
• •

l ..

I

U.S. Deportment
of Transportation

Federal Aviation
Adlnkfttratlon
Office of Systems

Automated En Route Air Traffic Control

Algorithmic Specifications.
Engineering Management
Washington,, D.C. 20591

FLIGHT PLAN CONFLICT PROBE

September 1983
Repon No. DOT/FAA/ES-83/6

This document is aveil8bla to the
U.S. public through the
Netlonal Technical Information S.VIca,
Springfield, Virtinia 221 11

Volume 3

1. Report No. 2. Ge•o-t Accon•NI No.

DOT/FAA/ES-83/6
•· Title N S.,btitlo

Automated En Route Air Traffic Control
Algorithmic Spefifications

FLIGHT PLAN CONFLICT PROBE Volume 3

T ech•lcel ICeport Docu .. ntotion Poge

J. Roclpiettt'a C..olet No.

1. Report O.to

~~=>n+-omhotn 1_gSJ •
6. p.,,.,.~ftl Oree,iaotion Code

AES-~20
hr-::-:::-:-i-r-------------------------1'' Porfo,.iRt O,....iaotiOR Roport No.

7· Authe•'•l W P N. d . h I F l J C C • . 1e r1ng aus, . ro ow, . . orbin, ' A H Gisch N J Taber F eli . Leiber FAA-ES-83-6
•. Por iftt Or, .. iaotiett N-o 10. Wort Unit No. (TRAIS)

Systems Engineering Service
Department of Transpotation 11. C:...trectorGr ... rNo.

Federal Aviaton Administration
800 Indeoendence Ave. S W. Washi_n__p:ton. D.C. 20591 11. T,.. •• ,.,.,. eai PoriM c.-.4

12. s.-aorittt At-r N.- .. ~~ AM••••

Same as #9 above.

15. Suppl_,.,, Notoa

16. Abetroct

This Algorithmic Specification establishes the design criteria for four advanced
automation software functions to be included in the initial software package of
the Advanced Automation System (AAS). The need for each function is discussed
within the context of existing National Airspace System (NAS). A top~
down definition of each function is provided with descriptions on increasingly
more detailed levels. The final, most detailed description of each function
identifies the data flows and transformations taking place within each function.

This document consists of five volumes .. Volume 3, Flight Plan Conflict Probe,
contains a functional design for use of trajectory data to predict violation~ o~
separation criteria between aircraft. .

The other four volumes of this specification provide design criteria for the
following:

o Volume 1, Trajectory Estimaiton

o Volume 2, Airspace Probe

o Volume 4, Sector Workload Probe

o Volume 5, Data Sp~cification
17. Kow w.,.,,

Automation, Air Traffic Control: Auto
mated Decision Making, En Route Traffi
Control, Artificial Intelligence,
Advanced Automation System

11, OiatributiOft Stot-t _

Document is available to the U.S. public
through the National Technical Informa
tion Service, Springfield, VA 22161

19. Socurltr Ciani f. (of thla ropert) 20. Socurltr Cloulf. (of thh poeo) 21. No. of Poto• 22. Price

Unclassified Unclassified

Form DOT F 1700.7 (1-72) Ropro4uctlon ef coraplotocl pogo outhorlaocl

EXECUTIVE SUMMARY

This specification establishes design criteria for the Flight Plan
Conflict Probe (FPCP), a part of the initial automation for the
Advanced Automation System of the FAA's next generation air traffic
control system. The algorithm provides data for a display to air
traffic controllers whenever any two aircraft are predicted to
approach each other within certain separation criteria in the hori
zontal and vertical dimensions. Such a· pair of aircraft is called a
conflict.

Trajectory Estimation, another function of the Advanced Automation
System, models the predicted position of each aircraft as a trajec
tory, consisting of points in (x,y,z,t) space and the line segments
connecting them. Trajectories reflect both pilot intent (his
approved flight plan) and current position (radar reports). FPCP
automatically tests all trajectory pairs for conflicts.

FPCP is designed to be compatible with current air traffic control
procedures. It displays information early enough for controllers to
resolve conflicts in a deliberate fashion. It alerts the controller
when prompt action is deemed necessary to resolve a conflict.

FPCP determines conflicts by using several separate .processes.
First, a grid is established to partition the planning region into
cells defined in the horizontal and time dimensions. Those cells in
the grid through which the trajectory passes are identified and
designated as the aircraft's grid chain. The grid chains for all
aircraft previously processed by the algorithm are maintained in one
data structure. Second, a preliminary or coarse filter compares the
grid chain of a specific aircraft to the grid chains of all other
aircraft; the aircraft pairs which do not have common cells in their
grid chains, and hence are separated by large horizontal distances'
are eliminated from further consideration. Third, the remaining
pairs are tested to determine if their altitude ranges overlap
within the co-occupied cells. For those that do, a final filter
analyzes the appropriate segments of the aircraft trajectories asso
ciated with the common grid cells. The segments are first checked
to see if they overlap in time and violate vertical separation
criteria within the common time interval. Those that do are tested
for violation of horizontal separation criteria. Information on
those segments which violate all of these criteria is maintained and
displayed to the controller at the appropriate time.

Some data determined by Flight Plan Conflict Probe are stored in the
data base for access by Sector Workload Probe.

ii

TABLE OF CONTENTS

1. INTRODUCTION

Purpose
Scope
Organization of this Document
Role of Flight Plan Conflict Probe in the Overall
ATC System

System Context
Effect of Future AAS Enhancements on Flight Plan
Conflict Probe

1.5 Flight Plan Conflict Probe Summary

Operational Description
Processing Overview

2. DEFINITIONS AND DESIGN CONSIDERATIONS

2.1 System Design Definitions

2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8

2.1.9
2.1.10
2.1.11

Resynchronization
Time Horizon, Delta Horizon, and Horizon Update
FPCP Trajectory Update
Segments, Cusps, and Segment Chains
Holding Patterns and Maneuver Envelopes
Airspace Grid and Its Cells
Cell Occupancy, Grid Chains, and Buffer Cells
The Sparse Subject Tree, Buffer Subject Tree,
and Allobject Tree
Nominees and the Coarse Filter
Encounters and the Fine Filter
Advisory and Priority Terminology

Design Considerations

Minimal Required Controller Knowledge of
Algorithms
Display Format
Considerations Involving Uncertainties in
Aircraft Position
Separation Criteria
Initiating the Display of FPCP Information

iii

1-1

1-1
1-1
1-2

1-3

1-3

1-7

1-8

1-8
1-9

2-1

2-1

2-1
2-1
2-2
2-2
2-2
2-4
2-6

2-7
2-11
2-11
2-13

2-16

2-16
2-16

2-16
2-17
2-19

TABLE OF CONTENTS
(continued)

