
..

~\.
· , ' _. \l!llmtM~llllimllll\ilillfil~iU\er

~~ . 00093066

!f- ~~-
of Transportation Automated En Route Air Traffic Control

1 l -'
.•

1~ r

Federal Aviation
Administration
Off1ce of Systems
Enginnring Management
Washington, D.C. 20591

September 1983

Algorithmic Specifications

AIRSPACE PROBE

Volume 2

JUM 18 \984

TECMN\rAl CEtt!ER u:Y
Alt.AMTIC orrt, tU.

Report No. DOT/FAA/ES-83/5
This document 11 awulable to the
U.S. public through the
National Technical lnformetion Service,
Springfield, Virginia 22181

I. Report No.

DOT /FAA/ES-83 /5
4. Titlo oncl S..btitle

Automated En Route Air Tr:1ffic Control
Algorithmic Specifications
AIRSPACE PROBE Volume 2

'

Technical ICeport Documentation Page

5. Report Dolo

September 31 '· 1983
6. PorforMint Or10~iaolion Code

AEs-no
h=--~~-:-:----------------------------1 I. Porfo,.int Ore-iaotion Report No.

7. Autfoor1a)
J.A. Kingsbury, N.S. Malthouse
K.B. Schwamb

t. Perle,.iltl Ore .. iaotion N-• .,,. Aololr•••

Systems Engineering Service
Department of Transportation
Federal Aviation Administration

FAA-ES-83/r)
10. Wort. Unit No. (TRAIS)

