past cusp. The
time coordinate is extracted for every limit found on that
line. The least time value across all limits is selected as
the bound on the input AGD vector. '!he rest of tne
four-dimensional coordinates (x,y,z) are extracted and the next
cusp constructed.

One particular value, originating in Trajectory Construction,
enters into the least limit computation. The trajectory is not
allowed to cross a wind cell boundary except at a cusp.
Trajectory Construction, using the four-dimensional line from
the past cusp constructed by using the AGO vector, finds tne
time of current wind cell boundary crossing. Tnis time value
enters into the least time limit computation.

3-32

The AGD vector, durina this process, is altered as necessary to
acco-.odate wind and ataospheric parameter values. In
particular, the gradient variable, entering Trajectory
Construction as a no-wind gradient, is altered to exhibit an
effective gradient to be used in Trajectory Construction. Wind
speed and direction values are also used in the evaluation of
time variables on the four-dimensional line from the past
cusp. The direction AGD variable is assumed to be the
direction the trajectory should take to the next cusp;
therefore, it represents course and not aircraft heading.

3.3.5 Trajecto;y Post Processing

After the entire trajectory for an aircraft has been
constructed through the iterative application of planned action
processing and Trajectory Construction, the trajectory is
examined one step further. Certain data tables are filled
which need the constructed trajectory. Three operations are
identified.

First, the trajectory time extent of each planned action is
recorded. This information is obtained from data tables
constructed during planned action processing. The information
is useful in certain reinvocations of Trajectory Estimation and
to support Sector Workload Probe [Vol.4].

Second, some Nominal Plan Builder information is accumulated.
The purpose of Nominal Plan Builder is to identify procedural
altitude and speed actions and incorporate them into the
trajectory. However, controller actions take precedence over
Nominal Plan Builder actions. Nominal Plan Builder is,
therefore, constructed to incorporate altitude actions into the
path of the aircraft ahead of any controller actions.
Trajectory Post Processing establishes the last point of
controller interaction with the route ~f the aircraft for
Nominal Plan Builder. Nominal Plan Builder always plans ahead
of this point.

Third, maneuver envelopes are established in path regimes where
the actual position of the aircraft is uncertain. Rectangular
areas are constructed around holding patterns, taking winds
into account. Altitude transitions are protected by trape
zoidal areas bounded by the maximum and/or minimum gradients
for the aircraft (Figure 3-13).

3-33

Earliest Point
of Descent

Steepest
Descent

4

Legend:

c 3

Latest Point of Descent
to Meet Restriction R

Wind Modified
Descent

Restriction
Point

D ZB

-~-- Nominal Descent

FIGURE 3-13
ALTITUDE MANEUVER ENVELOPE

3-34

3.3.6 Resynchronization

The purpose of Resynchronization is to improve trajectory
quality in the longitudinal diaension without controller
interaction. Resynchronization provides tracked position and
true airspeed estimates which Trajectory Estimation uses to
reestimate the trajectory. The Resynchronization function
described here is an intermediary between two components that
will appear in the AAS: Trajectory Estimation and Conformance
Monitoring. Conformance Monitoring (described in Section
2.2.1.3) determines when to call for trajectory repositioning
by comparing the tracked position and an estimated position
based on the trajectory then in use. Conformance of these two
positions is checked for two purposes: controller notification
and Resynchronization. Conformance tolerances that initiate
resynchronization may be different from those that alert the
controller to a potential problem in the air traffic flow.

The tracker input to Resynchronization for an aircraft includes
a track history, a closely spaced sequence of four-dimensional
positions. Track history is used to compute a revised position
for the tracked aircraft and to compute an estimate of current
horizontal true airspeed. Ground speed, observed by the
tracker, is combined with the wind-grid estimate of the winds
aloft in order to compute this true airspeed value. The
elements of this computation are illustrated in Figure 3-14.

Both position and speed are input to Trajectory Estimation in
the form of a profile reference point. The position provided to
Trajectory Estimation in the profile reference point is not the
same as the tracked position that was input to Resynchroni
zation. Trajectory Estimation depends on Resynchronization to
provide it with a profile reference point so that the x,y
position is on the old trajectory for the aircraft; the tracked
position, in most instances, will not . be exactly on this
route. A projection to the old trajectory ascertains this x,y
position.

After Resynchronization has been performed, Trajectory
Estimation computes and stores the trajectory that was modified
as a result of Resynchronization input. Profile reference
point updates are available for only a subset of all flight
plans: the current trajectory for some controlled flights.
Aircraft which are out of conformance laterally or vertically
and awaiting action by a controller or pilot may be ineligible
for Resynchronization, since too much uncertainty exists
concerning how the route of flight will be reestablished.

3-35

Track
Data

Track
History

..... _
-

-- Conformance
Monitoring.

... --

Resynchronization

Trajectory
Estimation

Trajectory

-

FIGURE 3·14
DATA FLOW

3-36

.... -

Trajectory

-

Position
and Speed

All trajectories must have a profile reference point, but not
all profUe reference points are associated with radar-based
updating. Specific trajectories may be the subject of a Trial
Plan Probe and, therefore, represent a transitory copy on which
raJar data processing is not done.

3.4 Expandability

The advanced automation functions for tne ~rc System, described
in this and other specifications [Vola. 2, 3, 4] are part of an
automated system referred to as A.ERA [12]. AERA is to be
implemented in several stages, as outlined in the Transition
Description [6]. Trajectory Estimation, and its servicing
functions of Nominal Plan Builder and Resynchronization, will
be implemented as part of the first Stage, known as A.ERA 1.
ATC system level descriptions of the AERA 1 functions are given
in the Operational Description [5].

As the system matures along a path of progressive computer
responsibility, Trajectory Estimation services also evolve
further. In the AERA 1 time frame, the human controller is
responsible for the safe and expeditious flight of those
aircraft under his jurisdiction. AERA 1 functions are
incapable of making decisions, or planning the flights of
aircraft to achieve ATC goals. Instead, all planning
activities (with the exception of procedural route and altitude
assignments) are generated by the controller. Beyond AERA 1,
the computer will be given the capability to not only detect
problems with trajectories but to also propose solutions to
those problems.

3.4.1 Goal-Oriented Planned Actions

The beginning of automated planning for conflict resolution and
automated delay absorption is a big step towards computer
responsibility for everyday ATC. Goal-oriented planned actions
have effects throughout the system and especially affect
Trajectory Estimation. The introduction of automated conflict
resolution or delay absorption planning introduces the notion
of the goal-oriented planned action, a notion wnich is also
useful for controller strategic planning activities.

The goal-oriented planned action introduces a new level of
service in the ATC System. The translation of route and plan
data to a trajectory becomes more complicated. Tne most
reasonable placement of those translation responsibilities
rests squarely with Trajectory Estimation.

3-37

. To obtain a feeling for goal-oriented planned actions, consider
the following example. Delay absorption at enroute altitudes
is accomplished by slowing the aircraft or lengthening the path
using a vector or a hold. The shape of a delay absorbing
vector is well known: a series of zigzags like those presented
in Figure 3-15. There, the aircraft departs the route at A to
return at D. Instead of the path AD, his route is lengthened
to ABCD. The exact shape is variable depending on the amount
of delay to be absorbed. It may be only a "zig"-one half o.f
the vector shown in Figure 3-15. The vector is always based at
some metering subgoal point, here the point D, beyond which a
given 1:iming schedule.must be maintain,ed.

A delay absorption vector calibrated to absorb a given aiDOunt
of delay is difficult to construct mentally. However, the
off-route .angle and off-route distance are all parameters
derivable from the delay time parameter. Hence, a computer
could determine the exact shape of the delay absorbing vector
given only the time delay to be absorbed and the metering
subgoal point. A controller could instruct the computer to
"co.J.dtruct a metering vector to get aircraft N30SC to point D
by 15:37." Such a control action is goal oriented. The
resulting planned action is also goal oriented. The shape of
the maneuver is not provided by the controller (or planner) as
is the vector planned action discussed in this specification.
Instead, the input supplies information from which tne shape
can be derived.

Trajectory Estimation must evolve to be aole to translate goal
oriented actions. This implies the ability to initialize. man
euver shapes, to check if a given shape meets the goal and to
alter the shape of the maneuver if the goal is not met.

To achieve this capability with some ease of implementation, a
high degree of modularity of the Trajectory Estimation function
is necessary. dew planned action interpreters can tnen be
"plugged in" to use the trajectory construction framework
already in existence.

3.4.2 Uncertainty Estimations

Trajectory data contain implicit position uncertainty which
increases between invocations of .L{esynchronization. To expect
uncertainty buildup (equivalently, to expect resynchroniza
tions) may have planning implications. It may be of value for
Trajectory Estimation to provide the automated functions with
an estimate of that uncertainty. Severe uncertainty in
position may indicate to a planner that actions resolving a

3-38

c

B

FIGURE 3-15
DELAY ABSORPTION ZIG-ZAG VECTOR

3-39

given situation should be posponed until the problem becomes
nearer (in time) or the situation becomes clearer (less
uncertainty).

Position uncertainty can e%ist in three dimensions:
longitudinal uncertainty (timing), lateral uncertainty (to the
left and right) and vertical. Altitude uncertainty during a
climb/descent is reflected by an altitude maneuver envelope
mentioned in Section 3.3. Flight Plan Conflict Probe uses that
vertical uncertainty in the deriva'tion of separation violations.

Longitudinal uncertainty is based upon Trajectory Estimation's
ability to attach ••good" times at the cusps. When times are
found in error, Resynchronization provides for new modeling
parameters which are intended to reduce the resynchronization
rate. The rate of resynchronization is a measure of the past
performance of Trajectory Estimation. Past performance can be
used as a predictive measure of future performance. ·
Longitudinal uncertainty may be based on the predicted time of
the next resynchronization. That predicted time is a function
of the resynchronization history of this aircraft among other
things.

Lateral uncertainty is a function of several variables. First,
and foremost, it is a function of the type of navigation being
done. Airway navigation implies strict conformance to route in
relttion to a distance from a navigational beam. Direct route
navigation implies freedom from conformance to an air~ay

route. Thus, lateral uncertainty will have different
implications when aircraft are navigating on a direct route
instead of an airway. Second, lateral uncertainty is a
function of aircraft equipage. Improvements in equipage imply
more accurate position reporting and navigation. Thus, lateral
uncertainty will be reduced for aircraft equipped with a Flight
Management Computer and with Area Navigation (R-NAV).

3.4.3 K.esynchronization Airspeed Upgrades

The value computed by Kesynchronization as true airspeed is
actually the horizontal component of the true airspeed for the
aircraft. The vertical error thus introduced must be analyzed
and compared experimentally with other sources of error before
a final set of computational algorithms can be specified for
Resynchroniza tion in the AERA 1 timeframe. In normal
operations, geaeral aviation and air carrier aircraft ascent
and descent gradients are shallow. Descent angles are
typically under 3 degrees and ascent angles are under 5
degrees, with the sharper angles occurring only for short times

3-40

r

and only at low altitudes. At the worst case angle, the
vertical component is between 8 and 9 percent of the horizontal
component. At a 3 degree angle the vertical component is about
5 percent of the horizontal. while these errors are
significant in terms of subsequent trajectory positions, there
are several other sources of error of the same or greater
magnitude that are also not taken into account by the
Resynchronization calculations. Considering all possible
sources of error, there is no compelling reason at this time to
expect including the vertical component of true airspeed would
decrease the resynchronization rate or the conflict probe false
alarm rate.

Trajectory Est.ima.tion uses the speed data s11pplied by
Resynchronization as the basis for · later --)position.
calculations. TWo o·ther potential flight performance
paramt!ters, gradient a:nd course, are not now allowed to vary
based on radar-based observations. It may oe desirable to
laterally or vertically resynchronize ·iii the. future, but the
present algorithm produces gradient and course values from
adapted data that are not updated dynamically.

3-41

4. D.ETAII.ED DESCJUPTION

this section presents a detailed description for each function
specified in this voluae. This section addresses subfunctions
outlined in Section 3.3. When necessary, each subfunction is
further divided into coaponents (e.g., Speed Planned Action
Processins coaponent of the Planned Action Processing
subfunction). A llission stateaent is provided to introduce
each subfunction, along with a · section describing the
environment of the subfunction. Transactions with the Global
Data Base and the Shared Local Data Base are identified at a
high level. A detailed description of the exact contents of
the data tables can be obtained in the Global Data Tables in
VolWDe 5, Data Specification, and in the Shared Local Data
Tables in Appendix A of this volWDe.

After the data base transactions are listed for each subfunc
tion, each of the subfunction's components is described. The
components are specified using a Program Design Language
(Appendix E). This Program Design Language (PDL) was con
structed to make manipulation of data explicit, especially data
input from and output to the Global Data Base and the Shared
Local Data Base. The PDL descriptions of the components
identify most data transactions.

Section 4.1 is a description of the Nominal Plan Builder func
tion. Sections 4.t through 4.5 describe the major subfunctions
of Trajectory Estimation: Trajectory Initialization, Planned
Action Processing, Trajectory Construction, and Trajectory Post
Processing. Section 4.6 provides a description of the Resyn
chronization function.

4.1 Nominal Plan Builder

In the AAS , Nominal Plan Builder is con&idered a part of AAS
Route Conversion. In fact, Nominal Plan Builder provides an
altitude analog to current NAS Stage A route processing logic.
Altitude actions implicit in the pilot-filed flight plan are
incorporated into the trajectory just as NAS Route Conversion
identifies procedural routings to the controller.

Nominal Plan Builder assumes the existence of an altitude and
speed procedural actions table. This information, which
describes altitude and speed profiles adapted from Standard
Operating Procedures (SOPs) and Letters of Agreement (LOAs), is
assumed to reside in an accessible data base. A candidate
structure for such a restrictions table is given in Appendix A.

4-1

4.1.1 Mission

Nominal Plan Builder is responsible for generating appropriate
planned actions to transition aircraft along adapted flight
profiles in accordance with any applicable ATC procedural
restriction. Nominal Plan Builder processes altitude and speed
transitions and restrictions, most of which concern aircraft
arriving and departing terminal control areas. NAS Route
Conversion, or the equivalent under AAS, processes route
alterations and restrictions. · Thus, the planned actions
generated by Nominal Plan Builder are for altitude and speed
constraints. In the absence of procedural restrictions,
Nominal Plan Builder will generate planned actions which
transition aircraft to cleared cruise altitude and speed in an
unrestricted manner.

4.1.2 Design Considerations and Environment

Nominal Plan Builder is invoked at least once per controlled
aircraft, when the aircraft enters the planning region. Under
this circumstance, Nominal Plan Builder assumes that necessary
coordination information, including a coordination fix and a
plan, has been forwarded by the previous facility and is
available in valid format. Nominal Plan Builder is also
invoked when a higher priority planner amends a flight plan (or
otherwise alters the trajectory of the aircraft). In this
instance, Nominal Plan Builder assumes that the clearance plan
(temporary or current) being amended also is available in a
valid format. The result of both assumptions is that Nominal
Plan Builder adds planned actions to existing clearance plans,
where those plans may or may not contain planned actions.

Input

Input to Nominal Plan Builder consists of the following:

• System Global Data Base

SECTORS

This table defines all sectors within a center. The
sector_number field is required to access the
SECTORS ENTERED table.

4-2

SECTORS ENTERED

This table· contains all sectors entered by a
particular· trajectory. This infomation is used to
identify each sector to be processed for procedural
restrictions.

- PLANNED ACTIONS
SPEED C~GE PLANNED ACTIONS
SPEED -RESTRICTIONS PiRAMETERS
ALTITUDE CHANGE P!l'NNED ACTIONS
ALTITUDE-RESTRICTIONS PAlWtETl!RS

These tables list all of the planned· actions for a
particular trajectory. These tables are accessed
and changed when deleting NPB-originated planned
actions.

- PLANNED ACTION DURATION

This table indicates the extent of each planned
action (1. e. , the start and stop times) modeled on
the previous trajectory. This infoxmation is used
to determine if an NPB-originated planned action
should be deleted because it begins after the NPB
planning point.

- FLIGHT PLANS

This table contains the pilot intent for a par
ticular flight. This information is used as a source
of data concerning the aircraft and intended route,
including identifying information used to select tAe
appropriate altitude and speed procedural actions.

- FLIGHT ID ASSOCIATIONS

This table is a cross-reference between system
flight id's and flight names used in the flight plan.

- AIRCRAFT MIN MAX SPEED

This table indicates an aircraft's minimum and
maximum speed capabilities over a range of alti
tudes. This information is needed when a procedural
restriction is based on an aircraft's speed capabil
ities.

4-3

CURRENT TIME

This table contains a system real-time clock. All
planned actions generated are time-stamped.

• Shared Local Data Base

NPB PLANNING_ POINT

This table contains a single occurrence of a cusp.
This point is set by Trajectory Estimation and indi
cates where, geographically, Nominal Plan Builder
should begin its planning function.

PROCEDURAL RESTRICTIONS INDEX

This table contains indices to the ADDITIONAL
QUALIFIERS table and the PROCEDURAL_RESTRICTIONS
table. These indices are accessed through look-ups
on the sector and destination for a particular
flight.

- ADDITIONAL_QUALIFIERS

This table contains criteria which further constrain
the application of procedural restrictions. A
procedural restriction is only applied if the
trajectory being modeled satisfies the criteria
applied by the sector, the destination, and all
additional qualifiers. Examples of additional
qualifiers include 'minimum aircraft speed' and
'standard instrument departure route.'

- PROCEDURAL RESTRICTIONS

This table contains procedural restrictions to be
applied for a given combination of sector/destina
tion/additional qualifiers. One planned action is
generated for each procedural restriction. This
table must contain an altitude restriction at the
destination airport, identifying a coordination
point at which control of the aircraft becomes the
responsibility of the airport. Modeling of the
trajectory will stop at this point.

4-4

..

Output

Priury output of Noainal Plan Builder consists of speed and
altitude planned actions which structure the aircraft
trajectory in accordance with any applicable procedural
restrictions. Other output includes flags which guide the
proper imple.antation of these planned actions.

• System Global Data Base

PLANNED ACTIONS
SPEED CHANGE PLANNED ACTIONS - - -SPEED RESTRICTIONS PARAMETERS
ALTITifDE CHANGE PI.iNNED ACTIONS
ALTITUDEREsTRICTIONS PARAMETERS

These tables are altered to include any planned
actions added to an aircraft's plan as a result of
an altitude or speed procedural restriction.

PLANNED ACTION DURATION

This table is altered to remove duration times of
planned actions deleted by Nominal Plan Builder.

4.1.3 Nominal Plan Builder Design Logic

Organization

The Nominal Plan Builder function is invoked when an aircraft
enters the planning region, or when a higher priority planner
(e.g., a controller) amends the flight plan or otherwise
changes the trajectory of an aircraft within the center (e.g.,
institutes a vector). In either case, Nominal Plan Builder
requires a valid, structured plan, possibly empty. When an
aircraft enters the planning region, the "previous center may
have instituted planned actions, the extent of which may enter
the current center's boundary. Because the intent of these
planned actions is unknown to Nominal Plan Builder, these
planned actions remain undisturbed; Nominal Plan Builder adds
necessary planned actions to any already in the plan. When a
higher priority planner changes the trajectory of an aircraft
in the center, Nominal Plan Builder begins planning at the
point where the higher priority planner last altered the
trajectory (e.g., at the end of an existing planned action).
Nominal Plan Builder first deletes, from the indicated point
onward, any planned actions it had generated on a previous
iteration. These deletions are required so that the previous

4-5

planned actions do not interfere with any planned actions
Nominal Plan Builder subsequently generates. Following this
housecleaning task, the procedure (described in the next
section) followed by Nominal Plan Builder when invoked because
of an action by a higher priority planner is exactly the same
as that followed when invoked because an aircraft has entered
the planning region.

Figure 4-1 indicates the logical structure of Nominal Plan
Builder. This function uses iterative calls to Trajectory
Estimation to model the trajectory in accordance with existing
planned actions, including those created by Nominal Plan
Builder in response to procedural restrictions. Nominal Plan
Builder also uses the system utility XY_To_Ard, provided in
Appendix B.

Processing Method

Nominal Plan Builder is an iterative function with one itera
tion required for each sector through which a flight path
passes. This function includes four principal subfunctions:
Sector Determination, Restrictions Retrieval, Planned Action
Generation, and Verify Cruise Parameters. Sector Determination
identifies the sequence of sectors to be processed for proced
ural restrictions, and also removes obsolete planned actions
instituted by Nominal Plan Builder on previous invocations.
Restrictions Retrieval processes the procedural restrictions
table to determine if any procedural restrictions apply.
Planned Action Generation outputs altitude and speed planned
actions which structure the· trajectory in accordance with
applicable procedural restrictions. Verify Cruise Parameters
institutes speed and altitude planned actions which allow a
trajectory to achieve cleared altitude and speed after imple
mentation of, or in the absence of, all applicable procedural
restrictions. These subfunctions, and the various routines
each requires to accomplish stated tasks, are described in
further detail below.

The following discussion references the example in Figure 4-2.
In this example, an aircraft is being handed off at the indi
cated coordination fix at 18,000 feet, and is bound for desti
nation XYZ. Shown are two possible arrival routes through the
center: Route A goes through sectors 1 and 2, while Route B
goes through Sectors 1 and 3. The numbered values indicate
altitude restrictions at various points in the center; the
restrictions aid in positioning the aircraft for safe and
manageable hand-off to the destination center.

4-b

Nominal Plan Builder
Sector Determination

Next Sector
Trajectory Estimation

Delete Actions
Restrictions Retrieval

Process QUalifiers
Process Arrival Departure Qualifier
Process-Speed QUalifier -
Process-Aircraft Qualifier

Planned Action Generation
XY To Ard
Select Planned Action Records - - -Determine Transition Type

Generate Restricted Altitude PA
Generate Planned Action ID

Determine Transition Type
Generate_Speed_PA -

Generate Planned Action ID
Verify Cruise Parameters

Generate unrestricted Altitude PA
Generate Planned ACtion ID
Determine Transition Type

Generate Speed PA -
Generate Planned Action ID

FIGURE 4-1
NOMINAL_PLAN_BUILtlER CALLING SEQUENCE

4-7

~
I

00

Coordination
Fix

Planning Region Boundary ,-- --- -----,

1

I
I
I

8

I ••I I ~
18000

I
I
I
I

Center Boundary

8000

8

8
I
I
I

J

I
I

L____ _ __ _j

FIGURE 4-2
NOMINAL PLAN BUILDER EXAMPLE

Nominal Plan Builder is invoked with a flight id as an input
paraaeter. 1be logical flow of Nominal Plan BuTlder appears in
Figure 4-3. Nominal Plan Builder begins processing each sector
by calling Sector Determination (Figure 4-4). Sector Deter
mination utilizes the element Next Sector (Figure 4-5) -which,
when given the identity of a sector through which a trajectory
passes, returns the identity of the next sector that trajectory
will enter. To accomplish this, Next Sector invokes Trajectory
Estimation. The resulting trajectory- is used to establish an
ordered list of sectors entered by the trajectory. Trajectory
Estimation also provides a Nominal Plan Builder planning
point. This planning point identifies- the- geographic point
where Nominal Plan Builder should begin its planning function.
On the initial iteration, Next Sector scans the ordered list of
sectors entered to identify the sector containing the planning
point. On subsequent iterations, Next Sector scans the sector
list to determine the sector followin.i the one identified in
the previous iteration. The sector identification is returned
to Sector Determination. On the initial iteration, Sector
Determination then calls Delete Actions (Figure 4-6). This:
element deletes planned actions created by Nominal Plan Builder
on previous invocations which follow the plannilig point in
time. The purpose of these deletions is to avoid any possible
conflicts with planned actions generated during the present
invocation. Sector Determination then returns the next sector
identity to Nominal-Plan Builder, which forwards this value to
Restrictions Retrieval. -

Restrictions Retrieval (Figure 4-7) inspects the restrictions
table to determine if any procedural restrictions apply in the
identified sector. The restrictions table for the example is
illustrated in Figure 4-8. Restrictions Retrieval begins by
scanning the restrictions table for the- sector returned by
Sector Determination and the destination airport filed in the
flight-plan. If there are no entries in the restrictions table
for a particular sector/destination · pair, no procedural
restrictions apply, and Restrictions Retrieval is finished. If
a sector/destination pair produces one or more candidate
restrictions, Restrictions Restrieval calls Process Qualifiers
to determine the applicability of these restrictions~ Process
Qualifiers (Figure 4-9) examines candidate restrictions for
additional qualifiers, which serve to further limit the appli
cation of procedural restrictions; any number of additional
qualifiers is possible. If additional qualifiers are not
present (as in sector 2 in this example), the listed restric
tions apply to all aircraft. If additional qualifiers are
present (as in sector 1 in the example), Process Qualifiers
inspects the additional qualifier type field, and activates. the

4-9

ROUTINE Nominal Plan Builder;
PARAMETERS - -

Loc Fl ID IN;
REFER TO SHARED LOCAL

ALTITUDE RESTRICTED INOUT,
SPEED_RESTRICTED INOUT;

DEFINE VARIABLES
Past Sector Previous sector examined for restrictions
Present Sector Next sector to be examined for restrictions
Loc Fl Id Local flight id variable;

begin algorithm I
Past Sector = NULL;
UPDATE IN ALTITUDE RESTRICTED

(flag = 'no'); -
UPDATE IN SPEED RESTRICTED

(flag = 'no');
CALL Sector Determination(Loc Fl Id IN, Past Sector IN,
--Present Sector OUT); - - - - -
REPEAT WHILE Present Sector NE NULL;

CALL Restrictions-Retrieval(Loc Fl Id IN, Present Sector IN,
-past Sector IN); - - -
IF ALTITUDE RESTRICTED.flag lQ 'no' OR
- SPEED_RESTRICTED.flag ~"'no' -
THEN
--CALL Verify Cruise Parameters(Loc Fl Id IN);
Past Sector • Present-Sector; - - -
CALL-Sector Determination(Loc Fl Id IN, Past Sector IN,
--Present Sector OUT); - - -

END Nominal_Plan=Builder;--

FIGURE 4-3
NOMINAL PLAN BUILDER

4-10

ROUTINE Sector Determination;
PARAMETERS -

Loc Fl Id IN,
Past_SectoriN,
Present Sector OUT;

REFER TO SHARED LOCAL
LAST RESTRICTION POINT INOUT,
NPB PLANNING POINT IN;

DEFINE-VARIABLES --
Past Sector Sector just inspected for restrictions
Present Sector Next sector to be examined for restrictions
Loc Fl Id Local flight id variable;

begin algorithm I
CALL Next Sector(Loc Fl Id IN, Past_Sector 1!,
--Present Sector OUT);- --
IF Past_ Sector ~ NULL
THEN
---uPDATE IN LAST RESTRICTION POINT

(coordinate-· NPB PLANNING POINT.coordinate,
altitude • NPB PLANNING POINT.z,
speed • NPB PLANNING POINT.tas);

CALL Delete Actfons(Loc Fl Id IN);
END Sector_Determ!nation; - - --

FIGURE 4-4
SECTOR DETERMINATION

4-11

ROUTINE Next_Sector;
PARAMETERS

Loc Fl Id IN,
Past SectoriN,
Present Sector OUT;

REFER TO GLoBAL -
SECTORS_ ENTERED IN,
SECTORS IN;

REFER TO SHARED LOCAL
NPB PLANNING POINT IN;

DEFINE-VARIABLES -
Loc Sector Number
Past Sector Exit Time
Past Sector
Present Sector
Loc Fl Id

Number of a sector
Time the previous sector was exited
Sector just inspected for restrictions
Next sector to be examined for restrictions
Local flight id variable;

FIGURE 4-5
NEXT SECTOR

4-12

I begin algorithm I
CALL Trajectory Estimation(Loc Fl Id IN);
IF Past_Sector ~NULL #first Iteration of NPBI
THEN
--SELECT FIELDS sector number

INTO Loc Sector Number
FROM SECToRS_ ENTERED(S _E)
WHERE S_E.fl_id ~ Loc_Fl_Id AND

S_E.time ~ MIN(S_E.time GE NPB_PLANNING_POINT.time);
ELSE
--SELECT FIELDS sector number

INTO Loc Sector Number
FROM SECToRS
WHERE SECTORS.sector_name ~ Past_Sector;

SELECT FIELDS time
INTO Past Sector Exit Time
FR6'M SECTORS ENTERED(S E)
WHERE S_E.fl=id ~ Loc=Fl_Id AND

S_E.sector_number ~ Loc_Sector_Number AND
S E.time EQ MAX(S E.time);

SELECT FIELDS sector number
INTO Loc Sector Number
FROM SECTORS ENTERED(S E)
WHERE S_E.fl=id ~ Loc=Fl_Id ~

S_E. time~ MIN(S_E. time GT Past_Sector_Exit_Time);
IF Loc Sector Number EQ NULL
THEN - #past-sector was last sector in center for flight#
--Present Sector • NULL;
ELSE - --

SELECT FIELDS sector name
INTO Present Sector
FROM SECTORS
WHERE SECTORS.sector number EQ Loc Sector Number;

END Next_Sector; - -- - -

FIGURE 4-5 (Concluded)
NEXT SECTOR

4-13

ROUTINE Delete_Actions;
PARAMETERS

Loc Fl Id IN;
REFER TO GLOBAL

PLANNED ACTIONS INOUT,
SPEED CHANGE PLANNED ACTIONS INOUT,
SPEED-RESTRICTIONS PARAMETERS INOUT,
ALTITUDE CHANGE PLANNED ACTIONS INOUT,
ALTITUDE-RESTRICTIONS PARAM~TERS INOUT,
PLANNED_ACTION_DURATION INOUT;

REFER TO SHARED LOCAL
NPB PLANNING POINT IN;

DEFINE-VARIABLES --
Loc Fl Id Local variable for flight id
Loc PA Start Time Start time for a planned action;

begin algorithm I
REPEAT FOR EACH PLANNED_ACTIONS(P_A) RECORD

WHERE P A.fl id • Loc Fl Id AND P A.pa source • 'npb';
SELECT FIELDS pa_start_t'Ime - - -

INTO Loc PA Start Time
FROM PLANNED ACTION DURATION(P A D)
WiiERE P A D. pa id EQ PLANNED ACTIONS. pa id;

IF Loc PA Start Time GE NPB PLANNING POINT7time
THEN
--CHOOSE CASE

WHEN PLANNED ACTIONS.pa type~ 'altitude' THEN
----nELETE FROM ALTITUDE-CHANGE PLANNED ACTIONS(A C P A)

WHERE A_C_P_A.pa_Id ~ PLANNED_ACTIONS.pa_Idi
DELETE FROM ALTITUDE_RESTRICTIONS_PARAMETERS(A_R_P)

WHERE A_R_P.pa_id _!1 PLANNED_ACTIONS.pa_id;
WHEN PLANNED_ ACTIONS. pa _type ~ 'speed' THEN

DELETE FROM SPEED CHANGE PLANNED ACTIONS(S C P A)
WHERE S_C_P_A.pa_id ~ PLANNED_ACTIONS.pa=id;

DELETE FROM SPEED RESTRICTIONS PARAMETERS(S R P)
WHERE S_R_P.p()d ~ PLANNED_ACTIONS.pa_Id;

DELETE FROM PLANNED ACl·ION DURATION(P A D)
WHERE P A D.pa id EQ PLANNED ACTIOR'S7pa id;

DELETE FROM PLANNED ACTIONS; - -
#remove planned action from system#

END Delete_Actions;

FIGURE 4-6
DELETE ACTIONS

4-14

ROUTINE Restrictions_Retrieval;
PARAMETERS

Loc_Fl_Id IN,
Present Sector IN,
Past Sector IN;--

REFER TO GLOBAL--
FILED FLIGHT PLAN IN,
FLIGHT ID ASSOCIATIONS IN;

REFER TO SHARED LOCAL
PROCEDURAL RESTRICTIONS INDEX IN;

DEFINE VARIABLES - --
Destination Destination airport (fix) for flight plan
Name Of Flight Identifier of the flight
Qualifiers Matched Indicator of match on additional qualifiers
Present Sector Next sector to be examined for restrictions
Past Sector Previous sector examined for restrictions
Loc Fl Id Local flight id variable;

begin algorithm I
SELECT FIELDS flight name

INTO Name Of Flight
FROM FLIGHT lD ASSOCIATIONS(F I A)
WHERE F I A~fllght plan id EQ-LOc Fl Id;

SELECT FIELDS destination - -- - -
INTO Destination
FROM FILED FLIGHT PLAN
W'iiERE FILED_FLIGHT_PLAN.flight_name ~ Name_Of_Flight;

REPEAT FOR EACH PROCEDURAL RESTRICTIONS INDEX(P R I) RECORD
WHERE P R I.sector ~ Present Sector-AND --

P_R_I.Cfestination ~Destination; #May be none II
CALL Process Qualifiers(Loc Fl Id IN,
--PROCEDURAL RESTRICTIONS lNDEX.qualifier index IN,

Qualifiers-Matched OUT); - --
IF Qualifiers=:Matched ~ 'yes' ·
THEN
--CALL Planned Action Generation(Loc Fl Id IN,

--Present_Sector IN, Past_Sector IN,- --
PROCEDURAL RESTRICTIONS INDEX.restriction index IN);

END Restrictions_Retrieval;

FIGURE 4-7
RESTRICTIONS RETRIEVAL

4-15

.1:'-
1
0\

SECTOR

1

1

2

3

DESTINATION

XYZ

XYZ

XYZ

XYZ

ADDITIONAL
QUALIFIER

TYPE

Preferred
Arrival

Route
Preferred
Arrival

Route

Minimum
Aircraft

Speed

ADDITIONAL RESTRICTION RESTRICTION RESTRICTION RESTRICTION Assume
I QUALIFIEI{ TYPE QUALIFIER POitH Cruise

Parameters
I

A Altitude 12000 At or Above Boundary N

B Altitude 10000 At Boundary N

Altitude 8000 At or Below x,y N

Altitude 6000 At Boundary N

250 Altitude 4000 At or Above Boundary N

Speed 250 At or Above Boundary N

FIGURE 4-8
EXAMPLE RESTRICTIONS TABLE

ROUTINE Process Qualifiers;
PARAMETERS -

LOc Fl Id IN,
Qualifier Index IN,
Qualifiers Matched OUT;

REFER TO SHARED LOCAL -
ADDITIONAL QUALIFIERS IN;

DEFINE VARIABLES -
Loc Fl Id Local flight id v~riable
Qualifier Index Index to one or more qualifier records
Qualifiers Matched Indicator of match on additional qualifiers;

- begin algorithm I
Qualifiers Matched • 'yes';
IF Qualifier Index ~ NULL
THEN; #Indicates restrictions apply to all flights#
ELSE
---xEPEAT FOR EACH ADDITIONAL QUALIFIERS(A Q) RECORD

WHERE A Q.qualifier index ~ Qualifier Index;
CHOOSE CASE - -

WHEN ADDITIONAL QUALIFIER.qualifier type IS IN
--r•star', 'sld', 'par', 'pdr', 'pdar') THEN

CALL Process Arrival Departure Qualifier
--(Loc Fl ID IN, - -

ADDITIONAL QUALIFIER.qualifier type IN,
ADDITIONAL-QUALIFIER.qualifier-IN, -
Qualifiers-Matched OUT); -

WHEN ADDITIONAL QUALIFIER.qualifier type IS IN
----r•minimum speed', 'maximum speedT) THEN

CALL Process Speed Qualifier(Loc Fl-ya-IN,
--x»DITIONAL QUALIFIER.qualifier type IN,

ADDITIONAL-QUALIFIER .qualifier -IN, -
Qualifiers-Matched OUT); -

WHEN ADDITIONAL QUALIFIER.qualifier type IS IN
----r 'aircraft type' , 'maximum aircraft weight' ,

'equippage') THEN
CALL Process Aircraft Qualifier(Loc Fl Id IN,
---xriDITIONAL QUALIFIER.qualifier type-IN,

ADDITIONAL-QUALIFIER.qualifier-IN, -
Qualifiers-Matched OUT); -

IF Qualifiers_Matched !Q 'no-, -
THEN #No more qualifiers need be processed#
--c;o TO CONTINUE; #for this index #

CONTINUE:;
END Process_Qualifiers;

FIGURE 4-9
PROCESS_QUALIFIERS

4-17

appropriate qualifier processor: Process Arrival Departure
Qualifier (Figure 4-10), Process Speed Qualifler (Figure 4-11)~
and Process_Aircraft_Qualifier TFigure 4-12). The qualifier
processors extract necessary information from appropriate
sources, and compare the actual aircraft or flight plan data
with the additional qualifier field in the restrictions table.
If the qualifiers match the actual data, the listed restric
tions apply.

In the example, for sector 1, the· additional qualifier type is
'preferred arrival route,' indicating that the listed restric
tions apply only to a particular route through the sector.
Process Qualifiers would call Process Arrival Departure
Qualifier, which would access the flight pian, identify the
arrival route being taken, and check the additional qualifier
field for a match. Since both routes through sector 1 are
listed, both are restricted. In sector 3, the additional
qualifier type is 'minimum aircraft speed.' Process Qualifiers
would activate Process Speed Qualifier, which would- match the
actual aircraft speed capabilities, as listed in the aircraft
characteristics data, against the additional qualifier field.
In this example, aircraft not capable of maintaining 250 knots
are unrestricted.

Once Process Qualifiers identifies that all additional quali
fiers are satisfied, Restrictions Retrieval calls Planned
Action Generation to implement appropriate planned actions in
accordance with listed restrictions. Planned Action Generation
(Figure 4-13) generates one planned action for eaCh selected
procedural restriction. Figure 4-14 illustrates the transla
tion of a procedural restriction to a planned action, using the
first line of the restrictions table from the example. The
restriction point listed in the table may be a geographic point
or the generic classifier, 'boundary,' indicating the restric
tion is to be applied at the sector boundary; in the latter
case, Planned Action Generation determines the geographic point
of boundary crossini. Planned Action Generation next verifies
that the restriction point follows -the Nominal Plan Builder
planning point, which indicates the point at which Nominal
Plan Builder should begin planning. If the restriction point
follows the planning point, Planned Action Generation calls
Select Planned Action Records to further process the procedural
restriction.

Select_Planned_Action_Records (Figure 4-15) determines whether
an altitude or a speed planned action is to be generated for a
particular procedural restriction. If an altitude planned
action is to be generated, Select_Planned_Action_Records first

4-18

ROUTINE Process_Arrival_Departure_Qualifier;
PARAMETERS

LOc Fl Id IN,
Qualifier Type IN,
Qualifier-IN, -
Qualifiers~tched OUT;

REFER TO GLOBAL -
FILED FLIGHT PLAN IN,
FLIGHT_ ID _ASSOCIATIONS IN;

DEFINE TABLES
LOC FLIGHT PLAN defined like global table FILED_FLIGHT_PLAN;

DEFINE-VARIABLES
Loc Fl Id
Qualifler_Type
Qualifier
Qualifiers Matched
Name_Of_Fl'Ight

Local flight id variable
Category of qualifier
Value corresponding to Qualifier Type
Indicator of match on additional-qualifiers
Name corresponding to Loc_Fl_Id;

FIGURE 4-10
PROCESS_ARRIVAL_DEPARTURE_QUALIFIER

4-19

H begin algorithm I
SELECT FIELDS flight_name

INTO Name Of Flight
FROM FLIGHT ID ASSOCIATIONS(F I A)
WHERE F_I_A7f1Ight_plan_id -~~f~e_Fl_Id;

LOC FLIGHT PLAN • SELECT FIELDS ALL
FROM FILED FLIGHT PilN(F F F)-
WHERE F_F_P.flight_name]Q-Name_Of_Flight;

CHOOSE CASE
WHEN Qualifier_Type ~ 'sid' OR 'pdr' THEN

IF LOC_FLIGHT_PLAN.departure_procedure_type ~
Qualifier Type AND
LOC_FLIGHT_PLAN.departure_procedure_name ~ Qualifier

THEN
~alifiers Matched • 'yes';
ELSE -
~alifiers Matched • 'no';

WHEN Qualifier_rype ~ 'star' OR 'par' THEN
IF LOC FLIGHT PLAN.arrival procedure type !Q
- Quaiifier Type AND - -

LOC_FLIGHT_PLAN.arrival_procedure_name !Q Qualifier
THEN
---qualifiers Matched • 'yes';
ELSE -
~alifiers Matched • 'no';

WHEN Qualifier rype EQ 'pdar' THEN
IF LOC_FLIGHT_PLAN.dep_arr_procedure_type !Q

Qualifier Type AND
LOC_FLIGHT_PLAN:irr_dep_procedure_name !Q Qualifier

THEN
~ualifiers_Matched • 'yes';
ELSE
~ualifiers Matched • 'no';

END Process_Arrival_Departure_Qualifier;

FIGURE 4-10 (Concluded)
PROCESS_ARRIVAL_DEPARTURE_QUALIFIER

4-20

ROUTINE Process Speed Qualifier;
PARAMETERS - -

toe Fl Id IN,
Qualifier Type IN,
Qualifier-IN, -
Qualifiers_Matched OUT;

REFER TO GLOBAL
AIRCRAFT MIN MAX SPEED IN;

DEFINE TABLFs - - -
AIRCRAFT SPEED defined like global table AIRCRAFT_MIN_MAX_SPEED;

DEFINE VARIABLES
Loc Fl Id Local flight id variable
Qualifier Type Category of qualifier
Qualifier- Value corresponding to Qualifier Type
Qualifiers_Matched Indicator of match on additional-qualifiers;

H begin algorithm #
Qualifiers Matched • 'yes';
AIRCRAFT SPEED • SELECT FIELDS ALL

FROM AIRCRAFT MIN MAX SPEED(AM M S)
WHERE A_M_M_s:source !g Loc_FI_!d; #or other as appropriate#

CHOOSE CASE
WHEN Qualifier_ Type ~ 'minimum speed' ..!!!!!!

IF AIRCRAFT SPEED.min speed LT Qualifier
THEN - - -
---qualifiers Matched • 'no';
~ Qualifier_TYpe ~ 'maximum speed' THEN

IF AIRCRAFT SPEED.max speed GT Qualifier
THEN - - -

~ualifiers Matched • 'no';
END Process_Speed_Qualifier;

FIGURE 4-11
PROCESS_SPEED_QUALIFIER

4-21

ROUTINE Process Aircraft Qualifier;
PARAMETERS - -

Loc Fl Id IN,
Qualifier Type IN,
Qualifier-IN, -
Qualifiers~tched OUT;

REFER TO GLOBAL
FLIGHT_ID_ASSOCIATIONS IN,
FILED_FLIGHT_PLAN IN;

DEFINE TABLES
LOC_FLIGHT_PLAN defined like global table FILED_FLIGHT_PLAN;

DEFINE VARIABLES
Name Of Flight Name corresponding to a flight plan id
Loc Fl Id Local flight id variable
Qualifier_Type Category of qualifier
Qualifier Value corresponding to Qualifier Type
Qualifiers Matched Indicator of match on additional-qualifiers;

begin algorithm #
SELECT FIELDS flight name

INTO Name Of Flight
FROM FLIGHT ID ASSOCIATIONS(F I A)
WHERE F I A~flfght plan id EQ-LOc Fl Id;

LOC FLIGHT-PLAN ~ SELECT FIELDs-ALL - -
FROM FILED FLIGHT PLAN
WHERE FILED_FLIGHT_PLAN.flight_name !Q Name_Of_Flight;

Qualifiers_Matched = 'yes';
CHOOSE CASE

WHEN Qualifier Type~ 'aircraft type' THEN.
--IF LOC FLIGHT PLAN.aircraft type NE Qualifier

THEN- - --
---qualifiers Matched= 'no';

WHEN Qualifier fYpe EQ 'maximum aircraft weight' THEN
IF LOC_FLIGHT_PLAN.weight GT Qualifier
THEN
---qualifiers Matched= 'no'; .

WHEN Qualifier fYpe EQ 'equippage' THEN
--IF LOC FLIGHT PLAN.equippage NE Qualifier

THEN - - -
~alifiers Matched • 'no';

END Process_Aircraft_QUalifier;

FIGURE 4-12
PROCESS_AIRCRAFT_QUALIFIER

4-22

ROUTINE Planned_Action_Generation;
PARAMETERS

Loc Fl Id IN,
Present Sector IN,
Past_Sector IN,-
Restriction Index IN;

REFER TO GLOBAL -
SECTORS ENTERED IN,
SECTORS-IN; -

REFER TO SlfliED LOCAL
PROCEDURAL RESTRICTIONS IN,
NPB_PLANNING_POINT IN;

DEFINE VARIABLES
Loc Fl Id
Present Sector
Past Sector
Restriction Index
Number Of Sector
XY Restriction Point
Restriction Ard

Local flight id variable
Sector being examined for restrictions
Previous sector examined for restrictions
Reference to restrictions
Number corresponding to name
x,y coordinates of restriction point
Along route distance of restriction point;

b'IGURE 4-13
PLANNED ACTION GENERATION

4-23

I begin algorithm I
REPEAT FOR EACH PROCEDURAL RESTRICTIONS(P R) RECORD

WHERE P_R.restriction_index ~ Restriction_Index;
IF PR.OCEDURAL_RESTRICTIONS.restriction_point ~ 'boundary'
THEN
---sELECT FIELDS sector number

FROM SECTORS
INTO Number Of Sector
WHERE SECTORS.sector_name ~ Present_Sector;

SELECT FIELDS coordinate
FROM SECTORS_ENTERED(S_E)
INTO XY Restriction Point

ELSE

-- - -WHERE S E. fl id EQ Loc Fl Id
AND s_E.sector_number ~ Number_Of_Sector AND
S_E.time EQ MAX(S_E.time);

---xv Restriction Point •
PROCEDURAL_RESTRICTIONS.restriction_point;

IF Past_Sector ~ NULL
THEN
--CALL XY To Ard(Flight Plan ID IN, XY Restriction Point IN,

~striction Ard OUT); - - - - -
IF Restriction~rd GT NPB PLANNING POINT.Ard
THEN
--CALL Select Planned Action Records(Loc Fl Id IN,

ELSE

---pROCEDURAL RESTRlCTIONS:restriction-IN:
PROCEDURAL=RESTRICTIONS.restriction_qualifier IN,
XY Restriction Qualifier IN,
PROCEDURAL RESTRICTIONS.restriction type IN,
PROCEDURAL=RESTRICTIONS.cleared IN); -

--CALL Select Planned Action Records(Loc Fl Id IN,
---pROCEDuRAL RESTRlCTIONS:restriction-IN: -

PROCEDURAL-RESTRICTIONS.restriction qualifier IN,
XY Restriction Qualifier IN, - -
PROCEDURAL RESTRICTIONS.restriction type IN,
PROCEDURAL-RESTRICTIONS.cleared IN);

END Planned_Action_Generation; --

FIGURE 4-13 (Concluded)
PLANNED ACTION GENERATION

4-24

~
I
~
VI

RESTRICTIONS TABLE

Sector Destination Additional Additional Restriction Restriction Restriction Restriction
Qualifier Qualifier Type Qualifier Point

Type

1 XYZ Route A Altitude 12000 At or Above Boundary

Planned Action

Planned Action ID: System
Plan Time: System
Planned Action Type: Altitude -
Restriction Altitude: 12000
Restriction Qualifier: At or Above Boundary
Restriction Point: x,y Translation

Algorithm

FIGURE 4-14
TRANSLATION OF A RESTRICTION INTO A PLANNED ACTION

Assume
Cruise

Parameters

N

ROUTINE Select_Planned_Action_Records;
PARAMETERS

Loc_Fl_Id IN,
Restriction IN,
Restriction_Qualifier IN,
XY Restriction Point IN,
Restriction Type IN, -
Cleared IN;- -

REFER TO SHARED LOCAL
LAST_RESTRICTION_POINT INOUT,
ALTITUDE RESTRICTED INOUT,
SPEED RESTRICTED INOUT,
FLIGHT PHASE INOUT;

DEFINE VARIABLES
Loc Fl Id
Restriction
Restriction_ Qualifier
XY Restriction Point
Restriction_ Type
Cleared
Base_Type
Base Location

Local variable for flight id
Numeric altitude or speed value
At, at or below, at or above
Geographic point where restr. applied
Speed or altitude
Flag to assume cleared altitude or speed
Base type of a PA - x,y or altitude
Base location of PA - start or end;

FIGURE 4-15
SELECT PLANNED ACTION RECORDS

4-26

I begin algorithm I
CHOOSE CASE

WHEN Restriction_Type ~ 'restricted altitude change' THEN
CALL Determine Transition Type(Restriction IN,
~scent Descent Flag OUT); --
IF (FLIGHT PHASE.phase EQ 'ascent') OR
-- (FLIGHTPHASE.phase EQ 'descent' AND

Ascen ()>esc en t _Flag~ 'desce11t '}
THEN
---C-ALL Generate Restricted Altitude PA(Loc Fl Id IN,

---xestriction IN, Restriction Quilifier-nr,. --
XY_ Restriction_Point IN); - --

UPDATE IN LAST ~~TRICTION POINT
(coordinate-· XY Restriction Point,
altitude • Restriction); -

IF Cleared ,!g_ 'yes'
THEN

UPDATE IN ALTITUDE RESTRICTED
(flag • 'no');-

ELSE
---uPDATE IN ALTITUDE RESTRICTED

(flag • 'yes');-
IF Ascent_Descent_Flag ~ 'descent'
THEN
--FLIGHT PHASE. phase • 'descent';

WHEN Restriction Type EQ 'speed change' THEN
~se Location-- 'end'· - ,

Base_Type • 'coordinate';
CALL Generate_Speed_PA(Loc_Fl_Id IN,

Restriction IN, Restriction Qualifier IN, Base Type IN,
XY Restriction Point IN, Base Location-rN); - --

UPDATE IN LAST RESTRICTION POINT- --
(coordinate-· XY Restriction Point,
speed • Restriction); -

IF Cleared EQ 'yes' ·
THEN
---nPDATE IN SPEED RESTRICTED

(flag = 'no');
ELSE
----uPDATE IN SPEED RESTRICTED

(flag • 'yesT);
END Select_Planned_Action_Records;

FIGURE 4-15 (Concluded)
SELECT PLANNED ACTION RECORDS

4-27

ensures that the resultant planned action will not attempt to
model a climb while the aircraft is descending; the element
Determine Transition Type (Figure 4-16) aids this process by
identifyiilg whether -the aircraft is climbing or descending at
the restriction point. If the planned action would attempt a
climb during the descent portion of flight, no planned action
is generated. If the planned action satisfies this editing,
Select Planned Action Records calls Generate Restricted
Altitude PA (Figure 4~17) to implement the planned action. All
planned -action generators use· the routine Generate_Planned_
Action ID (Figure 4-18), which returns a unique system identi
fier for each planned action. If a speed planned action is to
be generated, no additional editing is required, and Select
Planned Action Records calls Generate Speed PA (Figure 4-19) to
output the planned action. - -

Once all restrictions for a particular set of additional
qualifiers have been processed, Planned Action Generation
returns control to Restrictions Retrieval. Restrictions
Retrieval identifies the next set Of additional qualifiers in
the restrictions table which match the corresponding flight
parameters. If another set is found, Restrictions_ Retrieval
again calls Planned Action Generation to process the selected
procedural restrictions. These two routines continue to work
together iteratively until all applicable sets of additional
qualifiers have been identified and corresponding restrictions
processed. Control then passes back to Nominal_Plan_Builder.

Once all restrictions in a sector have been satisfied, Nominal
Plan Builder invokes Verify Cruise Parameters. Verify Cruise
Parameters (Figure 4-20) identifies if the trajectory has
achieved, or is constrained from achieving, cruise altitude and
speed. In the restrictions table, each listed restriction con
tains a flag which indicates whether, after implementation of
the corresponding planned action, the trajectory is free to
assume cruise altitude and speed. A valid reason for denying
climb to cruise altitude would be the existence of subsequent
altitude restrictions. Even if a trajectory is not constrained
by a procedural restriction, the trajectory may still not be
free to attain cruise altitude and speed. As mentioned under
Select Planned Action Records, if a trajectory ·has begun to
descend, that trajectory can not be modeled as climbing again.
In the event that the trajectory has not yet achieved cruise
altitude and speed, and is not constrained from doing so by
either procedural restrictions or phase of flight, Verify
Cruise Parameters calls Generate Unrestricted Altitude PA
(Figur; 4-21) to implement the applicable altitude planned
action, and calls Generate_Speed_PA to implement the speed

4-28

ROUTINE Determine Transition Type;
PARAMETERS - -

Restriction IN,
Ascent Descent Flag OUT;

REFER TO SHARED LOcAL -
LAST RESTRICTION POINT IN;

DEFINE VARIABLES - -
Restriction Numeric altitude value
Ascent Descent Flag Indicates status of aircraft;

- - begin algorithm #
IF LAST RESTRICTION POINT.altitude GT Restriction
THEN
~cent_Descent_Flag • 'descent';
ELSE
~cent Descent Flag • 'ascent';
~ Determine_Transition_Type;

FIGURE 4-16
DETERMINE TRANSITION TYPE

4-29

ROUTINE Generate_Restricted_Altitude_PA;
PARAMETERS

Loc Fl Id IN,
Restriction IN,
Restriction Qualifier IN,
XY Restriction Point IN;

REFER-TO GLOBAL - -
PLANNED ACTIONS OUT,
ALTITUDE CHANGE PLANNED ACTIONS OUT,
ALTITUDE=RESTRICTIONS_PARAMETERS OUT,
CURRENT_TIME IN;

DEFINE VARIABLES
Loc Fl Id Local variable for flight id
Restriction Numeric altitude or speed value
Restriction_Qualifier At, at or below, at or above
XY Restriction Point Geographic point where restr. applied
Planned Action ID System id for a planned action
Ascent Descent Flag Indicates status of aircraft;

begin-algorithm #
CALL Generate_Planned_Action_ID(Planned_Action_ID OUT);
INSERT INTO PLANNED ACTIONS

(pa id • Planned Action ID,
fl-id • Loc Fl ld,
pa-type • 'altitude',
pa-source = 'npb',
plan time • CURRENT TIME.time);

CALL Determine Transition Type(Restriction IN,
--xscent_Descent_Flag OUT); -
INSERT INTO ALTITUDE CHANGE PLANNED ACTIONS

(pa id = Planned ACtion ID,
transition type-= Ascent Descent Flag,
target altitude = Restriction, -
base value type= 'restriction coordinate',
coordinate-= XY_Restriction_Point) ;·

INSERT INTO ALTITUDE RESTRICTIONS PARAMETERS
(pa id • Planned Action ID,
coordinates • XY Restriction Point,
restriction altitudes • Restriction,
restriction-qualifiers = Restriction Qualifier);·

END Generate_Restricted_Altitude_PA; -

FIGURE 4-17
GENERATE RESTRICTED ALTITUDE PA

4-30

ROUTINE Generate Planned Action ID;
PARAMETERS - - -

Planned_Action_ID OUT;

#This is a system routine which outputs a computer-generated I
#identifier used for machine identification of a unique occurrence#
#of a data structure. No PDL is provided for this routine, since I
#the identifier is basically system software-architecture- #
#dependent #

FIGURE 4-18
GENERATE PLANNED ACTION ID

4-31

ROUTINE Generate_Speed_PA;
PARAMETERS

Loc Fl Id IN,
RestrictioniN,
Restriction Qualifier IN,
Base Type IN,
Base:=value IN,
Base Location IN;

REFER TO GLOBAL -
PLANNED_ ACT IONS OUT,
SPEED_CHANGE_PLANNED_ACTIONS OUT,
SPEED RESTRICTIONS PARAMETERS OUT,
CURRENT TIME IN; - -

DEFINE VARIABLES-
Loc Fl Id
Restriction
Restriction_ Qualifier
Base Type
Base-Value
Base Location
Planned Action ID

Local variable for flight id
Target speed value
At, at or above, at or below
Speed PA base - coordinate or altitude
Value for corresponding base type
Location of base - start or end
System id for a planned action;

FIGURE 4-19
GliliERATE SPEED PA

4-32

begin algorithm I
CALL Generate Planned Action ID(Planned Action ID OUT);
lNsERT INTO PLANNED ACTIONS - - - -

(pa id • Planned-Action ID,
fl-id • Loc Fl Id, -
pa-type- 'speed',
pa-source • 'npb',
plan time • CURRENT TIME.time);

CHOOSE CASE -
WHEN Base_Type ~ 'coordinate' THEN

INSERT INTO SPEED CHANGE PLANNED ACTIONS
(pa id - Planned Action ID,
speed • Restriction, -
base value location • Base Location,
base-value-type • 'coordinate',
coordinate-• Base Value);

INSERT INTO SPEED RESTRICTIONS PARAMETERS
(pa id • Planned Action ID,-
rest qualifier; Restriction Qualifier);

WHEN Base_TYpe ~ 'altitude' ~ -
INSERT INTO SPEED CHANGE PLANNED ACTIONS

(pa id • Planned Action ID,
speed • Restriction, -
base value location • Base Location,
base-value-type • 'altitude',
base-z • Base Value);

INSERT INTo SPEED-RESTRICTIONS PARAMETERS
(pa id • Planned Action ID,-
rest qualifier; Restriction Qualifier);

END Generate_Speed_PA; -

FIGURE 4-19 (Concluded)
GENERATE SPEED PA

4-33

ROUTINE Verify_Cruise_Parameters;
PARAMETERS

Loc_Fl_Id IN;
REFER TO GLOBAL

FILED FLIGHT PLAN IN;
REFER TO-SHARED-LOCAL-

LAST RESTRICTION POINT INOUT,
ALTITUDE_RESTRICTED IN,
SPEED RESTRICTED IN,
FLIGHT PHASE IN; -

DEFINE VARlABLEs--
Loc Fl Id Local variable for flight id
Bas~_Type Base for a speed PA - coordinate or altitude
Base Value Value for corresponding base type
Base Location Location of base - start or end;

DEFINE CONSTANTS
Speed Restriction Qualifier • 'at or above';

#default for attaining cruise#

FIGURE 4-20
VERIFY CRUISE PARAMETERS

4-34

H begin algorithm I
IF ALTITUDE_RESTRICTED.flag ~ 'no' AND

FILED FLIGHT PLAN.filed cruise altitude GT
LAST RESTRICTION POINT.altitude AND
FLIGHT _PHASE. phase EQ 'ascent' -

THEN
-----CALL Generate Unrestricted Altitude PA(Loc Fl Id IN,

---FILED FLIGHT PLAN.filed-cruise altitude-IN: -
LAST RESTRICTION POINT.coordinate IN); -

UPDATE lN LAST RESTRICTION POINT -
(altitude --FILED FLIGHT PLAN.filed cruise altitude);

IF SPEED RESTRICTED.flag EQ 'no' AND - -
- FILED-FLIGHT PLAN.filed:true air speed GT

LAST_RESTRICTION_POINT.speed- - --
THEN
--:ITPDATE IN LAST RESTRICTION POINT

(speed • FILED FLIGHT PLAN.filed true air speed);
IF ALTITUDE_RESTRlCTED.flag ~ 'no'- - -
THEN
---sase_Type • 'altitude';

Base Value • FILED F'LIGHT PLAN.filed cruise altitude;
Base:Location • 'start';- - -

ELSE
---sase_ Type • 'coordinate';

Base Value • LAST RESTRICTION POINT.coordinate;
Base-Location • 'start'; -

CALL Generate Speed PA(Loc Fl Id IN,
---FILED FLIGHT PLAN.filed-true air spee4 IN,

Speed-Restriction Qualifier IN, Base Type IN,
Base Value IN, Base Location IN); - -

END Verify_Cruise_Parameters; -

FIGURE 4-20 (Concluded)
VERIFY CRUISE PARAMETERS

4-35

ROUTINE Generate Unrestricted Altitude PA;
PARAMETERS - - -

Loc Fl Id IN,
Destination-Altitude IN,
XY Restriction Point IN;

REFEtCTO GLOBAL - -
PLANNED ACTIONS OUT,
ALTITUDE CHANGE PLANNED ACTIONS OUT,
CURRENT_ TIME IN; - -

DEFINE VARIABLES
Loc Fl Id Local variable for flight id
Destination Altitude Goal altitude
XY Restriction Point Geographic point where PA initiates
Planned Action ID System id for a planned action
Ascent Descent Flag Indicates status of aircraft;

begin algorithm #
CALL Generate Planned Action ID(Planned Action ID OUT);
INsERT INTO PLANNED ACTIONS - - - -

(pa ld • Planned-Action ID,
fl-id = Loc Fl Id, -
pa-type • 'altitude',
pa=source • 'npb',
plan time • CURRENT TIME.time);

CALL Determine Transition Type(Destination Altitude IN,
~scent_ Descent_ Flag OUT); -
INSERT INTO ALTITUDE CHANGE PLANNED ACTIONS

(pa id = Planned Action In,
transition_type-· Ascent_Descent_Flag,
target altitude • Destination Altitude,
base value type • 'coordinateT, .
coo~inate-- XY_Restriction_Point);

END Generate_Unrestricted_Altitude_PA;

FIGURE 4-21
GENERATE UNRESTRICTED ALTITUDE PA

4-36

planned action. Verify Cruise Parameters then returns control
to Nominal Plan Builder.- -

Nominal Plan Builder has now completed processing for one
sector through which the trajectory passes. The procedure
outlined in this section is repeated for each such sector in
the center.

4.2 Trajectory Initialization

Trajectory Estimation can be invoked in one of three system
states. These states were described in Section 3.1. Briefly,
the three system states are:

• flight plan acceptance
• trajectory repositioning
• trajectory replanning

Invocation of Trajectory Estimation in any one state is dif
ferent from an invocation in the other two states. The data
requirements for Trajectory Estimation change.

Trajectory Initialization is a subfunction of Trajectory
Estimation. Component designs are provided for each system
state invocation. There is no logical interaction between the
components except for the assumption that repositioning is done
before replanning when one flight id requires both changes in
its plan and revision of its trajectory.

4.2.1 Mission

Trajectory Initialization has different input requirements for
each of three invocation sequences, but exactly the same output
requirements. Figure 4-22 summarizes the common trajectory
modeling information produced by these three initialization
sequences. The figure also identifies the separate collections
of input information that are necessary to produce the common
result. Input requirements differ because the components are
called with different assumptions about the past and present
state of the trajectory for the flight under consideration.
The assumption in Trajectory Repositioning is that the set of
planned actions for the aircraft has not changed, even though
the observed position of the aircraft differs from the previous
trajectory position. The assumption in Trajectory Replanning
is that the set of planned actions has changed but the observed
position of the aircraft corresponds with the previous tra
jectory position. The assumption in Flight Plan AcceptancE is
that no trajectory for the aircraft has yet been built.

4-37

Profile I Profile Updated Reference Point Reference
Prior Faci~ Point Plan

Plan - -....... -~,.,-
-

~ •
Flight Trajectory Trajectory Plan

Acceptance Repositioning Replanning

TRAJECTORY INITIALIZATION

I I
Initial Pending Active Past Action Action Cusp - Lists - -

' -

FIGURE4-22
TRAJECTORY ESTIMATION INITIALIZATION OVERVIEW

4-38

4.2.2 Design Considerations and Environment

Trajectory Initialization is the first Trajectory Eatiaation
subfunction to be executed. It distinguishes aaong the three
system states by an input parameter to Trajectory Eati-tlon.
The output of Trajectory Initialization is a set of initialized
data tables provided for the planned action processing
components and for the Trajectory Construction subfunction.

Input

Trajectory Initialization has different input requireaenta for
each of the three components described in the sections below.
Data tables used by the Trajectory Initialization subfunction
include:

• System Global Data Base

- PLANNED ACTIONS
ALTITUDE CHANGE PLANNED ACTIONS
HOLD PLANNED ACTIONS - -SPEED CHANGE PLANNED ACTIONS
VECTOR PLANNED ACTIONS

These tables contain information about the air
craft's plan. Trajectory Initialization categorizes
each planned action for the aircraft into
appropriate pending action lists, and creates an
active actions list.

- PLANNED ACTION DURATIONS

Information about the modeled start time and modeled
end time of each planned action affecting the
previously built trajectory is used, as appropriate,
to determine which planned actions may be active at
the initial cusp built by Trajectory Initialization.

- TRAJECTORIES

The previous trajectory for an aircraft is searched,
as appropriate, to identify the initial cusp to be
built by Trajectory Initialization.

4-39

- WINDS

Wind data from this table is copied into the initial
cusp built by Trajectory Initialization.

• Shared Local Data Base

Output

- SUPPLEMENTAL CUSP INFORMATION

This table provides, 'when appropriate, information
to calculate values for parameters stored at the
initial cusp built by Trajectory Initialization.

- TURN POINTS

In the case of an active vector action, Trajectory
Initialization uses this table as a source of values
for fields in the active actions list.

Trajectory Initialization refines the various inputs (depending
on the state of Trajectory Estimation invocation) into a
unified set of information to allow the further construction of
the trajectory. The following data tables are altered:

• System Global Data Base

- TRAJECTORIES

Trajectory Initialization creates the initial cusp
of the trajectory.

• Shared Local Data Base

- ACTIVE PLANNED ACTIONS

Trajectory Initialization creates this table to
indicate which planned actions are being modeled at
the initial cusp.

- PAST CUSP

The initial cusp built by Trajectory Initialization
is also stored as the past cusp for use by the
planned action processing components and by
Trajectory Construction.

4-40

- SUPPLEMENTAL CUSP INFOR.MlTION - -
A record is inserted into this table for the initial
cusp built by Trajectory Initialization.

- ALTITUDE PENDING ACTIONS
HOLD PENDING ACTiONS
SPEED PENDING ACTIONS
VECToR PENDING ACTIONS

These tables are created and initialized by
Trajectory Initialization. The identity of each
plaD.Iled action starting ahead of the initial cusp
built by Trajectory Initialization . is stored, along
with an initialized stimulus value.

4.2.3 Flight Plan Acceptance Design Logic

In this component, no previous trajectory or supplemental cusp
infomation exists for this aircraft. For Trajectory Initial
ization to work, the invoking function must have created and
stored planned actions that affect the trajectory of the flight
in question. The invoking function also must provide detailed
infomation about a reference point from which the flight's
trajectory can be reliably modeled. The reference point input
to this component must be on the converted route so that Flight
Plan Acceptance can derive the direction of the flight.

Organization

The component calling relationships for Flight Plan Acceptance
Initialization are shown in Figure 4-23. Levels of indentation
in the figure are used to indicate calling hierarchy. The
element Determine Altitude End is described in Section 4.3.
Other elements are given in design laquage in this section,
except the utilties Tas To las, las To Mach, and Wind Field.
The utilities are described in AppendiX B.

Processing Method

The first processing step in Flight Plan Acceptance Initiali
zation (Figure 4-24) is to insert into the local table GIVEN
ACTIVE each of the planned actions that control some AGD
parameter. These are determined according to the active pa
elements of the REFERENCE CUSP (which is input to Trajectory
Estimation). If there is -no active plaD.Iled action for a par
ticular AGD parameter, there will be no entry in the GIVEN
ACTIVE table for this parameter.