2.2.6 FPCP, Sector Workload Probe, and the Airspace
Grid 2-20

2.2.1 Boundary Considerations 2-20
2.2.8 Controller Interface 2-21

3. FLIGHT PLAN CONFLICT PROBE FUNCTIONAL DESIGN

3.1 Environment

3.1.1 Input Data and Activation
3.1.2 Output Data

3.2 Design Assumptions
3.3 Subfunctions

3.3.1 The Grid Chain Generator
3.3.2 The Coarse Filter
3.3.3 The Fine Filter
3.3.4 Maintenance

4. DETAILED DESCRIPTION

4.1

4.1.1
4.1.2
4.1.3

Grid Chain Generator

Sparse Cell Generator
Buffer Cell Generator
Grid To Tree Converter

Coarse Filter

Nominee Detection

4.3 Fine Filter

4.3.1
4.3.2
4.3.3
4.3.4
4.3.5

Segment Pair Builder
Time Check
Altitude Check
Horizontal Check
Encounter List Builder

4.4 Maintenance

iv

3-1

3-1

3-1
3-3

3-3
3-4

3-4
3-7
3-8
3-9

4-1

4-1

4-3
4-25
4-28

4-29

4-31

4-35

4-39
4-46
4-49
4-53
4-85

4-91

TABLE OF CONTENTS
(concluded)

4.4.1 Delete Aircraft
4.4.2 Insert Aircraft

APPENDIX A: FLIGHT PLAN CONFLICT PROBE DATA

APPENDIX B: MATHEMATICAL DERIVATION OF FORMULAS

APPENDIX C: TREE TRAVERSAL TECHNIQUES USED BY THE

4-94
4-98

A-1

B-1

COARSE FILTER AND MAINTENANCE C-1

APPENDIX D: GLOSSARY D-1

APPENDIX E: AERA PDL LANGUAGE REFERENCE SUMMARY E-1

APPENDIX F: REFERENCES F-1

v

LIST OF ILLUSTRATIONS

TABLE 4-1: SPARSE CELL LIST FOR FIGURE 3-2 4-18

FIGURE 2-1: THE SEGMENT CHAIN AND GRID CHAIN FOR A
TRAJECTORY 2-3

FIGURE 2-2: GEOMETRIC STRUCTURES ENCLOSING TYPICAL HOLDING
PATTERNS 2-5

FIGURE 2-3: AIRSPACE GRID IN THREE DIMENSIONS 2-9
FIGURE 2-4: TREE REPRESENTATION OF THE AIRSPACE GRID IN TWO

DIMENSIONS 2-10
FIGURE 2-5: ILLUSTRATION OF TREE WITH EARLY DIVISION ON T

ONLY: LATER DIVISION ON X,Y,T 2-12
FIGURE 2-6: RELATIONSHIP BETWEEN ADVISORY AND PRIORITY

SEPARATION CRITERIA 2-14
FIGURE 2-7: CRITICAL TIMES ASSOCIATED WITH ADVISORY AND

PRIORITY VIOLATIONS 2-15
FIGURE 2-8: UNRESTRICTED AND RESTRICTED VERTICAL MANEUVER

FIGURE 3-1:
FIGURE 3-2:

FIGURE 4-1:
FIGURE 4-2:
FIGURE 4-3:
FIGURE 4-4:

FIGURE 4-5:
FIGURE 4-6:
FIGURE 4-7:

FIGURE 4-8:
FIGURE 4-9:
FIGURE 4-10:
FIGURE 4-11:
FIGURE 4-12:
FIGURE 4-13:
FIGURE 4-14:
FIGURE 4-15:
FIGURE 4-16:
FIGURE 4-17:
FIGURE 4-18:

ENVELOPES

FPCP ORGANIZATIONAL STRUCTURE
SPARSE AND BUFFER CELLS ASSOCIATED WITH A
TRAJECTORY

GRID CHAIN GENERATOR ORGANIZATIONAL STRUCTURE
SPARSE CELL GENERATOR
CELL OCCUPANCIES USING CORRECT INDEPENDENT AXIS
CELL OCCUPANCIES USING INCORRECT INDEPENDENT
AXIS
DETERMINE INDEPENDENT VARIABLE
STRAIGHT LINE GENERATOR - -AN EXAMPLE FOR A METHOD OF CONVERTING FROM GRID
CELL COORDINATES TO A TREE NODE IDENTIFIER
VERTICAL PROTECT
HOLD AREA PROTECT
OCCUPIED CELLS FOR A HOLDING PATTERN
BUFFER CELL GENERATOR
GRID TO TREE CONVERTER
COARSE FILTER ORGANIZATIONAL STRUCTURE
NOMINEE DETECTION
NOMINEE-DETECTION ALTITUDE TEST
FINE FILTER ORGANIZATIONAL-STRUCTURE
FINE FILTER GLOSSARY
FINE FILTER

vi

2-18

3-2

3-6

4-2
4-5
4-8

4-9
4-11
4-13

4-16
4-19
4-22
4-24
4-26
4-30
4-32
4-36
4-38
4-40
4-41
4-44

FIGURE 4-19:
FIGURE 4-20:
FIGURE 4-21:
FIGURE 4-22:
FIGURE 4-23:
FIGURE 4-24:
FIGURE 4-25:
FIGURE 4-26:
FIGURE 4-27:
FIGURE 4-28:

FIGURE 4-29:

FIGURE 4-30:
FIGURE 4-31:
FIGURE 4-32:
FIGURE 4-33:
FIGURE 4-34:
FIGURE 4-35:
FIGURE 4-36:
FIGURE 4-37:
FIGURE 4-38:
FIGURE 4-39:
FIGURE 4-40:
FIGURE 4-41:
FIGURE 4-42:
FIGURE 4-43:
FIGURE 4-44:

LIST OF ILLUSTRATIONS
(Concluded)

SEGMENT PAIR BUILDER
TIME CHECK
ALTITUDE CHECK
HORIZONTAL CHECK
DERIVATION-OF TIME OF MINIMUM SEPARATION
REGULAR SEGMENT HORIZONTAL CHECK - -RELATIVE VECTORS
VIOLATION TIMES
MANEUVER ENVELOPE HORIZONTAL CHECK - - -CASES WHERE THE HOLDING PATTERN HORIZONTAL
CHECK IS INVOKED
EXAMPLE OF HORIZONTAL CHECK FOR A VERTICAL
MANEUVER
MANEUVER ENVELOPE TEST
ENVELOPE-ENVELOPE-VIOLATION CHECK
GET BOX
ENVELOPE ENVELOPE INTERSECT CHECK
EDGE CONTAINMENT CHECK
SEGMENT ENVELOPE-VIOLATION CHECK
SEGMENT-ENVELOPE-INTERSECT-CHECK
ENCOUNTER LIST BUILDER
VIOLATION-aOUNDARIES
PREFIX MERGE
SUFFIX-MERGE
MAINTENANCE ORGANIZATIONAL STRUCTURE
DELETE AIRCRAFT
DELETE SUBTREE
INSERT AIRCRAFT

vii

4-47
4-50
4-52
4-55
4-57
4-58
4-61
4-64
4-66

4-68

4-69
4-71
4-73
4-76
4-77
4-78
4-81
4-83
4-87
4-90
4-92
4-93
4-95
4-97
4-99
4-101

1. INTRODUCTION

The Federal Aviation Administration (FAA) is currently in the
process of developing a new computer system, called the Ad
vanced Automation System (AAS), to help control the nation's
air traffic. The AAS will consist of new or enhanced hardware
(i.e., Central Processing Units, memories, and terminals) and
new software.