II. Contract or Grant No.

800 Indeuend.ence Ave. S \•7. 1.Jashineton~ D. C 205_9_1 13. T,.e of Ropoft •4 Periocl c;..,.,.cl
~~~~~~~~~~~~~~~~~~~~~~~~~~ 

12. S.••••i"l Aeency N-• .. ., Acltl•••• 

Same as #9 above. 

14. S.,.naorint A10ncy C.do 

~~------~----------------·~----------------~--~AES~----------------~ 
15. Suppl-ont .. y Notal 

16. Abstract 

This Algorithmic Specification establishes the design criteria for four advanced 
automation software functions to be included in the initial software package of the 
Advanced Automation System (AAS). The need for each function is discussed within 
the context of the existing National Airspace System (NAS). A top-down definition 
of each function is provided with descriptions on increasingly more detailed levels 
The final. mnqt detailed description of each function identifies the data flows and 
transformations taking place within each function. 

This document consists of five volumes. Volume 2, Airspace Probe, contains a func
tional design for the use of trajectory data to predict penetrations of airspa~e • 
volumes from which the general flying public is normally restricted. 

The other four volumes of this specification provide design criteria for the 
following: 

o Volume 1, Trajectory Estimation 

o Volume 3, Flight Plan Conflict Probe 

o Volume 4, Sector Workload Probe 

o Volume 5, Data Specification 
17. Koy Worcla _ _ 11, Oiatribution Stoto-t 

Automation, Air Traffic Control, Auto
mated Decision Making, En Route Traffic 
Control, Artificial Intelligence, 
Advanced Automation Syste~ 

Document is available to the U.S. public 
through the National Technical Informatior 
Service, Springfield, VA 22161 

19. Security Clouif. (of thia report) 20. Security Clenif. (of thla pogo) 21. No. of Poges 22. Price 

Unclassified Unclassified 

Form DOT F 1700.7 (8-72) Ropre4uctlon of complotocl pogo outhorl&ed 

i 



EXECUTIVE SUMMARY 

This specification establishes design criteria for an Airspace Probe 
algorithm, part of the initial automation for the advanct:!d automa
tion system of the Federal Aviation Administration's (FAA's) Air 
Traffic Control (ATC) system. The algorithm provides data to 
construct a message to air traffic controllers when an aircraft is 
predicted to get too close to terrain or other areas wherein flight 
is restricted. 

Airspace Probe is designed to be compatible with current air traffic 
control procedures and its design is an extension of the Enroute 
Minimum Safe Altitude Warning function of NAS Stage A. Airspace 
Probe extends the geographical coverage by providing a warning for 
controllers if an aircraft flight plan penetrates Enroute Minimum 
Safe Altitude Warning areas or Special-Use Airspaces. Airspace 
Probe also extends the time over which a warning may occur by using 
the flight plan to predict penetrations. 

Airspace Probe algorithms assume that each airspace area is repre
sented by a polygonal volume. The geographical coordinates, activa
tion and deactivation times, and a maximum and minimum altitude have 
been provided by adaptation or supervisor interaction. After boun
daries are defined, the Airspace Probe algorithm automatically 
detects penetrations of these areas. It processes aircraft trajec
tories which are derived from ATC approved flight plans for aircraft 
operating within an Instrument Flight Rule (IFR) context. The 
trajectory is checked to see if it intersects any Enroute Minimum 
Safe Altitude Warning areas or Special~Use Airspaces in the Planning 
Region. If any intersections are found, data describing the pene
trations are stored in the data base. The Airspace Probe is invoked 
automatically when an incoming aircraft's flight plan is received by 
a center, when an aircraft's flight plan is amended and when flight 
plans are resynchronized. When any of these things occur, trajec
tories are reprobed to account for the change. If a supervisor 
activates and deacti~ates an area, the trajectories are also 
reprobed to incorporate this change. 

ii 



1. 

2. 

3. 

TABLE OF CONTENTS 

INTRODUCTION 

1.1 
1.2 
1.3 
1.4 

1.4.1 
1.4.2 

1.5 

1.5.1 
1.5.2 

Purpose 
Scope 
Organization of This Document 
Role of Airspace Probe in the Overall Air Traffic 
Control System 

System Context 
Role of Airspace Probe in Future System 
Enhancements 

Airspace Probe Summary 

Operational Description 
Processing Overview 

DEFINITIONS AND DESIGN CONSIDERATIONS 

2.1 System Design Definitions 

2.1.1 Airspace Types 
2.1.2 Modeling Environment Terms 
2.1.3 Airspace Probe Terms 

2.2 Design Considerations 

AIRSPACE PROBE FUNCTIONAL DESIGN 

3.1 

3.1.1 
3.1.2 

3.2 

3.2.1 
3.2.2 

Environment 

Input Data and Activation 
OUtput 

Design Assumptions 

Polygon Adaptation 
Inherited E-MSAW Assumptions 

iii 

1-1 

1-1 
1-1 
1-2 

1-3 

1-3 

1-5 

1-5 

1-5 
1-6 

2-1 

2-1 

2-1 
2-2 
2-3 

2-4 

3-1 

3-1 

3-1 
3-3 

3-5 

3-5 
3-6 



4. 

3.3 

3.3.1 
3.3.2 
3.3.3 
3.3.4 

3.4 

Subfunctions 

TABLE OF CONTENTS 
(Continued) 

First-Order Coarse Filter 
Second-Order Coarse Filter 
Fine Filter 
Encounter Processing 

Extendability 

DETAILED DESCRIPTION 

4.1 First-Order Coarse Filter 

4.1.1 
4.1.2 
4.1.3 

4.2 

4.2.1 
4.2.2 
4.2.3 

4.3 

4.3.1 
4.3.2 
4.3.3 

4.4 

4.4.1 
4.4.2 
4.4.3 

Mission 
Design Considerations and Component Environment 
Component Design Logic 

Second-Order Coarse Filter 

Mission 
Design Considerations and Component Environment 
Component Design Logic 

Fine Filter Processing 

Mission 
Design Considerations and Component Environment 
Component Design Logic 

Encounter Processing 

Mission 
Design Considerations and Component Environment 
Component Design Logic 

iv 

3-6 

3-6 
3-9 
3-9 
3-9 

3-9 

4-1 

4-1 

4-1 
4-3 
4-5 

4-21 

4-21 
4-21 
4-25 

4-38 

4-38 
4-38 
4-40 

4-54 

4-54 
4-54 
4-58 



TABLE OF CONTENTS 
(Concluded) 

APPENDIX A: AIRSPACE PROBE DATA TYPES A-1 

APPENDIX B: AIRSPACE PROBE ALGORITHMS B-1 

APPENDIX C: POLYGON HORIZONTAL PENETRATION DETERMINATION C-1 

APPENDIX 0: GLOSSARY D-1 

APPENDIX E: AERA POL LANGUAGE REFERENCE SUMMARY E-1 

APPENDIX F: REFERENCES F-1 

v 



FIGURE 2-1: 

FIGURE 3-1: 
FIGURE 3-2: 
FIGURE 3-3: 

FIGURE 4-1: 
FIGURE 4-2: 
FIGURE 4-3: 
FIGURE 4-4: 
FIGURE 4-5: 
FIGURE 4-6: 
FIGURE 4-7: 
FIGURE 4-8: 
FIGURE 4-9: 
FIGURE 4-10: 
FIGURE 4-11: 
FIGURE 4-12: 
FIGURE 4-13: 
FIGURE 4-14: 

FIGURE 4-15: 
FIGURE 4-16: 
FIGURE 4-17: 
FIGURE t~-18: 

FIGURE 1~-19: 

FIGURE 4-20: 
FIGURE 4-21: 
FIGURE 4-22: 
FIGURE 4-23: 
FIGURE 4-24: 
FIGURE 4-25: 
FIGURE 4-26: 
FIGURE 4-27: 
FIGURE 4-28: 
FIGURE 4-29: 
FIGURE 4-30: 
FIGURE 4-31: 
FIGURE 4-32: 
FIGURE 4-33: 
FIGURE 4-34: 

LIST OF ILLUSTRATIONS 

SPECIAL-USE AIRSPACE DEFINED ON PLANNING 
REGION GRJD 

AIRSPACE PROBE FUNCTIONAL ENVIRONMENT 
EXPANDED POLYGON BOUNDARY FOR AIRSPACE PROBE 
FIRST-ORDER COARSE FILTER SELECTION 

AIRSPACE PROBE 
ELEMENTS-OF THE FIRST-ORDER COARSE FILTER 
FIRST ORDER COARSE FILTER - -CUSPS TO SEGMENTS 
GRID CHAIN GENERATION - -SET UP SEGMENT SCAN 
INDEPENDENT VARIABLE SELECTION 
SCAN SEGMENT TO PICK UP CELLS 
ADD BOX 
INTE~~EDIATE GRID CELL RECOGNITION 
INTERMEDIATE GRID CELL DETERMINATION 
GET LOWER LEFT CORNER POINTS 
PUT -BOX IN GRID CHAIN-
APPROXIMATION OF AN AIRSPACE BY RECTANGLES 
IN EACH ORIENTATION PLANE 
ELEMENTS OF THE SECOND-ORDER COARSE FILTER 
SECOND ORDER COARSE FILTER - - -RETRIEVE POLYGON EXTENTS 
TRAJECTORY/POLYGON ONE-DIMENSIONAL 
INTERSECTION 
TRAJECTORY/POLYGON TWO-DIMENSIONAL 
INTERSECTION 
ONE DIM CHECKS - -SEGMENT VS SEGMENT INTERSECTION 
TilO DIM-CHECKS 
SEGMENT-VS PLANE INTERSECTION - - -ELEMENTS OF THE FINE FILTER 
FINE FILTER 
CONVEX POLYGON INTERSECTION CHECK - - -MIXED POLYGON INTERSECTION CHECK 
GROUP-INTO INTERSECTION PAIRS 
VERTICAL VIOLATION CHECK 
VERTICAL-PENETRATION CHECK 
VERTICAL PENETRATION DETE~~INATION 
FIND EXACT VIOLATION POINTS 
FIRST-IN AND LAST-OUT SELECTION 
ENCOUNTER PROCESSING 

vi 

2-5 

3-2 
3-7 
3-8 

4-2 
4-4 
4-6 
4-7 
4-9 
4-10 
4-12 
4-13 
4-15 
4-17 
4-18 
4-19 
4-20 

4-22 
4-23 
4-26 
4-27 

4-29 

4-30 
4-31 
4-33 
4-34 
4-36 
4-39 
4-41 
4-44 
4-46 
4-48 
4-50 
4-52 
4-53 
4-55 
4-57 
4-59 



1. I NTRODUCTJ ON 

The Federal Aviation Administration (FAA) is currently in the 
process of developing a new computer system, called the 
Advanced Automation System (AAS), to nelp control the nation's 
air traffic. The~ AAS will consist of new or enhanced hardware 
(i.e., Central Processing Units, memories, and terminals) and 
new software. 

The new software will retain most or all of the functions in 
the existing National Airspace System (NAS) En Route Stage A 
software. The algorithms will need to be coded and, in some 
cases, revised. In addition, the new AAS software will contain 
several new functions that make greater use of the capabilities 
of automation for Air Traffic Control (ATC). When fully 
implemented, these new functions are intended to detect and 
resolve many routine ATC problems. 

The initial implements tion of the AAS, described in the AAS 
Specification [1], will provide the ability to detect some 
common ATC problems. To meet the requirements of the AAS, 
several new ATC functions need to be postulated and described. 
Four of these functions are described in this document: 
Trajectory Estimation, Flight Plan Conflict Probe, Airspace 
Probe, and Sector Workload Probe [Volumes 1, 2, 3, and 4]. 
Together, they represent an initial level of automation and the 
beginnings of the evolution of the ATC system in accordance 
with the NAS Plan [ 2]. The NAS Plan represents an overview of 
the complete set of changes proposed to NAS in the coming 
decade. 

1.1 Purpose 

The purpose of this volume is to identify design criteria for 
Airspace Probe. Airspace Probe is one of the advanced automa
tion functions called for in the AAS Specification. The design 
criteria specified in this volume are based on the existing NAS 
and the specification of the AAS. The AAS specification 
describes the Airspace Probe function and proposed some high
level requirements for this function. 

1.2 Scope 

This algorithmic specification presents design criteria for a 
computational framework of Airspace Probe. The framework is a 
set of algorithms which collectively describe how it may be 
possible to detect aircraft that are in danger of violating 
certain separation standards with given airspace volumes where 

1-1 



no!lllal flight is restricted. It may be viewed as a candidate 
for consideration in the final design. However, it is not 
intended to be the complete final design for Airspace Probe in 
the AAS. 

The framework establishes the requirments for input and output 
data and provides a description of the flow of control of data 
as it is transferred from input to output. Some of the prin
cipal requirements have been identified in the "Operational and 
Functional Description of AERA 1.01" [3]. To the extent pos
sible, the data are discussed using existing NAS terminology. 

1.3 Organization of This Document 

The remainder of Section 1 provides a description of Airspace 
Probe's role in the larger ATC context and in future enhance
ments of the ATC System. Both the operational considerations 
and processing methods of Airspace Probe are summarized. Sec
tion 2 defines the terminology used in the specification and 
discusses the factors which influence the design of the algo
r! thms. 

Descriptions of the algorithms are contained in Section 3, 
Airspace Probe Functional Design, and in Section 4, Detailed 
Description. The Airspace Probe function, like the other 
advanced automation functions, is divided hierarchically (from 
top to bottom) into subfunctions, components, and elements 
(underlined words in Sections 1 and 2 are critical to the 
understanding of this specification and their definitions can 
be found in the Glossary, Appendix D). Section 3 specifies the 
design, environment, and assumptions of the subfunctions (e.g., 
the First-Order Coarse Filter), and outlines their components 
(e.g., Grid Chain Generation). Section 4 provides a detailed 
description of each subfunction's components, including their 
mission, data requirements, and processing details, and in some 
cases includes a discussion of a component's elements. 

Appendix A defines the data shared by the various subfunctions 
of Airspace Probe. (Similarly, Volume 5 of this document 
contains the global data shared by the functions defined in 
Volumes 1 through 4.) Appendix B provides a description of 
several elements used in several places in Section 4. Appendix 
C provides mathematical derivations of certain formulas used in 
the specification. Supplementary information concerning poly
gon penetration computations is provided. Appendix D, as 
mentioned above, contains a glossary of those terms that are 
critical to an understanding of this specification. 

1-2 



A Program Design Language (PDL) which describes high-leve·l 
control logic using structured English is used as needed to 
describe the algor! thms in this specification. A description 
of this PDL is contained in Appendix E. Finally, Appendix F 
provides a complete list of references. 

1.4 Role of Airspace Probe in the Overall Air Traffic Control 
System 

The Airspace Probe algorithm evolves from the functions of the 
current Air Traffic Control System and the needs of the future 
Air Traffic Control System as given in the FAA's National Air
space System Plan [2,4]. 

1.4.1 System Context 

The Continental United States airspace is partitioned among 20 
centers or Air Route Traffic Control Centers (ARTCCs). The 
AR.TCCs control regions bounded horizontally by polygons that 
stretch vertically from the center floor to 60,000 feet. Each 
center's airspace is further divided into areas, which are in 
turn divided into sectors. Areas and sectors are polygonal 
regions with floors (either a specified altitude or the center 
floor), and ceilings. The sectors of each area are staffed by 
a group of air traffic controllers (or controllers) specific
ally trained for that area. 

In the current ATC system, pilots decide their desired means to 
reach their destination consistent with current navigational 
and ATC practices. This intent is then filed with the ATC sys
tem as a flight plan and approved as filed or altered by ATC 
for operating under Instrument Flight Rules (IFR). Alterna
tively, flight plans that are executed daily or on a regularly 
scheduled basis reside in a data base and are retrieved auto
matically unless altered or suspended. A flight plan modifica
tion may be initiated by a controller or the pilot. Advanced 
automation functions of the AAS can deal only with those air
craft filing IFR flight plans. 

Controllers are responsible for monitoring flights as they pass 
through their sectors and for helping pilots achieve their 
objectives. They watch a block of symbols representing the 
aircraft's radar track position as it moves across a display 
console; the aircraft's identity, altitude, and other informa
tion are also displayed. Controllers institute control actions 
as needed to perform such functions as helping pilots avoid 
close approaches with other aircraft, honoring pilot requests 
for new routes, rerouting flights to avoid special airspaces 

1-3 



or severe weather, and queuing aircraft into the major terminal 
areas. 

1.4.1.2 Need for Airspace Probe 

The FAA has developed an automated tool for the controller, En 
Route Minimum Safe Altitude Warning (E-MSAW), to assist in 
detection of penetration of restricted flight airspaces. In 
that function, aircraft track positions and velocities are com
pared to the coordinates of terrain obstructions to determine 
if penetrations of minimum safe altitude could occur. The con
troller receives a displayed warning upon algorithmic detection 
of an imminent penetration of minimum safe altitude standards. 
E-MSAW provides the controller with an alert for potentially 
dangerous situations where aircraft might get too close to 
terrain obstructions (natural or man-made). As long as pilots 
stay on published routes, controllers need only short-term 
warnings when flights stray too close to terrain or volumes 
wherein general flight is restricted. Pilots filing published 
routes are provided with both minimum altitude requirements and 
the assurance that no published route penetrates a restricted 
flight regime. A flight violating published altitude require
ments or penetrating a restricted area implies the need for 
"blunder" detection for the controller. Such a detection 
device is not a strategic prediction of problems. 

With the increase in the use of unrestricted, user-preferred 
routes expected as the advancing level of automation allows, 
pilots will run the risk of unintentionally filing too close to 
restricted flight airspaces. Controllers need more efficient 
long-term warnings for penetrations predicted for this growing 
class of flyers. 

The Airspace Probe is an extension of the E-MSAW concept. Air
space Probe can alert the controller long periods in advance of 
any projected penetration of pertinent airspace volumes. It 
uses an ATC-derived aircraft trajectory rather than track 
information. Airspace Probe provides for an alert not only for 
E-MSAW areas but for other areas as well. These could include 
NAS-adapted Restricted Areas and Warning Areas, Military Opera
tions Areas, and other Special-Use Airspac.~s. The alert can 
then lead to a resolution of the penetration far in advance of 
projected entry time, thus helping to avoid inefficient 
maneuvers while facilitating greater use of user-preferred 
routes. 

1-4 



1.4.2 Role of Airspace Probe in Future System Enhancements 

·rn che init~al versl.on of the Advanced Automation System [1], 
the Airspace Probe will be only a detection service which 
provides results for a manual resolution process. Later, 
results wiLl feed into an automatic resolution service. As 
initially conceived, the Airspace Probe deteets conflicts, the 
display generation functions are responsible for gathering 
information for the controller and displaying that information, 
and the controller plans resolution maneuvers for the air
craft. In a scenario of the evolution of ATC automation [ 5], 
future plans provide for continuing the current strategic 
detection service and decreasing the controller's responsibil
ity for generating resolution maneuvers. This may be done by 
allowing the controller to choose from a ranked list of alter
native resolutions or by providing the automatic resolution 
service itself. 

Future automation plans also provide that Airspace Probe and 
related functions will predict and resolve penetrations with an 
enhanced set of geographic areas and include a mechanism for 
strategic conflict detection and resolution for dynamic areas 
(such as weather), as well. 

1.5 AirspacP Probe Summary 

The Airspace Probe provides an aid for controllers to determine 
if an aircraft flight plan penetrates designated areas called 
"Minimum Safe Altitude Warning Areas" and "Special-Use Air
spaces." Special-Use Airspaces are defined in the Airman's 
Information Manual [6]. These include, but are not limited to, 
Restricted Areas, Warning Areas, Prohibited Areas, and Military 
Operations Areas. Each aircraft's planned route of flight is 
compared against all these areas to check for intersections or 
penetrations. If a penetration is found, the identity of the 
area and the penetration coordinates are saved for retrieval 
and display as appropriate by the display functions. 

1.5.1 Operational Description 

Airspace Probe operates within the context of the AAS [1]. 
Other functions separate from Airspace Probe provide Airspace 
Probe with the environmental data needed to predict penetra
tions of certain airspaces. These data are discussed in 
adaptation guidelines [7]. Adaptation is that process of col
lecting important, relatively static environmental data and 
storing them in system-accessible data bases. Included in such 

1-5 



data are the geographical boundaries of the volumes of airspa~e 
which are used by Airspace Probe. 

From a controller's point of view, Airspace Probe (in combina
tion with the display generating functions, Situation Display, 
and Trajectory Estimation) provides information to help detect 
penetrations of special airspaces. The Airspace Probe function 
uses data describing the Special-Use Airspaces and E-MSAW areas 
and maintains the data describing any penetrations predicted. 
When a penetration is detected between an aircraft trajectory 
and a Special-Use Airspace or E-MSAW area, data for a control
ler display is updated. This operation is described in more 
detail by Swedish et al. [ 31 • The displays may provide such 
details of the penetrations as: 

• Aircraft involved 
• Location 
• Conflict type 
• Time to conflict 
• Graphical display of conflict 

From this information, the controller may develop a tentative 
resolution approach such as amending the flight plan. This may 
be done in the context of the Trial Plan Probe described oper
ationally by Swedish [3]. If a change in the flight plan is 
involved, the controller may receive pi.·obe results to make sure 
the tentative resolution resolves the penetration and does not 
create new ones. If the penetration is not resolved, the con
troller may try another tentative resolution. If the penetra
tion is resolved, the flight plan change may be accepted (by 
the controller) and the flight plan data base is updated (in 
functions separate from Airspace Probe). The controller does 
not invoke Airspace Probe by itself but always in the context 
of a flight plan amendment. The controller has, at all times, 
the means to ask for the display of penetrations in a different 
form (i.e., graphical rather than textual). 

1.5.2 Processing Overview 

Data describing special airspaces are maintained in the data 
base by their x,y geographical coordinates. Other information 
about the area is also maintained such as the airspace identi
fication, the minimum and maximum altitude, and the activation 
and deactivation times (where applicable). Polygons may be 
convex or may be mixed (with some concave angles). Area coor
dinates may only be changed in adaptation, but the area may be 
temporarily activated or deactivated by supervisor request. 

1-6 



Aircraft trajectories for IFR aircraft with valid flight plan·s 
are constructed by the Trajectory Estimation function. These 