4-41

Flight Plan Acceptance Initialization
Create Active Planned actions

Determine A:Ltitude-End
Fill Pending-Lists
Wind-Field -
Tas To las
Tas To Mach

FIGURE 4-23
FLIGHT PLAN ACCEPTANCE INITIALIZATION CALLING SEQUENCE

4-42

ROUTINE Flight Plan Acceptance Initialization;
PARAMETERS PENDING ACTIONS IN,-

REFERENCE CUSP IN, New Flid IN;
REFER TO GLOBAL TRAJECTORlES-INOUT;
REFER TO SHARED LOCAL PAST CUSP INOUT,

SUPPLEMENTAL_CUSP_INFORMATION INOUT;
DEFINE VARIABLES

New Fl Id
DEFINE-TABLES

GIVEN ACTIVE
pa=id

REFERENCE CUSP

Flight id requiring a new trajectory;

Table of given active planned actions
Planned action controlling one of

the AGD Parameters
Extended information about given point

in a single-entry table.
x x coordinate of point
y y coordinate of point
z Altitude of point
time Time at point
ard Along-route distance at point
tas True airspeed at point
ground speed Observed ground speed at point
pa acceleration Pa id controlling acceleration
pa:gradient Pa-id controlling gradient
pa direction Pa-id controlling direction
position AGGREGATE (x;y)
xyz position AGGREGATE (x,y,z)
active_pa AGGREGATE (pa_acceleration, pa_gradient,

pa direction)
PENDING ACTIONS Table of all pending planned actions

pa_id Planned action declared pending;

FIGURE 4-24
FLIGHT PLAN ACCEPTANCE INITIALIZATION

4-43

GIVEN_ACTIVE • SELECT FIELDS active_pa
FROM REFERENCE CUSP;

CALL--cteate Active Planned Actions (GIVEN ACTIVE IN);
CALL Fill Pending llsts (PENDING ACTIONS JN); -
PAST CUSP;SELECT FIELDS x, y, z,-time, ard; tas, ground speed

FROM REFERENCE CUSP; -
CALL~nd Field (REFERENCE CUSP.xyz position IN,
--PAST cUSP.wind field OUT); - -
CALL Tas To Ias (PAST CUSP7tas IN, PAST CUSP.z IN,
---"PAST CUSP.temperature IN, PAST CUSP.Ias OUTfi
CALL Tas To .Ma.ch(PAST CUSP."tas IN7 PAST CUSP.z IN,
---"PAST CUSP.temperature IN, PAST CUSP.mach OUT);
INSERT INTO SUPPLEMENTAL CUSP INFORMATION (flid•New Fl Id,

time • REFERENCE CUSP7time7 acceleration --0, - -
direction • REFERENCE CUSP.direction, gradient • 0,
agd_control = REFERENCE_CUSP.active_ya,
ard • REFERENCE CUSP.ard, tas • REFERENCE CUSP.tas,
ias • PAST CUSP7ias, mach • PAST CUSP.macii,
wind field-· PAST CUSP.wind field);

INSERT INTO TRAJECTORrES (fl_id • New_Fl_Id,
time • REFERENCE CUSP.time, z • REFERENCE CUSP.z,
position • REFERENCE CUSP.position); -

END Flight_Plan_Acceptance:Initialization;

FIGURE 4-24 (Concluded)
FLIGHT PLAN ACCEPTANCE INITIALIZATION

4-44

The GIVEN ACTIVE table is used as input to the routine Create
Active Planned Actions (Figure 4-25). This element produces
the output for the ACTIVE PLANNED ACTIONS table. This is done
by copying data from the relevent-planned action tables in the
global data.

The next processing step of Flight Plan Acceptance Initiali
zation is to call Fill Pending Lists- (Figure 4-26)-with the
PENDING ACTIONS parameter as input •. This element separates the
single list of pending planned actions into one table for each
type of planned action.

Flight Plan Acceptance processing continues by filling the
PAST CUSP data table. This single-record table is filled
partially from the position and speed information from the
REFERENCE CUSP and partially by calls to utilities which
estimate the wind field at the past cusp and which provide
speed unit conversion calculations.

Next a record is added to the SUPPLEMENTAL CUSP INFORMATION
table. The new record contains data fields extracted from the
REFERENCE CUSP and the PAST CUSP, creating a single cusp that
will be the first point Of the trajectory for the planned
action processors and Trajectory Construction.

Finally, a record is added to the TRAJECTORIES table. This
completes preparation of the information needed to model the
remainder of the trajectory.

4.2.4 Trajectory Repositioning Design Logic

Invocation of Trajectory Repositioning Initialization requires
the identification of the flight to be repositioned. The (x,y)
position of the reference point given as input determines, by
reference to the previous trajectory and the . planned action
duration table, the set of planned actions controlling the
previous trajectory at the given point.

Organization

The calling relationships for Trajectory Repositioning Ini
tialization are shown in Figure 4-27. Levels of indentation in
the figure are used to indicate calling hierarchy. Elements
specific to the Trajectory Repositioning component are speci
fied in this section. All other referenced elements are
described in Flight Plan Acceptance Initialization.

4-45

ROUTINE Create Active Planned Actions;
PARAMETERS PA_LIST IN""i' -
REFER TO GLOBAL HOLD PLANNED ACTIONS IN, PLANNED ACTIONS IN,

ALTITUDE CHANGE PLANNED ACTIONS IN:-TURN POINTS IN, -
SPEED_CHANGE_PLANNED_ACTIONS IN,'VECTOR_?LANNED_ACTIONS IN;

REFER TO SHARED LOCAL ACTIVE_PLANNED_ACTIONS .Q!!!;
DEFINE VARIABLES

Last_ Apex
X

y
Last Point

DEFINE TABLES
PA LIST

pa_id

Last position named in original vector
x coordinate of position
y coordinate of position

Last position - preferably a turn point
Defined like Last_Apex;

One entry per active planned action
Id of active planned action;

FIGURE 4-25
CREATE ACTIVE PLANNED ACTIONS

4-46

ACTIVE PLANNED ACTIONS • SELECT FIELDS pa id, pa type,
pa source, plan time - -
FROM PLANNED ACTIONS
WHERE PLANNED_ACTIONS.pa_id ~ANY PA_LIST.pa_id;

UPDATE IN ACTIVE PLANNED ACTIONS (stop condition•'speed',
stop tas-SPEED CHANGE-PLANNED ACTIONS.speed)
WHERE SPEED CHANGE PJ...iNNED ACTIONS. pa id

_m ACTivE_PLANNED_ACTIONS.pa_id; -
REPEAT FOR EACH ACTIVE PLANNED ACTIONS R.EC<ItD

WHERE ACTIVE _PLANNED_ ACTIONS. pa _type ~ 'altitude' ; ·
CALL Determine Altitude End (
~CTIVE PLANNED ACTIONS.pa id IN,

ACTIVE=PLANNED=ACTIONS.stop_condition OUT,
ACTIVE_PLANNED_ACTIONS.stop_yosition ~'
ACTIVE PLANNED ACTIONS.stop tas OUT,
ACTIVE-PLANNED-ACTIONS.stop-z OUT);

UPDATE IN ACTIVE PLANNED ACTIONS "{stop condition•'time',
stop t•HOLD PLANNED ACTIONS.EFC Time)
WHERE ACTivE PLANNED ACTIONS.pa-id
~ HOLD _PLANNED _ACTIONS. pa _ id;

REPEAT FOR EACH ACTIVE PLANNED ACTIONS REC<ItD
WHERE ACTIVE_PLANNED_ACTIONS.pa_type ~ 'vector';
SELECT FIELDS v coordinate

FROM VECTOR PLANNED ACTIONS (V P A)
INTO Last Apex - - -
WHERE v_().pa_id ~ PA_LIST.pa_id

AND V P A. vertex sequence number is the maximua amona
-all numbers for the PA -LIST. pa id;

SELECT FIELDS turn_pt - -
FROM TURN POINTS (T P)
IN'TO Last-Point -
WHERE T_P7pa_id ~ PA_LIST.pa_id
~ T_P.apex_yoint ~ Last_Apex .
AND T P.sequence is max of numbers for Last Apex;

IF Last_Point ~ NULL -
THEN
--:Last_Point • Last_Apex;
UPDATE IN ACTIVE PLANNED ACTIONS

(stop condition • 'coordinate', stopyosition • Last_Point);
END Create_Active_Planned_Actions;

FIGURE 4-25 (Concluded)
CREATE ACTIVE PLANNED ACTIONS

4-47

ROUTINE Fill_Pending_Lists;
PARAMETERS ENTIRE LIST IN;
REFER TO GLOBAL PLANNEDACTIONS IN;
REFER TO SHARED LOCAL ALTITUDE PENDING ACTIONS OUT,

HOLD PENDING ACTIONS OUT, SPEED P!NDING ACTIONS OUT,
VECTOR PENDING ACTIONS OUT; - - -

DEFINE TABLES - -
ENTIRE LIST Table of all pending planned actions

pa id One record per pending action;
ALTITUDE PENDING ACTIONS•SELECT FIELDS

pa id:- pa source' plan tlDie
FROM PLANNED ACTIONS-
WHERE PLANNED=ACTIONS.pa_type ~ 'altitude'

AND PLANNED ACTIONS.pa id IS IN ENTIRE LIST.pa id;
UPDATE-rN ALTITUDE PENDING ACTIONS - -

(stimulus type-NuLL); -
HOLD PENDING-ACTIONS • SELECT FIELDS pa id,pa source,plan time

FROM PLANNED ACTIONS - - -
WiiERE PLANNED=ACTIONS.pa_type ~ 'hold'

AND PLANNED ACTIONS.pa id IS IN ENTIRE LIST.pa id;
UPDATE IN HOLD PENDING ACTIONS (stimulus type•NULL);-
SPEED PENDING ACTIONS•SELECT FIELDS pa id,pa source,plan time

FROM PLANNED ACTIONS - - -
WHERE PLANNED=ACTIONS.pa_type ~ 'speed'

AND PLANNED ACTIONS.pa id IS IN ENTIRE LIST.pa id;
UPDATE-rN SPEED PENDING ACTIONS - -

(stimulus type•NULL);
VECTOR PENDING ACTIONS•SELECT FIELDS pa id,pa source,plan time

FROM PLANNED ACTIONS - - -
Wii'ERE PLANNED=ACTIONS.pa_type ~ 'vector'

AND PLANNED ACTIONS.pa id IS IN ENTIRE LIST.pa id;
UPDATUN VECTOR-PENDING ACTIONS (stimulus type-NULL);

END Fill_Pending_Lists; - -

FIGURE 4-26
FILL PENDING LISTS

4-48

Trajectory_Repositioning_Initialization
Create Active Planned actions

Determine Altitude-End
Fill_Pending=Lists
Tas To las
Tas-To-Mach

FIGURE 4-27
TRAJECTORY REPOSITIONING INITIALIZATION

CALLING SEQUENCE

4-49

Processing Method

The Trajectory Repositioning Initialization element
in Figure 4-28: The processing sequence is about
that for Flight Plan Acceptance Initialization,
lists of pending and active planned actions need
initialization.

is provided
the same as
except the

no external

The first processing step of Trajectory Repositioning Initiali
zation is to compute the set of' active planned actions. The
PLANNED ACTION DURATION table is used from the previous version
of the-trajectory to determine what planned actions were in
control of some AGD variable at the time of the REFERENCE
POINT. The table ACTIVE PLANNED ACTIONS is created by a call
to Create_Active_Planned_Actions TFigure 4-25).

The next processing step of Trajectory_Repositioning_Initial
ization is to identify the pending planned actions and create
the pending actions tables for each type of pending planned
action. The pending planned actions are recognized by
comparing the PLANNED ACTION_DURATION start time for the
planned action to the REFERENCE POINT time. The pending
actions lists are created by a -call to the routine Fill
Pending_Lists (Figure 4-26).

The SUPPLEMENTAL CUSP INFORMATION table is brought up to date
by copying gradient, time, direction, and along-route distance
values from the REFERENCE POINT. Indicated airspeed (lAS) and
Mach are computed by cali"s to utilities described in Appendix
B. Other fields in the record are obtained from the previous
version of the trajectory.

Finally, all cusps after the REFERENCE POINT are dropped from
both the TRAJECTORIES table and the SUPPLEMENTAL CUSP INFORMA
TION table.

4.2.5 Trajectory Replanning Design Logic

Trajectory Replanning Initialization is responsible for satis
fying the initial data requirements of planned action proces
sing and Trajectory Construction when changes in ·the plan are
made. This component has available all Trajectory Estimation
data from the previous version of the trajectory so that the
invoking routine needs to supply only the flight id.

The invocation assumption for Trajectory Replanning Initializa
tion is that the existing modeled trajectory is correct except
insofar as it is affected by changes made to the plan for this

4-50

ROUTINE Trajectory Repositioning Initialization;
PARAMETERS Fl Id iN, REFERENCE POINT IN;
REFER TO GLOBAL PLANNED_ACTION=DUBATION IN;
REFER TO SHARED LOCAL SUPPLEMENTAL_CUSP_IHFOBMATION IN;
DEFINE VARIABLES

Fl Id
DEFINE TABLES

FOUND ACTIVE
pa=id

GIVEN PENDING
pa id

REFERENCE POINT

flight_id
X

y
z
t
tas
direction

Which trajectory to reposition

Table of active planned actions
An active planned action

Table of pending planned actions
A pending planned action

Revised position of the aircraft to
be used to start the trajectory
The flight associated with this point
x coordinate at the point
y coordinate at the point
z coordinate at the point
t coordinate at the point
True airspeed at the point
Direction at reference point;

FIGURE 4-28
TRAJECTORY REPOSITIONING INITIALIZATION

4-51

FOUND_ACTIVE • SELECT FIELDS pa_id
FROM PLANNED ACTION DURATION (PAD)
WiiERE PAD.start time LE REFERENCE POINT.time

AND PAD.end time GEREFERENCE POINT.time;
~ Create_Active_Planned_Actions(FOUND_ACTIVE IN);
GIVEN PENDING • SELECT FIELDS pa id

FROM PLANNED ACTION DURATION -
W'ii'ERE PAD.start time GT REFERENCE POINT.t;

CALL Fill_Pending_llsts(GIVEN_PENDING IN);
UPDATE IN SUPPLEMENTAL CUSP INFORMATION (gradient • 0,

time = REFERENCE POlNT.t: acceleration • 0,
direction • REFERENCE POINT.direction,
ard • REFERENCE POINT7ard);

CALL Tas To las (SUPPLEMENTAL CUSP INFORMATION.tas IN,
~FERENCE POINT.z IN, SUPPLEMENTAL CUSP INFORMATION.temperature

IN, SUPPLEMENTAL CUSP INFORMATION. Ias OUT);
CALL Tas _To_ Mach(SuPPLEMENTAL_ CUSP _INFORMATION. tas IN,

REFERENCE POINT.z IN, SUPPLEMENTAL CUSP INFORMATION.temperature
IN, SUPPLEMENTAL CUSP INFORMATION.mach OUT);

DELETE FROM TRAJECTORIES- -
WHERE TRAJECTORIES.time LT REFERENCE POINT.t

AND TRAJECTORIES.fl_id~ Fl_Id;
DELETE FROM SUPPLEMENTAL CUSP INFORMATION (SCI)

WHERE SCI. time LT REFERENCE POINT. t
AND SCI.fl_id ~ Fl_Id;

~ Trajectory_Repositioning_Initialization;

FIGURE 4-28 (Concluded)
TRAJECTORY_REPOSITIONING INITIALIZATION

4-52

aircraft. Since this Trajectory Estimation invocation has not
involved a repositioning, the timing of the aircraft since the
last profile reference point is assumed correct. The set of
active planned actions at the profile reference point is
available.

Organization

The calling relationships for Traj~ctory Replanning Initializa
tion are shown in Figure 4-29. Elements unique to the
Trajectory Replanning Initialization component are given in
this section. Some elements referenced can be found in Section
4.2.3.

Processing Method

The Trajectory Replanning Initialization routine is provided in
Figure 4-30. -The routine Determine Initial Past Cusp (Fi&ure
4-31) is invoked to find and record- the initial- cusp of the
previous trajectory. That cusp was built at a profile refer
ence point and represents a point in the previous trajectory
known to be unaffected by changes in the list of planned
actions for this aircraft.

Trajectory Replanning Initialization then creates the PAST CUSP
table (a -single-record table) by copyina values from- the
initial cusp determined by Determine Initial Past Cusp. The
ACTIVE PLANNED ACTIONS table and the pending actions lists are
constructed through calls to the elements create Active
Planned Actions (Figure 4-25) and Fill Pendina Lists (Fi&ure
4-26). -All those planned actions previously placed and ahead
of the reference point are considered pendina. Any new action
is considered pendina.

4.3 Planned Action Processing

In the normal operatina mode of the system, ATC maneuvers are
planned and executed by aircraft for a variety of reasons.
These actions can be immediate control actions such as those
given by a controller, or they can be planned for. subsequent
execution. The actions themselves can change aircraft routes,
altitudes, or speeds, which, in turn, continue to affect the
temporal progress of the aircraft after the maneuver has been
achieved.

The only mechanism by which the automation system is made aware
of a control action is by the presence of a planned action data

4-53

Trajectory Replanning Initialization
Determine Initial Past Cusp
Create Active Planned Actions
Fill_Pending_Lists -

FIGURE 4-29
TRAJECTORY REPLANNING INITIALIZATION CALLING SEQUENCE

4-54

ROUTINE Trajectory_Replanning_Initialization;
PARAMETERS Fl Id IN;
REFER TO GLOBAL TRAJECTORIES INOUT,

PLANNED ACTIONS IN, PLANNED ACTION DURATION IN;
REFER TO SHARED LocAL PAST_ CUSP OUT, - -

SUPPLEMENTAL CUSP INFORMATION IN OUT;
DEFINE VARIABLES -

Fl Id
Initial Point

X

y
z
t

DEFINE TABLES
FOUND ACTIVE

pa-id
GIVEN-PENDING

pa_id

Identification of the affected flight
Point selected as initial past cusp

x coordinate of point
y coordinate of point
z coordinate of point
t coordinate of point;

Table of active planned actions
An active planned action

Table listing all planned actions that may
be used in the future
One entry for each planned action;

FIGURE 4-30
TRAJECTORY REPLANNING INITIALIZATION

4-55

CALL Determine Initial Past Cusp (Fl Id IN, Initial Point OUT);
mT CUSP • SELECT FIELDS ard, tas, I'as,mach, -· -

ground speed, wind speed, wind direction, temperature
FROM SUPPLEMENTAL CUSP INFORMATION, TRAJECTORIES
WERE TRAJECTORIES.fl_I'd ~ Fl_Id

AND SUPPLEMENTAL_CUSP_INFORMATION.fl_id _m Fl_Id
AND TRAJECTORIES.time ~ Initial_Point.t
AND SUPPLEMENTAL CUSP INFORMATION. time
-~ Initial_Point.tT ·

UPDATE IN PAST CUSP (x•Initial Point.x, y-Initial Point.x,
z•Initial_Point.z, time•Initial_Point.t); -

DELETE FROM TRAJECTORIES
WHERE TRAJECTORIES.time GT Initial Point.t;

DELETE FROM SUPPLEMENTAL CUSP INFORMATION (S C I)
WHERE S_C_I.time GT Initial_Point.t; --

FOUND ACTIVE = SELECT FIELDS pa id
FROM PLANNED ACTION DURATION-(D)
WiiERE D.pa_start_tiiiie LE Initial_Point.t

AND D.pa end time GE Initial Point.t;
~ Create_Active=Planned_Actions-(FOUND_ACTIVE IN)
GIVEN PENDING • SELECT FIELDS pa id

FROM PLANNED_ACTION_DURATION(D)
WHERE D.begin time GT Initial Point.t;

INSERT INTO GIVEN PENDING (pa id-- PLANNED ACTIONS.pa id)
WHERE PLANNED_ACTIONS.fl_id ~ Fl_Id AND -

PLANNED ACTIONS.pa id IS NOT IN
PLANNED~CTION DURATION.pa id;

CALL Fill Pending Lists (GIVEN PENDING IN);
END Trajectory_Replanning_Initialization; -

FIGURE 4-30 (Concluded)
TRAJECTORY REPLANNING INITIALIZATION

4-56

ROUTINE Determine_Initial_Past_Cusp;
PARAMETERS Fl Id IN, Initial Point OUT;
REFER TO GLOBii. TRAJECTORIES-IN; -
DEFINE VARIABLES

Initial Point 4-dimensional point where Trajectory
Estimation modeling can begin

x x coordinate
y y coordinate
z z coordinate
t t coordinate;

. SELECT FIELDS x, y, z, time
FROM TRAJECTORIES (TJ)
INTO Initial Point
WiiiiE (TJ.£1-id ,!g, Fl Id)

!!!! (TJ. time _!l MIN(TJ. time));
~ Determine_Initial_Past_Cusp;

FIGURE 4-31
DETERMINE INITIAL PAST CUSP

4-57

structure in the aircraft's plan. Trajectory Estimation incor
porates each planned action as an event in the trajectory.
System-identified control actions as well as those of the
controller are modeled into the trajectory.

This section provides details of the processing of individual
planned actions within the Trajectory Estimation function. To
increase modularity, each planned action described in Section 2
is treated separately as an individual processing component.
In addition, two other components are described: Flight Route
Follower and Include Future Planned Action Limits. - -

The sequence of processing of planned actions is important.
The order is established in the subfunction design logic for
Planned_Action_Processing (Figure 4-32).

4.3.1 Mission

The trajectory for an aircraft is an ordered list of four
dimensional points. Trajectory Estimation is described in this
volume as constructing the trajectory one cusp at a time. The
trajectory is built through repeated executions of Planned
Action Processing and Trajectory Construction. Each execution
is responsible for constructing one cusp of the trajectory.
The process is described in Section 3.3.

Planned action processing provides information to Trajectory
Construction which allows the next cusp of the trajectory to be
built. Two distinct sets of information are provided: three
evaluated AGD vaiables accumulated into an AGD vector and a set
of limits which bound the extent of the supplied AGD vector.
As described in Section 3.3,_ the AGD vector allows the speci
fication of a four-dimensional unbounded line emanating from
the past cusp. The limits, supplied by planned action pro
cessing, allow the selection of a single point on that line to
be designated the next cusp.

Planned action processing must evaluate the AGD variables. It
must also represent all upcoming trajectory events as limits.
These events not only include the bounds on the AGD vector, but
also upcoming events associated with pending planned actions.
Each planned action must start and end somewhere on the trajec
tory. The starting event for each pending action must be
stated as a limit to ensure the explicit representation of that
event at a cusp.

4-58

ROUTINE Planned_Action_Processing;
PARAMETERS

Loc Fl Id IN;
DEFINE-VIDABLEs

Loc Fl Id The identification of the aircraft undergoing
Trajectory Estimation;

CALL Hold Planned Action Processing;
CALL Altitude Planned Action Processing(Loc Fl Id IN);
'l!m Speed Pl'inned Action Processing; - - -
CALL Vector Planned Action Processing(Loc Fl Id IN);
CALL Flight-Route Followert'Loc Fl Id IN);- - -
CALL Include_Future_PA_Limits(f.oc:Fl_Id IN);

END Planned_Action_Processing

FIGURE 4-32
PLANNED ACTION PROCFSSING

4-59

The AGD vector consists of the acceleration, gradient, and
direction of the aircraft immediately after the past cusp.
While it is meaningful to have zero values for the acceleration
and gradient AGD variables (meaning maintain the same true
airspeed and altitude over the next segment as occurred at the
past cusp), it is not generally the case that the direction AGD
variable should be zero. The value supplied in the direction
AGD variable is the NAS direction emanating from the past
cusp. That direction can be evaluated by a vector action
(i.e., the direction of the air'craft is under control of ATC),
in which case the direction AGD variable is set by the Vector
Planned Action Processing Component. Generally, however, the
aircraft will proceed along the ATC-cleared route for that
aircraft. In that case, the direction AGD variable must be
inherited from the cleared route.

4.3.2 Design Considerations and Environment

A planned action is represented in the trajectory by a maneuver.
Maneuvers have (modeled) temporal extent. During the extent of
one maneuver, another maneuver could start. For example, a
vector maneuver could be modeled as starting inside the extent
of an altitude manuever. The processing cycle of planned
action processing and Trajectory Construction must be able to
incorporate these changes of maneuvers.

The cusp-by-cusp construction process implies that the temporal
extent of a modeled planned action may include several trajec
tory cusps. Each planned action processing component must be
capable of sustaining invocation at any point in the maneuver
being modeled. The interplay of the different planned actions
could force an early ending of a maneuver being modeled; hence,
planned action processing must always be capable of determining
appropriate planned actions in control of AGD variables, evalu
ating those AGD variables (according to the controlling planned
action) from past cusp information and setting appropriate goal
limits.

Input

In order to perform the plan action processing subfunctiori, the
following tables are accessed from the Global Data Base and
from the Shared Local Data Base:

4-60

• System Global Data Base

- PLANNED ACTIONS
HOLD PLANNED ACTIONS
ALTITuDE CHAiiGE PLAMNED ACTIONS
ALTITUDE-RESTIUCTIOHS PilwmTERS - -SPEED CHANGE PLANNED ACTIONS
SPEED-RESTRICTIONS PliwmTERS
VECTOR PLANNED ACTlONS .

These tables contain parameters necessary to
establish the positioniq, extent, and intent of
planned ATC maneuvers.

- ROUTES

This table is used to value the direction AGD
variable when the direction variable is not being
controlled by a vector planned action.

- AIRCRAFT MAX ENDURANCE SPEEDS
NOMINAL CLIMB SPEEDS -- -NOMINAL DESCENT SPEEDS
DESCENT-lAS TO GRADIENT
DESCENTMACH TO GRADIENT
CLIMB IAS TO-GRADIENT
CLIMB -MACH TO GRADIENT
AIRCRAFT ACCELERATION
AIRCRAFT-DECELERATION

These tables are part of the aircraft perfomance
characteristics data base. They provide the best
available information regarding noma! aircraft
operations. The aircraft maximum endurance speed is
used as a holding speed. ~rcraft altitude transi
tions are modeled along the normal speed schedule
for the aircraft. These normal speed schedules can
be cross-referenced to gradient parameters. Speed
changes for an aircraft use the stored acceleration
and deceleration parameters.

- FLIGHT PLANS
FLIGHT ID ASSOCIATIONS

The flight plan for an aircraft contains the
ATC-approved values for cruise altitude and speed.
In order to obtain these values, planned action

4-61

processing components use the translation facilities
of the associations table.

• Shared Local Data Base

Output

- ACTIVE PLANNED ACTIONS

This table identifies those planned actions con
tributing to the construction of the past cusp.

HOLD PENDING ACTIONS - -ALTITUDE PENDING ACTIONS
SPEED PENDING ACTIONS
VECTOR PENDING ACTIONS

These tables contain the identity of each planned
action yet to be modeled as of the past cusp.

PAST CUSP

This table provides the modeling parameters present
at the most recently modeled cusp.

TURN POINTS
VEC PHASE

These tables, maintained by
Action Processing component,
needed to model the turns in a
is currently being modeled.

the Vector Planned
contain the points

vector and which turn

Primary output from the planned action processing component
includes parameters to Trajectory Construction for modeling the
next cusp. Each planned action processing component also main
tains the list of active and pending planned actions. The
following data sets are altered:

- AGD VECTOR

This table is altered to include the current values
of acceleration, gradient, and direction emanating
from the past cusp. The. acceleration and gradient
fields may be left unvalued, but the direction
variable is always evaluated.

4-62

- POSITION LIMITS
SPEED LIMITS
TIME 'LIMITS
ALTITUDE LIMITS
ARD LIMITS

These tables include candidate end conditions for
the AGD vector accumulated over all the planned
action processing compontants. Not only are those
limits applicable to the different AGD variables
included, but also the identification of future
trajectory events where a cusp must be built.

- ACTIVE PLANNED ACTIONS

This table is altered to eliminate any planned
action completed at the past cusp and/or include the
identity of any planned action which became active
at the past cusp.

- HOLD PENDING ACTIONS
ALTITUDE PENDING ACTIONS
SPEED PENDING ACTIONS
VECTOR PENDING ACTIONS

These tables are altered to eliainate all planned
actions starting at the past cusp. The nwaber of
records in each table decreases as trajectory model
ing proceeds.

- PLANNED ACTION START TIMES
PLANNED -ACT ION-END TiMES

The modeled start time and end time of each planned
action is recorded. The start time and end time for
a planned action can be identical, meaning that the
planned action was recognized, but not modeled.

- PAST CUSP TYPE

This table may be altered to indicate that the past
cusp was a point inside a hold or altitude action.

4-63

GRADIENT PARAMETERS

This table is used in conjuction with an altitude
change maneuver to record whether the aircraft is
modeled as transitioning at constant mach or
constant ias.

VEC PHASE
TURN POINTS

These tables are created by Vector Planned Action
processing. They contain the points used in
modeling a turn and the part of the turn currently
being modeled.

Overlap Processing

The Trajectory Estimation process allows the extents of some
planned actions to overlap. Since a planned action'affects the
trajectory by designating a value for an AGD variable, only one
planned action can influence an AGD variable at any one time.
Consequently, only those planned actions which control dif
ferent AGD variables at a designated time are allowed to over
lap. This, implies that two planned actions with the same
maneuver type can never overlap.

To expect planned actions to be distributed along the route of
the aircraft in such a way that altitude planned actions never
overlap altitude planned actions (or speeds with speeds, vec
tors with vectors, etc.) is shortsighted. A set of protocols,
established within the planned action processing components,
allows the arbitration between planned actions competing for
the same AGD variable at the same time. Only one planned
action is allowed to emerge from the arbitration.

The protocols set up in the planned action processing are
established on three levels:

• maneuver priority
• planner priority
• temporal priority

Maneuver priority refers to which type of maneuver is allowed.
Figure 4-32 establishes the maneuver priority. A hold maneuver
has highest priority, and is allowed access to the AGD vector
first. A hold maneuver controls the acceleration AGD variable
during the modeled temporal extent of the hold. Once the
acceleration AGD variable has been set by the Hold Planned

4-64

Action Processina coaponent, any speed actions atteapting to
start during the te.poral extent of the hold will be ignored.

If two or .are planoed actions of the same maneuver type attempt
to control the sa.e AGD variable at the same time, then the
winning planned action is determined on the basis of the source
of the planned action and the tiae the planned action was added
to the aircraft's plan. Planned action processing components
prioritize controller-placed maneuvers ahead of system-placed
maneuvers (such as those of Nominal' Plan Builder). In the case
of identical sources, the newest action has top priority.

In all overlap protocols, the planned action that is ~
allowed access to the AGD variable is ignored and eliminated
from further consideration.

4.3.3 Hold Planned Action Processing Design Logic

A hold planned action reflects a hold maneuver given by the
controller or planner. This component guarantees that the
trajectory shows no fomrd progress for an aircraft for a
given time at a given position. Holding patterns are race
track ovals. The aircraft executing a hold circumnavigates the
oval until commanded to exit by the controller or until the
allotted time in the hold has expired.

The hold planned action ~rocessing component is responsible for
altering the AGD vector to model an aircraft hold in the
trajectory. This component processes, as input, a hold planned
action and data generated at the past cusp. The past cusp
resides inside, outside or at the boundaries of the hold
action. Depending upon the position of the past cusp, this
component will alter the aircraft AGD vector and set appro
priate limits. If invoked before the hold fix, the component
ensures a speed reduction to hold speed before entry into the
holding pattern. In this state, hold planned action processing
can control the acceleration AGD variable. If invoked during
hold processing, this component controls the direction AGD
variable directly, and disallows any change to the acceleration
AGD variable. Altitude transitions are common ~n holding
patterns, so the design of this component does not preclude
such actions.

4-65

Organization

Figure 4-33 indicates the logical structure of the Hold Planned
Action Processing component. Each element is given in design
language in this section. The system utility las To Tas is
provided in Appendix B.

Processing Method

The logical flow of the Hold 'Planned Action Processing com
ponent is indicated in Figure 4=34. In-the element Check For
End of Active Hold (Figure 4-35) any hold maneuver active at
the- past cusp is examined. If that hold maneuver's EFC time
matches the time at the past cusp, then the maneuver is con
sidered achieved and the planned action is eliminated from
further consideration. If the EFC time has not yet been
achieved, then the hold maneuver remains active.

The past cusp represents a position where one or more pre
viously pending hold actions may compete to become active. In
Hold Pending Action Overlap (Figure 4-36), those hold actions
starting at- the past cusp are processed to allow only one
candidate hold action to emerge. Pending action overlaps are
resolved using a combination of planned action source and plan
time. A controller action always emerges if one of the hold
planned actions starting at the past cusp was controller
placed. Ties are further broken by examining the plan time:
the hold action with the most recent plan time is selected.

A candidate hold action and an active hold action are examined
in Arbitrate Hold Pending Vs Active Action (Figure 4-37). No
more than one-hold-action is allowed- to emerge from these tests.
A candidate action must have the same hold fix position to be
considered further, otherwise it is eliminated. Provided the
two actions have the same hold fix, then the same overlap
criteria as imposed in Hold Pending Action Overlap are applied
to determine whether the active hold or- the candidate hold
shall emerge.

A candidate action may emerge as the winner in all the overlap
tests. In such a case, the candidate hold action is considered
no longer a candidate, but an active action. It is placed on
the active list by Elevate New Hold Action To Action Status
(Figure 4-38). There it will command access to-the AGD vector.

Set_Hold_Parameters_For_Trajectory_Construction
determines whether the acceleration or the

4-66

(Figure
direction

4-39)
AGD

Hold_Planned_Action_Processing
Check For End of Active Hold Action
Hold Pending Action Overlap

Shut Down-PA -
Elevate-New Hold Action to Active Status
Set_Hold_Parameters_For:Trajectory_Construction

Set Hold Acceleration Phase Parameters
Ias to Tas

Set Hold Hold Phase Parameters

FIGURE 4-33
HOLD PLANNED ACTION PROCESSING CALLING SEQUENCE

4-67

ROUTINE Hold_Planned_Action_Processing;
DEFINE TABLES

C H A CANDIDATE HOLD ACTIONS
- pa_id Planned action identification

pa_source Planned action source
plan time Time planned action was added to plan;
I check for end of active hold action first I

CALL Check For End Of Active Hold Action;
---, resolve planned action overlaps among new hold actions #

wanting to become active at the past cusp #
CALL Hold Pending Action Overlap(C H A OUT);
IF COUNT(C H A) GT 0 I a-new hold action-has been encountered I
THEN# testfirs~against other hold PAs that might already be #
---- I active and resolve any overlaps between the new action I

I and an already active action (if there is one) #
CALL Arbitrate Hold Pending vs Active Action(C H A INOUT);
IF COUNT(C H A) GT 0 I the new-action-wins -- I
THEN U the-new action has emerged from all overlap tests. #
---- I promote the new hold action so that it can control I

I pieces of the AGO vector (acceleration and direction) I
CALL Elevate New Hold Action To Active Status(C H A INOUT);

I for an active-hold action, set any parameters needed by the #
Trajectory Construction subfunction I

CALL Set Hold Parameters For Trajectory Construction;
END Hold_Planned=Action_Processing; -

FIGURE 4-34.
HOLD PLANNED ACTION PROCESSING

4~8

ROUTINE Check For End Of Ac~i ve Hold Action;
IEfdl TO SHARED WeAL- - - -

ACTIVE PLANNED ACTIONS INOUT,
PLANNED ACTION-END TIMES INOUT,
PAST CUSP IN; - -

DEFINE VARIABLES
Loc Pa Id Planned action identifier for local use
lDc-EFC Time Expect further clearance tille from active

hold planned action;
IF 'hold' IS IN ACTIVE PLANNED ACTIONS. pa type
TiiEN I hold active - check for-end condition, record data and I
---- I eliminate PA if the end condition has been achieved I

SELECT FIELDS pa id,stop value
PROM ACTIVE PLANNED ACTIONS (A P A)
liiTO Loc Pa-Id ,Loc iPc Time - -
WiiEi:E A_P_A7pa_type !,g_-'hold';

IF Loc EPC Time LE PAST CUSP. time
THEN #-The-end has been-ac:hieved -- eliminate PA I
---yNSERT INTO PLANNED ACTION END TIMES

(pa id • Loc Pa I'd, - -
pa-end time-· PAST CUSP.time);

I erase-last trace of PA in TJE I
DELETE PROM ACTIVE PLANNED ACTIONS (A_P_A)

WHERE A P A.pa id • Loc-Pa Id;
END Check_ For_ End_ Of_ Ac t1 ve_ Hold_ Action;

FIGURE 4-35
CHECK FOR END OF ACTIVE HOLD ACTION - - - -

4-69

ROUTINE Hold Pending Action Overlap;
PARAMETERS C-H A oUT; I this table will contain no more

- - - # entry when this routine exits
REFER TO SHARED LOCAL

HOLD PENDING ACTIONS INOUT,
P!..ANNED ACTION START TIMES INOUT,
PAST CUSP IN;

CANDIDATE HOLD ACTIONS

than one

DEFINE TABLES
C H A
-pa_id

pa source
plan_time

Unique planned action identifier
Source of planned action

D A
pa_id

Time hold action was added to the
plan

DELETE ACTIONS
Planned action identification to

delete;

FIGURE 4-36
HOLD PENDING ACTION OVERLAP

4-70

I
I

build C H A table containing the identity of all PAs now I
I coming active at the past cusp · I

C H A • SELECT FIELDS pa id,pa source,plan tiae
-FROM HOLD PENDING ACTIONS (H P A) -

mnm:E H PA stimuius value is equal to the appropriate
PAST-cUSP value

IF COUNT(C-H A) GT 0 I many 'hold' actions starting now I
THEN -- -

I first record each start time I
REPEAT FOR EACH C H A RECORD;

INSERT INTO PriNNED ACTION START TIMES
(pa id • C H A.pa id, - -
pa-start time • PAST CUSP.time); ·

IF COUNT(C H A.pa source • Tcontroller') GT 0 I at least one I
THEN # controller-action coming alive -- I
--:5 A • SELECT FIELDS pa id

-FROM C H A -
~ C H A.pa source NE 'controller';

CALL Shut Down PA(D A IN, 'hold' IN);
D'iLETE FROM C H A fdelete the CH A record being examined I

WHERE C H A.pa id IS IN D A.pa id;
I eliminate all the PAs that-have-an other than maximum I
I plan time I

D_A • SELECT FIELDS pa_id
FROM C H A
WHERE CH A.plan time NE MAX(C H A.plan time);

CALL Shut Down PA(D-A IN,'iiold' Iii>; -
DELETE FROM C H A fdelete the CH A record being examined I

WHERE C H A.pa id IS IN D A.pa Td;
END Hold_Pending:Action:Overlap; - -

FIGURE 4-36 (Concluded)
. HOLD PENDING_ ACTION_ OVERLAP

4-71

ROUTINE Arbitrate Hold Pendina_vs Active Action;
PARAMETERS C H A INout"'; I this table will cQntain no more than one I

- - I entry when this routine erlts I
REFER TO GLOBAL

HOLD PLANNED ACTIONS IN;
REFER TO SHARBD-LOCAL -

ACTIVE PLANNED ACTIONS INOUT,
PLANNED ACTION-END TIMES INOUT;

DEFINE TABLES - -
C H A CANDIDATE HOLD ACTIONS

pa_id Planned action identification
pa source Planned action source
plan time Time planned action was added to plan

ACTIVE HOLD ACTIVE HOLD PLANNED ACTION
pa_Id Planned action iaentific:ation
pa_sourc:e
plan time

D A -

Planned action source
Time planned action was added to plan

DELETE ACTIONS
pa id

DEFINE VARIABLES
Active_Hold_Fix_Position(2)

Table of planned action ids for deletion;

x,y coordinates of the hold fix for
the active hold planned action

x,y coordinates of the hold fix for
the candidate hold planned
action;

New_Hold_Fix_Position(2)

FIGURE 4-37
ARBITRATE HOLD PENDING VS ACTIVE ACTION

4-72

IF 'hold' IS IN ACTIVE PI..ANNED ACTIONS.pa type
!DEN I competing hold actions =- one has to yield I
---xCTIVE HOLD • SELECT FIELDS pa id, pa source, plan time

FROM ACTIVE PLANNED ACTIONS-(A P A) -
WiiEiE A_P_A.pa_type-,!g_ 'hold';--

SELECT FIELDS hold fix position
FROM HOLD PLANNED ACTIONS (H P A)
INTO Active Hold Fix Position-
WHERE H_P_A7pa_id ,!g_-ACTIVE_H~.pa_id;

SELECT FIELDS hold fix position
FROM HOLD PLANNiJ> ACTIONS (H P A)
INTO New Hold Fix-Position -
WiiERE H_P_A.pa_id-,!& C_H_A.pa_id;

CHOOSE CASE .
WHEN (Active Hold Fix Position NE New Hold Fix Position) OR
--((ACTIVE HOLD.pa source ,!g_ 'controller') AND

(C H A.pa source NE 'controller')) THEN-
I new hold is-not oldiOR controller pla~the action I
I on the route. In either case, get rid of the candidate I

D A • SELECT FIELDS pa id
-FROM C H A; -

CALL Shut-DOwn PA(D A IN,.'hold' IN);
'D'E'iiTE FROM C H A; 1 deletes allC H A -- only one #

WHEN ACTIVE HOLD7 pa source ,!& C H A. pa source THEN
--yF ACTivE HOLD. plan time GE C H A. plan time--

THEN I the active hold is1newer=shut down the candidate I
---,; A • SELECT FIELDS pa id

- FROM C H A; -
CAIJ. Shut-DOwn PA(D A IN, 'hold' IN);
DELETE FROM C ii A; 1 deletes aliC H A-- only one I

ELSE I the candidate is newer-shut down-the active hold I
INSERT INTO PLANNED ACT ION END TIMES

(pa id • ACTIVE HOLD.pa-id,-
pa-end time • PAST CUSP.time);

DELETE-FROM ACTIVE PLANNED ACTIONS (A P A)
WHERE A P A.pa Id • ACTIVE.HOLD.pa-id;

WHEN ACTIVE HOLD:-pa source NE 'controller' AND
--C H A.pa-source !g_ 'controller' THEN I controller wins I

INSERT iNTO PLANNED ACTION END TIMES
(pa id • ACTIVE HOLD.pa-id,-
pa-end time • PAST CUSP.time);

DELETE-FROM ACTIVE PLANNED ACTIONS - -WHERE ACTIVE PLANNED ACTIONS.pa type • 'hold';
END Arbitrate_Hold_Pending_vs_Active_Action; -

FIGURE 4-37 (Concluded)
ARBITRATE HOLD PENDING VS ACTIVE ACTION

4-73

ROUTINE Elevate New Hold Action To Active Status; ·
PARAMETERS C H A INOUT; 1 this table will-contain no more than one I

-- #entry when this routine exits I
REFER TO GLOBAL

HOLD PLANNED ACTION IN;
REFER TO SHARED-LOCAL -

ACTIVE PLANNED ACTIONS INOUT,
PAST cUSP IN, -
PLANNED ACTION END TIMES INOUT,
HOLD_PENDING_ACTIONS INOUT;

DEFINE TABLES
C H A CANDIDATE HOLD ACTIONS
-pa_id Planned action identification

pa source Planned action source
plan time Time planned action was added to plan;

DEFINE VARlABLES
Loc EFC Time Expect further clearance time for the hold

planned action;
SELECT FIELDS efc time I get info for later inclusion I

FROM HOLD PLANNED ACTION (H P A)
INTO Loc EFC Time- --
WHERE H_P_A.pa_id ~ C_H_A.paid;

DELETE FROM HOLD PENDING ACTIONS I take PA off pending list I
WHERE HOLD PENDING ACTIONS.pa id • C H A.pa id;

IF Loc EFC Time LE PAST CUSP.time -- -
THEN ,,-target EFC Time already achieved - shut down PA I
--INSERT INTO PliNNED ACTION END TIMES

(pa id - c H A.pa id, - -
pa -end time-• PAST CUSP. time);

ELSE # hold is necessary =- elevate pa to active status I
--INSERT INTO ACTIVE PLANNED ACTIONS

say new hold Is now active I
(pa id • C H A.pa id,
pa-type --'hold'-
pa-source • C H A.pa source,
plan time • C-H-A.plan time,
stop-condition; 't1me7

stop-value • Loc EFC Time);
DELETE FROM-e H A; I get rid of planned action as candidate I

END Elevate_New_Speed_Action_To_Active_Status;

FIGURE 4-38
ELEVATE NEW HOLD TO ACTIVE STATUS

4-74

ROUTINE Set Hold Parameters For Trajectory Construction;
REFER TO GWBAL - - - -

HOLD PLANNED ACTIONS IN;
REFER TO SHARED-LOCAL -

PAST CUSP IN,
ACTIVE_ PLANNED_ ACT IONS IN;

DEFINE VARIABLES
Loc Pa Id
Loc-Hold Fix Position(2) - - -
Loc Position(2)
Loc-Time
LocZ
Loc:Temperature

Local planned action identifier
Local x,y coordinates of the hold fix

position from a hold planned action
x,y coordinates of the past cusp
Time at the past cusp
Altitude at the past cusp
Temperature at the past cusp;

:HGURE 4-39
SET HOLD PARAMETERS_FOR_TRAJECTORY_CONSTRUCTION

4-75

IF 'hold' IS IN ACTIVE PLANNED ACTIONS.pa type
~ I hold Is now active - get Trajectory Construction info I
-- I get the planned action id' to access the hold pa table I

SELECT FIELDS pa id
FROM ACTIVE PLANNED ACTIONS (A P A)
INTO Loc Pa-Id - --
WiiERE A P A7 pa type ,!g 'hold' ;
get the-hold-fix from the hold pa for later testing I

SELECT FIELDS hold fix position
FROM HOLD PLANN!D A~T IONS (H _ P _A)
INTO Loc Hold Fix Position
'WHERE H 'P A.pa id-~ Loc Pa Id;
I get the-position and time-from the past cusp for passing I

SELECT FIELDS position,,z,time,temperature
FROM PAST CUSP
INTO Loc Position,Loc Z,Loc Time,Loc Temperature;
Tar ways-call to set The acceleration phase parameters #
I the blocking of the acceleration AGD variable will occur I
I if the position of the past cusp coincides with the hold I
I fix position I

CALL Set Hold Acceleration Phase Parameters(
--:Loc Hold Fix Position IN,Loc Position IN,Loc Z IN,

Loc-Time-IN,Loc Temperature IN); - - -
IF Loc=:Position _!g-Loc_Hold_Position
THEN

I if the position of the past cusp coincides with the I
I hold fix position, then block the direction AGD I
I variable I

CALL Set Hold Hold Phase Parameters(Loc Pa Id IN);
END Set_Hold_Paraiiieters_For::::Trajectory_Construction"i" -

FIGURE 4-39 (Concluded)
SET HOLD PARAMETERS FOR tRAJECTORY CONSTRUCTION

4-76

variables (or both) needs to be set for an active hold action.
This element commands two routines to do the computations.

In Set Hold Acceleration Phase Parameters (Figure 4-40), the
speed at the past cusp is examined. If the holding speed for
this aircraft has not yet been achieved, then the deceleration
value for this aircraft is inserted into the acceleration AGD
variable. The holding speed is attached as the limit to the
acceleration. If holding speed was achieved at the past cusp,
then the acceleration AGD variable ·is blocked, thus preventing
access by other planned action processing components. If the
hold fix has not yet been achieved, then the position of the
hold fix is entered as a limiting value to ensure construction
of a cusp at the hold fix.

The element Set Hold Hold Phase Parameters (Figure 4-41) is
responsible for settiDg the direction AGD variable when the
aircraft has reached the hold position. The direction and
acceleration variables are "blocked" thus preventing access by
other planned action processing components. The EFC time of
the hold action is entered to limit the blocked direction
variable.

4.3.4 Altitude Planned Action Processing Design Logic

The Altitude Planned Action Processing component is responsible
for determining new AGD variables and their durations for alti
tude changes. The component uses information from an altitude
planned action and from the aircraft characteristic data base
to determine these values. The component will set the acceler
ation variable when modeling the aircraft as accelerating to
climb speed or cruise speed. When modeling the aircraft in a
climb or descent the gradient variable will be set.

The altitude planned action processing component will break an
Altitude Planned Action into a number of phases. These phases
are associated with changes in speed and with the linearization
of the altitude transition. For each speed change, a constant
acceleration can be used. The altitude transition will be
broken into a number of phases such that each phase will have a
constant gradient. In addition there will be a phase change
for aircraft switching from flying a constant lAS (Mach) to a
constant Mach (lAS) for ~nascent (descent). The variables set
in each phase are given in Table 4-1. An example of the phases
is shown in Figure 4-42. In each phase, the Altitude Planned
Action Processing component will set AGD variables. Since the
Altitude Planned Action Processing component may be invoked
during any phase of an altitude action, the component must be

4-77

ROUTINE Set Hold Acceleration Phase Parameters;
PARAMETERS LOc Hold Fix Position IN;Loc Position IN,Loc Z IN,

Loc Time IN-; Lac-Temperature IN; - - - -
REFER To GLOBAL - -

AIRCRAFT MAX ENDURANCE SPEED IN,
AIRCRAFTJ>EC'!LERATION n-; -

REF:m TO SHARED LOCAL
PAST_ CUSP IN,
AGD VECTOR INOUT,
POSITION_ LIMITS INOUT,
SPEED LIMITS INOUT,
ACTivE' PLANNED ACTIONS IN;

DEFINE V.AiJ:ABLES
Target_ Speed

Loc Deceleration

Loc_Hold_Fix_Position(2)

Loc Position(2)
Loc-Time
Loc-z
Lac:= Temperature

Holding speed value (max endurance
speed)

Deceleration value for this aircraft
from the global deceleration table

Local value of a hold fix position
from a hold planned action

x,y,coordinates of the past cusp
Time at the past cusp
Altitude at the past cusp
Temperature at the past cusp;

FIGlJRE 4-40
SET HOLD ACCELERATION PHASE PARAMETERS

4-78

!

SELECT FIELDS speed
FROM AIRCRAFT MAX ENDURANCE SPEED (A_M_E_S)
INTO Target Speed-
WHERE A M E;s.source is the best available AND PAST CUSP.z

is in the appropriate altitude range;
CALL las To Tas(Target Speed IN,Loc Z IN,Loc Temperature IN,
---yarget Speed OUT); - - - - - -
IF PAST cUSP. tas NE Target Speed
- I the aircraft~s not yet achieved modeled hold speed I

I set the acceleration AGD variable and a speed limit I
I assume a deceleration is necessary since maximum endurance I
I speed is the minimum speed for an aircraft (or just about) I
I and so an acceleration to max endurance speed is impossible I

THEN
---- I get deceleration value from the aircraft class tables I

SELECT FIELDS deceleration
FROM AIRCRAFT DECELERATION (A D)
INTO Loc Deceleration -
WHERE A D.source is the best available AND PAST CUSP.z

is in the appropriate altitude range;--
put the deceleration into the AGD vector I

INSERT INTO AGD VECTOR
(acceleration • Loc Deceleration);
I bound the extent of the deceleration I

INSERT INTO SPEED LIMITS
(speed • Target_Speed);

ELSE
I the target speed is achieved -- block the acceleration I
I from other planned action processors I

INSERT INTO AGD VECTOR
(acceleration~ 'blocked');

IF Loc Hold Fix Position NE Loc Position
THEN

I the position of the hold has not yet been reached I
I limit the extent of the speed change further so that I
I the next cusp is not built beyond the hold fix I

INSERT INTO POSITION LIMITS
(position • Loc Hold Fix Position);

END Set_Hold_Acceleration_Phase_Parameters;

FIGURE 4-40 (Concluded)
SET HOLD ACCELERATION PHASE PARAMETERS

4-79

ROUTINE Set Hold Hold Phase Parameters;
PARAMETERS Loc PaId;- -
REFER TO GLOBAL -

HOLD PLANNED ACTIONS IN;
REFER TO SHARED-LOCAL -

PAST CUSP IN,
AGD VECTOR~OUT,
TIHE LIMITS INOUT,
PAST-CUSP TYPE INOUT;

DEFINE VARIABLES
Loc Pa Id Passed planned action identification to use

locally. Identifies the active speed planned
action.

END

Loc EFC Time Local value of expect further clearance time
from the active planned action;

SELECT FIELDS EFC time
I get the time-goal for the hold from the planned action
FROM HOLD PLANNED ACTIONS (H P A)
INTO Loc EFC Time- - -
WHERE H_P_A.pa_id ~ Loc_Pa_Id;

INSERT INTO AGD VECTOR
I block the acceleration and AGD variable. this block
I characterizes a hold action. the gradient variable can
I still be set so that an altitude action can take place
I with the limits of the hold.

(direction • 'blocked',
acceleration • 'blocked');

INSERT INTO TIME LIMITS

I

I
I
I

I set the time goal for the hold for Trajectory Construction #
(time • Loc EFC Time);

INSERT INTO PAST cUSP TYPE
I tell Trajectory Construction that the PAST CUSP is an entry I
I point or a continuation of a hold - I
(hold present • 'yes');

Set_Hold_Hold_Phase_Parameters;

FIGURE 4-41
SET HOLD HOLD PHASE PARAMETERS ·-

4-80

PHASES

Before the
planned action

Acceleration to
climb speed*

Altitude change**

Level off between
target altitude
and resume climb
time

Accelerate or
decelerate* to
cruise speed or
250 knots

TABLE 4-1
AGD VECTOR VARIABLE AND LIM! TS

FOR AN ALTITUDE CHANGE

AGD VECTOR
CHANGED

LIMIT VARIABLE
(blocked)

Beginning of the
maneuver point

Climb speed acceleration
(gradient)

Interim altitudes gradient
Transition altitudes (acceleration)
Target altitudes
Cruise altitudes

Resume climb time acceleration
(gradient)

Cruise speed or acceleration
250 knots

*Provided a hold is not active

FIGURE
REFER-

ENCE

1

2

3,5

4

6

** - Interim altitudes--altitudes between which gradients are
constant

- Transition altitude-altitude to change from climbing at a
constant lAS to a constant mach and descending at a constant
mach to a constant lAS

Cruise altitude is a limit if the planned action includes an
expect to resume climb time.

4-81

6

Gradient Constant
3

. ._.... __ or

El~~~- ---, _(! ____ _
Constant ~ I

lAS , Gradient
Climb 2 ·

Legend:

---At! tual Path
3 ---Linearized Path

FIGURE 4·42
ALTITUDE PLANNED ACTION PHASES

4-82

able to determine which phase the aircraft is in and what
further modeling must be done to complete the planned action.

Organization

The Altitude Planned Action Processing component provides data
needed by Trajectory Construction to construct the next cusp.
This component will be called each time a cusp is constructed
to provide information about altitude actions effecting the
next cusp.

Figure 4-43 indicates the logical structure of the Altitude
Planned Action Processing Component. Each element is given in
Program Design Language within this section. The four system
utilities, Mach las Switchover, Mach To Tas, Ias To Tas, and
Shut Down PA are-provided in Appendix-B,-while the element XY
To_Ard is-provided in Section 4.4.

Processing Method

The logical flow of the Altitude Planned Action Processing
component is indicated in Figure 4-44. In Check For End Of
Active Altitude Action (Figure 4-45) the list of active-planned
actions is examined to see if any active altitude actions were
completed at the past cusp. If an active altitude action has
been completed it is eliminated from the table of active
actions. Otherwise, any active altitude action will remain
active.

Altitude_Pending_Action_Overlap (Figure 4-46) selects all
actions from the altituae pending actions table that are
scheduled to become active at the past cusp. The source of
each candidate action and the time the action was added to the
plan are then examined to resolve any overlaps. From this
element emerges at most one candidate altitude action.

When both a candidate altitude action and an active altitude
action are present then Arbitrate Altitude Pendina_Vs Active
Action (Figure 4-47) eliminates one-of them.- The overlaps are
resolved based on source and plan time as described earlier.

If the candidate altitude action is not eliminated in Arbi
trate Altitude Pending Vs Active Action then it is elevated to
active status- by Elevate New Altitude Action To Active Status
(Figure 4-48). This element sets the end condition for this
new active action. This is done by Determine Altitude End

4-83

Altitude Planned Action Processing
Check-For End-Of Active Altitude Action
Altitude_Pendins:Action:overlap

Shut Down PA
Arbitrate Altitude Pending Vs Active Action

Shut DOWn PA - - - -
Elevate-New Altitude Action To Active Status

Determine Altitude End
Set Altitude-Parameters For Trajectory Construction

Set Up Altitude Information -
Find Nominal Climb Speed

Mach las Switchover
Mach-To Tas
lAS To Tas

Set Altitude Acceleration Phase Parameters
las-To Tas
Set-Gradient Phase Parameters

Set Altitude Ascent Phase Parameters
Mach las Switchover -

Set Altitude Descent Phase Parameters
Mach las Switchover -
Min Or Nominal Gradient

Find Distance To Restriction
XY To Ard

FIGURE 4-43
ALTITUDE PLANNED ACTION PROCESSING CALLING SEQUENCE

4-84

ROUTINE Altitude Planned Action Processing;
PARAMETERS - - -

Fl Id IN;
DEFINE VARIABLES

Fl Id Identity of aircraft for Trajectory Estimation
DEFINE TABLES

C A A CANDIDATE ALTITUDE ACTION
pa_id Planned action id
pa source
plan time

#begin logic#

Planned action source
Time action was added to the plan;

CALL Check For End Of Active Altitude Action;
#find candidate altitude action I -
CALL Altitude Pending Action Overlap(C A A OUT);
IF COUNT(C A l) GT 0 - - - - -
THEN #decide-which altitude action should be active#
--CALL Arbitrate Altitude Pending Vs Active Action(Fl Id IN,

--C A A INOUT); - - - - - -
IF COUNT(C A A) ~ 1
THEN I new-action controls gradient I
--CALL Elevate New Altitude Action To Active Status(Fl Id IN

--C A A INOUT);- - - - - -
#set-limits on the use of acceleration and gradient#

CALL Set Altitude Parameters For Trajectory Construction
---rFl Id IN); - - - · -

END Altitude_Planned_Action_Processing;

FIGURE 4-44
ALTITUDE PLANNED ACTION PROCESSING

4-85

ROUTINE Check For End Of Active Altitude Action;
REFER TO GLOBAL - - - - -

ALTITUDE RESTRICTIONS PARAMETERS IN;
REFER TO SHiREJ> LOCAL - -

PLANNED ACTION END TIMES IHOUT,
PAST CUSP IN,- -
ACTIVE _PLANNED-ACT IONS INOUT;

DEFINE VARIABLES
Loc Pa Id
Altitude
Coordinate
Speed
Condition

Planned action id
Planned action end altitude
Planned action end point
Planned action speed value
Planned action stop condition;

I#
IF 'altitude' IS IN ACTIVE PLANNED ACTIONS.pa type
THEN #check to see if action has been completed #
-----SELECT FIELDS pa id,pa source,stop condition,stop speed,

stop altitude:stop coordinate - -
FROM-ACTIVE PLANNED ACTION
INTO Loc Pa-Id,Sou~e,Condition,Speed,Altitude,Coordinate
WHERE ACTI'vE PLANNED ACTION.pa type !9. 'altitude';

IF((Condition .§q 'altitude') AND TPAST_CUSP.z ~ Altitude))OR
((Condition !9_ 'coordinate"i'}AND
(PAST_CUSP.position ~Coordinate))
OR((Condition !9_ 'speed at altitude') AND
(PAST_CUSP.z ~Altitude) ~ (PAST_CUSP.tas ~Speed))

THEN #this is end of action#
---yNSERT INTO PLANNED ACTION END TIMES

(pa id • Loc Pa ld,
plan end time •-PAST CUSP. time) ;

DELETE FROM-ACTIVE PLANNED ACTIONS - -WHERE ACTIVE_PLANNED_ACTIONS.pa_id !9, Loc_Pa_Id;
END Cheek_For_End_Of_Altitude_Action;

FIGURE 4-45
CHECK FOR END OF ALTITUDE ACTION

4-86

ROUTINE Altitude Pending Action Overlap;
PARAMETERS C A A-OUT; - -
REFER TO SHARED LOCAL

PAST CUSP IN,
PLANNED ACTION START TIMES INOUT,
ALTITUDE PENDING ACTIONS INOUT;

DEFINE TABLES -
C A A CANDIDATE ALTITUDE ACTION
- pa_id Planned action id

pa source Planned action source
plin time Time action was added to plan

D A - DELETE ACTIONS
pa id

II begin logic II
Planned action id;

#find actions that might be active at past cusp#
C A A • SELECT FIELDS pa id,p4 source,plan time
- FROM ALTITUDE PENDING ACTIONS --- - -WHERE ALTITUDE PENDING ACTIONS stimulus value equals

appropiate PAST CUSP value;
IF COUNT(C A A) GT 0 -
THEN #record start times#

REPEAT FOR EACH C A A RECORD
INSERT INTO PLANNED ACTION START TIMES

(pa id • c A A.pa id,
pa-start time- PAST CUSP.time);

II must narrow C-A A down to-one candidate #
IF COUNT(C A A.pa-source ~'controller') GT 0
THEN #eliminate actions from other sources~
--D A • SELECT FIELDS pa id

-FROM C A A -
WHERE C A A.pa source NE 'controller';

CALL Shut i5own Pat D A IN, 'altitude' IN);
D'ELETE FROM c A A - - -

WHERE C A A.pa id IS IN D A.pa id;
#eliminate ali but newest action# ~
D A = SELECT FIELDS pa id
- FROM C A A -

WHERE C A A.plan time NE MAX(C A A.plan time);
CALL Shut Down Pa(D A IN, 'altitudeT lN); -
D'EI.ETE FROM c A A - - -

WHERE C_A_i\.pa_id IS IN D_A.pa_id;
END Altitude_Pending_Action_Overlap;

FIGURE 4-46
ALTITUDE PENDING ACTION OVERLAP

4-87

ROUTINE Arbitrate Altitude Pendina_Vs Active Action;
PARAMETERS C A A INOUT; - - -
REFER. TO SHAiED LOCAL

PLANNED ACTION END TIMES INOUT,
ACTIVE PLANNED-ACTIONS INOUT;

DEFINE TAiLEs -
CAA
- pa_id

pa source
plan_time

ACTIVE ALTITUDE
pa_id
pa source
plan time

D A -
pa_id

CANDIDATE ALTITUDE ACTION #1 or 0 records#
Planned action id
Planned action source
Time action was planned

ACTIVE ALTITUDE ACTION #1 record#
Planned action id
Planned action aource
Time action was planned

DELETE ACTIONS #1 record#
Planned action id;

FIGURE 4-47
AilBITBATE_ALTITUDE_PENDING_VS_ACTIVE_ACTION

4-88

IF 'altitude' IS IN ACTIVE PLANNED ACTIONS.pa type
THEN I select active altitude action # -
~CTIVE ALTITUDE • SELECT FIELDS pa id,pa source,plan tiae

FROM ACTIVE PLANNED ACTIONS -. - -
WiiEiE ACTIVE:PLANNED:ACTIONS.pa_type ~ 'altitude';,

IF ACTIVE ALTITUDE.pa source]g C A A.pa source
THEN I if-source same -eliminate older action#
--IF ACTIVE ALTITUDE. plan time GE C A A. plan time

THEN - - - -- -
---,;_A • SELECT FIELDS pa_id

FROM C A A;
CALL Shut Down Pa(D A IN, 'altitude' IN);

DELETEFROM C_A_A;#only one record in table#
ELSE
---yNSERT INTO PLANNED ACTION END TIMES

(pa id • ACTIVE ALTITUDE.pa-id,
pa-end time • PAST CUSP.time)

DELETE-FROM ACTIVE PLANNED ACTIONS(A P A)
WHERE A P A. pa ld EQ ACTIVE ALTITuDE. pa id;

ELSE # ellminate-noncontrolli'r planned action# -
IF ACTIVE_ALTITUDE.pa_source ·!Q. 'controller'
THEN # eliminate candidate action I
---,;_A • SELECT FIELDS pa_id

FROM C A A;
CALL~ut-DOwn Pa(D A IN, 'altitude' IN);
DELETE FROM C A A;#oUiy-one record in table#

ELSE #eliminate active action#
---:INSERT INTO PLANNED ACTION END TIMES

(pa id "" ACTIVE ALTITUDE. pa-id,
pa-end time • PAST CUSP. tiiiie) ;·

DELETE FROM ACTIVE PLANNED ACTIONS
WHERE ACTIVE_PLANNED_ACTIONS.pa_type ~ 'altitude';

END Arbitrate_Altitude_Pending_Vs_Active_Action;

FIGURE 4~7 (Concluded)
ARBITRATE ALTITUDE PENDING VS ACTIVE ACTION

. 4-89

ROUTINE Elevate New Altitude Action To .Active Status;
P.ARAMETmtS Fl Id IN: c A A INOUT; - - -
~LtR!AL--

ACTIVE PLANNED ACTIONS INOUT,
ALTITuDE PENDING ACTIONS INOUT;

DEFINE TABLES -
CAA
- pa_id

CANDIDATE ALTITUDE ACTION #single record#
Planned action identification

pa source
plan time

DEFINE VAR!ABLES
End Condition
End Speed
End-Altitude
End-Coordinate(2)

#begin-logic I

Planned action source
Time action was added to the plan;

End condition of altitude
End speed
End al t1 tude
End coordinate(x,y);

action

DELETE FROM ALTITUDE PENDING ACTIONS
WHERE ALTITUDE_PENDING_AcTIONS.pa_id !Q. C_A_A.pa_id;

CALL Determine Altitude End(Fl Id IN, End Condition OUT, End
--speed OUT, End Altitude OUT"; EndCoordinate OUT,CAA.pa Id

IN)· - - - - - -- -
-' INSERT INTO ACTIVE PLANNED ACTIONS (
pa id • C A A.pa id,-
pa-source • C A A. pa source,
pa-type •'altitude'-
stop condition • End Condition,
stop-speed • End Speed,
stop-altitude • End Altitude,
stop-position • End-Coordinate,
plan-time • C A A.Pian time);

DELETE FROM C_A_A;1candidate is now active#
END Elevate_New_Altitude_Action_To_Active_Status;

FIGURE 4-48
ELEVATE NEW ALTITUDE ACTION TO ACTIVE STATUS

4-90

(Figure 4-49). In this element the ALTITUDE CHANGE PLANNED
ACTIONS and the ALTITUDE RESTRICTION PARAMETERS tables are
eUJIIined to detemine end conditions as follows:

• For actions having a resume climb time, the end condi
tion is cruise speed at cruise altitude.

• For actions whose target altitudes are equal to their
restriction crossing altitudes, the end condition is
the restriction point. ·

• For climbs to target altitudes greater then or equal to
cruise altitude, the end condition is cruise speed at
the target altitude.

• For descents to 10, 000 feet, the end condition is 250
knots lAS at 10,000 feet.

• Otherwise the end condition is the target altitude.

When an altitude planned action is active, then Set Altitude
Parameters For Trajectory Construction (Figure 4-50) estab=
lishes whiCh Phase the action is in and calls the appropriate
routines to set the AGD variables and the limits for the

· current phase. Before this can occur, the process Set Up
Altitude Information (Figure 4-51) retrieves information needed
by Set Altitude Parameters For Trajectory Construction and
establishes a position limit-at any restriction point that has
not yet been met. In addition, before deciding which phase of
a climb to model, the nominal climb speed must be determined by
Find_ Nominal_ Climb _Speed (Figure 4-52).