The new software will retain most or all of the functions in
the existing National Airspace Sy~tem (NAS) En Route Stage A
software. The algorithms will need to be recoded and, in some
cases, revised. In addition, the new AAS software will contain
several new functions that make greater use of the capabilities
of automation for Air Traffic Control (ATC) •. When fully imple
mented, these new functions are intended to detect and resolve
many routine ATC problems.

The initial implementation of the AAS, described in the AAS
Specification [1], will provide the ability to detect some com
mon ATC problems. To meet the requirements of the AAS, several
new ATC functions need to be postulated and described. Four of
these functions are described in this document: Trajectory
Estimation, Flight Plan Conflict Probe, Airspace Probe, and
Sector Workload Probe [Volumes 1, 2, 3, and 4]. Together, they
represent an initial level of automation and the beginnings of
the evolution of the ATC system in accordance with the NAs Plan
[2]. The NAS Plan presents an overview of the complete set of
changes proposed to NAS in the coming decade.

1.1 Purpose

The purpose of this volume is to identify design criteria for
Flight Plan Conflict Probe (FPCP). FPCP is one of the advanced
automation functions called for in the AAS Specification.
These design criteria specified in this volume are based on the
existing National Airspace System (NAS) and the specification
of the AAS. The AAS specification describes the Flight Plan
Conflict Probe function and proposes some high level require
ments for this function.

1.2 Scope

This algorithmic specification presents design criteria for a
computational framework of Flight Plan Conflict Probe. The
framework is a set of algorithms which collectively describe
how it may be possible to detect aircraft that are in danger of
violating certain separation standards. It may be .viewed as a

1-1

candidate for consideration in the final design. However, it
is not intended to be the complete final design of FPCP in the
AAS.

The framework establishes the requirements for input and output
data and provides a description of the flow of control of data
as it is transferred from input to output. Some of the prin
cipal requirements have been identified in the "Operational and
Functional Description of AERA 1.01" [3]. To the extent pos
sible, the data are discussed using existing NAS terminology.

1.3 Organization of This Document

The remainder of Section 1 provides a description of Flight
Plan Conflict Probe's role in the larger ATC context and in
future enhancements of the ATC system. Both the operational
considerations and processing methods of FPCP are summarized.
Section 2 defines the terminology used in the specification and
discusses the factors which influence the design of the algo
rithms.

Descriptions of the algorithms are contained in Section 3,
Flight Plan Conflict Probe Functional Design, and in Section 4,
Detailed Description. The Flight Plan Conflict Probe Function,
like the other advanced automation functions, is divided hier
archically into subfunctions, components and elements
(underlined words in Sections 1 and 2 are critical to the
understanding of this specification and can be found in the
Glossary, Appendix D). Section 3 specifies the design, envi
ronment, and assumptions of the subfunctions (e.g., the Fine
Filter), and outlines their components (e.g., Horizontal
Check). Section 4 provides a detailed description of each sub
function's components, including their mission, data
requirements, and some processing details, and in some cases
includes a discussion of a component's elements (e.g., Maneuver
Envelope Horizontal Check).

Appendix A defines the data shared by the various subfunctions
of FPCP. (Similarly, Volume 5 of this document contains the
global data shared by the functions defined in Volumes 1
through 4). Appendix B provides mathematical derivations of
certain formulas used in this specification. Supplementary
information on "trees," the data structure used by the Coarse
Filter, one of the subfunctions of FPCP, follows in Appendix
c. Appendix D, as mentioned above, contains a glossary of
those terms that are critical to an understanding of this
specification.

1-2

A Program Design Language (PDL) which describes high level con
trol logic using structured English is used as needed to
describe the algorithms in this specification. A description
of this PDL is contained in Appendix E. Finally, Appendix F
provides a complete list of references.

1.4 Role of Flight Plan Conflict Probe in the Overall ATC
System

This section discusses some features of the current ATC system,
describes the role of FPCP in the Advanced Automation System,
and discusses changes to FPCP that may be appropriate when en
hancements to the AAS are introduced.

1.4.1 System Context

The Continental United States airspace is partitioned among 20
Air Route Traffic Control Centers (ARTCCs) or centers, which
control regions bounded horizontally by polygons and. stretching
vertically from the center floor to 60,000 ft. Each center's
airspace is further divided into areas, which are in turn
divided into sectors. Areas and sectors are polygonal regions
with floors (located at specified altitudes or the ground) and
ceilings. The sectors of each area are staffed by a group of
air traffic controllers (or controllers) specially trained for
that area; the area supervisor is the first line supervisor of
an area.

In the current ATC System, pilots determine the desired means
to reach their destination consistent with current navigational
and ATC practices. This intent is then filed with the ATC Sys
tem as a flight flan (which may be approved by ATC as filed or
modified by ATC • Alternatively, flight plans that are exe
cuted daily or on a regularly scheduled basis reside in a data
base and are filed automatically unless altered or suspended.
A flight plan modification may be initi~ted at any time before
or during the flight by a controller or the pilot and must be
approved by the controller and the pilot.

Controllers are responsible for monitoring the flights which
pass through their sectors and for helping pilots achieve their
objectives. They watch a set of symbols representing the air
craft's radar track position as it moves across a plan view
display; the aircraft's identity, altitude, and other informa
tion are also displayed. Controllers institute control actions
as needed, to perform such functions as separation assurance,
honoring pilot requests for new routes, rerouting flights to

1-3

avoid special use airspaces or severe weather, or queueing
aircraft into major terminal areas.