trajectories are maintained as a series of points designating 
x,y (horizontal position), z (altitude) and t (time) at each 
point. Once these trajectories are available, then Airspace 
Probe can derive airspace penetration information. 

Airspace Probe works in tandem with Trajectory Estimation: 
whenever the trajectory for an aircraft changes, Airspace Probe 
is automatically invoked to maintain the airspace penetrations 
data base. Airspace Probe compares the trajectory against all 
pertinent airspaces that are currently active using a series of 
progessively finer filters. The First-Order Coarse Filter and 
Second-Order Coarse process all polygons to accumulate candi
date intersecting object polygons. The Fine Filter process 
this object polygon list to determine the intersection coordin
ates (if any). When trajectories intersect an area, a data 
structure which maintains information about the penetration is 
defined and stored in the data base. Any of the information 
maintained in the data base may be available for display to the 
controller. 

1-7 



2. DEFINITIONS AND DESIGN CONSIDERATIONS 

Airspace Probe includes E-MSAW capabilities along with new 
capabilities. Inclusion of an extended set of airspace areas 
widens the responsibilities of Airspace Probe over that of 
E-MSAW, but the basic purpose remains unchanged and, so, the 
algorithms of Airspace Probe remain deeply rooted in the 
previous E-MSAW work. 

This section introduces terminology used in this specifica
tion. Also provided is a set of design considerations which 
place Airspace Probe firmly within the AAS context. 

2.1 System Design Definitions 

Some terms introduced in Section 1 of this specification are of 
global interest across the AAS environment and include (in 
order of presentation): 

1. Subfunction 
2. Component 
3. Element 
4. Center 
5. Areas 
6. Sectors 
7. Controllers 
8. Flight Plan 
9. Penetration 
10. Adaptation 

Other terms of interest only to Airspace Probe are introduced 
below. 

2.1.1 Airspace Types 

Special-Use Airspaces are areas wherein ajrcraft operations are 
limited. This section lists and defines the set of Special-Use 
Airspaces referenced in this specification. Airspace types are 
further defined in the Airman's Information Manual [6]. 

• Controlled Firing Areas 

Controlled Firing Areas are areas which contain activ
ities which could be hazardous to nonparticipating 
aircraft. A unique feature of these areas is that 
activities are suspended if spotter aircraft, radar, or 
ground look-out positions indicate that a nonpartici
pating aircraft is approaching. 

2-1 



• Military Operations Areas 

Military Operations Areas (MOAs) consist of airspace 
defined by vertical and lateral limits which are 
established to separate military training activities 
from IFR traffic. 

• Prohibited Areas 

Prohibited Areas are airspace volumes within which the 
flight of aircraft is prohibited. They contain air
space of defined dimensions identified by an area on 
the surface of the earth. These areas are established 
for security or other reasons associated with the 
national welfare. 

• Restricted Areas 

Restricted Areas are airspace volumes within which the 
flight of aircraft is restricted. Aircraft activities 
within these areas must be confined because of the 
content of activities occurring in the area. 
Restricted areas denote the existence of unusual, often 
invisible hazards. 

• Warning Areas 

Warning Areas are airspace beyond the three-mile limit 
over international waters which may contain hazards and 
should not be penetrated during periods of activity. 
Even though the activities in warning areas may be as 
hazardous as those in restricted areas, areas over 
international waters cannot be legally designated as 
restricted areas. 

2.1.2 Modeling Environment Terms 

A center represents a volume of airspace for air traffic con
trol. Enclosing the center is the planning region. The 
boundary of the planning region is considered to be some hori
zontal distance outside that of the center: some 20 to 30 
minutes of flying time in all directions. 

Trajectory Estimation [Vol. 1] provides Airspace Probe with a 
trajectory for each aircraft with an IFR flight plan. A 
trajectory is a predicted path for the aircraft through the 
three spatial dimensions (x, y, z) and time. Each trajectory 
is conceptually a continuous, smooth curve in four dimensions. 

2-2 



However, trajectories are modeled as a series of lines (in 
.space-time) called segments, joined together at their end
points, called cusps. The data base provides trajectory infor
mation as a list of cusps: 

{ci = (x, y, z, t)i I i = 1, ••• , n} 

The segments are the implied straight lines joining adjacent 
cusps. The trajectory is the ordered sequence of these seg
ments. 

It is convenient for purposes of Airspace Probe to enclose the 
horizontal extent of the planning region in a grid. The grid 
covers the planning region with squares, called cells, aligned 
with the x,y coordinate axes of the coordinate system used by 
Trajectory Estimation. These cells provide a reference for 
geographical features in terms of their location within a 
numbered cell. 

The grid structure associated with E-MSAW is the underlying 
Radar Sort Box grid structure which is used primarily in Radar 
Data Processing. This grid structure was updated to incor
porate E-MSAW information as described in NAS Stage A Automatic 
Tracking specification [8]. The requirements of Airspace Probe 
are satisfied by this grid structure. However, there is no 
guarantee that the AAS will incorporate the Radar Sort Box 
concept. Consequently, the remainder of this document refers 
to an Airspace Probe "grid" to give emphasis to the fact that a 
similar type of grid structure is necessary for Airspace Probe 
algorithms. 

2.1.3 Airspace Probe Terms 

Airspace Probe works with a trajectory and a set of airspace 
volumes. The trajectory is said to belong to the subject air
craft. The airspace volumes, which are assumed by Airspace 
Probe to be cross-referenced to the grid through adaptation, 
form the set of object polygons. 

The Airspace Probe algorithm is executed through a sequence of 
filters. A filter is a logical subalgorithm the input of which 
is a subset of all object polygons and the output of which is a 
subset of the input. Input to the first filter, called the 
First-Order Coarse Filter, is the entire object polygon set. 
OUtput from the last filter, called the Fine Filter, is the set 
of encounters. An encounter is an object polygon penetrated by 
the subject's trajectory. A nominee is an object polygon which 
is input to any filter except the First-Order Coarse Filter. 

2-3 

FAA WJH Technical Ce t 
/111m Ill~ lim 111m IIIII ~~~liM IIIII Ill/ liM er 

00093066 



The subject's trajectory, upon initial processing in Airspace 
Probe, must be cross-referenced to the grid. In this process, 
the list of cells that the trajectory penetrates, called the 
grid-chain, is computed. The logical entity responsible for 
the cross-referencing is called the grid-chain generator. 

2.2 Design Considerations 

Environmental adaptation is assumed to record the identities, 
geometry and coordinates of all E-MSAW areas and Special-Use 
Airspaces (SUAs) that are physically within the planning 
region. The E-MSAW areas and SUAs are simple polygons in an 
(x,y) projection with flat tops and bottoms. The E-MSAW areas 
may cover the planning region giving an approximation to the 
geography and radar receiving capabilities of the underlying 
map. They all touch the ground and are under 25,500 feet in 
altitude. The other SUAs may be detached, floating above the 
planning region. The estimated population of protected air
spaces is about 500 where most of them are E-MSAW polygons. 

A typical planning region is a polygon with vertices established 
as latitude, longitude points. In environmental adaptation, 
the planning region is apportioned among multiple cells. Next, 
all E-MSAW areas and SUAs are positioned in the grid as shown 
in Figure 2-1. When adaptation is completed, each cell data 
element contains the identity of all polygons which intersect 
that cell. The opposite is also true. Each polygon data 
element adapted contains the list of grid cells the polygon 
intersects. Maintenance of both the polygon-by-cell and 
cell-by-polygon data bases is required to provide access to the 
cells when the polygons are activated or deactivated, and to 
provide access to the polygons when the cells enclosing the 
flight plan segment change. 

The E-MSAW function which exists in NAS Stage A has been used 
as a source of some of the algorithms of Airspace Probe. The 
E-MSAW function has limited warning capabilities in comparison 
to those which have evolved for Airspace Probe. E-MSAW 
provides a tactical warning message to controllers when air
craft are too close to terrain obstructions. E-MSAW warns of 
imminent penetration of airspaces where ''imminent.. is defined 
to be less than five minutes into the future. 

At the other end of the tactical-strategic spectrum, Airspace 
Probe provides information to construct a warning message to 
controllers when planned aircraft trajectories get too close to 
terrain and other Special-Use Airspaces. Using aircraft 

2-4 



111 112 

101 102 

91 9( 

81 /., 
I 

71 72 

61 62 

51 52 

41 42 

31 32 

21 22 

'-...._ 
11 12 

1 2 

113 114~ ~ i'oo. 116 117 118 119 

/ -...... 

"' 103/ 104 105 106 107 \ 108 109 

~ 

\8 93 94 95 96 97 99 

--
83 AREA 237 87 .~ 89 

L.-- r------ ,..---- ~9 73 74 75 76 77 78 

63 64 65 66 67 68 6~ 
' 

53 54 55 56 57 58 59 

43 44 45 46 47 48 49 

33 34 35 36 37 38 39 

23 24 25 26 27 28 20 

~13...._ 14 15 Hi 17 18 19/ 

3 

~ -~ -
4 5 6 7 8 9 

FIGURE 2·1 
SPECIAL-USE AIRSPACE DEFINED ON 

PLANNING REGION GRID 

2-5 

120 

110 

100 

90 

80 

70 

\60 

\ 
5~ 

i 
/30 

20 

10 

X 



trajectories, Airspace Probe performs thQ same function without 
the temporal limitations. 

The algorithm supporting the Airspace Pr:Jbe has evolved from 
the E-MSAW algor! thm [ 8, 9] • The NAS Adaptation Process [ 7] 
provides the environmental data. Adaptation and the E-MSAW 
algorithm can be summarized as shown below: 

• E-MSAW Area Adaptation: 

1. The airspace of the planning region is divided into 
a regular grid. 

2. The airspace terrain polygons are cross referenced 
with respect to the grid. 

e E-MSAW Algorithm: 

1. The current position and velocity of the aircraft 
are projected ahead for some fixed time period 
(nominally two minutes) based on radar track data. 

2. The intersections between projected line segments 
and polygons are determined. 

3. The intersections are reported to the controller. 

The two new features of Airspace Probe are incorporation of 
additional airspace volumes and the use of the aircraft trajec
tory for early penetration prediction. In addition, penetra
tions are maintained in the data base for display to the 
controller (either immediate or later display). The Airspace 
Probe algorithm works as shown below: 

• E-MSAW Area and Special-Use Airspace Adaptation: 

1. The airspace of the planning region is divided into 
a regular grid. 

2. The E-MSAW areas and Special-Use Airspaces are 
cross-referenced with respect to the grid. 

• Airspace Probe Algorithm: 

1. The planned aircraft trajectory is examined. 

2-6 



2. The intersections between planned trajectories and 
polygons are determined. 

3. The intersections are stored in the data base. 

2-7 



3. AIRSPACE PROBE FUNCTIONAL DESIGN 

This section identifies the environment in which Airspace Probe 
is to work in the AAS. The input and output data are identi
fied along with activation sequences. At the end of this 
section, the major subfunctions of Airspace Probe are identi
fie~ and a description of each subfunction is provided. 

3.1 Environment 

The prediction process of Airspace Probe uses the stored 
polygon information along with the predictions of future posi
tions for aircraft from Trajectory Estimation to search for 
positions where an aircraft path (in four dimensions) pene
trates an E-MSAW or Special-Use Airspace volume. Figure 3-1 
depicts the Airspace Probe functional environment. 

3.1.1 Input Data and Activation 

The Airspace Probe function requires an initialized data base 
containing various types of data defining the environment. The 
environment is divided into a regular grid covering the entire 
x,y extent of the planning region. The (x,y,z,t) coordinates 
of E-MSAW and Special-Use Airspaces are input and cross
referenced to the grid. 

Airspace Probe uses this environmental definition and data 
which specifies the trajectory to be probed. The algorithm 
typically processes one aircraft trajectory. In either case, 
the algorithm operates the same way. An aircraft is selected 
(separate from the Airspace Probe algorithm) and the trajectory 
is compared against the object polygons. A list of those poly
gons which intersect the aircraft trajectory is formed and data 
is stored describing the intersection. 

3.1.1.1 Input Data 

Airspace Probe requires input data through adaptation. Polygon 
adaptation ensures that the following data are accumulated 
which describe the E-MSAW and Special-Use Airspace environment: 

• Grid specification 

• Airspace polygon coordinates, (x,y,z,t), for each 
E-MSAW Area and Special-Use Airsvace 

• Polygons further defined in a polygon data base cross
referenced with the grid 

3-1 



Flight Polygon 
Plar Adaptation 

...... ...... 
,..-- ' . 

'· 

Airspace Probe -· 
'' 

, ~ v 
' . . 

Route .. Penetration -
Conversion -~ Detection K -

v 
Trajectory 
Estimatton 

., 

', 

, , 
v 
Data 

Presentation 

, ~ v 
Display 

Formation 

FIGURE 3-1 
AIRSPACE PROBE FUNCTIONAL ENVIRONMENT 

3-2 



Airspace Probe must further be provided with an aircraft's 
trajectory which describes the path the aircraft is predicted· 
to take through the planning region. 

3.1.1.2 Automatic Activation Sequences 

Airspace Probe may be initiated automatically to 
penetrations of protected airspace whenever the 
events occur: 

determine 
following 

• The trajectory estimate for an aircraft changes. This 
could occur when a new aircraft enters· the system, 
updates to trajectory time values are made, or a 
candidate plan is being examined by the controller. 
(See Section 3.1.1.3) 

• The time bounds on any one Special-Use Airspace change 
through supervisory action. (See Section 3.1.1.4) 

3.1.1.3 Controller Initiating Sequences 

A controller may implicitly initiate Airspace Probe when he has 
used his strategic planning mechanism (i.e., Trial Plan Probe 
as described by Swedish [2]) to include some alteration in the 
aircraft's plan such as a change to the assigned altitude or 
speed. In these cases, Airspace Probe is invoked automatic
ally. If the trajectory is not changed, however, the control
ler should not request Airspace Probe since no new information 
can be generated. He may only request more information about 
the penetrations already detected and stored. 

3.1.1.4 Supervisor Activation and Deactivation 

The supervisor may implicitly initiate the Airspace Probe when 
he activates or deactivates an area. In this case, the super
visor would change the time limits on a certain Special-Use 
Airspace. This action externally activates an Airspace Probe 
on a (possibly large) population of aircraft. The activation 
of Airspace Probe for each aircraft involved in this population 
is automatic. This activation sequence is not described fur
ther in this specification. 

3.1.2 OUtput 

The penetration detection algorithms of Airspace Probe identify 
encounters and store the data for use by the controller. 
Several types of data are stored (cf: Vol. 5, "Environmental 
Conflict"). 

3-3 



• Polygon identification 
• Aircraft identification 
• Encounter time 
• Encounter coordinates 
• Advisory time 

3.1.2.1 Information to the Controller 

The Airspace Probe stores penetration information and makes it 
available for display by the display function. Any time a 
penetration between an aircraft trajectory and E-MSAW areas or 
Special-Use Airspaces is predicted, data for a controller dis
play is updated. This data provides information about the 
penetrations of all aircraft into E-MSAW and Special-Use 
Airspace polygons such as: 

• Aircraft identification 
• Sector, grid, and polygon identification 
• Penetration coordinates 
• Time to penetrations 

The display function is maintained as a separate entity. Thus, 
it has logic of its own to determine encounters eligible for 
display to the appropriate controller, select appropriate data 
to display, provide the desired display format, and choose the 
logical display on the appropriate logical device. 

The display function sorts Airspace Probe encounter data by 
time and generates two types of warnings. If the time to pene
tration is more than X (system parameter) minutes, an advisory 
message is sent to the controller who is currently responsible 
for the aircraft. If the time to penetration is less than X 
(system parameter) minutes, an alert message is sent to the 
controller responsible at the position of penetration. 

The display function selects appropriate data for display to 
the controller and provides the display format such as arrange
ment, choice of graphic or alphanumeric information, and 
(possibly) color of data items. In both the advisory and alert 
messages, the controller is presented with information required 
to identify the penetration and formulate a resolution. All 
information necessary to support the display function exists in 
the penetrations data base maintained by Airspace Probe. 

3-4 



3.1.2.2 Information to the Supervisor 

when areas are activated or deactivated by the supervisor, no 
special information is provided from the initiation of Airspace 
Probe. However, the display functions should inform the super
visor that his request has been honored. 

3.2 Design Assumptions 

This section describes some assumptions made in the design of 
Airspace Probe algorithms. Of special importance are those 
assumptions placed on the context of the environmental data. 

3.2.1 Polygon Adaptation 

Adaptation of E-MSAW areas and Special-Use Airspace is assumed 
in this specification to provide the environmental information 
used by Airspace Probe algorithms. As in E-MSAW, the polygons 
are assumed to be cross-referenced to a grid where each polygon 
data element contains the identity of all the cells it inter
sects, and each cell data element contains the identity of all 
the polygons that intersect it. In particular, the following 
data are assumed: 

• Cell data element (cf: Vol. 5, "Environmental Cell") 

cell identification 

the polygon identification 
intersecting this cell 

for each polygon 

• Polygon data element (cf: Vol. 5, Special_Use_Airspaces 
and E_MSAW_Areas) 

polygon identification 

cell identification for each cell this polygon 
intersects 

airspace type (E-MSAW, etc.) 

polygon type (convex, mixed) 

list of (x,y) vertices for the polygon 

3-5 



• Polygon identification 
• Aircraft identification 
• Encounter time 
• Encounter coordinates 
• Advisory time 

3.1.2.1 Information to the Controller 

The Airspace Probe stores penetration information and makes it 
available for display by the display function. Any time a 
penetration between an aircraft trajectory and E-MSAW areas or 
Special-Use Airspaces is predicted, data for a controller dis
play is updated. This data provides information about the 
penetrations of all aircraft into E-MSAW and Special-Use 
Airspace polygons such as: 

• Aircraft identification 
• Sector, grid, and polygon identification 
• Penetration coordinates 
• Time to penetrations 

The display function is maintained as a separate entity. Thus, 
it has logic of its own to determine encounters eligible for 
display to the appropriate controller, select appropriate data 
to display, provide the desired display format, and choose the 
logical display on the appropriate logical device. 

The display function sorts Airspace Probe encounter data by 
time and generates two types of warnings. If the time to pene
tration is more than X (system parameter) minutes, an advisory 
message is sent to the controller who is currently responsible 
for the aircraft. If the time to penetration is less than X 
(system parameter) minutes, an alert message is sent to the 
controller responsible at the position of penetration. 

The display function selects appropriate data for display to 
the controller and provides the display format such as arrange
ment, choice of graphic or alphanumeric information, and 
(possibly) color of data items. In both the advisory and alert 
messages, the controller is presented with information required 
to identify the penetration and formulate a resolution. All 
information necessary to support the display function exists in 
the penetrations data base maintained by Airspace Probe. 

3-4 



------- Input Polygon 

~---------- E.,.panded Polygon 

f\GURE 3-2 
EJC.PA.IIOEO pOL yGOil &OUIIOA.R'I 

fOR A\RSPACE pROBE 

3-7 



If" 
II 
1\ 

' 

Segment 
Chain 

-~ 

' 

1'. 

Grid 

' 

FIGURE 3-3 

Plann1ng 
Region 

FIRST-ORDER COARSE FILTER SELECTION 

3-8 

1st Level 
Nominees 

Polygons ··Near 
Aircraft Path 



3.3.2 Second-Order Coarse Filter 

The Second-Order Coarse Filter defines a nominee in terms of an 
x,y,z,t closeness measure of a polygon to the trajectory. The 
polygons identified in the First-Order Coarse Filter are again 
compared to the trajectory. A series of interval intersection 
tests are performed between trajectory segments and one- and 
two-dimensional circumscribed right rectangles that envelop the 
polygon. 

3.3.3 Fine Filter 

The Fine Filter defines an encounter in terms of an exact 
intersection between the polygon and a trajectory segment. The 
polygons identified by the Second-Order Coarse Filter are again 
compared to the trajectory segment. Those polygons with the 
property that they intersect the aircraft trajectory are 
identified. 

3.3.4 Encounter Processing 

Encounter Pr,Jcessing stores information about the encounters 
identified by the Fine Filter. This data includes information 
such as the aircraft ID, route, altitude, time and position of 
penetration, and the identification of the Special-Use Airspace 
or E-MSAW area. 

3.4 Extendability 