The various phases that the aircraft might be modeled as being
in or about to start include:

• Accelerating to climb speed

• Accelerating to cruise speed

• Accelerating to 250 knots lAS at 10,000 feet for
descents

• Flying level until a resume climb time is met

• Flying level until a restriction point is met

• Climbing or descending to some altitude

4-91

ROUTINE Determine Altitude End;
PARAMETERS Fl Id IN,End Condition OUT,End Coordinate OUT,

End_ Speed OUT ,I!indfltitude OUT-;-T.oc_Pa_Id IN; -
REFER TO SHARED LOCAL PAST_ CUSP;
REFER TO GLOBAL

ALTITUDE CHANGE PLANNED ACTIONS IN,
ALTITUDE-RESTRICTIONS PARAMETERS IN,
FLIGHT PLANS IN, - -
FLIGHT-ID ASSOCIATIONS IN;

DEFINE VARIABLES -
Fl Id Identification of flight undergoing Trajectory

Loc Pa Id
End-Condition
End-Coordinate
End-Speed
End-Altitude
Tran Type
Altitude
Value_ Type
Resume Time
Rest Count
Rest-Alt
Flight Name
Cruise-Speed
Cruise-A1 ti tude

Estimation
Planned action id
Final goal condition of the planned action
Final position
Final speed
Final altitude
Transition type
Goal altitude
Value denotes where action is
Resume climb time
Count of restrictions found
Restriction altitude
Flight name
Approved cruise speed
Approved cruise altitude;

FIGURE 4-49
DETERMINE ALTITUDE END

4-92

tied down

SELECT FIELDS flight name
FROM FLIGHT ID ASSOCIATIONS(F I A)
INTO Flight-Name --
WiiERE: F_I_A.flight_plan_id ~ Fl_Id;

SELECT FIELDS approved true air speed,approved cruise altitude
FROM FLIGHT PLANS - - - - -
INTO Cruise-Speed,Cruise Altitude
WHERE FLIGHT PLANS. flight name ~ Flight Name;

SELECT FIELDS transition type, base value type, target altitude,
resume climb time - - - -- -FROM ALTITUDE CHANGE PLANNED ACTIONS
INTO Tran Type, Value-Type,Altitude,Resume Time
W'ii'ERE ALTITUDE_CHANGE_PLANNED_ACTIONS.pa_id ~ Loc_Pa_Id;

SELECT FIELDS rest_pt,rest_z
FROM ALTITUDE RESTRICTIONS PARAMETERS
iE'TURN COUNT(~st Count)
INTO End Coordinate,Rest Alt
WHERE ALTITUDE_RESTRICTIONS_PARAMETERS.pa_id ,!& Loc_Pa_Id;

CHOOSE CASE
WHEN Resume Time NE NULL THEN #end • cruise speed/cruise_alt#
--End Condition -;;;;-' speedli't" altitude' ;

End=Speed • Cruise_Speed;
End Altitude • Cruise Altitude;

WHEN (Tran Type EQ 'climb') AND ((Rest Count]g 0)
--OR (Rest Alt IT Altitude)~ #goal' is target altitude + 'II

IF Altitude GECruise Altitude
THEN # change-speed at target altitude#
--:End Condition • 'speed at altitude';

End-Speed • Cruise Speed;
ELSE #Just an altitude# -
--End_ Condition • 'altitude';
End Altitude • Altitude;

WHEN (Tran_Type ~'descent') AND ((Rest_Count ,!& 0)
OR(Rest Alt GT Altitude)THEN--, goal is target alt + ?I
IF Altitude EQ 10000 --
THEN #must slow to 250 knots Ias#
--End Condition • 'speed at altitude'

CALL Ias To Tas(250 IN,Altitude IN,
--PAST CuSP.temperature IN,End Speed OUT);

ELSE- ---
~nd Condition • 'altitude';
End Altitude = Altitude;

OTHERWISE # goal is restriction point#
End Condition= 'coordinate';

END Determine_Altitude_End;

FIGURE 4-49 (Concluded)
DETERMINE ALTITUDE END

. 4-93

ROUTINE Set Altitude Parameters For Trajectory Construction;
PARAMETERS Fl_Id IN;- - -. -
REFER TO SHARED LOCAL

ACTIVE PLANNED ACTIONS IN,
PAST CUSP IN,- -
TIME-LIM! TS INOUT;

DEFINE TABLES
CRUISE

speed
alt

REST TABLE
rest x
rest y
rest-alt
qualifier
rest point

DEFINE VAlUABLES
Fl Id

Loc Pa Id
Tariet.=Alt
Tran Type
Goal=Speed
Resume Time
las
Nom Climb Speed
Rest Ard-

CRUISE DATA
Approved default
Approved default

RESTRICTION TABLE

cruise speed
cruise speed

Restriction point x value
Restriction point y value
Restriction altitude
Restriction qualifier at at/above at/below
AGGREGATE(rest_x,rest_y);

Identity of aircraft undergoing Trajectory
Estimation

Planned action id
Target altitude
Transition type climb or descent
Speed goal for this segment
Resume climb time
Indicated airspeed
Nominal climb speed
Along route distance of restriction point;

FIGURE 4-50
SET ALTITUDE PARAMETERS FOR TRAJECTORY CONSTRUCTION

4-94

IF 'altitude' IS IN ACTIVE PLANNED ACTIONS
THEN -
---cALL Set Up Altitude Information{Fl Id IN,Loc Pa Id OUT,

---"Target Alt OUT, Tran Type OUT, REST TABLE our;- -
CRUISE-OUT, Resume Time OUT, Rest Ard OUT);

IF Tran _Type ~ 'ascent' - - -
THEN #aircraft may need to accelerate to climb speed#
----CALL Find Nominal Climb Speed{Nom Climb Speed OUT);
COO~CASE 1 determine phase of altitude changer

WHEN{PAST_CUSP.z ~ Target_Altf AND {Target_Alt Q!
CR.UISE.alt)
AND {'hold' IS NOT IN ACTIVE PLANNED ACTIONS)
THEN #accelerate to cruise speed# -
CALL Set_Altitude_Acceleration_Phase_Pa~ameters

{Loc Pa Id IN,CRUISE.speed IN);
WHEN {PAS(~CUSP.z _§g Target_Alt) AND {Resume_Time,!!! 'null')

AND{Resume Time GT PAST CUSP.time)THEN
#grad•O until resume t!Die# ----
INSERT INTO TIME LIMITS

(time - Resume Time);
WHEN {PAST_CUSP.z -~~flOOOO) AND {Tran Type~ 'descent') AND

{PAST CUSP.ias GT 250 knots) THEN 1 slow to 250knots#
CALL las To Tas(250 IN,lOOOO IN,
--PAST CUSP. temperature IN, Goal Speed OUT);
CALL Set Altitude Acceleration Phase Parameters
--{Loc Pa Id IN,-Goal Speed IN); -

WHEN {Tran-Type EQ'ascent') AND\PAST CUSP.z LT Target Alt)
----AND {'hold' ISNOT IN ACTIVEPLANNED ACTIONS) AND {PAST

CUSP.tas LT Goal Speed) THEN-#accelerate to climb speed1
CALL Set Altitude Acceleration Phase Parameters
--rLoc Pa Id IN,Nom Climb Speed IN);
~ {REsT:TABLE.rest_ait ~ PAST_CUSP.z) M!Q {Tran_Type
~ 'ascent') ~ {Rest_Ard GT PAST_CUSP.ard) AND
{{REST_TABLE.qualifier ~ 'at') OR
{REST_TABLE.qualifier ,!g_ 'at or below'))
THEN; #goal is rest_point which "has already been set#

WHEN (REST TABLE.rest alt EQ PAST CUSP.z) AND {Tran Type
~Q 'descent') AND (Rest~rd GT-PAST CUSP.ard) THEN;

718oal is rest point which has already been se~
OTHERWISE # altitude transition #

CALL Set Gradient Phase Parametrs{ Loc Pa Id IN,
--REST TABLE lN,-Tran Type IN, Resume-Time IN;

CRUISE.alt IN, Target AltiN, Goal Alt OUT);
END Set_Altitude_Parameters_For_Trajectory_Construction;

FIGURE 4-50 {Concluded)
SET ALTITUDE PARAMETERS FOR TRAJECTORY CONSTRUCTION

4-95

ROUTINE Set Up Altitude Information;
PARAMETFB.S Fl ld IN, Loc Pa Id OUT, Target Alt OUT, Tran Type OUT,

REST TABLE-OUT-;-CRUISE OUT, Resume Time-OUT,~st Ard-OUT; -
REFFB. TO GLOBAL - -· - - -

ALTITUDE CHANGE PLANNED ACTIONS IN,
ALTITUDE-RESTRICT IONS PiRAMETERSIN,
FLIGHT PLANS IN, - -
FLIGHT-ID ASSOCIATIONS IN;

REFFB. TO SHARED LOCAL -
ACTIVE PLANNED ACTIONS IN,
PAST_cUSP IN, - -
POSITION LIMITS INOUT;

DEFINE TABLES
CRUISE

speed
alt

REST TABLE
rest x
rest_y
rest alt
qualifier
rest_point

DEFINE VARIABLES
Fl Id

Loc Pa Id
Target,:Alt
Tran Type
Flight Name
Resume-Time
Rest Ard

CRUISE DATA
Approved default
Approved default

RESTRICTION TABLE

cruise speed
cruise altitude

Restriction point x value
Restriction point y value
Restriction altitude
Restriction qualifier at at/above at/below
AGGREGATE(rest_x,rest_y);

Identification of flight undergoing Trajectory
Estimation

Planned action id
Target altitude
Transition type climb or descent
Flight name
Resume climb time
Along route distance of restriction point;

FIGURE 4-51
SET UP ALTITUDE INFORMATION

4-96

#find cruise speed and altitude I
SELECT FIELDS flight name

FROM FLIGHT ID ASSOCIATIONS
INTO Flight -Naiie
WliEfE FLIGHT_ID_ASSOCIATIOHS.fl_id ~ Fl_Id;

CRUISE • SELECT FIELDS approved_true_airspeed,
approved cruise altitude
FROM FLIGHT PLANS
WHiiE FLIGHT_PLANS.flight_name ~ Flight_Hame;

#find target altitude I
SELECT FIELDS pa id

INTO Loc Pa Id
FiOii ACTIVE-PLANNED ACTIONS
WiiER! ACTivE_PLANNED_ACTIONS.pa_type ,!g_ 'altitude';

SELECT FIELDS target altitude, transition type, resume climb time
INTO Target Alt, Tran Type, Resume Time- - -
FROM ALTITUDE CHANGE-PLANNED ACTIONS(A c p A)
WiiEiE A_C_P_A.pa.._id !g_ Loc_P'i_Id; ---

IF Pa Id IS IN ALTITUDE RESTRICTIONS PARAMETERS
tiEN 1£ind restriction alitudel
--:-R!ST_TABLE • SELECT FIELDS rest~t, rest_z, rest_qualifier

FROM ALTITUDE RESTRICTIONS PARAMETERS
W!RE ALTITUDE_ RESTRICTION"! _PARAMETERS. pa _id _!q Loc_Pa _ Id;

CALL XY To Ard(REST TABLE.point IN, Rest Ard OUT);
IF Rest-Ard GT PAST-CUSP.ard - - -
THEN #then restriction point will be a limit#
--yNSERT INTO POSITION LIMITS

(position • REST_TABLE.rest_yoint);
~ Set_up_Altitude_Information;

FIGURE 4-51 (Concluded)
SET UP FOR ALTITUDE INFORMATION -

4-97

ROUTINE Find Nominal Climb Speed;
PARAMETms Nom Climb-Sp ou"T;
REFER TO GLOBAL - -

NOMINAL CLIMB SPEEDS IN;
REFER TO s'HARED LOCAL -

PAST CUSP IN;
DEFINE 'VARIABLEs

Nom Climb Sp
Climb Ias
Climb-Mach

Nominal climb speed in tas
Climb indicated airspeed
Climb mach

Tran Ait Transition altitude between mach and ias;
I begin-logic I

SELECT FIELDS ias,mach
!!2!! NOMINAL_CLIMB_SPEEDS(N_C_S)
INTO Climb Ias,Climb Mach
~ N C S.source is equal to the best available;

I must findout which speed to use#
CALL Mach las Switchover(Climb Mach IN, Climb Ias IN,
--rran Ait OUT); - - - -
IF PAST-CUSP:ZGE Tran Alt
THEN #Above TranAlt return mach converted to tas#
-CALL Mach To Tas(Climb Mach IN, PAST CUSP.temperature IN,

- Nom-Climb SpOUT); - - -
ELSE #below return I&8 converted to tas#
---cALL las To Tas(Climb las IN,PAST CUSP.z IN,

--PAST CuSP. temperature IN, Nom Climb SpOUT);
!!B Find_Nominal:Climb_Speed; - - - -

FIGURE 4-52
FIND NOMINAL CLIMB SPEED

4-98

If the phase involves a speed change then Set Altitude
Acceleration Phase Parameters (Figure 4-53) is caliid. Thi'i
element sets the acceleration AGD variable (if a hold is not
present) and sets a limit on the acceleration variable of the
goal speed. If the action involves flying level until reaching
a time or a point then no AGD variables will be set but a limit
associated with the time or the point will be set. · In the
altitude transition phase, Set Gradient Phase Parameters is
called (Figure 4-54). -

Set Gradient Phase Parameters establishes the next major goal
for the altitude transition. This may be the . restriction
altitude or the target altitude. In cases of descents through
10,000 feet, 10,000 feet is a possibility, since the aircraft
will need to decelerate at this altitude. Next, either Set
Altitude Descent Phase Parameters (Figure 4-55) or Set
Altitude-Ascent Phase Parameters (4-56) is called depending oi
whether the aircraft is descending or climbing. These routines
set the gradient AGD variable to be used for this part of the
altitude transition and establish a limit on the use of the
gradient variable. The limit will be the next major goal
altitude, the altitude to transition from a constant mach to a
constant indicated airspeed (or vice versa), or the altitude
that signals the end of the linear segment used to model the
altitude change.

In addition, an acceleration value of 'blocked' will be set if
a hold is not active. For climbs, the gradient used will
always be the nominal gradient, but for descents it is neces
sary to decide between a nominal and a miniiDum gradient.
Min Or Nominal Gradient (Figure 4-57) is used to make this
decision. It-uses Find Distance To Restriction (Figure 4-58)
to compute the distance available for the descent. A minimum
gradient may be used when an action gives a fixed place to
start a descent and also a point with ~ crossing restriction.
The aircraft will be modeled as following the minimum gradient
as long as possible and then switching to the nominal gradient
to meP.t the restriction point.

4.3.5 Speed Planned Action Processing Design Logic

The speed planned action processing component is responsible
for ~ltering the aircraft AGD vector to accomplish the
acceleration or deceleration to a planned new speed in the
traje~tory. This component processes, as input, a speed
planned action and data generated at the past cusp. The past
cusp resides either inside, outside or on the boundaries of a
speed· action. Depending upon the position of the past cusp,

4-99

ROUTINE Set Altitude Acceleration Phase Parameters;
PARAMETERS Loc Pa Id-IN,Goal Speed IN; -
REFER TO SHARED LOcAL- - -

ACTIVE PLANNED ACTIONS IN,
PAST c1TSP IN, - -
AGD _VECTORINOUT,
AIRCRAFT ACCELERATION IN,
AIRCRAFT=DECELERATION IN,
SPEED LIMITS INOUT;

DEFINE VAluABLES
Loc Pa Id
Goal Speed
Loc Icc

I begin logic I

Planned action id
Goal for this phase of pa
Acceleration set in this routine;

IF 'hold' IS NOT IN ACTIVE PLANNED ACTIONS.pa type
THEN #altitude action can set acceleration# -
~F PAST CUSP.tas GT Goal Speed

THEN #slow to goar-speedJ
--SELECT FIELDS deceleration

FROM AIRCRAFT DECELERATION (A D)
INTO Loc Ae.c
WHERE A D.source is the best available AND

PAST-CUSP.z is in appropiate range;
ELSE #accelerate to goal speed#
--SELECT FIELDS acceleration

FROM AIRCRAFT ACCELERATION(A A)
INTO Loc Ace - -
WHERE A A.source is the best available AND

PAST-CUSP.z is in appropriate range;
UPDATE IN AGD-VECTOR

(acceleration • Loc Ace,
paid acceleration-- Loc Pa Id);

INSERT-INTO SPEED LIMITS - -
(speed • Goal Speed);

END Set_Altitude_Acceleration_Phase_Parameters;

FIGURE 4-53
SET ALTITUDE ACCELERATION PHASE PARAMETERS

4-100

ROUTINE Set Gradient Phase Parameters;
PARAMETERS Loc Pa Id-IN,REST TABLE IN,Tran Type IN,

Resume Time -IN-;- Cruise Ai't IN, Target Alt IN,~l Alt OUT;
REFER TO SHAREDWCAL - - - - - -

PAST CUSP IN,
PAST=CUSP_TYPE INOUT;

DEFINE TABLES
REST TABLE

rest x
rest'_y
rest alt
qualifier
restyoint

DEFINE VARIABLES
Loc Pa Id
Tran Type
Resuiiie Time
Cruise-Alt
Target-Alt
Goal Alt

RESTRICTION TABLE
Restriction point x value
Restriction point y value
Restriction altitude
Restriction qualifier at at/above at/below

AGGREGATE(rest_x,rest_y);

Planned action id
Transition type
Resume climb time
Cruise altitude
Target Altitude
Goal altitude;

FIGURE 4-54
SET GRADIENT PHASE PARAMElrERS

4-101

Goal Alt • Target Alt;#target altitude is the default goal#
UPDATE IN PAST CUSP TYPE (altitude present • 'yes');
IF COUNT(REST TABLE) GT 0 -
THEN I find restrictions #
--yF(Tran_Type ~ 'descent') AND (REST_TABLE.rest_alt LT

PAST CUSP .Z)
THEN #restriction altitude is always at or above target alt#
---,therefore goal alt • restriction alt#

Goal Alt • REST TABLE.rest alt;
UPDATE IN PAST CuSP TYPE -

(altitude_restriction_present • 'yes');
ELSE

IF(Tran_Type ~ 'ascent') AND (REST_TABLE.rest_alt GT
PAST CUSP .Z)

THEN #restriction altitude is always at or below target I
---,altitude therefore goal alt is restriction alt#

Goal Alt • REST TABLE.rest alt;
UPDATE IN PAST CUSP TYPE -

(altitude_restriction_present • 'yes');
IF (Resume Time NE 'null') AND (PAST CUSP. time GE Resume Time)
THEN-------
----coal Al t • Cruise Al t;
.£! (Tran_Type ~ 'descent') AND (Goal_Alt LT 10000) AND

(PAST CUSP.z GT 10000)
THEN #must level-of£ at 10000 to slow down to 250 kias#
~al Alt • 10000;
IF Tran-Type ~ 'descent'
THEN
--CALL Set Altitude Descent Phase Parameters

----cLoc Pa Id IN,Goal Alt-IN,REST TABLE IN);
ELSE-------
---c=ALL Set Altitude Ascent Phase Parameters

--(Loc Pa Id IN,Goal Alt IN);-
END Set_ Gradten(:Phase_Paraieters;

FiGURE 4-54 (Concluded)
SET GRADIENT PHASE PARAMETERS

4-102

ROUTINE Set Altitude Descent Phase Parameters;
PARAMETERS Loc Pa !d-IN, Goal Alt IN, REST TABLE IN;
REFER TO GLOBAL - - - - - -

NOMINAL DESCENT SPEEDS IN,
DESCENT-MACH TO-GRADIENTIN,
DESCENT-lAS To GRADIENT IN;

REFER TO SHARED WeAL -
ACTIVE PLANNED ACTIONS IN,
ALTITUDE LIMITS INOUT, -
GRADIENT -PARAMETERS OUT,
AGD VECTOR INOUT, -
PAST CUSP IN;

DEFINE TABLES-
DESCENT GRADIENT

grad-
end alt
gradient type

REST TABLE-

DESCENT GRADIENT DATA
Rradient
End altitude
Nominal or non-nominal

RESTRICTION TABLE
Restriction point x value
Restriction point y value
Restriction altitude

rest x
rest y
rest-alt
qualifier
rest _Point

Restriction qualifier at at/above at/below
A~GREGATE(rest_x,rest_y);

DEFINE VARIABLES
Goal Alt
Nom las
End-Alt
Alt-
Grad
Tran Alt

Goal altitude
Nominal descent ias
End of the linear segment
First break altitude
Gradient
Altitude to transition from ias

FIGURE 4-55
SET ALTITUDE DESChNT PHASE PARAMETERS

4-103

to mach;

SELECT FIELDS ias #find nominal descent ias#
FROM NOMINAL_DESCENT_SPEEDS(N_D_S)
INTO Nom las
WHERE N D S.source is equal to best available;

CAI.I:'""MiiCh Ia'i SWitchover(PAST CUSP.mach IN, Nom las IN,
~ran Alt OUT); - - - -
IF PAST-CUSP:z-GT Tran Alt
'THEN #limit is at or above tran alt ,find mach gradients I
--coal Alt • MAX(Goal Alt,Tran-Alt);

DESCENT GRADIENT • SELECT FiELDS gradient,end alt,gradient type
FROM DESCENT MACH TO GRADIENT (D M T G) - -
WiiERE(D M T G.source-is equal to-beat available) AND

(D M-T-G7beg alt GE PAST CUSP.z) AND (D M T G.end alt LT
PAST=CUSP.z)-AND "{D_M_T_G.speed ,!g PAST:CUSP.mach}; -

UPDATE IN GRADIENT PARAMETERS
(transition speed type • 'mach',
transition-speed-· PAST CUSP.mach);

ELSE #select gradients associated with ias speed#
---oESCENT GRADIENT • SELECT FIELDS gradient,end alt,gradient type

FROM-DESCENT lAS TO GRADIENT (D I T G) - -
WiiERE<D s T G.source is equal to best available) AND

(D I-TG7bell..alt GE PAST CUSP.z) AND (D I T G.end alt LT
PAST=cUSP.z) ~ (i)_I_T_G.speed ,!g_ PAST=cUSP.iasfi -

UPDATE IN GRADIENT PARAMETER.
(transition speed type • 'ias',
transition-speed-· PAST CUSP.ias);

UPDATE IN GRADIENT PARAMETERS#-descent gradients are negative I
(max gradient --MIN(DESCENT GRADIENT.gradient),
min-gradient • MAX(DESCENT-GRADIENT.gradient));

#determine whether ~use nominal or minimum gradient#
CALL Min Or Nominal Gradient(DESCENT GRADIENT IN, Grad OUT,
- End Alt OUT,REsT TABLE IN); - - -
UPDATE IN-AGD VECTOR - -

(gradient•-Grad,
pa id gradient • Loc Pa Id); .

Alt • MAx(Goal Alt,End Alt);#altitude where gradient might change#
INSERTI-NTO ALTITUDE LIMITS (altitude • Alt);
IF 'hold' IS NOT IN ACTIVE PLANNED ACTIONS.pa type
THEN #altitude will block changes In speed I -

UPDATE IN AGD VECTOR
(acceleration • 'blocked',pa id acceleration • Loc PaId);

END Set Altitude_Descent_Phase_Parameters; - -

FIGURE 4-55 (Concluded)
SET_ALTITUDE_DESCENT_PHASE_PARAMETERS

4-104

ROUTINE Set Altitude Ascent Phase Parameters;
P.ARAMETFB.S -Loc Pa !Ci IN,Goal Alt-IN ;
REFER TO GLOBAL- - - - -

CLIMB MACH TO GBADIENT IN,
NOMINAL CLiMB-SPEEDS IN:-
CLIMB lAS TO GBADIENTIN;

REFPR TO-SHAiED-LOCAL -
ACTIVE PLANNED ACTIONS IN,
ALTITUDE_ LIMITS IN OUT,
GRADIENT PARAMETFB.S OUT;
AGD VECTOR INOUT, -
PAST CUSP IN;

DEFINE TABLES -
CLlMB GRADIENT

srad
end alt
gradient type

DEFINE VARIABLFs
Loc Pa Id
Goal Alt
Nom Mach
Tran Alt
End il.t
Alt-
Grad

CLIMB GRADIENT DATA
Gradient

. End altitude
Nominal or non-nominal;

Planned action id
Goal altitude
Nominal climb mach
Altitude to switch from ias to •ch
End of the linear segment
First break altitude
Gradient;

FIGURE 4-56
SET ALTITUDE ASCENT PHASE PARAMETFB.S

4-105

SELECT FIELDS mach #find nominal mach climb speed#
FROM NOMINAL CLIMB SPEEDS (N C S)
INTO Nom Mach - - -
WHERE N C S.source is equal to best available;

CALL Mach las Switchover(Nom Mach IN, PAST CUSP.ias IN,
---"fran Ait oUT); - - - -
IF PAST-CUSPYLT Tran Al.t
THEN # Iimit wilT be at or below tran alt. find ias gradient#
-coal Alt • MIN(Goal Alt;Tran Al.t);-

UPDATE IN GRADIJml' PARAMETERS.
(transition speed type • 'ias',
transition-speed-- PAST CUSP.ias);

CLIMB GRADIENT-- SELECT FIELDS gradient, end_alt, gradient_type
FROM CLIMB lAS TO GRADIENT (C I T G)
WHERE(C I T G.source is equal-to best ·available) AND

(C I-T-G:beg_alt I.E PAST CUSP.z) AND (C I T G.end alt
GT-PAST_CUSP.z) AND (C_I:T_G.speed .!!B, PAsT_CUSP.iis);

ELSE #select gradients associated with mach speed#
CLIMB GRADIENT • SELECT FIELDS gradient,end alt,gradient type

FROM CLIMB MACH TO GRAD'IENT (C M T G) - -
~(C M T G.source is equal to-best available) AND

(C M-T-G7beg_alt LE PAST CUSP.z) AND (C M T G.end alt GT
PAST:cUsP.z) AND TC_M_T_G.speed ~ PAST:cus'P.mach); -

UPDATE IN GRADIENT PARAMETERS
(transition speed type • 'mach',
transition-speed-- PAST CUSP.mach);

SELECT FIELDS gradient,end altlBelect nominal gradient#
FROM CLIMB GRADIENT (C G)
INTO Grad,End Alt -
WHERE (C_G.gradient_type ~'nominal');

UPDATE IN AGD VECTOR
(gradient ; Grad,
pa id gradient• Loc Pa Id);

Alt • MIN-(Goal Alt:,End-Alt);.
INSERTINTO ALTITUDE LOOTS (altitude • Alt);
UPDATE IN GRADIENT Pi'RAMETER.S #Store .gradient extremes#

(max gradient --HU(CLIMB GRADIENT.gradient),
min-gradient • MIN(CLIMB-GRADIENT.gradient));

IF 'hold' IS NOT IN ACTIVE PlANNED ACTIONS.pa type
THElf #altitude ·blocks any proposed-change in speed#
--uPDATE IN AGD VECTOR

(acceleration • 'blocked',
pa id acceleration • toe Pa Id);

END Set Altiude Ascent_Phase_Paraiieters;

FIGURE 4-56 (Concluded)
SET ALTITUDE ASCENT PHASE PARAMETERS

4-106

ROUTINE Min Or Nominal Gradient;
PARAMETFli.S DESCENT GRADIENT IN, Grad OUT, End_Alt OUT, REST_TABLE IN;
REFER TO SHARED LoCAL - -

PAST_CUSP IN;
DEFINE TABLES

Dl!SCENT GRADIENT DESCENT GRADIENT DATA
grad-
end alt
gradient _type

REST TABLE
rest :x:
rest y
restalt
qualifier
rest _point

DEFINE VARIABLES
Grad
End Al.t
Min-Grad
Min-End Alt
Rest Ara
Dist Rest Pt
New Tas
Avg Tas
Int"lrim Alt
Numerator

Gradient
End altitude
Nominal or non-nominal,

RESTRICTION TABLE
Restriction point :x: value
Restriction point y value
Restriction altitude
Restriction qualifier at at/above at/below
AGGREGATE(rest_:x:,rest_y);

Gradient for this segment
Altitude end of linear descent segment
Minimum gradient
End of segment associated with min grad
Along route distance of rest point
Distance to restriction point
Tas at end of action
Average tas
Altitude to change from min to nom. grad
Temporary used in computation;

FIGURE 4-57
MIN OR NOMINAL GRADIENT

4-107

SELECT FIELDS gradient,end alt #~elect nominal gradient#
FROM DESCENT GRADIENT -
INTO Grad,Ena Alt
WHERE DESCENT-GRADIENT. gradient type _m 'nominal';

IF (COUNT(REST_TABLE) ~ 1) AND -
(PAST CUSP.z GT REST TABLE.rest alt)

THEN # must decide between minimum -and nominal gradient #
~determines min grad and end altitude#

SELECT FIELDS grad,end alt
FROM DESCENT GRADIENT
INTO Min Grad,Min End Alt
WiiliD: DESCENT_GRADIENT.grad _m MAX(DESCENT_GRADIENT.grad);

Dist Rest Pt • 0;
C~Find-Distance To Restriction(REST TABLE IN,
--Dist ~st Pt INOUT); - -
IF Dist-Rest-Pt GT 0
THEN # calculate-altitude to switch from min to nominal grad #
~umerator • Dist Rest Pt * Min Grad * Grad *PAST CUSP.tas

/PAST CUSP.ground speed - PAST CUSP.z * Grad
+ Min-Grad * REST-TABLE.rest alt;

Interim Alt • Numerator I (Min Grad - Grad);
IF Interim Alt LT PAST CUSP.z -
THEN #gradient for current segment should be min grad #
--Grad • Min Grad;

End Alt • MAX (Min End Alt,Interim Alt);
END Min_Or_Nominal_Gradient; - - -

FIGURE 4-57 (Concluded)
MIN OR NOMINAL GRADIENT

4-108

ROUTINE Find Distance To Restriction;
P.ARAMETFB.S RFsT TABLE-nf,"Avg Tas IN,Dist Pt INOUT;
REFER TO GLOBAL- - - - -

AD. CRAFT MAX ENDURANCE SPEED IN;
HOLD PLANNED-ACT IONS IN, -
VECTOR PI..ANNiD ACTIONSIN;

REFER TO SHARED LOcAL -
PAST CUSP IN,
ACTIVE PLAWEI> ACTIONS IN;

DEFINE TAiJ..Es - -
REST TABLE RESTRICTION TABLE

rest x Restriction point x value
rest_y Restriction point y value
rest alt Restriction altitude
qualifier Restriction qualifier at'at/above at/below
rest_point AGGREGATE(rest_x,xest_,),

VECTOR POINTS VECTOR POINTS
Coord X

coord_y
sequence
coord

DEFINE VARIABLES
Avg_Tas
Dist Pt
Holc[F1x(2)
Hold Ard
Efc Time
Coorct(2)
Sequence
Old Coord(2)
Coord Ard
TiDle
M E Speed
Rest Ard

x coordinate
y coordinate
Vector sequence
AGGREGATE(coord _ x, coord-');

Average true air speed
Distance to xestriction point
Hold fix (x,y)
Along route distance of hold fix
Expect further clearence tiae
Coordinate point (x,y)
Vector sequence nuaber
Old coordinate (x,y)
Coordinate ard
Tiae of interest
Max endurance speed
Restriction points ard;

FIGURE 4-58
FIND DISTANCE TO RESTRICTION

4-109

CALL XY To Ard(REST TABLE.rest point IN,Rest Ard OUT);
Old Coocl -;;;;- PAST CUSP. position; - - -
IF 1 vector' IS IN ACTIVE PLANNED ACTIONS.pa type

.THEN #Add distance traveled in vector I -
---vECTOR POINTS • SELECT FIELDS vertex sequence number,

vertex coordinate - -
FROM VECTOR PLANNED ACTIONS (V P A)
WHERE V P A:pa id IS IN ACTIVE-PLANNED ACTIONS.pa id
ORDERED-BY vertex_sequence_number; - -

REPEAT FOR EACH VECTOR POINTS ·RECORD
CALL XY To Ard(VECTOR POrhTS.coord IN,Coord Ard OUT);
!l'TCooro Ard GT PAST-CUSP .ard) AND--c-coord Ard 'LE Rest Ard)
THEN I it-contributes-to distance # - - -
---nist Pt • Dist Pt + DIST(Old Coord,VECTOR POINTS.coord);

Old Coord • VECTOR POINTS coord; -
Sequence • VECTOR POINTS.sequence;

IF Sequence LT MAX(VECTOR POINTS.sequence)
THEN # rest of distance 18 along vector I
---oist_Pt • Dist_Pt + DIST(Old_Coord,REST_TABLE.rest_yoint);

IF (COUNT(VECTOR POINTS) ~ 0) OR (Sequence ~
- MAX(VECTOR POINTS.sequence) -
THEN-rir get distance from along route distance I
----CALL XY To Ard(Old Coord IN,Coord Ard OUT);

Dist Pt-- Dist Pt +Rest Ard - Coord Ard;
IF 'hold' IS IN ACTIVE PLANNED ACT IONS. pa type
THEN # check if restriction is-after hold-fix I
--Time • PAST CUSP.time;

SELECT FIELDS hold fix position,efc time
FROM HOLD PLANNED ACTIONS(H P A)-
INTO Hold-Fix,Efc-Time - -
WHERE H P-A.pa id-IS IN ACTIVE PLANNED ACTIONS;

CALL XY To-Ard(Hold Fix IN,Hold Ard OUT);-
"SELECT FIELDS speed- - - -

FROM AIRCRAFT MAX ENDURANCE SPEEDS(M E S)
INTO ME Speed - - --
WHERE M E S.source is best available AND

PAST-CUSP.z is in altitude range;
Del Time --(ME Speed- PAST CUSP.tas)/

-AGD VECTOR.acceleration);
Time • Time+ MAX (O,Del Time);
IF Hold Ard LT Res Ard -
Then II rest of time is spent in holding II

Dist Pt • Dist Pt + (~c Time - Time)*M E Speed;
END Find_Distance_To_Restriction;- --

FIGURE 4-58 (Concluded)
FIND DISTANCE TO RESTRICTION

4-110

this processing component alters the acceleration AGD variable
and sets a limit value to bound the extent of the acceleration
in the trajectory.

Organization

Speed planned action processing is an intermediate step in the
construction· of an aircraft's trajectory represented by its
list of cusps. The Speed Planned Action Processing component
guides the modeling of changes Ito the- aircraft's modeled
speed. Results from this process are used by Trajectory
Construction.

Figure 4-59 indicates the logical structure of the Speed
Planned Action Processing component. Each element is given in
design language in this section. The three system utilities,
Mach To Tas, Ias_To_Tas, and Shut Down PA are provided in
Appendix B.

Processing Method

The logical flow of the Speed Planned Action Processing com
ponent is indicated in Figure 4-60.- In Check For End Of
Active Speed Action (Figure 4-61), the list of active-pla'iined
actions is examined. If a speed action is on that list, then
it was partially responsible for the positioning of the past
cusp. Past cusp values are examined to see if the objective of
the active speed action has been achieved. If the speed
achieved at the past cusp matches the speed action's speed
goal, then the active speed action is eliminated from further
consideration. If the speed objective has not yet been
reached, the speed action is left active.

The past cusp represents a position where one or more pre
viously pending speed actions may compete to become active. In
Speed Pending Action OVerlap (Figure 4-62), those speed actions
starting at the past cusp are processed to allow only one
candidate speed action to emerge. Pending action overlaps are
resolved using the source and plan time fields of each planned
action in the usual way.

A candidate speed action and an active speed action are
examined in Arbitrate Speed Pending Vs Active Action (Figure
4-63). No more than one action is allowed to emerge from these
tests. If an altitude and/or hold action are active, then no
speed action is allowed access to the acceleration AGD
variable. All speed actions wanting such access are eliminated
in Resolve_Speed_Vs_Other_Active_Types (Figure 4-64). If

4-111

Speed Planned Action Processing
Check for End of Active Speed Action
Speed-Pending-Action Overlap -

shut Down PA -
Arbitrate Speed Pending Ve Acrtve Aetion

Resolve Speed Vs Other Type8 -
Shut-Down PA- -

Shut Down PA-
Elevate-NewSpeed Action to jctive Status

Mach-To Tas - - - -
las To 'fas

Set_Speed:Parametecs_For_lrejoOIOry_Constructiou

FIGURE 4-59
SPEED PLANNED ACTION PROCESSING (UUNG SEQUEN(E

4-112

ROUTINE Speed_Planned_Action_Processing·;
DEFINE TABLES

C S A CANDIDATE SPEED ACTIONS
- pa_id Planned action identification

pa_source Planned action source
plan time Time planned action was added to plan;
I check for the end of an active speed action first I

CALL Check For End Of Active Speed Action;
---r resolve planned action overlaps only with respect to the I

I new speed actions wanting to become active #
CALL Speed Pending Action Overlap(C S A OUT);
~OUNT(C-S A) GT-0 I a new speed actioillias been encountered I
THEN I test firs~against other PAs wanting acceleration variable#
---- I resolve any overlaps between the new action and an #

I already active action (if there is one) I
CALL Arbitrate Speed Pending vs Active Action(C SA INOUT);
'i'F'COUNT(C S A) GT 0-1 the new action Wins -- I
THEN I the-new action has emerged from all overlap tests #
---- I promote the new speed so that it can control #

I the AGD vector (acceleration variable) I
CALL Elevate New Speed Action To Active Status(C S A INOUT);

I for the active speed action, set any parameters needed by #
I Trajectory Construction I

CALL Set Speed Parameters For Trajectory Construction;
END Speed_Planned_Action_Processing; -

FIGURE 4-60
SPEED PLANNED ACTION PROCESSING

4-113

ROUTINE Check For End Of Active Speed Action;
REFER TO SHARED LOCAL- - - -

ACTIVE PLANNED ACTIONS INOUT,
PLANNED ACTION-END TIMES INOUT,
PAST CUSP IN; - -

DEFINE VARIABLES
Target_Speed
Loc Pa Id
IJ#- -

Speed which is being achieved
Planned action identifier for local use;

IF 'speed' IS IN ACTIVE PLANNED ACTIONS. pa type
THEN # speed active - Check for-end condition, record data and I
-- # eliminate PA if the end condition has been achieved II

SELECT FIELDS pa id,stop value
FROM ACTIVE PLANNED ACTIONS (A P A)
INTO Loc Pa-Id,Target Speed -
WiiERE A_P_A-;pa_type --'speed';

IF Target_Speed ~ PAST_CUSP.tas
THEN # the end condition has been achieved -- eliminate PA I

INSERT INTO PLANNED ACTION END TIMES
(pa id • Loc Pa Id,
pa-end time-- PAST CUSP.time)

I erase-last trace of PA in TJE I
DELETE FROM ACTIVE PLANNED ACTIONS (A_P_A)

WHERE A P A.pa id • Loc-Pa Id;
END Check_ For_ End_ Of_ Ac t1 ve _Speed_ Action;

FIGURE 4-61
CHECK FOR END OF ACTIVE SPEED ACTION

4-114

ROUTINE Speed Pending Action Overlap;
PARAMETJm.S C SA OUT;-# this-table will contain no more than one I

-- - # entry when this routine exits I
REFER TO SHARED LOCAL

SPEED PENDING ACTIONS INOUT,
PLANNED ACTION START TIMES INOUT,
PAST CUSP IN; - -

DEFINE TABLES-
C S A CANDIDATE SPEED ACTIONS
- pa_id Planned action identification

pa source Planned action source
plan time Time planned action was added to plan

D A - DELETE ACTIONS
pa_id .Planned action identification to delete;

FIGURE 4-62
SPEED PENDING ACTION OVERLAP

4-115

H build C S A table containing the identity of each PA now H
I coming active at the past cusp I

C S A • SELECT FIELDS pa id,pa source,plan time
- FROM SPEED PENDING ACTIONS Ts p' A) -

WHERE S P A stimulus value is-equal to the appropriate
PAST-CUSP value; ·

IF COUNT(c:s_A) GT 0 H "many" speed actions starting now I
THEN
-- H first record each start time I

REPEAT FOR EACH C S A RECORD;
INSERT INTO PLANNED ACTION START TIMES

(pa id • C S A.pa id,
pa-start tiiiie • PAST CUSP. time);

IF COuNT(C S A.pa source~ 'controller') GT 0 I at least one I
!REN I controller-action coming alive -- I
-- I eliminate all the PAs not placed by the controller I

D A • SELECT FIELDS pa id
-FROM C S A -

WHERE CS A.pa source NE 'controller';
CALL Shut Down PAfD A IN, 'Speed' IN);
~TE FROM C S A ,-delete the C S:A record with loop pa idl

WHERE C S A.pa id IS IN D A.pa id; -
I eliminate all the PAs that-have-an other than maximum I
I plan time I

D A • SELECT FIELDS pa id
-FROM C SA -

WHERE C SA .plan time NE MAX(C S A.plan time);
CALL Shut Down PA(C S A.pailiN, 'speed' IN);
i>EL'ETE FROM c sA #-delete-C SA record with loop pa id I

WHERE C S A.pa id IS IN D-A-;pa id; -
END Speed_Pending_Actions_Overlap;- -

FIGURE 4-62 (Concluded)
SPEED PENDING ACTION OVERLAP

4-116

ROUTINE Arbitrate_Speed_Pendina_vs_Active_Action;
PARAMETERS C SA INOUT; I this table will contain·no more than one I

- - I entry when this routine exits I
REFER TO SHARED LOCAL

ACTIVE PLANNED ACTIONS INOUT,
pJ..ANNED ACTION-END TDIES INOUT;

DEFINE TABLFS - -
C S A CANDIDATE SPEED ACTIONS

pa_id Planned action identification
pa source
plan time

ACTIVE 'SPEED
pa_id
pa_source
plan time

D A -
pa_id

Planned action source
Time planned action was added to plan

ACTIVE SPEED PLANNED ACTION
Planned action identification
Planned action source
Time planned action was added to plan

DELETE ACTIONS
Planned action identifications to delete;

FIGURE 4-63
ARBITRATE SPEED PENDING VS ACTIVE ACTION

4-117

I resolve first overlaps with other PA types I
CALL Resolve Speed Vs Other Types(C S A IN);
If'"TCOUNT(C H A) GT O) AND - -- -
- ('speed ,-IS INACTIVE PLANNED ACTIONS.pa type)
THEN I competing speed actions -= one has to yield I
~CTIVE SPEED • SELECT FIELDS pa id,pa source,plan time

FROM ACTIVE PLANNED ACTIONS (A P JJ -
WHERE A P A:pa type-- 'speed';--

IF ACTIVE_SPEED.pa_source ~ C_S_A.pa_source
THEN I plan time wins -- shut down oldest pa #
--IF ACTIVE SPEED.plan time GE C S A.plan time

THEN I active speed action is newer -keep it II
--D A • SELECT FIELDS pa id

-FROM C S A; -
CALL Shut-DOwn PA(D A IN, 'speed' IN);
'D"ELETE FROM C S A; 1 deletes all CS A;

ELSE I candidate-speed action is newer=- keep it I
~SERT INTO PLANNED ACTION END TIMES

(pa id • ACTIVE SPEED.pa id:-
pa-end time- PAST cusP:time);

DELETE-FROM ACTIVE PLANNED ACTIONS (A P A)
I gets rid of pa in ACTIVE structure- I
WHERE A P A.pa id • ACIVE SPEED.pa id;

ELSE I different-source-fields -- controller wins I
IF ACTIVE_SPEED.pa_source !,g_ 'controller'
THEN I keep the active speed -- controller placed I ---o A • SELECT FIELDS pa id

-FROM C S A; -
CALL Shu~DOwn PA(D A IN, 'speed');
'i>ELETE FROM C SA; 1 get rid of candidate pa I

ELSE I keep candidate -- controller placed I
--yNSERT INTO PLANNED ACTION END TIMES

(pa id • ACTIVE SPEED. pa :l,d-;-
pa-end time -PAST cusP:time);

DELETE-FROM ACTIVE PLANNED ACTIONS
WHERE ACTIVE Pl..ANNED ACTIONS. pA type • 'speed' ;

~ Arbitrate_Speed_Pending:vs_Active_Action; -

FIGURE 4-63 (Concluded)
ARBITRATE SPEED PENDING VS ACTIVE ACTION

4-118

ROUTINE Resolve Speed Vs Other Types; ·
PARAHETmS C SA INOuT; 1 this-table will contain no more than one #

- - I entry when this routine exits #
REFER TO SHARED LOCAL

ACTIVE_PLANNED_ACTIONS INOUT,
PLANNED ACTION END TIMES INOUT;

DEFINE TABLES - -
C S A CANDIDATE SPEED ACTIONS
- pa_id Planned action identification

pa_source Planned action source
plan time Time planned action was added to plan

ACTIVE SPEED ACTIVE SPEED PLANNED ACTION
pa_Id Planned action identification
pa_source
plan time

D A -
pa id

DEFINE VARIABLES
Loc Pa Id

Planned action source
Time planned action was added to plan

DELETE ACTIONS
Planned action identifications to delete;

Planned action identification for the active
speed;

FIGURE 4-64
RESOLVE SPEED VS OTHER TYPES

4-119

IF ('hold' OR 'altitude') IS IN ACTIVE PLANNED ACTIONS.pa type
THEN I competing types active now - check for speed shutdown I
---yF AGD VECTOR.acceleration • 'blocked'

THEN #-acceleration variable is blocked to speed. I
--I Get rid of the new and the candidate action. I

D A • SELECT FIELDS pa id
-FROM C S A; -

CALL Shut-DOwn PA(D A IN,'speed');
'i5ELETE FROM C S A; - -
IF COUNT(ACTIVE-PLANNED ACTIONS.pa type • 'speed') GT 0
THEN I an active speed action was present at the past I
-- # cusp. bring it into local storage for testing #

ACTIVE SPEED • SELECT FIELDS ALL
FROM ACTIVE PLANNED ACTIONS
WHERE ACTivE PLANNED ACTIONS. pa type ,!l. 'speed' ;
I shut down the speed PA by stating the end time I

INSERT INTO PLANNED ACTION END TIMES
(pa id • ACTIVE SPEED.pa id7
pa-end time -PAST cusP:-time) j

I gets rid of pa in-ACTIVE structure I
DELETE FROM ACTIVE PLANNED ACTIONS (A P A)

WHERE A P A.pa id • ACTlVE SPEED.pi id;
END Resolve_Speed_Vs_Other_Type; - -

FIGURE 4-64 (Conc~uded)
RESOLVE SPEED VS OTHER TYPES

4-120

another speed is active, then the same overlap criteria imposed
in Speed Pending Action Overlap are applied to determine
whether the active-speedor the candidate speed shall emerge.

A candidate speed action may emerge as the winner from_all the
overlap tests. In such a case, the candidate speed action is
considered no longer a candidate, but active, and is placed on
the active list by Elevate New Speed Action To Active Status
(Figure 4-65). - - - - - -

In the element Set Speed Parameters For Trajectory Construction
(Figure 4-66), an active-speed action is allowed access to the
AGD vector. Acceleration or deceleration parameters are
obtained from the aircraft characteristics data base and
entered into the acceleration AGD variable •. The target speed
of the active planned action is entered to limit the
acceleration.

4.3.6 Vector Planned Action Processing Design Logic

The Vector Planned Action Processing component is responsible
for determining the new AGD variables and their durations
needed in modeling a planned horizontal deviation from the
converted route. This component uses information from a vector
planned action to determine the direction variable in the AGD
vector. The information from this component will be merged by
Trajectory Construction with the AGD variables from the other
planned action processing components to construct the next cusp.

The vector planned action is composed of a number of apex
points, where an apex point is the point at which the old
course and the new course intersect. When changing course, the
aircraft's path will not change direction instantaneously at
the apex point. Therefore, to model the actual path of an
aircraft a number of linear segments are used (Figure 4-67).
The Vector Planned Action Processing component will break the
turn at each apex point into a number of segments. For each
segment it will set a single direction value.

Vector Planned Action Processing may be invoked before the
vector, inside a turn or between two turns. On invocation, the
component must be able to determine where in the vector the
past cusp is and what further processing must be done. The
various phases of modeling a vector action are illustrated in
Figure 4-68.

4-121

ROUTINE Elevate New Speed Action To Active Status;
PARAMETERS c s A INoUT; ,-this table will contain no more entries (J

- - I when this routine exits· I
REFER TO GLOBAL

SPEED CHANGE PLANNED ACTIONS IN;
REFER TO-SHARED-LOCAL - -

ACTIVE PLANNED ACTIONS INOUT,
PAST cUSP IN, -
PLANNED ACTION END TIMES INOUT,
SPEED PENDING ACTIONS INOUT;

DEFINE TABLES -
C S A CANDIDATE SPEED ACTIONS
- pa_id Planned action identification

pa source
plan time

DEFINE VARlABLES
Target Speed
LocZ-
Loc_Temperature

Planned action source
Time planned action was added to plan;

Speed value to achieve from planned action
Altitude from the past cusp
Temperature of air at the past cusp;

FIGURE 4-65
ELEVATE NEW SPEED ACTION TO ACTIVE STATUS

4-122

I get info for test and later inclusion
SELECT FIELDS speed

FROM SPEED CHANGE PLANNED ACTIONS (S C P A)
INTO Target Speed- - ---
WHERE S C P-A.pa id ~ C S A.pa id;
I get airspace parameters for speed conversion

SELECT FIELDS z,temperature
FROM PAST CUSP

I

I

INTO Loc Z,Loc Temperature;
IF Target Speed LT 2 I mach units for speed I
THEN - -
---c&11 Mach To Tas(Target Speed IN,Loc Temperature IN,

Target-Speed OUT); - - - -
ELSE I ias uidts for the speed value I
--Call las To Tas(Target Speed IN,Loc Z IN,Loc Temperature IN,

Target Speed OUT); - - - - - -
DELETE FROM SPEED PENDING ACTIONS I take PA off pending list I

WHERE SPEED PENDING ACTIONS.pa id • C S A.pa id;
IF Target Speed ~ PAST CUSP. tas - - - -
THEN I target speed already achieved -- shut down planned action I
--INSERT INTO PLANNED ACTION END TIMES

(pa id - c s A.pa id, - -
pa-end time-· PAST CUSP.time);

ELSE I speed change is necessary -- elevate pa to active status I
---rNSERT INTO ACTIVE PLANNED ACTIONS

say new speed-is now active I
(pa id • C S A.pa id,
pa-type --'speedT,
pa-source • C S A.pa source,
plan time • c-s-A.plan time),
stop-conditiOn ; 'speed',
stop-value • Target Speed);

DELETE FROM-e S A; I get rid of planned action as candidate I
END Elevate_New_Spee.d_Action_To_Active_Status;

FIGURE 4-65 (Concluded)
ELEVATE NEW SPEED ACTION TO ATIVE STATUS

4-123

ROUTINE Set_Speed_Parameters_For_Trajectory_Construction;
REFER TO GLOBAL

AIRCRAFT ACCELERATION IN,
AIRCRAFT-DECELERATION IN;

REFER TO SHARED LOCAL -
PAST CUSP IN,
AGD VECToR-rNouT,
SPEED LIMITS INOUT,
ACTivE PLANNED ACTIONS IN;

DEFINE VARIABLES
Target_ Speed
Loc Acceleration

Tas stop value
Acceleration value from aircraft

data
Loc Deceleration Deceleration value from aircraft

data;
IF 'speed' IS IN ACTIVE PLANNED ACTIONS.pa type
THEN # speed is now active - get Trajectory Construction info I
--SELECT FIELDS stop value

FROM ACTIVE PLANNED ACTIONS (A P A)
INTO Target-Speed - --
WHERE A P A:pa type= 'speed';

IF Target Speed GT PAST CUSP.tas
THEN # acceleration indicated - get acceleration value #
--SELECT FIELDS acceleration

FROM AIRCRAFT ACCELERATION (A A)
INTO Loc Acceleration -
WHERE A i.source is best available AND

PAST-CUSP.z IS IN the appropriate altitude range;
UPDATE IN AGD VECTOR I help construct AGD VECTOR I

(acceleration • Loc Acceleration); -
ELSE # deceleration indicated - get deceleration value #
--SELECT FIELDS deceleration I get info for later inclusion I

FROM AIRCRAFT DECELERATION (A D)
INTO Loc Deceleration -
WHERE A D.source is best available AND

PAST-CUSP.z IS IN the appropriate altitude range;
UPDATE IN AGD VECTOR I help construct AGD VECTOR I

(acceleratiOn • Loc Deceleration); -
set limit speed to bound acceleration value #

INSERT INTO SPEED LIMITS
(speed • Target Speed);

END Set_Speed_Parameters=For_Trajectory_Construction;

FIGURE 4-66
SET SPEED PARAMETERS FOR TRAJECTORY CONSTRUCTION

4-124

Course In

' Course In

Course Out
Course In

FIGURE 4·67
LINEARIZED TURNS

4-125

Actual Path

Legend:
~ Apex Points

--- Original Route
----Vector

---Turns

Phase 1 ,

~I

FIGURE 4·68
VECTOR PLANNED ACTION PHASES

4-126

Vector actions with overlapping extents are arbitrated in the
standard fashion. However, this specification assumes a more
stringent handling of vector route amendments. This
specification assumes that if a planner conceptually adds a
vector that ends on another vector, then the two vector actions
are combined into a single planned action by that planner or a
planned action interface with that planner. An example is
given in Figure 4-69.

Organization

The Vector Planned Action Processing component provides data
needed by Trajectory Construction to construct the next cusp.
The component will be called each time a cusp is constructed to
provide information about the next cusp. ·

Figure 4-70 indicates the logical structure of the Vector
Planned Action Processing component. The utilities Linear
Turn, Shut Down PA, and Route Direction At Point are provided
in design language in Appendix B. Each-or the other elements
is given in design langugage in this section.

Processing Method

The logical flow of the Vector Planned Action Processing com
ponent is indicated in Figure 4=71. The first element in the
Vector Planned Action Processing sequence is Check For End Of
Active Vector Action (Figure 4-72). The active planned-actions
are examined to see if the past cusp is the end of an active
vector action. If a vector has been completed then the action
is removed from the list of active actions.

The next step, Vector Pending Action Overlap (Figure 4-73),
determines which of the vector- pending actions start at the
past cusp. These will be referred to as candidate vector
actions. Vector Pending Action Overlap must narrow the number
of candidate vector actiOns to-at most one action. If one of
the vector planned actions was planned by the controller then
any not planned by the controller, can be eliminated. Further
elimination is based on examining plan times. All but the most
recently planned action will be eliminated.

If a new vector action starts at the past cusp and a vector
action was already active, then Arbitrate Vector Pending Vs
Active Action (Figure 4-74) determines which one will- be
active. This decision is based on the planned action source
and the plan time as in Vector_Pending_Action_Overlap.

4-127

(l)

(2)

(3)

FIGURE 4-69
RESULTING VECTOR

4-128

IU>ute

Original
Vector

New
Vector
Added

Vector_Planned_Action_Processing
Check_For_End_of_Active_Vector
Vector Pending Action Overlap

Shut Down PA -
Arbitrate Vector Pending Vs. Active Action

Shut DOwn PA- - - -
Elevate-New Vector Actio~ To Active Status
Set _Vector Parameters For-Trajectory Construction

New_Phase_Vector - - -
Route Directi.on At Point
Linear TUrn - -

FIGURE 4-70
VECTOR PLANNED ACTION PROCESSING CALLING SEQUENCE

4-129

ROUTINE Vector Planned Action Processing;
PARAMETERS Fl ld IN; - -
REFER TO SHARED L'OCAL

AGD VECTOR IN,
ACTIVE PLANNED ACTIONS INOUT;

DEFINE TABLEs
CVA
- pa_id

pa source
plan time

DEFINE VARIABLES
Fl Id

CANIDATE VECTOR ACTION
Planned action id
Planned action source
Time vector action was added to plan;

Identification of flight undergoing Trajectory
Estimation;

1--4 CALL Check For End Of Active Vector Action;# check for end point#
'C'ALi: Vector Pending ACtion oVerlap(C v A OUT);
#Find vectors that might be active#-- ---
IF COUNT(C V A)GT 0
THEN #must-narrow it to at most one action#

CALL Arbitrate_Vector_Pendina_Vs_Active_Action(C_V_A INOUT);
IF COUNT(C_V_A) ~ 1
THEN
---c:ALL Elevate New Vector Action To Active Status(C VA INOUT);
CALL Set Vector-Parameters-For Trajectory ConstructionfFl Id IN);

END Vector_Planned:Action_Processing; - - -

FIGURE 4-71
VECTOR PLANNED ACTION PROCESSING

4-130

ROUTINE Check For End Of Active Vector Action;
DFER TO SHARED LOCAL- - - -

PLANNED ACTION END TIMES INOUT;
VEC-PHASE INOUT' -
ACTIVE PLANNED ACTIONS INOUT,
PAST_cUSP IN; -

DEFINE VARIABLES
Loc Pa Id planned action id
Loc Stop vector stopping point;

#check-to see if vector is active I
IF 'vector' IS IN ACTIVE PLANNED ACTION.pa type
THEN #check for completion# - -
--SELECT FIELDS pa id, stop coordinate

INTO Loc Pa Id,Loc Stop
FROM ACTIVE-PLANNED ACTIONS
WHERE ACTivE_PLANNED_ACTIONS.pa_type ~ 'vector';

IF Loc Stop~ PAST CUSP.coordinate
THEN deliminate planned action#
--INSERT INTO PLANNED ACTION END TIMES

(paid • Loc Pa ld,pa end time •PAST CUSP.time)
DELETE-FROM VEC-PHASE; - - -
DELETE FROM ACTIVE PLANNED ACTIONS

WHERE ACTIVE _PLANNED_ ACTIONS. pa _type ~ 'vector'
END Check_For_End_Of_Active_Vector_Action;

FIGURE 4-72
CHECK FOR END OF ACTIVE VECTOR ACTION - - - -

4-131

ROUTINE Vector Pending Action Overlap;
PARAMETERS C V-A OUT; - -
REFER TO SHARED LOCAL

VECTOR PENDING ACTIONS INOUT,
PLANNED ACTION-START TIMES INOUT,
PAST CUSP -IN; -

DEFINE TABLES -
C V A CANDIDATE VECTOR ACTION
-pa_id Planned action id

pa source Planned action source
plan time Time vector was added to the plan

D A - DELETE ACTIONS
pa id Planned action id;

#create table of possible vector actions#
C V A • SELECT FIELDS pa id,pa source,plan time

#set-up list of possible actions,- -
FROM VECTOR PENDING ACTIONS
WHERE VECTO~PENDING-ACTIONS.stimulus value is equal to

the appropiate PAST CUSP value;
IF COUNT(C V A) GT 0 -
THEN # reco~ start times for candidate actions #
~PEAT FOR EACH C V A RECORD

INSERT INTO PLANNED ACTION START TIMES
< pa id • c v A. pa id, - -
pa start time •PAST CUSP.time) ;

IF COUNT(C V A:pa source !q 'controller') GT 0
THEN #shut-down all actions whose source in-not controller#
---n_A • SELECT FIELDS pa_id

FROM C V A
WH1RE C V A.pa source NE 'controller';

CALL Shut Down Pa(D A IN,~"'vector' IN);
DELETE FROM C V A ;-delete action !~source not controller#

. WHERE C V A.pa id IS IN D A.pa id;
#eliminate all but newest reco~# -
D_A • SELECT FIELDS pa_id

FROM C_V_A .
WHERE C V A. plan time NE MAX (C V A. plan time);

CALL Shut Down Pa (D A IN-;-'vectorT lN);
DELETE FROM C V A #delete oldest actions#

WHERE C_V_A.pa_id IS IN D_A.pa_id;
END Vector_Pending_Action_Overlap;

FIGURE 4-73
VECTOR PENDING ACTION OVERLAP

4-132

ROUTINE Arbitrate_Vector_Pending_Vs_Active_Action;
PARAMETERS C V A INOUT;
REFER TO SHARED LOCAL

PLANNED ACTION END TIMES INOUT,
VEC_PHASE INOuT, -
ACTIVE PLANNED ACTIONS INOUT;

DEFINE TABLES -
C V A CANDIDATE VECTOR ACTION

pa_id Planned action id
pa source
plan time

ACTIVE VECTOR
pa_id
pa source
plan time

D A -
pa_id

Planned action source
Time vector was added to the plan

ACTIVE VECTOR PLANNED ACTION
Planned action id
Planned action source
Time action was added to the plan

DELETE ACTION
Planned action id

FIGURE 4-74
ARBITRATE VECTOR PENDING ACTION VS ACTIVE ACTION

4-133

IF 'vector' IS IN ACTIVE PLANNED ACTIONS
THEN #decide ownership based on source and time I
---xcTIVE VECTOR = SELECT FIELDS pa id,pa source,plan time

FROM ACTIVE PLANNED ACTIONS - - -
WHERE ACTivE_PLANNED_ACTIONS.pa_type ,!q 'vector';

CHOOSE CASE
WHEN C_V_A.pa_source]9, ACTIVE_VECTOR.pa_source THEN
---, plan time decides active action# ·

IF ACTIVE_VECTOR.plan_time GT C_V_A.plan_time
THEN
--D A • SELECT FIELDS pa id

-FROM C VA -
CALL-sliut-DOwn Pa(D A IN, 'vector' IN);
DELETE FROM c v A; - - -

ELSE #shut dowm ACTIVE VECTOR#
--INSERT INTO PLANNED-ACTION END TIMES

(pa id • ACTIVE VECTOR.pa ia,
pa-end time • PAST CUSP.time);

DELETE-FROM VEC PHASE;-
DELETE FROM ACTIVE PLANNED ACTIONS(A P A)

WHERE A _P _A. pa _ Id ,!q ACTIVE_ VECTOR. pa _ id;
WHEN ACTIVE_ VECTOR. pa _source]9, 'controller' AND

C V A.source NE 'controller' THEN #controller wins#
D: A • SELECT FIELDS pa _ id

FROM C VA;
CALL Shut-DOwn Pa(D A IN, 'vector' IN);
DELETE FROM c v A; - - -

WHEN ACTIVE VECTOR:pa source NE 'controller' AND
---c_v_A.pa.=source ~-'controller' THEN

INSERT INTO PLANNED ACTION END TIMES
(pa id • AcTiVE VECTOR.pa id,
pa_end_time • PAST_CUSP.time);

DELETE FROM VEC PHASE;
DELETE FROM ACTlVE PLANNED ACTIONS(A P A)

WHERE A_P_A.pa_Id ~ ACTIVE_VECTOR.pa_id;
END Arbitrate_Vector_Pending_Vs_Active_Action;

FIGURE 4-74 (Concluded)
ARBITRATE VECTOR PENDING ACTION VS ACTIVE ACTION

4-134

If the old vector action was eliminated, or if no vector action
existed, then the candidate action is placed on the active
action list by Elevate New Vector Action To Active Status
(Figure 4-:75).

When there is a vector action (new or old) on the active action
list, and a hold action is not blocking the direction AGD
variable, then the vector will control the direction variable.
The direction variable is set by Set Vector Parameters For
Trajectory Construction (Figure 4•76). This element determines
the direction AGD variable. If the aircraft's modeled position
is at the start or middle of a turn, then the next- point in the
turn will be set as a limit on the direction variable. When
the past cusp is at the end of a turn then New Phase Vector
(Figure 4-77) and the utility Linear Turn (Appendii:B) are used
to determine the points used to linearize the next turn in the
vector. The first point in the next turn is then set as a
limit value on the extent of the direction variable.

4.3.7 Flight Route Follower Design Logic

Flight Route Follower exists to guide the construction of the
trajectory along the aircraft's converted route when appro
priate. Some planned actions induce alterations in the modeled
route of flight for an aircraft to achieve something different
than the converted route. In the absence of control maneuvers
that redirect the aircraft off its approved route, the Trajec
tory Estimation process respects the converted route.

The converted route of the aircraft is an ordered list of
points known in planning region coordinates which are executed
in order. Between points, a line segment can be constructed
which yields direction information. The sequence of route
parameters, when joined on a map, gives the path the aircraft
has agreed to take (in the absence of planned actions to the
contrary). The pilot knows that path.and will follow it unless
instructed otherwise by ATC.

Vector and hold planned actions imply regimes of flight where
the direction of the aircraft is under the control of ATC. In
all other phases, direction of the aircraft is the pilot's
responsibility given the converted route. Route following
logic establishes the direction of the aircraft in non-vector
and non-hold regimes.

As its name implies, the Flight Route Follower component forces
the Trajectory Construction algorithm to build a route coin
ciding (in (x,y) coordinates) with the pilot's filed route, as

4-135

ROUTINE Elevate New Vector Action To Active Status;
PARAMETERS C V A INOUT; - - - - .
REFER TO GLO'IAI'

VECTOR_PLANNED_ACTIONS IN;
REFER TO SHARED LOCAL

PAST CUSP IN,
VECTOR PENDING ACTIONS INOUT,
ACTIVE-PLANNED-ACTIONS INOUT,
VEC PHAsE OUT;

DEFINE-TABLES
C V A CANDIDATE VECTOR ACTION

pa_id Planned action id
pa source
plan time

DEFINE VARIABLES
Num Points
Poiii'ts(*,2)
First_Point(2)

Planned action source
Time action was added to the plan;

Number of points
Array of points (x,y) in the vector
First point (x,y) in vector;

FIGURE 4-75
ELEVATE NEW VECTOR ACTION TO ACTIVE StATUS

4-136

DELETE FROM VECTOR PENDING ACTIONS #action is now active# - -WHERE VECTOR_?ENDING_ACTIONS.pa_id ~ C_V_A.pa_id;
SELECT FIELDS vertex coordinate

FROM VECTOR _?LANNEn_ ACTIONS (V _P _A)
INTO Points
WHERE V_P_A.pa_id ~ C_V_A.pa_id
ORDERED BY V_P_A.vertex_sequence_number
RETURN COUNT (Num Points);

INSERT INTO VEC PHAS~
#VEe PHASE u;ed to determine parts of vector #
(pa ld•C V A.pa id,
phase point• Points(!),
phase-tum • PAST CUSP.coordinate);

INSERT INTO ACTIVE PLANNED ACTIONS
(pa id • C V A.pa id,
pa=type --'vector',
pa source • C V A.pa source,
plan time • c V A.pian time,
stop-condition_•_'pointT,
stop-coordinate • Points(Num Points));

DELETE FROM C V A; #candidate is-now active#
END Elevate_New_Vector_Action_To_Active_Status;

FIGURE 4-75 (Concluded)
ELEVATE NEW VECTOR ACTION TO ACTIVE STATUS

4-137

ROUTINE Set Vector Parameters For Trajectory Construction;
PARAMETERS Fl_Id IN; - - -
REFER TO SHARED LOCAL

ACTIVE PLANNED ACTIONS IN,
VEC_PHAsE INOUT, -
POSITION LIMITS INOUT,
PAST CUS~ IN,
AGP VECTOR INOUT,
TURN POINTS IN;

DEFINE TABLES -
LOC TURN LOCAL TURN POINT

turn x x coordinate of turn point
turn:Y y coordinate of turn point
turn_yt_course Turn point course
index Order of turn points
turn_pt AGGREGATE(turn_x,turn_y);

DEFINE VAlUABLES
Fl Id Identification of flight undergoing Trajectory

Loc Direction
·Value
Loc Pa Id
Lim Turn
Turn Index

Estimation
Direction for turn segment
Last turn point in vector
Planned action id
Limit on direction
Index of turn point;

FIGURE 4-76
SET VECTOR PARAMETERS FOR TRAJECTORY CONSTRUCTION

4-138

IF('vector' IS IN ACTIVE PLANNED ACTIONS) AND
- (AGD VECTOR.direction-NE 'blocked') -
THEN #vector has control of direction#
---:5ELECT FIELDS pa id,stop condition

FROM ACTIVE PLANNED ACTIONS(A P A)
INTO Loc Pa-Id, Value - -
WifERE A_P_A-;pa_type ~ 'vector';

Loc Direction • AGD VECTOR.direction;
IF PAST CUSP.coordinate NE VEC PHASE.phase turn
THEN #direction is unchanged set limit# -
--INSERT INTO POSITION LIMITS(position•VEC PH.ASE.phase turn);
ELSE # select all points used to model current turn I -

SELECT FIELDS turn_yt,turn_yt_course,sequence
FROM TURN POINTS -- -INTO LOC TURN
WiiF.iE ('!iiRN POINTS. pa id ~ Loc Pa Id) AND

(TURN_POINTS .apex_j'oint !Q. VEC_PHASE:pliase_yoint);
SELECT FIELDS turn_yt course,index

#direction at current point#
FROM LOC TURN
INTO Loc-Direction,Turn Index
WHERE LOC_TURN.turn_yt ~ PAST_CUSP.coordinate;

IF Turn Index LT MAX(LOC TURN.index)
THEN #Find Nextpoint in-turn I
---:5ELECT FIELDS turn _yt

FROM LOC TURN
INTO Lim-Turn
WiiERE LOC _TURN. index ~ Turn_ Index+ 1;

UPDATE IN VEC PHASE(phase turn•Lim Turn);
ELSE #FIND first point in next turn I -
--cALL New Phase Vector(Fl Id IN,Loc PaId IN,Value

---rNoUT,Lim Turn ouT, Loc Direction IN); -
INSERT INTO POSITION LlMITS(position•Lim~rn);
UPDATE IN AGD VECTOR(direction • Loc Direction,

pa id direction • Loc Pa Id); -
UPDATE IN ACTIVE PLANNED-ACTIONS(stop condition • Value)

WHERE ACTIVE_PLANNED_ACTIONS.pa_type !Q. 'vector';
~ Set_Vector_Parameters_For_Trajectory_Construction;

FIGURE 4-76
SET VECTOR PARAMETERS FOR TRAJECTORY CONSTRUCTION

4-139

ROUTINE New Phase Vector;
PARAMETERS Fl_Id IN, Loc_Pa_Id IN, Value INOUT,Lim_Turn OUT,

Loc Direction IN;
REFER TO GLOBAL -

VECTOR _PLANNED_ ACTIONS IN;
REFER TO SHARED LOCAL

VEC PHASE INOUT,
TURN POINTS INOUT;

DEFINE TABLES
TURN TURN I used to transfer linear turn datal

sequence Order of turn points
turn x x coordinate used to linearize turn
turn_y y coordinate used to linearize turn
turn pt course Course out of turn pt
turn yt-AGGREGATE (turn_ x, turn _y) ; -

DEFINE VARIABLES
Fl Id

Loc Pa Id
vaiue(2)
Lim Turn(2)
Lac-Direction
First Point(2)
Apex Point (2)
Course2
Num Points
Poi~ts(*,2)
Index

Identification of flight undergoing
Trajectory Estimation

Planned action id
Last turn point(x,y) in vector
Limit on turn segment(x,y)
Direction into apex point
First point(x,y) in vector
Apex point(x,y)
Course out of apex point
Number of points in points
Array of points(x,y) in the vector
Index to array points;

FIGURE 4-77
NEW PHASE VECTOR

4-140

SELECT FIELDS vertex coordinate
FROM VECTOR PLANNED ACTIONS (V_P_A)
INTO Points-
~URN COUNT(Num Points)
WHERE V_P_A.pa_id ~ Loc_Pa_Id
ORDERED BY V P A.vertex sequence number;

Index- O;D find apex point after VEC_PHASE.phase_?t#
REPEAT UNTIL Points(Index) ~ VEC_PHASE.phase_?oint;

Index = Index + 1;
Apex Point= Points(Index + 1);
IF (Index + 1) EQ Num Points
THEN #course ou~of last apex point is along the route#
----CALL Route Direction At Point(Fl Id IN, Apex Point IN,

-~ourse2-0UT); - - - -- - -
ELSE
---C-ourse2 = DIRECTION(Apex Point,Points(Index + 2));
CALL Linear Turn(Loc Direction IN,Course2 IN, Apex Point IN,
--rURN OUT-;-Fl Id IN); - - - -
DELETE FROM TuRN POINTS(T P)

WHERE T P.pa ld ~ Loc-Pa Id AND T P.apex point • Apex Point;
REPEAT FOR-EACH-TURN RECORD flstoutum datai' -

INSERT INTO TURN_POINTS(pa_id = Loc_Pa_Id,apex_?oint •
Apex_Point, sequence = TURN.sequence,turn_pt • TURN.turn_pt,
turn_pt_course = TURN.turn_pt_course);

SELECT FIELDS turn_yt
FROM TURN
INTO Lim Turn
WHERE TuRN.sequence EQ 1;

IF (Index + 1) ~ Num_Points
THEN # set stop condition for vector to last turn point I

SELECT FIELDS turn pt
FROM TURN -
INTO Value
WHERE TURN.sequence ~ MAX(TURN.sequence);

UPDATE IN VEC PHASE(phase_yoint = Apex Point, phase turn
- Lim...:_Turn); - -
keep track of current goals#

END New_Phase_Vector;

FIGURE 4-77 (Concluded)
NEW PHASE VECTOR

4-141

amended through Route Conversion or pilot/controller inter
action. The planned action processing environment provides a
convenient mechanism to allow route following to take place.