Separation assurance services provided by the current system
are described in the FAA's document "Air Traffic Control" [4].
Separation is provided in one of the three dimensions relative
to aircraft movement: vertical, lateral, or longitudinal.
Separation in any one of these dimensions is sufficient. Ver
tical separation uses pilot reports of altitude supplementea-Dy
barometric data (Mode C reports) •. Aircraft in level flight may
be assigned to specific flight levels, which are designated
altitudes (separated by 2000 teet at high altitudes). Level
aircraft occupying different flight levels have vertical sepa
ration. The controller may provide vertical separation for an
aircraft that is maneuvering vertically by issuing altitude
restrictions, which direct the pilot to be at, at or above, or
at or below a specified altitude at a given point along its
flight path. Lateral separation applies to aircraft flying on
different routes whose airway widths or protected airspace do
not overlap. When routes do overlap, the controller may pro
vide lo~itudinal separation to assure that the two aircraft
reach t~ region of overlap at two different times or that the
aircraft are separated by a specific distance.

The plans of the FAA for the evolution of Air Traffic Control
are discussed in "Advanced Automation System, System Level
Specification" [1), and in "National Airspace System Plan
(NASP): Facilities, Equipment and Associated Development"
[2]. According to the NASP, the "early capabilities [of auto
mated Air Traffic Control] will include flight path conflict
probe which predicts future aircraft trajectories and examines
[them] for potential violation of separation standards."
According to the AAS, Flight Plan Conflict Probe is performed
"on request or when an amendment is made to an active flight
plan."

1.4.1.1 Flight Plan Conflict Probe and AERA

The advanced automation functions for the ATC System are part
of an automated system referred to as AERA ("Automated En Route
Air Traffic Control"). AERA is to be implemented in several
stages, as outlined in "Evolution of Advanced ATC Automation
Functions" [5]. Flight Plan Conflict Probe will be implemented
as part of the first stage, known as AERA 1 (which is further
sub-divided into AERA 1.01 and AERA 1.02). Operational des
criptions of the advanced automation functions of AERA 1.01 are
given in "Operational and Functional Description of AERA 1.01"
[3].

1-4

Several other functions of the AAS are related to or interface
with Flight Plan Conflict Probe. The Trajectory Estimation
function [Volume 1] models the paths of aircraft through space
and time for use by other functions including Flight Plan Con
flict Probe. These paths are called trajectories. The
Airspace Probe function [Volume 2] provides information to air
traffic controllers on predicted aircraft violations of
restricted and warning areas, military operations areas, areas
with terrain obstructions, and special use airspaces. Airspace
Probe and Flight Plan Conflict Probe may share some data. The
controller may invoke these two functions in tandem when eval
uating a proposed routing of an aircraft. Some outputs of FPCP
(and of Airspace Probe) are used by the Sector Workload Probe
[Volume 4], which provides information to A':fC supervisory per
sonnel on measures related to workload in order to assist them
in making decisions on sector staffing and on the amount of
airspace currently defining the sectors. The common data used
by the specifications are described and their relationships are
identified in "Data Specification" [Volume 5].

1.4.1.2 . FPCP and Other Functions Concerned With Aircraft
Separation

The following paragraphs describe three functions or systems
which are quite diverse in purpose, source of input data, and
look-ahead time, but which share with FPCP the objective of
outputting messages whenever certain traffic-related criteria
are met. The subsequent section (Section 1.4.1.3) discusses
how F.PCP satisfies needs not met by the other three systems.

En Route Sector Loading

En Route Sector Loading (ELOD) is a major Central Flow Control
enhancement planned for 1983 implementation. Using Official
Airline Guide schedules, flight plans, arrival times, and
manually entered data, ELOD is to determine areas of projected
traffic saturation in sectors and at selected points throughout
the U.S. Airspace. The traffic de~nd is predicted over a
longer time period than the period associated with FPCP. An
alert message is generated if the projected traffic demand
count for any sector or point in a sector exceeds a threshold.
This information is provided to the local flow management per
sonnel in the center who may resolve the heavy traffic
situation.

ELOD is likely to reduce the incidence of conflicts that would
occur without its presence. However, its intent is to estimate

1-5

traffic demand on a continental scale rather than to predict
separation violations for individual aircraft. It has no
information about an aircraft's current position or speed.

Conflict Alert

The currently-implemented Conflict Alert Function, described in
"National Airspace System Configuration Management Document:
Automatic Tracking" [6), is designed to observe radar-tracked
data and alert the responsible controller when certain separa
tion criteria are predicted to be violated. The time
thresholds involved are much shorter than ELOD's and too short
for Conflict Alert alone to assure routine aircraft separa
tion. Although Conflict Alert is provided with current tracked
positions, speeds, headings, and assigned altitudes, it is
limited by a lack of knowledge of aircraft intent in the hori
zontal plane, and hence is subject to false alerts and missed
alerts. This limitation, in a sense, is opposite to that of
ELOD, which is dependent on intent, but not on tracked position.

Airborne Collision Avoidance Systems

Airborne Collision Avoidance Systems, such as the Traffic Alert
and Collision Avoidance System (TCAS), alert an aircraft's
pilot to collision threats as described in "Collision Avoidance
Algorithm for Minimum TCAS II" [7]. The controller is not
involved with the alert. Like Conflict Alert, TCAS is
dependent on current relative tracked positions and velocities
of nearby aircraft but not on intent. To an even greater
degree than Conflict Alert, a TCAS alert (which appears some 30
seconds prior to predicted closest approach) implies that cor
rective action is necessary; an ATC operational error has
probably occurred if the alert involves controlled aircraft.
Neither TCAS nor Conflict Alert is adequate for safe separation
of aircraft; both serve primarily as collision avoidance sys
tems.

1.4.1.3 Requirement for a Flight Plan Conflict Probe

A problem that exists with all of the above systems is that
none combines knowledge of intent with knowledge of tracked
position. The difficulty is that confidence in purely tracked
data diminishes rapidly as the projection period increases
beyond that of Conflict Alert (two minutes), while confidence
in flight plan accuracy, reasonably high on ELOD's coarse scale
of hours, diminishes rapidly when finer predictions are at
tempted. The time scales in the intermediate future, however,
are most appropriate as thresholds to alert controllers of

1-6

conflicts: close enough in the future that corrective action
is required, but far enough in the future to allow the control
ler time to resolve the conflicts in a routine and deliberate
fashion. With the introduction of the AAS, it becomes possible
for the first time to combine knowledge of tracked position and
intent on this intermediate time scale.

1.4.2 Effect of Future AAS Enhancements on Flight Plan
Conflict Probe

The role of FPCP may undergo certain modifications in future
enhancements of AERA. These modifications are described in
detail in "Operational and Functional Description of the AERA
Packages" [8] •

1.4.2.1 Conflict Resolution

In AERA 1, the Flight Plan Conflict Probe is a detection ser
vice only. The controller may respond to FPCP information by
planning, verifying and manually uplinking (by voice or data
link) resolution maneuvers for the aircraft. Later, the output
of FPCP will feed into an automatic resolution service called
Conflict Resolution. Conflict Resolution may itself need to
invoke FPCP to test proposed resolutions for possible conflicts
with some third aircraft. As automation proceeds, the control
ler's responsibility in planning and coordinating resolution
maneuvers will decrease. If necessary, however, he will be
able to revert to manual resolution of conflicts using FPCP (as
in AERA 1).