Airspace Probe is expected to be enhanced in the future to 
predict penetrations of aircraft trajectories against weather 
polygons. This might be accomplished by generating n series of 
static polygons representing the weather cell at various times 
t-minutes apart, each with a lifetime of t-minutes or more. 
Such an extension requires no changes in the current algo
r! thm. An alternative approach might define polygons to be 
dynamic in nature with an implied velocity vector and time 
extent. This dynamic nature would force changes in the Air
space Probe algorithm in two areas. 

First, the moving polygon concept does not fit well with the 
grid structure serving the First-Order Coarse Filter. There is 
no temporal limit in the grid structure, itself, and a moving 
area would then cut a "swath'' into the grid. For this reason, 
each moving polygon should not be incorporated into the Grid, 
but each moving polygon should automatically become a First
Order Nominee for every aircraft. 

3-9 



Second, the incorporation of moving polygons into the polygon 
population forces several upgrades in the execution of the 
Second-Order Coarse Filter and in the Fine Filter. The logic 
of these two entities can be easily changed to consider every 
polygon a dynamic polygon (with E-MSAW and Special-Use Air
spaces having an assumed zero-velocity vector). A switch to a 
relative geometry (or aircraft centered) coordinate system can 
be made at the outset of processing, and the remainder of the 
filters executed as specified. 

3-10 



4. DETAILED DESC tliPTION 

The penetrat ·on detection algorithms of Airspace Probe are 
arr;mged in a series of progressively more discriminating 
filters. Ai -space Probe is composed of a First-Order Coarse 
Filter, a St:,::ond-Order Coarse Fllter, a Fine Filter and an 
Encounter Pn·cessing routine. Polygons passing through all the 
filters are ;Jlaced on a list of polygons which intersect the 
aircraft trajectory. Figure 4-1 illustrates the relationship 
of the components in the Airspace Probe. 

4.1 First-Order Coarse Filter 

4.1.1 Mission 

The First-Order Coarse Filter for Airspace Probe is a mechanism 
for quickly selecting the proper subset of polygons (i.e., 
those which may intersect the aircraft trajectory) for further 
Airspace Probe processing. The inclusion of Minimum Safe 
Altitude Warning Areas into the population of polygons con
sidered by Airspace Probe makes such a filter mandatory for 
reasons of efficiency. There can be, in the adaptation data 
base, several hundreu Minimum Safe Altitude Warning Areas which 
can describe the topography of the underlying planning region. 
In fact, thtc whole planning region could be covered by such 
polygons. 

The First-Or·:er Coarse Filter of Airspace Probe is especially 
constructed to use stored (adapted) geographical information 
about the Location of polygons and information from the 

~ trajectory of the aircraft to eliminate polygons on the basis 
of some ~ priori measure of closeness. Conceptually, if the 
patr1 of the aircraft is contained entirely in the southern 
sect ion of a planning region while a polygon is in the north, 
the polygon should be eliminated from further processing. 

The selected polygons which are close to the aircraft path 
resulting from such a coarse filter should be a small subset of 
the total polygon population. That sutset comprises a set of 
nominees. fven though the aircraft's path is close to the 
polygon, the path of the aircraft may or may not intersect the 
extent of a nominee polygon. Further Airspace Probe processing 
is necessary to determine the actual penetration status of the 
aircraft path with respect to each nominee. 

4-1 



ROUTINE Airspace_Probe; 
PARAMETERS 

Loc Fl Id IN; 
DEFINE--VARI-ABLES· 

Loc .FlTd. · 
. . . . 

_the -id~htificatfon of the· atrcraf.t -be-ing · 
·probed_ for·_ a.ir space -corifl1.-cts ·; . 

Ill! 
CALL First Ord-er. Coarse .. Fl-1-te-r(Loc .. Fl :id. IN); 
CALL Se-cond o-rder .coa-r.se -F-ilter; -:-_ - -
CALL Fine Filter;- - . 
CALL Encounter Proce·s.sing(Loc. Fl Id IN}; 

END Airspace_Probe; - - --

FIGURE 4~1 
AIRSPACE PROBE 

4-2 



4.1.2 Design Considerations and Component Environment 

The First-Or(ter Coarse Filter of Airspace Probe is designed to 
provide an efficient mechanism for examining an aircraft 
trajectory with respect to the airspace polygon environment. 
It uses an adapted grid structure to select a set of nominee 
polygons from the polygon population. These may intersect the 
trajectory of the aircraft. The complement of the set of 
nominees is a set of polygons which clearly do not intersect 
the trajectory. To perform its function, the First-Order 
Coarse Filter requires input defining the aircraft trajectory 
and input defining the environmental polygons cross-referenced 
to a grid structure. It produces output defining a list of 
Nominees. 

The sequence of elements associated with the First-Order Coarse 
Filter is shown in Figure 4-2. Program design language is 
provided in this section for each element shown in Figure 4-2 
with the exception of Grid and Linear Discriminant Classifier. 
A description of those two elements is provided in Appendix B. 

Input Data 

The input data required by the First-Order Coarse Filter 
consists of: 

• System Global Data Base 

TRAJECTORIES 

The aircraft's trajectory is obtained from the 
trajectories table using the flight identification 
input to the Airspace Probe algorithm. 

VOLUMES 

The ceiling altitude of each airspace volume identi
fied by the grid-chain generator is obtained for 
checking purposes. 

ENVIRONMENTAL CELL CONTENTS 

A cell identified by the grid-chain generator is 
cross-referenced to each airspace polygon inter
secting the cell. The identities of each polygon 
are retrieved for possible addition to the list of 
noninees. 

4-3 



First Order Coarse Filter 
Cusps To Segments 
Grid Chain Generation 

Set_Up_Segment_Scan 
Grid 

Scan_Segment_To_Pick_Up_Cells 
Grid 
Add Box 

Get Lower Left Corner Points 
Grid 

Linear Discriminant Classifier 

FIGURE 4-2 
ELEMENTS OF THE FIRST-ORDER COARSE FILTER 

4-4 



ENVIRONMENTAL GRID PARAMETERS - -

The nominal cell width is obtained. 

E~~IRONMENTAL CELLS 

The extent of a cell is retrieved. In particular, 
the x and y extents are obtained to construct the 
boundary of the cell. 

Output Data 

The First-Order Coarse Filter produces a list of nominee poly
gons which must be processed through the remainder of the 
Airspace Probe algorithm. 

• Shared Local Data Base 

FIRST ORDER NOMINEES 

The identifies of the First-Order Coarse Filter 
Nominee polygons are stored in this table. These 
polygons must have the property that they intersect 
a cell that the aircraft's trajectory intersect and 
the ceiling altitude of the polygons are above the 
minimum altitude of the trajectory. 

FL CUSPS 

The trajectory of the aircraft is brought into local 
storage. 

SEGMENTS 

The trajectory, which is a list of cusps, is 
arranged to yield an explicit line segment by line 
segment representation. 

4.1.3 Component Design Logic 

The Airspace Probe First-Order Coarse Filter is responsible for 
constructing a list of polygons known to be ''close" to the 
route of the aircraft. The route of the aircraft is provided 
by the XYZT-Segments. Figure 4-3 provides a description of the 
control logic for the First-Order Coarse Filter. In the 
element Cusps To Segments (Figure 4-4), the trajectory of the 
aircraft is obtained and processed to yield the ordered set of 
segments which represents the aircraft's route. 

4-5 



ROUTINE First_Order_Coarse_Filter; 
PARAMETERS 

Loc Fl Id IN; 
REFER TO GLOBAL 

TRAJECTORIES IN, 
VOLUMES IN; 

The Flight Identification 

REFER TO SHARED LOCAL 
FIRST_ORDER_NOMINEES OUT, 
FL CUSPS OUT; 

DEFINE TABLES 
GRID CHAIN VOLUMES The volumes found in the grid chain 

describing the aircraft trajectory 
The volume identifier volume id 

first_cusp_time The first cusp before the grid chain 
cell containing the volume 

(volume_id,first_cusp_time); all AGGREGATE 
DEFINE VARIABLES 

Loc Fl Id 
Min-Fl-Z 

The Flight Identification 
The minimum altitude over the flight 
The ceiling altitude of the polgon Ceiling_ Altitude 

being examined; 
1111 
FL_CUSPS = SELECT FIELDS time,x,y,z 

FROM TRAJECTORIES 
WHERE TRAJECTORIES.fl_id ~ Loc_Fl_Id 
ORDER BY TRAJECTORIES.time; 

CALL Cusps To Segments; 
CALL Grid_ChaTn Generation (GRID_CHAIN_VOLUMES OUT); 
SELECT FIELDS z 

FROM FL CUSPS 
INTO Min Fl Z 
WifE'RE F(:cusPS .z ~ MIN(FL_CUSPS .z); 

REPF~T FOR EACH GRID CHAIN VOLUMES RECORD; 
SELECT FIELDS ceiling_altitude 

FROM VOLUMES 
INTO Ceiling Altitude 
WHERE GRID_CHAIN_VOLUMES.volume_id ~ VOLUMES.volume_id; 

IF Min Fl Z LT Ceiling Altitude 
THEN - - - -
--INSERT INTO FIRST ORDER NOMINEES 

(all = GRID CHAIN VOLUMES.all); 
END First_Order_Coarse_FilterT 

FIGURE 4-3 
FIRST ORDER COARSE FILTER 

4-6 



ROUTINE Cusps To Segments; 
REFER TO SHARED LOCAL 

FL CUSPS IN, 
SEGMENTS OUT; 

DEFINE VARIABLES 
First_ Cusp 

Previous Time 

First_Cusp = "true"; 

The flag indicating that the first cusp of 
the trajectory is being processed 

The time of the previous cusp; 

REPEAT FOR EACH FL CUSPS RECORD; 
IF First_Cusp ~ "true" 
THEN 
--INSERT INTO SEGMENTS 

(begin = FL_CUSPS.cusp); 
Previous Time = FL CUSPS.time; 
First_Cusp = "false"; 

ELSE 
--UPDATE IN SEGMENTS 

(end = FL CUSPS.cusp) 
WHERE SEGMENTS.begin_t ~ Previous_Time; 

IF FL CUSPS.time NE MAX (FL_CUSPS.time) 
THEN 
--INSERT INTO SEGMENTS 

(begin = FL CUSPS.cusp); 
Previous Time ~ FL_CUSPS.time; 

END Cusps_To_Segments; 

FIGURE 4-4 
CUSPS TO SEGMENTS 

4-7 



The Grid Chain Generation (Figure 4-5) represents Airsp&ce 
Probe's capability to cross-reference the aircraft's trajectory 
to the grid structure. The output of this routine is the list 
of all the volumes associated with the cells that the 
aircraft's trajectory intersects (in the horizontal plane). 

In the element Set Up Segment Scan (Figure 4-6), the slope for 
a trajectory segment -is computed to determine the coordinate 
with the fastest change per unit distance. This is done so 
that the algorithm may increment the faster-changing variable 
(called the "independent variable") to step to the next row (or 
column) of grid cells assuming that the other coordinate will 
change at most one cell in either a positive or negative 
direction (see Figure 4-7). The element also identifies the 
cells containing the first and last points on the segment. 

At each grid cell, the independent variable is incremented one 
step in grid-cell coordinates and the dependent variable is 
recalculated by the element Scan Segment To Pick Up Cells 
(Figure 4-8). The next grid cell is determined from these new 
grid cell values. If it is found that the dependent variable 
has changed indicating a new row (or column) for the next grid 
cell, the element Add Box (Figure 4-9) is invoked to find the 
intermediate cell whicn has been crossed (see Figure 4-10). 

The element Add Box determines which intermediate cell the 
trajectory passes through as follows (see Figure 4-11): 

1. First, it is determined in what relation the current 
cell stands to the previous cell (upper right, etc.) 

2. Second, the point between the two cells is found. 

3. Next, the current trajectory segment is compared to 
the point between the cells. This enables the 
algorithm to determine if the trajectory segment 
passes to the right or left of the point. This 
uniquely determines the cell that the trajectory must 
pass through in order to reach the current cell. 

4. Lastly, this intermediate cell is added to the grid 
chain and falls in the proper order. 

The service utili ties Get Lower Left Corner Points (Figure 
4-12) and Put Box In Grid Ch~in CFigure 4-13) perform data 
retrieval and depositing to support Add Box. The former 

4-8 



ROUTINE Grid Chain Generation; 
PARAMETERS - -

GRID_ C HAIN_VOL UMES OUT; 
REFER TO GLOMI. 

ENVIRONMENTAL CELL CONTENTS IN; 
REFER TO SHARED LOCAL-

SEGMENTS IN; 
DEFINE TABLES 

GRID CHAIN CELLS 
cell id 
first_cusp_time 

GRID CHAIN VOLUMES 

volume id 
first_ cusp _time 

TEMP 
volume id 

DEFINE VARIABLES 
Prev Box 
Box 
Last Box 
Slope 
Step_X 
Step_Y 
Indep Var 
1111 -

The cells the trajectory intersects 
The cell identifier 
The time of the first cusp before the 

cell 
The volumes within the cells which 

intersect the trajectory 
The volume irlentifier 
The time of the first cusp before the 

cell 
A temporary table 

The volume identifier; 

The last cell looked at 
The current cell 
The final cell of the trajectory segment 
The Y vs X slope of the segment 
The independent variable increment 
The independent variable increment 
The independent variable; 

REPEAT FOR EACH SEGMENTS RECORD; 
CALL Set Up Segment Scan (SEGMENTS.pair IN, Box OUT, 
--Last Box-OUT, Slope OUT, Step X OUT, Step Y OUT, 

Indep Var OUT, GRID CHAIN CELLS OUT); - -
CALL Scan Segment To Pick Up -Cells (SEGMENTS. pair IN, 
--Box IN: Last Box lN, Slope IN, Step X IN, Step YIN, 

Indep_Var IN:- GRID_CHAIN_CELLS INOUT);- - -
REPEAT FOR EACH GRID_CHAIN_CELLS RECORD; 

TEMP = SELECT FIELDS volume id 
FROM ENVIRONMENTAL CELL CONTENTS 
WHERE ENVIRONMENTAL_CELL_CONTENTS.cell id EQ 

GRID CHAIN CELLS.cell id; 
REPEAT FOR-EACH TEMP RECORD; 

INSERT INTO GRID CHAIN VOLUMES 
(volume id = TEMP.volume id, first_cusp_time = 
GRID_CHAIN_CELLS.first_cusp_time); 

END Grid_Chain_Generation; 

FIGURE 4-5 
GRID CHAIN GENERATION 

4-9 



ROUTINE Set Up Segment Scan; 
PARAMETERS - - -

SEGMENT IN, 
Box OUT,-
I.as t Box OUT, 
Slope OUT-,-
Step X OUT, 
Step-Y OUT, 
Indep_Var OUT 
GRID CHAIN CELLS OUT; 

REFER TO GLOBAL 
Environmental Cell Width IN; 

DEFINE TABLES 
SEGMENT 

begin x 
begin-y 
begin=z 
begin_t 
end x 
end-y 
end-z 
end t 

GRID CHAIN CELLS 

first_cusp_time 

DEFINE VARIABLES 
Box 
last Box 
slope 

Step_X 
Step Y 
Indep Var 
Del ta-X 
Delta-Y 

The current trajectory segment 
The first cusp of the segment 

The second cusp of the segment 

The cells intersecting the trajectory 
The cell identifier 
The time of the first cusp before the 

cell; 

The first cell intersected 
The last cell intersected 
The slope of the segment with respect to 

the independent variable 
The independent variable increment 
The independent variable increment 
The independent variable 
The segment X extent 
The segment Y extent; 

FIGURE 4-6 
SET UP SEGMENT SCAN 

4-10 



CALL Grid (SEGMENT.begin x IN, SEGMENT.begin y IN, 
--Box OUT); - - - -

INSERT 000 GRID CHAIN CELLS 
(cell_id • Box, first_cusp_time • SEGMENT.begin_t); 

Delta X • SEGMENT.end x - SEGMENT.begin x; 
Delta=Y • SEGMENT.end:J - SEGMENT.begin=y; 
Step X = SIGN (Delta X) * Environmental Cell Width; 
Step-Y = SIGN (Delta-Y) * Environmental-Cell-Width; 
Slope = Delta Y/Delt~ X; - -
IF ABS(Slope)-LT 1 -
THEN -
--Indep Var • "X"; 
ELSE -
--Indep Var = "Y" · - ' Slope = Delta X/Delta Y; 
CALL Grid (SEGMENT.end x-IN, SEGMENT.end_y IN, 
---rast Box OUT); - -

END Set_Up=Segment_Scan; 

FIGURE 4-6 (Concluded) 
SET UP SEGMENT SCAN 

4-11 



y 

X 

(a) y is chosen as the independent variable. 

y 

X 

(b) x is chosen as the independent variable 

FIGURE 4·7 
INDEPENDENT VARIABLE SELECTION 

4-12 



.ROUTINE Scan_Segment_To_Pick_Up_Cells; 
PARAMETERS 

SEGMENT IN, 
Box IN, -
LastBox IN, 
Slope IN,-
Step X IN, 
Step-Y IN, 
Indep_Var IN, 
GRID CHAIN CELLS INOUT; 

REFER TO GLOBAL 
ENVIRONMENTAL_CELLS; 

REFER TO SHARED LOCAL 
SEGMENTS IN; 

DEFINE TABLES 
SEGMENT 

begin x 
beginJ 
begin z 
begin=t 
end x 
end_y 
end z 
end t 

GRID CHAIN CELLS 
cell id
first_cusp_time 

DEFINE VARIABLES 
Box 
Last Box 
slope 

Step_X 
Step Y 
Inde'i)_Var 
Prv Box 
Prv Box X 
Prv Box Y 
Boxx 
BoxY 
Step_Count 
X 
y 

The current trajectory segment 
The first cusp of the segment 

The second cusp of the segment 

The cells intersecting the trajectory 
The cell identifier 
The time of the first cu~p before the 

cell; 

The first cell intersected 
The last cell intersected 
The slope of the segment with respect to the 

independent variable 
The independent variable increment 
The independent variable increment 
The independent variable 
The previous cell intersected 
The minimum X value of the previous cell 
The minimum Y value of the previous cell 
The minimum X value of the current cell 
The minimum Y value of the current cell 
The number of independent variable steps 
The X coordinate of the current step 
The Y coordinate of the current step; 

FIGURE 4-8 
SCAN SEGMENT TO PICK UP CELLS 

4-13 



Step Count = 0; 
REPEAT WHILE Box NE l,ast_Box; 

Step_Count = Step Count + 1; 
Prv Box = Box; 
SELECT FIJ LDS min __ x,min_y 

FROM ENVIRONMENTAL CELLS 
INTO X.Y 
WHERE ''NVIRONMENTAL_CELLS.cell_id ~ Prv_Box; 

Q:_ Indep _' ar EQ "X" 
THEN 
--X = X + Step_X; 

Y = SEGMENT.begin y + Slope * Step Count; 
CALL Grid (X IN, YIN, Box OUT); 
SELECT FIELDS min_y 

FROM ENVIRONMENTAL CELLS 
INTO Prev Box Y 
WHERE ENVIRONMENTAL_CELLS.cell_id .f& Prv_Box; 

SELECT FIELDS min_y 
FROM ENVIRONMENTAL CELLS 
INTO Box Y 
WHER~ ENVIRONMENTAL_CELLS.cell_id ~Box; 

IF Box Y NE Prv Box Y -- -THEN 
--CALL Add Box (Prv Box IN, Box IN, SEGMENT IN, 

GRID CHAIN CELLS INOUTT; 
ELSE 

Y = Y + Step Y; 
X = SEGMENT.begin x + Slope * Step Count; 
CALL Grid (X IN, Y IN, Box OUT); 
SELECT FIELDS min x 

FROM ENVIRONMENTAL CELLS 
INTO Prv Box X --- - -
WHER~ ENVIRONMENTAL_CELLS.cell_id ~ Prv_Box; 

SELECT FIELDS min x 
FROM ENVIRONMENTAL CELLS 
INTO Box X 
WHERE ENVIRONMENTAL CELLS .cell id EQ Box; 

IF Box X NE Prv Box X --THEN 
--CALL Add Box (Prv Box IN, Box IN, SEGMENT IN, 

GRID_CHAIN_CELLS INOUTT; 
INSERT INTO GRID CHAIN CELLS 

(cell id = Box, first cusp time SEGMENT.begin_t); 
END Scan_Segment_To_Pick_Up_Cells; -

FIGURE 4-8 (Concluded) 
SCAN SEGMENT TO PICK UP CELLS 

4-14 



ROUTINE Add_Box; 
PARAMETERS 

Prev_ Box IN, 
Box IN, 
SEGMENT IN, 
GRID CHAIN CELLS 

DEFINE TABLES-
SEGMENT 

begin x 
begin-y 
begin-z 
begin:) 
end x 
end y 
end-z 
end t 

GRID CHAIN CELLS 
cell id-

INOUT; 

f irst_ cusp _time 

DEFINE VARIABLES 
Prev Box 
Box 
Prev Box X 
Prev Box Y 
Box X 
BoxY 
Side 

. ' 

The current trajectory segment 
The first cusp of the segment 

The second cusp of the segment 

The cells which inters·ent. the· tra'j~ct·s.t;Y .1 

The cell identifier • · 
The time of the first cusp before the. 

cell; 

The previous cell intersected 
The current cell intersected 
The minimum X value of the previous cell 
The minimum Y value of the previous cell 
The minimum X value of the current cell 
The minimum Y value of the current cell 
The side of the line where the point is; 

FIGURE 4-9 
ADD BOX 

4-15 



CALL Get Lower Lef.t Corner Points (Prev Box IN, Box IN, 
--Prev_Box_X OUT, Prev_Box_Y OUT, Box_X oUT-;-Box_Y OUT); 

. CHOOSE CASE 
WHEN Box X GT Prev Box X AND Box Y GT Prev Box Y THEN 
--CALL Linear Discri~t~Inant Classifier (SEGMENT.begin 

--IN, SEGMENT.end IN; Box X IN, Box Y IN, Side OU'l') 
IF Side EQ "l"eft" - - - - - --
THEN -

CALL Put, Bo:lc In Grid Chain (l?rev Box X IN, 
--B6x ~ Y -1~;-SEGI'iENt-:-IN, GRID_ CHAIN _,_:CELLS IN OUT); 

·ELSE 
--CALL Put Box:<I·h~GricLGhatnQ·(·Bex.Xw!N, i?rev BoxY IN, 

--SEGMENT IN' ·"G&ID-CHAI-N~ GEL:L'S :-IN OUT); - - -
WHEN Box X GT Prev Box X AND Box Y LT Prev Box Y THEN 
---cALL Linear Dis~riminant Clas;ifier (SEGMENT.begin IN, 

--SEGMENT.end IN, Box_X-IN, Prev_Box_Y IN, Side OUT) 
··IF Side ~ "left" 

THEN 
--CALL Put Box In Grid Chain (Box X IN, Prev Box Y IN, 

--SEGMENT IN, GRID_CHAIN_CELLS-INOuT); - - -
ELSE 
--CALL Put Box In Grid Chain (Prev Box X IN, 

--Box Y-IN,-SEGMENT-IN, GRID CHAIN CELLS IN OUT); 
WHEN Box X LT Prev Box X ANo-Box Y GT Prev Box Y THEN 
--CALL Linear Discriminant Classifier (SEGMENT.begin IN, 

--SEGMENT.end IN, Prev Box X IN, BoxY IN, Side OUT); 
IF Side ~ "left" - - - - - --
THEN 
--CALL Put Box In Grid Chain (Box X IN, Prev BoxY IN, 

--SEGMENT IN, GRID_CHAIN_CELLS-INOUT); - -
ELSE 

CALL Put_Box_In_Grid_Chain (Prev_Box_X IN, Box_Y IN, 
SEGMENT IN, GRID_CHAIN_CELLS INOUT); 

WHEN Box X LT Prev Box X AND Box Y LT Prev Box Y THEN 
--CALL Linear Discriminant Clas;ifier (SEGMENT.begin IN, 

--SEGMENT. end IN, Prev Box X IN, Prev Box Y IN, Side OUT) 
IF Side EQ "left" - - - - - --
THEN -
--CALL Put Box In Grid Chain (Prev Box X IN, 

--Box_ Y-IN,-SEGMENT-IN, GRID_ CHAIN_ CELLS IN OUT); 
ELSE 
--CALL Put Box In Grid Chain (Box X IN, Prev Box Y IN, 

--SEGMENT IN, GRID CHAIN CELLS-INOUT); - - -
END Add_Box; 

FIGURE 4-9 (Concluded) 
ADD BOX 

4-16 



y 

--
previous current 

X 

(a) Independent variable is x and no change in y, 
therefore no intermediate grid cell. 

current 

previous 
~----------._----------------~X 

(b) Independent variable is x and a change in 
y of +l (grid cell coordinates) indicates 
an intermediate box is intersected (in 
dashed lines). 

FIGURE 4·10 
INTERMEDIATE GRID CELL RECOGNITION 

4-17 



/ 

UPPER 
A VPPER 

LEFT IGHT 

/ _., 
~ POINT PREVIOUS 

CELL BETWEEN 
CELLS 

B 

LOWER LOWER 
LEFT RIGHT 

FIGURE 4·11 
INTERMEDIATE GRID CELL DETERMINATION 

4-lR 



ROUTINE Get Lower Left Corner Points; 
PARAMETERS - - - -

Prev Box IN, 
Box IN, -
Prev Box X OUT, 
Prev-Box-Y Otff, 
Box X OUT,--
Box-Y OUT; 

REFER TO GLOBAL 
ENVIRONMENTAL CELLS 

DEFINE VARIABLES 
Prev Box 
Box 
Prev Box X 
Prev Box Y 
Box X 
Box Y 

IN• _, 

The previous cell intersected 
The current cell intersected 
The minimum X value of the previous cell 
The minimum Y value of the previous cell 
The minimum X value of the current cell 
The minimum Y value of the current cell; 

SELECT FIELDS min x,min_y 
FROM ENVIRONMENTAL CELLS 
INTO Prev_Box_X, Prev_Box_Y 
WHERE ENVIRONMENTAL_CELLS.cell_id ~ Prev_Box; 

SELECT FIELDS min x,min y 
FROM ENVIRONMENTAL CELLS 
INTO Box_X, Box_Y 
WHERE ENVIRONMENTAL_CELLS .cell_id N Box; 

END Get_Lower_Left_Corner_Points; 

FIGURE 4-12 
GET LOWER LEFT CORNER POINTS 

4-19 



ROUTINE Put_Box_In_Grid_Chain; 
PARAMETERS 

X IN, 
Y IN, 
SEGMENT IN, 
GRID CHAIN CELLS 

DEFINE TABLES
SEGMENT 

begin x 
begin-y 
begin-z 
begin-t 
end x-
end_y 
end z 
end-t 

GRID CHAIN CELLS - -cell id 

INOUT; 

The current trajectory segment 
The first cusp of the segment 

The second cusp of the segment 

The cells intersecting tlie t.raje·cto·ry 
The cell identifier 

first_cusp_time The time of the first cusp before the 
cell; 

DEFINE VARIABLES 
X The X coordinate of the point 

The Y coordinate of the point 

1111 

y 
Cell Id The cell which includes the point (X,Y); 