Organization

The flight route following logic is an intermediate step in the
construction of an aircraft's trajectory represented by its
list of cusps. The component is invoked to guide the modeling
of trajectory direction. Results of this process are used by
Trajectory Construction.

The flight route following logic is invoked after other route
processing logic. This design assumes that vector and hold
planned action processing has already completed, and their
results stored.

Processing Method

In Flight Route Follower (Figure 4-78), checks are first
performed to ensure that vector or hold actions are not being
actively modeled. A vector action commands the direction AGD
variable if it appears in the active planned action list. A
hold action commands the direction variable only if the hold
processing logic has entered a "blocked" value into the direc
tion AGD variable. This check is necessary since a hold opera
tion may imply a speed reduction where the direction AGD
variable is left unvalued.

Provided flight route following logic is allowed to operate,
the along route distance measure at the past cusp is used to
determine on which route segment the past cusp is located. The
converted route segment containing that distance value is
identified and the endpoints of the segment extracted into
local storage. The two points are used to obtain a direction
value for insertion into the AGD · vector. The along route
distance at the further of the two points is entered as the
limit bounding the extent of the direction variable.

4.3.8 Including Pending Actions Design Logic

Planned actions may be strategically placed along the route of
the aircraft. Some planned actions may, in fact, represent
aircraft maneuvers several minutes (or even tens of minutes) in
the future. All planned actions must undergo processing by
Trajectory Estimation's planned action processing components.
A planned action may, indeed, never reach the status necessary
to command an AGD variable, but it must always have the

4-142

ROUTINE Flight_Route_Follower;
PARAMETERS Fl Id IN
REFER TO GLOBAL -

ROUTES IN;
REFER TO SHARED LOCAL

PAST CUSP IN,
ACTIVE PLANNED ACTIONS IN,
AGD VECTOR INOUT,
ARD-LIMITS INOUT,

DEFINE-VARIABLES
Fl Id
Loc Ard

Start Point(2)

End_Point(2)

Flight identification
Along-route distance value of the converted

fix next on the aircraft's converted route
Converted fix at the start of the current

converted route segment for this modeling
pass

Converted fix at the end of the current
converted route segment for this modeling
pass;

FIGURE 4-78
FLIGHT ROUTE FOLLOWER

4-143

IF AGD VECTOR.direction NE 'blocked'
THEN ,-a hold action doesn't control the direction variable I
--IF 'vector' IS NOT IN ACTIVE PLANNED ACTIONS.pa type

!HEN I a vector action doesnTt control the direction variable I
---- I Get the converted fix that the aircraft is at or baa I

I passed. The result is the converted fix 1flth the 1·
maximum along route distance among all thQee that th• I
H aircraft has passed (or is at). I

SELECT FIELDS coordinate
FROM ROUTES
INTO Start Point
WHERE (ROUTES.fl_id ~ Fl_Id) AND

(ROUTES.along route distance ~
MAX(ROUTES .along route distance LE PAST CUSP.ald) i

I Get the converted fix that is next~or the aircraft I
I to achieve. The result is the converted fix with the I
I minimum along route distance among'all those tha~ the I
aircraft has yet to pass. I

SELECT FIELDS alona_route distance,coordinate
FROM ROUTES -
INTO Loc Ard ,End Point
WHERE (ROUTES.fl-id ~ Fl Id) AND

(ROUTES.alonl:route_distance ~
MIN(ROUTES.alona_route_distance GT PAST_CUSP.a~d);

I Flight Route Follower is allowed access to tbe AGO I
I direction variable. The direction put into the varl- I
able is the direction between the sta~ and end polatal
I for this converted route segment. I

UPDATE IN AGD VECTOR
(direction-• DIRECTION(Start Point,End Point));
I The direction is good only-until the-next converted I
I fix. Set the limit (in ardJ. #

INSERT INTO ARD LIMITS
(ard • Loc Ard);

END Flight_Route_Follower;

FIGURE 4-78 (Concluded)
FLIGHT ROUTE FOLLOWER

4-144

chance. These two items imply a mechanism by which planned
actions ahead of a given past cusp are allowed to affect the
construction of the trajectory. The trajectory must include
the explicit identification of events necessary to trigger a
pending planned action and allow it to be processed by planned
action processing components.

The limiting mechanism which bounds an AGD vector provides a
convenient method by which pending action starting events can
be explicitly identified. All cusps are constructed at limit
values identified by planned action processing components.
(However, not all limit values result in cusps.) Starting
conditions of pending actions are listed in limit structures.
When the starting condition limit results in a cusp, then
planned action processing components can identify the event as
a stimulus to begin processing the planned action responsible
for setting the starting event limit.

Organization

This component is invoked to compute pending action stimulus
values to ensure that pending planned actions will (eventually)
be considered by planned action processing. These stimulus
v~lues are included into the pending actions table and also
into the various limit tables. Results from this process are
used by Trajectory Construction and by planned action
processing (after the next cusp is built).

Figure 4-79 indicates the logical structure of Include Pending
Actions component. Each element is given in design language in
this section. The system utilities Get_Time_For_Speed_Change,
Mach_To_Tas, las To Tas, and Linear Turn are provided in
Appendix B. Additional utilities referenced in Include Alti
tude_Pending_Action_Limits are given in Appendix c.

Processing Method

The logical flow of Include Future PA Limits is indicated in
Figure 4-80. The element Include Hold Pending Action Limits
(Figure 4-81) processes each hold planned action on the hold
pending actions list for this aircraft. The hold fix is
obtained from the hold planned actions table. The speed at the
past cusp indicates the need for a speed change for this
aircraft. If the speed at the past cusp is greater than
maximum endurance speed (MES) for this aircraft, then the time
length of deceleration. is computed. A position is then
computed on the line between the past cusp and the hold fix

4-145

Include Future PA Limits
Include Hold Pending Action Limits

Get Time-For Speed Change
Include Altitude Pending Action Limits

Convert To Ard - -
Descent-To-Higher Altitude

Calculate Point To Reach Altitude
Calculate-Start-Point - -Find New Start Point

Last Point-For-Descent
Calculate Start Point - -Climb To Lower Altitude

· Calculate Point To Reach Altitude
, Calculate=Start:Point

Find New Start Point
Last Point-For-Climb-

Calculate Start Point
Set Start Limits

Include_Speed_Pending_Action_Limits
Speed Based By Time

Get Time-For Speed Change
Mach To Tas -
las To Tas

Speed_Based_By_Coordinate
Get Time For Speed Change
Mach To Tas - -

Speed Based By Ard
Get Time-For Speed Change

Include_Vector:Pending~ACtion_Limits
Linear Turn

FIGURE 4-79
INCLUDE PENDING ACTIONS CALLING SEQUENCE

4-146

ROUTINE Include Future PA Limits;
PARAMETERS Fl Id IN; - -
REFER TO SHARED LOcAL

SPEED PENDING ACTIONS INOUT,
ALTITUDE PENDING ACTIONS INOUT,
VECTOR PENDING ACTIONS INOUT,
HOLD PENDING ACTIONS INOUT;

DEFINE VARIABLES
Fl Id Input flight identifier; ,,-
IF COUNT(HOLD PENDING ACTIONS) GT 0
THEN - - -

--CALL Include Hold Pending Action Limits;
IF C'OiiNT(ALTITUDE PENDING ACTIONS) GT 0
T~N - - -
--CALL Include Altitude Pending Action Limits(Loc Fl Id IN);
IF COUNT(SPEED PENDING ACTIONS) GT 0 - - - -
THEN - - -

--CALL Include Speed Pending Action Limits;
IF "CC'iiNT(VECTOR-PENDING ACTIONS) GT 0
THEN - - -

--CALL Include Vector Pending Action Limits(Loc Fl Id IN);
END Include_Future:PA_Limits; - - - - -

FIGURE 4-80 .
INCLUDE FUTURE PA LIMITS

4-147

ROUTINE Include Hold Pending Action Limits;
REFER TO GLOBAL- - - -

HOLD PLANNED ACTIONS IN,
AIRCRAFT MAXlMUM ENDURANCE SPEEDS IN;

REFER TO SHARED LOCAL - -
HOLD_PENDING_ACTIONS INOUT,
PAST CUSP IN,
AGD _V'ECTOR--rN,
POSITION LIMITS INOUT;

DEFINE TABLES
LOC HOLD PA

pa_id
hold fix x
hold-fix-y
direction inbound

EFC time
leg-length type
leg-length-value
turn direction
hold-fix position

DEFINE VARIABLES
Loc_Position(2)
LocZ
Loc-Tas
Loc Temperature
Loc-Mes

Loc Direction

Average_Tas

Time For Speed Change
New X - -
New Y

Local copy of the speed planned action
record
Planned action identification
x coordinate at the hold fix
y coordinate at the hold fix
Direction of flight on leg inbound to

the hold fix
Expect further clearance time
Units used on the leg length
Measure of the leg length
Direction of turns in the hold
AGGREGATE (hold_fix_x,hold_fix_y);

x,y coordinates of the PAST CUSP
Altitude value at the PAST CUSP
Tas value at the PAST CUSP
Temperature value at the PAST_CUSP
The value of maximum endurance speed from

the aircraft characteristics tables
Direction from the PAST CUSP to the hold

fix
Average of tas values for start and end

speeds
Time it takes for the deceleration to MES
x coordinate of hold start point
y coordinate of hold start point;
AGGREGATE (New_x,New_y)

FIGURE 4-81
INCLUDE HOLD PENDING ACTION LIMITS

4-148

REPEAT FOR EACH HOLD PENDING ACTIONS RECORD;
LOC HOLD PA = SELECT FIELDS ALL

FROM HOLD PLANNED ACTIONS
WHERE HOLD_?LANNED_ACTIONS.pa_id ~

HOLD PENDING ACTIONS.pa id;
SELECT FIELDS position,z,tas,temperature

FROM PAST CUSP
INTO Loc Position,Loc Z,Loc Tas,Loc Temperature;

SEL~FIELDS speed - - -
FROM AIRCRAFT MAX ENDURANCE SPEED (A M E 's)
l'NT'O' Loc Mes - - - - - -
WHERE AM E S.source is best available for this aircraft AND

Loc ZIS-IN the appropriate altitude range;
CALL Get Time For Speed Change('tas' IN, Loc Tas IN,Loc Z IN,
--Loc Temperature IN, 'Ias' IN,Loc MesiN,Loc z IN, - -

Lee-Temperature IN,Time For Speed Change OUT,-
Average Tas OUT)i - - - --

Loc Direction =:D:fRECTION(Loc Position,
LOC HOLD PA.hold fix position);

(New x:New Y) - Average-Tas * Time For Speed Change *
(SIN(Loc Direction),COS(Loc Direction));-

New Position • MAX(Loc Position,LOC HOLD PA.hold fix_yosition -
(New X,New Y)J; - - - -

I MAX function taken to obtain the further of the two points along I
I route of the aircraft I

INSERT INTO POSITION LIMITS
(position • New_Position);

UPDATE IN HOLD PENDING ACTIONS
(stimulus type = "position",
stimulus-position = New Position)

WHERE SPEEn_PENDING_ACTiONS.pa_id !'& LOC_HOLD_PA.pa_id;
END Include_Hold_Pending_Action_Limits;

FIGURE 4-81 (Concluded)
INCLUDE HOLD PENDING ACTION LIMITS

4-149

where the speed action should start. This ~tart position of
the planned action is computed to allow deceleration to MES by
the hold fix. (That computed position is the hold fix if the
aircraft is at MES at the past cusp.) This position value is
inserted into both the pending action list entry for this hold
action and into the position limits table.

The method used to determine the start position for the hold is
one that is common to several types of planned actions. The
method is illustrated in Figure 4-82. The past cusp is Cn.
The a priori position of the next cusp is at Cn+l" The hoid
fix indicated in the figure is used to compute the hold start
point (position to start deceleration) on the line between Cu
and the hold fix. The start position is included as a position
limit. The limit value can not be· chosen, however, by
Trajectory Construction since it does not lie in the proper
direction from Cn. This insertion into the position limit
structure is guaranteed not to affect the position of the next
cusp, Cu+l•

However, when Cn+l is the past cusp, the method will yield
the correct start point. Special allowances have been
established in the planned action processing components should
the basing position of the planned action be close to the
actual position of the next cusp.

The element Include Altitude Pending Action Limits (Figure
4-83) processes each altitude planned action -on the altitude
pending actions list. The actions on the pending list fit into
one of two categories; either their start conditions are
explicitly given or their start condition is based on a
restriction point. These restriction points may have been
placed in the middle of the action or at the end of the
action. The procedure in modeling an action with a starting
point based on a restriction point is to model a descent as
late as possible and a climb as .soon as possible. Therefore,
the active actions and the other planned actions may change an
altitude action's starting point (Figure 4-84). Since climbs
are modeled as starting as soon as possible, it is necessary to
know whether any other altitude changes are scheduled between
now and the latest point to start a climb. Convert To Ard
(Figure 4-85) is used to convert start conditions to a-common
unit: along-route distance. When the start condition must be
determined, one of the following four routines is called:

• Descent_To_Higher_Altitude (Figure 4-86) for descents
to an altitude greater than or equal to the past cusp
altitude

4-150

_,J:)

.,-"
,-"

,.,Hold Fix

,.,"' ' ._, ./ Start Point
,-" /

fcn+l ./·
I /
I •
I ./
I .I
I /
I •
I .I
I ,I

FIGURE 4·82
COMPUTATION OF POSITION START LIMITS

4-151

ROUTINE Include_Altitude_Pending_Action_Limits
PARAMETERS Fl Id IN;
REFER TO GLOBAL -

ALTITUDE CHANGE PLANNED ACTIO~ IN,
ALTITUDE.JffiSTRICTIONS_PARAMETERS."IN;

REFER TO SHARED LOCAL
ACTIVE _PLANNED_ ACTIONS IN,
PAST CUSP IN,
ALTITUDE_PENDING_ACTIONS IN;

DEFINE TABLES
RESTRICTION RESTRICTION POINT TABLE

altitude
rest x
rest_y
point

ALT START POINT
pa_id
start time
s.tart-ard
start-altitude
start x
start_y
stimulus_ type
last type
start point

DEFINE VARIABLES
Fl Id

Tran Type
Base-Type
Base-Point(2)
Base Time
Base-Ard
Loc Pa Id

Restriction altitude
x coordinate
y coordinate

AGGREGATE(rest x,rest y)
ALTITUDE START-POINTS-

Planned action id
Time to start maneuver
Along route distance to start
Altitude to start maneuver
x value to start action
y value to start action
Type of stimulus
Temporary start type

AGGR~GATE(start_x,start_y);

Identity of aircraft for Trajectory
Estimation

Transition type climb or descent
Base type altitude,point,time,etc
Base-point (x,y)
Base time ·
Base distan.ce
Planned action id;

FIGURE 4-83
INCLUDE ALTITUDE PENDING ACTION LIMITS

4-152

REPEAT FOR EACH ALTITUDE PENDING ACTIONS RECORD
SELECT FIELDS pa id,transition type,

base_value_type,base_position,base_t,base_ard
INTO Loc Pa Id,Tran Type,Base Type,
---aase Point,Base Time,Base Ard
FROM ALTITUDE CHANGE PLANNED-ACTIONS
WiiERE ALTITUDE_ CHANGE _PLANNED_ ACTIONS. pa_ id ~

ALTITUDE PENDING ACTIONS.pa id;
IF Base Type NE 'restriction coordinate'
THEN #Record point to start-maneuver I·
----yF 'altitude' IS NOT IN ACTiVE PLANNED ACTIONS.pa type

THEN H translate start point to ard I - -
---cALL Convert To Ard(Fl Id IN,Base Type IN,
~ase Ard lNOUT,Base-TimeiN,Base Point IN);

INSERT INTO ALT START POINT (paid • LO.c Pa Id,
start time= Base Time,start ard • Base Ard,
start-point ~ Base Point,stimulus type-· Base Type);

ELSE H point to start ma~euver is determined by I -
~restriction point#

RESTRICTION • SELECT FIELDS rest z,rest~osition
FROM ALTITUDE RESTRICTIONS PARAHETERS(A R P)
Wii'EifE A_R_P.pa_id El Loc_Pa_Id; --

IF (Tran Type EQ 'descent')
THEN H calculate latest point to start descent#
--IF PAST CUSP.z LE RESTRICTION.altitude

THEN #determine:ff action makes sense I
~CALL Descent To Higher Altitude(Fl Id IN,

---:?\LT START-POlNT INOUT,RESTRICTION IN,
Loc=Pa_Id-IN); --

ELSE
CALL Laat_Point_For_Descent(Fl_Id IN,

ALT START POINT INOUT,RESTRICTION IN,
I.oc-Pa Id-IN); --

ELSE #calculate-latest point to climb#
--IF PAST CUSP.z GE RESTRICTION.altitude

THEN #determineif action makes sense#
CALL Climb_To_Lower_Altitude(Fl_ID IN,

ALT STaRT POINT INOUT,RESTRICTION IN,
Loc=Pa_Id-IN); --

ELSE
--CALL Last Point For Climb(Fl Id IN ,ALT START POINT

--INOUT,RESTRICTIONS IN,Loc-Pa Tcl IN)"i" -
CALL Set Start Limits(ALT START POINT IN); - -

END Include_Altitud(~Pending_Action_Limits; --

FIGURE 4-83 (Concluded)
INCLUDE ALTITUDE PENDING ACTION LIMITS

4-153

Start of Descent~

Distance

Start of
Descent

Distance

FIGURE 4-84

,,
I '
I ' : ,,
I ._
I.
I
I

~' I'
I '
I '
I '
I "
I
I
I

START MANEUVER AS A FUNCTION OF ALTITUDE

4-154

Restriction
Point

ROUTINE Convert To Ard;
PARAMETERS Fl Id IN, Loc Type IN, Pa Ard INOUT,

Pa_Time IN-; Pa_Point lN; -
REFER TO GLOBAL

HOLD PLANNED ACTIONS IN;
REFER Ttr SHARED!.OCAL -

AGD VECTOR IN,
PAST CUSP IN;

DEFINE VARIABLES
Fl Id Identity of aircraft for Trajectory

Loc Type
Pa Ard
Pa-Time
Pa-Point(2)
Loc Ard
Target_ Speed
EFC Time
Coord(2)
Target Speed
Del Tiiiie
Hold Fix
Ace Time
Avg_Speed

Estimation
Base type of action
Actions start ard
Action start time
Action start x,y
Local along route distance
Active actions target speed
Expect further clearence time
Coordinate (x,y)
Speed to be used until del time
Time to pa time -
Holding fii
Active actions acceleration time
Active actions average speed;

FIGURE 4-85
CONVERT TO ARD

4-155

CHOOSE CASE
WHEN Loc Type ~ 'ard' THEN; I no need to convert#
WHEN Loc=Type ~ 'position' THEN

CALL XY To Ard(Fl Id IN,Pa Point IN,Loc Ard OUT);
Pa Ard ; Lac Ard;- -- - -- - ---

WHEN Loc Type ~ ' time' THEN
~start dependent on active actions#

Coord = PAST CUSP.position;
Target __ Speed-· PAST_ CUSP. tas;
Avg Speed • PAST CUSP.tas;
Ace-Time "' 0; -
Del-Time • Pa Time - PAST CUSP.time;
IF (AGD VECTOR.acceleration NE 0) AND
- (AGD-VECTOR.acceleration NE 'blocked')
THEN I find target speed I -
-----CALL Calculate Speeds And Times(Fl Id IN,Acc Time INOUT,

--r»e1 Time INOUT, Target-Speed INOUT,Ava_Speed INOUT,
Pa Time IN); -

IF 'hold'-IS IN-xCTIVE PLANNED ACTIONS
THEN

. ----s-ELECT FIELDS hold fix position,efc time
FROM HOLD_PLANNli>_A~TIONS (H_P_A)
INTO Hold Fix,EFC Time
WHERE H_P:A.pa_id-~ AGD_VECTOR.pa_id_acceleration;

IF Del Time GE 0
THEN ~will aircraft be out of hold at pa time #
-CALL XY To Ard(Fl Id IN, Hold Fix IN, Loc Ard OUT);

Del Time --MAX(O,(Pa Time - EFC Time)); - ---
Ace-Time • 0; - -
Coord • Hold Fix;

CALL Point At Time(Fl Id IN,Acc Time IN,
---AGD VECTOR.gradient IN, Avg-SpeediN, PAST_CUSP.z IN,

Coord INOUT); -- ~ -
CALL Point At Time(Fl Id IN,Del Time IN,AGD VECTOR.gradient
---IN,Target-Speed IN,PAST CUSP.z IN-;-eoor'd INOUT);
CALLXY To Ard (Fl I diN, Coord IN, Loc Ard OUT);
Pa Ard; Lac Ard;- - -- - ---

END Convert_To_Ard; -

FIGURE 4-85 (Concluded)
CONVERT TO ARD

4-156

ROUTINE Descent To Higher Altitude;
PARAMETERS Fl Id IN, ALT START POINT INOUT, RESTRICTIONS IN,

Loc Pa ID IN; - - - -
REFER TO GLOBAL

ALTITUDE CHANGE PLANNED ACTIONS IN;
REFER TO SHARED LOlrAL

ACTIVE PLANNED ACTIONS IN,
PAST CUSP IN: --
AGD _VECTOR IN;

DEFINE TABLES
RESTRICTION

altitude
rest x
rest_y
point

ALT START POINT
paid
start time
start -ard
start-altitude
start x

. -
start_y
stimulus type
last type
start point

DEFINE VARIABLES
Fl Id

Loc Pa Id
Target=Ard

Target Alt
Start Point
Time
Speed
Target Pt
Act Pa-Id
Start Ard

RESTRICTION POINT TABLE
Restriction altitude
x coordinate
y coordinate

AGGREGATE (rest_x, rest_y)
ALTITUDE START POINTS

Planned action id
Time to start maneuver
Along route distance to start
Altitude to start maneuver
x value to start action
y value to start action
Type of stimulus
Temporary start type

AGGREGATE(start_x,start_y);

Identity of aircraft for Trajectory
Estimation

Planned action id
Ard of point where active action

reaches target alt
Actions target altitude
Point to start action
Time at point ·
Speed at point
Point to reach target altitude
Active actions pa id
Starting condition ard;

FIGURE 4-86
DESCENT TO HIGHER ALTITUDE

4-157

IF 'altitude' IS IN ACTIVE PLANNED ACTIONS.pa type
THEN I find target altiude-# - -
--CALL Find Target Altitude(Fl Id IN,Target Alt OUT,

---rct_Pa=Id OUT); - - - -
CHOOSE CASE

WHEN (AGD_VECTOR.gradient !Q 0) AND (PAST_CUSP.z ~
RESTRICTION.altitude)THEN #action starts at restriction#
CALL XY To Ard (Fl Id IN,RESTRICTION.point IN,
--Start Ard OUT);- - -
INSERT INTO ALT START POINT.

(pa id•Loc Pa Id, -
stimulus type • 'position',
start point n RESTRICTION.point,
start-ard • Start Ard);

WHEN (AGD VECTOR.gradient LE 0) OR ((AGD VECTOR.gradient GT 0)
-AND (Target Alt LT RESTRICTION.altitude))THEN -

#can't set start~o descent point# --
INSERT INTO ALT START POINT

(pa id • Loc-Pa Id-,
stiiulus type --'none');

OTHERWISE #a climb is being executed a descent is possible I
SELECT FIELDS tas,position,time

FROM PAST CUSP
~ Speed,Target Pt,Time;

CALL Calculate Point-To Reach Altitude(Fl Id IN,Target Alt
--yN,Target Ard OUT~Target Pt INOUT,PAST-CUSP:Z IN, -

Time INOuT,Speed INOUT,ACt Pa Id IN); - -
CALL Calculate Start Point(Fl-Id-IN,Target Pt IN,
--rarget Alt lN,RESTRICTION lN,Start Point OUT,

Loc Pa-Id IN,Time IN,Speed:fN,Start Ard OUT);
IF Start Ard LT TargetArd - - -
THEN I action-starts before the completion of current#
~action#

INSERT INTO ALT START POINT
(pa id • Loc-Pa Id-;
stimulus type; 'altitude',
start altitude • RESTRICTiON.altitude);

ELSE #action-starts at start point I
----rNSERT INTO ALT START POINT

(pa id • Loc-Pa Id~
stimulus type -; 'position',
start_point • Start_Point);

END Descent_To_Higher_Altitude;

FIGURE 4-86 (Concluded)
DESCENT TO HIGHER ALTITUDE

4-158

• Last Point For Descent (Figure 4-87) for descents to an
altitude below-the past cusp altitude

• Climb To Lower Altitude (Figure 4-88) for climbs to an
altitude-less than or equal to the past cusp altitude

• Iast_Point_For_Climb (Figure 4-89) for climbs to an.·
altitude above the past cusp altitude

The first step in these routines is. to see if the action is
possible. If it is feasible and no altitude action is
currently active, then the element Calculate Start Point
(Figure 4-90) calculates the latest point to start the
maneuver. This is done by assuming the action starts at the
past cusp and then using the elment Calculate ·Point To Reach
Altitude (Figure 4-91) to compute the point to arrive at the
restriction altitude. When this point is before the restric
tion point, the element Find New Start Point (Figure 4-92) is
used to displace the start point and the process is repeated
until the latest point to start the maneuver is found. If
there is an altitude action already active, then the end point
of the active action is found by use of Calculate Point To
Reach Altitude. Calculate Start Point then uses the end of-the
active action as its start-point7

Once the latest start point for all altitude actions (note if
the start condition is given explicitly, then the start condi
tion point is the latest point) has been determined, Set Start
Limits (Figure 4-93) is called. This element determines the
earliest point to begin climbs, updates pending action stimulus
values, and stores the various start conditions as limits for
use by Trajectory Construction.

Include_Speed_Pending_Action_Limits (Figure 4-94) controls the
computation of a speed pending action stimulus value. In the
element Speed_Based_By_Time (Figure 4~5), pending speed
actions based by a time value are processed. If the basing
time value is at the start of the speed maneuver, that time
value is inserted into the speed pending actions record and the
time limits structure. If the basing point occurs at the end
of the action, then the time to accelerate (decelerate) is
computed using the speed value stored at the past cusp. The
acceleration (deceleration) time is subtracted from the basing
time value and this difference inserted as stimulus for the
pending action and as a time limit.

4-159

ROUTINE Last Point For Descent;
PARAMETERS Fl_Id IN,ALT_START_POINT INOUT, RESTRICTIONS _!!!,

Loc Pa ID IN;
REFER TO GLOBAL

ALTITUDE CHANGE PLANNED ACTIONS IN;
REFER TO SHARED LOCAL - -

ACTIVE PLANNED ACTIONS IN,
AGD VECTOR IN,- -
PAST CUSP IN;

DEFINE TAB~ES-
RESTRICTION RESTRICTION POINT TABLE

altitude Restriction altitude
rest x
rest_y
point

ALT START POINT
paid
start time
start -ard
start altitude
start x
start y
stimulus type
last type
s tart_point

DEFINE VARIABLES
Fl Id

Loc Pa Id
Target=Alt
Target_Ard

Act Pa Id
Time
Speed
Target Pt
Start Point
Start-Ard

x coordinate
y coordinate

AGGREGATE(rest_x,rest_y)
ALTITUDE START POINTS

Planned action id
Time to start maneuver
Along route distance to start
Altitude to start maneuver
x value to start action
y value to start action
Type of stimulus
Temporary start type

AGGREGATE(start_x,start_y);

Identity of aircraft for Trajectory
Estimation

Planned action id,
Actions target altitude
Point where target altitude is reached

ard
Active actions pa id
Time at point in
Speed at point
Point to reach target altitude
Point to start action
Starting condition ard;

FIGURE 4-87
LAST POINT FOR DESCENT

4-160

SELECT FIELDS tas,position,time
FROM PAST CUSP
IR'.l'O' Speed, Target Pt ,Time;

CALL Calculate Start-Point(Fl Id IN,Target Pt IN,PAST CUSP.z IN,
----aESTRICTION-IN, Start Point OUT,Loc PaId IN,Time IN,

Speed IN, Start Ard OuT); -- - - -
IF 'altitude' IS IN ACTIVE PLANNED ACTIONS.pa type
THEN I find target altiude-# - -
----CALL Find Target Altitude(Fl Id IN,Target Alt OUT,

----xct Pa-Id OUT); - - - -
IF (PAST_CUSP.ard GE Start_Ard) OR (AGD_VECTOR.gradient]g 0)
THEN
--IF (PAST CUSP.ard GT Start Ard)

THEN II start now II- -
--Start Point • PAST CUSP.position;

Start-Ard • PAST CUSP.ard;
INSERT INTo ALT START POINT
. (paid • Loc-Pa Id:stimulus type • 'position',

start point~ Start Point,start ard • Start Ard);
ELSE II calculate descent from target altitude# -
~ALL Calculate Point To Reach Altitude(Fl Id IN,Target Alt IN,
~arget Ard OUT,Target Pt INOUT,PAST CUSP.z-rN, - --

Time INOUT, Speed INOuT ,Act Pa Id IN); -
CALL Calculate Start Point(Fl-Id-IN,Target Pt IN,Target Alt IN,
--aESTRICTION-IN,Start Point-OUT,Loc Pa Id IN,Time IN,- -

Speed IN,Start Ard OUT); - - - - -
CHOOSE CASE - -

WHEN Start Ard GE Target A;rd THEN #start at start point#
--INSERT INTO ALT START-POINT-

(pa id • Loc -Pa Id-;
stimulus typ't! --'position',
start point • Start Point);

WHEN (AGD vECTOR.gradient-LT O)THEN
#start maneuver but interupt at~t.alt#

INSERT INTO ALT START POINT
(pa id • Loc Pa Id,
stimulus type --'altitude', ·
start altitude • RESTRICTION.altitude);

OTHERWISE #start maneuver now#
INSERT INTO ALT START POINT

(pa id • Loc-Pa Id-;-
stimulus type~ 'position',
start_point • PAST_CUSP.postion);

END Last_Point __ For_Descent;

F'IGURE 4-87 (Concluded)
LAST POINT FOR DESCENT

4-161

ROUTINE Climb To Lower Altitude;
PARAMET:m.S Fl=Id-IN,ALT_START _POINT INOUT ,RESTRICTIONS IN,

Loc Pa ID IN;
REFm 'To SHARED LOCAL

PAST_ CUSP IN,
ACTIVE PLANNED ACTIONS IN,
AGD VECTOR IN;-

DEFINE-TABLES -
RESTRICTION RESTRICTION POINT TABLE

altitude
rest x
resty
point

ALT START POINT
pa id
start time
start-ard
start-altitude
start x
start_y
stimuTus type
last type
start_point

DEFINE VARIABLES
Fl Id

Loc Pa Id
Target Alt
Target=Ard

Start Point
Time
Speed
Target Pt
Act Pa-Id
Start Ard

Restriction altitude
x coordinate
y coordinate

AGGREGATE(rest x,rest y)
ALTITUDE START-POINTS-

Planned action id
Time to start maneuver
Along route .distance to start
Altitude to start maneuver
x value to start action
y value to start action
Type of stimulus
Temporary start type

AGGREGATE(start_x,start_y);

Identity of aircraft for Trajectory
Estimation

Planned action id
Pctions target altitude
Point where target altitude is reached

ard
Latest point to start action
Time at poi;nt
Speed at point
Point to reach target altitude
Active planned action id
Starting condition ard;

FIGURE 4-88
CLIMB TO LOWER ALTITUDE

4-162

IF 'altitude' IS IN ACTIVE PLANNED ACTIONS.pa type
THEN # find target altiude-1 - -
--CALL Find Target Altitude(Fl Id IN,Target Alt OUT,

--xct Pa-Id OUT); - - - -
CHOOSE CASE - -

WHEN (AGD _VECTOR. gradient ~ 0) AND (PAST_CUSP.z ~
RESTRICTION.altitude)THEN
CALL XY To Ard(Fl Id IN,RESTRICTION.point IN,
--Start Aid OUT)i - -
INSERT INTO ALT START POINT

(pa id •Loc Pa Id,
stimulus type-= 'position',
start point •RESTRICTION.point,
start-ard = Start Ard);

WHEN (AGD VECTOR.grad:f.ent GE O)OR((AGD VECTOR.gradient LT 0)
---xNI> (Target Alt GT RESTRICTION.altltude))THEN -

#can't set start~o climb I ----
INSERT INTO ALT START POINT

(pa id = Loc-Pa Id-,
stimulus type; 'none');

OTHERWISE #a climb is possible since descent is active I
SELECT FIELDS tas,position,time

FROM PAST CUSP
INTO Speed,Target Pt,Time;

CALL Calculate Poin~To Reach Altitude(Fl Id IN, Target Alt
--IN,Target Ard OUT:-Target Pt INOUT,PAST-CUSP.z IN, -

Time INOUT,Speed INOUT,ACt Paid IN); - -
CALL Calculate Start Point(Fl-Id-IN,Target Pt IN,Target Alt
--IN,RESTRICTION IN-;start Point OUT,Loc Pa IdiN,Time IN,

Speed IN,Start Ard OUT); - - - - -
IF (Start-xrd LT Target Ard)
THEN #action starts before the completion of current#
-- #action#

INSERT INTO ALT START POINT
(pa id = Loc-Pa Id:
stimulus type; 'altitude',
start altitude • RESTRICTION.aititude);

ELSE #ac.tion-starts at start point#
--INSERT INTO ALT START POINT

-cpa id ,. Loc-Pa Id:-
stimulus type~ •position',
start point = Start Point);

END Climb_To_Lower __ Altitude; -

FIGURE 4-88 (Concluded)
CLIMB TO LOWER ALTITUDE

4-163

ROUTINE Last Point For Climb;
PARAMETERS Fl Id IN, ALT START POINT INOUT,RESTRICTIONS IN,

Loc Pa ID IN; - - - -
REFER TO SHARED LOCAL

PAST CUSP IN,
ACTIVE PLANNED ACTIONS IN,
AGD VECTOR IN;-

DEFINE-TABLES -
RESTRICTION RESTRICTION POINT TABLE

altitude
rest x
rest_y
point

ALT START POINT
pa_id
start time
start-ard
start altitude
start x
start_y
stimulus type
last type
start point

DEFINE VARIABLES
Fl Id

Loc Pa Id
Target-Alt
Targe(:Ard

Target Pt
Time -
Speed
Start Point
Act Pa Id
Start Ard

Restriction altitude
x coordinate
y coordinate

AGGREGATE(rest x,rest y)
ALTITUDE START-POINTS

Planned action id
Time to start maneuver
Along route distance to start
Altitude to start maneuver
x value to start action
y value to start action
Type of stimulus
Temporary start type

AGGREGATE(start_x,start_y);

Identity of aircraft for Trajectory
Estimation

Planned action id
Actions target altitude
Point where target altitude is reached

ard
Point where target altitude is reached
Time at point
Speed at point
Start point of action
Active planned action id
Starting condition ard;

FIGURE 4-89
LAST POINT FOR CLIMB

4-164

SELECT FIELDS tas,position,time
FROM PAST CUSP
INTO Speed,Target_Pt ,Time;

IF 'altitude' IS IN ACTIVE PLANNED ACTIONS.pa type
THEN # find target altiude-# - -
--CALL Find Target Altitude(Fl Id IN,Target Alt OUT,

---"Act Pa-Id OUT); - - - --
CALL Calculate Start Point(Fl Id IN,Target Pt IN,PAST CUSP.z IN,
~STRICTION""-IN,Start Point-OlJ't";Loc Pa lQ Ilt'Time !W,Speed 'IN,

Start Ard OUT); - - - - - - -
CHOOSE CAsE -

WHEN PAST CUSP.ard GE Start ARD THEN #action starts now#
--yNSERT-INTO ALT START POINT

(paid= Loc-Pa Id:stimulus type • 'position',
start point ~ PAST CUSP.position,
start-ard = PAST CUSP.ard);

~AGD_VECTOR.gradient ~ 0 THEN #at or before last point#
INSERT INTO ALT START POINT

(paid • Loc-Pa Id: stimulus type • 'not set',
last type --'position', -
start_point = Start_Point,start_ard • Start_Ard);

OTHERWISE
SELECT FIELDS tas, position, time

FROM PAST CUSP
INTO Speed,Target Pt,Time;

CALL Calculate Point-To Reach Altitude(Fl Id IN,Target Alt
--I-N,Target Ard OUT-;Target Pt INOUT,PAST-CUS'P:-z IN, -

Time INOUT, Speed INOUT ,ACt Pa Id IN); - -
CALL Calculate Start Point(Fl-Id-IN,Target Pt IN,
--Target Alt IN,RESTRICTION IN,Start Point OUT,

Loc Pa-Id IN,Time IN,SpeediN,Start Ard OUT);
CHOOSE-CASE - - - - -

WHEN Start Ard GE Target Ard THEN #start at start point#
--INSERT INTO ALT START-POINT-

(pa id = Loc-Pa Id:stimulus type • 'position',
start point-· Start Point)i

WHEN AGD VECTOR.gradient GT 0 THEN #interupt at rest.alt#
--INSERT INTO AJ.T START POINT--

---rpa id = Loc-Pa Id:stimulus type • 'altitude',
start altitude-D RESTRICTION.altitude);

OTHERWISE #start maneuver now#
INSERT INTO ALT START POINT

(pa :id - Loc-Pa Id:stimulus type • 'position',
start point~ PAST CUSP.postion);

END Last Point_For_Climb; -

FIGURE 4-89 (Concluded)
LAST POINT FOR CLIMB

4-165

ROUTINE Calculate Start Point;
PARAMETERS Fl Id IN,Coord IN,Altitude.IN,RESTRICTIONS IN,Start Point

OUT,Loc Pa-Id IN,Time IN,Speed IN,Start Ard OUT; - -
DEFINE TABLES- - - - - -

RESTRICTIONS RESTRICTION POINT
altitude
rest x
rest_y
point

DEFINE VARIABLES
Fl Id

Coord(2)
Altitude
Start Point(2)
Loc Pa Id
Time -
Speed
Start Ard
Del Dist
Goal Alt
Earliest Pt(2)
Earliest-Time
Earliest-Alt
Earliest-Sp
Dist to Rest
Dist Coord
Res Ard
Goal Ard

Restriction altitude
x coordinate of restri·ction point
y coordinate of restriction point
AGGREGATE (rest_x,rest_y)

Identity of aircraft for Trajectory
Estimation

(x,y) position
Altitude at coord
Point(x,y) to start maneuver
Planned action id tat we're finding start of
Time at coord
Speed at coord
Ard of start point
Overshoot distance
Crossing altitude
Earliest (x,y) to start maneuver
Earlriest time to start maneuver
Altitude at earliest point
Speed at earliest point
Distance to restriction point
Distance to latest trials end point
Restriction point ~rd
Ard at restriction point;

FIGURE 4-90
CALCULATE START POINT

4-166

Goal Alt = RESTRlCTION.altitude;
Start Point • Coord;
Earliest Pt = Coord;
Earliest-Time • Time;
Earliest-Speed m Speed;
Earliest-Altitude = Altitude;
#this is-first trial to reach restriction point exactly#
CALL Calculate Point To Reach Altitude(Fl Id IN,Goal Alt IN,
~al Ard OuT, Coord lNOUT,Altitude IN,TimeiNOUT,SpeediNOUT,

Loc 'P'a Id-nf) ; - ·
CALL XY To Ard(Fl Id IN,RESTRICTION.point IN,Res Ard OUT);
Del Dist --o · - - - - -- ' IF Goal Ard GT Res Ard
THEN # can't-m4ke restriction point I
~ALL XY To Ard(Fl Id IN,Start Po.int IN,Start Ard OUT);

Start Ard -;;; Start-Ard-= Goal Ard - Res Ard; - -
ELSE #possible to make restriction find latest point to start I
----CALL Find Distance To Point(Fl Id IN,RESTRICTION.poiut IN,

----rfist To Rest OuT,Earliest CoordiN,Earliest Time IN,-
Eariiest_ Alt IN, Earlies()p IN); - -

REPEAT UNTIL Goal Ard ~ Res Ard
#compute-distance to end of trial #
CALL Find Distance To Point(Fl Id IN,Coord IN,
----Dist Coord OUT,Farliest Coord IN,EarliestTime IN,

Earliest Alt IN,Earliest Sp IN); - -
Del Dist • Dist To Rest - Diet Coord;
II del Dist is amount to displace start point #
Start-Poin.t • Earliest Point;
Time -. Earliest_Time;-
Speed • Earliest Sp;
Altitude • Earliest Alt;
CALL Find New Start-Point(Fl Id IN,Del Dist IN,
--S-tart Point INOuT,Time INOUT,Speed IN,Altitude IN);
Coord ... Start Point; -. - --
CALL Calculate Point To Reach Altitude(Fl Id IN,
~al Alt IN:Goal Ard-OUT, Coord INOUT,Altitude IN,

Time-INOUT;Speed-INOUT,Loc Pa Id IN); -
CALL XY To Ard(Fl Id IN,Start Point-IN,Start Ard OUT);

END caiCUiate-Start_Poi'ii't; - - - - --

FIGURE 4-90 (Concluded)
CAI.CULATE START POINT

4-167

ROUTINE Calculate Point To Reach Altitude ;
PARAMETERS Fl Id IN,Final Alt IN:Target Ard OUT,Coord IHOUT,

A1 ti tude IN, Time INOUT, Speed IN OUT -; Loch Id IN ;
REFER TO GLOBAL

HOLD PLANNED ACTIONS IN;
REFER TO SHARED-LOCAL -

ACTIVE PLANNED ACTIONS IN;
DEFINE TABLE - -

STATE STATE MODELED TO
position_x
position_y
tas
ias
mach
z
time
ard
temp
position

DEFINE VARIABLES
Fl Id

Final Alt
Target_Ard

Speed
Alt
Time
las
Mach
Avg_Speed
Del Time
Grad
Goal Pt(2)
Coord(2)
Ace
Loc Ard
Tran Type
Loc 'P'a Id
EFC Time
Type
Goal Alt
Speed_ Type

x position
y position
Tas
las
Mach
Altitude
Time
Along route distance
Temperature
AGGREGATE(positi~x,position_y);

Identity of aircraft for Trajectory
Estimation

Target altitude
Along route distance where target altitude is

reacheci
Current speed
Current altitude
Current time
Indicated air speed
Mach
Average speed
Time to be accounted for
Current gradient
Restriction point (x,y)
Coordinate(x,y)
Acceleration at point
Current Ard
Transition type climb or descent;
Planned action id
Expect further clearance time
Phase type
Phase altitude goal
las or Mach;

FIGURE 4-91
CALCULATE POINT TO REACH ALTITUDE

4-168

CALL Set Up State(Speed IN,Coord IN,Alt IN,Time IN,STATE OUT);
EFC Time-• Tnone'; - - - - --
IF 'hold' IS IN ACTIVE PLANNED ACT IONS
THEN
--:5ELECT FIELDS efc time,hold fix position

FROM HOLD PLANNED ACTIONS(H P A)
INTO EFC Time,Hold Fix --
WfiiiE H P A.pa id lS IN ACTIVE PLANNED ACTIONS.pa id;

IF Time GT-EFC Time - - -- -THEN
--:iFC Time • 'none';

REPEAT WHILE Al t NE Final Al t;
CALL Find Next:Phase(Fl Id IN,Loc Pa Id IN,STATE IN,Type OUT,
----xvg_Speed OUT,Goal Alt OUT,Speed TypeOUT,GradOUT,Del Time

OUT, Speed 'INOUT, Goal Pt OUT, Tran -Type OUT); . -- -
CHOOSE CASE - - - -
~ Type ~ 'time' THEN

Time • Time + Del Time;
IF EFC Time NE 'none'
THEN
---cALL Hold During Time Phase(Fl Id IN,Del Time INOUT,

--Coord lNOUT,Speed INOUT,EFC-TimeiNOUT,
Hold Fix IN,Alt IN,STATE IN);

CALL Point-At Time(Fl Id IN,Del-rime IN,Grad IN,
----xvg Speed YN,Alt IN,Coord INOUT); - -

~Type-~ 'ard' THEN# goal will be some point #
Ace • 0;
IF EFC Time NE 'none'
THEN #-determine effect of hold I
--CALL Hold During Ard Phase(Fl Id IN,EFC Time INOUT,
~old Fix IN,Goal Pt IN,Acc-INO'iiT,Coont INOUT,

Time-INOUTJ; - -
CALL Time At Point(Fl Id IN,Goal Pt IN,Time INOUT,
----crad IN, Coord IN ,Alt IN, Speed INOUT ,Ace IN);
Coord • Goal Pt; - - -

OTHERWISE # altitude transition #
CALL Time And Point At Alt(Fl Id IN,Speed Type IN,
--Speed INOuT,Goal-Alt IN,Grad IN,Coord lNOUT,-

Time INOUT,Altitude INOUT,HoldlFix IN,EFC Time INOUT,
Tran_Speed IN,Tran_Type IN); - - -

Alt • Goal Alt;
DELETE FROM STATE;#one record only #
CALL Set Up State(Speed IN,Coord IN,Alt lN,STATE OUT);

END Calculate_Point_To_Reach_Altitude; - - -

FIGURE 4-91 (Concluded)
CALCULATE POINT TO REACH ALTITUDE

4-169

ROUTINE Find New Start Point;
PARAMETERS Fl Id-IN,Del Dist IN,Coord INOUT,Time INOUT,

Speed IN,Altitude IN"i" -
REFER TO GLoBAL -

HOLD PLANNED ACTION;
REFER TO SHARED-LOCAL

ACTIVE_PLANNED_ACTIONS;
DEFINE TABLES

VECTOR POINTS POINTS IN VECTOR YET TO BE MODELED
sequence
position_:x
position y
position-

ROUTE POINTS
ard
position :x
positiony
position

DEFINE VARIABLES
Fl Id
Del Dist
Coo"i:d(2)
Time
Speed
Altitude
Coord Ard
Hold Fix
EFC Time
H Dist
Total Dist

Sequence of vector points
Apex x position
Apex y position
AGGREGATE(positio~x,position_y),

POINTS IN ROUTE YET TO BE MODELED
AlonS:route distance
x position of route point
y position of route point
AGGREGATE(position_x,position_y);

Identity of aircraft for Trajectory Estimation
Desired displacement
Point(x,y) moved to
Time at coord
Speed at coord
Altitude at coord
Coordinate along route distance
Hold fix
Expect furter clearence time
Distance in hold
Distance accounted ·for ;

FIGURE 4-92
FIND NEW START POINT

4-170

CALL XY To Ard(Fl Id IN,Coord IN,Coord Ard OUT);
CALL Set Up Vector An~Route Points(Coord Ard IN,ROUTE POINTS OUT,
-----vEcTOR POINTS OUT);- - - - -
IF 'hold'-IS IN ACTIVE PLANNED ACTIONS
THEN
--SELECT FIELDS efc_time,hold_fix_position

FROM HOLD_PLANNED_ACTIONS(H_P_A)
INTO EFC_Time, Hold_Fix
WHERE H P A.pa id IS IN ACTIVE PLANNED ACTIONS.pa id;

CALL XY To-Ard(Fl-Id IN,Hold Fix lN,Hold Ard OUT); -
IF Time -GE-EFC Time - - - - -
THEN
--EFC Time = 'none' • - ' ELSE

--EFC Time • 'none' ;
Total Dist = 0;
REPEAT WHILE Total Dist LT Del Dist

IF(EFC Time NE 1none'~AND (Coord EQ Hold Fix)
~ #Compute-distance travelled in-hold 7
--H Dist • (EFC Time - Time) * Speed;

IF H Dist LT (Del Dist - Total Dist)
THEN-~ move to end of hold I -
--Time • EFC Time;

EFC Time --'none'; I hold is complete I
Total Dist • Total Dist + H Dist ;

ELSE H travel del dist - total-dist in hold I
~ime • (Del Dist - Total Dist)/Speed + Time;

Total Dist ~ Del Dist; -
ELSE H must-be on route or vector I
---CALL Find New Place On Route Or Vector(Fl Id IN,

--EFC Time iN,Hold-Fii IN,Coor'd INOUT, VECTOR POINTS INOUT,
ROUTE POINTS INOUT,Time INOUT,Total Dist INOUT,
Del Dist IN,Speed IN); -

END Find_New_Start_Point; -

FIGURE 4-92 (Concluded)
FIND NEW START POINT

4-171

ROUTINE Set Start Limits;
PARAMETERS ALT START POINT IN;
REFER TO SHARED LOCAL -

PAST CUSP IN,
ALTITUDE_PENDING_ACTIONS IN,
ACTIVE_PLANNED_ACTIONS IN,
POSTION LIMITS INOUT,
ALTITUDE LIMITS INOUT,
ARD LIMITs INOUT,
TIME_LIMITS INOUT;

DEFINE TABLES
ALT START POINT

pa id
ALTITUDE START POINTS

start time
start-ard
start -altitude
start x
start y
stimulus type
last_type
start point

DEFINE VARIABLES
First Ard

Planned action id
Time to start maneuver
Along route distance to start
Altitude to start maneuver
x value to start action
y value to start action
Type of stimulus
Temporary start type

AGGREGATE(start_x,start_y);

Along route distance of start of first
altitude action;

FIGURE 4-93
SET START LIM! TS

4-172

IF 'altitude' IS NOT IN ACTIVE PLANNED ACTIONS.pa type
~HEN #some climb may start before its latest start point#
--First Ard • MIN(ALT START POINT .start ard);

REPEAT FOR EAcH ALT-START -POINT RECORD
WHERE ALT START POINT .stimulus type ~ 'not set';

IF ALT-START-POINT. start ara GT First Ard
THEN #;ction-will not start before first action#
---uPDATE IN ALT START POINT

(stimulus type --last type);
ELSE #action will start at cusp#
---riPDATE IN ALT START POINT .

(stimulus type --'ard',
start_a~ • PAST_CUSP.ard);

REPEAT FOR EACH ALT START POINT RECORD
UPDATE IN ALTITUDE PENDING ACTIONS(A P A)

(stimulus type ; ALT START POINT.stimulus tyPe)
WHERE A_P:A.pa_id ~.~fALT_START_POINT.pa_id;

CHOOSE CASE
WHEN ALT_START_POINT.stimulus_type ~ 'time' THEN

INSERT INTO TIME LIM! TS
(time • ALT START POINT.start time);

UPDATE IN ALTITUDE PENDING ACTIONS(A P A)
(stim time = ALT START POINT.start time)
WHERE-A_P_A.pa_id ~ ALT_START_POINT.pa_id;

~ ALT_START_POINT.stimulus_type ~ 'position' ~
INSERT INTO POSITION LIMITS

(position = ALT START POINT.start point);
UPDATE IN ALTITUDE-PENDING ACTIONS(A-P A)

(stimulus position = ALT START POINT.start point)
WHERE A_(~A.pa __ id ~ ALT=START=POINT.pa_id"'i"

WHEN ALT_START_POINT.stimulus_type ~ 'altitude'THEN
INSERT INTO ALTITUDE LIMITS

(altitude • ALT START POINT.start altitude);
UPDATE IN ALTITUDE PENDING ACTIONS(A P A)

(stim z= ALT START POINT.start altitude)
WHERE-A_P_A.pa_id !g_ ALT_START=POINT.pa_id;

WHEN ALT_START_POINT.stimulus_type ~ 'ard' THEN
INSERT INTO ARD LIMITS

(ard = ALT START POINT.start ard);
UPDATE IN ALTlTUDE PENDING ACTIONS(A P A)

(stim ard = ALT-START POINT.start-ard)
WHERE-A_P_A.pa_Id ~ ALT_START_PO'INT.pa_id;

OTHERWISE; # stimulus type • 'none' set nothing#
END Set_Start_Limits;

FIGURE 4-93 (Concluded)
SET START LIMITS

L~-11 3

ROUTINE Include Speed Pending Action Limits;
REFER TO GlOBAL-SPEED-CHANGE PLANNED-ACTIONS IN;
REFER TO .SHARED LOCAL SPEED_PENDING_ACTIONS INOUT,ALTITUTE_LIMITS
INOUT;
DEFINE TABLES

LOC SPEED PA Local copy of the speed planned action

basing

pa_id
speed

record

base value location

Planned action identification
Target speed of the planned action

Location of · the planned action

value - either "start" or "end"
base value type Type of base value enumeration
base-x - x coordinate of base point
base-y y coordinate of base point
base-t Time value of base point
base z Altitude of base point
base-ard Along route distance at base point
base_pooition AGGREGATE (base_x,base_y);

REPEAT FOR EACH SPEED PENDING ACTION RECORD;
LOC SPEED PA • SELECT FIELDS ALL

FROM SPEED CHANGE PLANNED ACTIONS
WiiEiE SPEED _CHANGE _PLANNED_ ACTIONS. pa _ id .!&

SPEED PENDING ACTIONS.pa id;
CHOOSE CASE- - -

WHEN LOC SPEED PA.base value type~ "time" THEN
--CALL Speed Based By -Time(LOC SPEED PA IN)-;-
WHEN LOC_SPEED_PA.base:value_type ~"coordinate" THEN

CALL Speed Based By Coordinate(LOC SPEED PA IN);
WHEN LOC_SPEED_PA.base:value_-type ~ ,..ard" THEN

CALL Speed Based By Ard(LOC SPEED PA IN);
WHEN LOC_SPEED.PA. base: value_ tyPe ~-"altitude" THEN

INSERT INTO ALTITUDE LIMITS
(altitude • LOC SPEED PA.base z);

UPDATE IN SPEED PENDING ACTIONS -
(stimulus type • 'altitude',
stim z ... --LOC SPEED PA. base z);

END Include_Speed_Pendins.=,Act:l.on_LimitsT -

FIGURE 4-94
INCLUDE SPEED PENDING ACTION LIMITS

4-174

ROUTINE Speed_Based_By_Time;
PARAMETFB.S LOC SPEED PA IN;
REFER TO SHAREn" LOCAL -

PAST CUSP IN,
TIME-L.IMI~INOUT,
SP~ PENDING ACTIONS INOUT;

DEFINE TABLES
LOC SPEED PA

pa id
speed

Local copy of the speed planned action
record
Planned action identification

base value location
Target speed of the planned action
Location of the planned action basing

base value type
base-x -
basey
base t
base-z
base-ard
baseyosition

DEFINE VARIABLES
LocZ
LocT
Loc-Tas
Loc Temperature
Time_For_Speed_Change

New Time
Average_Tas

value
Type of base value enumeration
x coordinate of base point
y coordinate of base point
Time value of base point
Altitude at base point
Along route distance at base point
AGGREGATE (base_x,base_y);

altitude value at the PAST CUSP
time value at the PAST CUSP
tas value at the PAST CUSP
temperature value at the PAST CUSP
Time it takes to accelerate from

start speed to end speed
Time value for time limit
Average tas value for start and end

speeds;

FIGURE 4-95
SPEED BASED BY TIME

4-175

~ LOC_SPEED_PA.base_location ~ "start"
THEN
-"INSERT INTO TIME LIMITS

(time • LOC SPEED PA.base tl;
UPDATE IN SPEED PENDING ACTIONS

(stimulus type • "time",
stim t --LOC SPEED PA.base t)

WHERE-SPEED _PENDING=ACTIONS7 pa _id ~ LOC_SPEED _PA. pa _ id;
ELSE

SELECT FIELDS z,time,tas,temperature
FROM PAST CUSP .
INTO Loc Z,Loc T,Loc Tas,Loc Temperature;

IF LOC SPEED PA. speed LT 2 #speed assumed to be in mach units#
THEN - - -
---cALL Get Time For Speed Change('tas' IN, Loc Tas IN,

--Loc Z-IN,ICc Temperature In, 'mach'IN, - -
LOC-SPEED PA7speed IN,Loc Z IN,Loc Temperature IN,
Time For Speed Change OUT:Average Tas OUT); -

ELSE - - - --- - ---
---cALL Get Time For Speed Change('tas' IN, Loc Tas IN,

---roc Z-IN,rDc Temperature In, 'ias' IN, - -
LOC-SPEED PA7speed IN,Loc Z IN,Loc~emperature IN,
Tim; For Speed Change OUT :Avuage Tas OUT) ; -

New Time • -Loc -T + Time For Speed Change; --
INSERT INTO TIME LIMITS- - -

(time • MAX(LOc T,New Time));
UPDATE IN SPEED PENDING ACTIONS

(stimulus type • "time",
stim t --MAX(Loc T,New Time));

WHERE-SPEED_PENDING_ACTlONS.pa_i~ ~ LOC_SPEED_PA.pa_id;
END Speed_Based_By_Time;

FIGURE. 4-95 (Concluded)
SPEED BASED BY TIME - - -

4-176

Speed actions based by a coordinate are handled in Speed_Based_
By Coordinate (Figure 4-96). If the basing coordinate speci
fies a position to begin the speed change, the position is
entered as the speed pending action stimulus value, and as a
position limit. If the basing coordinate specifies a point by
which the speed must be achieved, then the acceleration (de
celeration) time of the speed action is obtained by comparison
of the final speed with the speed at the past cusp. The
acceleration (deceleration) time value is translated to a
stimulus point on the line between the speed basing point and
the past cusp. The stimulus po'sition is entered as the
stimulus value for the speed pending action as well as entered
into the position limits table.

'l'he last element, Speed_Based_By_Ard (Figure 4-97), processes
speed pending actions based by along route distance. If the
speed action is based at its start, then the basing along route
distance is entered as the stimulus point and as an along route
distance limit. If the speed action is based at its end, then
the time for the speed acceleration (deceleration) to take
place is computed using the speed stored at the past cusp. The
distance of the speed change is calculated and then subtracted
from the basing along route distance. This difference is
entered as the speed pending action stimulus value and as an
along route distance limit.

Include Vector Pending Action Limits (Figure 4-98) provides for
the computatiOn of position stimulus for a pending vector
action. The basing point of the vector action is obtained from
the vector planned action table. An allowance is made for the
pilot to initiate the turn before the basing point in the
observed wind field. The initiate-turn-position is a position
on the line between the past cusp and the vector basing point.
This position is inserted into both the pending actions record
for this vector action and into the position limits structure
for Trajectory Construction.

4.4 Trajectory Construction

Trajectory Construction uses information from the planned
action processing components and the available wind data base
to compute the four-dimensional (x,y,z,t) cusps and their
associated dynamics (true airspeed, along route distance).
Planned action processing components supply an AGD vector and
several limits. A merging process determines a unique limit
which is the minimum of all the AGD vector limits.

4-177

ROUTINE Speed Based By Coordinate;
PARAMETERS LOC SPEED PA IN;
REFER TO SHABED LOCAL -

PAST CUSP IN,
POSITION LIMITS INOUT,
SPEED PENDING ACTIONS INOUT;

DEFINE TABLES
LOC SPEED PA

pa id
speed
base value location

base value type
base-x -
basey
base t
base-z
base-ard
base position

DEFINE VARiABLES
Loc Position{2)
New-Position(2)
Position Delta

Lac-Temperature
IDe Direction

Average_Tas

Time_For_Speed_Change

Local copy of the speed planned action
record
Planned action identification
Target speed of the planned action
Location of the planned action basing

value
Type of base value enumeration
x coordinate of base point
y coordinate of base point -
Time value of base point
Altitude at base point
Along route distance at base point
AGGREGATE (base_x,baseJ);

x,y position from the PAST CUSP
x,y position of the limit -
x,y coordinates of the vector representing

distance and direction of speed
·transition

Altitude value at the PAST_CUSP
Time value at the PAST CUSP
Tas value at the PAST CUSP
Temperature value at the PAST CUSP
Direction from the PAST CUSP to the base

point of the speed change
Average of tas values for start and end

speeds
Time it takes for the change in speed;

FIGURE 4-96
SPEED BASED BY COORDINATE

4-178

IF LOC_SPEED_PA.base_location .!::9._ "start"
THEN
--INSERT INTO POSITION LIMITS

(position • LOC_SPEED_PA.base_yosition);
UPDATE IN SPEED PENDING ACTIONS

(stimulus type • "position"
stimulus=position • LOC_SPEED_PA.base_yosition)

WHERE SPEED_PENDING_ACTIONS.pa_id ,!q LOC_SPEED_PA.pa_id;
ELSE
--:8ELECT FIELDS position,z,time,tas,temperature

FROM PAST CUSP
INTO Loc Position,Loc Z,Loc T,Loc Tas,Loc Temperature;

IF LOC SPEED PA.speed LT-2 #speed assumed to-be in mach units#
'TRkN - - -
---cALL Get Time For Speed Change('tas' IN, Loc Tas IN,

--r.oc Z-IN,IDc Temperature In, 'mach'IN, - -
LOC-SPEED PA7speed IN,Loc Z IN,Loc Temperature. IN,
Time_For_Speed_Change OUT:Average_Tas OUT); -

ELSE
---cALL Get Time For Speed Change('tas' IN, Loc Tas IN,

--r.oc_Z-IN,.rD'c_Temperature In, 'ias' IN, - -
LOC SPEED PA.speed IN,Loc Z IN,Loc Temperature IN,
Time For Speed Change ouT:Average Tas OUT); -

Loc Direction~ DIRECTION(Loc Position,- ---
(LOC SPEED PA.base x,LOC SPEED PA.base y);

Position Delta - Average Tas * Time For Speed Change *
(SIN(LOc Direction),COS(Loc Direction); -

New POSition • MAX(Loc Positioii, (LOC SPEED PA. base_yosition -
Position Delta)); - - -

I MAX function taken to obtain the further of the two points along #
I route of the aircraft #

INSERT INTO POSITION LIMITS
(position • New Position);

UPDATE IN SPEED PENDING ACTIONS
(stimulus type • "position",
stimulus-position • New Position)

WHERE SPEED_PENDING_ACTIONS.pa_id ,!q LOC_SPEED_PA.pa_id;
END Speed Based By Coordinate; ---- - --

FIGURE 4-96 (Concluded)
SPEED BASED BY COORDINATE

4-179

ROUTINE Speed Based By Ard;
PARAMETERS LOC SPEED PAIN;
REFER TO SHARED LOCAL -

PAST CUSP IN,
ARD LIMITSINOUT,
SPEED PENDING ACTIONS INOUT;

DEFINE TABLF.S
LOC SPEED PA

pa id
speed
base value location

base value type
base-x -
basey
base t
base-z
base-ard
base=position

DEFINE VARIABLES
Loc Z
Loc-T
Loc-Ard
Loc-Tas
Lac_ Temperature
Average_Tas

New Ard
Time_For_Speed_Change

Local copy of the speed planned action
record
Planned action identification
Target speed of the planned action
Location of the planned action baaing

value
Type of base value enumeration
x coordinate of base point
y coordinate of base point
Time value of base point
Altitude at base point
Along route distance at base point
AGGREGATE (baae_x,baae_y);

Altitude value at the PAST CUSP
Time value at the PAST CUSP
Ard from PAST CUSP
Tas value at the PAST CUSP
Temperature value at the PAST CUSP
Average of taa values for start and end

speeds
New ard value for limit
Time to change'speeda;

FIGURE 4-97
SPEED BASED BY ARD

4-180

IF LOC_SPEED_PA.base_location ,!l "start"
THEN
--INSERT INTO ARD LIMITS

{ard • LOC SPEED PA.base ard);
UPDATE IN SPEED PENDING ACTIONS

(stimulus type • "ard",
stim ard-- LOC SPEED PA.base ard)

WHERE-SPEED_PENDING_ACTIONS.pa_id !Q. LOC_SPEED_PA.pa_id;
ELSE
---,sELECT FIELDS z,time,ard,tas,temperature

FROM PAST CUSP
INTO Loc Z,Loc T,Loc Ard,Loc Tas,Loc Temperature;

IF ~SPEED PA.speed LT 2 #speed assumed to be in mach units#
THEN - - -
----cAu. Get Time For Speed Change{ 'tas' IN, Loc Tas IN,

--rDc_Z-IN,LOc_Temperature In, 'mach' IN, - -
LOC SPEED PA.speed IN,Loc Z IN,Loc Temperature IN,
Time_For_Speed_Change OUT,Average_Tas OUT); -

ELSE
~ALL Get Time For Speed Change{'tas' IN, Loc Tas IN,

--r.oc Z-IN,r.Oc Temperature In, 'ias' IN, - -
LOC-SPEED PA7speed IN,Loc Z IN,Loc~emperature IN,
Time For Speed Change ouT-;Average Tas OUT); -

New Ard • MAx(Loc Ard, (LOC SPEED PA. base ard-=-Average Tas *
Time For Speed-Change))"; - - -

INSERT INTO-ARD LIMITS
(ard • New Ard);

UPDATE IN SPEED PENDING ACTIONS
(stimulus type • "ard",
stim ard-· New Ard)

WHERE-SPEED_PENDING_ACTIONS.pa_id ~ LOC_SPEED_PA.pa_id;
~ Speed_Based_By_Ard;

FIGURE 4-97 {Concluded)
SPEED BASED BY ARD

4-181

ROUTINE Include Vector Pending Action Limits;
PARAMETI!RS Fl Id IN; - - -
REFER TO GLOBiL -

VECTOR_PLANNED_ACTIONS IN;
REFI!R TO SHARED LOCAL

AdD vECTOR IN,
POSITION LIMITS INOUT,
VECTOR PENDING ACTIONS INOUT,
TURN POINTS OuT;

DEFINE TABLES -
TURN

sequence
tum x
tum_y
tumyt_course
tumyt

DEFINE VARIABLES
Fl Id
First Point(2)
Sequence Number
Second POint(2)
Loc Pa-Id
Course In
Course-Out
Stimu1us(2)

Linear tum data
order of the points
x coordinate in tum
y coordinate in tum
course from tum
AGGREGATE (turn_x,turn_y);

Input flisht identifier
First point(x,y) in vector
Sequence number of first point
Second point(x,y) in vector
Planned action id
Course into apex point
Course out of apex point
Start point(x,y) of vector;

FIGURE 4-98
INCLUDE VECTOR PENDING ACT ION LIMITS

4-182

REPEAT FOR EACH VECTOR PENDING ACTIONS RECORD
SELECT FIELDS pa id~vertex coordinate

FROM VECTOR PLANNED ACTlONS (V P A)
INTO Loc Pa-Id ,First Point - -
WHERE V_P_A7pa_id .!fVECTOR_PENDING_ACTIONS.pa_id ~

V_P_A.vector_sequence_number _!ll;
SELECT FIELDS vertex coordinate

FROM VECTOR PLANNED ACTIONS (V P A)
INTO Second-Point - - -
WHERE V_P_A7pa_id ~ VECTOR_PENDING_ACTIONS.pa_id

AND V P A.sequence number ~ 2; ·
Course-rn --AGD VECTOR.direction;
Course-Out • DIRECTION(First Point,Second Point);

I calculate points to model turn I -
CALL Linear Turn(Course In IN, Course Out IN ,First Point,
--rURN ouf;-Fl Id IN); - - - - - ·
DELETE FROM TuRN POINTS(T P)

WHERE T_P.pa_Id ~ VECTOR_PENDING_ACTIONS.pa_id ~
T P.apex point • First Point;

REPEAT FOR EACH TURN RECORD -
INSERT INTO TURN POINTS

(pa id • VECTOR PENDING ACTIONS.pa id,
apexyoint • FI'rst_Point, -
sequence • TURN.sequence,
turn pt • TURN.turn_Pt,
turn:pt_course • TURN.turnyt_course);

SELECT FIELDS turn_Pt
INTO Stimulus
FROM TURN
WiiERE TURN.sequence ~ 1;

UPDATE IN VECTOR PENDING ACT IONS
(stimulus value • Stimulus);

INSERT INTO POSTION LIMITS
(position- Stimulus);

END Include_Vector_Pending_Action_Limits;

FIGURE 4-98 (Concluded)
INCLUDE VECTOR PENDING ACTION LIMITS

4-183

The following sections describe the components of the Trajec
tory Construction subfunction in detail. These are: Merging
and Cusp Construction. Figure 4-99 provides the processing
details for the element Trajectory_Construction.