Implementation of Conflict Resolution may imply a change in the
criteria used by FPCP to determine conflicts. Additional fac
tors may need to be taken into consideration as FPCP's output
is increasingly used by other algorithms rather than by con
trollers alone. These factors are discussed in Section 2.2.4,
Separation Criteria.

1.4.2.2 Long Range Probe

A function called Long Range Probe (LRP) is planned for
AERA 1.02. The algorithm and the operational use for this
function are still under development. The function may require
FPCP support in the form of input data. LRP will help a con
troller decide whether to accept a proposed flight plan or
flight plan amendment (e.g., for an off-airway user-preferred
route). It will differ from Flight Plan Conflict Probe in that
it will not predict conflicts between specific aircraft pairs.
Rather, LRP will attempt to indicate the presenc~ of heavy

1-7

traffic areas to the controller to help the route approval
decision process.

LRP will complement FPCP by providing independent data to the
controller concerning proposed flight plan changes. In effect,
it will serve as an intermediate function between FPCP (which
has a shorter time-frame but uses !~tent like LRP) and ELOD
(which has a longer time-frame but uses statistical projections
like LRP).

1.4.2.3 Improved Input Data

As improvements are made on the quality of input to FPCP (pre
dicted aircraft positions), FPCP may use progressively longer
look-ahead times for purposes of planning. Also, the separa
tion thresholds used to determine when to alert the controller
may be made smaller as ability improves to distinguish false
alerts. Possible input enhancements include the following:

• implementation of Mode S data link (a digital two-way
air/ground communication system), which will permit
better information on aircraft intent and improved
weather data (especially for winds aloft)

• improved vertical.tracking

• incorporation into the automation data base of position
or intent information that is currently discussed and
agreed upon by the pilot and the controller via verbal
means only

1.5 Flight Plan Conflict Probe Summary

This section describes FPCP from an operational point of view
and gives an overview of its internal junctioning.

1.5.1 Operational Description

The Flight Plan Conflict Probe informs controllers if the tra
jectory of an aircraft violates, within a certain time period,
specific separation criteria in the horizontal and vertical
dimensions, with respect to the trajectory of another air
craft. These criteria differ from the separation standards
currently in use by ATC as described in the FAA's document "Air
Traffic Control'' [4]. If the separation criteria are predicted
to be violated for some pair of aircraft and the violation
occurs within the specified time period, a confli.ct is said to

1-8

occur, and the controller is presented with a message describ
ing the situation. The controller receives information early
enough to produce a resolution and to act promptly, if neces
sary, in order to eliminate a conflict.

The message may be in the form of text and/or a graphic dis
play. It includes information such as the two aircraft IDs,
routes, altitudes, predicted horizontal and vertical miss dis
tances, and the time interval when the separation criteria are
predicted to be violated.

FPCP distinguishes two types of conflicts: advisory and prior
ity. A priority conflict indicates that the controller should
begin a resolution determination process at once. The process
is assumed deliberate (rather than hasty); the criteria allow
for complications but not for procrastination. An advisory
conflict does not necessarily require immediate attention.
Separation criteria for priority conflicts use tighter thres
holds than those used for advisory conflicts (see Section
2.1.11, "Advisory and Priority Terminology").

The controller may receive conflict information by requesting a
trial probe as defined in "Operational and Functional Descrip
tion of AERA 1.01" [3]. A trial probe involves the testing of
a proposed flight plan change which the controller enters
manually. The motivation for a trial probe may be a pilot
request for a route change or the testing of a resolution of
one conflict to assure that it does not generate any other con
flicts. The aircraft's current trajectory remains in the
global data base so that all other FPCP processing continues
during the trial probe the same way it would have in its ab
sence.

1.5.2 Processing Overview

Flight Plan Conflict Probe is invoked automatically based on an
event associated with one specific aircraft called the sub
ject. . This event may be that the subject aircraft first enters
the data base or its trajectory is altered or extended. Other
aircraft in the data base (whose trajectories have at some pre-
vious time been processed by FPCP as subjects) are designated
as objects. FPCP compares the subject's trajectory against
those of each object.

When FPCP is invoked, the subject aircraft's trajectory is com
pared with the trajectory of object aircraft to rule out
objects that, for each interval in time, are separated from the
subject by large horizontal distances. The center's entire

1-9

airspace, plus a buffer region, comprise the center's flanning
region which is overlaid by a grid of cells in (x,y,t space.
Certain cells which the subject and object aircraft trajectory
approach or pass through are marked "occupied." (The "occu
pancy" criteria for the subject are different from those for
the objects, as explained in Section 2.1.7.) Objects are elim
inated from further consideration if they do not share with the
subject the occupancy of at least one cell. The remaining ob
jects are listed; they include all aircraft that will closely
approach the subject aircraft in the horizontal and time dimen
sions.

The list is then edited to rule out pairs well-separated in the
vertical dimension. The same vertical criteria are used for
both advisory and priority conflicts. For the level portions
of the subject aircraft's flight, the vertical criteria are
that no other aircraft penetrate within a vertical threshold of
its assigned flight level. For those portions of the subject's
flight involving vertical maneuvers, Trajectory Estimation pro
vides a set of points that define a lower and an upper vertical
bound as functions of time. The vertical criteria are that no
aircraft penetrate these bounds. In practice, FPCP uses these
bounds to associate a single upper and lower bound with each
grid cell. As a result, a small percentage of objects may be
declared conflicts when they in fact are slightly outside the
vertical bounds (the extra computational burden of eliminating
them does not appear to be justified, particularly since the
upper and lower bounds can be set to reflect this grid-based
approximation).

The final sequence of tests use rigorous, mathematical methods
to determine whether any of the remaining objects actually vio
late the separation criteria with respect to the subject. Two
simple checks, one for overlap in time and the other for viola
tions in the vertical dimension, are followed by a more
rigorous test in the horizontal dimension. FPCP considers the
distance between the subject and each object as a function of
time. If this distance is predicted to fall below a preselec
ted threshold distance, the advisory/priority criteria are said
to be violated. The time at which this distance falls below
the threshold is referred to as the time of violation, which is
computed and stored in the data base.

Next, the time to display the conflict message is calculated.
The message is displayed far enough in advance of the time of
violation to allow a reasonable amount of time for the control
ler to resolve the conflict. The length of this ''reasonable"
interval of time is a system parameter. It . may include

1-10

allowances for complications (such as the failure of initially
proposed resolutions), as well as time to coordinate with
pilots and other controllers. The time at which the display
appears is simply the time of violation minus this parameter.