CALL Grid (X IN, Y IN, Cell_Id OUT); 
INSERT INTO GRID CHAIN CELLS 

(cell id = Cell Id,-first cusp time = SEGMENT.begin_t); 
END_ Put_Box=:In_Grid_Chain; - -

FIGURE 4-13 
PUT BOX IN GRID CHAIN 

4-20 



obtains the lower (least y) left (least x) hand corner point 
for two boxes. The latter inserts a cell identification (along 
with the time at the segment initial point) into the grid-chain 
table. 

4.2 Second-Order Coarse Filter 

4.2.1 Mission 

First-Order Coarse Filter processing has identified a set of 
Nominee polygons. The Second-Order Coarse Filter is a finer 
filter which processes the First-Order Nominee polygons to 
reduce the set of potentially intersecting polygons. At this 
level of granularity, "close" is defined so as to include only 
those nominee polygons (approximated by the smallest right 
rectangle aligned square to the coordinate axes) which inter
sect the trajectory segments. The polygons passing this filter 
are examined in greater detail in the Fine Filter. 

4.2.2 Design Considerations and Component Environment 

In the Second-Order Coarse Filter, the algorithm accesses, for 
the first time in Airspace Probe, the actual dimensions of the 
four-dimensional polygons. However, the polygons, themselves, 
are not processed, but enclosed in a parallelepiped. The 
extents in the x, y, z, and t dimensions are used to construct 
the parallelepiped (Figure 4-14). One-dimensional intersection 
tests alone on this volume rapidly eliminate non-candidate 
polygons, especially those not intersecting the trajectory in 
the altitude and time dimensions (dimensions not incorporated 
into the First-Order Coarse Filter). 

The sequence of elements associated with the Second-Order 
Coarse Filter is given in Figure 4-15. Program design language 
is provided in this section for each element of Figure 4-15 
with the exception of Linear Discriminant Classifier. A 
description of that element is proVided in Appe!ldix B. 

Input Data 

The input data required by the Second-Order Coarse Filter 
consists of: 

4-21 



-y 

·y 

FIGURE 4-14 
APPROXIMATION OF AN AIRSPACE BY 

RECTANGLES IN EACH ORIENTATION PLANE 

4-22 

X 



.. ; .... 
Setond Ord~~ C~arBe ~ilter 

· Re tri~vt!. Polyson-Exte.Dtitt 
One Dim Checks -

,, 
'" >4'. ·':; 

Segment Vs Segment Intersection· 
. Two Dim Checks -

Segment_Vs_Plane_Intersection 
Linear Discriminant Classifier 

FIGURE 4-15 
ELEMENTS OF THE SECON]}-ORDER COARSE FILTER 

4-23 



• System Global Data Base 

SPECIAL USE AIRSPACES 

The activation and deactivation times associated 
with individual polygons are retrieved to support 
time interval intersection tests .• 

- VOLUME COORDINATES 

The (x,y) coordinates of each vertex of each polygon 
are contained in this table. Only the maximum and 
minimum x's and y's are obtained. The ceiling and 
floor altitudes for the polygon are used to describe 
the vertical extent. 

• Shared Local Data Base 

Output 

SEGMENTS 

The aircraft's trajectory has been stored for 
Airspace Probe use as an ordered sequence of line 
segments. Each trajectory segment is checked for 
possible intersection with parallelepipeds 
containing First-Order Nominees. 

FIRST ORDER NOMINEES 

This table contains "the identity · of each polygon 
thought to be "close" to the trajectory. 

The Second-Order Coarse Filter produces a list of nominee 
polygons which must be processed through the remainder of the 
Airspace Probe algorithm. 

• Shared Local Data Base 

SECOND ORDER NOMINEES 

The identities of the polygons which are identified 
by the Second-Order Coarse Filter are stored in this 
table. These polygons must have the property that a 
parallelepiped enclosing the volume intersects the 
trajectory of the aircraft. 

4-24 



4.2.3 ComponLnt Design Logic 

The Second-Or ier Coarse Filter (Figure 4-16) examines each 
First-Order N(1tninee to determine if an intersection can exist 
with the ai,-craft trajectory. Each nominee is processed 
separately, f rst by obtaining the maximum and minimum x, y, z, 
and t values ;cross the polygon. This first step is performed 
by the element Retrieve_Polygon_Extents (Figure 4-17). 

Each trajectory segment, beginning with the cusp associated 
with the nominee, is examined for potential intersections. 
Each segment passing through the process undergoes tests 
against the rectilinear space circumscribed about the polygon 
being checked. To perform this test, a sequence of filtration 
steps are performed. The two major steps check if the aircraft 
trajectory segment intersects: (1) the extent of the polygon 
in single dimensions (Figure 4-18), and (2) the extent of the 
polygon in certain planes (Figure 4-19). If an intersection is 
not found at any particular step, the aircraft trajectory will 
not intersect the polygon. Consequently, the polygon is 
rejected as a Nominee immediately if this condition is detected. 

The first step, given in the element One Dim Checks (Figure 
4-20), sets up comparisons of the aircraft trajectory segment 
with the extt~nt of the polygon. The comparisons done tn 
Segment Vs Segment Intersection (Figure 4-21) check to see if 
the !-dimensional extent of the trajectory segment intersects 
the l-dimensi3nal extent of the polygon in corresponding 
dimensions. The order in which dimensions are checked should 
be ordered in such a way as to take advantage of the 
distribution of trajectory segment and polygon data. For 
example, if most aircraft trajectory segments input to the 
Second-Order Coarse Filter indicate that checking the altitude 
would drop half the cases but checking one of the horizontal 
dimensions would drop only a quarter of the cases, then the 
altitude check should be made before the horizontal checks. 

The second step, given in the element Two Dim Checks (Figure 
4-22), sets up comparisons of the extent of the aircraft 
trajectory to the extent of the polygon in various orientation 
planes. The comparisons done in Segment Vs Plane Intersection 
(Figure 4-23) check to see if the 2-dime"iisional extent of the 
trajectory segment intersects the 2-dimenslonal extent of the 
polygon. Only the x-y, y-z, x-z, and z-t planes are examined. 
It is not necessary to check the x-t and y-t planes or the 
x-y-z volume since the planes checked account for these 
orientations. The Second-Order Coarse Filter examines the 
polygon from the various orientation planes in this coarse 

4-25 



ROUTINE Second_Order_Coarse_Filter; 
REFER TO SHARED LOCAL 

SEGMENTS IN, 
FIRST ORDER NOMINEES IN, 
SECOND ORDER NOMINEES OUT; 

DEFINE TABLES - -
POLYGON EXTENTS The extents of the polygon in each 

min x 
min_y 
min z 
min t 
max x 
max_y 
max z 
maxt 

dimension 
The minimum value of 
The minimum value of 
The minimum value of 
The minimum value of 

the x dimension 
the y dimension 
the z dimension 
the t dimension 

The maximum value 
The maximum value 
The maximum value 
The maximum value 

of the x dimension 
of the y dimension 
of the z dimension 
of the t dimension; 

DEFINE VARIABLES 
Segment_ Intersection 
Plane Intersection 
1111 

This flags a segment intersection 
This flags a plane intersection; 

REPEAT FOR EACH FIRST ORDER NOMINEES RECORD; 
CALL Retrieve Polygon Extents 
---rF"IRST ORDER NOMINEES.volume id IN, POLYGON_EXTENTS .Q!!!); 
REPEAT FOR EACH SEGMENTS RECORD 

WHERE SEGMENTS.begin time GE 
FIRST ORDER NOMINEES.first cusp time AND 
FIRST-ORDER-NOMINEES.volume id Is NOTIN - - -SECOND ORDER NOMINEE.volume id; 

CALL One Dim Checks (SEGMENTS.pair IN, POLYGON EXTENTS IN, 
-- - - Segment Intersection OUTY'i" -
IF Segment_Intersection .m_ "true" --
THEN 
---cALL Two Dim Checks (SEGMENTS.pair IN, 

---pOLYGON EXTENTS IN, Plane Intersection OUT); 
IF Plane_iiitersection ~ "true'' -
THEN 
--INSERT INTO SECOND ORDER NOMINEES 

(all = FIRST ORDER NOMINEES.all); 
END Second_Order_Coarse_Filter; -

FIGURE 4-16 
SECOND ORDER COARSE FILTER 

4-26 



ROUTINE Retrieve Polygon Extents; 
PARAMETERS - -

Volume_Id IN, 
POLGON EXTENTS OUT; 

REFER TO GLOBAL -
SPECIAL USE AIRSPACES IN, 
VOLUME COORDINATES IN;-

DEFINE TABLES -
POLYGON EXTENTS 

min x 
miny 
min z 
min t 
max x 
maxy 
max z 
max t 

DEFINE VARIABLES 
Volume Id 
Start Time 
Stop Time 

DEFINE CONSTANTS 
Earliest Possible Time 
Latest Possible Time 

The extents of the polygon in 
dimension 

each 

The minimum value of 
The minimum value of 
The minimum value of 
The minimum value of 
The maximum value of 
The maximum value of 
The maximum value of 
lbe maximum value of 

The volume identifier 

the X extent 
the Y extent 
the Z extent 
the T extent 
the X extent 
the Y extent 
the Z extent 
the T extent; 

The activation time of the polygon 
The deactivation time of the polygon; 

The earlist representable time 
The latest representable time; 

FIGURE 4-17 
RETRJEVE POLYGON EXTENTS 

4-27 



IF Volume Id IS IN SPECIAL USE AIRSPACES.volume id 
THEN --

§"ELECT FI~:LDS start_ time ,stop_time 
FROM SPECIAL USE AIRSPACES 
INTO Start Time,Stop Time 
WHERE SPECIAL USE AIRSPACES.volume id ~Volume Id; 

ELSE # Volume Id m~st be for an E-MSAW area # -
--Start Time = Earliest Possible Time; 

Stop_Time = Latest_Possible_Time; 
INSERT INTO POLYGON EXTENTS 

(min_t a Start_Tfme, max_t • Stop_Time); 
UPDATE IN POLYGON EXTENTS 

(m!n_x = VOLuME_COORDINATES.x) 
WHERE VOLUME_COORDINATES.volume_id ~ Volume_Id AND 

VOLUME_COORDINATES .x ~MIN (VOLUME_COORDINATES.x) ~ 
POLYGON_EXTENTS.min_t ~ Start_Time; 

UPDATE IN POLYGON EXTENTS 
(max_x = VOLuME_COORDINATES.x) 
WHERE VOLUME_COORDINATES.volume_id ~ Volume_Id AND 

VOLUME_COORDINATES.x ~MAX (VOLUME_COORDINATES.x) M!Q. 
POLYGON_EXTENTS.min_t ~ Start_Time; 

UPDATE IN POLYGON EXTENTS 
(min y = VOLuME COORDINATES.y) 
WHERE VOLUME_COORDINATES.volume_id ~ Volume_Id AND 

VOLUME_COORDINATES .y ~ MIN (VOLUME_COORDINATES .y) AND 
POLYGON_EXTENTS.min_t ~ Start_Time; 

UPDATE IN POLYGON EXTENTS 
(max y = VOLuME COORDINATES.y) 
WHERE VOLllME_COORDINATES.volume_id ~ Volume_Id AND 

VOLUME_COORDINATES.y ~ MAX (VOLUME_COORDINATES.y) M!Q. 
POLYGON_ EXTENTS .min_t ~ Start_Time; 

UPDATE IN POLYGON EXTENTS 
(min z = VOLuMES.floor altitude) 
WHERE VOLUMES. volume_ id ~ Volume_ Id AND 

POLYGON_EXTENTS .min_t ~ Start_Time; 
UPDATE IN POLYGON EXTENTS 

(max z = VOLuMES.ceiling altitude) 
WHERE VOLUMES.volume_id ~ Volume_Id AND 

POLYGON_EXTENTS.min_t ~ Start_Time; 
END Retrieve_Polygon_Extents; 

FIGURE 4-17 (Concluded) 
RETRIEVE POLYGON EXTENTS 

4-28 



z 

z 

Polygon Extent 

(a) No Intersection in the X-Dimension 

l 
Trajectory 

Extent 

Polygon Extent 

(b) Intersection in the X-Dimension 

X 

FIGURE 4-18 
TRAJECTORY/POLYGON ONE-DIMENSIONAL INTERSECTION 

4-29 



z 

x-z Plane 

x-y Plane 

FIGURE 4·19 
TRAJECTORY/POLYGON TWO-DIMENSIONAL INTERSECTION 

4-30 

X 



ROUTINE One_Dim_Checks; 
PARAMETERS 

SEGMENT IN, 
POLYGON_EXTENT IN, 
Segment Intersection In All Dimensions OUT; 

DEFINE TABLES . - - - -
SEGMENT The current trajectory segment 

begin x The first cusp of the segment 
begin:J 
begin z 
begin-t 
end x- The second cusp of the segment 
end y 
end-z 
end-t 

POLYGON EXTENT The extent of the polygon in each 

minx 
min_y 
min z 
min t 
max x 
max_y 
max z 
max t 

dimension 
The minimum value of 
The minimum value of 
The minimum value of 
The minimum value of 
The maximum value of 
The maximum value of 
The maximum value of 
The maximum value of 

DEFINE VARIABLES 
Segment_Intersection_In_All_Dimensions 
Segment_Intersection 

FIGURE 4-20 
ONE DIM CHECKS 

4-31 

the X extent 
the Y extent 
the Z extent 
the T extent 
the X extent 
the Y extent 
the Z extent 
the T extent; 

Flag 
Flag; 



Segment Intersection In All Dimensions • "false"; 
CALL Segment_Vs_Segment=Intersection (SEGMENT.begin_t IN, 

SEGMENT.end t IN, POLYGON EXTENT.min t IN, 
POLYGON EXTENT. max t IN, Segment Intersection OUT); 

IF Segmen<)ntersection ~ "true" - --
THEN 

CALL Segment_Vs_Segment_Intersection (SEGMENT.begin_z f!, 
SEGMENT.end z IN, POLYGON EXTENT.min z IN, 
POLYGON EXTENT.max z IN, Segment Intersection OUT); 

IF Segment:Intersection ~ "true" - --
THEN 
--C-ALL Segment Vs Segment Intersection (SEGMENT.begin x IN, 

--SEGMENT.end x IN, POLYGON EXTENT.min x IN, - -
POLYGON EXTENT.max x IN, Segment Intersection OUT); 

IF Segment=Intersection ~ "true" - --
THEN 
---cALL Segment Vs Segment Intersection 

--(SEGMENT. begin y IN,-SEGMENT. end y IN, 
POLYGON EXTENT7min-y IN, POLYGON-EXTENT.max y IN, 

Segment Intersection OUT); - - -
IF Segment_Intersection ~ "true" 
THEN 
--Segment Intersection In All Dimensions "" "true"; 

END One_Dim_Checks; - - - -

FIGURE 4-20 (Concluded) 
ONE DIM CHECKS 

4-32 



ROUTINE Segment_Vs_Segment_Intersection; 
PARAMETERS 

Segment_Minimum IN, 
Segment_Maximum IN, 
Polygon Minimum IN, 
Polygon-Maximum IN, 
Segment-Intersection OUT; 

DEFINE VARIABLES -
Segment_ Minimum 

Segment_Ma.ximum 

Polygon_ Minimum 

Polygon_Ma.ximum 

Segment Intersection 
1111 -

The minimum value of the segment extent 
for a given dimension 

The maximum value of the segment extent 
for a given dimension 

The minimum value of the polygon extent 
for a given dimension 

The maximum value of the polygon extent 
for a given dimension 

The flag for a segment/polygon intersection; 

IF Segment Minimum GT Polygon Maximum OR 
-- Segment:Maximum LT Polygon=Minimum -
THEN 
--Segment_ Intersection .. "false"; 
ELSE 
--Segment Intersection • "true"; 

END Segment_Vs_Segment_Intersection; 

FIGURE 4-21 
SEGMENT VS SEGMENT INTERSECTION 

4-33 



ROUTINE Two_Dim_Checks; 
PARAMETERS 

SEGMENT IN, 
POLYGON EXTENT IN, 
Plane_Intersection_In_All_Orientations OUT; 

DEFINE TABLES 
SEGMENT 

begin x 
begin-y 
begin-z 
begin-t 
end x
end_y 
end z 
end-t 

POLYGON EXTENT 

minx 
min_y 
min z 
min-t 
max x 
max_y 
max z 
maxt 

DEFINE VARIABLES 

The current trajectory segment 
The first cusp of the segment 

The second cusp of the segment 

The extent of the polygon in each 
dimension 
The minimum value of 
The minimum value of 
The minimum value of 
The minimum value of 
The maximum value of 
The maximum value of 
The maximum value of 
The maximum value of 

the X extent 
the Y extent 
the Z extent 
the T extent 
the X extent 
the Y extent 
the Z extent 
the T extent; 

Plane Intersection In All Orientations 
Plane-Intersection-

Flag 
Flag; 

FIGURE 4-22 
TWO DIM CHECKS 

4-34 



Plane Intersection In All Orientations • "false"; 
CALL Segment Vs Plane-Intersection (SEGMENT.begin t IN, 
--SEG.MENT.begin z IN:- SEG.MENT.end t IN, SEGMENT.endz IN, 

POLYGON EXTENT. min t IN, POLYGON EXTENT. max t IN,- -
POLYGON-EXTENT.min-z IN, POLYGON-EXTENT.max-z Iii, 
·Plane Intersection-OUT); - - -

1! Plane=Intersection ~ "true" 
THEN 
~ALL Segment Vs Plane Intersection (SEGHENT.begin x IN, 

~GMENT.begin z IN:- SEGMENT.end x IN, SEGMENT.endz IN, 
POLYGON EXTENT. min x IN, POLYGON EXTENT. max x IN,- -
POLYGON-EXTENT.min-z IN, POLYGON-EXTENT.max-z IN, 
Plane Intersection-OUT); - - --

!! Plane:Intersection ~ "true" 
THEN 
---cALL Segment Vs Plane Intersection (SEGMENT.begin y IN, 

--SEGMENT.begin_z IN, SEGMENT.end_y IN, - -
SEGMENT. end z IN, POLYGON EXTENT. min y IN, 
POLYGON EXTiNT.max y IN, POLYGON EXTENT.min z IN, 
POLYGON-EXTENT.max-z IN, Plane Intersection-ouT); 

IF Plane_Intersection-~--..true" - --
THEN 
---cALL Segment Vs Plane Intersection 

--(SEGMENT.begin_x IN, SEGMENT.begin_y IN, 
SEGMENT.end_x .!!' SEGMENT.end_y .!!' 
POLYGON EXTENT .min x IN, POLYGON EXTENT .max x IN, 
POLYGON -EXTENT. min J IN, POLYGON-EXTENT. max-y IN, 
Plane Intersection ouT); - - -

!!: Plane:Intersection ~ "true" 
THEN 
---plane Intersection In All Orientations • "true"; 

END Two Dim Checks; - - ~ 

FIGURE 4-22 (Concluded) 
TWO DIM CHECKS 

4-35 



ROUTINE Segment Vs Plane Intersection; 
PARAMETERS - - -

Segment Start U IN, 
Segmen ()tart: V IN, 
Segment End U IN, 
Segment-End-V IN, 
Polygon-Minlmuilu IN, 
Polygo~Minimum:v IN, 
Polygon Maximum U IN, 
Polygon-Maximum-V IN; 
Segment:Intersection OUT; 

DEFINE VARIABLES 
Segment_ Start_ U 

Segment_ Start_ V 

Segment_ End_ U 

Segment_End_V 

Polygon_Minimum_U 
Polygon Minimum V 
Polygon:Maximum:u 
Polygon_Maximum_V 
Plane Intersection 
First-Side 

Side 

The value of the U coordinate for the 
first cusp of the segment 

The value of the V coordinate for the 
first cusp of the segment 

The value of the U coordinate for the 
second cusp of the segment 

The value of the V coordinate for the 
second cusp of the segment 

The minimum U extent of the polygon 
The minimum V extent of the polygon 
The maximum U extent of the polygon 
The maximum V extent of the polygon 
The segment/plane intersection flag 
The side of the segment on which the 

first polygon vertex lies 
The side of the segment on which the 
current polygon vertex lies; 

FIGURE 4-23 
SEGMENT VS PLANE INTERSECTION - - -

4-36 



Plane Intersection • "true"; 
~ Unear_Discriminant_Classifier (Segment_Start_U IN, 

Segment Start V IN, Segment End U IN, Segment End V IN, 
Polygon-MinimUm UIN, Polygon Minimum V IN, First-Side OUT); 

CALL IJ.near Discri'iDinnt Classifier (SegmentStart U-IN, --
---segment Start V IN, Segment End U IN, Segment End y-IN, 

Polygon-Maximum u IN, Polygon Minimum v IN, Side OUT); 
IF Side .!CFirst_Side- - - - -
THEN 
---cALL Linear Discriminant Classifier (Segment Start U IN, 

-segment Start v IN, Segment End u IN, Segment End VIN, 
Polygon-Maximum UIIN, Polygon Maximum v IN, side oUT>; 

IF Side ~-First_Side- - - - -
THEN 
---c:ALL Linear Discriminant Classifier (Segment Start U IN, 

-segment Start v IN, Segment End u IN, Segment Eiid YIN, 
Polygon-Minimum UIN, Polygon Maximum v IN, side OUT); 

IF Side ~-First_Side- - - - -
THEN 
--:flane Intersection • "false"; 

~ Segment_Vs_Plane_Intersection; 

FIGURE 4-23 (Concluded) 
SEGMENT VS PLANE INTERSECTION 

4-37 



manner. The entire polygon is not examined but rather· the 
smallest rectilinear space square to the coordinate axes 
circumscribed about it. 

To detemine whether a segment intersects a given rectangle 
coarsely describing the extent of the polygon in a certain 
orientation plane, a linear discriminant is used. The Linear 
Discriminant Classifier is described in Appendix B. With the 
information -it provides , one can classify points in the 
orientation plane as being left or right of the trajectory 
segment. A trajectory segment will intersect the rectangle 
about the polygon extent (in a given plane) if points of the 
polygon are found both to the left and to right of the segment 
(i.e. a line of the rectangle must cross the segment). 

4.3 Fine Filter Processing 

4.3.1 Mission 

The Second-Order Coarse Filter processing has identified a set 
of Nominee polygons that are close to, but do not necessarily 
intersect, the aircraft's trajectory. The Fine Filter 
processing now must determine whether the given polygons do 
indeed intersect the aircraft's trajectory. The processing for 
each polygon is more involved than that in the coarse filters 
since the polygons may have concave sides and the exact points 
of intersection in 4-space must be determined. The information 
found by the Fine Filter is passed on to Encounter Processing 
to set up the relevant global data structures. 

4.3.2 Design Considerations and Component Environment 

In the Fine Filter, the coordinates of the vertex points of 
each Second-Order Nominee are used to construct line segments 
to test for intersection with a trajectory segment. For 
efficiency reasons, the logic should consider convex and 
nonconvex polygons separately. 

The sequencing of elements associated with the Fine Filter is 
given in Figure 4-24. Program design language is provided in 
this section for each element of Figure 4-24 with the exception 
of Find Polygon Boundary Intersections, Linear Discriminant 
Classifier, and -Time To Violation. A description of these 
elements is provided in Appendix B. 

4-38 



Fine Filter 
Convex_Polygon_Intersection_Check 

Find Polygon Boundary Intersections 
Linear Discriminant Classifier 
Time To Violation -

Mixed Polygon-Intersection Check 
Find Polygon Boundary Intersections 

Linear Discriminant Classifier 
Time To Violation 

Group Into-Intersection Pairs 
Vertical VIolation Check 
Find_Exact_Violation Points 

FIGURE 4-24 
ELEMENTS OF THE FINE FILTER 

4-39 



Input 

The input data required by the Fine Filter consists of: 

• System Global Data Base 

VOLUMES 

The volume type is obtained--either "convex" or 
"mixed." This field is used to determine which 
polygon intersection test routine to use. 

- VOLUME COORDINATES 

The vertex points of the polygons are obtained for 
line intersection tests. 

• Shared Local Data Base 

Output 

SEGMENTS 

The trajectory of the aircraft is stored locally as 
an ordered sequence of line segments. 

SECOND ORDER NOMINEES 

This table contains the identity of each polygon 
passing the tests of the Second-Order Coarse Filter. 

The Fine Filter produces a list of environmental conflicts 
which are stored locally. 

ENVIRONMENTAL CONFLICT DATA 

This table contains all information 
identify an encounter. This table 
Encounter Processing. 

4.3.3 Component Design Logic 

necessary to 
is input to 

The Fine Filter (Figure 4-25) examines each Second-Order Nomi
nee separately to determine if an intersection truly exists 
with the aircraft trajectory. To perform this task, three steps 
are taken. First, the extent of the horizontal penetration is 
determined. Second, the extent of the vertical penetration is 
determined. And third, the points of intersection are found. 

4-40 



ROUTINE Fine_Filter; 
REFER TO GLOBAL 

VOLUMES IN; 
REFER TO SHARED LOCAL 

SEGMENTS IN 
SECOND_ ORDER_ NOMINEES IN; 

DEFINE TABLES 
SEGMENT INTERSECTION POINTS The table of all intersections 

time- The time of the intersection 
type Notes a boundary or interior intersection 
last cusp time The time of the last cusp before the 

- - intersection 
INTERSECTION PAIRS The table of all in/out intersections 

start time The time of the intersection going in 
stop time The time of the intersection going out 
begin_x Start cusp of segment on which intersection 
begin_y occurred 
begin z 
begin-t 
end x
end_y 
end z 
end t 

End cusp of segment on which intersection 
occurred 

all-AGGREGATE (start_time,stop_time,begin_x,begin_y,begin_z, 
begin_ t, end_ x, end _y, end_ z, end_ t); 

DEFINE VARIABLES 
Polygon Type 
Vertical Violation 

Encounter 

Concave or mixed concave/convex polygon 
Flag indicating intersection in the 
vertical dimension 
Flag indicating that the trajectory 