4.4.1 Mission

For purposes of Trajectory Construction, a past cusp always
exists: the very first past cusp is provided by Trajectory
Initialization. Not only does there exist a past cusp, but
Trajectory Construction is also provided with a complete AGD
vector and a set of limits. This latter information is con
structed in the different planned action processing components.

The AGD vector provides a means to establish a four-dimensional
line emanating from the past cusp. Using the AGD variables as
"operators," values at the past cusp can be transformed to
values along that four-dimensional line. One point in par
ticular, is important: it will become the next cusp. The
means of choosing which point shall be the next cusp is
available through the limit values.

The limit values represent bounds on the AGD variables. The
bounds are represented as goals to achieve in position, tiM,
altitude, along route distance, and speed. Information
derivable from the past cusp and the AGD vector (the four
dimensional line) allows the determination of a point on the
line emanating from the past cusp for each limit supplied to
Trajectory Construction. Between the past cusp and the nearest
such point, all planned action processing component guarantee
the validity of the AGD vector. The nearest point associated
with a limit must represent the next cusp.

For purposes of maintaining a ground referenced path for the
aircraft, the trajectory should be broken at every change in
atmospheric data. These changes could induce different ground
speeds due to the presence of a different set of wind speed,
direction, and temperature parameters. The next cusp is then
placed at the boundary of a wind cell or at the closest limit
point, whichever produces the smaller segment.

The next cusp, once constructed, becomes the past cusp for
purposes of planned action processing. All information neces
sary to the proper functionig of planned action processing must
be accumulated and stored in accessible data bases.

4-184

ROUTINE Trajectory_Construction;
PARAMETERS

Loc_Fl_Id IN;
REFER TO SHARED LOCAL

AGD VECTOR IN;
DEFINE-VARIABLES

Loc Fl Id

AGD Vector Limit
II

Flight identification f.or this aircraft
undeqoing Trajectory EstiutiOl'l

Final agd vector limit in time;

I Find the time equivalent of all the limit values input from I
I planned action processing. Further reduce these to one sincle I
I limit in time. I

CALL AGD Vector Lim! t Computation(Loc Fl Id IN,
---reo Vector Limit OUT); - - -

I Construct the next cu~ and store other information at the
I cusp.

CALL Cusp Construction(Loc Fl Id IN,AGD Vector Limit IN);
END Trajectory_Construction; - - - - - -

FIGURE 4-99
TRAJECTORY_CONSTRUCTION

4-185

I
I

The Merging Process is responeiOle for formulating a single
limit. The variables from tbe AGJi vector control the dynamics
of the aircraft until this limit i' reached. The output infor
mation is routed to Cuep Coastruction.

4.4.2 Design Considerations and Environment

The trajectory is built one CWJP at a time. Planned Action
Processing and Trajectory Cons-truction repeat the same con
struction sequence for each cusp.· Since the trajectory is a
ground referenced path for the aircraft, information contained
in the global data base regarding winds and temperatures are
used to obtain ground speeds.

Input

In order to perform the Tr.ajecte.y Construction subfunction,
the following data sets are used:

• System Global Data Base

- ROUTES

The ROUTES structure allows the translation between
along route distance and (x,y) coordinates.

- WINDS

Global wind data is used to translate between air
craft parameters relative to the air mass and the
respective counterparts relative to the ground.

• Shared Local Data Base

- AGD VECTOR

The AGD vector t!ontaina the val,11es of al!celeration,
gradient, and direction neces&&ry to compute the
next cusp.

4-1&6

Output

- ARD LIMITS
TIME LIMITS
POSITION LIMITS
SPEED LIMITS
ALTITUDE LIMITS

These structures contain information which bounds
the extent of the AGD vector. These limits could be
direct bounds to certain AGD variables or trajectory
where events cusps should be built.

- PAST CUSP

The past cusp table stores information concerning
the position, altitude, time, etc., at the past
cusp. These values will be transformed, via the AGD
vector, to build the next cusp.

- GRADIENT PARAMETERS

This table contains the identification of maximum
and minimum gradient values if an altitude action is
being modeled. These values are stored at the past
cusp for use by Trajectory Post Processing. This
table also contains a transit1on speed type and
value during an altitude transition which are used
for speed conversion.

- PAST CUSP TYPE

This one record table allows a parameter to be
placed in the last cusp record identifying certain
actions emanating from the past cusp.

Output from the Trajectory Construction. subfunction includes
the next cusp in the trajectory along w1 th info:caation to be
used by planned action processing.

• System Global Data Base

- TRAJECTORIES

The next cusp for this aircraft is built.

4-187

• Shared Local Data Base

- PAST CUSP
SUPPLEMENTAL CUSP INFORMATION

Information for planned action processing is stored
in these two tables. The second table is used by
Trajectory Initialization should Trajectory
Estimation be invoked again for this aircraft.

- AGD VECTOR
ARD-LIMITS
TIME LIMITS
POSITION LIMITS
SPEED LIMITS
ALTITUDE LIMITS

All information in these tables is purged and the
tables initialized.

4.4.3 Merging Design Logic

AGD Vector Limit Computation converts all the limits into time
units. This process also computes a limit in time when the
path defined by the AGD vector intersects the wind boundary.
The minimum of all the limits is the resulting limit up to
which the AGD vector controls the aircraft trajectory. This
point is the next cusp along the aircraft's trajectory.

Figure 4-100 provides the calling hierarchy for the Merging
Process component of Trajectory Construction. Design language
descriptions are provided for each element in this document.
This component also uses the following utilitites which are
described in Appendix B: Mach To Tas, Ias To Tas, Newton
Raphson, and Get_Route_Segment_And:XY:For_Ard. - -

Processing Method

AGD_Vector_Limit_Computation (Figure 4-101) accepts limits in
one or more of the following forms: altitude, target speed,
along route distance, position, or time. This element first
calls Find Wind Cell (Figure 4-102) which retrieves the
relevant wilid cell information from the global data table
WINDS. The intersection of the AGD vector with this wind cell
is determined in Wind Cell Intenection (Figure 4-103). This
intersection is included as- a position limit to influence the
construction of the next cusp.

4-188

AGD_Vector_Limit_Computation
Find Wind Cell
Wind-Cell-Intersection
Get Z ToT
Get-Ard 'To XY - - -Get XY To T

Newton-Raphson
Iterate to Final Altitude And Time

Get_Speed_To_T

FIGURE 4-100
MERGING PROCESS CALLING SEQUENCE

4-189

ROUTINE AGD Vector Limit Computation;
PARAMETERS - - -

Loc Fl Id IN,
Limit OUT;-

REFER TO SiiiRED LOCAL
AGD VECTOR IN,
ALTITUDE LIMITS IN,
.ARD LIMITS IN, -
TIME LIMITSIN,
POSITION LIMITS IN,
SPEED LOOTS IN;-

DEFINE TABLES -
ALT LIMS IN TIME

ilt lim
SPD LIMS IN TIME

spd lim
ARD LIMS IN TIME

ard lim
POS LlMS IN TIME

pos_lim-
ARD LIMS IN XY

X

y
ard lim

DEFINE VWABLES
Loc Fl Id

Altitude Indicator
Limit

Altitude Limits
list of altitude limits converted to time

Speed limits
list of speed limits converted to time

Along route distance limits
list of ard limits converted to time

Position limits
list of position limits converted to time

Equivalent xy points
x coordinate
y coordinate

AGGREGATE (x, y) ;

The flight identification for the aircraft
undergoing Trajectory Estimation

0 for level, 1 for climb, -1 for descent
Final Limit in Time;

FIGURE 4-101
AGD VECTOR LIMIT COMPUTATION

4-190

Altitude Indicator= SIGNUM(AGD VECTOR.gradient);
H Find Wind-Cell will fill up the data structure WIND CELL #
defining the wind cell containing the past cusp; if-the past #
#cusp was on the wind cell boundary then· it will fill the #.
WIND CELL with info for the adjacent wind cell in the direc:tion #
H the aircraf.t is going #

CALL Find Wind Cell{Lo·c Fl. I-d. IN ,Alti tud·e Indicator IN);
routine Wind Cell Inters-:ec·tiQn_w1·1L1nsert-a limit in- I
#position (x,y) for a.level section into the shared'local table I
POSITION LIMI.TS and insert an. altitude limit into the shared I
I local table ALTITUDE LIMITS for a.section with altitude change #

CALL Wind Cell Intersection;
IF COUNT(ALTITUDE LIMITS) NE 0
THEN - -
--CALL Get Z To T(ALT LIMS IN TIME OUT);
IF CoUNT(POSITION LIMITs) NE 0- -
THEN - -
--CALL Get XY To T(POS LIMS IN TIME OUT);
IF COUNT(ARD LIMr'TS) NE-0 - - -
THEN - -
--CALL Get Ard To XY(Loc Fl Id IN,ARD LIMS IN XY OUT);

CALL Get-XY To T(ARD LIMs-IN XY IN,ARD LIMs-IN TIME OUT)
IF CO'UNT(SPEED-LIMITS) NE 0- - - - - - -
THEN - -
--CALL Get Speed To T(SPD LIMS IN TIME OUT);
Limit • MIN{CONCAT(ALT LIMS IN TIME,SPD LIMS IN TIME,

-POS LIMS IN-TIME:-ARD LIMS IN-TIME:-TIME LIMITS));
Here CONCAT function-is-expected-to produce a vector of all the I
elements of the tables mentioned inside the parens of the I
H CONCAT function, and MIN will take the minimum element #
END AGD_Vector_Limit_Computation;

FIGURE 4-101 (Concluded)
AGD VECTOR LIMIT COMPUTATION

4-191

ROUTINE Find Wind Cell;
PARAMETERS - -

Loc Fl Id IN,
Altitude Indicator IN;

REFER TO GLOBAL WINDS IN;
REFER TO SHARED LOCAL

AGD _VECTOR IN,
PAST CUSP IN,
WIND:CELL INOUT;

DEFINE VARIABLES
Loc Fl Id Flight identification for this aircraft

Altitude Indicator
Air Temperature
Wind Speed
Wind-Direction
Flb('l)
Frb(3)
Blt(3)
Ne:x:t X
Ne:x:t-y
Ne:x:t Z

undergoing Trajectory Estimation
-1 for descent,+! for climb,O for level
Wind cell temperature
Speed
Direction
:x:yz of front left bottom corner of wind cell
:x:yz of front right bottom corner of wind cell
:x:yz of back left top corner of wind cell
:x: for a point Epsilon distance away
y for the same point
z for the same point;

DEFINE CONSTANTS

Ill
Epsilon l.OOE+Ol 10 feet parameter;

Ne:x:t X • PAST CUSP.:x: +Epsilon * SIN(AGD VECTOR.direction);
Ne:x:t-Y • PAST-CUSP.y + Epsilon * COS(AGD-VECTOR.direction);
Ne:x:t-Z • PAST-CUSP.z + Epsilon * AGD VECTOR.gradient;
II by-choosing -a point 10 ft away froiii the given one for the #
I select clause that follows, ambiguity of which cell to #
I select when original point falls on a boundary of a cell #
I is avoided. #
SELECT FIELDS flb_coordinate,frb_coordinate,blt_coordinate,

temperature,speed,direction
FROM WINDS
INTO Flb,Frb,Blt,Air Temperature,Wind Speed,Wind Direction
WHEiE - -. -

Ne:x:t Z LT WINDS.blt z AND Ne:x:t Z GE WINDS.flb z AND
Ne:x:t-X LT WINDS.frb-:x: AND Ne:x:t-X GE WINDS.flb-x AND
Ne:x:() LT WINDS.blt:y AND Ne:x:t:Y GE WINDS.flbJ;-

INSERT INTO WIND CELL
(flb • Flb,frb • Frb,blt • Blt,air temp • Air Temperature,
wind speed • Wind Speed,wind direction • Wind Direction);

END Find_Wind_Cell; - - -

FIGURE 4-102
FIND WIND CELL

4-192

ROUTINE Wind Cell lntersect:ion - -REFER TO SHARED LOCAL
AGD VECTOR IN,
WHID _CELL IN,
PAST CUSP IN,
POSITION LIMITS OUT,
ALTITUD(~ LIMITS OUT,

DEFINE VARIABLES
Dist 1
Dist-2
Min Dist
Intersect(2)

Distance to east or west boundary
Distance to north or south boundary
The minimum value of Dist 1 and Dist 2
The xy coordinates of the-intersection of

the path of the aircraft with the wiDd cell
boundary in the horizontal plane;

FIGURE 4-103
WIND CELL INTERSECTION

4 193

Dist 1 ='infinite';
Dist-2 = 'infinite';
CHOOSE CASE

WHEN (AGD VECTOR.direction LT 180 degrees) AND
--(AGD vECTOR. direction GTO) THEN

find east intersection # --
Dist 1 • (WIND CELL.frb x - PAST CUSP.x) I

SIN(AGD VECTOR.direction); -
WHEN (AGD VECTOR.direction LT 360 degrees) AND
---rAGD VECTOR.direction GT:l80 degrees) THEN--

firut west interaction# -
Dist 1 • (WIND CELL.flb x - PAST CUSP.x) I

SlN(AGD VECTOR.direction); -
CHOOSE CA~ -

WHEN (AGD VECTOR.direction GT 90 degrees) AND
---rAGD VECTOR.direction LT:270 degrees)THEN

II find south intersection I --
Dist_2 • (WIND_CELL.flb_y - PAST_CUSP.y) I

COS(AGD VECTOR.direction);
WHEN (AGD VECTOR.direction GT 270 degrees) OR
---rAGD VECTOR.direction LTi90 degrees)THEN--.

I find north intersection # --
Dist 2 • (WIND CELL.blt y - PAST CUSP.y) I

COS(AGD VECTOR.direction); -
I at least:One of the distances must be set -- take the minimum #
Min Dist • MIN(Dist l,Dist 2);
Intersect • Min Dist * (SIN(AGD VECTOR.direction),

COS(AGD VECTOR.direction)); -
INSERT INTO POSITION LIMITS

(position • Intersect);
IF AGD VECTOR.gradient GT 0
THEN #-climbing # --
--INSERT INTO ALTITUDE LIMITS

(altitude • Max_Alt);
ELSE
---yF AGD VECTOR.gradient LT 0

THEN #-descent# --
--yNSERT INTO ALTITUDE LIMITS

(altitude • Min Alt);
END Wind_Cell_Intersection;-

FIGURE 4-103 (Concluded)
WIND CELL INTERSECTION

4-194

If there are any altitude limits present, times to reach these
altitude limits are computed in Get Z To T (Figure 4-104). Any
speed limits are similarly converted to time units in Get
Speed To T (Figure 4-105). If there are any limits in terms of
along-route distances then corresponding (x,y) points at these
along routed distance limits are computed in Get Ard To XY
(Figure 4-106). These (x,y) points along with any other-posi
tion (x,y) limits are converted to time units in Get XY To T
(Figure 4-107). While converting the points to correspondi'iig
time limits, the Newton Raphson process (Appendix B) is used
for segments with nonzero acceleration but no change in
gradient. For nonzero gradients, final altitude and time at a
limit's given (x,y) point is determined by iteration in
Iterate To Final Altitude And Time (Figure 4-108). AGD Vector
Limit Computation then computes the first limit reached aloni
the AGD vector line by taking the minimum of all the limits
converted to time as described above and the time limits that
required no conversion. This final AGD Vector Limit is sent to
Cusp Construction.

4.4.4 Cusp Construction Design Logic

Cusp Construction is supplied with the AGD vector and the AGD
vector limit formulated in the Merging Process. Cusp Construc
tion uses information from the last cusp, the wind and the AGD
vector limit to compute x,y,z,t, true airspeed and along-route
distance at the next cusp.

Organization

Cusp Construction is invoked in Trajectory Construction after
the Merging Process has been completed. The newly formed cusp
with all associated information is added to the string of cusp,.
Figure 4-109 is a description of the calling sequence in this
process. Cusp Construction uses the following utilities: Tas
To Mach, las To Tas, Mach To Tas, Get Groundspeed, Tas To las-;
and Get Route Segment AndXY For Ard.- ·These utilities- are
described in Appendix B: - - -

Processing Methods

Processing follows in one of two paths:

• AGD vector dictates a level flight.

• AGD vector dictates that the gradient of the aircraft
trajectory is changing.

4-195

ROUTINE Get_Z_To_T;
PARAMETERS

ALT LIMS IN TIME OUT;
REFER TO SHARED LOCAL

AGD _VECTOR IN,
GRADIENT PARAMETERS IN,
PAST CUSP IN, -
ALTITuDE_ LIMITS IN,
WIND CELL IN;

DEFINE TABLES-
ALT LIMS IN TIME

alt lim
DEFINE VARIABLES

Limit
Delta Z
Tasl
Tas2
Delta S
Delta-Sz

Altitude limits
list of altitude limits converted to time;

Limit converted to time
Altitude limit minus past cusp z
True airspeed at past cusp
True airspeed at limit
Over ground distance
Point to point distance;

FIGURE 4-104
GET Z TO T

4-196

REPEAT FOR EACH ALTITUDE LIMITS RECORD
IF AGD_VECTOR.gradient ~ 0
THEN

IF ALTITUDE_LIMITS.altitude _m PAST_CUSP.z
THEN
----u.mi t - 0;
ELSE
--u.mi t • 'infinite' ;

ELSE
Delta Z • ALTITUDE LIMITS.altitude - PAST CUSP.z;
IF ((AGD VECTOR. gradient GT 0) AND (Delta-Z LT O)) OR
- ((AGD-VECTOR.gradient LT 0) AND (Delta-Z GT 0)) -
THEN I the limit altitude:is impossible to achieve I
----u.m1 t • ' infinite' ;
ELSE I the limit altitude can be achieved - translate I

Tasl • PAST CUSP. tas;
IF GRADIENT-PARAMETERS. transition speed type _!g 'ias'
THEN I transition speed is ias ---get tas I
---cALL Ias.To Tas

---rGRADlENT PARAMETERS.transition speed IN,
ALTITUDE-LIMITS.altitude IN, - -
WIND CELL.air temp IN,TaslOUT);

ELSE I transition speed is-m&ch -- get tas I
-cALL Mach To Tas

---rGRADIENT-PARAMETERS.transition speed IN,
WIND CELL.air temp IN,Tas2 OUT); -

Delta S • Delta Z I AGD VECTOR.gradient;
Delta:sz • SQRT(Delta_S-** 2 + Delta_Z ** 2);
Limit • Delta Sz I AVG(Tasl,Tas2);

INSERT INTO ALT LIMS IN TIME
(alt lim • Lrmit)T

END Get_Z_To_T;

FIGURE 4-104 (Concluded)
GET Z TO T

4-197

ROUTINE Get_Speed_To_T;
PARAMETERS

SPD LIMS IN TIME OUT;
REFER TO SHARED LOCAL

AGD _VECTOR IN,
PAST CUSP IN,
SPEED LIMITS IN;

DEFINE TABLES -
SPD LIMS IN TIME Speed limits

spd_lim - List of speed limits converted to time;
II
REPEAT FOR EACH SPEED LIMITS RECORD;

IF AGD_VECTOR.acceieration ~ 0
·THEN
--yF SPEED_LIMITS.speed NE PAST_CUSP.tas

THEN
--INSERT INTO SPD LIMS IN TIME

(spd_lim • 'lnfiniteT);
ELSE
---yNSERT INTO SPD LIMS IN TIME

(spd_lim • O);
ELSE
---yF (AGD VECTOR.acceleration GT 0) AND

- (PAST CUSP.tas LE SPEED LOOTS.speed)
THEN - - -
---yNSERT INTO SPD LIMS IN TIME

(sdp lim • (SPEED-LIMITS.speed - PAST CUSP.tas) I
AGD_VECTOR.acceleration); -

ELSE
---yF (AGD VECTOR.acceleration LT 0) AND

(PAST CUSP. tas GE SPEED LOOTS. speed)
THEN - - -
---yNSERT INTO SPD LIMS IN TIME

(sdp lim • (SPEED-LIMITS.speed - PAST CUSP.tas) I
AGD_VECTOR.acceleration); -

ELSE
---yNSERT INTO SPD LIMS IN TIME

(spd_lim • 'infiniteT);
END Get_Speed_To_T;

FIGURE 4-105
GET SPEED TO T

4-198

ROUTINE Get_Ard_To_XY;
PARAMETERS

Loc Fl Id IN,
ARD=LIMS_IN_XY OUT;

REFER TO SHARED LOCAL
ARD LIMITS IN,
AGD-VECTOR IN,
PAST_CUSP IN,

DEFINE TABLES
ARD LIMS IN XY

x coord
y:coord
xy_position

DEFINE VARIABLES
Loc Fl Id

Ard
Node_S(2)

Node_F(2)

Ard_Point(2)

A

B
c
A1

Bl
Cl
A2

B2
C2
X Out

y Out
Dir

Ard limits
x coordinate of ard limit in xy
y coordinate of ard limit in xy

AGGREGATE (x_coord,y_coord);

Flight identification for this aircraft
undergoing Trajectory Estimation

Along route distance
Starting node xy of route segment containing

given ard
Ending node xy of route segment containing

given ard
x,y corresponding to given ard on route

segment
x coefficient of line Ax+By-C defining

route segment
y coefficient of same line
Constant term in same line
x coefficient of perpendicular line on route

segment at Ard Point
y coefficient of the same line
Constant term in same line
x coefficient of line A2r+B2y-C2 defining

AGD VECTOR line
y coefficient of same line
Constant term of same line
x coordinate of point on AGD VECTOR line

corresponding to given ard
y coordinate of same point
Route segment direction;

FIGURE 4-106
GET ARD TO XY

4-199

REPEAT FOR EACH AR.D LIMITS RECORD
CALL Get Route Segment And XY For Ard (Loc Fl Id IN,
-ARD LIMITS.ard IN,Node s oUT, Node F ou'T, Ard POint OUl');
A,B,C; LINE(Node_S,Node_F);- - - - -
Al • B;
Bl = -A;
Cl • Al * Ard Point(!) + Bl * Ard Point(2);
CHOOSE CASE #-line 2 is the line of the AGD direction I
~ AGD_VECTOR.direction ,!g_ 90 degrees OR 270 degrees THEN

A2,B2,C2 • l,O,PAST CUSP.x;
WHEN AGD_VECTOR.direction ,!g_ 0 degrees OR 360 degrees THEN

A2,B2,C2 • O,l,PAST CUSP.y;
OTHERWISE -

A2 • -TAN(AGD VECTOR.direction);
B2 • ii- -
C2 • B2 * PAST_CUSP.y - A2 * PAST_CUSP.x;

CHOOSE CASE
WHEN ABS(Al * B2 - A2 * Bl) LE 1. OOE-o4 THEN
---, agd vector is perpendicular to route segment I

IF ABS (Cl I Bl - C2 I B2) * SIN(AGD VECTOR.direction) LE
-- l.OOE-o4 - -
~ I lines Alx+Bly-Cl, A2x+B2y•C2 are very close I

X_Out,Y_Out • Ard_Point;
ELSE
--print error message ' no solution ';

OTHERWISE
X Out,Y Out • (Al,Bl,Cl)INTERSECTION(A2,B2,C2);

IF AGD VECTOR7direction LE 0 OR
(J60 degrees - AGD VECTOR.direction) LE 0 OR
ABS(AGD_VECTOR.direction - 180 degreeS) LE-o

THEN
--:Dir • SIGNUM(Y Out-PAST CUSP.y) I COS(AGD_VECTOR.direction);
ELSE - -
--:Dir • SIGNUM(X Out-PAST CUSP.x) / SIN(AGD VECTOR.direction);
IF Dir LE 0 - - -- -
THEN
--:i_Out,Y_Out • PAST_CUSP.x,PAST_CUSP.y;
INSERT INTO AR.D LIMS IN XY

(x coord • X-Out,y coord•Y Out);
END Ard_To_XY; - - -

FIGURE 4-106 (Concluded)
GET AR.D TO XY

4-200

ROUTINE Get XY To T ;·
PARAMETERS - - -

POS LIMS IN TIME OUT;
REFFER -TO SiiABiD LOCAL

AGD VECTOR IN,
PAST_CUSP IN,
POSITION LIMITS IN,
WIND-CELL IN;

DEFINE TABLES
POS LIMS IN TIME

pos_lims
DEFINE VARIABLES

Delta Z
Delta-S
Delta-Theta
Wind Cross Track
Wind-Along-Track
Ground Speed
Next Cusp Tas
Delta T -
Fld(5)

Limit

Position limits
list of position limits in tiae;

z difference from past cusp to limit
:z:y distance from past cusp to limit
AGD vector direction minus wind direction
Wind vector cross track component
Wind vector along track component
Equivalent ground speed
True airspeed at next cusp
Time
Spare field for general use, used here as

coefficients of a fourth degree polynomial
Time to given :z:,y position;

DEFINE CONSTANTS
Epsilon T
Epsilon:)

(to be assigned)
(to be assigned)

Convergence parameter time
Convergence parameter for

distance;

FIGURE 4-107
GET XY TO T

4-201

REPEAT FOR EACH POSITION LIMITS RECORD
IF AGD VECTOR.direction NE DIRECTION(PAST CUSP.position,
-- POSITION LIMITS.position) -
THEN I point does not lie in the direction of the aircraft I

Limit • 'infinite';
ELSE II point can be achieved in this direction I
-----x>elta S • DIST(PAST CUSP.position,POSITION LIMlTS.position);

Delta-Theta-;-AGD VECTOR.direction - -
WIND CELL.wind-direction;

Wind Cross Track ; WIND CELL. wind speed * SIN(Del"ta Theta);
Win(::Alo~Track • WIND=CELL.win(~speed * COS(Delta=Theta);
IF AGD_VECTOR.gradient ~ 0 .
THEN I no alt change - groundspeed not changed by gradient I
---rF AGD VECTOR.acceleration ~ 0

THEN ,-no acceleration -- groundspeed stable I
~round Speed • SQRT(PAST CUSP.tas ** 2 -

Wind Cross Track ** i) + Wind Along Track;
Delta T-• Delta S/Ground Speed; - -

ELSE I acceleration -- need-to iterate a quartic I
~rst calculate Delta T by assuming no wind, use this I
I as a starting value for a Newton-Raphson iteration I

Next_Cusp_Tas • SQRT(PAST_CUSP.tas ** 2 +
2 * AGD VECTOR.acceleration * DeltaS);

Delta T • Delta S I AVG(PAST CUSP.tas,Next Cusp Tas);
Fld(lJ • .25 *PAST CUSP.tasi - -
Fld(2) • PAST CUSP.tas * AGD VECTOR.acceleration;
Fld(3) • PAST-CliSP.tas ** 2 =

WIND CELL.wind speed ** 2;
Fld(4) ; 2 * Wind-Along Track * Delta S;
Fld(5) • -Delta_S-** 2;- -
CALL Newton Raphson(Delta T INOUT,Fld IN,
~psilon TIN); - -

ELSE I iterate to converge on final altitude and time I
---c:ALL Iterate To Final Altitude And·Time(Delta S IN,

----ypsilon Z-IN:Delta-T OUT,Delta Z OUT); - -
Limit • Delta_T; - - - -

INSERT INTO POS LIMS IN TIME
(pos_lim • Limit);

~ Get_XY_To_T;

FIGURE 4-107 (Concluded)
GET XY TO T

4-202

ROUTINE Iterate To Final Altitude And Time;
I this routine wilT return final altitude and time to that altitude#
I when past cusp, agd vector, wind and next position(x,y) are given#
PARAMETERS

Delta S IN,
Epsilon ZIN,
Delta T-OUT,
Delta-Z OUT;

REFER TO-SHARED LOCAL
PAST CUSP IN,
WIND= CELL IN,
AGD _VECTOR IN,
GRADIENT _PARAMETERS IN;

DEFINE VARIABLES
Tas Initial
Tas Final
Gs Initial
Gs-Final
Avg_Gs
Avg Tas
Delta Theta

Old Del Z
New-Del-Z
Deltas
Delta-T
Delta Z
Final-z
Effective Gradient
Grad Angle
Tas Initial Horz
Tas Final Horz
Gs Initial Horz
Gs -Final Horz
Wind Cross Track
Wind=Aloni:Track
Temp
Change Del Z

DEFINE CONSTANTS

Past cusp true airspeed
True airspeed at limit altitud
Ground speed at past cusp
Ground speed at limit altitude
Ground speed average
True airspeed average
Difference of wind and AGD vector

directions
Altitude difference start
Altitude difference new
Distance over ground
Time difference
z difference from past cusp to limit
Final altitude
Wind corrected gradient
Gradient angle (horizontal)
Horizontal component of initial tas
Horizontal component of final tas
Horizontal component of initial gs
Horizontal component of final gs
Cross wind
Along track wind
Local wind cell temperature
Change in z difference;

Epsilon_Z (to be assigned) Altitude convergence param;

FIGURE 4-108
ITERATE TO FINAL ALTITUDE AND TIME

4-203

Delta Theta • AGD VECTOR.direction - WIND CELL.wind direction;
Wind Cross Track -; WIND CELL. wind speed *-SIN(Delta -Theta);
Wind-Alo~Track = WIND-CELL.wind-speed * COS(Delta-Theta);
Gs_lnitial-· SQRT(PAST_CUSP.tas ** 2 - Wind_Cross_Track ** 2) +

Wind Along Track ;
Gs Final • Gs-Initial;
Tas Initial --PAST CUSP.tas;
Tas=Final • Tas_Initial;
Avg Gs = Gs Initial;
Avg-Tas = Tas Initial;
Temp • WIND CELL.air temp;
1-------~--------= Iteration Loop I
Old Del Z = 0;
Change Del Z = 1. OOE+03;
REPEAT-UNTIL (Change Del Z LE Epsilon Z)

New Del Z • AGD VECTOR.gradient * (Avg Tas I Avg_Gs) * Delta_S;
Final z-. PAST CUSP.z + New Del Z; -
Change Del z --ABS(New Del z -Old Del Z);
Old Del Z ; New Del Z;- - - -
IF GRADIENT_PARAMETERS.transition_speed_type ~ 'ias'
THEN I translate ias to tas I
~ALL las To Tas(GRADIENT PARAMETERS.transition speed IN,

--Final-Z IN,Temp IN,Tas Final OUT); - -
ElSE I translate mach to tas-# -
--CALL Mach To Tas(GRADIENT PARAMETERS.transition speed IN,

---yemp IN,Tas Final oUT>"; - -
Gs Final = SQRT(Tas Final ** 2 - Wind Cross Track ** 2)+

-Wind Along Track; - -
Avg Gs ~ AVG(Gs Initial,Gs Final);
Avg -Tas • AVG(Tas Initial,Tas Final);

Effective Gradient --AGD VECTOR.gradient * Avg TasiAvg Gs;
Grad Angle • ARCTAN(Effective Gradient); - -
Tas Initial Horz • Tas Initial * COS(Grad Angle);
Gs_Initial_Horz • SQRT(Tas_Initial_Horz ** 2 -

Wind Cross Track ** 2) + Wind Along Track;
Tas Final Horz • Tas Final * cos(Grad Angle');
Gs Final Horz • SQRT(Tas Final Horz ** 2 -

-Wind Cross Track ** i) + wind Along Track;
Delta T-- Delta s I AVG(Gs Initial Horz,Gs Final Horz);
Delta-Z • New Del Z;- - - - -

END Iterate_To_Final=Altitude_And_Time;

FIGURE 4-108 (Concluded)
ITERATE TO FINAL ALTITUDE AND TIME

4-204

Cusp_Construction
Time To Speed
Time-To-X Y Z
Get_Ground_Speed
XY To Ard
Tas To Ias
Tas-To-Mach

FIGURE 4-109
CUSP CONSTkUCTION CALLING SEQUENCE

4-205

In the first case, the aircraft is assumed to maintain the same
direction as is called for in the . direction component of the
AGD vector. The true airspeed direction (aircraft's heading)
is different than the direction the AGD vector specifies. When
modified by wind, the resultant groundspeed has the same direc
tion as the AGD vector direction (Figure 4-110). In the second
case, the aircraft will maintain the direction as per AGD
vector direction, but will not be able to maintain the AGD
vector gradient. Winds will change the gradient from the
nominal one obtained from AGD vector gradient variable. This
modified gradient is called effective gradient and is used for
cusp construction (Figure 4-111).

The CUsp Construction process (Figure 4-112) accepts the AGD
Vector Li-mit, which is a time value, as a parameter. This time
value is the time at the cusp to be constructed. True airspeed
at this next cusp time is computed in Time To Speed (Figure
4-113). The equivalent position (x,y) and altitude (z) at the
next cusp is computed in Time To X Y Z (Figure 4-114) which
uses the element Iterate To F:iid Speed And Z (Figure 4-115).
Ground speed at the cusp is computed by the utility Get Ground
Speed. Next, along route distance at the cusp is computed in
XY To Ard (Figure 4-116). The indicated airspeed (ias) and
mach -values are computed using utilities Tas To las and
Tas To Mach.

4.5 Trajectory Post Processing

The Trajectory Post Processing subfunction of Trajectory Esti
mation derives trajectory data needed by other system func
tions. This trajectory data requires that all planned actions
have already been incorporated into a completed trajectory.

In particular, this section discusses the construction of
trajectory-related information for use by Nominal Plan Builder
(this volume), Sector Workload Probe .[Vol. 4], and Flight Plan
Conflict Probe [Vol. 3]. These data are separate from the
trajectory and include:

• A point is provided to Nominal Plan Builder referencing
the latest point in the trajectory on the boundary on a
controller-placed planned action.

• A data table is constructed for Sector Workload Probe
indicating the modeled time extents of each planned
action in the plan of the aircraft.

4-206

N

AGD Vector
Direction--+-...,

True Airspeed
Direction _ _.__._

Airspeed Vector

Wind Vector

~Ground Speed Vector

FIGURE 4·110
TRUE AIRSPEED, WIND AND GROUNDSPEED VECTORS

4-207

B ~. TrueDe --s-c-ent

~ . - AGD V~ctor Descent

A

c D

Along Route Distance

ABCD: Modeled Aircraft Profile

BF/FE: AGD Vector Gradient

BF/FC: True Gradient

FIGURE 4·111
EFFECT OF WIND ON AIRCRAFT DESCENT

4-208

ROUTINE CUsp Construction;
this routine constructs the next cusp and fills up H
H PAST CUSP, TRAJECTORIES, SUPPLEMENTAL CUSP INFORMATION I
PARAMETERS

Loc Fl Id IN,
AGD-Vector:Limit IN;

REFER To GOLBAL -
TRAJECTORIES INOUT;

REFER TO SHARED LOCAL
AGD_VECTOR INOUT,
GRADIENT PARAMETERS IN,
PAST_CUSP IN,
SUPPLEMENTAL CUSP INFORMATION INOUT,
WIND_ CELL IN:- -
PAST_CUSP_TYPE IN;

DEFINE VARIABLES
Loc Fl Id Flight identification for this

aircraft undergoing Trajectory
Estimation

AGD Vector Limit Agd vector limit
Next X Next cusp x
Next Y Next cusp y
Next Z Next cusp z
Next-T Next cusp time
Next-Tas True airspeed at next cusp
Next Groundspeed Groundspeed at next cusp
Next-las Indicated airspeed at next cusp
Next-Mach Mach number at next cusp
Next-Ard Ard at next cusp
Flag(2) Past cusp type flag (literals)
Past_Cusp_Type Past cusp type;

FIGURE 4-112
CUSP CONSTRUCTION

4-209

Next T • AGD Vector Limit;
CALL-Time To-Speed(Next T IN,Next Tas OUT);
CALL Time-To-X Y Z(Next-T IN,Next-X OUT,Next Y OUT,Next Z OUT);
CALL Get Ground Speed(NextTas rN:-Next Groundspeed OUT); -
CALL XY To Ard(LOc Fl Id IN,Nex~X IN,Next YIN, Next Ard OUT);
CAli Tas To Ias(Next Tas IN,Next-Z IN,WIND-CELL.air temp I~
---riext las-OUT); - - - - - - -
CALL Tas To Mach(Next Tas IN,Next Z IN,WIND CELL.air temp IN,
--Next Mach OUT); - - - - - - -
SELECT FIELDS altitude present,hold present

FROM PAST CUSP TYPE- -
INTO Flag;

Past_Cusp_Type • "regular" * BOOL(Flag ~ 'no no') +
"vertical maneuver" * BOOL(Flag ~ 'yes no') + ,
"hold" * BOOL(Flag ~ "'i'iiO""yes') +
"vertical hold"* BOOL(Flag m_ 'yes yes');

UPDATE IN TRAJECTORIES
(cusp type • Past Cusp Type)
WHERE-TRAJECTORIES.time • PAST_CUSP.time;

INSERT INTO TRAJECTORIES
(fl id • Loc Fl Id,time =Next T,x • Next X,y • Next Y,
z =Next Z,ground speed • Next Groundspeed); -

UPDATE IN PAST CUSP - -
(x • Next X7y • Next Y,z • Next Z,time • Next T,ard • Next_Ard,
tas • Next Tas,ground speed • Next Groundspeed,
wind speed-· WIND CELL.wind speed,-
wind=direction • WIND_CELL.wind_direction,
temperature • WIND CELL.air temp,ias • Next las,
mach • Next_Mach);- - -

INSERT INTO SUPPLEMENTAL CUSP INFORMATION
(fl id • Loc Fl Id,time • -PAST CUSP.time,
acceleration --AGD VECTOR.acceleration,gradient =
AGD VECTOR.gradient,direction • AGD VECTOR.direction,
pa Id acceleration • AGD VECTOR.pa ld acceleration,
pa-id-gradient • AGD VECTOR.pa id gradi~nt,pa id direction •
AGD_VECTOR.pa_id_direction,ard-= Next_Ard,tas-·-
Next Tas,max grad • GRADIENT PARAMETERS.max gradient,
min grad • GRADIENT PARAMETERS.max gradient-;ias = Next las,
mach = Next_Mach,wind_direction = WIND_CELL.wind_direction,
wind speed • WIND CELL.wind speed,temperature =
WIND-CELL.air temp); -

END Cusp_Construction;

FIGURE 4-112 (Concluded)
CUSP CONSTRUCTION

4-210

ROUTINE Time To Speed;
PARAMETERS - -

Time IN,
Altitude IN,
Speed OUT;

REFI'R TO Siiliu:D LOCAL
PAST CUSP IN,
AGD VECTOR IN'
GRADIENT PARAMETERS IN;'
WIND CELL IN;

DEFINE VARIABLEs

Ill

Time Elapsed time since past cusp
Speed Speed at new point
Altitude Altitude of new point;

IF(AGD_VECTOR.acceleration !Q 0) AND (AGD_VECTOR.gradient !Q 0)
THEN
--Speed • PAST_ CUSP. tas
ELSE
--IF AGD VECTOR.gradient EQ 0

THEN #-calculate new speed H
--Speed • PAST_CUSP.tas + AGD_VECTOR.acceleration * Time;
ELSE

IF GRADIENT PARAMETERS.transition_speed_type !Q 'mach'
THEN
--CALL Mach To Tas(GRADIENT PARAMETERS.speed IN,

---wrND_CELL-:-air_temp IN,Speed OUT); -
ELSE
--CALL las To Tas(GRADIENT PARAMTERS.speed IN,

--:A:J..titude-IN,WIND_CELL-:-air_temp in,SpeedOUT);
END Time_To_Speed;

FIGURE 4-113
TIME TO SPEED

4-211

ROUTINE Time_To_X_Y_Z;
PARAMETERS

Time IN,
x ouT-;-
Y OUT,
Z OUT;

REFER. TO SHARED LOCAL
AGD VECTOR IN,
PAST aJSP IN:-

DEFINE VARIABLES
X
y
z

x coordinate
y coordinate
z coordinate

Tas
Tas2
Ground Speed
New_ G _Speed
Avg G Speed
Time-

True air speed
New true air speed
Ground speed

Ill

New ground speed
Average ground speed
Elapsed time;

IF AGD VECTOR. gradient NE 0
THEN
----Tas • Tas * COS(ARCTAN(AGD VECTOR.gradient);
CALL Get Ground Speed(PAST CUSP.tas IN,Ground Speed OUT);
IF AGD VARIABLE:-gradient EQ 0 - - -
THEN - -
----z • PAST_ CUSP. z;

IF AGD VECTOR.acceleration NE 0
THEN
----CALL Time To Speed(Time IN, Z IN, Tas2 OUT);

CALL Get Ground Speed(Tas2 IN,New G Speed OUT);
ELS_E_ - - - -- -

New G Speed • Ground Speed;
Avg G Speed • (New G Speed + Ground Speed) I 2;

ELSE -- -- -
----CALL Iterate To Find Speed And Z(Time IN,Tas IN, Z OUT,

~vg_G_Speed OUT);- - - - -
X • PAST CUSP.x + Avg G Speed * Time * SIN(AGD VECTOR.direction);
Y = PAST=CUSP.y + Avg=G=Speed * Time * COS(AGD=VECTOR.direction);

END Time_To_X_Y_Z;

FIGURE 4-114
TIME TO X Y Z

4-212

ROUTINE Iterate_To_Find_Speed_And_Z;
PARAMETERS

Time IN,
Tas IN,
Z OUT,
Avg G Speed OUT;

REFER TO-SHAREDLOCAL
PAST CUSP IN,
AGD VECTOR IN'
GRADIENT PARAMETERS IN,
WIND CELL lN;

DEFINE V'ARIABtES
Time
z
Avg_G_Speed
H Diet
Old Z
Del-Z
Tas
Avg_Tas
New Tas

Elapsed time
Altitude at new point
Average ground speed
Horizontal distance w.r.t. airmass
Last quess for z
Change in z
Old tas
Average tas
New tas;

DEFINE CONSTANTS
Small Value Defined;

1111
Z • PAST CUSP.z;
H_Dist --PAST_CUSP.tas * Time;
REPEAT UNTIL Del Z LT Small Value --Old_Z • Z;

Z • AGD VECTOR.gradient * H Diet + PAST CUSP.z;
IF 'mach' ~ GRADIENT_PARAMETERS.transition_speed_type
THEN
--CALL Mach To Tas(GRADIENT PARAMETERS.speed IN,

---wrND_cEu.:air_temp IN,New_Tas OUT); -
ELSE
--CALL las To Tas(GRADIENT PARAMETERS.speed IN, Z IN,

---wrND CELL.air temp IN-;New Tas OUT); - -
New Tas =New Tas *-COS(ARCTAN(AGD VECTOR.gradient));
Avg-Tas • (New Tas +-pxST CUSP.tas)/2;
H Diet • Avg Tas * Time; -
Del Z • ABS(Old Z - Z);
CAIL Get_Ground=Speed(Avg_Tas IN,Avg_G_Speed OUT);

END Iterate_To_Find_Speed_And_Z;

FIGURE 4-115
ITERATE TO FIND SPEED AND Z

4-213

ROUTINE XY_To_Ard;
PARAMETERS

Loc Fl Id IN,
Input_ X IN-;
Input Y IN,
Ard OUT;-

REFER TO SHARED LOCAL
PAST CUSP IN;

DEFINE VARIABLES
Loc Fl Id

Ard
Node S(2)

Node F(2)
Ard Point(2)
A -

B
c
Al

Bl
Cl
Ratio

DEFFINE CONSTANT

Flight identification for this aircraft
undergoing Trajectory Estimation

Along route distance
Starting node xy of route segment

containing past cusp ·
Ending node xy of same route segment
xy corr. to given ard on route segment
x coefficient of line Ax+By•C defining

route segment
y coefficient of same line
constant term of same line
x coefficient of a perpendicular line from

given (xy) route segment
y coeff of same line
Constant term of same line
Ard - past cusp ard over route segment length;

Epsilon (to be assigned) Convergence parameter;

t'IGURE 4-116
XY TO ARD

4-214

CALL Get Route Segment And XY For Ard(Loc Fl Id IN,
---pAST CuSP.a-;,. IN,Node S-OuT,Node F OUT;Ard Point OUT);
A,B,C --LINE(NodeS ,Node-F)i - - - -
Al • B; -- - -
Bl • -A;
Cl • Al * lnput_X + Bl * lnput_Y;
CHOOSE CASE

WHEN ABS(Node F(l) -Node S(l)) LT Epsilon THEN
---aatio •(Node S(l) - Input X) T(Node S(ly::-Node F(l));
WHEN ABS(Node F(2) - Node S(I)) LT Epsilon THEN -
-----s&tio • (Node S(2) - Input Y)/ < Node sm-- Node F(2});
OTHERWISE - - - -

Ard Point • (A,B,C)INTERSECTION(Al,Bl,Cl);
Ratio • (Node S(l) - Ard Point(l)) I (Node S(l) -

Node F(l)); - -
Ard • PAST CUSP.ard + DIST(Node S,Node F) * ~(O.,MIN(l.,Ratio));

END XY_To_Ard; -- - -

FIGURE 4-116 (Concluded)
XY TO ARD

4-215

• Maneuver envelopes are provided to enclose portions of
the trajectory where the position of the aircraft is
uncertain. These airspace volumes are protected by
Flight Plan Conflict Probe which identifies any pene
trations into the manuever envelopes made by other
aircraft trajectories.

4.5.1 Mission

Nominal Plan Builder requires the identification of the last
point in the trajectory which was actively influenced by a
controller-placed planned action. This point, called the NPB
Planning Point, indicates where procedural altitude modeling
should start.

Sector Workload Probe computes measures of workload associated
with the traffic content of individual sectors. These measures
factor temporally placed planned actions into the numerical
estimate of workload since these actions represent future
controller involvement. Trajectory Estimation supplies a list
of which planned actions are modeled in a trajectory and gives
the trajectory time duration each planned action is in effect.
Sector Workload Probe can then cross reference a planned
action, a trajectory and a sector to incorporate the effects of
planned ATC maneuvers in workload estimates.

Flight Plan Conflict Probe processes trajectory information,
comparing a set of trajectories to identify areas where separa
tion between aircraft trajectory positions fall below some
minimum. The aircraft's position cannot always be predicted
adequately in certain flight maneuvers. In cases where posi
tion cannot be adequately predicted, Trajectory Estimation
provides- both an aircraft expected position and a maneuver
envelope. A maneuver envelope is a geometrical construct which
portrays positional uncertainty. Flight Plan Conflict Probe
then identifies penetrations of these maneuver envelopes.
Maneuver envelopes are associated with hold maneuvers and
altitude change maneuvers.

The maneuver envelope construction process is responsible for
defining and computing four-dimensional (x,y,z,t) vertices
which are associated with trajectory cusps. Each cusp with a
hold maneuver or an altitude maneuver is associated with four
vertices which describe the maneuver envelope. Figure 4-117
shows a maneuver envelope enclosing a holding pattern.

4-216

--Hold Fix

2

FIGURE 4·117
HOLDING PATTERN MANEUVER ENVELOPE

4-217

4.5.2 Design Considerations and Component Environment

Trajectory Post Processing is called by Trajectory Estimation
after a complete trajectory has been built. The process
utilizes and generates the following data:

Input

The following data are used in Trajectory Past Processing:

• System Global Data Base

- TRAJECTORIES

This table is accessed to obtain information about
the positions where maneuver envelopes must be built.

- PLANNED ACTIONS

The source field is used to determine the
positioning of the NPB planning point

- HOLD PLANNED ACTIONS

lhis table provides hold maneuver information to
compute the size and shape of the holding pattern.

- ALTITUDE CHANGE PLANNED ACTIONS

This table provides the target altitude related to a
specific planned action.

- ALTITUDE RESTRICTIONS PARAMETFB.S

This table provides {x,y ,z) coordinates of a
restriction point for an . altitude change planned
action, if restriction exists.

• Shared Local Data Base .

- SUPPLEMENTAL CUSP INFORMATION

This table provides planned action identifiers,
along route distance, maximum, minimum and nominal
gradient values and speed information at the cusps.

4-218

OUtput

• System Global Data Base

- PLANNED ACTION DURATION

The trajectory time interval associated with each
planned action is recorded.

- MANEUVER ENVELOPE

The vert ices describing the maneuver envelope are
inserted along with flight identification and cusp
time to which the four vertices apply.

• Shared Local Data Base

- NPB PLANNING POINT

The latest position of a controller involvement with
the trajectory is recorded.

4.5.3 Trajectory Post Processing Design Logic

Organization

The Trajectory Post Processing subfunction follows the calling
sequence given in Figure 4-118. The elements of the Trajectory
Post Processing subfunction are provided in this section. The
element Determine Turn Rate is provided in Appendix B.

The post processing operation utilizes a completed trajectory.
'!be Program Design Language manipulations of the global data
base have ensured that no segments of zero length (four
dimensional) are included in the traje~tory.

Processing Method

The Trajectory Post Processing element is provided in Figure
4-119. '!be first operation performed is the buUd1ng of the
planned action duration table. In Build Planned Action
Duration (Figure 4-120), locally stored infonaation coii'eernini
the modeled start time and modeled end time of each planned
action is paired and inserted into the global table.

4-219

Trajectory Post Processing
Build Planned Action Duration
Build-NPB Plannins_Point

Upaate-Candidate Time
Check Trajectory For Maneuver Envelope

Build Hold Maneuver Envelope
Compute Hold Box Parameters

Determine-Tum Rate
Build Altitude Maneuver Envelope

Find_Ard_For_Cusp -
Find Last Downstream Vertices
Find-Paid-
Pa Details
Vertex Definition Unrestricted

Effective Gradient
Vertex Definition Restricted

Effective Gradient
Vertex Construction Supervisor

Vertex Construction

FIGURE 4-118
TRAJECTORY POST PROCESSING CALLING SEQUENCE

4-220

ROUTINE Tr•jectory Post Processing;
PARAMETERS - -

Loc F1 Id IN;
DEFINE-TABLES-

TRAJECTORY

fl id
time
X

y
z
ground_ speed
cusp type

DEFINE VARIABLES
Loc F1 Id

II

Same as global table TRAJECTORIES
but ordered by time
Flight_id
Time
x coordinate of cusp
y of cusp
z of cusp
Ground speed at cusp
Type of cusp;

The identity of the aircraft undergoing
Trajectory Estimation;

CALL Build Planned Action Duration;
CALL Build:NPB_Plannin~._Point(Loc_Fl_Id IN,TRAJECTORY OUT);
CALL Check Trajectory For Maneuver Envelope(Loc Pl Id IN,
-TRAJECTORY IN); - - - - - -
~ Post_Processing;

FIGURE 4-119
TRAJECTORY POST PB.OCESSING

4-221

ROUTINE Build Planned Action Duration;
REFPR TO GLOBAL - -

PLANNliD_ACTION_DURATION IN;
REFER TO SHARED LOCAL

PLANNED ACTION START TIMES INOUT,
PLANNED-ACTION-END TIMES INOUT;

DEFINE VARDBT.FS - -

II

tOe Pa Id
Loc Start Time
Loc-End Time

Local planned action identifier
Start time for planned action
End time for the planned action;

REPEAT FOR EACH PLANNED ACTION START TIMES RECORD;
SELECT FIELDS pa id,pa start time-

FROM PLANNED ACTIONSTART-TIMES
INTO Loc Pa Id,Loc Start Time;

SEL~FIELDS pa end time -
FROM PLANNED ACTiON END TIMES
INTO Loc End-Time;

DELETEFROM-PuiNED ACTION DURATION (P_A_D)
WHERE P_A_D.pa_id ~ Loc_Pa_Id;

INSERT INTO PLANNED ACTION DURATION
(pa_id • Loc_Pa_Id,
pa start time • Loc Start Time,
pa:=end_time • Loc_End_Time);

END Build_Planned_Action_Duration;

FIGURE 4-120
BUILD PLANNED ACTION DURATION

4-222

Build NPB Planning Point (Figure 4-121) controls the construc
tion of the planniDg point for Nominal Plan Builder. Each cusp
and its associated planned actions are examined in sequence.
Those planned actions active at a cusp are examined and, if the
action's source is "controller," the NPB planning point is
moved to the cusp. This stepping is done in Update Candidate
Time (Figure 4-122). When all cusps have been e:uiined, the'ii
the resulting cusp is the last point on the trajectory actively
influenced by a controller-placed planned action.

Maneuver envelopes are constructed next. Check Trajectory For
Maneuver Envelopes (Figure 4-123) controls the· construction
process by sequentially examining each cusp. If the cusp is a
point inside a holding pattern, a hold maneuver envelope is
constructed by Build Hold Maneuver Envelope (Figure 4-124).
Compute Hold Box Parameters- (Figure-4-125) does the computa
tions necessary to derive the four maneuver envelope vertices.

If an altitude change is present and a hold is not, then an
altitude maneuver envelope is constructed by Build Altitude
Maneuver Envelope (Figure 4-126). The process begins by
associating an along-route distance at each of three cusps--the
previous, the present, and the next cusp--in Find Ard For Cusp
(Figure 4-127). - - -

The set of cusps describes the segment's altitude change due to
the interaction of a planned action and physical phenomena. In
order to make the pieces of the altitude maneuver envelope
"hook up" properly, the next maneuver envelope section may have
common vertices with the most previous section built. These
vertices for the previous section are retrieved by Find Last
Downstream Vertices (Figure 4-128).

The planned action responsible for the gradient at the cusp
under consideration is obtained in Find Paid (Figure 4-129).
If the altitude maneuver represents a- restricted altitude
change, the restriction point is retrieved in Pa Details
(Figure 4-130).

Next, the actual positions of the four vertices associated with
this section of the altitude maneuver envelope are determined.
In Vertex Definition Unrestricted (Figure 4-131), the computa
tion of the vertex points for this maneuver envelope section
are set up when the altitude change does not contain a restric
tion. The gradient parameters used to determine the sides of
the maneuver envelope section are augmented by the effects of
wind in the element Effective-Gradient (Figure 4-132). A
process analogous to Vertex Definition Unrestricted takes place

4-223

ROUTINE Build NPB Planning Point;
PARAMETERS - - -

toe n Id IN,
TRAJECToRYINOUT;

REFER TO GLOBAL
PLANNED ACTIONS IN,
TRAJECTORHS IN,-
SUPPLEMENTAL CUSP INFORMATION IN;

REFER TO SHARED-LOCAL -
NPB PLANNING POINTS INOUT;

DEFINE-TABLES -
CUSP PLANNED ACTIONS

pa_id_acceleration
Planned actions identified at the cusp

Identification of the planned action
controlling the acceleration variable

Identification of the planned action
controlling the gradient variable

Identification of the planned action
controlling the direction variable

pa_id_gradient

pa_id_direction

TRAJECTORY

fl id
time
X

y
z
ground_ speed
cusp type

DEFINE VARIABLES
Loc Fl Id

Candidate Time
CUsp T
Cusp:x
Cusp_Y
Cusp Z
CUsp-Ard
Cusp:Tas

Same as global table TRAJECTORIES
but ordered by time
Flight_id
Time
x coordinate of cusp
y of cusp
z of cusp
Ground speed at cusp
Type of cusp;

Identification for flight undergoing
Trajectory Estimation

Candidate time for the NPB planning point
Time at NPB Planning point
X coordinate at NPB planning point
Y coordinate at NPB planning point
Altitude coordinate at NPB planning point
Along route distance at NPB planning point
True airspeed at the NPB planning point;

FIGURE 4-121
BUILD NPB PLANNING POINT

4-224

TRAJECTORY • SELECT FIELDS ALL
FROM TRAJECTORIES
WiRE TRAJECTORIES.fl_id !£l Loc_Fl_Id
ORDERED BY TRAJECTORIES. time;

candidate Time • MIN(ORDERED CUSPS.time);
REPEAT FOR EACH TRAJECTORY RECORD;

CUSP PLANNED ACTIONS • SELECT FIELDS pa id acceleration,
pa id gradient,pa id direction - -
FROM SUPPLEMENTAL-CUSP INFORMATION (S C I)
WiiEiE S_C_I.fl_id-~ r.Oc_Fl_Id AND S_C_I.time EQ

TRAJECTORY.time;
IF CUSP_PLANNED_ACTIONS.pa_id_acceleration NE NULL
THEN
---c:ALL Update Candidate Time(Candidate Time INOUT,

-TRAJECTORY. time IN-; -
CUSP PLANNED ACTIONS.pa id acceleration IN);

IF CUSP P.r.iNNED ACTIONS.pa id-gradient NE NULL-
THEN - - - - --

---cALL Update Candidate Time(Candidate Time INOT,
-TRAJECTORY. time IN-;- -

CUSP PLANNED ACTIONS.pa id gradient IN);
IF CUSP PLANNEo ACTIONS.pa id-direction NE~L
THEN - - - - --
---cArJ. Update_Candidate_Time(Candidate_Time INOUT

TRAJECTORY.time IN,
CUSP _PLANNED_ ACTIONS. pa _id _direction IN);

SELECT FIELDS time,x,y,z
FROM TRAJECTORIES
INTO Cusp Time, Cusp X, Cusp Y, Cusp Z
WiiEiE TWECTORIES.fl_id ~ Loc_Fl_Id ~

TRAJECTORIES. time ,m Candidate_ Time;
SELECT FIELDS ard,tas

FROM SUPPLEMENTAL CUSP INFORMATION (S_C_I)
INTO Cusp Ard, Cusp Tas-
Wii'ERE s_c:I.fl_id !9. Loc_Fl_Id AND

S_C_I.time !£i Candidate_Time;
INSERT INTO NPB PLANNING POINTS

(flight id ·-Loc Fl Id, x • Cusp X, y • Cusp Y,
z • Cusp Z, t ·-Cusp T, ard • cUsp Ard, -
tas • Cusp Tas); - -

END Build_NPB_Planning_Point;

FIGURE 4-121 (Concluded)
BUILD NPB PLANNING POINT - -

4-225

ROUTINE Update_Candidate_Time;
PARAMETmS

Candidate Time
Cusp Tille -IN,
Loc Pa Id IN;

INOUT,

REFm TO GLOBE
PLANNED ACTIONS IN;

DEFINE VARIABLES
Candidate Time
Cusp Time

Candidate time for the NPB planning point
The time of a cusp being checked
Identification of a planned action

I#

Loc Pa Id
Loc Source Source of the planned action referred to by

the planned action identifier;

SELECT FIELDS pa source
FROM PLANNED ACTIONS
INTO Loc Source
WiiiiE PWNED_ACTIONS.pa_id !9. Loc_Pa_Id;

.!!. Loc_Source ~ 'controller'
THEN
---candidate Time • MAX(Candidate time,Cusp Time);
~ Update_Candidate_Time; - -

FIGURE 4-122 ·
UPDATE CANDmATE TIME

4-226

ROUTINE Check Trajectory For Maneuver Envelopes;
PARAMETERS - - - -

Loc Fl Id IN
TRAJECToRY IN;

REFER TO GLOBAL
PLANNED ACTION DURATION IN,
PLANNED -ACTIONS IN, -
MANEUVER ENVELOPEINOUT;

REFER TO SHiR.ED LOCAL
SUPPLEMENTAL CUSP INFORMATION IN;

DEFINE TABLES - - -
TRAJECTORY Same as global table TRAJECTORIES

but ordered by time
fl id Flight id
time Time -
X

y
z
ground_ speed
cusp type

DEFINE VARIABLES
Loc Fl Id
I.oc-Tiiie
Loc-Tas
Loc-Wind Speed
Loc-Pa Id

Loc_Pa_Type
II

x coordinate of cusp
y of cusp
z of cusp
Ground speed at cusp
Type of cusp;

Flight id of aircraft being modeled
The time at a cusp for this aircraft
True airspeed at the cusp
Speed of the wind at the cusp
Identification of a planned action for this

aircraft
Type of planned action;

REPEAT FOR EACH TRAJECTORY RECORD;
IF TRAJECTORY.cusp type NE 'regular'
THEN - -
--CHOOSE CASE

WHEN TRAJECTORY. cusp type ~ 'hold' OR
--TRAJECTORY. cusp _type ,!g_ verticaihold' THEN

CALL Build Hold Maneuver Enve1ope(Loc Fl Id IN,
--TRAJECTORY.Z-IN,TRAJECTORY.time IN}; - -
~ TRAJECTORY .cusp_type ~ 'vertical maneuver' THEN

CALL Build Altitude Maneuver Envelope(Loc Fl Id IN,
-TRAJECTORY. time IN, TRAJECToRY IN); - - -

END Check_Trajectory_For_Maneuver_Envelopes; -

FIGURE 4-123
CHECK TRAJECTORY FOR MANEUVER_ENVELOPES

4-227

ROUTINE Build Hold Maneuver Envelope;
PARAMETERS - - -

Loc_Fl_Id IN, Loc_Time IN, Loc_Alt IN;
REFER TO GLOBAL

HOLD PLANNED ACTION IN, MANEUVER ENVELOPE INOUT;
REFER TO SHARED-LOCAL - -

SUPPLEMENTAL CUSP INFORMATION IN;
DEFINE TABLES - - -

LOC HOLD PA Local copy of speed planned action record
pa id- Planned action identification
hold fix x x coordinate at the hold fix
hold=fix:J y coordinate at the hold fix
direction inbound Direction of flight on leg inbound to

EFC time
lei)ength_type
leg length value
turn direction
hold fix position

DEFINE VARlABLFs
Loc Pa Id

Loc Alt
Loc Time
Loc-Fl Id
Loc-Tas
Loc-Wind Speed
End=Box_Interaect(2)

Start_Box_Intersect(2)

Right Side Box Width
Left Side Box Width
Unit:vector_Cross(2)

Loc_RD_Position(2)

Loc_RU_Position(2)

Loc_LU_Position(2)

Loc_LD_Position(2)

the hold fix
Expect further clearance time
Units used on the leg length
Measure of the leg length
Direction of turns in the hold
AGGREGATE (hold_fix_x,hold_fix_y);

Identification of a planned action for this
aircraft

Altitude at cusp
The time at a cusp for this aircraft
Flight id of aircraft being modeled
True airspeed at the cusp
Wind speed at the cusp
The point of intersection of the hold box

with the direction inbound after the
hold fix

The point of intersection of the hold box
with the direction inbound before the
hold fix

Size of the box on the right side
Size of the box on the left side
Unit vector perpendicular to the direction

of the inbound leg direction
x,y coordinates of the right downstream

corner of the hold box
x,y coordinates of the right upstream

corner of the hold box
x,y coordinates of the left upstream

corner of the hold box
x,y coordinates of the left downstream

corner of the hold box;

FIGURE 4-124
BUILD HOLD MANEUVER ENVELOPE

4-228

SELECT FIELDS pa id direction,tas,wind speed
FROM SUPPL»>ENTAL CUSP INFORMATION-
INTO Loc Pa Id,Loc Tas-;Loc Wind Speed
WHERE SuPPLEMENTAL=CUSP_INFORMATION.time _!q Loc_Time;

LOC HOLD PA • SELECT FIELDS ALL
FROM HOLD PLANNED ACTION (H P A)
WiiERE: H_P:A.pa_id-~ Loc_Pa=Id;

CALL Compute Hold Box Parameters(LOC HOLD PA IN,Loc Tas IN,
--Loc Wind Speed-IN,-End Box Intersect OUT, - - -

Start Box Intersect OUT,Right Side Box Width OUT,
Left Side-Box Width OUT); - - - -

Unit Vector Cross Track-;-(-COS(LOC HOLD PA.inbound direction),
SIN(LOC HOLD PA.inbound direction)); - -

Loc-aD Position-· Start Box Intersect - Right Side Box Width *
Unit Vector Cross; - - - - -

Loc RU Position • End Box Intersect - Right Side Box Width *
unit vector Cross;- - - - -

Loc LU Position • End Box Intersect + Left Side Box Width *
unit Vector Cross;-

Loc LD Position • Start Box Intersect + Left Side Box Width *
Unit_ Vector_ Cross;

INSERT INTO MANEUVER ENVELOPE
(fl id • Loc Fl Id, time • Loc Time,
(rdx,rdy) --Loc RD Position,rdz • Loc Alt,rdt • Loc Time,
(rux,ruy) • Loc-RU-Position,ruz • Loc-Alt,rut • Loc-Time,
(lux,luy) • Loc-LU-Position,luz • Loc-Alt,lut • Loc-Time,
(ldx,ldy) • Loc-Ld-Position,ldz • Loc-Alt,ldt • Loc-Time);

END Build_Hold_Maneuver_Eilvelope; - -

FIGURE 4-124 (Concluded)
BUILD HOLD MANEUVER ENVELOPE

4-229

ROUTINE Compute_Hold_Box_Parameters;
PARAMETERS

LOC HOLD PA IN,Loc Tas IN,Loc Wind Speed IN,
End-Box Intersect OUT,Start BOx IntersectOUT,
Right Side Box Width OUT,Left Side Box Width OUT;

REFER TO-GLOBAL - - - - - -
HOLD PA PARAMETERS IN;

DEFINE TABLES -
LOC HOLD PA Local copy of the speed planned action record

pa id Planned action identification
hold fix x x coordinate at the hold fix
hold=fix_y y coordinate at the hold fix
direction inbound Direction on leg inbound to the hold fix
EFC time Expect further clearance time
lea=length_type Units used on the leg length
leg length value Measure of the leg length
turn direction Direction of turns in the hold
hold-fix position AGGREGATE (hold_fix_x,hold_fix_y);

DEFINE VARIABLEs
Loc Tas
Loc-Wind Speed
Loc-Buft"er
Time In Turn

Turn Rate
Circumference Of Turn

Diameter Of RaceTrack

Time In Leg
Loc Leg-Length
Unit_Vector_Inbound(2)

End_Box_Intersect(2)

Start_Boc_Intersect(2)

DEFINE CONSTANTS

True airspeed at the cusp
Wind speed at the cusp
Protection buffer from global data table
Time it takes for the aircraft to make a U

turn (180 degrees)
Turn rate of the aircraft
The distance of the rounded part of the

holding pattern racetrack oval
Diameter of the rounded part of the holding

pattern racetrack oval
Time taken to traverse one leg of the hold
Distance measure of the leg
Unit vector in the direction towards the

hold fix
The point of intersection of the hold box

with the direction inbound after the hold
fix .