1-11

2. DEFINITIONS AND DESIGN CONSIDERATIONS

Section 2 defines terms that will be used in the following sec
tions and lists design considerations that impact the choice of
an algorithm for FPCP.

2.1 System Design Definitions

Some fundamental terms which are used in this and other AERA
specifications have already been· defined or discussed in Sec
tion 1. This section will define additional terms, many of
which are used only in this specification. For easy reference,
a glossary of both the general and specific terms is included
in Appendix D.

2.1.1 Resynchronization

One type of automatic trajectory alteration is resynchroniza
tion, defined as the task of recomputing the estimated
trajectory of an aircraft when the trajectory is inconsistent
with the aircraft's recent history {as determined by radar
track data and controller inputs). An AERA function called
Conformance Monitoring determines when resynchronizations are
necessary and Trajectory Estimation performs them.

2.1.2 Time Horizon, Delta Horizon and Horizon Update

Flight Plan Conflict Probe considers future trajectory informa
tion only up to a certain time bound, called the time horizon.
The time horizon is far enough in the future--that most
trajectories within a planning region are encompassed in their
entireties (i.e., only a few extend beyond the time horizon).
It is advantageous for Flight Plan Conflict Probe {and for
Sector Workload Probe) to process trajectory information as far
into the future as possible, although neither function depends
on the outputs from such processing beyond a certain time limit.

Should a trajectory contain a portion that extends beyond the
time horizon, that portion is not processed immediately by FPCP
{or SWP) • Periodically, at intervals of delta horizon, the
time horizon is updated. Its value is incremented by delta
horizon. The event is called a FPCP horizon update, and it
causes an invocation of FPCP. A determination is made whether
a portion of any aircraft's trajectory is encompassed by the
updated, but not the original, time horizon. The set of such
aircraft is called the horizon subject set. FPCP treats each
aircraft, in turn, as the subject, considering only the inter
val from the original to the updated time horizon. Any

2-1

violations of separation criteria found during these invoca
tions must be between two members of the horizon subject set.

2.1.3 FPCP Trajectory UEdate

A FPCP trajectory update is defined as any of the following
three events:

• A trajectory is added to the center's automation data
base for the first time. ·

• A trajectory already in the center's automation data
base is resynchronized by the Trajectory Estimation
Function. (Possibly the resynchronization was per
formed in another center and timing information was
passed to this center.)

• A trajectory already in the automation data base is
altered due to an action by a controller or by another
AERA function.

Hereafter, the terms FPCP trajectory update and FPCP horizon
update will be shortened to trajectory update and horizon up
date, respectively. (Note: SWP uses slightly different
definitions for these terms; the SWP terms do not appear in
this volume.)

In AERA 1, each trajectory update results in an invocation of
Flight Plan Conflict Probe (as well as Airspace Probe and a
subfunction of Sector Workload Probe).

2.1.4 Segments, CUsps, and Segment Chains

The flight path of an aircraft is actually a continuous, smooth
curve in four dimensions. However, aircraft flight paths are
approximated by a series of lines . (in space-time) called
segments, joined together at their endpoints, or cusps, to form
a trajectory or a segment chain (Figure 2-1). A trajectory's
segment is denoted in the data base by its component cusps.

2.1.5 Holding Patterns and Maneuver Envelopes

It may at times be necessary to delay an aircraft's en route
progress. For example, the terminal area at the aircraft's
destination may be saturated when the aircraft is due to arrive
there. In that case, a controller may direct the aircraft into
a holding pattern or hold at a point along its route, causing

2-2

Segment

Segments

FIGURE 2·1
THE SEGMENT CHAIN AND THE GRID CHAIN FOR A TRAJECTORY

2-3

it to maneuver within a specified airspace. The holding pat
tern may take on any one of two possible general forms:

• a horizontal holding pattern, within which the air
craft maintains level flight

• a holding pattern with vertical extent, within which
the aircraft, instructed by the controller, changes
altitude using a spiral-like descent (or, conceivably,
climb) profile

Figure 2-2 illustrates these two types of holding patterns.
The figure also shows the geometric structures which enclose
these holding patterns and which are constructed by the Trajec
tory Estimation Function to represent the holds in the data
base. The horizontal holding pattern is enclosed by a rectan
gle and is limited to one flight level, while the holding
pattern with vertical extent is contained within a rectangular
block in (x,y ,z) space which may span many flight levels.
Trajectory Estimation provides the vertices of these maneuver
envelopes whenever a holding pattern is a part of an aircraft's
trajectory. It also provides the spatial and temporal entry
and exit points of the holding pattern maneuver. The z coor
dinates of these points are equal if and only if the hold is
horizontal. These two points are generally referred to as
cusps, except when they need to be distinguished from regular
cusps, in which case they are called holding pattern cusps.
The entry and exit points of a holding pattern define a segment
of the trajectory. Whenever it is necessary to distinguish
such a segment from one defined for a trajectory with no holds,
the segment is referred to as a holding pattern segment (versus
a regular segment). Otherwise, it is simply referred to as a
segment, as described in Section 2.1.4 (Segments, Cusps, and
Segment Chains).

2.1.6 Airspace Grid and Its Cells

It is useful to represent the planning region airspace by a
grid in (x,y,t) space, called the airspace grid. The discrete
compartments in the airspace grid are called the grid cells, or
simply cells. Each cell is bounded by surfaces parallel to the
x, y, and t axes (the projection of a cell into the (x,y) plane
is simply a square). The horizontal and time dimensions of the
cells are system parameters. Given these parameters, a cell
may be uniquely defined by three numbers corresponding to the
positions of the edges of the cell along each of the axes.

2-4

r------------,
I I
I I

I

(a) Regular Holding Pattern

- - - - - - - -- -/'1
"I

----~------~--.. --~.------.~~~// I

Vertical
Extent
(Not to
Scale)