intersects the polygon; 

FIGURE 4-25 
FINE FILTER 

4-41 



REPEAT FOR EACH SECOND ORDER NOMINEE RECORD; 
SELECT FIELDS polygon type 

FROM VOLUMES -
INTO Polygon Type 
WHERE VOLUMES.volume_id ~ SECOND_ORDER_NOMINEE.volume_id; 

REPEAT FOR EACH SEGMENTS RECORD 
WHERE SEGMENTS.begin time GE 

SECOND ORDER NOMINEE.first cusp time; 
IF Polygon_Type-~ "convex" - -
THEN 

CALL Convex Polygon Intersection Check 
--(SEGMENTS. pair IN, SECOND ORDER NOMINEES. volume id IN, 

SEGIENT_INTERSECTION_POINTS INOUT); - -
ELSE 
---cALL Mixed Polygon Intersection Check ---r SEGMENTs. pair IN, -

SECOND ORDER NOMINEES • volume id IN, 
SEGMENT_INTERSECTION_POINTS INOUTJ; 

CALL Group Into Intersection Pairs 
-- (SEGMENT INTERSECTION POINTS IN, INTERSECTION PAIRS OUT); 
Encounter = "f'alse"; - - - -
REPEAT FOR EACH INTERSECTION PAIRS RECORD; 

CALL Vertical Violation Check (INTERSECTION PAIRS INOUT, 
-sECOND ORDER NOMINEES:volume id IN, -

Vertical Violation OUT); - -
IF Verticai_Violation ~ "true"; 
THEN 
--"Encounter • "true"; 
ELSE 

DELETE FROM INTERSECTION PAIRS 
WHERE (INTERSECTION PAIRS.all EQ 

INTERSECTION PAIRS.all); 
IF Encounter ~ "true"; -
THEN 
--CALL Find Exact Violation Points (INTERSECTION PAIRS IN, 

--SECOND-ORDER-NOMINEES.volume id IN); -
END Fine_Filter; - - - -

FIGURE 4-25 (Concluded) 
FINE FILTER 

4-42 



The first step dea1s with the horizontal extent only. Convex 
and Mixed polygons are treated differently in Con vex_ Polygon_ 
Intersection Check (Figure 4-26) and a Mh~ed Polygon 
Intersection-Check (Figure 4-27), respectively; the objective 
is to check- all sides of the polygon for possible penetra
tions. This is done to screen out polygons whi.c:h are very 
close to t 11e aircraft's trajectory but do not intersect it. 
The detaiL1 of this step are taken primarily from E-MSAW 
documentation [ 8, 9]. Appendix C of this document contains 
updated details. The outcome of this process is information 
concerning the preliminary points of penetration (more 
specifically, the times associated with these points) in the 
horizontal extent. The number of intersection points may be 
one (for trajectories which begin or end in the polygon), two 
(for Convex and Mixed polygons), or more than two (for Mixed 
polygons). • 

The horizontal points of penetration to be considered are 
selected by considering the relation of the trajectory segment 
to the polygon. If the trajectory begins/ends in the polygon, 
then the starting/stopping point is considered as one point of 
an intersection pair with the intersection of the polygon side 
as the other. If the trajectory segment intersects only two 
sides of either type polygon, these are used. If the trajec
tory intersects a Mixed polygon in several places, a set of 
intersection pairs will be formed. Each pair will consist of 
an entry point and exit point from the polygon. These penetra
tion points are grouped into "enter-exit" pairs in the element 
Group_Into_Intersection_Pairs (Figure 4-28). 

The second step examines the vertical extent of penetration for 
ea~h inters~ction pair. This is done in the element Vertical 
Violation Check (Figure 4-29). Figures 4-30 and 4-31 illus= 
trate this step. Since the polygons are defined by minimum and 
maximum altitudes, there can be at most two points of penetra
tion per segment in vertical extent. The process begins by 
assuming the vertical points lie immediately over the hori
zontal points of penetration (h~ and h 2 ) and intersect the 
aircraft trajectory (denoted by x··s). Then these points are 
compared with the extent of the polygon in the vertical dimen
sion. If both vertical penetration points lie within this 
range, the exact points of intersection have already been found 
and the polygon is added to the list of encounters. If both of 
the vertical penetration points lie above the polygon or both 
lie below, then the trajectory does not intersect the polygon, 
the polygon is screened out and rejected. 

4-43 



ROUTINE Convex_Polygon_Intersection_Check; 
PARAMETERS 

SEGMENT IN, 
Volume_IaiN, 
SEGMENT INTERSECTION POINTS INOUT; 

DEFINE TABLES 
SEGMENT 

xl 
yl 
zl 
tl 
x2 
y2 
z2 
t2 

The current trajectory segment 
The first cusp point of the segment 

The second cusp point of the segment 

begin AGGREGATE (xl,yl) 
end AGGREGATE (x2,y2) 

SEGMENT INTERSECTION POINTS The intersections with the polygon 
The intersection time time 

type 

last_cusp_time 

ORIENTATIONS 
begin orient 
begin-time 
end orient 
end time 
time 

DEFINE VARIABLES 
Iosum Counter 
Begin Orient 
Begin-Time 
End orient 
End-Time 

The intersection location 
"boundary" of "interior" 

The time of the last cusp before 
the intersection 

The orientation of the cusps (IN or OUT) 
The orientation of the first cusp--
The time of the first cusp 
The orientation of the end cusp 
The time of the end cusp 
The time to violation; 

The IN/OUT intersection counter 
The orientation of the first cusp 
The time of the first cusp 
The orientation of the second cusp 
The time of the second cusp; 

FIGURE 4-26 
CONVEX POLYGON INTERSECTION CHECK 

4-44 



CALL Find Polygon Boundary Intersections (SEGMENT IN, Volume Id 
--IN, ORIENTATIONS OUT, SEGMENT INTERSECTION POINTS INOUT);-
CHOOSE CASE - - -

WHEN Iosum_Counter m 2 ..!!!!! 
INSERT INTO SEGMENT INTERSECTION POINTS 

(time • SEGMENT.tl, type • "interior", 
last_cusp_time • SEGMENT.tl); 

INSERT INTO SEGMENT INTERSECTION POINTS 
(time • SEGMENT.t2, type • "interior", 
last_cusp_time • SEGMENT.t2); 

WHEN Iosum Counter ~ -2 THEN 
--,- do nothing I; --
OTHERWISE 

SELECT FIELDS begin orient, begin_time 
FROM ORIENTATIONS 
INTO Begin Orient, Begin Time 
'WiiERE ORIENTATIONS.time !g_ MIN (ORIENTATIONS.time) 

IF Begin_Orient ~ "in" -
THEN 
---yNSERT INTO SEGMENT INTERSECTION POINTS 

(time • Begin Time, type = ''interior", 
last cusp time • Begin Time); 

SELECT FIELDS end orient, end-time 
FROM ORIENTATIONS -
INTO End Orient, End Time 
WHERE ORIENTATIONS. time ~ MAX (ORIENTATIONS. time) 

IF End_Orient m "in" 
THEN 
--INSERT INTO SEGMENT INTERSECTION POINTS 

(time • End Time-;- type • "interior", 
last cusp time • End Time); 

END Convex Polygon Intersection Check; - - - -
FIGURE 4-26 (Concluded) . 

CONVEX POLYGON INTERSECTION CHECK 

4-45 



ROUTINE Mixed_Polygon_Intersection_Check; 
PARAMETERS 

SEGMENT IN, 
Volume IaiN, 
SEGMENT_INTERSECTION_POINTS INOUT; 

DEFINE TABLES 
SEGMENT 

xl 
yl 
zl 
tl 
x2 
y2 
z2 
t2 

The current trajectory segment 
The first cusp point of the segment 

The second cusp point of the segment 

begin AGGREGATE (xl,yl) 
end AGGREGATE (x2,y2) 

SEGMENT INTERSECTION POINTS The intersections with the polygon 
The intersection time time

type 

last_cusp_time 

ORIENTATIONS 
begin orient 
begin-time 
end orient 
end time 
time 

DEFINE VARIABLES 
Iosum Counter 
Begin Orient 
Begin-Time 
End Orient 
End Time 

The intersection location 
"boundary" of "interior" 

The time of the last cusp before 
the intersection 

The orientation of the cusps (IN or OUT) 
The orientation of the first cusp--
The time of the first cusp 
The orientatin of the end cusp 
The time of the end cusp 
The time to violation; 

The IN/OUT intersection counter 
The orientation of the first cusp 
The time of the first cusp 
The orientation of the second cusp 
The time of the second cusp; 

FIGURE 4-27 
MIXED POLYGON INTERSECTION CHECK 

4-46 



CALL Find Polygon Boundary Intersections (SEGMENT IN, Volume Id 
IN, OIUENTATIONS OUT, SEGMENT_INTERSECTION_POINTS INOUT) ;

CHOOSE CASE 
WHEN Iosum_Counter !,g_ 2 ~ 

INSERT INTO SEGMENT INTERSECTION POINTS 
(time • SEGMENT.tl, type • "interior", 
last cusp time • SEGMENT.tl); 

WHEN Iosum Counter !,g_ -2 THEN 
---, do nothing I; -
OTHERWISE 

SELECT FIELDS begin orient, begin_time 
FROM ORIENTATIONS 
INTO Begin Orient, Begin Time 
WifERE ORIENTATIONS. time !g_ ~ (ORIENTATIONS. time); 

.!!. Begin_Orient ~ "in" 
THEN 
--INSERT INTO SEGMENT INTERSECTION POINTS 

(time • Begin Time, type • "interior", 
last cusp tiie • Begin Time); 

SELECT FIELDS end_orient, end:time 
FROM ORIENTATIONS 
INTO End Orient, End Time 
WHERE oRIENTATIONS. time ~ MAX (ORIENTATIONS. time); 

IF End_Orient ~ "in" 
THEN 
---yNSERT INTO SEGMENT INTERSECTION POINTS 

(time • End Time:- type • "interior", 
last cusp time • End Time); 

~ Mixed_Polygon_Intersection_CheCk; 

FIGURE 4-27 (Concluded) 
MIXED POLYGON INTERSECTION CHECK 

4-47 



ROUTINE Group_Into_Intersection_Pairs; 
PARAMETERS 

SEGMENT_INTERSECTION_POINTS IN, 
INTERSECTION PAIRS OUT; 

REFER TO SHARED-LOCAL-
SEGMENTS IN; 

DEFINE TABLES 
SEGMENT INTERSECTION POINTS 

time-
The intersection points 

The intersection time 
type 

last_cusp_time 

INTERSECTION PAIRS 

start time 

stop_time 

begin_x 

begin_y 
begin z 
begin-t 
end x
end_y 
end z 

·end t 
segment AGGREGATE 

DEFINE VARIABLES 
Point 

Start Time 

The location of the intersection 
(boundary or interior) 

The time associated with the last 
cusp before the intersection 

The intersections grouped into the 
enter and exit violation points 
The time associated with the 

intersection entering the polygon 
The time associated with the 

intersection exiting the polygon 
The segment on which the intersection 

lies 
(the first cusp) 

(the second cusp) 

(begin x,begin y,begin z,begin t, 
end_x'7end_y ,end_z,end:t>; -

The flag indicating the first or last 
point of a segment 

The time of the first cusp of a segment; 

FIGURE 4-28 
GROUP INTO INTERSECTION PAIRS 

4-48 



DELETE FROM SEGMENT INTERSECTION POINTS 
WHERE NOT ( SEGMENT INTERSECTION POINTS. time EQ 

MIN (SEGMENT INTERSECTION POINTS. time) OR 
SEGMENT_INTERSECTION_POINTS. type !Q. "boundary" .Q! 
SEGMENT_INTERSECTION_POINTS.TIME ~ 
MAX (SEGMENT_INTERSECTION_POINTS.time) ); 

Point • "start"; 
REPEAT FOR EACH SEGMENT INTERSECTION POINTS RECORD 

!!. Point ~ "start" 
THEN 
---start_Time • SEGMENT_INTERSECTION_POINTS.time; 

SEGMENT • SELECT FIELDS ALL 
FROM SEGMENTS 
WHERE (SEGMENTS .begin_t ~ Start_Time); 

INSERT INTO INTERSECTION PAIRS (start time • 
SEGMENT INTERSECTION POINTS. time, segment • SEGMENT); 

Point • "stop"; -
ELSE 
---uPDATE IN INTERSECTION PAIRS (stop time • 

SEGMENT INTERSECTION POINTS.time) 
WHERE INTERSECTION_PAIRS.start_time ~ Start_Time; 

Point • "start"; 
~ Group_Into_Intersection_Pairs; 

FIGURE 4-28 (Concluded) 
GROUP INTO INTERSECTION PAIRS 

4-49 



ROUTINE Vertical Violation Check; 
P~TERS - -

INTERSECTION DATA INOUT, 
Volume Id IN
Vertical_Violation OUT; 

REFER TO GLOBAL 
VOLUMES IN; 

DEFINE TABLES 
INTERSECTION DATA 

start time 

stop_time 

begin_x 

begin_y 
begin_z 
begin t 
end x-
end_y 
end z 
end t; 

DEFINE VARIABLES 
Volume Id 
Vertical Violation 

Floor 
Ceiling 
Start Time 
Stop_Time 
Begin T 
BegixCz 
EndT 
End-Z 
z ve-1 
Tl 
T2 
Zl 
Z2; 

The intersections grouped into the 
enter and exit violation points 
The time associated with the 

intersection entering the polygon 
The time associated with the 

intersection exiting the polygon 
The segment on which the intersection 

lies 
(the first cusp) 

(the second cusp) 

The volume identifier 
The flag indicating that a violation in 

the vertical dimension has occurred 
The minimum vertical extent of the polygon 
The maximum vertical extent of the polygon 
The time of entrance violation 
The time of exit violation 
The first cusp time 
The first cusp altitude 
The second cusp time 
The second cusp altitude 
Average vertical velocity on the segment 
Intermediate variables 

FIGURE 4-29 
VERTICAL VIOLATION CHECK 

4-50 



SELECT FIELDS floor altitude,ceiling altitude 
FROM VOLUMES - -
INTO Floor,Ceiling 
WHERE VOLUMES.volume_id ~ Volume_Id; 

SELECT FIELDS start_time,stop_time,begin_z,begin_t,end_z,end_t 
FROM INTERSECTION DATA 
INTO Start Time,Stop Time,Begin Z,Begin T,End Z,End T; 

Z_Vel • (Begin_Z - End_Z) I (End_T-- Begin:T); - -
Tl • Start Time - Begin T; 
T2 • Stop Time - End T;-
Zl • Z Vel * Tl + Begin Z; 
Z2 • Z-Vel * T2 + BeginZ; 
IF (Zl-GT Ceiling AND z2 GT Ceiling) OR 
- ( Z1 LT Floor AND Z2 LTFloor) -
THEN - -- -

Vertical Violation • "false''; 
ELSE 

IF Zl GT Ceiling 
THEN 
--Start Time = Tl + (Ceiling - Zl)/Z_Vel; 
IF Zl LT-Floor 
THEN 
--Start Time "" Tl + (Floor - Zl)/Z_Vel; 
IF Z2 GT Ceiling 
THEN 
--Stop_Time = T2 + (Ceiling - Z2)/Z_Vel; 
IF Z2 LT Floor 
THEN 
--Stop_Time = T2 + (Floor - Z2)/Z Vel; 
UPDATE IN INTERSECTION DATA 

(start time = Start-Time, stop_time • Stop_Time); 
Vertical Violation • "true"; 

END Vertical_VIolation_Check; 

FIGURE 4-29 (Concluded) 
VERTICAL VIOLATION CHECK 

4-51 



- - - - -Zmax 

- - - -Zmin 
h, 

(a) Exact Intersection Found 

- - - - -Zmax 

- - - -Zmin 
h, 

(b) No Intersection Found 

FIGURE 4-30 
VERTICAL PENETRATION CHECK 

4-52 



- - - - -Zmax 

- - - -Zmin 
h. h', 

FIGURE 4-31 
VERTICAL PENETRATION DETERMINATION 

4-53 



If neither of the above cases hold, then the process ·m~st 
determine the true points of intersection. This is done in 
Find Exact Violation Points (Figure 4-32) by first computing 
the difference between the assumed penetrat~ on altitude 
(denoted by "ai"s in Figure 4-31) and the altitude boundary 
of the polygon. From the aircraft's vert! :al velocity 
(approximated by consideration of segment data) and the above 
difference in altitude, a new time of intersection is computed. 

After the intersection times have been found, the true four
dimensional extent of penetration is determined by projecting 
in x,y and z using their respective derived velocities. For 
the mixed polygon case with multiple intersection points, only 
the first-in and last-out points of penetration will be 
recorded. The case is illustrated in Figure 4-33. 

4.4 Encounter Processing 

4.4.1 Mission 

The Fine Filter has determined that an encounter is present for 
the given aircraft trajectory segment. Encounter Processing 
records the relevant information about the encounter in the 
global data base. The list of Encounters is used elsewhere in 
the system for the display of conflict information. 

4.4.2 Design Considerations and Component Environment 

This component exists to copy information from the local data 
base into the global data base. 

Input 

The input data required by Encounter Processing consists of: 

• System Global Data Base 

CURRENT T !ME 

The current system time is stored in this table. 

4-54 



ROUTINE Find_Exact_Violation_Points; 
PARAMETERS . 

INTERSECTION POINTS IN, 
Volume Id IN'i" -

REFER TO SHARED LOCAL 
ENVIRONMENTAL CONFLICT DATA OUT; 

DEFINE TABLES - - -
INTERSECTION POINTS The intersections grouped into the 

enter and exit violation points 
start time The time associated with the 

stop_time 

begin_x 

begin_y 
begin z 
begin-t 
end x-
end_y 
end z 
end=t; 

DEFINE VARIABLES 
Volume Id 
Start Time 
Stop Time 
Begin r 
Begin= X 
Begin Y 
Begin-Z 
End T
End-X 
EndY 
End Z 
First In 

Last Out 

Avg X Vel 
Avg=Y=Vel 
Avg_Z_Vel 

intersection entering the polygon 
The time associated with the 

intersection exiting the polygon 
The segment on which the intersection 

lies 
(the first cusp) 

(the second cusp) 

The volume identifier 
The time of entrance violation 
The time of exit violation 
The first cusp time 
The first cusp X 
The first cusp Y 
The first cusp altitude 
The second cusp time 
The second cusp X 
The second cusp Y 
The second cusp altitude 
The intersection point when the trajectory 

first enters the polygon 
The intersection point when the trajectory 

last exits the polygon 
The average velocity in X over the segment 
The average velocity in Y over the segment 
The average velocity in Z over the segment; 

FIGURE 4-32 
FIND EXACT VIOLATION POINTS 

4-55 



SELECT FIELDS start time 
FROM INTERSECTION POINTS 
INTO First In 
WHERE INTERSECTION POINTS.start time EQ 

MIN (INTERSECTION POINTS.start time); 
SELECT-pfELDS stop time- -

FROM INTERSECTION POINTS 
INTO Last Out 
WHERE INTERSECTION POINTS.stop time EQ 

MAX (INTERSECTION POINTS • stop time); 
SELECT-prELDS begin x,begin y,begin-z,begin t, 

end_x,end_y,end_z,end_t - - -
FROM INTERSECTION POINTS 
INTO Begin X,Begin Y,Begin Z,Begin T,End X,End Y,End Z,End T 
WHERE INTERSECTION=POINTS.start_tiiiie ~ First_Time; - -

Avg X Vel • (End X - Begin X) I (End T - Begin T); 
Avg-Y-Vel • (EndY - Begin-Y) I (End-T - Begin-T); 
Avg-Z-Vel • (End-Z - Begin-Z) I (End-T - Begin-T); 
X --Begin X + Avg X Vel * (Start T --Begin T);-
y • Begin-Y + Avg-Y-Vel * (Start-T - Begin-T); 
Z • Begin -Z + Avg -Z-Vel * (Start-T - Begin-T); 
INSERT INTO ENVIRONMENTAL CONFLICT DATA -

(time • Start Time, x ~ X, y = Y, altitude 8 Z, 
volume id =Volume Id); 

SELECT FIELDS begin_x,begin_y,begin_z,begin_t, 
end x,end y,end z,end t 
FROM INTERSECTION POINTS 
INTO Begin X,Begin Y,Begin Z,Begin T,End X,End Y,End Z,End T 
WHERE INTERSECTION=POINTS.stop_time ~ stop_Tiiiie; - -

Avg X Vel • (End X - Begin X) I (End T - Begin T); 
Avg-Y-Vel • (End-Y - Begin-Y) I (End-T - Begin-T); 
Avg-Z-Vel • (End-Z- Begin-Z) I (End-T- Begin-T); 
X 8

- Begin X + Avg X Vel * (Stop T - Begin T); -
Y • Begin-Y + Avg-Y-Vel * (Stop-T - Begin-T); 
Z • Begin-Z + Avg-Z-Vel * (Stop-T - Begin-T); 
INSERT nifo ENVIRONMENTAL CONFLICT DATA -

(time • Stop Time, x --X, y • Y~ altitude = Z, 
volume id =-Volume Id); 

END Find_Exact_Violation_Points; 

FIGURE 4-32 (Concluded) 
FIND EXACT VIOLATION POINTS 

4-56 



FIGURE 4-33 
FIRST-IN AND LAST-OUT SELECTION 

4-57 



• Shared Local Data Base 

Output 

ENVIRONMENTAL CONFLICT DATA 

Information stored 
and exit positions 
each penetration. 
given. 

locally which includes the enter 
of the trajectory with respect to 

Altitudes and times are also 

Encounter Processing updates the global data base to include: 

• System Global Data Base 

ENVIRONMENTAL CONFLICTS 

Encounter information is stored for access by other 
system functions. 

4.4.3 Component Design Logic 

Encounter Processing (Figure 4-34) is essentially a ••house
keeping .. function used to record the encounters found for a 
given aircraft. The data recorded in the table ENVIRONMENTAL 
CONFLICT_DATA by the Fine Filter is used. The time that the 
system should display this predicted penetration to the 
cognizant controller is given as .. now. •• 

4-58 



ROUTINE Encounter_Processing; 
PARAMETERS 

Loc_Fl_Id; The local Flight Identifier 
REFER TO SHARED LOCAL 

ENVIRONMENTAL CONFLICT DATA IN; 
REFER TO GLOBA.L- - -

CURRENT_TIME IN, 
ENVIRONMENTAL CONFLICTS OUT; 

DECLARE VARIABLES -

fiN 
Loc Fl Id The local Flight Identifier; 

REPEAT FOR EACH ENVIRONMENTAL CONFLICT DATA RECORD; 
INSERT INTO ENVIRONMENTAL CONFLICT -

(fl_id • Loc_Fl_Id, 
time • ENVIRONMENTAL CONFLICT DATA.time, 
x • ENVIRONMENTAL_CONFLICT_DATA.x, 
y "' ENVIRONMENTAL CONFLICT DATA. y, 
altitude • ENVIRONMENTAL CONFLICT DATA.altitude, 
volume id = ENVIRONMENTAL CONFLICT DATA.volume id, 
display_as_advisory_time ~ CURRENT=TIME.time);-

END Encounter_Processing; 

FIGURE 4-34 
ENCOUNTER PROCESSING 

4-59 



APPENDIX A 

AIRSPACE PROBE DATA TYPES 

FL CUSPS 
+----------------------------------+ 
I TIME I X I y I z I 
+----------------------------------+ 
cusp AGGREGATE (time,x,y,z) 

This table contains the cusps associated with the trajectory 
being examined. 

TIME The time associated with the cusp point 

x The x coordinate of the cusp point 

y The y coordinate of the cusp point 

z The z coordinate of the cusp point 

SEGMENTS 

+-------------------------------------------------------------
1 BEGIN TIME I begin_x I begin_y I begin_z I 

+-------------------------------------------------------
----------------------------------------------------+ 

I end time I end x I end_y I end z I 

---------------------------------------------+ 
begin AGGREGATE (begin time,begin x,begin y,begin z) 
end AGGREGATE (end_ time, end_ x, en(y, end_ z) -
pair AGGREGATE (begin time,begin x,begin y,begin z,end time, 

end_x-:-end_y,end_z) - - -

This table contains the trajectory segments associated with 
the current trajectory being examined. 

A-1 



BEGIN TIME The time associated with the cusp at the beginning 
of the segment. 

begin_x The x coordinate associated with the cusp at the 
beginning of the segment. 

begin_y The y coordinate associated with the cusp at the 
beginning of the segment. 

begin_z The z coordinate associated with the cusp at the 
beginning of the segment. 

end time The time associated with the cusp at the end of 
the segment. 

end x The x coordinate associated with the cusp at the 
end of the segment. 

end_y The y coordinate associated with the cusp at the 
end of the segment. 

end z The z coordinate associated with the cusp at the 
end of the segment. 

FIRST ORDER NOMINEES 
+-----------------------------------------+ 
I VOLUME_ID I first_cusp_time I 
+-----------------------------------------+ 
all AGGREGATE (volume_id,first_cusp_time) 

This table contains the volumes which have passed the First 
Order Coarse Filter. 

VOLUME ID 

first_cusp_time 

Identifier of a volume. 

The time associated with the cusp known 
to be close to the volume. 

A-2 



SECOND ORDER NOMINEES 
+-----------------------------------------+ 
I VOLUME ID I first_cusp_time I 
+-----------------------------------------+ 
all AGGREGATE (volume_id,first_cusp_time) 

This table contains the volumes which have passed the Second 
Order Coarse Filter. 

VOLUME ID Identifier of a volume. 

first_cusp_time The time associated with the cusp known 
to be close to the volume. 

ENVIRONMENTAL CONFLICT DATA 

+--------------------------+ 
I VOLUME ID I TIME I x I y I altitude I 
+---------=-------------------------------------------+ 

This table contains information on environmental conflicts 
for the current trajectory being examined. 

VOLUME ID 

TIME 

X 

y 

altitude 

The identifier of the volume with which the 
environmental conflict occurred 

The time associated with the environmental 
conflict 

The x coordinate associated with the environmental 
conflict 

The y coordinate associated with the environmental 
conflict 

The z coordinate associated with the environmental 
conflict 

A-3 



APPENDIX B 

AIRSPACE PROBE ALGORITHMS 

This Appendix presents the detailed Airspace Probe elements refer
red to by the four Airspace Probe components. Those elements used 
for the determination of horizontal penetrations are found in 
Appendix C. Those elements are segregated to emphasize the close 
correlation with Appendix C of Reference 8. All other elements are 
listed below. 

Intersection checks are performed using a linear discriminant. The 