The point of intersection of the hold box
with the direction inbound before the
hold fix;

Pi 3.1415926535 Ratio of the circumference of a circle
to its diameter

Degrees_l80 3.1415926535 180 degrees in radians;

FIGURE 4-125
COMPUTE HOLD BOX PARAMETERS

4-230

SELECT FIELDS holding_pattern buffer
FROM HOLD PA P.AR.AMKTER.S -
INTO Loc Buffer;

CALL Determine Turn Rate(Loc Tas IN, Turn Rate OUT);
Tiiiie In Turn --Degrees 180 rTurn"""'iate ;- -
CircUmference of Turn-; Loc Tas *-Time In Turn;
Diameter of bee-Track • (2-* Circumference Of Turn) I Pi +

Time In Turn * Loc Wind Speed ; - -
IF LOC_HOLD_PA.leg_length_type • 'time'
THEN
---roc_Leg_Length • LOC_hOLD_PA.leg_length * (Loc_Tas +

Loc_Wind_Speed);
ELSE
----rime_In_Leg • LOC_HOLD_PA.leg_length I Loc_Tas ;

Loc Leg Length • Time In Leg * (Loc Tas + Loc Wind Speed);
Unit Vector Inbound • (SIN(Loc HOLD PA7inbound direction),

cos(LOC-HOLD PA.inbound direction)); -
End Box Intersection • LOC HOLD PA.hold fix position +

(. 5 * Diameter Of Race Track-+ Loc Buf) T Unit Vector Inbound;
Start_Box_Intersection • Lbc_HOLD_PA.hold_fix_position --

(.5 * Diameter_Of_Race_Track + Loc_Buf + Loc_Leg_Length) *
Unit Vector Inbound;

IF LOC HOLD PA7turn direction • 'right'
THEN - - -
----aight Side Box Width • Loc Buf + Diameter of Race Track;

Left_Side_iOx_Width • Loc_Buf; - - -
ELSE
----aight Side Box Width • Loc Buf;

Left Side BOx Width • Loc Buf + Diameter of Race Track;
END Compute_Hold_Boi_Parameters; - - -

FIGURE 4-125 (Concluded)
COMPUTE HOLD BOX PARAMETERS

4-231

ROUTINE Build Altitude Maneuver Envelope;
PARAMETERS - - -

Loc Fl Id IN,Loc Time IN, TRAJECTORY IN,
R.dv -INOUT, Ldv INOUT; - -

REFER TO SHARED LOCAL
SUPPLEMENTAL CUSP INFORMATION IN;

DEFINE TABLFS - - -
TRAJECTORY Same as global table TRAJECTORIES

but ordered by time
fl id Flight id
time Time -
:X

y
z
ground_ speed
cusp type

LAST CUSP
time
:X

y
z
ground_ speed
cusp_type

THIS CUSP
NEXT-CUSP

DEFINE VARIABLFS.
Loc Fl Id

Loc Time
Ard13)
This_Cusp_Paid
Last_Cusp_paid
Pa Type
Restriction(3)
Target Altitude
Vertexl(S)
Verte:x2(5)
Vertex3(5)
Verte::x:4(5)

x coordinate of cusp
y of cusp
z of cusp
Ground speed at cusp
Type of cusp

Last cusp processed
Time
x coordinate at last cusp
y coordinate at last cusp
Altitude at last cusp
Ground speed at cusp
CUsp_ type at last cusp

This cusp - defined like LAST CUSP
Next cusp - defined like LAST:cuSP;

Identity of the aircraft undergoing
Trajectory Estimation

Time at the cusp under consideration
Ard at last, this ,and next cusp
Pa id controlling gradient fr this cusp
Pa-id controlling gradient fr next cusp
Pa-type i.e. " alt or alr "
x,y,z of restriction point
Target altitude
x,y,z,t,ard of right upstream vertex
Same of right downstream vertex
Same of left downstream vertex
Same of left upstream vertex;

FIGURE 4-126
BUILD ALTITUDE MANEUVER ENVELOPE

4-232

LAST CUSP • SELECT FIELDS ALL
FROM TRAJECTORY -
WifERE TRAJECTORY. time ~ MAX(TRAJECTORY. time LT Loc _Time) ;

THIS CUSP • SELECT FIELDS ALL
FROM TRAJECTORY -
WiiEiE TRAJECTORY.time EQ Loc_Time;

NEXT CUSP • SELECT FIELDS ALL
FROM TRAJECTORY -
WiiEiE TRAJECTORY. time ~ MIN(TRAJECTORY. time GT Loc_ Time);

CALL Find Ard For Cusp(Loc Fl Id IN,LAST CUSP IN,
--THIS CUSP IN,NEsT CUSP IN,Ard OUT); - -
CALL Find LastDownstream Vertices(Loc Fl Id IN,
-LAST CUSP IN,THIS CUSP-IN,Rdv OUT,Ldv OUTf;
I find paid for gradient component from-this cusp #
CALL Find Paid (THIS CUSP IN,This Cusp Paid OUT);
CALL Pa netails (This CuspPaid IN,Restriction OUT,
--""Target Alt OUT); - - - --
CALL Find-Paid (LAST CUSP IN,Last Cusp Paid OUT);
IF Restrictions ~NULL # unrestricted-altitude change I
THEN
~ALL Vertex Definition Unrestricted(Loc Fl Id IN,

--Th1s Cusp Paid IN,List Cusp Paid IN,Target Alt IN,
LAST-CUSP-IN,THIS CUSP-IN,NixT CUSP IN,Ard-IN, -
Ldv INOUT,Rdv INOUT,Vertexl OUT,Vertex2 ouT:-
Vertei3 OUT,Vertex4 OUT); - -

ELSE
---cALL Vertex Definition Restricted(Loc Fl Id IN,

-This Cusp Paid IN ,rast Cusp Paid IN,Restrictions IN,
Target Alt IN,LAST CUSP IN,THIS CUSP IN,NEXT CUSP-yN,
Ard IN:Rdv lNOUT,Ldv INOUT,Vertexl OUT,Vertex2 OUT:-
Vertex3 OUT, Vertex4 OUT); - -

CALL Vertex Construction Supervisor(LAST CUSP IN,
--THIS CUSP IN,NEXT CUSP IN,Rdv INOUT,Uv INOUT,Vertexl IN,

Vertex2 IN,Vertex3 IN,Vertex4 IN,This Cusp Paid IN, -
Last CuspPaid IN);- - - - · -

END Build~titude_Maneuver_Envelope;

FIGURE 4-126 (Concluded)
BUILD ALTITUDE MANEUVER ENVELOPE

4-233

ROUTINE Find_Ard_For_Cusp;
P ARAMETFB.S

IDe Fl Id IN,
LAST cUSP IN'
THIS-CUSP IN,
NEXT CUSP IN,
Ard OUT; -

REFFER TO SHARED LOCAL
SUPPLEMENTAL_ CUSP_ INFORMATION IN;

DEFINE TABLES
LAST CUSP Last cusp processed

Time time
X

y
x coordinate at last cusp
y coordinate at last cusp
Altitude at last cusp
Ground speed at cusp

z
ground_speed
cusp type

THIS CUSP
NEXT-CUSP

DEFINE VARIABLES
Ard(3)

Cusp type at last cusp
This cusp - defined like LAST CUSP
Next cusp - defined like LAST=CUSP;

Ard at cusps;
II

SELECT FIELDS ard
FROM SUPPLEMENTAL CUSP INFORMATION (S_C_I)
INTO Ard(l)
WHERE s_c_I.fl_id ~ Loc_Fl_Id AND

LAST_CUSP.time EQ S_C_I.time;
SELECT FIELDS ard

FROM SUPPLEMENTAL CUSP INFORMATION (S_C_I)
INTO Ard(2)
WHERE S_C_I.fl_id ~ Loc_Fl_ld AND

THIS_CUSP.time ~ S_C_I.time;
SELECT FIELDS ard

FROM SUPPLEMENTAL CUSP INFORMATION (S C I)
INTO Ard(3) - - --
WHERE s_c_I.fl_id ~ Loc_Fl_Id AND

NEXT_CUSP.time EQ S_C_I.time;
END Find_Ard_For_Cusp;

FIGURE 4-127
FIND ARD FOR CUSP

4-234

ROUTINE Find Last Downstream Vertices;
PARAMETERS - - -

Loc Fl Id IN,
LAST CUSP IN,
THIS-CUSP 'IN,
Rdv OUT, -
LdvOUT;

REFER T'OGLOBAL
MANEUVER ENVELOPE IN;

DEFINE TABLES
LAST CUSP Last cusp processed

time Time
X

y
z
ground_speed
cusp_type
position

x coordinate at last cusp
y c;oordinate at last cusp
Altitude at last cusp
Ground speed at cusp
CUsp type at last cusp
AGGREGATE (x, y)

THIS CUSP
DEFINE VARIABLES

Rdv(5)

Defined like LAST_CUSP;

x,y,z,t,ard for right downstream vertex
of last cusp

Ldv(5) Same of left downstream vertex
of last cusp

SELECT FIELDS right downstream vertex,left downstream vertex
FROM MANEUVER ENVELOPE (M E) - -
INTO Rdv(l),Rdv(2),Rdv(3):Rdv(4),Ldv(l),Ldv(2),Ldv(3),Ldv(4)
WiiEiE M_E.fl_id !Q. Loc_Fl_Id AND M_E.time ~

LAST CUSP.time;
Rdv(5) • (Rdv(l) - THIS CUSP.x) I

SIN(DIRECTION(THIS CUSP.position,(Rdv(l),Rdv(2))));
Ldv(5) • (Ldv(l) - LAST CUSP.x) I

SIN(DIRECTION(LAST CUSP.position,(Ldv(l),Ldv(2))));
END Find_Last_Downstrea~Vertices;

FIGURE 4-128
FIND LAST DOWNSTREAM VERTICES

4-235

ROUTINE Find Paid;
PARAMETERS -

CUSP IN,
Paid OuT;

REFER TOSHARED LOCAL
SUPPLEMENTll CUSP INFORMATION IN;

DEFINE TABLES - - -
CUSP Information for only one cusp

time Time
x x coordinate at last cusp
y y coordinate at last cusp
z Altitude at last cusp
ground_speed Ground speed at cusp
cusp type CUsp_type at last cusp;

DEFINE VARlABLES
Paid Planned action controlling gradient

from the cusp with this given time;
II

SELECT FIELDS pa id gradient
FROM SUPPLEMEiTAI. CUSP INFORMATION (S C I)
INTO Paid - - - -
WHEiE CUSP.time ,!g S_C_I.time;

~ Find_Paid;

FIGURE 4-129
FIND PAID

4-236

ROUTINE Pa_Details;
PARAMETERS

Paid IN,
Restriction OUT,
Target Alt OUT;

REFJ!R TO GLOBAL
ALTITUDE_ CHANGE _PLANNED_ ACTION IN,
ALTITUDE RESTRICTION PARAMETERS IN;

DEFINE VARiABLES - -

II

Paid Pa id
Restriction(3) x,y,z of restriction point
Target_Alt Target altitude;

SELECT FIELDS rest~x,rest_,,rest_z
FROM ALTITUDE RESTRICTIONS PARAMETERS (A_R_P)
IN'l'O Restriction
WHERE Paid ,!g, A_R_P.pa_id;

SELECT FIELDS target altitude
FROM ALTITUDE CHANGE PLANNED ACTION (A_C_P_A)
Iif.ffi' Target Alt
WiiEiE Paid !g_ A_C_P_A.pa_id;

~ Pa_Details;

FIGURE 4-130
PA DETAILS

4-237

ROUTINE Vertex Definition Unrestricted;
P~TERS - -

Loc Fl Id IN,This Cusp Paid IN,Last Cusp Paid IN,
Target-AltiN,LAST CUSP IN,THIS CUSP IN,NExT CUSP IN,
Ard IN:Lastl:dv IN:Last Rdv IN,iuv OUT,Rdv OUT,LdvOUT,Luv OUT;

REFER TOSHARED LocAL - - -- -- -- --
SUPPUMENTAL_CUSP_INFORMATION IN,
Srp IN,Sop IN,Rop IN;

DEFINE TABLES - -
LAST CUSP

time
X

y
z
ground_speed
cusp_type
position

THIS CUSP
NEXT-CUSP

DEFINE VARIABLES
Loc Fl Id

Ard(3)

Ruv(S)
Rdv(S)
Ldv(5)
Luv(S)
Last Ldv(S}
Last-Rdv(S}
Max Gradient
Min-Gradient
Gradient

Last Cusp Paid
Target Alt
This ciisp Paid
Direction
Direction Last

Last cusp processed
Time
x coordinate at last cusp
y coordinate at last cusp
Altitude at last cusp
Ground speed at cusp
Cusp type at last cusp
AGGBEGATE (x, y)

This cusp - defined like LAST CUSP
Next cusp - defined like LAST:cusP;

Identity of aircraft for Trajectory
Estimation

The along route distance at the last,
this, and next cusp

x,y,z,t,ard of right upstream vertex
Same of right downstream vertex
Same of left downstream vertex
Same of left upstream vertex
The last Ldv
The last Rdv
Maximum descent gradient
Minimum descent gradient
Nominal gradient used in trajectory

construct·ion;
Pa id for gradient from last cusp
Altitude goal of planned action
Pa id for gradient from this cusp
Direction from this to next cusp
Direction from last to this cusp;

FIGURE 4-131
VERTEX DEFINITION UNRESTRICTED

4-238

CALL Effective Gradient(LOC PA ID IN,Max Gradient OUT,
---,rin Gradient OUT,Gradient OUT,TiiiS CUSP IN,NEXT CUSP IN,

ArtCIN); - - - - - -
Direction • DIRECTION(THIS CUSP.position,NEXT CUSP.position);
Direction Last • DIRECTIONtLAST CUSP.position;THIS CUSP.position);
Luv(3),Ruv(3) • THIS CUSP.z; - -
Ldv(3),Rdv(3) • NEXT-CUSP.z;
IF Last Cusp Paid NE-This Cusp Paid
THEN - - - - -

~uv(5) • Ard(2)+ Sop;
Ruv(l) • THIS CUSP.x + Sop * SIN(Direction);
Ruv(2) • THIS-CUSP.y +Sop * COS(Direction);
Rdv(5) • Ruv(S) + (NEXT CUSP.'Z'= THIS CUSP.z) I

Min Gradient; - -
Rdv(l)-- Ruv(l) + (Rdv(5) - Ruv(5)) * SIN(Direction);
Rdv(2) • Ruv(2) + (Rdv(5) - Ruv(5)) * COS(Direction);
Luv(5) • Ard(2) - Srp; -
Luv(l) • THIS CUSP.x- Srp * SIN(Direction Last);
Luv(2) • THIS-CUSP.y ~ Srp * COS(Direction-Last);
Ldv(5) • Luv(S) + (NEXT CUSP.Z'"= THIS CUSP:-z) I

Max Gradient; - -
Ldv(l)-- Luv(l) + (Ldv(5) - Luv(5)) * SIN(Direction);
Ldv(2) • Luv(2) + (Ldv(5) - Luv(5)) * COS(Direction);

.!! Last_Cusp_Paid ,!l This_Cusp_Paid -
THEN
---auv • Last Rdv;

Luv • last-Ldv· - ,
Rdv(5) • Ruv(5) + (NEXT CUSP.z - THIS CUSP.z) I

Min Gradient; - -
Rdv(l)-- Ruv(l) + (Rdv(5) - Ruv(5)) * SIN(Direction);
Rdv(2) • Ruv(2) + (Rdv(5) - Ruv(5)) * COS(Direction);
Ldv(5) • Luv(5) + (NEXT CUSP.z - THIS CUSP.z) I

Max Gradient; - ~
Ldv(l)-- Luv(l) + (Ldv(5) - Luv(5)) * SIN(Direction);
Ldv(2) • Luv(2) + (Ldv(5) - Luv(5)) * COS(Direction);

END Vertex_Definition_Unrestricted; -

FIGURE 4-131 (Concluded)
VERTEX DEFINITION UNRESTRICTED

4-239

ROUTINE Effective Gradient;
PARAMETERS -

!Dc_Fl_Id IN,
Max Gradient OUT,
Min-Gradient OU!,
Gradient OUT,-
THIS CUSP IN,
NEXT= CUSP IN,
Ard IN· _,

REFER TO SHARED LOCAL
SUPPLEMENTAL_CUSP_INFORMATION;

DEFINE TABLES
THIS CUSP

t'"ime
X

y
z

This cusp
Time
x coordinate at last cusp
y coordinate at last cusp
Altitude at last cusp
Ground speed at cusp ground_ speed

cusp type
NEXT CUSP

DEFINE-VARIABLES
Loc Fl Id

Cusp type at last cusp
Next cusp - defined like THIS_CUSP;

Identification of aircraft undergoing
Trajectory Estimation

II

Ard(3)

Max Gradient
Min-Gradient
Gradient
Effective Gradient

The along route distance at the last,
this, and next cusp

Maximum gradient from this cusp
Minimum gradient from this cusp
Nominal gradient used for trajectory
Wind adjusted effective gradient

SELECT FIELDS gradient,max grad,min grad
FROM SUPPLEMENTAL_CUSP_INFOR.MATION (S_C_I)
INTO Gradient,Max Gradient,Min Gradient
WiiERE !Dc_Fl_Id ~ S_C_I.fl_id-AND

THIS CUSP.time ~ S C I.time;
Effective Gradient • 1NEXteusP.z- THis CUSP.z) I

(Ard(3J- Ard(2)); - -
Max Gradient • Max Gradient * Effective Gradient/Gradient;
Min-Gradient • Min-Gradient * Effective-Gradient/Gradient;
Gradient • Effective Gradient; -
~ Effective_Gradient;-

FIGURE 4-132
EFFECTIVE GRADIENT

4-240

for restricted altitude changes in Vertex Definition Restricted
(Figure 4-133).

The maneuver envelope vertices are positioned by Vertex
Construction Supervisor (Figure 4-134). Depending on the type
of altitude- (restricted or unrestricted) operation present,
calls to Vertex Construction (Figure 4-135) are made to.compute
the maneuver envelope vertices.

4.6 Resynchronization

Resynchronization is the third of the functions described in
this specification. It is further defined in this section as a
separate component,, intended to be invoked after the AAS func
tion of Conformance Monitoring determines that the track posi
tion for an aircraft and the trajectory position for the
aircraft do not match. This form of the description is not
intended to impose a design requirement on the AAS, but only to
express the separable nature of the Resynchronization
calculations.

4.6.1 Mission

An estimated trajectory for an aircraft is likely to degrade
over time due to different sources of uncertainty. In order to
maintain a trajectory with the property that it accurately
reflects the "now" position of an aircraft, it may be necessary
to rebuild or "resynchronize" the trajectory, when appropriate,
based on the aircraft's current position.

The requirement satisfied by Resynchronization is to retum a
"reference point" and observed speed for a given flight. The
reference point is an (x,y,z,t) positionnear to the observed
position of the aircraft that can be used as a starting point
for a trajectory. The reference point is on the old trajectory
of the aircraft (whether the observed position was exactly on
this path or not). The speed retumed is true airspeed with
respect to the estimated wind field.

4.6.2 Design Considerations and Component Environaent

The input calling parameter is a flight id from a restricted
set of flight ids that may be legitimately used as input to
Resynchronization. It is assumed that the flight id passed to
Resynchronization is a "current" flight id, not any of the
possible temporary or special-purpose flight ids such as those
used in a Trial Plan Probe (described in Operational Descrip
tion [3]). This restriction exists because Resynchronization
works with track data; it cannot process a trajectory that is
not directly tied to the tracking function.

4-241

ROUTINE Vertex Definition Restricted;
PARAMETERS - -

LOc Fl Id IN,This Cusp Paid IN,Last Cusp Paid IN,
Target-AltiN,LAST CUSP IN,THIS CUSP IN,NExT CUSP IN,
Ard IN-;Restriction-IN,Last Ldv IN,LastRdv IN,Ruv OUT,
Rdv OUT,Ldv OUT,Luv\ruT; - - - - --

REFER TO SHARED LOCAL
SUPPLEMENTAL CUSP INFORMATION IN,
Srp IN,Sop IN,Rop-IN; -- - -DEFINE TABLES
LAST CUSP

time
X

y
z
ground_speed
cusp_type

THIS CUSP
NEXT-CUSP

DEFINE-VARIABLES
Loc F1 Id

Target Alt
Ard(3)-

Restriction(4)
Ruv(5)
Rdv(5)
Ldv(5)
Luv(5)
Max Gradient
Min-Gradient
Gra(fient

Last Rdv(5)
Last:Ldv(5)
Last Cusp Paid
This:cusp:Paid

Last cusp processed
Time
x coordinate at last cusp
y coordinate at last cusp
Altitude at last cusp
Ground speed at cusp
Cusp type at last cusp

This cusp - defined like LAST CUSP
Next cusp - defined like LAST:cuSP;

Identity of aircraft for Trajectory
Estimation

Altitude goal of planned action
Along route distances at past, next,

and this cusp
x,y,z,ard of restriction point
x,y,z,t,ard of right upstream vertex
Same of right downstream vertex
Same of left downstream vertex
Same of left upstream vertex
Maximum descent gradient
Minimum descent gradient
Nominal gradient used in trajectory

construction;
Right downstream vertex at last cusp
Left downstream vertex at last cusp
Pa id for gradient from last cusp
Pa:id for gradient from this cusp;

FIGURE 4-133
VERTEX DEFINITION RESTRICTED

4-242

CALL Effective Gradient(Loc Fl Id IN,Max Gradient OUT,
--:Min Gradient OUT,Gradient OUT,THIS CUSP IN,NEXT CUSP IN);
Direction a DIRECTION(THIS CUSP.position,NEXT CUSP7position);
Direction Last • DIRECTION(LAST CUSP.position~THIS CUSP.position);
Luv(3},Ruv(3) • THIS CUSP.z; Ldv(3),Rdv(3) • NEXT CUSP.z;
CHOOSE CASE - -

WHEN Last Cusp Paid NE This CUsp Paid AND Restriction(1,2,3) ~
----rNEXT CuSP. i ,NEXT CUSP. y -;NEXT-CUSP. Z'JTHEN

Rdv(SJ • Ard(3) +-Rop; Luv(S)-· Ard(2)-=-5rp;
Rdv(l} • NEXT CUSP.x + Rop * SIN(Direction);
Rdv(2) • NEXT-CUSP.y + Rop * COS(Direction);
Ruv(S} • Rdv(S) - (Rdv(3) - Ruv{3)} I Max Gradient;
Ruv(l} • THIS CUSP.x + (Ruv(S} - Rdv(S)) * SIN(Direction);
Ruv(2} • THIS-CUSP.y + (Ruv(S) - Rdv(S)) * COS(Direction);
Luv(l) • LAST-CUSP.x + (Ard(l)-Luv(S})*SIN(Direction Last);
Luv(2} • LAST-CUSP.y + (Ard(l)-Luv(S))*COS(Direction-Last);
Ldv(S) • Luv(S) + (Ldv(3) - Luv(3)) I Max Gradient; -
Ldv(l} • Luv(l) + (Ldv(S) - Luv(S}) * SIN(Direction);
Ldv(2) • Luv(2) + (Ldv(S) - Luv(S}) * OOS(Direction);

WHEN Last CUsp Paid NE This CUsp Paid AND Restr1cti'on(1,2,3)
--wE (NEXT CUSP.x,NEXT CUSP7y,NEXT CUSP.z) THEN

Restriction(4) • Ard(2) + (Restriction(3)--=-TIIIS_CUSP.z) I
Max Gradient;

Ruv(S)-· Ard(2) + (Restriction(3} - THIS CUSP.z) *
(!/Gradient - 1/Max Gradient); -

Ruv(l) • THIS CUSP.x +-(Ruv(S) - Ard(2)) * SIN(Direction);
Ruv(2} • THIS-CUSP.y + (Ruv(S) - Ard(2)) * COS(Direction);
Rdv(1,2,5) • INTERPOLATE(Ruv(1,2,5),Restricti0n(l,2,4),

(NEXT CUSP.z-THIS CUSP.z)/(Restr1ction(3)-THIS CUSP.z));
Luv(S) --Ard(2) - Srp; -
Luv(l} • THIS CUSP.x- Srp * SIN(Direction Last);
Luv(2) • THIS-CUSP.y- Srp * COS(Direction-Last);
Ldv(S) • Luv(5) + (Ldv(3) - Luv(3}) I Max Gradient;
Ldv(l} • Luv(l) + (Ldv(S) - Luv(S)) * SIN(Direction);
Ldv(2) • Luv(2) + (Ldv(S) - Luv(S)) * COS(Direction);

WHEN Last_Cusp_Paid ~ This_Cusp_Paid· THEN
Ruv • Last_Rdv; Luv • Last_Ldv;
Rdv(S} • Ruv(S) + (NEXT CUSP.z - THIS CUSP.z)/Max Gradient;
Rdv(l) • Ruv(l) + (Rdv(5} - Ruv(S)) *-SIN(Direction); ·
Rdv(2) • Ruv(2) + (Rdv(S) - Ruv(S)) * COS(Direction);
Ldv(S) • Luv(S) + (NEXT CUSP.z - THIS CUSP.z)/Max Gradient;
Ldv(l) • Ldu(l) + (Ldv(S) - Luv(S)) *-SIN(Direction);
Ldv(2) • Ldu(2) + (Ldv(S) - Luv(S)) * COS(Direction);

END Vertex_Definition_Restricted; -

FIGURE 4-133 (Concluded)
VERTEX DEFINITION RESTRICTED

4-243

ROUTINE Vertex Construction Supervisor;
PARAMETERS - -

Loc Fl Id IN,
LAST CUSP IN'
THIS-CUSP IN,
NEXT-CUSP IN,
ArdIN, -
Vertex! IN,
Vertex2 IN,
Verte:x3 IN,
Vertex4 IN,
Last Vertex2 IN,
last-Vertex3 IN,
Last-Paid IN,
This-Paid IN;

REFER TO GLOBAL
TRAJECTORIES IN,
MANEUVER ENVELOPE INOUT;

DEFINE TABLEs
LAST CUSP

time
X

y
z
ground_speed
cusp_type

THIS CUSP
NEXT-CUSP

DEFINE VARIABLES
Loc Fl Id

Ard(3)
Vertexl(5)
Vertex2(5)
Verte:x3(5)
Vertex4(5)
last Vertex2(5)
last-Vertex3(5)
Last-Paid
This Paid
Last:cusp _Type

Last cusp processed
Time
x coordinate at last cusp
y coordinate at last cusp
Altitude at last cusp
Ground speed at cusp
CUsp type at last cusp

This cusp - defined like LAST CUSP
Next cusp - defined like LAST:CUSP;

Identity of aircraft undergoing
Trajectory Estimation

Ard at last,this,and next cusp
x,y,z,t, ard right upstream vertex
Same of right downstream vertex
Same of left downstream vertex
Same of left upstream vertex
Same of last right downstream vertex
Same of last left downstream vertex
Pa_id of last cusp
Pa id of this cusp
Last cusp type indicator: vertical

maneuver type or not;

FIGURE 4-134
VERTEX CONSTRUCTION SUPERVISOR

4-244

Time_L • LAST_CUSP.time;
Time T • THIS CUSP.time;
Time-N • NEXT-CUSP.time;
Last:cusp_Type • LAST_CUSP.cusp_type;
CHOOSE CASE

WHEN ('!his Paid NE Last Paid AND
-- Last CuspType NE "vertical maneuver") THEN

CALL Vertex Construction (THIS CUSP IN,
--Time L IN,Time T IN,Time N lN,Vertexl OUT);
CALL VertexConstruction (Vertex! IN, --
--Time L IN,Time T IN,Time N IN,Vertex2 OUT);
CALL Vertei"""construction (UsTCUSP IN, -
--Time L IN, Time T IN, Time N IN, Vertex4 OUT);
CALL VertexConstruction (Vertex4 IN, --
--Time L IN, Time T IN, Time N IN, Vertex3 OUT);

WHEN ('!his-Paid NE LastPaid AND - -
- Last CuspType EQ "vertical maneuver") THEN

CALL Vertex Construction (THIS CUSP IN, -
~ime L IN,Time T IN,Time N IN,Vertexl OUT);
CALL VertexConstruction (.ristVertexJ IN:-
--Time L IN,Time T IN,Time N IN, Vertex40UT);
CALL Vertei"""construction (V;rt;il IN, -
--Time_ L IN ,Time_ T IN, Time_ N IN, ve'Ftex2 .Q!!!) ;
CALL Vertex Construction (Vertex4 IN,
--Time L IN, Time T IN, Time N IN, Vertex3 .Q!!!) ;

WHEN ('lhis:)aid !9_ Last_Paid) THEN
Vertexl • Last Vertex2;
Vertex4 = Last-Vertex3;
CALL Vertex Construction (Vertexl IN,
~ime L IN,Time T IN,Time N IN,Vertex2 OUT);
CALL VertexConstruction (Vertex4 IN, -
~ime L IN,Time T IN,Time N IN,Vertex3 OUT);

INSERT INTO MANEUVER-ENVELOPE - - --
(fl id • Loc Fl Id,time • This Cusp T,
right upstream-vertex • Verteil(l,2,3,4),
right-downstream vertex • Vertex2(1,2,3,4),
left downstream vertex • Vertex3(1,2,3,4),
left-upstream vertex • Vertex4(1,2,3,4));

~ Vertex_Construction:supervisor;

FIGURE 4-134 (Concluded)
VERTEX CONSTRUCTION SUPERVISOR

4-245

ROUTINE Vertex Construction;
PARAMETERS -

Last_Point IN,
Last Cusp T IN,
This-Cusp-T IN,
Next:cusp=T IN,
Next Point INOUT;

REFER TO SHARED LOCAL
SUPPL»iENTAL_CUSP_INFORMATION IN;

DEFFINE VARIABLES
Last :Point(4)
This-Foint(4)

x,y,z,t of last point in that order
x,y,z,t of this point in that order

II

Nex()oint(4)
Last Cusp T
This:cusp:T
Next Cusp T
Tas Last
Tas-This
Tas Next
Delta Sz

SELECT FIELDS tas

x,y,z,t of next point in that order
Last cusp time
This cusp time
Next cusp time
Last cusp true airspeed
This cusp true airspeed
Next cusp true airspeed;
Point to point distance between

this point and next point;

FROM SUPPLEMENTAL CUSP INFORMATION (S C I)
INTO Tas Last - - --
Wii'ERE S_C_I.time ~ Last_Cusp_T;

SELECT FIELDS tas
FROM SUPPLEMENTAL CUSP INFORMATION (S C I)
INTO Tas This - - - -
WiiERE S _ C _I. time ~ This_ Cusp_ T;

SELECT FIELDS tas
FROM SUPPLEMENTAL CUSP INFORMATION (S_C_I)
INTO Tas Next
WiiiRE S C I. time ~ Next CUsp T;

Delta_Sz --sQ(((This_Point(l) --Next_Point(l)) ** 2 +
(This Point 2) - Next Point(2)) ** 2 +
(This-Point(3) - Next-Point(3)) ** 2);

IF This_Point(3) ~ Nex(~Point(3)
THEN
--:Next_Point(4) • This_Point(4) + Delta_Sz I Tas_This;
ELSE
~ext Point(4) • This Point(4) +

nelta_Sz I AVG(Tas_This,Tas_Next);
END Vertex_Construction;

FIGURE 4-135
VERTEX CONSTRUCTION

4-246

The explicit values are returned from Resynchronization in a
table with one record in it. The table is defined to have all
the fields needed by Trajectory Repositioning Initialization:
four-dimensional position, speed, direction, and along-route
distance. The cr.e-record form of output was chosen in order to
make unnecessarv assumptions about the details of defining a
new flight and copying trajectory details and planned actions
to the new flight id.

The processing of Resynchronization is not directly tied to the
criteria used in the decision to call Resynchronization. The
observed deviations of the aircraft position from· the expected
values are treated identically whatever the reason for invoca
tion. When the controller has to be notified because of
conformance violations, Resynchronization is not invoked until
a plan exists to account for the observed position of the
aircraft.

Input

Data transactions for the Resynchronization function include:

• System Global Data Base

FLIGHT IDS ASSOCIATIONS

This table provides Resynchronization with a cross
reference from the flight id form of reference to
the flight name form of reference. A flight name
represents a unique aircraft; it may be associated
with multiple flight ids. Every flight id is
associated with only one flight_name.

- AIRCRAFT TRACKED POSITION

Resynchronization data requirements include some
track history for each controlled aircraft.
Multiple observations of recent positions are used
to improve the quality of estimated used by Trajec
tory Estimation.

This table provides the track history for a given
aircraft. The most recent entry for this aircraft
provides the information to compute the reference
point. This history of points also provides the
ability to compute a weighted estimate for aircraft
ground speed which, in turn, is used to obtain a
value of true airspeed at the reference point.

4-247

The AIRCRAFT TRACKED POSITION table represents data
processed by traCking and flight analysis
functions. There is as yet no detailed
specification of these functions, so the form of the
table as it appears here may be subject to some
revision.

- WINDS

The WINDS data is used by the Wind Field utility
element to provide information about tne atmospheric
parameters at the point of resynchronization. Wind
speed and wind direction determine the relationship
between true airspeed and observed ground speed.

- TRAJECTORIES

The TRAJECTORIES table provides Resynchronization
with the (x,y) route of the aircraft.
Resynchronization ignores small deviations between
the observed (x, y) position of the aircraft and the
expected (x,y) position. The (x,y) position of the
returned reference point is the point on the
trajectory that is nearest to the observed point.

• Shared Local Data Base

Output

- SMOOTHING PARAMETERS

The Smoothing Parameters used by Xyt To Direction
and by Xyt To Ground are adapted values to be used
in exponential smoothing approximation. These
parameters are between 0 and 1. The proper choice
of these parameters for the AAS will depend on
testing and experimentation.

• System Global Data Base

- AIRCRAFT TRACKED POSITION

Resynchronization assumes that multiple observations
are provided for its sole use. After the observa
tions have been processed by Resynchronization they
are deleted from the AIRCRAFT TRACKED POSITION
table. The number of multiple observations-that are
stored, the timing of stored observations, and the

4-248

maintenance (deletions) of excess observations are
issues that can be changed without changing the
fundamental algorithm presented for Resynchroniza
tion.

• Shared Local Data Base

- RESYNCHRONIZATION HISTORY

The RESYNCHRONIZATION HISTORY table stores summary
information of each flight resynchronization action.
No present use is made of this table by any other
function. It is anticipated that Resynchronization
and Trajectory Estimation will use this information
in the AERA 1.02 time frame.

4.6.3 Resynchronization Design Logic

Organization

Resynchronization logic involves nine elememts. The calling
relationships among these elements is · described in Figure
4-136. Elements called by more than one of the other routines
are shown separately under each calling routine. The element:
Wind Field can be found in Appendix B.

Processing Method

The routine named Resynchronization (Figure 4-137) is called
with one input parameter, Tracked Id, and one output table,
PRP UPDATE. The output table represents reference point
information intended for Trajectory Initialization. In order
to provide the output data, Resynchronization reviews the
recent track history for the flight, computes an estimated
ground speed and direction, translates these data to estimated
true airspeed, and translates the observed (x,y) point to. the
nearest (x,y) point on the old trajectory. The resulting data
are output, and a collection of summary information is .stored
in a resynchronization history table for possible future
reference. The details of this processing are described below.

Resynchronization begins by making the cross reference from the
Tracked Id given as input to the (unique) flight name asso
ciated with it. It is assumed that the Tracked Id will be a
flight id with a type of "current'" but this assumption is not
checked or enforced.

4-249

Resynchronization
Xyt To Ground

Delta
Exp Smooth

Xy To Direction
-Delta

Exp Smooth
Ground-To Tas

Wind Field
Project Qnto Xy Trajectory

Distance To Line

FIGURE 4-136
RESYNCHRONIZATION CALLING SEQUENCE

4-250

ROUTINE Resynchronization;
PARAMETERS Tracked Id IN, PRP UPDATE OUT;
REFER TO GLOBAL AIRCRAFT TRAcKED POSITION INOUT,

FLIGHT_ID_ASSOCIATIONS; -
REFER TO SHARED LOCAL RESYNCHRONIZATION HISTORY INOUT;
DEFINE VARIABLES -

Tracked Id Flight id to be resynchronized
Tracked-Name Flight name corresponding to id
X Now Updated x coordinate
Y-Now Updated y coordinate
Z Now Updated altitude
T Now Updated time
Aid Now Updated along-route distance
Ground Speed Now Updated ground speed
Direction Now Updated direction
Tas Now Updated true airspeed
Ximage x coordinate of nearest point on trajectory
Yimage y coordinate of nearest point on trajectory;

DEFINE TABLES
PRP UPDATE

flight id
time -
x coord
y-coord
altitude
speed
direction
ard

FLIGHT TRACK HISTORY

time
x coord
y-coord
altitude
distance

Output table (with only one record)
Flight id of observed flight
Time at observed point
x coordinate at observed point
y coordinate at observed point
Altitude at observed point
True airspeed at observed point
Direction at the observed point
Along route distance at the observed

point
Local table to store tracking data for

Tracked Id
Time of tracked observation
x coordinate of tracked observation
y coordinate of tracked observation
Altitude of tracked observation
Along-route distance of tracked

observation
xy_position AGGREGATE (x coord,y coord)
xyt_position AGGREGATE (x=coord,y=coord,time);

FIGURE 4-137
RESYNCHRONIZATION

4-251

I make cross reference to flight name I
SELECT FIELDS flight_name

FROM FLIGHT ID ASSOCIATIONS
INTo Tracked Name
WHERE FLIGHT-ID ASSOCIATIONS.fl id ~ Tracked Id;

1 extract tracking data for this flight I
FLIGHT TRACK HISTORY • SELECT FIELDS time,x coord,y coord,

altitude,aistance - -
FROM AIRCRAFT TRACKED POSITION (ATP)
WiiERE ATP.flight_name -,!q Tracked_ Name
ORDERED BY ATP.ti~e;

I remove tracking data from global table I
DELETE FROM AIRCRAFT TRACKED POSITION

WHERE AIRCRAFT mACKED POSITION.flight name~ Tracked Id;
I capture the most recent tracking point ,-

SELECT FIELDS time,x coord,y coord,altitude,distance
INTO T Now,X Now,Y Now,Z Now,Ard Now
FROM FLIGHT luCK HISTORY (FTH) -
WHERE FTH. time ,!q"MAX (FTH. time);

I compute estimated ground speed I
CALL Xyt _To_ Ground (FLIGHT_ TRACK_ HISTORY. xyt _position IN,

Ground Speed Now OUT);
- 1 compute estimated direction I

CALL Xy To Direction (FLIGHT TRACK HISTORY.xy position IN,
--Direction Now OUT); - - - -

- I translate to speed in air mass I
CALL Ground To Tas (Ground Speed Now IN,Direction Now IN,
-x Now IN: Y-Now IN, Z Now IN,-Tas Now OUT); - -

- - -~ aggregate data returned to caller I
CALL Project Onto Xy Trajectory (Tracked Id IN, T Now IN,
--x Now IN,-Y No; IN, Ximage OUT, Yimage ouT); - -
INSERT INTO PRP UPDATE (flight id • Tracked Id,

x coord • Xiiiiage, y coord • Yimage, -
altitude• Z Now, time • T Now,
direction•Direction Now -
speed • Tas Now);-

INSERT INTO RESYNCHRONIZATION HISTORY(flight name•Tracked Name,
time • T_Now, actual_x • x:Now, actual_y-; Y_Now, - ·
a:rd • Ard Now, image x • Ximage, image y • Yimage,
direction-- Direction Now, true airspeed • Tas Now);

END Resynchronization; - - -

FIGURE 4-137 (Concluded)
RESYNCHRONIZATION

4-252

Resynchronization then copies the aircraft's track history into
a local table. The data copied concern only one flight,
Tracked Name, so that not all fields of the original table are
copied.- The local table is filled by records that are stored
in increasing order by the time of the observation. This order
is important when the columns of the local table are used as
vectors for the exponential smoothing estimation procedures.
After copying data from AIRCRAFT TRACKED POSITION concerning
the current flight, Resynchronization assumes that the original
history is no longer needed, and deletes it.

The first processing action is to extract the most recent track
point. This point serves as the basis for the eventual output
of a reference point for use by Trajectory Estimation. Past
tracked points are used only to refine estimates about flight
behavior at the most recent track point.

Next, a smoothed estimate of ground speed at the most recent
track point is computed. Since this speed may have been
changing, and since errors of observation can lead to error in
the apparent speed between any two points, the estimation is
done using exponential smoothing based on the time series of
available tracker points. The details of this calculation are
contained in Xyt To Ground (Figure 4-138) and in the sub
ordinate utility- routines Delta (Figure 4-139) and Exp
Smoothing (Figure 4-140). -

Another exponential smoothing estimate is used to compute the
observed (ground) direction being flown by the aircraft at the
most recent tracker point. This quantity is like ground speed
in that it is changing between pairs of observations and is
especially sensitive to errors of observation. The same type
of exponential smoothing estimation is used for direction,
although the smoothing parameter is chosen independently. The
details of this calculation are contained in Xy To Direction
(Figure 4-141), and in the subordinate utility routines.

True airspeed is computed using the most recent tracker point,
the estimated ground speed, and the estimated (ground) dire·c
tion. This computation depends on the winds aloft. Ground To
Tas (Figure 4-142) utilizes the Wind Field utility to provide
this information based on the best and most current now-cast of
wind speed and wind direction in the wind cell containing the
most recent track point.

The final processing step is to translate the (x,y) position of
the most recent tracker point into the (x,y) position of the
point on the old trajectory that is nearest as projected onto

4-253

ROUTINE Xyt_To_Ground;
PARAMETERS X Series IN, Y Series IN, T Series IN,

Estimated-Ground Speed-OUT; - - -
REFER TO SHARED LOCAL Grouiid'Speed Ratio IN;
DEFINE VARIABLES - - -

X series(*) X coordinates of positions
Y-Series(*) y coordinates of positions
T-Series(*) t coordinates of positions
EStimated Ground Speed smoothed point estimate
X Del(*) - - first difference of x
Y-Del(*) first difference of y
T-Del(*) first difference of t
G-Series(*) ground speeds computed on each

of the increments;
1------------------- -----------------------------1

CALL Delta. (X Series IN, X Del OUT);
CALL Delta (Y-Series IN, Y-Del OUT);
CALL Delta (T-Series IN, T-Del OUT);
G Series • SQRT(X De1'i'iF2 +Y De!R'2) / T Del;
CALL Exp Smooth(G-Series IN,-Ground Speed Ratio IN,
--Estimated Ground Speed OUT); - - -

END Xyt_To_Grou'iid; - -

FIGURE 4-138·
XYT TO GROUND

4-254

ROUTINE Delta;
PARAMETERS Original IN, Increments OUT;
DEFINE VARIABLES -

Original(*) Vector of input data
Increments(*) First (forward) differences of o~iginal;

--------- --- '
FOR I • 2 TO COUNT(Original);
---rncrements(I-1} • Ori~inal(I) - Original(I-1);

END Delta;

FIGURE 4-139
DELTA

4-255

ROUTINE Exp Smooth;
PARAMETERS Data Series .IN, Decay_Batio IN, Predicted_Value OUT;
DEFINE VARIABLES -

Data_Series(*) Vector of input data
Decay Ratio Smoothing parameter
Predicted Value Smoothed point estimate
X Intermediate value;

#--------------·-------
Predicted Value • Data Series(l);
FOR I • 2-TO COUNT (Data Series);
--x • (1 =-necay Ratio)-* Predicted Value;

Predicted Value • X+ Decay Ratio-* Data Series(!);
END Exp_Smooth;- - -

FIGURE 4-140
EXP SMOOTH

4-256

I

ROUTINE Xy_To_Direction;
PARAMETERS X Positions IN, Y Positions IN, Estimated_Direction OUT;
REFER TO SHAiED LOCAL Direction Ratio IN;
DEFINE VARIABLES - -

X Positions(*) Vector of x coordinates
Y-Positions(*) Vector of y coordinates
Estimated Direction Measured 360 clockwise from true north
Directions(*) Vector of incremental directions
X Del(*) First difference of x
Y-Del(*) First difference of y;

I--- -- I
CALL Delta (X Positions IN, X Del OUT);
CALL Delta (Y:)ositions IN, Y-Del OUT);
Directions • ARCSIN (Y Del, x-nei);--
IF ABS(MEDIAN(Directions) - ISO) LT 90
THEN- -

~dd 360 to every value of Directions less than 90;
CALL Exp Smooth(Directions IN, Direction Ratio IN,
~stimated Direction OUT);- - -
Estimated Direction • MOD (Estimated Direction,360);

END Xy_To_Direction; - -

FIGURE 4-141
XY TO DIRECTION

4-257

ROUTINE Ground_To_Tas;
PARAMETERS Ground Speed IN,

Ta Speed OUT; - --
Ground_Direction IN, Xyz_Position IN,

DEFINE VAR.IABLFs
Xyz_Position

:X

y
z

Wind_ Speed
Wind Direction
Ta_Speed
Temperature
Ground_ Speed
Ground Direction
X

Location of the aircraft
:x coordinate
y coordinate
z coordinate

CUrrent wind speed at aircraft location
CUrrent wind direction at the location
True airspeed
Current temperature at the location
Observed ground speed of aircraft
Observed ground direction of aircraft
Intermediate value;

I --
CALL Wind F.ield(Xyz Position IN,
~ind Speed OUT, Wind Direction OUT, Temperature OUT);
x • Ground Speecr* Wind-Speed * - -

COS (Ground Direction- Wind Direction);
Ta_Speed • SQRT(Ground_Speed**2 + Wind_Speed**2 - 2*X);

END Ground_To_Tas;

FIGURE 4-142 ·
GROUND TO TAS

4-258

I

the (x,y) plane. To prevent accidental translation to a
trajectory point that is close in ground position, but distant
in time, the candidate portion of the trjectory is reduced to
include only points within 3 minutes of the most recent tracker
point. The details of this calculation are contained Project_
Onto Xy Trajectory (Figure 4-143) and in the Distance To Line
(Figure-4-144). - -

After the processing steps are complete, Resynchronization
stores output data in the PRP UPDATE table and in the RESYN
CHRONIZATION HISTORY table. The Resynchronization processing
is completed-by returning to the calling routine. ·

4-259

ROUTINE Project_Onto_Xy_Trajec~ory;
PARAMETERS This Flight IN, This Point IN, Base_Point OUT;
REFER TO GLOBAL-TRAJECTORIES IN'; -
DEFINE TABLES

NEARBY POINTS Points selected from the flight trajectory
time time coordinate
x x coordinate
y y coordinate
z z coordinate
xy_point AGGREGATE(x,y)

DISTANCES Distances to segments between selected points
d Minimum distance from This Point to segment
x x coordinate of base of minimum vector
y y coordinate of base of minimum vector;

DEFINE VARIABLES
This Flight
This-Point

time
X

y
First Time
Start-Point

X

y
To Dist
Base Point

Flight Id for the flight to be referenced
Observed position

Time coordinate
x coordinate
y coordinate

Earliest time appearing in NEARBY POINTS
Segment starting point

x coordinate
y coordinate

Distance from This_Point to a segment
Segment reference point defined like Start_Point;

FIGURE 4-143
PROJECT ONTO XY TRAJECTORY

4-260

NEARBY POINTS • SELECT FIELDS time,x,y,z
FROM TRAJECTORIES (TJ)
WHERE (TJ.fl_id ~ This_Flight) AND

(ABS (TJ.time - This Point.time) LE 3 minutes)
ORDERED BY NEARBY POINTS. time;

First_Time • MIN(NEARBY_POINTS.time);
SELECT FIELDS x,y

FROM NEARBY POINTS
INTO Start Point
WHERE NEARBY_POINTS.time ~ First_Time;

REPEAT FOR EACH NEARBY POINTS RECORD
WHERE NEARBY POINT.time NE First Time; #still ordered by time#
CALL Distance To Line(This Point7x IN, This Point.y IN,
----start Point IN, NEARBY POINTS .:xy point IN, -

To Diet OUT,~se Point OUT); - -
INSERT INTO DISTANCES(x • Base Point.x, y • Base Point.y,

d • To Dist); - -
Start Point • NEARBY POINTS.xy point; #prepare next iteration#

SELECT FlELDS x,y - -
FROM DISTANCES
INTO Base Point
WHERE DISTANCES .d ~ MIN(DISTANCES .d);

END Project_Onto_Xy_Trajectory;

FIGURE 4-143 (Concluded)
PROJECT ONTO XY TRAJECTORY

4-261

/

ROUTINE Distance_To_Line;
PARAMETERS PO IN, Pl IN, P2 IN, Distance OUT, Pnear OUT;
DEFINE VARIABLES - - -

PO 2-dimensional point lying off line Pl-P2
x x coordinate
y y corrdinate

Pl 2-dimensional point defined like PO
P2 2-dimensional point defined like PO
Pnear 2-dimensional point defined like PO
Cosines 2-dimensional unit vector defined like PO
Distance Distance between PO and Pnear
Sea_Length Distance between Pl and P2
Tnear Line paramenter for Pl-P2 line chosen so

that Pnear • Pl + Tnear*Cosines;
I --------------- -· ----------- I

Sea_Length • DIST(Pl,P2);
Cosines • (P2-Pl)/Sea_Length; I element-wise arithmetic I
Tnear • DOT(Cosines, (PO - Pl)); I element-wise arithmetic I
Tnear • MIN(Sea_Length,MAX(Tnear,O)); I 0 LE Tnear LE length I
Pnear • Pl + Tnear * Cosines; I element-wise arithmetic I
Distance • DIST(PO,Pnear);

End Distance_To_Line;

FIGURE 4-144
DISTANCE TO LINE

4-262

APPENDIX A

TRAJECTORY ESTIMATION DATA BASE

Tables in this appendix are described with the same definitions and
formats as used in the Data Specification for AERA 1.0 [11]. Data
tables are described here for any data that must be stored for use
by any Trajectory Estimation routine except for those global tables
provided in the Data Specification.

ACTIVE PLANNED ACTIONS:
+-------------------
I PA ID
+--

pa_type I pa_source plan_time

--------------- -----------------
stop_condition I stop_x I stop_y I stop_z

-----------------·------
-------------------------+

stop_t I stop_ard I stop_tas
-----------·-----+

This structure identifies the planned actions that are currently
being modeled. No more than one planned action of a given type can
appear in this table. This table is maintained by the planned
action processors.

This table is destroyed when all data sets pertaining to the flight
id are destroyed, and so the table exists between invocations of
Trajectory Estimation.

pa_id

pa_type

pa_source

plan_time

Unique identifier of a planned action
that was being modeled at the
PAST CUSP.

Type of planned action
("speed","altitude", "vector", "hold").

Source of planned action ("system",
"controller") responsible for placement
of this planned action into the
aircraft's plan.

Time this planned action was added to
the aircraft's plan.

A-1

stop_condition

stop_x

stop_y

stop_z

stop_t

stop_ard

stop_tas

stop _Position

Condition ending this planned action
("time", "position", "altitude",
"speed","ard","speed at altitude").

X coordinate of stop position when
"position" stop condition is chosen.

Y coordinate of stop position when
"position" stop condition is chosen.

Altitude of stop position ~hen
"altitude" stop condition is chosen.

Time of stop position when "time"
condition is chosen.

Along Route Distance at stop position
when the "ard" stop condition is chosen.

True airspeed at stop position when
"speed" stop condition is chosen.

AGGREGATE (stop_x,stop_y)

A-2

ADDITIONAL_QUALIFIERS:
+ ------------------+

' I QUALIFIER-INDEX I QUALIFIER-TYPE I qualifier I
+-------------------------------- -----+

This table contains additional qualifiers as necessary to further
limit application of procedural restrictions. The table is used by
Nominal Plan Builder.

The table is set upon data adaptation for the AAS and exists
irregardless of the invocation state of Nominal Plan ~lder.

qualifier_index

qualifier_type

qualifier

Identifier serving to distinguish a
unique set of qualifiers.

Qualifier category which indicates the
aspect of flight or aircraft qualified.
For example: "sid", "star", "par",
"pdr", "pdar", "minimum airc~aft speed".

Qualifier value that must be matched to
something relating to the aircraft in
order to assign this restriction to the
flight. For example: "Calverton", "250
knots".

A-3

AGD VECTOR:

+--- ----------------------------------1 acceleration gradient I direction pa_id_acceleration I

+---

pa_id_gradient I pa_id_direction I
-------------------- ----+

This structure carries intermediate information from the planned
action processors to Trajectory Construction. The AGD vector is set
by the planned action processing components of Trajectory Estimation
in the construction of the next modeling point of reference, or
cusp. The AGD vector is handed off to the Trajectory Construction
subfunction as an "operator", telling Trajectory Construction how to
transform the modeling values stored at the most recently placed
cusp into values to store at the next cusp.

A planned action may block one of the variables in the AGD vector.
This means that the variable, while not being set, is not available
to be set by some other action.

This table has only a single record, and is initialized at each
modeled cusp by Trajectory Construction. It is destroyed when
Trajectory Estimation exits.

acceleration

gradient

direction

Acceleration (ft/sec/sec)value set by
the Speed, Altitude, or Hold Planned
Action Processors. This field may take
the value "blocked".

Gradient (ft/ft) value set by the
Altitude Planned Action Processor when
modeling an altitude transition. This
field may take the value "blocked".

Direction (radians, compass) set by
either the Vector Planned Action
Processor or by Flight Route Follower.
This field may take the value "blocked".

The direction variable cannot exit from
planned action processing without being
set.

A-4

pa_id_acceleration

pa_id_gradient

pa_id_direction

Identifier for planned action setting
the acceleration variable.

Identifier for planned action setting
the gradient variable.

Identifier for planned action setting
the direction variable.

A-5

ALTITUDE LIMITS:
+------+
I ALTITUDE I
+-----+

This table presents a list of limits of planned actions which are
given as altitudes. The table is constructed by the planned action
processing components of Trajectory Estimation for the Trajectory
Construction subfunction. The altitude limits are joined with all
the other limit types to determine the position of the next cusp.

This table is destroyed when Trajectory Estimation exits.

altitude The altitude value (ft) of limit.

A-6

ALTITUDE PENDING ACTIONS:

+ ------------------- ---------------------
1 PA_ID I pa_source plan_time stimulus_type
+------------ -----------

-t

stim x stim_y I stim z stimard stim t I

This table contains altitude planned actions that may gain active
control of some AGD parameter at some trajectory point after the
past cusp. The stimulus value is set by the planned action
processing elements (each time they are invoked) to be a future
trajectory event. This stimulus value is checked each time the
processing elements are reinvoked.

The table is destroyed when Trajectory Estimation exits.

pa_id

pa_sQurce

plan_ time

stimulus_type

stim x

stim_y

stim z

stim ard

Unique identifier of a plann~d action.

Source of planned action, either
controller or system.

Time of day the planned action was
added to the list of planned actions
for this aircraft.

Stimulus that will activate the planned
action. May be:

"ard"
"altitude"
"speed"
"position"
"time".

X coordinate of the stimulus when a
type of position is chosen.

Y coordinate of the stimulus when a
type of position is chosen.

Altitude value when a stimulus type of
altitude is chosen.

Along Route Distance value when a
stimulus type of ard is chosen.

A-7

stim t

stimulus _position

Time value when a stimulus type of time
has been chosen.

AGGREGATE (stim_x,stim_y)

ALTITUDE RESTRICTED:
+--
1 flag
+-·--+

This table is used by Nominal Plan Builder in a single invocation to
store information for several routines.

This table is set by Nominal Plan Builder and is destroyed when that
process exits.

flag

ARD LIMITS:
+ I
I ARD I
+--+

Identifies if altitude remains
restricted after implementation of each
restriction in the restrictions table.
Field values:

"yes"
"no".

This table presents a list of limits of planned actions which are
given as along route distances (ard). The table is constructed by
the planned action processing components of Trajectory Estimation
for the Trajectory Construction subfunction. The ard limits are
joined with all the other limit types to determine the position of
the next cusp.

This table is destroyed when Trajectory Estimation exits.

ard Along route distance value of limit.

A-9

FLIGHT PHASE:
+----+
I phase I
+----+

This table is used by Nominal Plan builder. It is a single record
table. This structure indicates the phase of flight for modeling
purposes - either ascent or descent. A flight in the ascent phase
may be modeled as ascending, cruising, or descending. A flight in
the descent phase may stay level or descend, but may not climb.

This table is set by Nominal Plan Builder and is destroyed when that
process e:x:its.

phase Indicator for flight phase:
"ascent"
"descent".

A-10

GRADIENT PARAMETERS:

+---
1 transition_speed_type I transition_speed I max_gradient
+

-------+
min gradient I

- --+

This structure carries intermediate information from the planned
action processors to Trajectory Construction. An altitude
transition is modeled by setting the gradient and the speed
schedule. It is assumed that the aircraft will maintain a constant
MACH or lAS value on the descent depending on the flight phase
(above switchover altitude, below switchover altitude).

This table has no more than one record. There is no record in the
case where there is no active altitude planned action. The gradient
parameters stored reflect those of the active altitude ac~ion. The
table is destroyed when Trajectory Estimation exits.

transition_ speed_ type

transition_speed

max_gradient

min_gradient

Type of speed units used on this
section of the transition:

"ias"
"mach".

Speed value to be used on the descent.

Maximum gradient of this aircraft.

Minimum gradient for this aircraft.

A-ll

HOLD PENDING ACTIONS:

+-------------------------·--------·---------------
1 PA ID I pa_source I plan_time I stimulus_type I

+---

stim_x I stim_y I stim_z I stim ard stim t

This table contains hold planned actions that may gain active
control of some AGD parameter at a trajectory point after the past
cusp. The stimulus value is set by the planned action processing
elements (each time they are invoked) to be a future trajectory
event. This stimulus value is checked each time the processing
elements are reinvoked.

The table is destroyed when Trajectory Estimation exits.

pa_id

pa_source

plan_ time

stimulus_type

stim x

stim_y

stim z

stim ard

stim t

stimulus_position

Unique identifier of a planned action.

Source of planned action whether
controller or system.

Time of day that planned action was
added to the list of planned actions
for this aircraft.

Stimulus that will activate the planned
action. May be:"position".

X coordinate of the stimulus when a
type of position is chosen.

Y coordinate of the stimulus when a
type of position is chosen.

Altitude value when a stimulus type of
altitude is chosen.

Along Route Distance value when a
stimulus type of ard is chosen.

Time value when a stimulus type of time
has been chosen.

AGGREGATE (stim_x,stim_y).

A-12

LAST RESTRICTION POINT:
+--------------------------+
I x I y I altitude I speed I
+----------------~---------+

This table is used by Nominal Plan Builder to store information
about the last restriction point processed by the routine. This is
a single record table.

This table is set by Nominal Plan Builder and is destroyed when that
process exits.

X

y

altitude

speed

coordinate

MAX ANGLE SIZE:

+-------+
I size I

+-------+
size

The x coordinate at the last
restriction point processed.

The y coordinate at the last
restriction point processed.

The altitude at the last restriction
point processed.

The speed at the last restriction point
processed.

AGGREGATE (x,y)

Largest turn that will be modeled as an
instantaneous change in direction.

A-13

NPB PLANNING POINTS:
+---------------------------------------+
I FLIGHT_ID I x I y I z I t I ard I tas I
+---------------------------------------+

This table contains the point (on an aircraft's given trajectory) at
which Nominal Plan Builder begins its planning functions. There is
only one of these points per flight identification. Nominal Plan
Builder will not plan over an existing route where the controller
has assigned ATC actions. This point, then, represents the last
point on the trajectory of the aircraft where there was some
controller interaction.

The table is set by Trajectory Estimation and is destroyed when the
data set pertaining to the flight id is destroyed.

flight_id

X

y

z

t

ard

tas

coordinate

A unique identifier that distinguishes
one aircraft's trajectory from another,
and also distinguishes one version of
an aircraft's trajectory from another
version.

The x coordinate of the point of last
controller interaction with the
trajectory.

The y coordinate of the point of last
controller interaction with the
trajectory.

The altitude of the point of last
controller interaction with the
trajectory.

The time at the point of last
controller interaction with the
trajectory.

The along route distance (referenced to
the aircraft's converted route) at the
point of last controller interaction
with the trajectory.

The true airspeed at the NPB planning
point.

AGGREGATE (x,y)

A-14

PAST CUSP:
+------------------·--------------------------------------1 x I y I z I time I ard I tas ias I mach ground_speed I
+---------------- ------·-------

--------------------·--------------------+
wind_speed I wind direction I temperature

-------------+
This table lists information derived at the most recently modeled
cusp. This information is used by the planned action prQcessing
components of Trajectory Estimation in certain tests that determine
the starting and ending points of planned actions.

This is a single record table which is destroyed when Trajectory
Estimation exits.

y

z

time

ard

tas

ias

mach

ground_ speed

wind_ speed

wind direction

The x coordinate associated with this
point.

The y coordinate associated with this
point.

Altitude at the point.

Time at the point.

Along route distance at the cusp
referenced to the aircraft's ROUTE.

Value of true airspeed associated
with this cusp.

Value of indicated airspeed
associated with this cusp.

Value of mach associated with
this cusp.

Speed (referenced to the groQnd) of
the aircraft at this cusp.

The speed of the wind at this point.

The direction of the wind at this
point.

A-15

temperature

position

wind field

The temperature of the airmass at the
position of the past cusp.

AGGREGATE (x, y)

AGQU:GATE (wind speed, wind_direction,
temperature) -

A-16

PAST CUSP TYPE:
+----------------------------------1 altitude_present I hold_present I
+

altitude_restriction_present I

This table stores info~ation for the Trajectory Construction
Process. It allows that process to assign a type value to the next
cusp, as follows:

altitude_present hold_present· next cusp type
"regular"

"vertical maneuver"
"hold"

"vertical hold"

no no
yes no
no yes

yes yes

The values are assumed "no,no" unless changed by either the hold or
the altitude planned action processing component. This is a single
record table which is destroyed when Trajectory Estimation exits.

altitude _present

hold_present

Indicates the presence of a change
in gradient for the next segment.

Indicates the presence of a hold
maneuver emanating from the next
cusp.

altitude_restriction_present Indicator telling whether
("yes") or not ("no") there is a
restrictied altitude maneuver
present.

A-17

PLANNED ACT ION END TIMES:
+--------------------+
I PA_ID I pa_end_time I
+-- I

This table contains the end time for planned actions attached to the
aircraft being modeled. The table is set by the planned action
processing elements of Trajectory Estimation for use by the Post
Processing component. The values of end. times from this table are
joined with the values of start times given in the table PLANNED
ACTION STARr TIMES to construct the global table
PLANNED ACTION DURATIONS.

This table is destroyed when Trajectory Estimation exits.

pa_id

pa_end_time

Distinguishes one planned action from
all other planned actions defined
in the system.

The time that this planned action
ends in the modeling process. The
time is a time associated with the
trajectory of the aircraft and so
could represent a future time.

A-18

PLANNED ACTION START TIMES:

+----------------------+ I PA_ID I pa_start_time
+---------------------+

This table contains the start time for planned actions attached to
the aircraft being modeled. The table is set by the planned action
processing elements of Trajectory Estimation for use by the Post
Processing component. The values of start times from this table are
joined with the values of end times given in the table PLANNED
ACTION END TIMES to construct the global table PLANNED ACTION
DURATIONS.- -

This table is destroyed when Trajectory Estimation exits.

pa_id

pa_start_time

POSITION LIMITS:
+-----+
IXIYI
+-----+

A unique identifier which
distinguishes one planned action from
all the other planned actions defined
in the system.

The time that this planned action
starts in the modeling process. The
time is a time associated with the
trajectory of the aircraft and so
could represent a future time.

This table presents a list of limits of planned actions which are
given as positions. The table is constructed by the planned actio~
processing components of Trajectory Estima~ion for the Trajectory
Construction subfunction. The position limits are joined with all
the other limit types to determine the position of the next cusp.

This table is destroyed when Trajectory Estimation exits.

X X coordinate of the position limit.

y Y coordinate of the position limit.

position AGGREGATE (x,y)

A-19

PROCEDURAL RESTRICTIONS:
+---
1 RESTRICTION INDEX I RESTRICTION TYPE RESTRICTION I

+-·------------·-----

RESTRICTION_QUALIFIER RESTRICTION_POINT_X I

RESTRICTION POINT Y I cleared I

This table contains restriction information for the use of Nominal
Plan Builder. It provides a restriction point by which a certain
action is to be performed. That action may be to attain a certain
altitude or speed.

The table is set upon data adaptation for the AAS and exists
irregardless of the invocation state of Nominal Plan Builder.

restriction index

restriction_type

restriction

restriction_ qualifier

restriction_point_x

A unique identifier that
distinguishes one unique set of entries
in this table from another.

Type of restriction to be achieved
by the restriction point:

"altitude"
"speed".

Numeric quantity related to the
restriction type which identifies the
specifics of the restriction; e.g,
12000 ft., 250 knots.

Indicator relating the restriction
type to the restriction point,
indicating how the maneuver is to be
performed:

"at or above"
"at"
"at or below".

The x coordinate of the restriction
point (where the maneuver must be
achieved).

A-20

restriction_?oint_y

cleared

restriction_?oint

The y coordinate of the restriction
point (where the maneuver must be
achieved).

Indicates whether or not an aircraft
may resume cleared altitude or speed
after implementation of the
restriction:

"yes"
"no".

AGGREGATE (restriction_?oint_x,
restriction_point_y)

A-21

PROCEDURAL RESTRICTION INDEX:
+------·--------
1 SECTOR I DESTINATION QUALIFIER_INDEX I

+----------------------·------------------------·

----------------------+
restriction index

This table is used by Nominal Plan Builder and contains indexing
information to allow access to all information about pro~edural
restrictions in the sector referenced.

The table is set upon data adaptation for the AAS and exists
irregardless of the invocation state of Nominal Plan Builder.

sector

destination

qualifier_index

restriction index

Unique sector identification that
allows the system to distinguish this
sector from all other sectors_in the
data base.

The end point fix for a flight. This
named point can be an arrival fix
or an airport, for example.

Identification of additional
qualifiers (besides destination) that
distinguish one set of restrictions
from another. This identification is
used as an entry key into the
Additional Qualifiers table.

Identification of the set of
restrictions that apply to this
sector/destination/ additional
qualifier combination. This field is
used as an entry key to the Procedural
Restrictions table.

A-22

PROFILE REFERENCE POINT:

+----------------------------+ I FLIGHT_ID I X I Y I z I tas I
+-------·---------------------+

The profile reference point is input to the Trajectory Estimation
process to initialize the Trajectory Construction and planned action
processing computations. The table is structured to contain a
history of these profile reference points. Since the table is input
to the computations, it exists regardless of the invocation state of
Trajectory Estimation, and is destroyed at the appropri~te time
(such as when the aircraft leaves the planning region).

flight_id

X

y

z

tas

position

Unique identification of the aircraft
plan that the profile reference
point relates to.

The x coordinate of the position in
the profile reference point. This
position is derived by
Resynchronization, and is a
projection onto the previous
trajectory.

The y coordinate of the position in
the profile reference point. This
position is derived by
Resynchronization, and is a
projection onto the previous
trajectory.

The altitude coordinate of the
position in the profile reference
point. This position is derived by
Resynchronization, and is a
projection onto.the previous
trajectory.

The true airspeed observed by
Resynchronization at the position
given.

AGGREGATE (x,y)

A-23

RESYNCHRONIZATION HISTORY:

+-- -------------------·-----------------------1 FLIGHT NAME TIME I actual_x I actual-' I altitude I
+ --------------------------------

wind_speed wind direction I ard I image_x I

image-' I direction true_airspeed
-------------------------------------~

This table stores a history of the resynchronizations made for each
controlled aircraft. The resynchronization history is a
distillation of information present at the time of a
resynchronization. The table is constructed by Resynchronization
and is destroyed at the appropriate time (such as when the aircraft
exits the planning region).

flight_ name

time

actual x

actual_y

altitude

wind_ speed

wind direction

ard

The universal identifier for a flight
in the system.

The time of the resynchronization.

The x coordinate of the tracked
position of the aircraft at the given
time.

The y coordinate of the tracked
position of the aircraft at the given
time.

The altitude of the aircraft at the
time of resynchronization.

The speed of the wind at the track
position and altitude at the time of
resynchronization.

The direction (NAS) of the wind at
the track position and altitude at
the time of resynchronization.

The (equivalent) along route distance
of the track position at the time of
resynchronization.

A-24

image_x

image_y

direction

true_ airspeed

The x coordinate of the perpendicular
projection of the track position at
the time of resynchronization onto
the (old) trajectory of the aircraft.

The y coordinate of the perpendicular
projection of the track position at
the time of resynchronization onto
the (old) trajectory of the aircraft.

The direction of flight for the
aircraft at the point of
resynchronization.

The true airspeed of the aircraft
at the track position at the time of
resynchronization.

A-25

SPEED LIMITS:
+- , __ ..
I SPEED I
+----+

This table presents a list of limits of planned actions which are
given as speeds. The table is constructed by the planned action
processing components of Trajectory Estimation for the Trajectory
Construction subfunction. The speed limits are joined with all the
other limit types to determine the position of the next cusp.