~---1------
1 :
I I
I I

I
I I
I I

I
I I

-~ I
I
I
I
I

I
I

/~·~--------~------._,
/

~~ --~----~------~------~--~~~~~~0~~&~--------~·~
~'); :0.~

~~~e 
Horizontal Extent 

(b) Holding Pattern with Vertical Extent 

Legend: 

0 Entry and Exit Points (Cusps) 

--- Structure Edge 

Aircraft Path 

FIGURE 2-2 
GEOMETRIC STRUCTURES ENCLOSING 

TYPICAL HOLDING PATTERNS 

2-5 



It is assumed that a coordinate system is used which allows a 
rasonably convenient means of interfacing data among centers, 
even over wide geographical areas. Effects of the curvature of 
the earth may cause the shape of the cells to deviate slightly 
from their "ideal" square shape assumed here. Such effects are 
not significant to the algorithm and are not discussed further 
in this volume. 

2.1.7 Cell Occupancy, Grid Chains, and Buffer Cells 

As the trajectory of an aircraft traverses the airspace grid, 
its segment chain intersects or occupies a sequence of cells. 
In this section, cell occupancy is carefully defined so that 
the subject and a given object are considered in conflict only 
if they "occupy" at least one common cell. An effective strat
egy in FPCP is to use a minimal number of cells to represent 
trajectories for object aircraft, which are many in number, 
while placing the burden of providing separation assurance on 
the single subject aircraft. This strategy has the advantage 
of greatly reducing the storage requirements for lists of occu
pied cells, which are called grid chains. The cells drawn in 
Figure 2-1 form the grid chain for the segments shown. 

The cell list containing a minimal number of cells used in con
junction with object aircraft is called the sparse grid chain. 
The criterion for determi~ing that a cell is to be considered a 
member of the sparse grid chain is that the current aircraft 
segment chain penetrates the cell in such a manner that at 
least two octants of the cell are intersected (octants play a 
critical role in the Grid Chain Generator described in Sections 
3 .3.1 and 4.1). Less sparse representations may be used but 
the associated FPCP algorithms are made less efficient. 

It is possible to construct pairs of trajectories which violate 
separation criteria while not producing overlapping sparse grid 
chains. Therefore, sparse grid chains by themselves are not 
suitable for FPCP separation assurance. Certain additional 
buffer cells, neighbors of those in the sparse grid chain, are 
selected for the subject aircraft. The list of these plus the 
sparse grid chain is called the buffer grid chain. Enough buf
fer cells are added to assure that for each violation of 
separation between the subject and an object, the subject's 
buffer grid chain and the object's sparse grid chain contain at 
least one cell in common. Finally, we may define what is meant 
by an occupied cell: for an object aircraft, it is any cell in 
its sparse grid chain, and for the subject aircraft, any cell 
in its buffer grid chain. 

2-6 



When the cell size in the x and y dimensions is suitably 
chosen, the buffer grid chain need include only the cells of 
the sparse grid chain and all of their orthogonal and diagonal 
nearest neighbors. 

2.1.8 and 

Flight Plan Conflict Probe maintains a data structure called a 
tree to represent the sparse or buffer grid chains of one or more aircraft. In graph terminology, a tree is a set of nodes 
(called tree nodes) connected by edges with the following prop
erties: 

• Each tree node is assigned a nonnegative integer, 
called the tree node's level, which represents the 
tree node's position along the vertical axis of the 
tree. 

• Exactly one tree node, called the ~, has a level of 
o. 

• Each edge connects tree nodes whose levels differ by 
one. The lower level tree node (one closer to the 
root) is called the parent of the higher level tree 
node (one further away from the root), which, in turn, 
is called the child of the lower level tree node. 

• Each tree node other than the root has exactly one 
parent. The root has no parent. 

A tree node's ancestors consist of its parent, parent's parent, 
and so on, all the way to the root. Its descendants are its 
children, children's children, etc. A tree node with no chil
dren is called a leaf. 

In relational data base terms, a tree is represented by a table 
showing all the parent-child relationships (tree edges). Both 
parent and child are keys. In global tables, the · tree nodes 
are always referred to (in full) as tree nodes, to distinguish 
them from nodes in ATC terminology, where the word has an 
alternate meaning. Although the ATC meaning of "node" does not 
occur in this document, it is well-established in the current 
ATC system and may be used in future documents describing later 
versions of AERA. In the text and in ;Local tables in this 
volume, the shorter form "node" will be used hereafter; the 
term is always intended to mean a tree node. 

2-7 



Each node is associated with a portion, or block, of the grid. 
The root of the tree represents the entire grid. Blocks asso
ciated with a node's children are called octants or subblocks. 
The leaves, which all have the same level, represent the cells 
of the grid. Each node's block contains the blocks of the 
node's descendants and is contained in the blocks of the node's 
ancestors. Any set of cells in the grid (and, in particular, 
the grid chains) may be represented by a tree containing a leaf 
for each cell plus the ancestors of each such leaf. 

Let n be the smallest positive integer such that a square 2n 
cells wide (along each of the x and y axes) encloses the entire 
planning region. Consider this square extended to a cube in 
(x,y,t) space by projecting it along the time axis by 2n 
cells. The cube is a block in the above sense. The block may 
be divided in half along each axis to form eight octants -
"northwest-early," "northwest-late," etc. Each octant may 
itself be divided in a similar way. A total of n divisions can 
be carried out before the (indivisible) cell level is reached. 
Figure 2-3 illustrates the procedure for n • 3, the level of 
each leaf. 

In FPCP, only the blocks containing occupied cells (called 
occupied blocks) are actually represented by nodes in the 
tree. Nodes corresponding to blocks whose cells are all unoc
cupied are not represented. The occupied cells form the leaves 
of the tree. Figure 2-4 indicates how the tree representation 
is accomplished in two dimensions. Several journal articles 
[9, 10, 11, 12] provide some useful theoretical results and 
algorithms for quad trees (two-dimensional versions of the 
three-dimensional octal trees used in FPCP). 

Depending on the separation parameters, there may be several 
times as many cells along the t axis as along the x and y 
axis. That is, the time from now to the time horizon, divided 
by the width of the cell in the time dimension, may be larger 
than the number of cells needed to span the planning region 
horizontally. The discussion is somewhat simplified if the 
ratio of the former to the latter is assumed to be a small 
integer power of two. If the entire airspace grid were simply 
halved repeatedly in each of the x, y, and t dimensions, cell 
width would be reached in the x and y dimensions before cell 
width is reached in the t dimension. It is desired, however, 
to reach cell width in all dimensions at the final division, 
corresponding to the tree's leaves. Therefore, the first few 
branching levels from the root are binary, not octal, and 
represent divisions of the grid on time alone. Octal branching 

2-8 



y 

+ 
I 
I 
I 
I 
I 
I 

2 

0 1 

FIGURE 2-3 
AIRSPACE GRID IN THREE DIMENSIONS 

2-9 



ROOT 

11 

012 013 021 022 100 101 110 111 

FIGURE 2-4 
TREE REPRESENTATION OF THE AIRSPACE GRID IN TWO DIMENSIONS 

2-10 



begins only when blocks (of size 2n) are reached that have 
the same number of cells in all three dimensions (Figure 2-5). 