discriminant is used to discriminate between points on the left 
side of a line and the points on the right (we may interpret the 
line as having a direction). This technique may be used to find 
which side of a trajectory segment the points of the rectangle 
lie. If all points lie only to one side, the segment does not 
intersect the rectangle. If points lie on both the left and right 
side, an intersection must occur (see Figure B-1). 

B.l Grid 

This routine is responsible for accepting an input (x,y) position 
and finding the grid cell that the point is in. The Cell Id of the 
grid cell is returned. 

ROUTINE Grid; 
PARAMETERS 

X IN, 
Y IN, 
Box OUT; 

REFER TO'GLOBAL 
, ENVIRONMENTAL CELL DIMENSIONS; 

DEFINE VARIABLES- -
X, 
Y, 
Box; 

The X coordinate of the point 
The Y coordinate of the point 
The cell which the point (X,Y) is in 

B-1 



v 

~2<0 

Left 

Right 

u 

FIGURE B-1 
DETERMINATION OF ORIENTATION OF A POINT TO A LINE 

B-2 



1111 
SELECT FIELDS cell id 

FROM ENVIRONMENTAL CELL DIMENSIONS 
INTO Box 
WiiERE ENVIRONMENTAL CELL DIMENSIONS. min x LE X AND 

ENVIRONMENTAL-CELL-DIMENSIONS. max-x GT X AND 
ENVIRONMENTAL-CELL-DIMENSIONS.min-y LE Y AND 
ENVIRONMENTAL:_CELL=DIMENSIONS.maxy GT Y;-

END Grid; 

B.2 Linear Discriminant Classifier 

This routine uses the coordinates of the endpoints of a line segment 
and the coordinates of a third point to determine which side of the 
line segment (left or right as measured from the first point to the 
second point) the third point is on. The method involves the 
determinant of a two-dimensional matrix whose elements are composed 
of the differences between the line points and the third point. 

ROUTINE Linear Discriminant Classifier; 
PARAMETERS - -

Ul IN, 
U2 IN, 
Vl IN, 
V2 IN, 
Up IN, 
Vp IN, 
SideOUT; 

DEFINE VARIABLES 
Ul The U coordinate of the first point on the line 

The U coordinate of the second point on the line 
The V coordinate of the first point on the line 
The V coordinate of the second point on the line 
The U coordinate of the point to be classified 
The V coordinate of the point to be classified 
The side of the line on which the point .. P .. lies 
The value of the discriminant 

1111 

U2 
Vl 
V2 
Up 
Vp 
Side 
Discriminant 

Discriminant • (U2 - Ul) * (Vp- Vl) - (Up- Ul) * (V2- Vl)i 
IF Discriminant GT 0 
THEN 

Side • "left" 
ELSE 

Side • ··right"; 
END Linear Discriminant_Classifier; 

B-3 



B.3 Find Polygon Boundary Intersections 

This routine will accept a line segment and a set of vertices repre
senting a polygon and determine the horizontal intersection points 
(if there are any). The returned information is a table containing 
the intersection points of the segment with the polygon. 

ROUTINE Find Polygon Boundary Intersections; 
PARAMETERS - - -

SEGMENT IN, 
Volume_i<riN, 
ORIENTATIONS .Q!!!, 
SEGMENT INTERSECTION POINTS 

REFER TO GLOBAL 
INOUT; 

VOLUME_ COORDINATES IN; 
DEFINE TABLES 

SEGMENT 
xl 
yl 
zl 
tl 
x2 
y2 
z2 
t2 

The current trajectory segment 
The first cusp point of the segment 

The second cusp point of the segment 

begin AGGREGATE (xl,yl) 
end AGGREGATE (x2,y2) 

SEGMENT INTERSECTION POINTS The intersections with the polygon 
The intersection time time

type 

last_cusp_time 

ORIENTATIONS 
begin orient 
begin-time 
end orient 
end time 
time 

The intersection location 
"boundary" of "interior" 

The time of the last cusp before 
the intersection 

The orientation of the cusps (IN or OUT) 
The orientation of the first cusp 
The time of the first cusp 
The orientation of the end cusp 
The time of the end cusp 
The time to violation 

B-4 



POLYGON VERTICES 
X 

y 
vertex number 

PV 
X 

y 
cv 

X 

y 
DEFINE VARIABLES 

Volume Id 
C Side 
PSide 
Begin_Side 
End Side 
order 
Violation Time 
Int Count
Ios'Um Counter; 
II -

The vertices of the polygon 
The x coordinate of the vertex 
The y coordinate of the vertex 
The sequence number of the vertex 
The previous vertex point 
The x coordinate of the vertex 
The y coordinate of the vertex 
The current vertex point 
The x coordinate of the vertex 
The y coordinate of the vertex 

The volume identifier 
The orientation of the current vertex 
The orientation of the previous vertex 
The orientation of the first cusp point 
The orientation of the second cusp point 
The sequence number of the current vertex 
The time to violation 
The number of intersections thus far 
The number of IN/OUT intersections 

POLYGON VERTICES • SELECT FIELDS x,y,vertex number 
FROM-VOLUME COORDINATES -
WHERE VOLuME_COORDINATES.volume_id ~ Volume_Id; 

PV • SELECT FIELDS x,y 
FROM POLYGON VERTICES 
WiiERE POLYGON_VERTICES.vertex_number ,!q 1; 

Order • 2; 
Int Count • 0; 
Iosum Counter • 0; 
CALL Linear Discriminant Classifier (S.begin IN, s.end IN, 
---pV IN, P-Side OUT); -
REPEATFOR EACH POLYGON VERTICES RECORD; 

WHERE POLYGON VERTICFs. vertex number NE 1 AND Int Count LT 2; 
cv- SELECT FIELDS x, y - - -

FROM POLYGON VERTICES 
WHERE POLGON=VERTICES.vertex_number ~Order; 

CALL Linear Discriminant Classifier (S.begin IN, 
--g. end IN, CV IN, C _Side _Qg!) ; -

B-5 



IF C Side NE P Side 
THEN- - -

CALL Linear Discriminant Classifier (PV IN, CV 1~, 
---s.begin lN, Begin Side OUT); 
CALL LinearDiscrimiiiant Classifier (PV IN, CV 2~, ----s. end IN-; End Side OUT); 
CHOOSE CASE - -
~ Begin_Side ~ "in" AND End_Side ~ "in" THEN 

Iosum Counter • Iosum Counter + 1; 
WHEN Begin_Side ~ "out"-AND End_Side ~ "out" ~ 

Iosum Counter • Iosum Counter - 1; 
OTHERWISE -

CALL Time To Violation (PV IN, CV IN, S.begin IN, 
----s.end IN,-Violation TimeOUT); - -
INSERT INTO SEGMENT INTERSECTION POINTS 

(time • Violation Time, type;; "boundary", 
last cusp time • S.begin t); 

INSERT lNTO ORIENTATIONS -
(begin orient • Begin Side, begin time • S.begin t, 
end orient • End Side: end time --s .end t, -
time= Violation-Time); - -

Int Count = Int Count + 1; 
LAST VERTEX-;; SELECT FIELDS ALL 

FROM THIS VERTEX; 
Order-; Order+ 1; 

END Find_Polygon_Boundary_Intersections; 

B.4 Time To Violation 

This routine determines the time on a given trajectory segment that 
a violation occurs. 

ROUTINE Time_To_Violation; 
PARAMETERS 

Nlx IN, 
Nly IN, 
N2x IN, 
N2y IN, 
Cx IN, 
Cy IN, 
Ct IN, 
Px IN, 
Py IN, 
Pt IN, 
Tv OUT; 

B-6 



DEFINE TABLES 
VN The vector from points Nl to N2 

X 

y 
ve 

X 

y 
VP 

X 

y 

The vector from points Nl to e 

The vector from points e to P 

DEFINE VARIABLES 
Nix The x value of the point Nl 

The y value of the point Nl 
The x value of the point N2 
The y value of the point N2 
The x value of the point e 
The y value of the point e 
The t value of the point e 
The x value of the point P 
The y value of the point P 
The t value of the point P 
The time from point e to P 
The cross product of N with e 
The cross product of N with e 
The time to the violation 

II 

Nly 
N2x 
N2y 
ex 
Cy 
et 
Px 
Py 
Pt 
Tp 
NXe 
NXP 
Tv; 

VN.x • N2x - Nlx; 
VN.y • N2y - Nly; 
ve.x • ex - Nlx; 
ve.y • ey - Nly; 
VP.x • Px - ex; 
VP.y • Py - ey; 
Tp • Pt - et; 
NXe • eROSS(VN,Ve); 
NXP • eROSS(VN,VP); 
Tv • {NXP * Tp)/(NXe + NXP); 
~ Time_To_Violation; 

B-7 



.APPENDIX C 

POLYGON HORIZONT· L VIOLATION DETERMINATION 

This AppPndix was taken mainly from the NAS E-MSAW Computer Program 
Functional Specifjcation (CPFS) [9) and is segregated from the rest 
"f the Airspace Probe Specification to emphasize that fact. The 
algorithms have been modified to account for the strategic nature of 
the trajectory/polygon conflicts. 

An aircraft trajectory is determined to be in penetration with a 
polygon if any portion of any trajectory segaent penetrates the 
adapted volume of airspace. 

Due to the increased complexity of possible shapes when polygon 
sides are adapted such that concave angles are formed, the following 
procedure will be divided into two separate algorithms to facilitate 
the handling of the simpler (and possibly more frequent) geome
tries. The individual configurations considered by each algorithm 
are as follows: 

• Algorithm 1 will op•:rate on polygons that contain only 
< onvex angles. 

• Algorithm 2 will opt rate on polygons with a mixture of 
c0ncave and convex a~les. 

An indication of which algorithm is applicable to which polygons is 
derived by Polygon Adaptation. 

C.l Known Quantities and Relationships 

The trajectory segment will be defined by the following quantities: 

• Initial cusp: Ci = (x,y,z,t)i 
• Nzxt cusp: Ci+l • (x,y,z,t)i+l 

The polygon is defined by the following adaptation derived data: 

• Algorithm: Indication of which algorithm applies to this 
polygon 

• Altitudes: Minimum ann Maximum 

• Total Lines: N (the tntal number of polygon line segments) 

C-1 



The polygon vertices which make up the N line segments are defined 
in a clockwise direction. This consistent ordering is necessary 
since the algorithms assume that the polygon lies to the right of 
line segments defined by the vertices. Counterclockwise ordering 
(only) may be used with the proper changes in the algorithms. 

C.2 Linear Discriminant Clbssifier 

A concept essential to the understanding of the algorithms, and a 
computation used frequently by them, is the orientation of a point 
to a line. The orientation will be determined by considering an 
infinite line defined by~ the points N1 • (Uv V1) and N2 • 
(U2 , v2) and a vector N, defined from point N1 to N2 as 
follows: 

N • (U2-u1 ,v2-v1 ) 

Consider also a vector P, from point N1 to point p • (UP' VP) 
as (see Figure C-1): 

P • (Up-UIJVp-Vl) 

An expression for sin e can be obtained by taking the cross product 
from N to P: 

[C-1] 

Since the magnitudes of vectors N and Pare always nonnegative, the 
sign of sin e is positive if: 

Note that if the above expression is true, the point p is confined 
to the area to the left of the line (as shown in Figure C-1) or is 
on the line. This situation will define a "left" (or "OUT") orien
tation of p to line N1N2• If the above expression is false, 
then the sign of sin is less than zero and p is to the right of the 
line. This will define a "right" (or "IN") orientation of p to the 
line. 

*Note: This form corresponds to Ax mentioned in Appendix B. 

c-2 



I 
I 

p 

I 

I 
I 

I 

FIGURE C-1 
POINT/LINE ORIENTATION 

C-3 



Note further that if the orientation of one endpoint of a segment is 
''right" and the other endpoint is "left" then the segment must cross 
the line at some point, but not necessarily between N1 and N2• 

C.3 Time to Penetration 

Tv will be determined as follows: 

Consider the example in Figure C-2 where the trajectory segment is 
defined by its Cusps, C • (Uc, Vc) and P • (U , V ) and, 
the polygon side is determined by its endpoints, ¥tl ;; (Ul, Vl) 
and N2 • (U2,V2)• Note also that Tp • tp - tc is tlie 
time to travel between the cusps. 

The time to intersection is defined with respect to the distance to 
the intersection point, d, as: 

[C-2] 

or 

d - lsi Tv 

where S is the speed along the. segment. 

The total distance traveled during the trajectory segment is: 

CP • lSI T 
p 

By similar triangles (see Figure C-2): 

d --- .. CP 

[C-3] 

[C-4] · 

If Equations C-2 and C-3 are now substituted into Equation C-4, and 
the velocity factored out, then the following expression is obtained 
which relates Tv to the distances a and b: 

Tv a 
----
Tp a+b 

C-4 



N, 

FIGURE C-2 
nME TO LINE INTERSECnON 

C-5 



The distance a is then determined as:* 

. a = lei sin 0 

And the iistance b as: 

b =- IPI sin Y 

By considering the cross product of N to C: 

1c1 sin 8 = NxC 

N 

And the cross product of N to P: 

IPI sin Y • NxP 

N 

The following relationship is obtained: 

a NxC = -------------
a+b 

Tv_ can ~o~ be expressed in terms of Tp and the cross products 

NxC and NxP as: 

(Nx:C)Tp 
T = -----------

V (NxC)+(NxP) 

C.4 Convex Polygon Intersections 

The Convex Polygon Intersection Check (Figure 4-26) operates on 
polygons that contain only convex angles between sides. This algo
r! thm is very similar to Mixed Polygon Intersection Check (Figure 
4-27) which is a more general algorithm:- The convex case is dis
cussed separately here, since certain efficiencies (not addressed 
here) can be incorporated to enhance the performance of the algo
rithm on convex polygons. The algorithm loops through the sides of 

*Angles are measured in a counter-clockwise direction. 

C-6 



the polygon to determine if intersections exist. A possible inter~ 
section is noted if the orientation of a vertex does not match the . 
orientation. of the previous vertex (sequencing in a clockwise 
fashion). To find if an intersection truly exists, the orientation 
of the cusps with respect to the polygon side are examined. If an 
intersection indeed exists, then the time to penetration is cal
culated and recorded in the list of intersections for the given 
polygon/trajectory segment pair. 

If no intersections occur, the algorithm checks to see if the 
segment is completely within the polygon. If only one intersection 
occurs, the algor! thm checks to see which cusp is inside the poly
gon. In both cases the included points are added to the intersec
tion list. See section c.S for more discussion on inclusion/ 
exclusion of points with respect to a polygon. 

C.S Mixed Polygon Intersections 

Mixed Polygon Intersection Checks (Figure 4-27) operates on polygons 
which-contain- both convex- and concave angles. The algorithm will 
loop through the sides which define the polygon. The orientation of 
the polygon sides to the trajectory segment will be examined to 
determine whether a penetration is possible. 

To gain an understanding of how the mixed algorithm operates, a few 
points that must be assumed will be presented. 

• If any polygon is crossed by an "infinite" length line, the 
"ends" of that line are outside the polygon area (see Figure 
C-3). 

• As a point moves along this line, each time it crosses a 
polygon side its state is altered. Its state varies between 
IN or OUT of the polygon area. 

• An "infinite'' line crossing any polygon will cross an even 
number of sides. Since such a line begins outside of the 
polygon and ends outside of the polygon, an even number of 
crosses must have occurred. 

• If a point is within a polygon area, and an "infinite" line 
is laid over the point, the point would cross an odd number 
of sides if the point moved to either end of the line. This 
is because its state has been altered from IN to OUT. 

C-7 



• If a point is outside the polygon and an "infinite" line' is 
laid ov~r the p lint, the point would. cross an even number of 
sides (or no si,les) as it moved to either end. This is true 
because its stale (OUT) has not changed. 

It is visually easy to sec if a point is IN or OUT by counting the 
sides crossed as it mores towards an end, but computationally dif-: 
ficult. All sides must be searched to see if they are crossed by 
the line and if they lie between the point and the chosen end. 

The mixed algorithm uses the above information in a slightly dif
ferent form. Instead of a point, the trajectory segment is used and 
an infinite vector is laid over it (see Figure C-4). 

The infinite vector is called the trajectory path. In most cases 
the mixed algor! thm must search all sides to see if they have been 
crossed by the trajectory path. If a side is crossed by the path, a 
cross product is employed to see if the trajectory path is IN or OUT 
relative to the particular side. (If, the trajectory path actually 
entered at the side, it would instantly be known that part ,of the 
path is inside the polygon.) 

To rel<, te this back to the idea of moving from a point to the end of 
an infinite line (see Figure C-4), an IN orientation would ~ean that 
the moving point was IN the polygon area before it crossed the side 
moving towards an end. 

The mixed algorithm keeps a running sum of the INs and OUTs, where 
IN = +1 and OUT = -1. A final sum of 0 means that an even number of 
sides were crossed between the trajectory segment and either end of 
the trajectory path. Therefore, a sum of 0 means that t~,e 
trajectory segment was entirely outside the polygon area. A final 
sum of +2 means that an odd number of sides were crossed in either 
direction and the entire trajectory segment is therefore inside the 
polygon area (see Figure C-5). 

Special situations which can occur are as follows: 

• The trajectory path coincides with a polygon vertex, but a 
moving point passing through the vertex would not alter its 
state of being IN or OUT (see Figure C-6). In Figure C-6a, 
vertex Va coincides with the trajectory path. Since a 
point moving through this vertex would always r~main outside 
the polygon, the running sum should not change. In Figure 
C-6b we have the same situation, but the point never varies 
from being inside the polygon as it passes through vertex 
vb. 

C-8 



FIGURE C-3 
INFrNrre Lltfe CROSsiNG A UIXEO POLYGON 

C-9 



FIGURE C-4 
MIXED POLYGON AND TRAJECTORY SEGMENT OUTSIDE 

C-10 



In 
t1 

c p 

e-ll 



6b 

FIGURE C-6 
MIXED POLYGON SPECIAL SITUATION 1 

C-12 



• The trajectory path coincides with a polygon vertex, but a 
moving point's state would be altered as it crossed over the 
vertex (see Figure C-7). In Figure C-7a, at vertex Vc, a 
+1 should be added to the running sum. In Figure C-7b, at 
vertex Vd, a -1 should be added to the sum. 

• The trajectory path coincides with a side of the polygon, 
and like situation 1, the running sum should not change (see 
Figure C-8). 

• The trajectory path coincides with a side of the polygon, 
and like situation 2, the running sua should change (see 
Figure C-9) • 

C-13 



(a) 

(b) 

FIGURE C-7 
MIXED POLYGON SPECIAL SITUATION 2 

C-14 



C-8a 

C-8b 

FIGURE C-8 
MIXED POLYGON SPECIAL SITUATION 3 

C-15 



FIGURE C-9 
MIXED POL VGON SPECIAL SITUATION 4 

C-16 



APPENDIX D 

GLOSSARY 

Numbers in parenthesis at the end of the definition refer to the 
section in which the term is first used. 

Adaptatioa 

Alaq l.oute 
Dl•taDce 

AGD 
Variable 

AGD Vector 

Air Traffic 
Controller 

Area 

AllTCC 

A!C 

Cell 

Advanced Automation System (1.1). 

l'be process of collecting environmental data and 
storing it in system data bases {1,5.1). 

The distance of a converted fix on the route from 
the first converted fix (2.1.1). 

The concept of automated en route air traffic 
control described in "The AERA Concept" [12] (3.4). 

An AGD variable is an element (gradient, direction 
or acceleration) of the AGD Vector (2.1.3). (See 
also "AGD Vector") 

The AGD vector is the 3-tuple (acceleration, gra
dient and direction) controlling the construction 
of a segment (2.1.3). 

See "Controller" (1.4.1). 

An area is a second level division of the conti
nental United States Airspace. Controllers are 
specially trained for an area's airspace, a region 
bounded horizontally by a polygon and having some 
vertical extent (1.4.1). (See also "Center" and 
"Sector") 

Air Route Traffic Control Center (1.4.1). 
also"Center") 

Air Traffic Control (1.1). 

A discrete compartment of the wind grid (2.1.1). 

D-1 

(See 



Center 

Clearance 

CoJIPODent 

Controller 

Converted Fix 

Converted 
Route 

Coordination 
Fix 

Cusp 

Eleaent 

FAA 

Fix 

Grid Cells 

A center is the administrative headquarters and the 
operational facility for control of the first-level 
division of the Continental United States Airspace. 
The center controls a region bounded horizontally 
by a polygon and vertically by the Center floor and 
an altitude of 60,000 feet (1.4.1). (See also 
''Area" and "Sector") 

A specially formatted order from the controller to 
the pilot which commands the pilot to execute a 
maneuver (2.1.3). 

Third-level algorithmic unit in the breakdown of an 
automation function (1.3). (See also "Subfunction" 
"Element") 

An en route radar controller as defined in (1.4.1). 

A fix that is a component of the aircraft route 
after Route Conversion processing (1.4.1. 2). (See 
also "Fix" and "Coordination Fix") 

The filed route of flight as augmented in Route 
Conversion with preferred arrival routes, amoD$ 
others (1.5.2). 

A special purpose fix used for a reference location 
when flight plans are transmitted to the next con
trol area (1.5.2). (See also "Fix" and "Converted 
Fix") 

An aircraft trajectory is represented as a series 
of points called cusps. The cusps are the points 
of possible AGD vector discontinuity (2.1.2). 

Fourth-level algorithmic unit in breakdown of an 
automation function (1.3). (See also "Subfunction" 
and "Component") 

Federal Aviation Administration (1.1). 

A named x,y location (1.4.1.2). 

Discrete compartments of the wind grid (2.1.1). 

D-2 



Man-Machine 
Intedaee 

Nut Cusp 

Put Cusp 

PDL 

Plan 

Planned 
Action 

ProfUe 
Referenee 
Po tat 

See tor 

Interaction mechanism 
system to translate 
forma~ and translate 
readable form (2.1.2). 

provided by the computer· 
human input into internal 
internal format into human 

National Airspace System (1.1). 

The next position to which the aircrft route will 
be modeled (2.1.2). 

The position to which the aircraft route has been 
modeled (2.1.2). (This point may be at some future 
position in terms of the current actual aircraft 
position.) 

Program Design Language (1. 2 and Appendix E). 

A list which contains planned actions which may 
effect the aircraft trajectory from the past cusp 
onward (2.1.3). (See also "Past Cusp" and "Planned 
Action") 

A set of planned actions for an aircraft (1.5.2). 
(See also the definition of "Planned Action") 

An internal representation of a proposed change of 
aircraft clearance which can be modeled into the 
aircraft trajectory (2.1.2). 

The geographic area over which the Trajectory Esti
mation algorithm operates. This area includes the 
extent of an entire Air Route Traffic Control 
Center (ARTCC) and also includes a buffer area. 
(2.1.1). 

A 4-space position used to initialize Trajectory 
Estimation (1.5.2). 

A sector is the third level division of the Conti
nental United States airspace. A sector is the 
division to which a controller is assigned (1.4.1). 
(See also the definition of "Center" and "Area") 

D-3 



Sepent 

Stf.aulua 

Subfuuctiqn 

Trajectory 

Wiad Grid 

A segment is a part of an aircraft trajectory 
represented by an implied line between two adjacent 
cusps. 7he gradient, direction, and acceleration 
of the aircraft are constant across the segment 
(2.1.2). 