This table is destroyed when Trajectory Estimation exits.

speed Value (tas, ft/sec) of the speed limit.

A-26

SPEED PENDING ACTIONS:

+--
1 PA_ID I pa_source I plan_time I stimulus_type I

+-------------------------------·---------------

stim x stim_y stim_z I stim_ard stim t

------------------------------·---------------+
This table contains speed planned actions that may gain active
control of some AGD parameter at some trajectory point after the
past cusp. The stimulus value is set by the planned action
processing elements (each time they are invoked) to be a future
trajectory event. This stimulus value is checked each time the
processing elements are reinvoked.

The table is destroyed when Trajectory Estimation exits.

pa_id

pa_source

plan_ time

stimulus_type

stim x

stim_y

stim z

stim ard

Unique identifier of a pla~d action.

Source of planned action whether.
controller or system.

Time of day the planned action was
added to the list of planned actions
for this aircraft.

Stimulus that will activate the
planned action. May be:

"ard"
"position"
"time"
"altitude".

X coordinate of the stimulus when a
type of position is chosen.

Y coordinate of the stimulus when a
type of position is chosen.

Altitude value when a stimulus type of
altitude is chosen.

Along Route Distance value when a
stimulus type of ard is chosen.

A-27

stim t

stimulus _position

Time value when a stimulus type of
time is chosen.

AGGREGATE (stim_x,stim_r)

A-28

SPEED RESTRICTED:
+--=-+
I flag I
+---+

This table is used by Nominal Plan Builder in a single invocation to
store information for several routines.

This table is set by Nominal Plan Builder and is destroyed when that
process exits.

flag Indicator, tells if speed remains
restricted after implementation of
each restriction in the
restrictions table. Field values:

"yes"
"no".

A-29

SUPPLEMENTAL CUSP INFORMATION:
+---------- ----
1 FL ID I TIME I acceleration I gradient I min_grad I
+---------------------------·----------------------

-----------·
max_grad direction pa_id_acceleration

pa_id_gradient I pa_id_direction ard I tas I

-----------------·-------------------------
--------------------------------------·

ias I mach wind direction wind_speed I
------------·-------·----------- ---------------

temperature

This structure contains information supplemental to the cusp. This
table is set by the Trajectory Construction process of Trajectory
Estimation. This information is necessary for the reinitialization
of Trajectory Estimation and for Resynchronization. The information
in this table is referenced to both a flight id and a time which
keys a record to a particular cusp for a flight's trajectory.

This table is destroyed when all data sets pertaining to the flight
id are destroyed (when a flight leaves the center), and so the table
exists between invocations of Trajectory Estimation.

'fl id

time

acceleration

gradient

Identification of the flight
to which this structure
is attached.

Time coordinate of the cusp with which
this supplemental information is
associated.

Value of the acceleration emanating
from this cusp.

Value of the gradient emanating
from this cusp.

A-30

min_grad

max_grad

direction

pa_id_acceleration

pa_id_gradient

pa_id_direction

ard

tas

ias

mach

wind direction

wind_speed

temperature

Value of the minimum gradient for the
aircraft over the segment joining the
past cusp to the next cusp if the
gradient variable is set.

Value of the maximum gradient for
the aircraft over the segment joining
the past cusp to the next cusp if
the gradient variable is set.

Value of the direction eman~ting
from this cusp.

Identification of the planned action
controlling the acceleration variable.
A (-1) value will be used to denote
no action changing speed.

Identification of the planned_action
controlling the gradient variable.
A (-1) value will be used to denote
no action changing altitude.

Identification of the planned action
controlling the direction variable.
A (-1) value will be used to denote
no action changing direction, that is,
a direction parameter placed by Flight
Route Follower.

Along route distance (ft) of the
cusp referenced to the aircraft's
ROUTE.

Value of true airspeed associated
with this cusp~

Value of indicated airspeed for this
cusp.

Value of mach for this cusp.

Direction of the wind at this cusp.

Speed of the wind at this cusp.

Air temperature at this cusp.

A-31

agd_vector

wind field

AGGREGATE (acceleration,gradient,
direction) •

AGGREGATE (wind_ speed, wind_ direction).

A-32

TIME LIMITS:
+- I
I TIME I
+----+

This table presents a list of limits of planned actions which are
given as times. The table is constructed by the planned action
processing components of Trajectory Estimation for the Trajectory
Construction subfunction. The time limits are joined with all the
other limit types to determine the position of the next cusp.

This table is destroyed when Trajectory Estimation exits.

time Time value of limit.

A-33

TURN POINTS:
+-- -------------------
1 PA_ID I APEX_POINT_X I APEX POINT y I SEQUENCE I

+--·--------
------------------------+

turn_Pt_x I turn_Pt_y turn_pt_course I
-----------·----------·------------------+i

The Trajectory Estimation process approximates the curvilinear path
of the aircraft in a turn by a sequence of line segments. This
modeling is used to approximate the sometimes large turns that are
present in the estimation of a vector path. This table is filled
with the approximating line segments, represented by a sequence of
points, called the turn points. This piecewise linearization of the
turn is always referenced to a route point, called the ~pex point of
the turn.

The table is set by the Vector Planned Action processing component
of Trajectory Estimation and is destroyed when the data sets
associated with this flight id are destroyed.

pa_id

apex_point_ x

apex_point_y

sequence

turn_pt_x

turn_Pt_y

turn_pt_course

apex_point

turn_Pt

The planned action identifie~
distinguishes one planned action from
all the other planned actions defined
in the system. In this case, the
planned action identifier relates to
a vector maneuver.

The x coordinate of the vector apex
point around which the turn is being
approximated.

The y coordinate of the vector apex
point around which the turn is being
approximated.

The sequence number of this turn
point which allows an ordering of the
turn points to·take place.

The x coordinate of this turn point.

The y coordinate of this turn point.

The course to be flown out of this
turn point.

AGGREGATE (apex_point_x,apex_point_y)

AGGREGATE (turn _Pt _ x, turn _Pt _y)

A-34

VECTOR PENDING ACTIONS:
+·---------
1 PA_ID pa_source I plan_time stimulus_type

+--------------------------·-------------------

stim_x I stim_y stim z stim ard stim t

This table contains vector planned actions that may gain active
control of some AGD parameter at some trajectory point ~ter the
past cusp. The stimulus value is set by the planned action
processing elements (each time they are invoked) to be a future
trajectory event. This stimulus value is checked each time the
processing elements are reinvoked.

The table is destroyed when Trajectory Estimation exits.

pa_id Unique identifier of a planned act~on.

pa_source Source of planned action, either
controller or system.

plan_time Time of day the planned action was
added to the list of planned actions
for this aircraft.

stimulus_type Stimulus that will activate the
planned action. May be:

"position".

stim x X coordinate of the stimulus when a
type of position is chosen.

stim_y Y coordinate of the stimulus when a
type of position is chosen.

stim z Altitude value when a stimulus type of
altitude is chosen.

stim ard Along Route Distance value when a
stimulus type of ard is chosen.

stim t Time value when a stimulus type of
time is chosen.

stimulus_position AGGREGATE (stim_x,stim_y)

A-35

VEC PHASE:

+--
1 PA ID phase_point_x I phase_point_y I pha.se_turn_x I

+---
------·--+

phase_ turn_y I
-------+

This structure is used by the vector planned action processing logic
of Trajectory Estimation to keep track of which turn in a vector is
being modeled.

This table is set by the Vector Planned 'Action processing component
of Trajectory Estimation and is destroyed when Trajectory Estimation
exits.

pa_id

phase_point_x

phase_point_y

phase_ turn_x

phase_ turn_y

phase _point

phase_turn

The planned action identifier
distinguishes one planned action from
all the other planned actions defined
in the system. In this case, the
planned action identifier relates to
a vector maneuver.

The x coordinate of the apex point
where the turn is taking place.

The y coordinate of the apex point
where the turn is taking place.

The x coordinate of a turn point
which references one segment of a
piecewise linear turn.

The y coordinate of a turn point
which references one segment of a
piecewise linear turn.

AGGREGATE (phase_point_x,
phase_point_y).

AGGREGATE (phase _turn _x, phase_ turn_y) •

A-36

WIND CELL:

I flb_x I flb_y I flb z frb x I frb_y I frb z

+--------------------------------------·------

blt x I blt_y I blt z I air_temp

wind_speed wind direction

This table is used by the Trajectory Construction subfunction of
Trajectory Estimation. This table consists of one record containing
information about the wind cell where the past cusp is located.

This table is updated each time Trajectory Construction. is invoked
and is destroyed when Trajectory Estimation exits.

flb X

flb_y

flb z

frb x

£rb_y

frb z

blt X

blt_y

blt z

The x coordinate of the front left
bottom point of the wind cell.

The y coordinate of the front left
bottom point of the wind cell.

The z coordinate of the front left
bottom point of the wind cell.

The x coordinate of the front right
bottom point of the wind cell.

The y coordinate of the front right
bottom point of the wind cell.

The z coordinate of the front right
bottom point of the wind cell.

The x coordinate of the back left
top point of the wind cell.

The y coordinate of the back left
top point of the wind cell.

The z coordinate of the back left
top point of the wind cell.

A-37

air_temp

wind_speed

wind direction

flb

frb

blt

The temperature of the air in the
wind cell.

The speed of the wind in this wind
cell.

The direction of the wind in this
wind cell.

AGGREGATE (flb_x,flb_y,flb_z)

AGGREGATE (frb_x,frb_y,frb~z)

AGGREGATE (blt_x,blt_y ,blt_z)

A-38

Parameters:

Ground_ Speed_ Ratio

Direction Ratio

Starting Reaction
Parameters (Srp)

Starting Overshoot
Parameters (Sop)

Restriction Overshoot
Parameters (Rop)

When used in exponential smoothing,
this ratio determines the relative
weight given to the current observation
of ground speed with respect to past
observations.

When used in exponential smoothing,
this ratio determines the relative
weight given the current observation of
direction·with respect to past
observations.

The difference between the time a
controller delivers an ATC request and
the time the pilot begins to implement
the request.

The time or along route distance,
measured from the Starting Reaction
Parameters (Srp) time, by which the ATC
System expects the pilot to leave an
altitude.

During a restricted altitude change,
the along route distance (plus or
minus) from the restriction point
through which the pilot must cross to
satisfy the restriction.

A-39

APPENDIX B

TRAJECTORY ESTIMATION UTILITIES

The utilities in this appendix are those used by the Trajectory
Estimation Routines in this Specification. They provide
computational services on data known to Trajectory Estimation.

B.l Pressure Ratio

This routine computes a pressure ratio used frequently in speed
conversion routines to translate accurately between true airspeed
and indicated airspeed. It requires the pressure altitude (in feet)
as input. The returned parameter is the ratio of the total pressure
at the the inlet of the pitot tube to the static pressure at that
altitude. The computations are performed using ICAO Standard Day
values of static air pressure and temperature at sea l~vel. These
values are functionally related to the total pressure at the pitot
tube (which is dependent on the mach value for the speed the
aircraft is currently flying).

This routine returns the pressure ratio depending on whether the
input pressure altitude is below or above the ICAO Standard Day
value of the troposphere (38069 feet).

ROUTINE Pressure Ratio;
PARAMETERS -

Pres Alt IN,
Pres-RatioOUT;

DEFINE VARIABL~
Pres lit

Pres Ratio

IF (Pres Alt LE 36089)
'THEN - -

The altitude of the aircraft in feet
measured by altimeter

The ratio of the total pressure at the
pitot tube to .the static pressure at
the input altitude;

---pres_Ratio • (1 - (Pres_Alt * .000006876)) ** 5.256;
ELSE
---vres Ratio • .2234 * EXP((36089 - Pres_Alt) I 20806);

END Pressure_Ratio; --

B-1

B.2 las To Tas

This routine translates between knots of indicated airspeed and
knots of true airspeed at a given pressure altitude in feet, and a
given temperature in degrees Rankine.

ROUTINE las To Tas;
PARAMETERS - -

In Speed IN,
In-Alt IN:
In-TempiN,
Out SpeedOUT;

DEFINE-VARIABLES
In_Speed

In Alt

In_ Temp

Out_ Speed

Out Mach

Indicated airspeed value (in knots) of the
speed to be translated

The altitude (in feet) where the conversion
is to take place

The temperature (degrees Rankine) of the air
where the conversion is to take place

The true airspeed value (knots) output from
this routine

The mach value for the given input indicated
airspeed at the given altitude;

CALL las To Mach(In Speed IN,In Alt IN, Out Mach OUT);
Out_Speed --39 * Out_Mach *sqRT(5 *!n_Teiiip I 9);

END Ias_To_Tas;

B-2

B.3 Tas To Mach

This routine translates from knots of true airspeed to mach number
for a given temperature in degrees Rankine.

ROUTINE Tas To Mach;
PARAMETERS - -

In Speed IN,
In=Alt IN-;-
In Temp IN,
Out MachOUT;

DEFINE -VARIABLEs
In_Speed Speed input to be translated at this

altitude and temperature. The units a~e
assumed to be in knots of true airspeed

In Alt The altitude (feet) where the translation
is to take place

In_Temp Temperature of the air (degrees ~nkine)
where the translation is to take place

Out Mach The mach equivalent to the input true
airspeed value at the altitude and
temperature input;

Out Mach • In Speed I (39 * SQR7(5 * In_Temp I 9)) ;
END Tas_To_Mach;-

B-3

B.4 las To Mach

This routine translates between knots of indicated airspeed and the
mach number at a given pressure altitude in feet.

ROUTINE las To Mach;
PARAMETERS - -

In Speed IN,
ln-Alt IN:-
Out MachOUT;

DEFINE-VARIABLEs
ln_Speed

In Alt

Out Mach

Pres Ratio

Term!

Term2

The speed input for conversion. The input
speed is assUmed to be in knots of
indicated airspeed.

The pressure altitude (feet) where the
translation to mach number will take
place.

The mach equivalent to the indicated
airspeed input to this routine at the
altitude given

The ratio of total pressure to static
pressure at the altitude given

Value for an intermediate processing step in
the computations

Value for an intermediate processing step in
the computations;

CALL Pressure Ratio(ln Alt IN,Pres Ratio OUT);
Term! • (1 + 72 * (In Speed-y 661.5) ** 2J:** 3.5 - 1;
Term2 • (1 + Term! I Pres Ratio) ** (1 I 3.5) - 1;
Out_Mach • SQRT(5 * Term2); .

END las_ To_ Mach;

B-4

B.5 Mach To Tas

This routine translates from the mach number to knots of true
airspeed at a given temperature in degrees Rankine.

ROUTINE Mach To Tas;
PARAMETERS - -

In Mach IN,
In-Temp IN,
Out Speed OUT;

DEFINE-VARIABLES
In Mach

In_Temp

Out_ Speed

Out Speed • 39 *
~ Tas _To_ Mach;

The speed of the aircraft expressed as a
percentage of the speed of sound at the
altitude in question

The temperature of the air in degrees Rankin~
at the position of translation

The speed of the aircraft expressed in knots
true airspeed;

In_Mach * SQRT(5 * In_Temp I 9);

B-5

B.6 Tas To las

This routine translates from knots true airspeed to knots of .
indicated airspeed at a given pressure altitude in feet, at a given
temperature in degrees Rankine.

ROUTINE Tas_To_Ias;
PARAMETERS

In Speed IN,
In-Alt IN:
In-TempiN,
Out_Speed OUT;

DEFINE VARIABLES
In_Speed

In Alt

In_Temp

Out_ Speed

The speed of the aircraft (knots TAS) to be
translated

The altitude where the translation will take
place (feet)

The temperature of the air (degrees Rankine)
where the translation will take place

The speed of the aircraft (knots lAS) of the
aircraft at the input altitude and
temperature

Out Mach The mach equivalent of the input TAS value;
CALL Tas To Mach(In Speed IN,In Temp IN,Out Mach OUT);
CALL Mach To Ias(Out Mach IN,In-Alt IN,Out Speed OUT);

END Tas_To_Mich"i" - - - - - --

B-6

B.7 Mach To las

This routine translates from the mach number to knots of indicated
airspeed at a given pressure altitude in feet.

ROUTINE Mach To !as;
PARAMETERS - -

In MaCh IN,
In-Alt IN,
OUt Speed OUT;

DEFINE-VARIABLES
In Mach

In Alt
Te~l

Term2

Pres Ratio

The speed of the aircraft given as a ration
of the speed of sound at the altitude of
the translation

The altitude of the translation (in feet)
Value for an inte~ediate processing step in

the computations
Value for an inte~ediate process~ng step in

the computations
The ratio of the total pressure to the

static pressure at the pitot tube;
CALL Pressure Ratio(In Alt IN,Pres Ratio OUT);
Te~l • (1 + :2 * (In Mach** 2)) ** 3.5 =1;
Term2 • (1 + Term! * Pres Ratio) ** (1 I 3.5) - 1;
OUt_Speed • 661.5 * SQRT(S * Term2);

END Mach_ To_ las;

B-7

B.8 Tas To Ground

This routine translates between an input true airspeed and the
associated ground speed. The computation uses the AGD vector to
obtain the direction of the aircraft. It obtains the wind value from
the past cusp and forms a direction difference between the direction
of the aircraft and that of the wind. The ground speed obtained is
the addition of the true airspeed to the component of the wind
velocity vector which lies along the course of the aircraft.

ROUTINE Tas_To_Ground;
PARAMETERS Ground speed OUT;
REFER TO SHARED LOcAL

AGD VECTOR IN,
PAST CUSP IN;

DEFINE\TARI.AltES
Del Angle direction - wind direction;
#Del Angle is aircraft direction - wind direction#
Del Angle • AGD VECTOR.direction - PAST CUSP.wind direction;
Ground Speed • PAST CUSP.wind speed * COS(Del An8Ie)+

SQRT(Tas ** 2 -(PAST CUSP7wind speed * SIN(Del Angle)) ** 2);
~ Tas_To_Ground; - - -- -

B-8

B.9 Mach las Switchover

This routine computes the pressure altitude (in feet) at which a
given mach number will have the same translated true airspeed ·(knots)
value as a given indicated airspeed (given in knots).

ROUTINE Mach las Switchover;
PARAMETERS - -

In Mach IN,
In-Ias IN,
Out A1 t ""'OUT;

DEFINE-VARIABLES
In Mach

In Ias

Out Alt

Terml

Term2

Pres Ratio

The mach value associated with this
switchover point

The indicated airspeed (knots) associated
with this switchover point

The pressure altitude (in feet) at the
switchover point

Value for an intermediate processing step in
the computations

Value for an intermediate processing step in
the computations

The ratio of the total pressure to the
static pressure at the pitot tube;

Terml • (1 + .2 * (In las I 661.5) ** 2) -1;
Term2 • (1 + .2 * (In-Mach **2)) ** 3.5 - 1;
Pres Ratio • Terml I Term2;
Termi • (1 - (Pres Ratio ** (1 I 5.256))) I .000006876;
Term2 • 36089- 20806 * LOG(Pres Ratio I .2234);
IF Term 2 GT 36089 - -
THEN
---out_Alt • Term2;
ELSE

Out Alt • Terml;
END Mach_Ias_Switchover;

B-9

B.lO Linear Turn

This utility is used to model a turn as a number of linear
segments. For each turn it must be supplied with the course before
the turn and the course after the turn, aircraft speed, wind data,
and turn rates. Figure B-1 shows that the aircraft's path is
described in two ways. The first is a ground based system using the
course before the turn, course after the turn, and the ground track
during the turn. In the second way, the aircraft's path can be
described with respect to the airmass in terms of heading before the
turn, heading after the turn, and the turn relative to the airmass.
This airmass system can be converted to a ground based system by the
addition of wind data. ·

This routine linearizes the change in heading and then converts the
acquired data to course angles and distances relative to the ground.

The utility's first task is to determine the heading change. Based
on the heading change, the routine will decide how many segments are
needed to model the turn. Each turn segment will be of equal
length. Figure B-2 shows how a two segment turn could be used to
model the heading change in Figure B-1. The points A (where the
aircraft starts the heading change), C (where the aircraft starts to
fly the new heading,) and B the new modeling point can then be
translated to the ground baaed system using wind data. Figure B-3
shows the path created by this translation.

This utility calculates the turn points and the course to be
followed between turn points.

B-10

D:l
I

Heading
Before
Turn

·~
Course
Before
Turn

~

/
/

:S. Beading Change

.......
......._ ""- ~Heading

......._~ . After

"""' """' Turn
·----,=~-..

Turn
Relative
To Air
Mass

FIGURE B-1
TURNS

f
Actual

Path
Flown

Wind Component

After
Turn

/

/

/
/

/

/\H
/----..-1.

/ "' .
/

...................
/ ~2 " / ---

/ ~·

H • Heading Change

AB = BC

FIGURE B-2
LINEARIZING CHANGE IN HEADING

B-12

Apex Point

--1 --B -- . ---
Actual

A,Al Path

FIGURE B-3
TRANSLATION TO GROUND BASED SYSTEM

B-13

ROUTINE Linear Turn;
PARAMETERS -

Course_! IN,
Course 2 IN,
Apex l'OintiN,
TURN-OUT, -
Fl Id IN;

REFER-TO SifARED LOCAL
PAST CUSP IN,
MAX ANGLE SIZE IN;

DEFINE-TABLES -
TURN TURN POINT TABLE

sequence Order of point
turn_pt Point in the turn
turn_yt_course Course out of point;

DEFINE VARIABLES
Course 1
Course 2
Ape:x:_Point(2)
Fl Id

Heading_!
Heading 2
Del Heading
Length
Heading
Rate
J
Ground Speed
H Ch Pt(* ,2)
Points(*,2)
Wind Dir
Wind: speed
Mult
Ard
First Point(2)
Number Segments

DEFINE CONSTANTS
pi (3~14159265)

Course into apex point
Course out of apex point
Apex of turn (x, y)
Identification of flight under&oini Trajectory

Estimation
Heading before turn
Heading after turn
Change in heading
Length each segment should be
Segment heading
Turn rate
Index
Aircraft ground speed
Heading change point(x,y)
Turn point(x,y)
Wind direction
Wind speed
Wind factor wind in air to ground conversion
Along route d1stance
Along route start point(x,y)
Number of segments needed to .odel turn;

circumference/diameter;

B-14

Wind_Speed • PAST_CUSP.wind_speed;
Wind Dir • PAST CUSP.wind direction;
Headina_l • Course 1 + ARCSIN(Wind Speed *

SIN(Course 1 -Wind Dir)/PAST CUSP.tas);
Heading 2 • COurse 2 +-ARCSIN(Wind Speed*

SIN(Course 2 -Wind Dir)/PAST CUSP.tas);
Del Heading --Heading 2 - Heading 1;
correct Del Heading to be between- -PI and PI;
Number Segments • FLOOR(Del Heading/MAX ANGLE SIZE.size);
IF Number Segments~ 0 - - -
THEN #turn modeled by one point#
--INSERT INTO TURN

(sequence• l,turn pt • Apex Point,
turn_pt_course • COurse2); -

ELSE #Find length each turn segment should be#
--CALL Determine Turn Rate(PAST CUSP.tas IN,Rate OUT);

Length•ABS(PAST CUSP.tas*2*SIN(Del Heading/(2*Nwaber Segments))
/Rate) ; #each segment will be tiie same length# -

Heading•Headina_l+Del_Heading/(2*Number_Segments);
CALL Tas To Ground(Ground Speed OUT);
H Ch Pt(l)•Apex Point - Ground Speed*ABS(tAN(Del Heading/2))/
- Rite*(SIN(Course l),COS(Course 2));----- -

CALL XY To Ard (H cii PtW IN, Ard OUT);
IF Ard LT PAST CUSP.ard - ---
THEN # we've missed the ·start of turn start turn now#
--H Ch Pt(l) • PAST CUSP.coordinate
ElSE-# Insure turn point is on route #
--CALL Ard Translation To Route(Fl Id IN, Ard IN, First Point

-ouT);- - - - -
H Ch:Pt(l) • First Point;

Point(l}•H Ch Pt(l) -
·poR J•2 TO-N~ber Segments+l:#calculates turn point#
---H Ch Pt(J) • H-Ch Pt(J-l)+Length*(SIN(Heading),COS(Heading))

Mult-wind Speed*(J-l)*(Del Heading~mber Segments*Rate);
Points(J)-- H Ch Pt(J)+Mult~(SIN(Wind Dir)~COS(Wind Dir);
Heading•Headiiig + Del Heading/Number segment; - .

FOR J•l TO Number Segments; -
---INSERTINTO TUiNS

(sequence • J, turn_yt • Points(J),
turn_yt_course • DIRECTION(Points(J),Points(J+l)));

INSERT INTO TURNS
(sequence • Number_Segments+l,turn_yoint •
Points(Number_Segments+l),turn_pt_course • Course_2);

END Linear_Turn;

B-15

B.ll Newton Raphsob

This routine supplies the ability to solve a fourth degree
polynomial through the use of Newton's aethod. The coefficients of
the quartic are input to this routine. These values are used· to
compute the derivative of the quartic (a cubic polynoaial). The
Newton's method solution of the quartic is then an iterative
(quadratic convergence) operation until successive iterations fall
within a tolerance limit.

ROUTINE Newton_Raphson;
PARAMETERS

X INOUT,
A IN,
Convergence IN;

DEFINE VARIABI.Er
Old X
New X
Delta
X
A(S)

F Prime X
F-X
Convergence
Old_X • X;

Old value before iteration
New value after the iteration
Differrence of Old Value, New Value
Root of fourth degree equation
Coefficients of a fourth degree equation of

form a*x**4+b*x**3+c*x**2+d*z+e • 0
Differential of above fn at x
Fn described above in A(S)
Convergence parameter to stop iteration;

Delta • 2 * Convergence;
REPEAT UNTIL (Delta LE Convergence)

F X • A(l) * Old X:** 4 + A(2) * Old X ** 3 +
- A(3) * Old X** 2 + A(4) * Old X+ A(S);

the

F Prime X • 4 * A(l) * Old X ** 3 + 3 * A(2) * Old X ** 2 +
- 2 * A(3) * Old X + A(4);

New X • Old X - F-X/F Prime X;
Delta • ABS(New X- Old X);-
Old X • New X; - -

X • New X· -- .
END Newton_Raphson;

B-16

B.12 Shut Down Pa

This routine is used by all the planned action processing
components. For an input list of planned actions, the routine fills
in. the planned action end times as the time at the past cusp and
deletes each planned action from the proper pending action list.

ROUTINE Shut Down PA;
PARAMETERS - -

D A IN,
TabieType IN;

REFER TO-SHARED-LOCAL
PAST CUSP IN,
PLANNED ACTION END TIMES INOUT,
SPEED PENDING ACTIONS INOUT,
ALTITUDE PENDlNG ACTIONS INOUT,
VECTOR_PENDING_ACTIONS INOUT,
HOLD PENDING ACTIONS INOUT;

DEFINE TABLES -
D A DELETE ACTIONS

pa id
DEFINE VARIABLES

Table_ Type

planned action identifications to delete;

input table type
"speed"
"hold"
"altitude"
"vector"

to work with:

Table Name Variable name of table to delete from;
1-----=--4

I first set the end time of the planned action that is I
I shutting down I
REPEAT FOR EACH D A RECORD;

INSERT INTO PLANNED ACTION END TIMES
(pa id • D A.pa Id, - -
pa-end time • PAST CUSP.time);

CHOOSE CASE - -
WHEN Table Type ~ 'speed' THEN
~able Name • SPEED PEND!lfGACTIONS;
WHEN Table Type~ 'altitude'-THEN
---Eable Name • ALTITUDE PENDING ACTIONS;
WHEN Table_Type ~ 'vector' THEN

Table_Name • VECTOR_PENDING_ACTIONS;
WHEN Table_ Type~ 'hold' THEN

Table Name • HOLD PENDING ACTIONS;
DELETE FROM-Table Name 1 now delete from the appropriate

WHERE Table Name.pa id IS IN D A.pa id;
END Shut_Down_PA;- - - -

B-17

table I

B.l3 Get Time For Speed Change

This routine is used by several of the routines responsible for the
computation of stimulus values for speed planned actions. For an
input speed and a target speed (either value in either las, Mach, or
Tas), the routine computes the time needed for the speed change.
For the time value, it uses the value of acceleration or
deceleration for this aircraft from the aircraft class
characteristics tables.

ROUTINE Get Time For Speed Change;
PARAMETERS - - - -

Start Speed Type IN,
Start-Speed-Value-rN,
Start-Altitude IN,-
Start-Temperature IN,
End Speed Type IN,-
End=Speed=Value IN,
End Altitude IN,
End-Temperature IN,
Time For Speed Change OUT,
Average Tas OuT; --

REFFR TO GLoBAL-
AIRCRAFT ACCELERATION IN,
AIRCRAFT-DECELERATION IN;

DEFINE VARIABLES --
start_ Speed_ Type
Start_Speed_Value
Start Altitude
Start-Temperature
End_ Speed_ Type
End Speed Value
End-A1 ti tude
End-Temperature
Time_For_Speed_Change

Average Tas
Start Tas
End Tas
Loc Acceleration

Loc Deceleration

Type of speed units for start speed
Value of start speed
Altitude at start speed
Temperature at start speed
Type of speed units for end speed
Value of end speed
Altitude at end speed
Temperature at end speed
Time it takes to accelerate from

start·speed to end speed
Average value of start and end taB's
Tas equivalent for start speed
Tas equivalent for end speed
Acceleration value from aircraft

characteristics tables
Deceleration value from aircraft

characteristics tables;

B-18

CHOOSE CASE
WHEN Start_Speed_Type !Q. 'mach' THEN

CALL Mach To Tas(Start Speed Value IN,Start Temperature IN,
--Start Tas-OUT); - - - - -

WHEN Start_Speed_Type ~ 'ias' THEN
CALL las To Tas(Start Speed Value IN,Start Altitude IN,
--Start-Temperature IN, Start TasOUT);

CHOOSE CASE - - - -
WHEN End_Speed_Type ~ 'mach' ,!!!!!

CALL Mach To Tas(End Speed Value IN,End Temperature IN,
~dTasOUT); - - - - -

WHEN End_ Speed_ Type !Q. 'ias' THEN
CALL las To Tas(End Speed Value IN,End Altitude IN,
--ynd Temperature IN, End Tas OUT); - -

Average Tas -; AVG(Start Tas,End Tas) ;-
IF Start Tas - End Tas LT 0 -
THEN
--SELECT FIELDS acceleration I get info for later inclusion I

FROM AIRCRAFT ACCELERATION (A A)
INTO Loc Acceleration -
WHERE A A.source is best available for this aircraft AND

Start Altitude IS IN the appropriate altitude range;
Time_For_Speed_Change • (End_Tas - Start_Tas) I

ELSE
Lac_ Acceleration;

---S-ELECT FIELDS deceleration # get info for later inclusion I
FROM AIRCRAFT DECELERATION (A D)
INTO Loc Deceleration -
WHERE A D.source is best available for this aircraft AND

Start Altitude IS IN the appropriate altitude range;
Time For Speed Change • (Start Tas - End Tas) I

Lac Deceleration; - -
END Get_Time:For_Speed_Change;

B-19

B.l4 Determine Turn Bate

This routine provides the turn rate for an aircraft that is aodeled
in a turn. The method is to obtain one of two values:

o three degrees per second

o the turn rate produced by a 25 degree bank angle
whichever is least.

ROUTINE Determine_Turn_Bate;
PARAMETERS

In Speed IN,
Turn Ba teOUT;

DEFINE VARIABLEs
In Speed
Turn Bate

DEFINE CONSTANtS

input speed of the aircraft (tas)
turn rate of the aircraft;

G 32.1725 acceleration due to gravity (ft/sec/sec)
T 0.05236 three degrees/sec turn (radians)
D25 0.43633 twenty five degrees in radians;

#while the computations presented are radians/sec, it is assumed I
#that this routine returns the answer in the units necessary -- any#
#conversion to other units is obvious I

Turn Rate • MIN(T,G * TAN(D25) / In Speed);
END Determine_Turn_Bate; - -

B-20

B.l5 Ard Translation To Route

This routine accepts an along route distance for an aircraft and
returns the point on the converted route which has that alona route
distance. The flight identification input is used to access the
converted route stored in the ROUTES table.

ROUTINE Ard Translation To Route;
PARAMETERS - - -

Loc Fl Id IN,
Ard-IN:- -
Coo rd;J.na te OUT ;

REFER TO GLOBAL
ROUTES IN;

DEFINE VARIABLES
Loc Fl Id

Ard
Coordinate
Route Node(*,2)
Total-Dist
Index-
Fl Name
Anile

#select route II

flight identification for this flight undergoina
Trajectory Estimation

along route distance
point on route corresponding to ard
array of nodes x,y in route
accumulated distance
index to Route Nodes
flight name
course direction;

SELECT FIELDS flight name
FROM FLIGHT ID ASSOCIATIONS(F I A)
INTO Fl Name - - -
WHERE ()_A.fl_id ~ Loc_Fl_Id;

SELECT FIELDS coordinate
FROM ROUTES
INTO Route Node
WHERE ROUTEs. flight_ name _!g Fl_ Name
ORDERED BY ROUTES.along route distance;

Total Dist • 0; - -
Index-- 0;

I find route segment where ard is located#
REPEAT WHILE Total Dis t LT Ard;

Index • Index +-1; -
Total Dist • Total Dist + DIST(Route Node(Index),

Route Node(Indei+l)); - -
Angle • DIRECTION(Route Node(Index+l),Route Node(Index));
Coordinate • Route Node(Index+l) + (Total Dist - Ard)*

(SIN(Angle),COS(Angle)); -
~ Ard_Translation_To_Route;

B-21

B.l6 Route Direction At Point

This routine accepts a point on the converted route of an aircraft
and returns the direction the aircraft will fly at that point if the
aircraft proceeds along the converted route.

ROUTINE Route_Direction_At_Point;
PARAMETERS

!Dc_Fl_Id IN,
Point IN,
Route Direction OUT;

REFER TO-GLOBAL -
FLIGHT ID AS SOC !AT IONS IN,
ROUTES- -IN;

DEFINE VARIABLEs
Loc Fl Id flight plan id
Point(!) point (x,y)on the route
Route Direction direction at point
Fl Name flight name
Route Nodes(*,2) nodes(x,y) on the route
Index- index to route nodes;

#-----
#select route#

SELECT FIELDS flight name
FROM FLIGHT ID ASSOCIATIONS(F I A)
INTO Fl Name - - -
WHERE F:I_A.fl_id !Q Loc_Fl_Id;

SELECT FIELDS coordinate
FROM ROUTES
INTO Route Nodes
WHERE ROUTEs.flight_name ~ Fl_Name
ORDERED BY ROUTES.along route distance;

Index • 0; - -
find route segment point is on#

REPEAT UNTIL (DIRECTION(Route_Nodes(Index) ,Point) ~
· (DIRECTION(Route Nodes(Index),Route Nodea(Index+l)) AND

(DIST(Route Nodes(Index),Point) LT-
DIST(Route Nodes(Index),Route Nodea(Index+l)));
Index • Index+ 1; -

Route Direction •
DIRECTION(Route Nodes(Index),Route Nodea(Index+l));

END Route_Direction_At_Point; -

B-22

B.l7 Wind Field

This routine finds wind speed, wind direction and temperature at an
xyz position.

ROUTINE Wind Field;
PARAMETERS xyz POSITION IN,

WIND FIELD OUT; -
REFER TO GLOBAL WINDS IN;
DEFINE TABLES -

xyz_POSITION Position of aircraft needing wind dat~
x x coordinate of position
y y coordinate of position
z z coordinate of position

WIND FIELD All components of wind data
speed wind speed
direction wind direction
temp air temperature;

1-- I
WIND FIELD • SELECT FIELDS wind field

FROM WINDS -
WHERE WINDS.frb GE XYZ POSITION I compare elt-by-elt I

AND WINDS.blt LT XYZ-POSITION;I compare elt-by-elt #
~ Wind_ Field; - -

B-23

B.l8 Speed To Ground

This routine converts from speed (tas) to ground speed.

ROUTINE Speed To Ground;
PARAMETERS - -

Coord IN
Alt IN
Speed 'IB
Course IN
Ground OUT;

DEFINE VARIABLES-
Coord(2) X,Y position
Alt Altitude
Speed Tas
Course Direction at Coord
Ground Ground Speed
Del Angle Direction - Wind Direction
Wind_Speed Wind Speed
Wind Dir Wind-direction
Temp- Temperature;

1--.
CALL Wind Field (Coord IN,Alt IN,Wind Speed OUT,Wind Dir OUT,
--"Temp OUT); · - - - - - -
Del Angle • Course - Wind Dir;
Ground • Wind Speed * COS-(Del Angle) + SQB.T (Speed **2 -

(Wind Speed * SIN (Del Angle) **2);
~ Speed_To_Ground;- -

B-24

B.l9 Get Groundspeed

This routine translates given true airspeed to corresponding
groundspeed using wind cell information from current wind cell
(WIND CELL).

ROUTINE Get Groundspeed;
PARAMETERS Tas IN, Groundspeed OUT;
REFER TO SHAREDLoCAL -

WIND CELL IN,
AOOWCWR IN· _,

DEFINEVARIABLES
Tas
Groundspeed
Wind Cross
Wind Along
Delta Theta

1----

Input true airspeed
Equivalent groundspeed
Cross track wind component
Along track wind component
Difference between agd vector direction

and wind direction;

Delta Theta • AGD VECTOR.direction - WIND CELL.wind direction;
Wind 'l!'ross • WIND-CELL.wind speed*SIN (Derta Theta)"i"
WindAlong • WIND-CELL.wind-speed*COS (Delta-Theta);
Groundspeed • SQRT (Tas***2-- Wind Cross**2)-+ Wind_Along;
~ Get_Groundspeed;

B-25

APPENDIX C

PENDING ALTITUDE LIMITS UTILITIES

The utilities in this appendix are used in establishing the starting
conditions of actions in the altitude pending actions table. The
major routines used in establishing these starting conditions are
given in 4.3.8 (see Include Altitude Pending Action Limits, Figure
4-79). The Speed Conversion elements as well as the element Wind
Field can be found in Appendix B. The elements XY To Ard and
Determine Wind Cell are located in Section 4.4. -- --

C-1

C.l Find Target Altitude

This routine is used to find the target altitude for the active
altitude action.

ROUTINE Find Target Altitude;
PARAMETERS Fl Id IN: Target Altitude OUT,Act Pa Id OUT;
REFER TO GLOBAL - - - - - -

FLIGHT PLANS IN,
FLIGHT-ID ASSOCIATIONS IN,
ALTITUDE_ CHANGE _PLANNED_ ACTIONS IN;

REFER TO SHARED LOCAL
ACTIVE _PLANNED_ ACTIONS IN;

DEFINE VARIABLES
Fl Id Identity of aircraft undergoing Trajectory

Target_Altitude
Act Pa Id
Flfght-Name
Resume-Time

Estimation
Target altitude
Active actions id
Flight name
Resume climb time

1---#
SELECT FIELDS pa id,target altitude,resume climb time

FROM ALTITUDE-CHANGE PUNNED ACTIONS(A l: P A)
INTO Act Pa Id,Target Altitude,Resume Time-
WHERE A C P-A.pa id ~ACTIVE PLANNED-ACTIONS.pa id AND

ACTIW=PLANNED_ACTIONS.pa_type _!g Taltitude' ;- -
IF (Resume Time NE 'none')
THEN I target altitude is cruise altitude I
--SELECT FIELDS flight name

INTO Flight Name -
FROM FLIGHT-ID ASSOCIATIONS (F I A)
WHERE F_I_A7fl=id !9. Fl_Id; --

SELECT FIELDS approved cruise altitude
FROM FLIGHT PLANS - -
INTO Target-Altitude
WHERE FLIGHT_PLANS.flight_name ~ Flight_Name;

END Find_Target_Altitude;

C-2

C.2 Calculate Speeds And Times

This routine finds the goal speed for the active ac.tions and
determines how long it will take to accelerate. It also determines
if the goal can be met in the given amount of time and calculates
the average speed during acceleration.

ROUTINE Calculate_Speeds_And_Times;
PARAMETERS Fl Id IN, Ace Time INOUT, Del Time INOUT, Target_Speed

INOUT, Avg-Speed INOUT, Pa Time IN);
REFER TO GLOBAL - -

ALTITUDE CHANGE PLANNED ACTIONS IN,
SPEED CHANGE PLANNED AcTIONS IN,
AIRCRAFT MAX-ENDUBANCE SPEED IN;

REFER TO SHARED-LOCAL - -
ACTIVE PLANNED ACTIONS IN,
PAST CUSP IN, - -
AGD VECTOR IN;

DEFINE-TABLES -
STATE STATE MODELED FROM

position x X position
position:y Y position
tas Tas
ias
mach
z
time
ard
temp
position

DEFINE VARIABLES
F1 Id

Ace Time
Del-Time
Target Speed
Avg_Speed
Pa Time
Tran_Type

I as
Mach
Altitude
Time
Along route distance
Temperature
AGGREGATE (position_x, position_y);

Identity of aircraft for Trajectory
Estimation

Time required to accelerate
Remaining time
Speed to accelerate to
Average speed during acceleration
Time to be accounte for
Transition type climb or descent;

C-3

CHOOSE CASE
WHEN 'speed' IS IN ACTIVE PLANNED ACTIONS. pa type
--orHEN I find target speed I - -

SELECT FIELDS target speed
INTO Target Speed-
FROM SPEED CHANGE PLANNED ACTIONS(S C P A)
WiiERE S PC A.pa Id ~ AGD VECTOR.pa id-aeeeleration;

WHEN 'hold 1 IS IN ACTIVE PLANNED-ACTIONS THEIC
--'7 select holding spee'd' I - --

SELECT FIELDS speed
FROM AIRCRAFT MAX ENDURANCE SPEED(A M E S)
nmJ Target Speed- - - - -
WHERE AM E-S.source is equal to the beat available

AND PAST-CUSP.z is in A M E S altitude range;
OTHERWISE-,-due to an altitude maneuver I

SELECT FIELDS transition type
FROM ALTITUDE CHANGE PLANNED ACTIONS(A C P A)
INTO Tran Type - - - - -
WHERE A_c:P_A.pa_id ~ AGD_VECTOR.pa_id_aeeeleration;

IF Tran Type ~ 'descent
THEN I must be slowing to 250 IAS#
--cALL las To Tas(250 IN,lOOOO IN, PAST CUSP.teaperature

--IN, Target Speed OUT); - -
ELSE #mUst be changing to climb speed#
~ALL Set up State (Fl Id IN, PAST CUSP.tas IN,

---pAST CuSP position-IN;fAST CUSP.z IN, PAST CUSP.tille
IN, STATE OUT); - - - -

CAlL Nominal Climb Speed(STATE IN, Target Speed OUT);
Ace Time '8'"1Target Speed -PAST CUSP.tas17 - -

AGD VECTOR.acceieration; -
Ace Time • MIN(Acc Time, (Pa Time - PAST CUSP. time)) ;
Avg-Speed • PAST CUSP.tas +-AGD VECTOR.aeceleration *

Icc Time/2; - -
Del Time • MAX(O,(Pa Time - PAST CUSP.time - Ace Time));

END Calculate_Speeds_And_Times; - -

C-4

C.3 Set Up State

This routine sets up STATE , which is a modeled position sildliar
to PAST CUSP.

ROUTINE Set Up State;
PARAMETERS Fl Id IN, Speed IN,Coord IN,Altitude IN,

IN, STAtE OUT; - - - -
DEFINE T.ABL~

STATE
posttion :x
positionJ
tas
ias
mach
z
time
ard
temp
position

DEFINE VARIABLES
Fl Id

Speed
Cooni(2)
Altitude
Time
Ias
Mach
Loc Ard
Wind Speed
Wind-Direction

1 begin#

STATE MODELED TO
X position
Y position
Tas
las
Mach
Altitude
Time
Along route distance
Temperature
AGGREGATE(position_x,position_y);

Identity of aircraft for Trajectory
Estimation

Speed at coord
Last modeled point(:x,y)
Altitude at coord
Time at coord
Indicated air speed at coord
Mach at coord
Along route distance at coord
Wind speed
Wind direction;

CALL Wind Field (Coord IN, Altitude IN, Wind Speed OUT, Wind
--"Direction OUT, STATE.Teap OUT); - ' - - -
CALL Taa To las (Speed IN, Altitude IN,STATE. teap IN, las OUT);
CALL Taa-to-Mach(Speed IN, Altitude IH,STATE teap Iii, Mach OUT);
CALL XY To Ard(Fl Id IN:-Coord IN, IDe Ard OUT) -
'iNsERT INTO STATE- - - - -

(position • Coord,
taa • Speed,
ias • Ias,
mach • Mach,
z • Altitude,
time • Time,
ard • Loc Ard);

END Set_Up_State;

c-s

C.4 Nominal Climb Speed

This routine returns the nominal climb speed in knots tas for the
supplied altitude.

ROUTINE Nominal Climb Speed;
PARAMETERS Nom Climb Sp OUT, STATE IN;
REFER TO GLOBAL - - -

NOMINAL CLIMB SPEEDS IN;
DEFINE TABLES - -

STATE STATE MODELED TO.
position_x X position
position_y Y position
tas Tas
ias las
mach Mach
z Altitude
time Time
ard Along route distance
temp Temperature
position AGGREGATE (position_x,position_y);

DEFINE VARIABLES
Nom Climb Sp
Climb Ias
Climb-Mach
Tran i:lt

I begin-#

Nominal climb speed in tas
Climb indicated airspeed
Climb mach
Transition altitude between mach and ias;

SELECT FIELDS ias,mach
FROM NOMINAL CLIMB SPEEDS(N C S)
INTO Climb ias,Climb Mach --
WHERE N c s.source is equal to the best available;

I must findout which speed to use#
CALL Mach las Switchover(Climb Mach IN,Climb las IN,Tran Alt OUT);
--IF STATE.z-GE Tran Alt - - - - - -

THEN #AboveTran Ait return mach converted to tas#
--CALL Mach To Tas(Climb Mach IN,STATE.z IN, STATE.temp IN,

---gom Climb -Sp OUT); - - - -
ELSE #below return ias converted to tas#
---cALL las To Tas(Climb las IN,STAXE.z IN ,STATE.temp]!,
~om Climb SpOUT);- - -

END Nominal_ c1iiiib _Speed; -

C-6

C.S TIME AT POINT

This routine calculates the speed and the time at a given point.

ROUTINE Time At Point;
PARAMETERS Fl Id IN, Goal Point IN,New Time INOUT,Gradient IN,

New Coord IN, Speed INOUT ,Altitude IN, Ace IN; -
DEFINETABLES- - -

VECTOR POINTS POINTS IN VECTOR YET TO BE MODELED
sequence Sequence number of point
position x X position of point
position=y Y position of point
position AGGREGATE(position x,posit~J()•

ROUTE POINTS POINTS IN ROUTE YET TO BE MOD
a~ Along route distance
position x X position of point
position-y Y position of point
position- AGGREGATE(position_x,position_y);

DEFINE VARIABLES
Fl Id Identity of aircraft undergoing Trajectory

Goal Point(2)
New Time
Gradient
Speed
Altitude
New_Coord(2)
Ace
Goal Ard
Course
Ground
M Dist
Old_ Speed
Avg_Speed
wArd
Vee Point(2)
Rout_Point(2)
Loc Ard
Boundary_Point(2)
Z Intersection

Estimation
Point to model to
Time Accounted for
Gradient at current position
Speed to be used
Altitude at position
(X,Y) Coordinate at elapsed tiae
Acceleration
Along route distance of goal point
Course at current position
Ground speed
Minimum distance
Old speed
Average speed
I>i stance to wind botmdary
Point in vector (x,y)
Point on route (x,y)
Position ard
Wind cell intersection (x,y)
Altitude wind cell intersection;

c-7

Old Speed • Speed;
CALL XY To Ard(Fl Id IN, New Coord IN,Loc Ard OUT);
CALL Set Up Vector AndRoute-PointsCil Id-IN,Loc Ard IN,
-----roUTE-POINTS OuT, vECTOR POINTS OUT}; - - -

#find-possible changes in direction#
CALL XY To Ard(Fl Id IN, Goal Point IN,Goal Ard OUT);
REPEAT WHILE Loc Ard LT Goal 'Ird - - -

IF COUNT (VECToR POINTS) NE 0
THEN #find course from vector points#
---sELECT FIELDS position

FROM VECTOR POINTS
INTO Vee Point
WiiEiE VECTOR _POINTS. sequence ~

MIN(VECTOR POINTS .sequencie};
Course-;-DIRECTION(New Coord,Vec Point);

ELSE I find course from route I -
--DELETE FROM ROUTE POINTS

WHERE ROUTE POINTS .ard I.E Loc Ard;
SELECT FIELDS position - -

FROM ROUTE POINTS
INTO Rout Point
WiiiRE RotiTE POINTS.ard ~ MIN(ROUTE POINTS.ard);

Course • DIREcTION(New Coord,ROUt Point);
CALL Wind Intersection(New Coord IN,Altitude IN,Course
--IN, Gradient IN,Boundacy Point-mJT,Z Intersection OUT);
CA.iL""XY To Ard(Flid IN, Boundary Point-IN,W Ard OUT);
CALL Find Next ArCI Briik(Fl Id IN, Goal lrd lH,W '1M IN,
--M Dist-OUT,-New-Coord IN-,Boundary Point IN,GOal Point IN,

ROUTE POINTS INOUT, VECTOR POINTS INOUT ,Loc Ard IN); -
New Coord • New Coord + M Diet * (SIN(Co~rse):coS(Course));
Speed • SQRT(Speed**2 + 2-* Ace * M Dist); -
Avg Speed • (Old Speed + Speed)/2;
Old-Speed • Speed;
CALL Speed To Ground (New Coord IN,Altitude IN,Ava Speed IN,
--Course IN, Ground OUT);- - - - -
CALL XY To"'Ard(Fl Id IN, New Coord IN,Loc Ard OUT);
New Time --New Time +M Dist7GroundT - -

END Time_At_Point; - -

C-8

C.6 Set Up Vector And Route Points

This routine creates tables of vector points and route points.

ROUTINE Set up Vector And Route Points;
PARAMETERS Fl Id IN, ~c Ard IN-;RoUTE POINTS OUT, VECTO!t POINTS OUT;
REFER TO GLOBAL - - - - - - -

R:oOTES 1N,
VECTOR PLANNED ACTIONS IN;

REFER TO SHARED LOcAL -
ACTIVE _PLANNED _ACTIONS IN;

DEFINE TABLES
VECTOR POINTS POINTS IN VECTOR YET TO BE MODELED

sequence
position x
position:J
position

ROUTE POINTS
am
position x
positio0
position

DEFINE VARIABLES
Fl Id

Sequence
Vee Point(2)
Rout Point(2)
Point Ard
Loc Ard

Sequence number of points
X position of point
Y position of point
AGGREGATE(position_x,position_l),

POINTS IN ROUTE YET TO BE MODELED
Along route distance
X position of point
Y position of point
AGGREGATE(position_x,position_l);

Identity of aircraft under,soina Trajectory
Estimation

Vector point sequence
Point in vector(x,y)
Point on route(x,y)
Along route distance of point
Position ard; ·

C-9

IF 'vector' IS IN ACTIVE PLANNED ACTIONS
TifEN
~PEAT FOR EACH VECTOR PLANNED ACTIONS RECORD

SELECT FIELDS vertei_coordtDate,vector_sequence_number
INTO Vee Point,Sequence
FROM VECToR PLANNED ACTION;

CALL XY To Ard(Fl Id IN, Vee Point IN,Point Ard OUT);
IF Point Ard GT LOc Ard - - - -
THEN
---yNSERT INTO VECTOR POINTS

(sequence • Sequence,
position • Vee Point);

ROUTE_POINTS • SELECT FIELDS alona_route_distance,coordinate
FROM ROUTES
WHERE ROUTES.along route distance GT Loc Ard AND

ROUTES.fl_id ~-Fl_Id"i" - - -
END Set_Up_Vector_And_Route_Points;

C-10

C.7 WIND INTERSECTION

This routine finds the first intersection with the wind cell
horizontial boundary and with the vertical boUDdary.

ROUTINE Wind Intersection
PARAMETERS Coordinate IN,Altitude IH,Courae IH,Graclieut IN,

X Intersect OUT, Y liiteraect Ott!; Z Iuteriict OUT; -
DEFINE VARIABL~ - - - -

Coordiuate(2) Point of intereat(:x,y)
Altitude Altitude of interest
Course Direction of track
Gradient Gradient at point
West WEST BOUNDARY of wind cell
East EAST BOUNDAR.Y of wind cell
North NORTH BOUNDARY of wind cell
South SOUTH BOUNDAR.Y of wind cell
Min Alt MiniaUII altitude of wind cell
Max-Alt Ma:d.JDWD altitude of willd cell
Dist 1 Distance to east or vest boundary
Dist-2 Distance to north or south boUDdary
X Value 1 X intersection on east or vest boundary
Y-Value-1 Y intersection on east or vest boundary
x-value-2 X intersection on north or south boUildary
Y-Value-2 Y intersection on north or south boUDdary
X-Intersect Firat intersection X value
Y Intersect Firat intersection y value
Z-Intersect Firat z intersection;

C-ll

CALL Determine Wind Cell(Coordinate IN, Altitude IN,
---west OUT,Eait OuT,North OUT , South OUT, -

Min Alt OUT, Max Alt OUT);#returna wind cell boundaries#
CII>OSE-CASE- - -

WHEN (Course LT 180 degrees) AND
---zeourse GTIO) THEN #find east.intersection#

Dist 1 •i[East~ordinate(l))/SIN(Course);
X Value 1 • East; -
Y-Value-1 • Coordinate(2) + Dist 1 * OOS(Course);

WHEN-(Course LT 360 degrees) AND - -
---r Course G~l80 degrees) THEN I find west inters#

Dist 1 • 1West - Coordinatifi))/SIN(Course);
X Value 1 • West; -
Y-Value-1 • Coordinate(2) +Diet 1 * OOS(Course);

CHOOSE CASE - - -
WHEN (Course GT 90 degrees) AND
---r Course LT:270 degrees)THEN I find south inters#

Dist 2 • TSouth - Coordinate(2))/ COS.(Course);
X Value 2 • Coordinate(!) + Dist 2-,r-SIN(Course);
Y-Value-2 • South; - -

WHEN-(Course GT 270) OR
---rcourse LT-gO degrees)THEN I find north intersec#

Dist 2 •-rNorth - Coordin&te(l))/COS(Course);
X Vaiue 2 • Coordinate(!) + Dist Iii SIN(Course);
Y-Value-2 • North; - -

IF (Dist 2 isunassigned) OR ((Dist 1 is assigned)
- AND (Mst 1 LT Dist 2))- -
THEN -- -

X_Intersect
Y Intersect

ELSE-

• X Value 1• - _,
• Y Value 1· - _,

--:K Intersect • X Value 2·
Y-Intersect • Y-Value-2! - _,

IF Gradient GT 0
THEN I climbing I
---z Intersection • Max Alt;
ELSE- -
---z Intersection • Min Alt;

END Wind_Intersection; -

C-12

C. 8 FIND NEXT ARD BREAK

This routine finds the along route distance (ard) and distance
associated with th~ first break point. A break point occurs at wind
boundaries, vector points, route nodes, and at a specified ard.

ROUTINE Find Next Ard Break;
PARAMETERS Fl Id 'IN, Goal Ard IN,W Ard IN, M Dist OUT,New Coord IN,

Boundary pt IN,Goal Point IN,ROUTE POINTS-INOUT:-- - -
VECTOR POIN~INOUT:"Loc ArdiN; -

DEFINE T.Aii.Es - -
VECTOR POIN1.'S POINTS IN VECTOR YET TO BE MODELED

sequence
position x
positionJ'
position

ROUTE POINTS
ard ·
position x
position:Y
position

DEFINE VARIABLES
Fl Id

Goal Ard
wArd
M-Dist
New Coord(2)
Boundary Pt
Goal Point
Loc Ard
M Ard
Sequence
Vee Point(2)
v Ard
R Ard
Coord Ard
Rout_Point(2)

Sequence number'of points
X position of point
Y position of point
AGGREGATE(position_x,position_y),

POINTS IN ROUTE YET TO BE MODELED.
Along route distance
X position of point
Y point position of point
AGGREGATE(position_x,position_y);

Identity of aircraft undergoin& Trajectory
Estimation

Along route distance of goal point
Along route distance of wind boundary
Distance to first break
Current point (x,y)
Wind boundary point
Goal point
Ard of current point
First, ard break
Vector point sequence
Vector point (x,y)
Ard to next vector point
Ard to next route point
Current ard
Point on route(x,y);

C-13

IF COUNT(VECTOR POINTS) GT 0
THEN I find first vector-pQint #
---sELECT FIELDS sequence,position

FROM VECTOR POINTS
INTO Sequence,Vec Point
WHERE VECTOR_POINTS.sequence ~

MIN(VECTOR POINTS.sequence);
---, find distance to next vector point #

CALL XY To Ard (Fl Id IN, Vee Point IN, V Ard OUT);
M Ard --MIN(Goal Ard,WArd,V-ARD);- _, -
COOOSE CASE - - - .

WHEN M _ Ard ~ V _ Ard THEN # distance vector point #
DELETE FROM VECTOR POINTS

WHERE VECTOR_POINTS.sequence ~ Sequence;
M Dist • DIST(New Coord,Vec Point};

WHEN-M_Ard ~ Goal_Ard THEN# dist to goal #
M Dist • DIST(New Coord,Goal Point);

OTHI!RWISE # M_Ard ~-W_Ard dist to wind cell boundary #
M Dist • DIST(New Coord,Boundary Pt); .

ElSE # find next rOUte point # -
----n-ELETE FROM ROUTE POINTS

WHERE ROUTE POINTS .ard LE Loc Ard;
SELECT FIELDS ard,position-- -

FROM ROUTE POINTS
INTO R Ard:Rout Point
WiiEiE ROUTE POINTS .ard !Q. MIN(ROUTE POINTS .ard);

find distance to next route point # -
M Ard • MIN(R Ard,Goal Ard,W Ard);
IF M_Ard ~ R:Ard - -
THEN
----nELETE FROM ROUTE POINTS

WHERE ROUTE_POlN'l'S.ard !Q. R_Ard;
CALL XY To Ard (Fl Id IN, New Coord IN, Coord Ard OUT);
ii'""'Dist -; M-Ard - CoordArd; - -- - -

~ Find_Next_DJ.stance_Break"i"

C-14

C.9 Time And Point At Altitude

This routine finds the speed and time associated with arrival at a
given altitude.

ROUTINE Time And Point At Altitude;
PARAMETERS FI Id-IN, Speed Type IN,Speed IHOUT,Goal Alt DJ,Grad IN,

coora INOtJ'r, '"Hme INOUT, Aititude INOUT,Hold-Fix IN,Erc Time
INOUT, Tran Speed IN, Tran Type IN; - - -

DEFINE TABLES- - - -
VECTOR POINTS POINTS IN VECTOR YET TO BE MODELED

sequence Sequence number of points
position x X position of point
position:Y Y position of point
position AGGREGATE(position_x,posit!~),

ROUTE POINTS POINTS IN ROUTE YET TO BE MOD
a~ Along route distance
position x X position of point
position:Y Y position of point
position · AGGREGATE(position_x,position_,);

DEFINE VARIABLES
Fl Id Identity of aircraft under.going Trajectory

Speed Type
Speed
Goal Alt
Grad
Coord(2)
Time
Altitude
Hold F.:l.x
EFC Time·
Tran_Speed
Tran Type
Course
Vee Point(2)
Rout_Point(2)
Loc Ard
Alt-Break
Boundary Point(2)
z Intersection

Estimation
Ias or mach
Speed in tas
End of altitude segmant
Gradient to be used for sea-ant
X,y modeled point
Time at point
Altitude at point
Holding fix
End of hold time
Transition speed
Climb or descent
Course at current pOsition
Point in vector(x,y)
Point on route(x,y)
Position ard
First altitude break
Wind cell intersection(x,y)
Altitude wind cell intersection;

C-15

CALL XY To Ard(Fl Id IN, Coord IN,Loc Ard OUT);
CALL Set ~ Vector AndRoute Points(Fl Id IN, Loc Ard IM,
-"ROUTE-POINTS OuT, VECTOR POIMTS OUT); - - -

#find-possible changes in direction#
REPEAT UNTIL Altitude ~ Goal Alt;

IF COUNT (VECTOR POINTS) Ni 0
THEN #find course from vector points#
--:5ELECT FIELDS position

FROM VECTOR POINTS
INTO Vee Point
WHERE VECTOR POINTS.sequence]Q

MIN(VECTO~ POINTS.sequenceJ;
Course-;-DIRECTDDN(Coord,Vec Point);

ELSE I find course from route,-.
---cALL XY To Ard(Fl Id IN, Coord IN,Loc Ard OUT);

DELETE FR.oii ROuTE:)oiNTS(R_P) - - -
WHERE R P.ard LE Loc Ard;

SELECT FIELDS position -
FROM ROUTE POINTS
INTO Rout Point
WiiERE ROuTE_POINTS .ard ~ MIN(ROUTE _POINTS .ard);

Course • DIRECTION(Coord,Rout Point);
CALL Wind Intersection(Coord IN,Altitude IN,Course
--IN, Gradient IN,Boundary Point OUT,Z Intersection OUT);
IF Tran_Type ~·"'"Climb' - - - -
THEN
---xlt Break • MIN(Z Intersection,Goal Alt);
ELSE- -- -
---xlt Break • MAX(Z Intersection,Goal Alt);
CALL Find Dist BreakrAlt Break IN, Boundary Point IM,
---course- IN' -ROUTE POiNTS INc5iiT J VECTOR POINTS nroUT ,Loc Ard

IN, Coord INOUT, -Hold Fix IN ,EFC Time IMOUT, Tran Speed·
IN,Speed Type IN,Spee~NOUT,Time INOUT,Altitude INOUT,Grad
IN); - -

~ Point_At_Time;

C-16

C.lO Find Dist Break

This routine is used to determine the first break, where a break
point occurs when a wind boundary is crossed, the goal altitude is
reached,a vector point is reached,or a route node is reached.·

ROUTINE Find Dist Break;
PARAMETERS Alt Break IN, Boundary Pt IN,Course IN,ROUTE POINTS

INOUT,VECTOR POINTSINOUT,Loc Ard IN,Coord INOUT, Hold Fix
IN,EFC Time INOUT,Tran Speed IN,Speed Type IN,Speed INOUT,
Time INOUT,Altitude INOUT,GradiNOUT;- -

DEFINE TABLES
VECTOR POINTS POINTS IN VECTOR YET TO BE MODELED

sequence
position x
positiony
position

ROUTE POINTS
ard
position_x
position_y
position

DEFINE VARIABLES
Alt Break
Boundary Pt(2)
Course -
Coord(2)
Hold Fix
EFC Time
Tran Speed
Speed Type
Speed-
Time
Altitude
Grad
Ground
M Dist
New Speed
Avi:Speed
Alt Time
A Dist
H-Dist
Avg Alt
Dir-To Hold
W Dist

Sequence number of points
X position of point
Y position of point
AGGREGATE(position x,position y),

POINTS IN ROUTE YET TO BE MODELED
Along route distance
X position of point
Y position of point
AGGREGATE(position_x,position_J);

First altitude break
Wind cell intersection(x,y)
Course at current position
X,y modeled point
Holding fix
End of hold time
Transition speed
las or mach
Speed in tas
Time at point
Altitude at point
Gradient for segment
Ground speed
Minimum distance
Speed at end of altitude segment
Average speed for segment
Time to change altitude
Distance required for altitude change
Distance to hold fix
Average altitude for transition
Direction to holding fix
Distance to wind boundary;

C-17

CALL New Speed For Transition(Speed Type IN,Tran Speed IN,
~ew Speed OUT,Coord IN,Alt Break-IN); - - -
Avg_Speed • (Speed + New_Speed)/2; -
Alt Time • (Alt Break- Altitude)/(Avg Speed * Grad * COS(Grad));
Av,CAlt • (Alt_Break + Altitude)/2; - -
CALL Speed To Ground(Coord IN, Avg Alt IN, Avg Speed IN,
--Course IN,-Ground OUT);- - - - -
A Dist • Alt Time * Ground;
W-Dist • DIST(Boundary Pt,Coord);
IF EFC Tiiii'e'NE 'none' -
THEN ,-may need to consider the holding fix I
--Dir To Hold • DIRECTION(Coom,Hold Fix);

IF Dir:To_Hold ~Course -
THEN I hold fix may be a break point #
~_Dist • DIST(Hold_Fix,Coord);
ELSE
~ Dist • 'none'· - ,

CHOOSE CASE
WHEN Hold_Fix ~Coord And EFC_Time GT Time THEN .
~ break point will be at alt break or at efc time I

CALL Break Pt In Hold(EFC Time IN,Alt Time IN,Time INOUT,
~titude INOUT,Ava_Speed IN,Grad IN,M_Dist OUT);

WHEN COUNT(VECTOR POINTS) NE 0 THEN I find distances I
-CALL Break Pt In Vector"'{VECTOI'POINTS INOUT,H Dist IN,

----w Dist lN,Coorc:t IN,Avg Speed IN,Grad IN,Ground IN,A Dist
IN,M Dist OUT);- - - - - -

OTHERWISE 1 break:Is along route I
CALL Break Pt On Route(ROUTE POINTS INOUT,H Dist IN,
----w Dist IN,Cooid IN,Avg Speed IN,Grad IN,GroundlN,A Dist

IN,M Dist OUT); - - -. - - -
CALL New Speed For ~nsition(Speed Type IN,Tran Speed IN,
--"New Speed OUT,Coord IN,Altitude lN); - - -
Avg Speed • (New Speed +speed)/2; -
CALL Speed_To_Ground(Coord IN,Altitude IN,Avg_Speed IN, Course

IN, Ground OUT);
Speea • New Speed;
IF M Dist GT 0
THEN-# compute new point I
---cootd • Coord+ M Dist * (SIN(Course),COS(Course));

Altitude • Altitude + M Dist * COS(GRAD-y-* Grad * Avg_Speed/
Ground; - -

Time • Time + M_Dist/Ground;
END Find_Dist_Break;

C-18

C.ll New Speed For Transition

This routine calculates the speed in tas at an altitude given
the speed in ias or mach.

ROUTINE New Speed For Transition;
PARAMETERS Speed Type-IN,Tran Speed IN,New Speed OUT,Coord IN,

lltltude IN; - - - - - - -
DEFINE VARIABLES

Speed Type
Tran_Speed
New Speed
eoord(2)
Altitude
Dir Wind
SpeC Wind
Temp

I begin I

Ias or mach
Transition speed
Tran-speed converted
(x,y) coordinate
Altitude at coordinate
Wind direction
Wind speed
Temperature;

to tas at altitude

CALL Wind Field (Coord IN, Altitude IN, Spd_Wind OUT, Dir Wind
---ouT, Temp OUT);
IF Speed_ Type _!g 'Ias '
THEN
--cALL Ias To Tas(Tran Speed IN, Altitude _!!, Teap IN, New_Speed

OUT);- - - -
ELSE
-cALL Mach To Tas (Tran Speed IN, Temp IN, New Speed OUT);
~ New_Speed_For_Transition"i" - - - -

C-19

C.l2 Break Pt In Hold

This routine calculates the break point when the aircraft is in
hold. This break point can be the expect further clearance time or
the end of the altitude transition.

ROUTINE Break Pt In Hold;
PARAMETERS EFC_Time-IN,Alt_Time IN,Time

Avg_Speed IN,Grad IN,M_Dist INOUT;
INOUT, Altitude INOUT,

DEFINE VARIABLES
EFC Time
Alt Time
Time
Altitude
Avg_Speed
Grad
M Dist
M-Time

I begin I

Expect further clearance
Time to Change altitude
New time
Segment altitude
Average speed
Gradient from segment
Minimum distance
Minimum time;

time

M Dist • 0; #no along route distance travelled in hold I
M-Time • MIN(EFC Time,Alt Time + Time);
IF EFC Time ~ M -Time -
THEN lhold has been completed I
--EFC Time • ' none ' • - ' Altitude • Grad * Avg Speed *COS(Grad)* M_time +Altitude;
ELSE -
---xltitude • Alt Break;
Time • M Time; -

END Break_Pt_In_Hold;

C-20

C.l3 Break Pt In Vector

This routine finds the distance to the first break point when the
aircraft is in a vector. This point may be at a turn in the vector,
a wind boundary,a hold fix, or at the end of the altitude transition.

ROUTINE Break Pt In Vector;
PARAMETERS VECTOR POINTS INOUT,H Dist IN,W Dist IN, Coord IN,

Av~t._Speed IN,Grad IN,Ground IN,A_Dist IN,M_Dist 2!:!!,; -
DEFINE TABLES

VECTOR POINTS POINTS IN VECTOR YET TO. BE MODELED
sequence
position x
position:J
position

DEFINE VARIABLES
H Dist
W Dist
coord(2)
Av~t._Speed
Grad
Ground
A Dist
M Dist
v-Dist
Vee Point

II begin logic II

Sequence number of points
X position of point
Y position of point
AGGREGATE(position _ x, position _y);

Distance to hold fix
Distance. to wind boundary
Current coord(x,y)
Average speed
Segment gradient
Ground speed
Distance to altitude break
Minimum distance
Distance to vector point
Vector point;

SELECT FIELDS position
FROM VECTOR POINTS(V P)
INTO Vee Point -
WHERE V_P.sequence ~ MIN(V_P.sequence);

V Dist • DIST(Vec Point,Coord);
iF H_Dist ~ 'none'
THEN II exclude H dist in search for break distance I
~ Dist • MIN(V Dist,W Dist,A Dist);
ELSE- - - - -
--:M Dist • MIN(V Dist,W Dist,H Dist,A Dlst);
IF M-Dist Ef'IVDist - - -
THEN- .=:1. -

--DELETE FROM VECTOR POINTS
WHERE VECTOR_POINTS.position ~ Vec_Point;

END Break_Pt_In_Vector;

C-21

C.l4 Break Pt On Route

This routine finds the distance to the first break point when the
aircraft's path is along route. The point can be the next route
node, the holding fix, a wind boundary, or the end of the altitude
transition.

ROUTINE Break Pt On Route;
PARAMETERS ROUTE-POlNTS INOUT,H Dist IN,W Dist IN, Coord IN,

Avg_Speed IN,Grad IN,Ground IN,A_Dist IN,M_DI'it .Q!!!_; . -
DEFINE TABLES

ROUTE POINTS POINTS IN VECTOR YET TO BE MODELED
ard
position_ :x
position_y
position

DEFINE VARIABLES
H Dist
W Dist
coord(2)
Avg_Speed
Grad
Ground
A Dist
M Dist
R-Dist
ROut Pt

I begin-#

Along route distance
X position of point
Y position of point
AGGREGATE(position_:x,position_y);

Distance to hold fix
Distance to wind boundary
Current coord(:x,y)
Average speed
Segment gradient
Ground speed
Distance to altitude break
Minimum distance
Distance to route point
Next point on route;

SELECT FIELDS position
FROM ROUTE POINTS(R P)
INTO Rout Pt -
WifERE R_P7ard _!q MIN(R_P.ard);

R Dist • DIST(Rout Pt,Coord);
IF H_Dist]g 'none7

T·HEN I exclude H dist in search for brealt: distance I
--M Dist • MIN(R Dist ,W Dist ,A Dist);
ELSE- ----
~ Dist • MIN(R Dist,W Dist,H Dist,A Dist);
IF M=Dist ~ R_Dist - - -
THEN
---,;ELETE FROM ROUTE POINTS

WHERE ROUTE_POINTS.position !Q Rout_Point;
~ Break_Pt_On_Route;

c-22

C.l5 Hold During Time Phase

Given a time, this routine decides how much of the delta time is
spent in the hold.

ROUTINE Hold During Time Phase;
PARAMETERS Fl Id IN: Del-Time INOUT,Coord INOUT,Speed INOUT,EFC Time

INOUT, Ho1a FixiN,Aftitude IN,STATE IN; -
REFER TO GLOBAL

AIRCRAFT MAX ENDURANCE SPEED IN;
REFER TO SHARED-LOCAL - -

AGD _VECTOR IN;
DEFINE TABLES

STATE
position x
positiotCy
tas
ias
mach
z
time
ard
temp
position

DEFINE VARIABLES
Fl Id

Del Time
Coord(2)
Speed
EFC Time
Hold Fix
Altitude
Grad
Ace Time
ME-Speed
Avg=Speed

STATE MODELED TO
X position
Y position
Tas
las
Mach
Altitude
Time
Along route distance
Temperature
AGGREGATE(position_x,position_y);

Identity of aircraft for Trajectory
Estimation

Time to be accounted for
(x,y) position
Speed at coord
Expect further clearence time
Holding fix
Altitude at coordinate
Gradient
Acceleration time
Max endurance speed
Average speed;

C-23

Grad • 0;
Acc_Time • 0;
SELECT FIELDS speed

FROM AiRCRAFT MAX ENDURANCE SPEEDS(A M E S)
"iifff M E Speed - - - - -
WHERE I M E S.source is best available and Altitude

is in Ii E s altitude range;
IF STATE.speed -GT M E Speed
THEN #slow to endurance speed #
~c Time • (M E Speed - STATE.speed)/ AGD VECTOR.acceleration ;

Ace-Time • Miif<'Del Time,.Acc Time); -
Del-Time • MAX(O,Del Time --.Ace Time);
Ava=speed • STATE.speed + AGD_VEcTOR.acceleration *

Ace Time/2; ·
Speed --STATE.speed + AGD VECTOR.acceleration * .Ace Time;
CALL Point At Time(Fl Id IN, .Ace Time IN,Grad IN,Ava...Speed IN
--xititude IN, Coord YNouT}; - - - -

IF Del Time GT 0
THEN #-aircraft flies in holding pattern #
---coord • Hold Fix;

IF((STATE. time +.Ace Time + Del Time) LT EFC_Time) ~
- (Del Time GT 0) - -
THEN I aircraft remains in hold #
--Del Time • 0;
ELSE ,-model from end of hold #

EFC_Time • 'none';
Del Time • STATE.time +Ace Time+ Del Time- EFC Time;

END Hold_During_Time_Phase; - - -

C-24

C.l6 Point At Time

This routine calculates the aircraft position at a given tiae. It
assumes that the gradient is zero and holds have already been
accounted for.

ROUTINE Point At Time;
PARAMETERS Fl-Id-IN, Elapsed Time IN,Gradient IN,Speed IN,

Altitude IN, New Coord INOUT; - · - -
DEFINE TABL~ -

VECTOR POINTS POINTS IN VECTOR YET TO BE MODELED
sequence
position x
positiony
position

ROUTE POINTS
ard
position x
position-y
position-

DEFINE VARIABLFS
Elapsed Time
Gradient
Speed
Altitude
Course
New Coord(2)
Ground
M Diet
T-Dist
W-Dist
Sequence
Vee Point(2)
Rout Point(2)
Loc Ard
Boundary_Point(2)
Z Intersection

Sequence number of points
X position of point
Y position of point
AGGREGATE(position_x,posit!~),

POINTS IN ROUTE YET TO BE MOD ·
Along route distance
X position of point
Y position of point
AGGREGATE(position_x,position_J);

Time to Be Accounted for
Gradient at current position
Speed to be used
Altitude at position
Course at current position
(x,y)Coordinate at elapsed tt.e
Ground speed
Minimum distance
Distance for time
Distance to wind boundary
Vector point sequence
Point in vector(x,y)
Point on route(x,y)
Position ard
Wind cell intersection(x,y)
Altitude wind cell intersection;

C-25

CALL XY To Ard(Fl Id IN, New Coord IN,Loc Ard OUT);
CALL Set uP Vector AndRoute-Points{Fl Id-IN, LOC Ard IN,
---p:OUTE-POlNTS OUT, vECTOR POINTS OUT); - -

llf.~nd-possible changes iii directionll
REPEAT UNTIL Elapsed Time LE 0

IF COUNT (VECTOR POINTS)NE 0
THEN #find course from vector points#
--:5ELECT FIELDS position

FROM VECTOR POINTS
INTO Vee Point
WiiERE VECTOR_ POINTS. sequence _m

MIN(VECTOR POINTS.sequenceJ;
Course-;-DIRECTION(New Coord,Vec Point);

ELSE # find course from route # -
"-"-DELETE FROM ROUTE POINTS

WHERE ROUTE POINTS .ard LE Loc Ard;
SELECT FIELDS position - -

FROM ROUTE POINTS
INTO Rout Point .
WHERE ROuTE_POINTS .ard ~ MIN(ROUTE_POINTS .ard);

Course • DIRECTION(New Coord,Rout Point);
CALL Speed To Ground (New-Coord IN,Altitude IN,Speed IN,
--Course IN,Ground OUT);- - - -
CALL Wind Intersection(New Coord IN,Altitude IN,Course
--IN, Gradient IN,Boundaey PointOUT,Z Intersection OUT);
T Dist • Ground *Elapsed Time; - - -
W-Dist • DIST(New Coord,BOundary Point);
CALL Find Next Distance Break(T Dist IN,W Dist IN,M Dist
--OUT ,ROUTE POINTS INOUT, VECTOR POINTS lNOUT ,Loc Ard IN);
New Coord • New Coord+ M Dist * \SIN(Course),COS(CourseJ);
CA.iL XY To Ard(Fl Id IN, New Coord IN,Loc Ard OUT);
Elapsed-Tiiiie • ElapsedTime = M Dist7Grouid; -

END Point_At_Time; - -

C-26

C.l7 Find Next Distance Break

This routine finds the distance to the next break point. The break
point can be a change in direction, wind, or a specified distance.

ROUTINE Find Next Distance Break;
PARAMETERS T-Dist-IN,W Dist IN, M Dist OUT,ROUTE POINTS INOUT,

VECTOR POINTS INoUT:Loc Aid INi - -
DEFINE TABLES - -

VECTOR POINTS
sequence
position x
positiony
position

ROUTE POINTS aro
position x
position:y
position

DEFINE VARIABLES
T Dlst
W-Dist
~cArd
M Dist
Sequence
Vee Point(2)
V Dist
R Dist
Point Ard
Rout_Point(2)

POINTS IN VECTOR YET TO BE MODELED
Sequence number of points
X position of point
Y position of point
AGGREGATE(position_x,position_y),

POINTS IN ROUTE YET TO BE MODELED
Along route distance
X position of point
Y position of point
AGGREGAT.E(position_x,position_y);

Distance to achieve time
Distance to wind boundary
Current coordinates ard
Distance to first break
Vector point sequence
Vector point (x,y)
Distance to next vector point
Distance to next route point
Along route distance of point
Point on route(x,y);

C-27

IF COUNT(VECTOR POINTS) GT 0
THEN I find first vector:Point I
---sELECT FIELDS sequence,position

FROM VECTOR POINTS
INTO Sequence,Vec Point
WHERE VECTOR_POINTS.sequence ~

MIN(VECTOR POINTS.sequence);
I find distance-to next vector point I
V Dist • DIST(New Coord,Vec Point);
M-Dist • MIN(V Dist,T Dist,W Dist);
IF M_Dist ~· V_Dist - -
THEN
---nELETE FROM VECTOR POINTS

WHERE VECTOR POINl~.sequence ~ Sequnce;
ELSE I find next rout; point I

DELETE FROM ROUTE POINTS
WHERE ROUTE POlNT.ard LE Loc Ard;

SELECT FIELDS ard,position- -
FROM ROUTE POINTS
INTO Point-Ard,Rout Point
WHERE ROUTi_POINTS .ard ~ MIN(ROUTE_POINTS.ard);

I find distance to next route point I
R Dist • DIST(New Coord,Rout Point);
M-Dist • MIN(R Dist,T Dist,W-Dist);
IFM Dist EQ R-Dist - -
TiiEN- - -
--n-ELETE FROM ROUTE POINTS

WHERE ROUTE_POINTS.ard ~ Point_Ard;
~ Find_Next_Distance_Break;

C-28

C.l8 Hold During Ard Phase

This routine is used to account for the time spent in a hold.

ROUTINE Hold During Ard Phase;
PARAMETERS Fl Id IN: EFC Time INOUT,Hold Fix IN,Goal Pt IN,

Acceleration !NoUT, Coord INOUT, Time 'INoUTT - -
REFER TO SHARED LOCAL

AGD VECTOR IN;
DEFINE-VARIABLES

Fl Id

EFC Time
Hold Fix(2)
Goal-Pt(2)
Acceieration
Coord(2)
Time
H F Ard
Goai Ard

#begin-,

Identity of aircraft undergoing Trajectory
Estimation

End of hold time
Hold fix
(x,y) Goal of this phase
Accleration
(x,y) modeled position
Time at COOrd
Along route distance of hold fix
Along route distance of goal point;

CALL XY To Ard(Fl Id IN, Hold Fix IN,H F Ard OUT);
CALL XY-To-Ard (Fl !diN, Goal Pt IN,GOal Ard OUT);
'IF"Goal-Ard GTH F-Ard- - - - -
THEN I start-modeling from end of hold I
~ime • EFC Time;

EFC Time •- 'none' ;
Coord • Hold Fix;

ELSE -
---xcceleration • AGD VECTOR.acceleration;
~ Hold_During_Ard_Phase;

C-29

C.l9 Find Next Phase

This routine determines what the next phase in an altitude action
should be.

c-30

ROUTINE Find_Next_Phase;
PARAMETERS Fl Id IN, Loc Pa Id IN,STATE IN,Type OUT,Avg Speed OUT,

Goal Alt OUT,Speed Type OUT,Grad OUT,Del TimeOOT,Goi'l Speea
INOuT, Goal Pt OUT:Tran Type OUT,Tran Speed OUT; -

DEFINE TABLES - - - - - -
STATE STATE MODELED TO

position_x X position
position_y Y position
tas Tas
ias
mach
z
time
ard
temp
position

CRUISE
speed
alt

REST TABLE
rest x
rest y
rest-alt
qualifier
rest _Point

DEFINE VARIABLES
Fl Id

Loc Pa Id
Tariet:Alt
Tran Type
Goal-Speed
Goal-Pt(2)
EFC Time
Tran Speed
Resume Time
las
Del Time
Goal Alt
Speed_ Type
Grad
Avg_Speed
Type
Rest Ard

Ias
Mach
Altitude
Time
Alona route distance
Temperature
AGGREGATE(position_x,position_,),

CRUISE DATA
Approved default cruise speed
Approved default cruise speed ,

RESTRICTION TABLE
Restriction point x value
Restriction point y value
Restriction altitude
Restriction qualifier at at/above at/below
AGGREGATE(rest_ x, rest _y);

Identity of aircraft for Trajectory
Estimation

Planned action id
Target altitude
Transition type climb or descent
Speed goal for this segment
Restriction point(x,y)
Expect further clearence tiae
Transition speed
Resume climb time
Indicated airspeed
Time delta
Altitude goal
Constant tas or ias or mach
Gradient for segment
Average speed
Type of phase
Along route distance of restriction point;

C-31

Grad • 0;
CALL Altitude lnformation(Fl Id IN, Loc Pa Id IN,Target Alt OUT,
~an Type OUT, REST TABLEOUT,CRUISE-OUT,Resume Time-OUT,-

Rest-Ard OUT,EFC Time OUT,STATE IN);
IF Tran Type ~ 'ascent' - -
THEN #aircraft may need to accelerate to climb speed#
---cALL Nominal Climb Speed(Goal Speed OUT,STATE IN);
CHOOSECASE - - - - -

WHEN (STATE.z ,!2 Target_Alt) AND (Resume_Tiae NE 'none')
AND (STATE. time LT Resume Time) THEN
Type • 'time'; - - -
Del_Time • Resume_Time - STATE.time;
Ava_Speed • STATE.tas;

WHEN (STATE.z ,!2 lOOOO)AND (Tran Type ,!2 'descent') AND
---rsTATE.ias GT 250 knotS)THEN 1 slow to 250knots# -

CALL las To Tas(2 50 IN, 10000 IN, STATE. temp IN,
---coal Speed OUT); - - -
CALL Find Acceleration Time(Goal Speed IN,Avg Speed
----out, Dei Time OUT, STATE IN); - - -
Type • 'time'; - -

!!!,!!! (Tran_Type !Q. 'ascent')AND(STATE.z LT Target_Alt)
AND (EFC Time~ 'none') AND
(STATE.tas LT Goal Speed)THEN
#accelerate1to climb spee~
CALL Find Acceleration Time(Goal Speed IN,Avg Speed OUT,
---ne1 Time OUT, STATE IN); - - - -
Type • -,time-r; -

WHEN (REST TABLE. rest alt !Q. STATE. z) AND (Tran Type EQ
--'ascentT)AND (Rest Ard GT STATE.ard)AND -

((REST_TABLE.qualif'Ier ~'at') OR (dSf_TABLE.qualifier
~ 'a 1; or below')) THEN
Type • 'ard';
Goal_Pt • REST_TABLE.rest_point;
~ (REST_TABLE.rest_alt _!l STATE.z) ~ (Tran_Type
~ 'descent') AND(Rest_Ard ~ STATE.ard)THEN;
Type • 'ard'; ·
Goal_Pt • REST_TABLE.rest_point;

OTHERWISE
CALL Goal Altitude(Fl IC1 IN, REST TABLE IN,Tran Type IN,
~sume-Time IN,CRUISE.alt IN,Target Alt IN,GOal AltOUT

,Grad OUT,Speed Type OUT,Loc Pa Id IN,STATE IN,-Type-
OUT,Tran Speed OUT); - - - - -

END Find_Nex"Qhase;- -

c-32

C.20 Altitude Information

This routine is used to set up CRUISE and REST_TABLE and to fetch
information about the specified altitude action.

C-33

ROUTINE Altitude Information;
PARAMETERS Fl Id-IN, Loc Pa Id IN,Target Alt OUT,Tran Type OUT,

REST . TABLE OUT, CRUISE OUT, Resume Time OUT, Rest A'id OUT, EFC Time
OUT,STATE I~ - - - - - -

REFERTO GLOBAL
ALTITUDE CHANGE PLANNED ACTIONS IN,
ALTITUDE-RESTRICIONS PARAMETERS IN,
HOLD PLANNED ACTIONS-IN, -
FLIGHT _PLANS-IN, -
FLIGHT ID ASSOCIATIONS IN;

REFER TO S= LOCAL -
ACTIVE- ED_ ACTIONS IN;

DEFINE TABLES
STATE

position_x
position_y
tas
ias
mach
z
time
ani
temp
position

CRUISE
speed
alt

REST TABLE
rest x
rest=y
rest alt
qualifier
rest _POint

DEFINE VARIABLES
Fl Id

Loc Pa Id
Target=Alt
Tran Type
Flight_Name
EFC Time
Resume Time
Rest Ard

STATE MODELED TO
X position
Y position
Tas
I as
Mach
Altitude
Time
Along route distance
Temperature
AGGREGATE(position x,position y)

CRUISE DATA - -
Approved default cruise speed
Approved default cruise altitude,

RESTRICTION TABLE
Restriction point x value
Restriction point y value
Restriction altitude
Restriction qualifier at at/above at/below
AGGREGATE(rest_x,rest_y);

Identity of aircraft undergoing Trajectory
Estimation

Planned action id
Target altitude
Transition type climb or descent
Flight name
Expect further clearence time
Resume climb time
Along route distance of restriction point;

C-34

I find cruise speed and altitude I
SELECT FIELDS flight noe

INTO Flight Name -
FROM FLIGHT-ID ASSOCIATIONS -- --WHERE FLIGHT ID ASSOCIATIONS.fl id ~ Fl Id;

CRUISE • SELECT-FIELDS approved true airspeed,
approved cruise altitude - -
FROM FLIGHT PLANS
WIDRE FLIGHT_PLANS.flight_name]Q Flight_Name;

#find target altitude #
SELECT FIELDS target altitude,transition type,resume cliab time

INTO Target Alt,Tran Type,Resume Time- -· -
FROM ALTITuDE CHANGE-PLANNED ACTIONS(A C P A)
WiiEiE: A_C_P_A:-pa..._id ~ Loc_Pa_Id; ---

IF Loc Pa Id IS IN ALTITUDE RESTRICTIONS PARAMETERs. pa id
THEN #find restriction alitude# - -

REST_TABLE • SELECT FIELDS rest_pt,rest_z,rest_qualifier
FROM ALTITUDE RESTRICTIONS PARAMETERS
WiiEiE ALTITUDE RESTRICTIONS PARAMETERS.pa id ,!q Lqe Pa Id;

CALL XY To Ard(Fl-Id IN, REST TABLE.point IN-;Rest Ard OUT);
EFC"Tiiiie --'none'· - - - - - --- ' IF 'hold' IS IN ACTIVE PLANNED ACTIONS.pa type
-SELECT FIELDS efc time - -

FROM HOLD PLANNED ACTIONS(B P A)
INTO EFC Time - - -
WHiiE B P A.pa id IS IN ACTIVE PLANNED ACTIONS.pa id;

IF STATE. time GE EFC Time - - -
THEN
--:EFC Time • 'none'·

. - '
~ Set_Up_Altitude_Information;

c-35

C.21 Find Acceleration Time

This routine determines if a deceleration or an acceleration is
required, determines the time neccesary to perform the speed change,
and determines the average speed during the acceleration.

ROUTINE Find Acceleration Time;
PARAMETERS GOal_Speed ~,Avg_Speed OUT,Time .Q!!:f,STATE IN;
REFER TO SHARED LOCAL

AIRCRAFT ACCELERATION IN,
AIRCRAFT-DECELERATION IN;

DEFINE TABLES -
STATE STATE MODELED TO

position x X position
positio~y Y position
tas Tas
ias las
mach Mach
z Altitude
time Time
ard Along route distance
temp Temperature
position AGGREGATE(position_x,position_y);

DEFINE VARIABLES
Goal Speed
Loc Ace

Goal for this phase of pa
Acceleration set in this routine

Time Time to accelerate
Avg Speed

1 begiii 1
Average speed for acceleration;

IF STATE.tas GT Goal Speed
THEN #slow to!ioal speed#
---sELECT FIELDS deceleration

FROM AIRCRAFT DECELERATION (A_D)
iNTO Loc Ac c
WHERE A D.source is the best available AND

STATE.z is in appropiate range;
ELSE #accelerate to goal speed#

SELECT FIELDS acceleration
FROM AIRCRAFT ACCELERATION(A A)
INTO Loc Ace - -
WHERE A i.source is the best available AND

STATE.z is in appropiate range;
Avg_Speed • (STATE.speed + Goal_Speed)/2;
Time = (Goal Speed - STATE.speed)/Loc Ace;

END Find_Acceleration_Time; -

C-36

c.22 Goal Altitude

This routine establishes the next major goal for the altitude
transition. Then it calls the routines that detetaine the gradient
to be used.

ROUTINE Goal Altitude;
PARAMETERS Fl-Id IN, REST TABLE IN;Iran Type IN,Beaume Tiae IN,

Cruise Alt-IN,Target Alt IN,Goal Alt OUT,Grad OUT,Speed Type
OUT,Loc Pa Icf IN, STATE IN,Type OUT,Iran Speed OUT; -

DEFINE TABLES- - - - - -
STATE STATE MODELED TO

position x
position:J
tas
ias
mach
z
time
ard
temp
position

REST TABLE
rest x
rest_y
rest alt
qualifier
rest_point

DEFINE VARIABLES
Fl Id

Tran Type
Resuie Time
Cruise-Alt
Target:Alt
Goal Alt.
Grad-
Speed Type
Loc PaId
Type -
Tran_Speed

X position
Y position
Tas
las
Mach
Altitude

. Tille
Along route distance
Temperature
AGGR.EGATE(poaition_x,poaition_y),

RESTRICTION TABLE
Restriction point x value
Restriction point y value
Restriction altitude
Restriction qualifier at at/above at/below
AGGREGAXE(reat_x,reat_y);

Identity of aircraft for Trajectory
Estimation

Trans! tion type
Resuae . climb tiae
Cruise altitude
Target Altitude
Goal altitude
Segment gradient
las or mach
Planned action id
Phase type
Transition speed;

C-37

Goal Alt • Target Alt;#target altitude is the default goal#
IF COUNT(REST TABLE) GT 0 \
~HEN I find restrictions I
---yF(Tran Type EQ 'descent') AND (REST TABLE.rest alt LT

- STATE.z) - -- - - -
THEN #restriction altitude is always at or above target alt#
---,therefore goal alt • restriction alt#

Goal Alt • REST TABLE.rest alt;
ELSE - - -

IF(Tran_Type ~ 'ascent') ~(REST_TABLE.rest_alt GT
STATE.z)

THEN #restriction alitude is always at or below target I
---,altitude therefore goal alt is restriction alt#

Goal Alt • REST TABLE.rest alt;
IF (Resume Time NE 'nullT) AND (STATE. time GE Resume Time)
TDN -- -- --
~al Alt • Cruise Al t;
IF (Tran_Type ~ 'descent') AND (Goal_Alt g 10000) AND

(STATE.z GT 10000) .
THEN #must level off at 10000 to slow down to 250 kias#
~al Alt • 10000;
IF (Tran_Type ~ 'descent')
THEN
---cALL Descent Phase(Fl Id IN, Goal Alt INOUT,REST TABLE IN,Grad

OUT, Speed_Type OUT,Loc_Pa_Id IN,Tran Speed OUT,STATEIN);
ELSE
-cALL Ascent Phase(Fl ld IN, Goal Alt INOUT, Grad OUT,

--Speed Type OUT, Tran Speed OUT,STATE IN); -
Type • 'altitude'; - - -

END Goal_Altitude;

C-38

C.23 Descent Phase

This routine is used in determining the gradient and its duration
for a descent.

ROUTINE Descent Phase;
PARAMETERS Fl Id IN, Goal Al t INOUT, REST TABLE IN, Grad OUT,

Speed Type-OUT-;-Loc Pa-Id IN,Tran Speea OUT,siD'E IN; -
REFER TO-GLOBAL - - -

NOMINAL DESCENT SPEEDS IN,
DESCENT:MACH_TO:GRADIENTIN,
DESCENT !AS TO GRADIENT IN;

REFER TO S'ifARED LOcAL -
ACTIVE_PLANNED_ACTIONS !!•

DEFINE TABLES
STATE STATE MODELED TO

position_:x:
position_y
tas
ias
mach
z
time
ard
temp
position

DESCENT GRADIENT
grad-
end alt
gradient_ type

REST TABLE
rest :x:
rest_y
rest alt
qualifier
rest point

DEFINE VARIABLES
Fl Id

Goal Alt
Nom Ias
End Alt
Grad
Loc Pa Id
Tran Alt

X position
Y position
Tas
las
Mach
Altitude
Time
Along route distance
Temperature
AGGREGATE(position_:x:,position_y);

DESCENT GRADIENT DATA
Gradient
End altitude
Nominal or non-nominal,

RESTRICTION TABLE
Restriction point :x: value
Restriction point y ~alue
Restriction altitude
Restriction qualifiet at at/above at/below
AGGREGATE(rest_:x:,rest_y);

Identity of aircraft for Trajectory
Estimation

Goal altitude
Nominal descent ias
End of the linear segment
Gradient
Planned action id
Altitude to transition from ias to mach;

C-39

SELECT FIELDS ias #find nominal descent ias#
FROM NOMINAL DESCENT SPEEDS (N D S)
INTO Nom las- - --
WHERE N D S.source is equal to best available;

CALL Mach las Switchover(STATE.mach IN, Nom las IN, Tran_Alt OUT);
IF""STATE.z GT-Tran Alt - - -
THEN #limit:fs at or above tran alt ,find mach gradients #
---c;oal Alt • MAX(Goal Alt, TranAlt);

DESCENT GRADIENT • SELECT FIELDS gradient,end alt,gradient type
FROM-DESCENT MACH TO GBADIENT(D M T G) - -
WHERE(D M T G.source-is equal to best available)AND

(D M-T-G:beg alt GE STATE.z)AND (D M T G.end alt LT
STATE.z) AND-(D_M_T_G.speed.~ STATE:-ach); - -

Speed_Type • 'mach';
Tran Speed • STATE.mach;

ELSE #select gradients associated with ias speed#
--:DESCENT GRADIENT • SELECT FIELDS gradient,end alt,gradient type

FROM-DESCENT lAS TO GRADIENT(» I T G) - -
Wii'ERE(D s T G.source is equal to-best available) AND

(D l-T-G7beg alt GE STATE.z)AND (D I T G.end a~LT
STATE.Z)~ tD_I_T_G.speed ~ STATE.Ias); - -

Speed_Type • 'ias';
Tran Speed • STATE.ias;

#determine whether to use nominal or minimum gradient#
CALL Min Or Nominal Grad(Fl Id IN, DESCENT GRADIENT IN, Grad OUT,
~d .Alt ouT,REST-TABLE IN,LocPa Id IN,STATE IN);-
Goal Ait • MAX(Goal-Alt,EndAlt)"i" - - -
#altitude where gradient might change#

END Descent_Phase;

C-40

C.24 Min Or Nominal Grad

This routine is used to determine the altitude to switch from a
minimum to a nominal gradient.

ROUTINE Min Or Nominal Grad;
PARAMETERS Fl ld IN, DESCENT GRADIENT IN,Grad OUT,End Alt OUT,

REST TABLE-IN,--r.oc Pa Id IN,STATE IN; - - -
DEFINE TABLES- - - -

STATE STATE MODELED TO
positio~x X position
position _y Y position
tas Tas
ias las
mach Mach
z Altitude
time Time
ard Along route distance
temp Temperature
position AGGREGATE(position_x,position_y)

DESCENT . GRADIENT DESCENT GRADIENT DATA
grad- Gradient
end alt End altitude
gradient_ type Nominal or non-nominal

REST TABLE RESTRICTION TABLE
rest x
rest_y
rest alt
qualifier
rest _point

DEFINE VARIABLES
Fl fd

Grad
End Alt
Min Grad
Min-End Alt
Dist Rest Pt

· Interim AI t
Loc PaId
Ground-
Course
Numerator

Restriction point x value
Restriction point y value
Restriction altitude
Restriction qualifier at at/above at/below
AGGREGATE(rest_x,rest_y);

Identity of aircraft for Trajectory
Estimation

Gradient for this segment
Altitude end of linear descent segment
Minimum gradient
End of segment associated with min grad
Distance to restriction point
Altitude to change from lllin to nom. grad
Planned action id
Ground speed
Course direction
Temperary used in computation;

C-41

SELECT FIELDS gradient,end alt I select nominal gradient#
FROM DESCENT GRADIENT -
INTO Grad,End Alt
WHERE DESCENT-GRADIENT. gradient type ~ 'nominal' ;

IF (COUNT(REST TABLE) ~ 1) AND -
- (STATE.z GT-REST TABLE.reS'talt) AND (Loc Pa Id IS IN

ACTIVE PLANNED ACTIONS.pa id) --- - -
THEN I must decide between minimum and nominal gradient I
---,determines min grad and end altitude#

SELECT FIELDS grad,end alt
FROM DESCENT GRADIENT
INTO Min Grad ,Min End Alt
WiiFiE DESCENT_GRADIENT.grad ~ ~(DESCENT_GRADIENT.grad);

CALL Find Distance To Point(Fl Id IN, REST TABLE.rest point
--IN, Dist Rest Pt OUT,STATE.position IN,STATE.time IN,STATE.z

IN, STATE. speed IN); - -
IF Dist Rest Pt GTO
THEN # calculate-altitude to switch from min to nominal grad I
---course • DIRECTION(STATE.position,REST_TABLE.rest~oint);

CALL Speed To Ground(STATE.position IN,STATE.z IN,Course IN,
--STATE.tas IN,Ground OUT); - - -
Numerator • Dist Rest Pt * Min Grad * Grad * STATE.tas/

Ground - STATE:-z * Grad + Min Grad * REST TABLE.rest alt;
Interim Alt • Numerator I (Min Grad -Grad);- -
IF Interim Alt LT STATE.z -
THEN #gradient for current segment should be min grad #
~rad • Min Grad;

End Alt • MAx (Min_End_Alt,Interim_Alt);
END Min_Or_Nominal_Grad;

c-42

C.25 Find Distance To Point

This routine is used to find the distance between two points.

ROUTINE Find Distance To Point;
PARAMETERS Fl Id IN, -Goal Pt IN,Dist Pt OUT,Coord IN,Time

IN,Altitude IN-;8peed IN; - - -- --
REF'ffi." TO GLOBAL- -

AIRCRAFT MAX ENDURANCE SPEED IN,
HOLD PLANNED-ACTIONS IN,
VECTOR PLANNED ACTIONSIN;

REFER TO SHARED LOCAL -
ACTIVE PLANNED ACTIONS IN,
AGD _VECTOR IN;- -

DEFINE TABLES
VECTOR POINTS POINTS IN VECTOR YET TO BE MODELED

COOrd X

coord_y
sequence
coord

DEFINE VARIABLES
Fl Id

Goal Pt(2)
Dist-Pt
Coord(2)
Altitude
Speed
Hold Fix(2)
Hold-Ard
EFC Time
Sequence
Old Coord(2)
Coont Ard
Time
M E Speed
GOal Pt Ard
Start Ard

X coordinate
Y coordinate
Apex point sequence number
AGGREGATE(coord_x,coord_y);

Identity of aircraft for Trajectory
Estimation

Point(x,y) trying to find distance to
Distance to point
Current point
Altiude at coord
Speed at coord
Hold fix(x,y)
Hold fix ard
Expect further clearence time
Vector apex point sequence number
Old(x,y)
Ard of coord
Time of interest
Max endurance speed
Goal Points ard
Ard of starting point;

C-43

Dist Pt • 0;
Old Coord • Coord;
CALL XY To Ard(Fl Id IN, Coord IN,Start Ard OUT);
CALL XY-To-Ard(Fl-Id IN, Goal PtiN,Goal Pt Ard OUT);
!i"vectorT IS INACTIVE PLANNED ACTIONS7pa-type-
THEN I add distance insiae vector I -
---vECTOR POINTS • SELECT FIELDS vertex sequence number,

vertex coordinate - -
FROM vECTOR PLANNED ACTIONS (V P A)
WHERE V P A~pa id IS IN ACTIVE-PLANNED ACTIONS.pa id
ORDERED-BY vertex sequence number; - -

REPEAT FOR EACH VECTOR POINTS-RECORD
CALL XY To Ard(Fl Id IN, VECTOR POINTS.coord IN,Coord Ard
--OUT); - - - ..,.. - -
IF (Coord Ard GT Start Ard) AND (Coord Ard LE Goal Pt Ard)
THEN I This Segment Counts In Distance-CalcUI&tionT -
---oist_Pt • Dist_Pt + DIST(Old_Coord,VECTOR_POINTS.coord);

Old Coord • Coord;
Sequence • VECTOR POINTS.sequence;

IF Sequence LT MAX(VECTOR POINTS.sequence)
THEN I rest of distance is along vector segment I
--Dist Pt • Dist Pt + DIST(Old Coord,Goal Pt);

IF (Dist Pt EQ 0) OR-(SequeiiCe ~ MAx(VECTOR POINTS.sequence))
THEN I Find distance along route ,--- -
---cALL XY To Ard(Fl Id IN, Old Coord, Coord Ard);

Dist Pt-= Dist Pt-+ Goal Pt Ard - Coord Ard;
IF 'hold' IS IN ACTIVE PLANiiEJ>-ACTIONS -
THEN I Check for relationship between hold fix and goal I
--SELECT FIELDS hold fix position,efc time

FROM HOLD PLANNED ACTIONS(H P A)-
INTO Hold-Fix,EFC-Time - -
WHERE H P-A.pa id-IS IN ACTIVE PLANNED ACTIONS.pa id;

CALL XY To-Ard(Fl-Id IN, Hold Fix-IN,Hold-Ard OUT); -
SELECT FIELDS speed - - - - -

FROM AIRCRAFT MAX ENDURANCE SPEED(A M E S)
INTO M_E_Speed - - ---
WHERE A M E S.source is best available AND Altitude is ---In A M E S altitude range;

Del Time ~(ME Speed - Speed)/AGD VECTOR.acceleration;
Time • Time +MAx(O,Del Time) -
IF(Hold Ard LT Goal Pt Ard) AND (Hold Ard GE Start Ard)
THEN--------
--Dist Pt • Dist Pt + (EFC_Time - Time) * M_E_Speed;

END Find_Distance_To_Point;

C-44

C.26 Ascent Phase

This routine determines the gradient and the duration of the
gradient for a climb.

ROUTINE Ascent Phase;
PARAMETERS Fl ld IN, Goal Alt INOUT,Grad OUT Speed_Type _Q!!!,

Tran Speed-OUT-:-gTATE IN;
REFER TO GLOBAL- -

CLIMB MACH TO GRADIENT IN,
NOMINAL_ CLlM1()PEEDS IN-;
CLIMB IAS TO GRADIENT IN;

REFER TOSHARED-LOCAL -
ACTIVE PLANNED ACTIONS IN,

DEFINE TABLES - -
STATE STATE MODELED TO

position x
positionJ'
tas
ias
mach
z
time
ard
temp
position

DEFINE VARIABLES
Fl Id

Goal Alt
Nom Mach
Trail Al.t
End Alt
Grad
Speed Type
Tran_Speed

X position
Y position
Tas
Ias
Mach
Altitude
Time
Along route distance
Temperature
AGGREGATE(position_x,position_y);

Identity of aircraft for Trajectory
Estimation

Goal altitude
Nominal climb mach
Altitude to switch from ias to mach
End of the linear segment
Gradient
Ias or mach
Transition speed;

C-45

SELECT FIELDS mach #find nominal mach climb speed#
FROM NOMINAL CLIMB SPEEDS(N C S)
lN'T'O Nom Mach - - -
WHERE N C S.source is equal to best available;

CALL Mach Ias Switchover(Nom Mach IN, STATE.ias IN, Tran_Alt .Q!!!);
'IF'"'STATE.z LT-Tran Alt - - -
THEN I limi~will be at or below tran alt#
--c;oal Alt • MIN(Goal Alt,Tran Alt);-

SpeeCI_Type ..-rias' ;- -
Tran Speed • STATE.ias;
#find gradient associated with ias#
SELECT FIELDS gradient,end alt

FROM CLIMB lAS TO GRADIENT(C I T G)
INTO Grad,End Alt- ---
WHERE(C I T G7source is equal to best available)AND

(c I-T-G7beg alt LE STATE.z)AND (C I T G.end alt
GT-STATE.z)AND (C_I_T_G.speed ~ STATE7ias)AND
(C_I_T_G.gradient_type ~ 'nominal');

ELSE #select gradients associated with mach speed#
--SELECT FIELDS gradient,end alt

INTO Grad, End A1 t -
~ CLIMB MACH TO GRADIENT(C M T G)
iHERE<c M T G.source is equal-to best available)AND

(C_M=T=G7bes_alt LE STATE.z)AND (C_M_T_G.end_alt GT
STATE.z)AND (C_M_T_G.speed ~ STATE.mach)AND
(C_M_T_G.gradient_type ~ 'nominal'); ·

Speed Type • 'mach';
Tran Speed • STATE.mach;

Goal Alt _-MIN (Goal Alt ,End Alt);
END Ascent_Phase; - -

C-46

C.27 Find New Place On Route Or Vector

This routine moves along the path of the aircraft to the next break
point and returns this point and the time it reaches this point.

ROUTINE Find_New_Place_On_Route_Or_Vector;
PARAMETERS Fl Id IN, EFC Time IN,Hold Fix IN,Coord INOUT,

VECTOR POINTS INOUT ,ROUTE POINTS- INOUT, Time INOUT, Total_Dis t
INOUT,Del Dist IN,Speed IN;-

DEFINE TABLES - -
VECTOR POINTS POINTS IN VECTOR YET TO BE MODELED

sequence
position_ X
position_y
position

ROUTE POINTS
ard
position x
position-y
position-

DEFINE VARIABLES
Fl Id

EFC Time
Hold Fix
Coord(2)
Time
Total Dist
Del Dist
Speed
Hold Ard
Vee Point(2)
Rout_Pt(2)
V Dist
Dist To Hold
R Dist
Course
Ground
Next Dist
Vee Ard
Coord Ard
R Ard

Sequence of vector points
Apex x position
Apex y position
AGGREGATE(position_x,position_y)

POINTS IN ROUTE YET TO BE MODELED
Along route distance
X position of route point
Y position of route point
AGGREGATE(position_x,position_y);

Identity of aircraft for Trajectory
Estimation

Expect further clearence time
Holding fix
Point(x) y)
Time at coordinate
Total distance accounted for
Distance to account for
Speed at coord
Ard of hold fix
Point in vector
Point on route
Distance to vee point
Distance to holding· fix
Distance to route point
Course flown at coord
Ground speed
Next distance break
Ard of Vee Point
Ard of coordinate
Rout_pt ard;

C-47

CALL XY To Ard(Fl Id IN, Hold Fix IN,Hold Ard OUT);
'i"FCOUNT(vECTOR POINTS) NE 0 - - - -
THEN I travel in vector~
--SELECT FIELDS position

FROM VECTOR POINTS(V P)
INTO Vee Point -
WiiERE V_P.sequence _!2 _!!!!(V_P.sequence);

Course • DIRECTION(Coord,Vec Point);
CALL XY To Ard(Fl Id IN, Vee-Point IN, Vee Ard OUT);
IF (EFC-Time ~ 'none'> Q!_ (Vec_Ard LT Hold_Ard)
THEN I end segment at del dist or at vector point I
---v Dist • DIST(Coord,Vec Point);

Next Dist • MIN(V Dist,(Del Dist - Total Dist));
IF Next Dist ~ V-Dist - . -
,-HEN I remove point from vector I
---nELETE FROM VECTOR POINTS

WHERE VECTOR_POINTS.position ,!g, V_Dist;
ELSE I Must examine hold fix I
---oist To Hold • DIST(Coord,Hold Fix);

Next-Dist • MIN(Dist To Hold,(Del Dist -Total Dist));
ELSE I distance is along route£"'" - -
--CALL XY To Ard(Fl Id IN, Coord IN, Coord Ard OUT);

i5ELETE FROM ROUTE-POINTS - - -
WHERE ROUTE POlNTS .ard LE Coord Ard;

SELECT FIELDS ard,position- -
FROM ROUTE POINTS
INTO R Ard:-Rout Pt
WiiEiE ROUTE_POINTS.ard _!2 MIN(ROUTE_POINTS.ard)

Course • DIRECTION(Coord,Rout Pt);
IF (EFC_Time _!2 'none') .Q! (Rpd LT Hold_Ard)
THEN I end segment at del dist or at route point I
----,r Dist • DIST(Coord ,Rout Pt);

Next Dist~N(R Dist,(Del Dist - Total Dist));
ELSE # Must exaiiiiiie hold fix r -
---oist To Hold • DIST(Coord,Hold Fix);

Next-Dist • MIN(Dist To Hold,(Del Dist - Total Dist));
CALL Speed-To Ground(Coord-IN-;Altitude IN,Course IN,-Speed

IN,Ground OUT); - -- -
Total Dist • Total Dist + Next Dist;
Time ~ Time + Next-Dist/Groundi
Coord • Coord+ Neit Dist * (SIN(Course),COS(Course));

END Find_New_Place_On_ROute_Or_Vector; -

C-48

APPENDIX D

GLOSSARY

Numbers in parenthesis at the end of the definition refer to the
section in which the term is first used.

·Adaptation

Alcnig Route
Distance

AERA

AGD
Variable

AGD Vector

Air Traffic
Controller

Area

ARTCC

Cell

Advanced Automation System (1.1).

The process of collecting environillental data and
storing. it in system data bases (1. 5 .1).

-'the distance· of a converted fix on the route from
the first converted fix (2.1.1).

The concept of automated en route air traffic
control described in "The AERA Concept" [12] (3.4).

An AGD variable is an element (gradient, direction
or acceleration) of the AGD Vector (2.1.3). (See
also "AGD Vector")

The AGD vector is the 3-tuple (acceleration, gra
dient and direction) controlling the construction
of a segment (2.1.3).

See "Controller" (1.4.1).

An area is a second level division of the conti
nental United States Airspace. Controllers are
specially trained for an area's airspace, a region
bounded horizontally by a polygon and having some
vertical extent (1.4.1). · (See also "Center" and
"Sector")

Air Route Traffic Control Center (1.4.1).
also"Center")

Air Traffic Control (1.1).

A discrete compartment of the wind grid (2.1.1).

D-1

(See

Center

Clearance

CollpOilellt

Controller

Converted Pb:

Con"ftrted
B.oute

CoordiDation
Pix

Cuap

FAA.

Piz

Grid Cella

A center is the administrative headquarters and the
operational facility for control of the first-level
division of the Continental United States Airspace.
The center controls a region bounded horizontally
by a polygon and vertically by the Center floor and
an altitude of 60,000 feet (1.4.1). (See also
"Area" and "Sector")

A specially formatted order from the controller to
the pilot which commands the pilot to ezecute a
maneuver (2.1.3).

Third-level algorithmic unit in the breakdown of an
automation function (1.3). (See also "Subfunction"
"Element")

An en route radar controller as defined in (1.4.1).

A fiz that is a component of the aircraft route
after Route Conversion processing (1.4.'1.2). (See
also "Fiz" and "Coordination Fix")

The filed route of flight as augmented in Route
Conversion with preferred arrival routes, among
others (1.5.2).

A special purpose fiz used for a reference location
when flight plans are transmitted to the next con
trol area (1.5.2). (See also "Fiz" and "Converted
Fix")

An aircraft trajectory is represented as a series
of points called cusps. The cusps are the points
of possible AGD vector discontinuity (2.1.2).

Fourth-level algorithmic unit in breakdown of an
automation function (1.3). (See also "Subfunction"
and "Component")

Federal Aviation Administration (1.1).

A named z,y location (1.4.1.2).

Discrete compartments of the wind grid (2.1.1).

D-2

Man-Machine
Interface

NAS

Nut Cusp

Past Cusp

PDL

Pending
Action List

Plan

Pl.aDned
Action

PlaJming
Rep on

Pro~Ue
Reference
Point

Sector

Interaction mechanism
system to translate
format and translate
readable form (2.1.2).

provided by the computer
human input into internal
internal format into human

National Airspace System (1.1).

The next position to which the aircrft route will
be modeled (2.1.2).

The position to which the aircraft route has been
modeled (2.1.2). (This point may be at some future
position in terms of the current actual aircraft
position.)

Program Design Language (1.2 and Appendix E).

A list which contains planned actions which may
effect the aircraft trajectory from the past cusp
onward (2.1.3). (See also "Past Cusp" and ''Planned
Action")

A set of planned actions for an aircraft (1.5.2).
(See also the definition of "Planned Action")

An internal representation of a proposed change of
aircraft clearance which can be modeled into the
aircraft trajectory (2.1.2).

The geographic area over which the Trajectory Esti
mation algorithm operates. This area includes the
extent of an entire Air Route Traffic Control
Center (ARTCC) and also includes a buffer area
(2.1.1).

A 4-space position used to initialize Trajectory
Estimation (1.5.2).

A sector is the third level division of the Conti
nental United States airspace. A sector is the
division to which a controller is assigned (1.4.1).
(See also the definition of "Center" and "Area")

D-3

Sepent

St:laulua

Subfunction

Trajectory

WiDd Grid

A segment is a part of an aircraft trajectory
represented by an implied line between two adjacent
cusps. The gradient, direction, and acceleration
of the aircraft are constant across the segment
(2.1.2).

A stimulus is one of several flight path events
related to a planned action which initiate the
planned action processing component (2.1.3).

The second-level algorithmic unit in the breakdown
of an automation function (1.3). (See also
"Component" and "Element")

A description of an aircraft's position in
(x,y,z,t) space, produced by applying altitude and
timing assumptions to the filed flight plan and
revising when necessary (1.4.1.2).

A grid structure overlaid on the planning region to
relate geographic coordinates to wind speed,
direction and temperature at that location (2.1.1).

APPENDIX E

AERA PDL LANGUAGE REFERENCE SUMMARY

E.l OVerview of the Use of AERA PDL

'Ihe AERA Program Design Language (PDL) has been created for the
single purpose of presenting algorithms in this specification
document. It evolves from previous AERA uses, and from MITRE
WP-81W552, "All About!," October 1981.

'Ihe description of this appendix is intended to support readers and
users of AERA PDL. AERA PDL supports .readable, yet structured and
consistent, descriptions of algorithms.

AERA PDL Features

• Relational data tables can be defined and manipulated by
constructs in the language.

• Builtin functions are used to provide routine calculations
without showing all of the detail.

• Routines are used to modularize logic paths and data scope.

• Indentation is used to indicate statement grouping,
statement continuation, and levels of nesting.

• Routines explicitly define data or refer to predefined data.

AERA PDL Statements

The types of statements used in AERA PDL are:

• English language statements
• assignment statements
• routine declaration statements
• data manipulation statements
• flow of control statements

E.2 Elements of AERA PDL

Keywords

Keywords are words reserved for the usage of AERA PDL. Figure
E-1 presents all the keywords used in the current version of
AERA PDL, grouped for convenience.

E-1

routine construction keywords

CALL

data reference keywords

P ARAMETER.S
REFER TO GLOBAL

END

REFER TO SHARED LOCAL
DEFINED IN GLOS SAR.Y

data definition keywords

DEFINE CONSTANT(S)
DEFINE VARIABLE(S)
DEFINE TABLE(S)

IN
OUT
IN OUT

ROUTINE

common arithmetic builtin function keywords

AVG
SUM
PROD

MIN
MAX
MEDIAN

ABS
CEIL
FLOOR
SIGNUM
MOD

cos
SIN
TAN

coordinate geometry builtin function keywords

ARCCOS
ARCSIN
ARCtAN

DIST -MAGNITUDE
DOT
CROSS
LINE

INTERSECTION
INTERPOLATE

DIRECTION

set Puiltin function keywords

UNIQUE COUNT CONCAT BOOL

FIGURE E-1
KEYWORD GROUPINGS

E-2

set operator keywords

UNION INTERSECT

table manipulation keywords

SELECT FIELDS
INSERT INTO
DELETE FROM
UPDATE IN

value constant keywords

TRUE

comparison keywords

NOT
OR
AND

GT
GE
LT
Li

FALSE

flow of control keywords

IF ••• THEN ••• ELSE - -

ALL
FROM
INTo -WHERE
ORDERED BY
RETURN COUNT

!_q
NE
IS IN

NUIJ..

IS NOT IN

ANY
ill

CHOOSE CASE • • • WHEN • • • THEN • • • OTHERWISE
FOR ••• TO
REPEAT wiifLE
REPEAT UNTIL
REPEAT FOR EACH • • • RECORD
GO TO

FIGURE E-1 (Concluded)
KEYWORD GROUPINGS

E-3

Operators

The operators of AERA PDL are summarized in Figure E-2.

The Assignment Operator

• The format of the assignment statement is:
"target" • "expression"

• The target may be any type of data allowed by AEBA PDL.

• The assignment operator includes the ability to fill a table
from data contained in other tables. The form of this use
of the assignment operator is:

"table name" • "table_expression"

Builtin FUnctions

The builtin functions of AERA PDL accept either an single value
or data organized into an array. The author of a routine must
make it clear in comments and text what form of data is being
processed by the builtin function. Builtin functions are
listed in Figure E-3.

E.3 Routine Construction

The order of appearance of constructs in a routine is:

• ROUTINE -- required
• PARAMETERS -- optional
e REFER TO GLOBAL - optional
• REFER TO SHARED LOCAL - optional
• DEFINED IN GLOSSARY - optional
• DEFINE CONSTANTS -- optional
e DEFINE VARIABLES - optional
• DEFINE TABLES - optional .
• logic flow - required, but will vary by routi~e.
• ~ ~- required

Three of the constructs are noted below:

The ROUTINE Construct

• The ROUTINE construct names the routine.

• The syntax of the ROUTINE construct is:
ROUTINE "routine name"

E-4

assignment operator

A= B

arithmetic operators

A+B
A-B
A* B
A I B
A** B

comparison operators

A LT B
ALE B
Am.'B
A GE B
A_mB
ANEB

logical operators

NOT A
A ORB
A AND B -

set operators

A INTERSECT B
A UNION B
A IS IN B
A IS NOT IN B

A is assigned the value of B

A plus B
A minus B
A times B
A divided by B
A to the power of B

A is less than B
A is less than or equal to B
A is greater than B
A is greater than or equal to B
A is equal to B
A is not equal to B

The logical opposite of A
Logical OR of A and B
Logical AND of A and B

The set intersection of A and B
The set union of A and B
A is an element of the set B
A is not an element of the set B

FIGURE E-2
GROUPINGS OF AERA PDL OPERATORS

E-5

FUNCTION MEANING

~(x) Absolute value of x

ARCCOS(x,y) Inverse cosine of the ratio of y to x

ARCSIN(x,y) Inverse sine of the ratio of y to x

ARCTAN(x,y) Inverse tangent of the ratio of y·to x

AVG(A) Mean of the elements in A

~(x) Numerical equivalent of logical condition:
1 if x is ~' 0 if x is FALSE

f!!&(x) Smallest integer greater than or equal to x

CONCAT(sl,s2, ••• ,sN) Concatenation of strings sl through sN

COS(x) Cosine of x

COUNT(A) Number of elements of a set A

CROSS(vl,v2) Cross product of vectors vl and v2

DIRECTION(pl,p2) Direction of p2 from pl in degrees from the
north; usually will be expressed in degrees
clockwise from true north

~(pl,p2) Euclidean distance between points pl and p2

~(vl,v2) Dot product of vectors vl and v2

~(x) e to the x power

FLOOR(x) Greatest integer less than or equal to x

FIGURE E-3
BUILTIN FUNCTIONS

E-6

F~TION

INTERPOLATE(a,b,t)

INTERSECTION(Ll,L2)

~(pl,p2)

LOG(x)

MAGNITUDE(v)

MAX(A)

MEDIAN(A)

MIN(A)

!!,Q!?(X 1 , X2)

PROD(A)

SIGNUM(x)

SIN(x) -
SQRT(x)

SUM(A)

!!!!<x>
UNIQUE(A)

MEANING

The point (1-t)a+tb

The point of intersection of the lines L1 and
L2
Vector (a,b,c) corresponding to the line
ax + by • c which passes through the points
pl and p2

Log of x in base e

Length (i.e., norm) of the vector v

Largest of the elements in the set A

Median value of the elements in set·A

Smallest of the values in set A

Remainder when :x:1 is divided by x2

Product of the elements in A

Function yielding 1 if x GT 0, -1 if x LT 0,
and 0 if x ~ 0

Sine of x

Square root of x

Sum of the elements in A

Tangent of x

The set A with no duplicate elements

FIGURE E-3 (Concluded)
BUILTIN FUNCTIONS

E-7

The CALL Construct

• The CALL construct invokes use of another routine as a
subroutine and passes to it the data on which it is to
operate.

• The syntax of the CALL construct is:
~ "routine_name" ("data_usage_list") ;

• The data usage list in the CALL statement must match in
number and data utilization (IN, OUT, INOUT) the PARAMETERS
statement of the called routinE!.

The END Construct

• The END construct shows the formal end of the routine.

• The syntax of the END construct is:
END "routine name"

E.4 Data Definitions

Data usage is defined in the constructs placed at the beginning of
each routine.

The structures, or
include constants,
variables, arrays,
structured variables

organization of data, recognizable to AERA PDL
atomic variables, hierarchically structured

tables, and field-types. The hierarchically
are the same as the structure variables of PL/I.

Within a table, the values corresponding to the definition of a
field-type are called fields when they are referred to individ
ually. The values for a whole column of a table (or a subset of the
whole column) may be referred to as a set of fields.

The following data definition constructa appear in the order shown,
if any are needed. The first line of each construct begins in
column 1, aligned with the ROUTINE construct.

The PARAMETERS Construct

• This construct provides usage information about the data
that are being provided by the calling routine in the form
of specification of read-only 'IN', write-only 'OUT', or
modification of an existing value ,-INOUT'. ---

E-a

• Variables appearing in the PARAMETERS construct are still
local data for the routine being defined and as such appear
in the definition constructs.

• The syntax of the PARAMETERS construct is:
PA!AMETERS "data_usage_Ilst" ;

The REFER TO GLOBAL Construct

• This construct provides reference to, and usage information
for, data from the Global data model.

• The l!lyntax of the REFER TO GLOBAL construct is:
REFER TO GLOBAL "data_usage_list" ;

The REFER TO SHARED LOCAL Construct

• This construct provides reference to, and usage information
for, data from the Shared Local data model described in
Appendix A of the specification.

• The syntax of the shared local construct is:
REFER TO SHARED LOCAL "data_usage_list"

The DEFINED IN GLOSSARY Construct

• This construct provides reference to, and usage information
for, data from a specially prepared Glossary that central
izes the definition of data variables that are used re
peatedly within a given function of the algorithmic
specification.

• The syntax of the shared local construct is:
DEFINED IN GLOSSARY "data_usage_list" ;

The DEFINE CONSTANTS Construct

• The use of named constants instead of in-line numerical
constants is available at the discretion of the author of an
algorithm. Named constants, if present, are to be declared
with this construct.

• The syntax of the DEFINE CONSTANTS construct is:
DEFINE CONSTANTS "constant definition block" ;

E-9

The DEFINE VARIABLES Construct

• '!he syntax of the DEFINE VARIABLES construct is:
DEFINE VARIABLES "variable definition block"

The DEFINE TABLES Construct

• The syntax of the DEFINE VARIABLES construct is:
DEFINE TABLES "table_definition_block";

E.5 Flow of Control Constructs

The IF ••• THEN ••• ELSE Construct

• The syntax of the IF ••• THEN ••• ELSE construct is:
IF "condition" - -- -

THEN
---rstatement block"

[ELSE
---rstatement block"]

The CHOOSE CASE Construct

• '!his construct provides a choice of one of several alterna
tive logic paths depending on the first condition satisfied
among the conditions specified.

• '!he OTHERWISE phrase is optional.

• The syntax of the CHOOSE CASE construct is:
CHOOSE CASE

WHEN "condition" THEN
---wstatement blocrr-

[WHEN phrases repeated as necessary]
[OTiiFRWISE

•statement block"]

The REPEAT WHILE Construct

• '!he syntax of the REPEAT WHILE construct is:
REPEAT WHILE "condition"

"statement block"

The REPEAT UNTIL construct

• '!he syntax of the REPEAT UNTIL construct is:
REPEAT UNTIL "condition" ;

"statement block"

E-10

The REPEAT FOR EACH RECORD Construct

• This construct explicitly loops over all records in table,
or the subset of a table as specified in a WHERE phrase.

• The syntax of the REPEAT FOR EACH construct is:
REPEAT FOR EACH "table name" RECORD

[WHERE "condition"]-;
"statement block"

• Within the statement block of this loop, the construct of
"table name". "field name" means only the ONE value that is
associated with the-record for that iteration of the loop.

• If it is necessary to refer to entire columns of the table
that is being looped on, the correct form of the reference
is ALL("table name"."field name"). This construct means
exactly what "table name". "field name" would have meant if
the loop had not been in effect. -

The GO TO Construct

• The syntax of the GO TO construct is:
GO TO "label" ;

The FOR ••• TO ••• Construct

• The syntax of the FOR ••• TO ••• construct is:
FOR "loop index" • "initial value" TO "last value" ;
-"statement block" - - -

E.6 Table Manipulation Constructs

The SELECT FIELDS Construct

• This construct extracts data from a table, or from a collec
tion of tables, and makes it available to the routine.

• The syntax of the SELECT FIELDS construct is:
SELECT FIELDS [UNIQUE] ["field list" I ALL]

FROM "table name list" - -
[INTO "local-variable name list"]
[WHERE "condition"] -
(ORDERED BY "field name"]
(RETURN COUNT ("local variable")]

E-ll

The INSERT INTO Cons true t

• This construct allows a new record to be inserted into a
table.

• The syntax of the INSERT INTO construct is:
INSERT INTO "table name" ("field assignments")

[WHERE "condition"] ; -

• All insertions will preserve the assumption of no duplicate
records allowed in the table.

The UPDATE IN Construct

• '!his construct allows existing records in a table to have
certain of their values changed.

• The syntax of the UPDATE IN construct is:
UPDATE IN "table name" ("field assignments")

[WHERE "condition" 1 ; -

The DELETE FROM Construct

• This construct removes selected records from a table.

• '!he syntax of the DELETE FROM construct is:
DELETE FROM "table name"

[WHERE "condition" 1

E. 7 Glossary

"comparison"

• There are four possible syntaxes for the comparison. These
are not given separate names, but will all be shown as if
they shared the same element of tqe language.

• The first syntax is for arithmetic comparisons:
"individual" .Q!I LEIGTI_g "individual"

• '!he second syntax is for general comparisons:
"individual" ,!g_l NE "individual"

• Both of these syntaxes are also valid if they are used to
compare two variables with the same complex organization,
for example two vectors of the same length or two field
types from the same table. In this case the result has as
many answers as there are elements in the compared variables.

E-12

• The third syntax is for arithmetic comparisons:
"individual" GEILEIGTig ,M!!IALL "set"

• The fourth syntax is for general comparisons:
"individual" IS INIIS NOT IN "set"

• '!he latter two syntaxes are used to qualify an individual
based on any value in a set of values.

"condition"

• The syntax of the condition is:
"comparison" [ANDIAND NOTI~IOR NOT "comparison"]

• The optional part of this syntax can be repeated as often as
required.

"constant definition block"

• The content of the constant definition block is three
columns: the constant names, the constant values, and the
constant descriptions.

• The constant names are aligned in a column 3 spaces indented
from the DEFINE CONSTANTS line.

• The other two columns are aligned as convenient, so that
there is no visual overlap between the columns.

''data usage list"

• A routine must declare the type of use for all of its data
that are known outside the routine.

• The three types of use are: read only (IN), create (OUT),
and modify an existing copy (INOUT)~

• The format of a data usage list is:
"variable_name" "usage_type", •••

• An example of the format for data usage list is:
An_Input_Parameter IN, A LOCAL TABLE INOUT

"expression"

• Variables may be formed implicitly in expressions without
being separately named or defined.

E-13

• Expressions are combinations of defined variables with the
operators and builting functions of AERA PDL.

• In an expression, the implicit variable output from any
builtin function may be used as the input to any other
builtin function or operator.

• An expression, when fully evaluated, yields one variable.

"field assignments"

• 'Ibis term only appears in statements referrina to exactly
one table: INSERT and UPDATE.

• The form of the term is a comma-separated list:
"field_assignment", •••

• The form of a single assignment is:
"field_name" • "value_expression"

• In this term the field names do not have to be qualified by
the table name (that is-given in the statement).

"table definition block"

• 'lbree types of definition are made in this block: table defi
nitions, field-type definitions, and AGGREGATE definitions.

• Table definition lines are formatted as:
"table name" "table definition"

• Field-type definitions lines are formatted as:
"field name" "field definition"

• Aggregate definitions are formatted as:
"aggregate_name" AGGREGATE ("field_name_list")

• Fields will contain only atomic (single-valued) variables.

• Aggregates may be used so that a program can manipulate
multiple fields in one statement when it makes sense to do
so.

"table-expression"

• Tables may be used implicitly in assignments or comparisons
being separately named or defined.

E-14

• A table expression is either a table name or a SELECT state
ment specifying the contents of the implicit table.

"table name"

• Generally, this is just the name of a table.

• In a few statements, there is a syntax that allows a user to
define a synonym and use it in the rest of that statement.
The intent of this option is to allow shorter where clauses
that are easier to read. The format of the synonym refer
ence is:

"existing_table_name" ("synonym")

• The statements that allow this use are those that have the
where clause: SELECT, INSERT, DELETE, UPDATE, and REPEAT.

"variable definition block"

• The content of the variable definition block is two columns:
variable names and variable descriptions.

• Align variable names in a column that is indented 3 spaces
from the DEFINE VARIABLES line.

• Align variable definitions in a column as convenient; when a
structure element is defined, both the variable name and the
variable definition should be indented three spaces from the
name and definition of the next higher level variable.

• Three types of variables may be defined in this block:
atomic variables, arrays, and structured variables.

• Each element variable is described by a line:
"variable name" "variable definition"

• Each array variable is described by a line:
"variable_name" ("dimensions") "variable_definition"

• Each structured variable is described by multiple lines, one
line per lowest level element, and one line for each named
level of grouping/structure, with indentation levels used to
indicate the grouping.

• The names of subordinate elements of a structured variable
are named in all lower case letters.

E-15

• '!he use of complex structured variables is not encouraged;
one reasonable use for them is to receive the values of
AGGREGATEs.

E.8 Other Uses and Conventions

Use of Special Characters in AERA PDL

• Parentheses are used for grouping statements and setting off
special parts of the constructs.

• Semicolons are used as statement terminators.

• Colons are used to terminate labels.

• Underscore is used to separate words in multi-word
identifiers.

• The symbols '+', '-', '*', and '/' are used as arithmetic
operators.

• The pound sign 'I' is used as a comment delimiter, for
beginning and end of each comment line.

• Commas are used as separators in lists of operands.

• Periods are used to separate fully qualified names.

Naming Conventions

• Keyword identifiers use only uppercase letters and are
underlined. They are the only underlined identifiers in the
PDL.

• Table identifiers from the relational data base also use
only uppercase letters.

• AGGREGATE identifiers for combinations of fields use no
uppercase letters.

• References to fields in a table, used in the normal course
of reference in AERA PDL, will be fully qualified . by
including the table name.

E-16

Other Identifiers

• Identifiers for constants, routines, labels, arrays, and
hierarchically structured variables are all be named using
word-initial capitals.

• For hierarchically structured variables, all of the sub
ordinate elements within the structure use only lowercase
letters.

• For hierarchically structured variables, all references to
the subordinate elements in the structure will ·be in fully
qualified form using separate identifiers.

• Global data and shared local data can include both tables
and parameters. The individual parameters are named using
word-initial capitals.

Use of the Formal Constructs in AERA PDL Statements

• Statements may use formal constructs or clear English
descriptions to specify the intended test or action.

• Any AERA PDL statement is terminated by a semicolon,
including any English statement outside of a comment.

• Below the level of statement, some statements have a finer
organization in terms of "phrases", usually occupying a line
per phrase and indented one level from the first line of the
original statement.

Statement Organization

• Indentation is used to indicate statement grouping,
statement continuation, and levels of nesting.

• Any statement may have a label starting in column 1 •

• Continuation lines are indented three spaces from the
original line of the statement.

• Comments are used as needed, bracketed by the special
character'#'.

E-17

APPENDIX F

REFERENCES

1 u.s. Department of Transportation, Federal Aviation
Administration, "Advanced Automation System: System Level
Specification," FAA-ER-130-00SD, April 1983.

2. u.s. Department of Transportation, Federal Aviation
Administration, "National Airspace System Plan: Facili- ties,
Equipment, and Associated Development," April 1983.

3. u.s. Department of Transportation, Federal Aviation
Administration, "National Airspace System Configuration
Management Document, Flight Plan Position Processing & Beacon
Code Assignment," NAS-MD-313, August 1981.

4. u.s. Department of Transportation, Federal Aviation
Administration, "National Airspace System Configuration
Management Document, Route Conversion & Posting," NAS-MD-312,
August 1982.

5. w. J. Swedish et al., "Operational and Functional Description of
AERA 1.01," MTR-83W69, The MITRE Corporation, McLean, Virginia,
September 1983.

6. w. J. Swedish, "Evolution of Advanced ATC Automation Functions,"
WP-83Wl49, The MITRE Corporation, McLean, Virginia, March 1983.

7. u.s. Department of Transportation, Federal Aviation
Administration, "National Airspace System Configuration
Management Document, Adaptation Collection Guidelines,"
NAS-MD-326, August 1982.

8. U.S. Department of Transportation, Feder~! Aviation
Administration, "National Airspace System Configuratie,n
Management Document, Multiple Radar Data Processing,"
NAS-MD-320, August 1982.

9. u.s. Department of Transportation, Federal Aviation
Administration, "National Airspace System Configuration
Management Document, Automation Tracking," NAS-MD-321, August
1982.

F-1

10. u.s. Department of Transportation, Federal Aviation
Administration "Air Traffic Control," order 7110.65C, Chg.
5, May 1983.

11. u.s. Department of Transportation, Federal Aviation Admin
istration, "Airman's Information Manual: Basic Flight
Information and ATC Procedures," January 1982.

12. L. Goldmuntz et al., "The AERA Concept," FAA-EM-81-3,
U.S. Department of Transportation, Federal Aviation
Administration, March 1981.

F-2