A stimulus is one of several flight path events 
related to a planned action which initiate the 
planned action processlng component (2.1.3). 

The second-level algorithmic unit in the breakdown 
of an automation function (1.3). (See also 
"Component" and "Element") 

A description of an aircraft's position in 
(x,y,z,t) space, produced by applying altitude and 
timing assumptions to the filed flight plan and 
revising when necessary (1.4.1.2). 

A grid structure overlaid on the planning region to 
relate geographic coordinates to wind speed, 
direction and temperature at that location (2.1.1). 



APPENDIX E 

AERA PDL LANGUAGE REFERENCE SUMMARY 

E.l Overview of the Use of AERA PDL 

lhe AERA Program Design Language (PDL) has been created for the 
single purpose of presenting algorithms in this specification 
document. It evolves from previous AERA uses, and from MITRE 
WP-81W552, "All ~out ,!, " October 1981. 

The description of this appendix is intended to support readers and 
users of AERA PDL. AERA PDL supports readable, yet structured and 
consistent, descriptions of algorithms. 

AERA PDL Features 

• Relational data tables can be defined and manipulated by 
constructs in the language. 

• Builtin functions are used to provide routine calculations 
without showing all of the detail. 

• Routines are used to modularize logic paths and data scope. 

• Indentation is used to indicate statement grouping, 
statement continuation, and levels of nesting. 

• Routines explicitly define data or refer to predefined data. 

AERA PDL Statements 

The types of statements used in AERA PDL are: 

• English language statements 
• assignment statements . 
• routine declaration statements 
• data manipulation statements 
• flow of control statements 

E.2 Elements of AERA PDL 

Keywords 

Keywords are words reserved for the usage of AERA PDL. Figure 
E-1 presents all the keywords used in the current version of 
AERA PDL, grouped for convenience. 

E-1 



routine construction keywords 

CALL 

data reference keywords 

PARAMETERS 
REFER TO GLOBAL 

END 

REFER TO SHARED LOCAL 
DEFINED IN GLOSSARY 

data definition keywords 

DEFINE CONSTANT(S) 
DEFINE VARIABLE(S) 
DEFINE TABLE(S) 

IN 
OUT 
INOUT 

ROUTINE 

common arithmetic builtin function keywords 

AVG 
SUM 
PROD 

MIN 
MAX 
MEDIAN 

ABS 
CEIL 
FLOOR 
SIGNUM 
MOD 

cos 
SIN 
TAN' 

coordinate geometry builtin function keywords 

ARCCOS 
ARCSIN 
ARCTAN 

DIST 
MAGNITUDE 
DIRECTION 

DOT 
CROSS 
LINE 

INTERSECTION 
INTERPOLATE 

set builtin function keywords 

UNIQUE COUNT CONCAT BOOL 

FIGURE E-1 
KEYWORD GROUPINGS 

E-2 



set operator keywords 

UNION INTERSECT 

table manipulation keywords 

SELECT FIELDS 
INSERT INTO 
DELETE FROM 
UPDATE IN 

value constant keywords 

TRUE 

comparison keywords 

NOT 
OR 
AND -

GT 
GE 
LT 
Li 

FALSE 

flow of control keywords 

IF ••• THEN ••• ELSE 

ALL 
iiOM 
ffiO 
WiiiiE 
ORDERED BY 
RETURN COUNT 

!!l 
NE 
IS IN 

NULL 

IS NOT IN 

CHoOSE CASE • • • WHEN • • • THEN • • • OTHERWISE 
FOR ••• TO --
REPEAT wii!i.E 
REPEAT UNTIL 
REPEAT FOR EACH • • • REC<ltD 
GO TO 

FIGURE E-1 (Concluded) 
KEYWORD GROUPINGS 

E-3 



Operators 

The operators of AERA PDL are summarized in Figure E-2. 

The Assignment Operator 

• The format of the assignment statement is: 
"target" • "expression" 

• The target may be any type of data allowed by AERA PDL. 

• The assignment operator includes the ability to fill a table 
from data contained in other tables. The form of this use 
of the assignment operator is: 

"table name" • .. table_expression" ; 

Builtin Functions 

The builtin functions of AERA PDL accept either an single value 
or data organized into an array. The author of a routine must 
make it clear in comments and text what form of data is being 
processed by the builtin function. Builtin functions are 
listed in Figure E-3. 

E.3 Routine Construction 

The order of appearance of constructs in a routine is: 

e ROUTINE -- required 
• PARAMETERS -- optional 
• REFER TO GLOBAL -- optional 
e REFER TO SHARED LOCAL -- optional 
e DEFINED IN GLOSSARY -- optional 
e DEFINE CONSTANTS -- optional 
e DEFINE VARIABLES -- optional 
• DEFINE TABLES -- optional 
• logic flow -- required, but will vary by routine. 
• END -- required 

Three of the constructs are noted below: 

The ROUTINE Construct 

• The ROUTINE construct names the routine. 

• The syntax of the ROUTINE construct is: 
ROUTINE "routine name" 

E-4 



assignment operator 

A • B 

arithmetic operators 

A+B 
A-B 
A* B 
A I B 
A** B 

coaparison operators 

A LT B 
ALEB 
A GT B 
AGE B 
A~B 
ANEB 

logical operators 

NOT A -A ORB 
A AND B 

set operators 

A INTERSECT B 
A UNION B 
A IS IN B 
A IS NOT IN B 

A is assigned the value of B 

A plus B 
A ainus B 
A tiaes B 
A divided by B 
A to the power of B 

A is less than B 
A is less than or equal to B 
A is greater than B 
A is greater than or equal to B 
A is equal to B 
A is not equal to B 

The logical opposite of A 
Logical OR of A and B 
Logical AND of A and B 

The set intersection of A and B 
The set union of A and B 
A is an eleaent of the set B 
A is not an eleaent of the set B 

FIGURE E-2 
GROUPINGS OF AERA PDL OPERATORS 

E-5 



FUNCTION MEANING 

ABS(x) Absolute value of x 

ARCCOS(x,y) Inverse cosine of the ratio of y to x 

ARCSIN(x,y) Inverse sine of the ratio of y to x 

ARCTAN(x,y) Inverse tangent of the ratio of y to x 

AVG(A) Mean of the elements in A 

~(x) Numerical equivalent of logical condition: 
1 if x is ~' 0 if X is FALSE 

CEIL(x) Smallest integer greater than or equal to x 

CONCAT(sl,s2, ••• ,sN) Concatenation of strings sl through sN 

EQ!(x) Cosine of x 

COUNT(A) Number of elements of a set A 

CROSS(vl,v2) Cross product of vectors vl and v2 

DIRECTION(pl, p2) Direction of p2 from pl in degrees from the 
north; usually will be expressed in degrees 
clockwise from true north 

DIST(pl,p2) Euclidean distance between points pl and p2 

DOT(vl,v2) Dot product of vectors vl and v2 

EXP(x) e to the x power 

FLOOR(x) Greatest integer less than or equal to x 

FIGURE E-3 
BUILTIN FUNCTIONS 

E-6 



Ftnl:TION 

INTERPOLATE(a,b,t) 

INTERSECTION(Ll,L2) 

!!,!!!(pl,p2) 

LOG(x) 

MAGNITUDE(v) 

MAX( A) 

MEDIAN(A) 

MIN(A) 

~(xl,x2) 

PROD(A) 

SIGNUM(x) 

SIN(x) 

SQRT(x) 

~(A) 

~(x) 

UNIQUE(A) 

MEANING 

The point (1-t)a+tb 

the point of intersection of the lines L1 and 
L2 
Vector (a,b,c) correspondiD& to the line 
ax + by • c which passes through the points 
pl and p2 

Log of x in base e 

Leaath (i.e. , nom) of the vector v 

Largest of the elements in the set A 

Median value of the elements in set A 

Smallest of the values in set A 

Remainder when xl is divided by x2 

Product of the elements in A 

Function yielding 1 if x GT 0, -1 if x g 0, 
and 0 if x !Q. 0 

Sine of x 

Square root of x 

Sum of the elements in A 

Taaaent of x 

The set A with no duplicate elements 

FIGURE E-3 (Concluded) 
BUILTIN FUNCTIONS 

E-7 



the CALL Construct 

• The CALL construc invokes use of another routine as a 
subroutine and pa •3es to it the data on which it is to 
operate. 

• The syntax of the UL construct is: 
CALL "routine_n~1.ne" ( "data_usage_list" ) ; 

• '!be data usage list in the CALL statement must match in 
number and data utilization (IN, OUT, INOUT) the PARAMETERS 
statement of the called routine7 ---

'!be END Cons true t 

• '!be END construct shows the formal end of the routine. 

• '!be syntax of the END construct is: 
END "routine name" 

E.4 Data Definitions 

Data usage is defined in the constructs placed at the beginning of 
each routine. 

The structures, or 
include constants, 
variables, arrays, 
structured variables 

organization of data, recognizable to AERA PDL 
atomic variables, hierarchically structured 

tables, and field-types. The hierarchically 
are the same as the structure variables of PL/I. 

Within a table, the values corresponding to the definition of a 
field-type are called fields when they are referred to indi vi d
ually. The values for a whole column of a table (or a subset of the 
whole column) may be referred to as a set of fields. 

The fcllowing data definition constructs appear in the order shown, 
if any are needed. The first line of each construct begins in 
column 1, aligned with the ROUTINE construct. 

'!he PARAMETERS Construct 

• This construct provides usage information about the data 
that are being provided by the calling routine in the form 
of specification of read-only 'IN', write-only 'OUT', or 
modification of an existing value ,-INOUT'. 

E-8 



• Variables appearing in the PARAMETERS construct are still· 
local data for the routine being defined and as such appear 
in the definition constructs. 

• The syntax of the PARAMETERS construct is: 
PARAMETERS "data_usage_list" 

lbe REFER TO GLOBAL Cons true t 

• This construct provides reference to, and usage information 
for, data from the Global data model. 

• The syntax of the REFER TO GLOBAL construct is: 
REFER TO GLODlL "data_usage_list" 

'l'b.e REFER TO SHARED LOCAL Cons true t 

• This construct provides reference to, and usage info~tion 
for, data from the Shared Local data model described in 
Appendix A of the specification. 

• The syntax of the shared local construct is: 
REFER TO SHARED LOCAL "data_usage_list" ; 

lbe DEFINED IN GLOSSARY Construct 

• This construct provides reference to, and usage information 
for, data from a specially prepared Glossary that central
izes the definition of data variables that are used re
peatedly within a given function of the algorithmic 
specification. 

• The syntax of the shared local construct is: 
DEFINED IN GLOSSARY "data_usage_list" ; 

The DEFINE CONSTANTS Construct 

• The use of named constants instead of in-line numerical 
constants is available at the discretion of the author of an 
algorithm. Named constants, if present, are to be declared 
with this construct. 

• The syntax of the DEFINE CONSTANTS construct is: 
DEFINE CONSTANTS "constant definition block" ; 

E-9 



The DEFINE VARIABLES Construct 

• The syntax of the DF.FINE VARIABLES construct is: 
DEFn P. VARIAJ,LES "variable definition block" 

The DEFINE TABLES Construct 

• The syntax of the DEFINE VARIABLES construct is: 
DEFINE TABLES "table_definition_block"; 

E.S Flow of Control Constructs 

The IF ••• THEN ••• ELSE Construct 

• The syntax of the IF ••• THEN ••• ELSE construct is: 
IF "condition" 

THEN 
---ustatement block" 

[ ELSE 
--;;-statement block" ] 

The CHOOSE CASE Constru.~t 

• This construct provides a choice of one of several alterna
tive logic paths depending on the first condition satisfied 
among the conditions specified. 

• The ~RWISE phrase is optional. 

• The syntax of the CHOOSE CASE construct is: 
CHOOSE CASE 

WHEN "condition" THEN 
---wstatement block" 

[ WH~N phrases repeated as necessary ] 
[ OTHERWISE 

statement block" ] 

The REPEAT WHILE Construct 

• The syntax of the REPEAT WHILE construct is: 
REPEAT WHILE "condition'' 

statement block" 

The REPEAT UNTIL construct 

• The syntax of the REPEAT UNTIL construct is: 
REPEAT UNTIL "c'Oii: ition" 

"statement block" 

E-10 



The REPEAT FOR EACH RECORD Construct 

• This construct explicitly loops over all records in table, 
or the subset of a table as specified in a WHERE phrase. 

• The syntax of the REPEAT FOR EACH construct is: 
REPEAT FOR EACH "table name" RECORD 

[ WHERE "condition" 1-; 
"statement block" 

• Within the statement block of this loop, the construct of 
"table name". "field name" means only the ONE value that is 
associated with the-record for that iteration of the loop. 

• If it is necessary to refer to entire columns of the table 
that is being looped on, the correct form of the reference 
is ALL("table name". "field name"). This construct means 
exactly what "table name". "field name" would have meant if 
the loop had not been in effect. -

The GO TO Construct 

• The syntax of the GO TO construct is: 
GO TO "label" ; 

The FOR ••• TO ••• Construct 

• The syntax of the FOR ••• TO ••• construct is: 
FOR "loop index" • "iiii'tial value" TO "last value" 
-··statement block" - -

E.6 Table Manipulation Constructs 

The SELECT FIELDS Construct 

• This construct extracts data from a table, or from a collec
tion of tables, and makes it available to the routine. 

• The syntax of the SELECT FIELDS construct is: 
SELECT FIELDS [ UNIQUE 1 [ "field list" I ~1 

FROM "table name list" -
[ INTO "local-variable name list" 1 
[ WiiEiE "condition" 1 
[ ORDERED BY "field name" 1 
[ RETURN COUNT ( "local variable" ) 1 

E-ll 



'!he INSERT INTO Cons true t 

• '!his construct allows a new record to be inserted into a 
table. 

• The syntax of the INSERT INTO construct is: 
INSERT INTO "table name" ("field assignments") 

[ WHERE "condition" 1 ; -

• All insertions will preserve the assumption of no duplicate 
records allowed in the table. 

The UPDATE IN Construct 

• This construct allows existing records in a table to have 
certain of their values changed. 

• '!he syntax of the UPDATE IN construct is: 
UPDATE IN "table name" ("field assignments") 
[ WHERE "condition" 1 ; -

The DELETE FROM Construct 

• '!his construct removes selected records from a table. 

• '!he syntax of the DELETE FROM construct is: 
DELETE FROM "table name" 

[ WHERE "condition" 1 ; 

E.7 Glossary 

"comparison" 

• There are four possible syntaxes for the comparison. These 
are not given separate names, but will all be shown as if 
they shared the same element of the language. 

• The first syntax is for arithmetic comparisons: 
"individual" GEl LEI.Q!Ig "individual" 

• '!he second syntax is for general comparisons: 
"individual" ~I NE "individual" 

• Both of these syntaxes are also valid if they are used to 
compare two variables with the same complex organization, 
for example two vectors of the same length or two field 
types from the same table. In this case the result has as 
many answers as there are elements in the compared variables. 

E-12 



• The third syntax is for arithmetic comparisons: 
"individual" Q!ILEIQ!ILT ~~~"set" 

• The fourth syntax is for general comparisons: 
"individual" IS INIIS NOT IN "set" 

• The latter two syntaxes are used to qualify an individual 
based on any value in a set of values. 

"condition'' 

• The syntax of the condition is: 
"comparison" [~lAND NOTIORIOR NOT "comparison"] 

• The optional part of this syntax can be repeated as often as 
required. 

"constant definition block" 

• The content of the constant definition block is three 
columns: the constant names, the constant values, and the 
constant descriptions. 

• The constant names are aligned in a column 3 spaces indented 
from the DEFINE CONSTANTS line. 

• The other two columns are aligned as convenient, so that 
there is no visual overlap between the columns. 

"data usage list" 

• A routine must declare the type of use for all of its data 
that are known outside the routine. 

• The three types of use are: read only (IN), create (OUT), 
and modify an existing copy (INOUT). 

• The format of a data usage list is: 
"variable_name" "usage_type", ••• 

• An example of the format for data usage list is: 
An_Input_Parameter !!!' A_LOCAL TABLE INOUT 

"expression" 

• Variables may be formed implicitly in expressions without 
being separately named or defined. 

E-13 



• Expressions are combinations of defined variables with "the 
·operators and builting functions of AERA PDL. 

• In an expression, the implicit variable output from any 
builtin function may be used as the input to any other 
builtin function or operator. 

• An e_:xpression, when fully evaluated, yields one variable. 

"field assignments" 

• '!his term only appears in statements referriq to exactly 
one table: INSERT and UPDATE. 

• The form of the term is a comma-separated list: 
"field_ assignment", ••• 

• The form of a siqle assignment is: 
"field_name" • "value_e:xpression" 

• In this term the field names do not have to be qualified by 
the table name (that is-given in the statement). 

"table definition block" 

• 'lhree types of definition are made in this block: table defi
nitions, field-type definitions, and AGGREGATE definitions. 

• Table definition lines are formatted as: 
"table name" "table definition" 

• Field-type definitions lines are formatted as: 
"field name" "field definition" 

• Aggregate definitions are formatted as: 
"aggregate_ name" AGGREGATE ("field_ name _list") 

• Fields will contain only atomic (single-valued) variables. 

• Aggregates may be used so that a program can manipulate 
multiple fields in one statement when it makes sense to do 
so. 

''table-expression" 

• Tables may be used implicitly in assignments or comparisons 
being separately named or defined. 

E-14 



• A table expression is either a table name or a SELECT state~ 
me.nt specifying the contents of the implicit table. 

•• table name" 

• Generally, this is just the name of a table. 

• In a few statements, there is a syntax that allows a user to 
define a synonym and use it in the rest of that statement. 
The intent of this option is to allow shorter where clauses 
that are easier to read. The format of the synonym refer
ence is: 

"existing_table_name" ( "synonym" ) 

• The statements that allow this use are those that have the 
where clause: SELECT, INSERT, DELETE, UPDATE, and REPEAT. 

"variable definition block" 

• The content of the variable definition block is tWo columns: 
variable names and variable descriptions. 

• Align variable names in a column that is indented 3 spaces 
from the DEFINE VARIABLES line. 

• Align variable definitions in a column as convenient; when a 
structure element is defined, both the variable name and the 
variable definition should be indented three spaces from the 
name and definition of the next higher level variable. 

• Three types of variables may be defined in this block: 
atomic variables, arrays, and structured variables. 

• Each element variable is described by a line: 
"variable name" "variable definition" 

• Each array variable is described by a line: 
"variable_name" ("dimensions") "variable_definition" 

• Each structured variable is described by multiple lines, one 
line per lowest level element, and one line for each named 
level of grouping/structure, with indentation levels used to 
indicate the grouping. 

• The names of subordinate elements of a structured variable 
are named in all lower case letters. 

E-15 



• '!he use of complex structured variables is not encouraged; 
·one reasonable use for them is to receive the values of 
AGGREGATEs. 

E.8 Other Uses and Conventions 

Use of Special Characters in AERA PDL 

• Parentheses are used for grouping statements and setting off 
special parts of the constructs. 

• Semicolons are used as statement terminators. 

• Colons are used to terminate labels. 

• Underscore is used to separate words in multi-word 
identifiers. 

• lhe symbols '+' , '-' , '*' , and 'I' are used as arithmetic 
operators. 

• The pound sign 'II' is used as a comment delimiter, for 
beginning and end of each comment line. 

• Commas are used as separators in lists of operands. 

• Periods are used to separate fully qualified names. 

Naming Conventions 

• Keyword identifiers use only uppercase letters and are 
underlined. They are the only underlined identifiers in the 
PDL. 

• Table identifiers from the relational data base also use 
only uppercase letters. 

• AGGREGATE identifiers for combinations of fields use no 
uppercase letters. 

• References to fields in a table, used in the normal course 
of reference in AERA PDL, will be fully qualified by 
including the table name. 

E-16 



Other Identifiers 

• Identifiers for constants, routines, labels, arrays, and 
hierarchically structured variables are all be named using 
word-initial capitals. 

• For hierarchically structured variables, all of the sub
ordinate elements within the structure use only lowercase 
letters. 

• For hierarchically structured variables, all references to 
the subordinate elements in the structure will be in fully 
qualified form using separate identifiers. 

• Global data and shared local data can include both tables 
and parameters. The individual parameters are named using 
word-initial capitals. 

Use of the Formal Constructs in AERA PDL Statements 

• Statements may use formal constructs or clear English 
descriptions to specify the intended test or action. 

• Any AERA PDL statement is terminated by a semicolon, 
including any English statement outside of a comment. 

• Below the level of statement, some statements have a finer 
organization in terms of "phrases", usually occupying a line 
per phrase and indented one level from the first line of the 
original statement. 

Statement Organization 

• Indentation is used to indicate statement grouping, 
statement continuation, and levels of nesting. 

• Any statement may have a label starting in column 1. 

• Continuation lines are indented three spaces from the 
original line of the statement. 

• Comments are used as needed, bracketed by the special 
character'#'. 

E-17 



1. 

2. 

APPENDIX F 

REFERENCES 

Advanced Automation System: System Level Specification, U.S. 
Department of Transportation, 
FAA-ER-130-D05B, April 1983. 

Federal Aviation Administration, 

Federal Aviation Administra-
Facilities and 

3. w. J. Swedish et al., "Operational and Functional Description of 
AERA 1.01," MTR-83W69, The MITRE Corporation, McLean, Virginia, 
May 1983. 

4. U.S. Department of Transportation, Engineerig & Development 
Maaor Program Plan, Federal Aviation Administration, August 5, 
19 2. 

5. W. J. Swedish, "Evolution of Advanced ATC Automation Functions," 
WP-83W149, The MITRE Corporation, McLean, Virginia, March 1983. 

6. U.S. Department of Transportation, Federal Aviation Administra
tion, Airman's Information Manual, Basic Flight Information and 
ATC Procedures, January, 1982. 

7. U.S. Department of Transportation, Federal Aviation Administra-
tion, National Airspace System Configuration Management 
Document, NAS-MD-326, August 1, 1982. 

8. U.S. Department of Transportation, Federal Aviation Administra-
tion, National Airspace System Configuration Management 
Document, Automated Tracking, NAS-MD-321, August 1, 1982. 

9. "Preliminary Computer Program Functional Specification (CPFS) 
for En Route-Minimum Safe Altitude Warning (E-MSAW)," Imple
mentation, DOT-FA76WA-3815, April 1979. 

F-1 