When FPCP is invoked, it creates two (local) trees, a buffer 
subject tree and a sparse subject tree, which represent the 
cells of the subject aircraft's buffer grid chain and of its 
sparse grid chain, respectively. FPCP also maintains another 
tree called the allobject tree, which represents the union of 
the cells in the sparse grid chains of all aircraft in the 
planning region. 

2.1.9 Nominees and the Coarse Filter 

A working hypothesis in this formulation of the. FPCP is that a 
detailed comparison of a subject trajectory with each object 
trajectory in the planning region, using a mathematically 
rigorous statement of aircraft intent and the FPCP separation 
criteria, is computationally inefficient. Some prescreening is 
needed to eliminate subject-object pairs from further consid
eration when they "obviously" are well separated (in space or 
time). The existence of pre screening is justified, in prin
ciple, since it reduces the overall processing time of the FPCP 
algorithm. In practice, it has a secondary justification--the 
data used for prescreening provide useful information for Sec
tor Workload Probe. 

A first-level screening, called a Coarse Filter, is performed 
in order to eliminate object aircraft that are well separated 
from the subject. The remaining objects, called the nominees 
or nominee aircraft, are listed for further screening. No 
objects that violate the FPCP separation criteria are omitted 
from this list. 

2.1.10 Encounters and the Fine Filter 

The Coarse Filter produces nominees which ·may not actually vio
late the FPCP separation criteria. Another filter, called the 
Fine Filter, invokes algorithms that, through more rigorous 
mathematical analyses conducted on subject-nominee segment 
pairs, can identify those nominees whose trajectories violate 
both the FPCP horizontal and vertical criteria with that of the 
subject aircraft. If such a violation is found to exist, the 
event is called an encounter and the aircraft intruding into 
the subject aircraft's airspace is called an encounter air
craft. If neither aircraft's trajectory changes, the encounter 
will, with the passage of time, become an (advisory) conflict. 

2-11 



l~ 
t 

Current Time Time 
I Wi hi Thi s t n s Horizon\ 

Interval 
~ 

~///~///~///~////1 
~///~L//-///-///~~ 
~///~///~//L~////~ 

~ ..-~-" ) 

* 

Planning 
Legend: Region 

---- Major Divisions - Time Only 

----Subdivisions on x, y, t 

vv t-'J 
v~~ 
~~ 

~ y 

(X, Y, T) GRID SHOWING GREATER EXTENT IN T DIMENSIO~ 

FIGURE 2·5 
ILLUSTRATION OF TREE WITH EARLY DIVISION ON T ONLY: 

LATER DIVISION ON X, Y, T 

2-12 

X 



2.1.11 Advisory and Priority Terminology 

The Fine Filter uses two distinct sets of criteria in its 
testing for conflicts in the horizontal and time dimensions, 
one for advisory and the other for priority conflicts (in the 
vertical dimension, the same criteria are used for both types 
of conflicts). Each set of criteria consists of a threshold 
for the horizontal test and another for the time to display 
test. In the horizontal and time dimensions, a pair of air
craft are said to be in conflict if the horizontal separation 
distance between the aircraft is less than the horizontal sepa
ration threshold and the time until the separation between the 
aircraft reaches this horizontal threshold is less than the 
time threshold. 

The first set of criteria consists of the horizontal separation 
threshold or advisory Seph (Separation ~orizontal) and the time 
threshold or advisory Sept (Separation !ime). 

The advisory time of violation is the time at which separation 
first falls below the advisory Seph. An advisory message, 
featuring information on a conflict, is displayed to the con
troller at the display-as-advisory time, which is the later of 

• the time prior to the advisory time of violation by the 
amount of the advisory Sept 

• the current time 

If the time of violation is currently less than the current 
time plus the advisory Sept, an advisory message may be dis
played at once and the criteria discussed below are tested. 
Figure 2-6 illustrates the relationship between Seph and Sept 
for advisory and priority conflicts. In Figure 2-7, the 
display-as-advisory time and advisory time of violation are 
identified relative to the separation between a pair of air
craft and the point of closest approach. 

The second set of criteria are analogous to the first, except 
the values of the thresholds, priority Seph and priority Sept, 
are smaller. The priority time of violation is the time at 
which separation falls below the priority Seph. Information on 
such an encounter would be displayed to the controller in a 
priority message at the display-as-priority time, which is the 
later of 

• the time prior to the priority time of violation by the 
amount of the priority Sept 

2-13 



Predicted 
Horizontal 
Separation 

Advisory 
Seph 

Priority 
Seph 

Current Current Current 
Time Time Time 

+ + 
Priority Sept Advisory Sept 

Legend: 

P'7J Locus of points for which advisory 
~ messages are displayed 

~ Locus of points for whi~h priority 
~ messages are displayed 

FIGURE 2·6 

Time 

RELATIONSHIP BETWEEN ADVISORY AND PRIORITY SEPARATION 
AND DISPLAY CRITERIA 

2-14 



Predicted 
Horizontal 
Separation 
Between 

Subject and 
Object 

Advisory 
Seph 

Priority 
Seph 

Current 
Time 

Display-as
Priority Time 

Priority 
Time of 

Violation 

Display-as
Advisory Time 

Advisory 
Time of 

Violation 

FIGURE 2·7 

Time 
of 

Closest 
Approach 

CRITICAL TIMES ASSOCIATED WITH ADVISORY 
AND PRIORITY VIOLATIONS 

2-15 

Time 



• the current time 

2.2 Design Considerations 

This section lists considerations that must be taken into 
account when designing an algorithm for FPCP. 

2.2.1 Minimal Required Controller Knowledge of Algorithms 

The FPCP algorithm has been designed so that the controller may 
use the information generated without knowledge of the algo
rithm's details. An operational understanding of the algorithm 
may be useful so that the controller can interact and utilize 
the functions and their outputs. 

2.2.2 Display Format 

This specification does not address the formats that may be 
used to display FPCP data outputs or to enter requests for a 
trial probe or a list of encounters. It has been written under 
the assumption that the display is flexible and easy to use 
(perhaps menu driven), has some standard editing capability, 
and can satisfy both the controller who wishes to explore every 
feature as well as the controller who wishes to minimize the 
time required to learn how the function is used. 

2.2.3 Considerations Involving Uncertainties in Aircraft 
Position 

FPCP performance is only as good as the automation data base, 
including approved flight plans, weather, aircraft performance 
information, and estimated trajectories. Should a controller 
approve a modification to a flight plan but fail to enter the 
information into the data base, any displayed conflicts for the 
aircraft will likely be erroneous since they are based upon an 
obsolete trajectory. Also, actual conflicts resulting from the 
new flight plan may not be detected and displayed. 

There are ways that erroneous trajectories can be detected 
automatically for manual or automatic revision. In AERA 1, 
disparities in the longitudinal (along track) direction between 
the estimated trajectory and radar return for an aircraft are 
corrected by resynchronization (although not immediately due to 
tracker lag). Trajectory Estimation modifies the stored value 
of the aircraft's speed to account for the observed error, and 
recomputes the trajectory. Lateral (across track) disparities 
are not corrected automatically, since when such an error 
occurs, an aircraft can no longer be assumed to be following 

2-16 



its flight plan. A message indicating the disparity is 
displayed to the controller, who may update the data base. In 
the meantime, systems that do not use the automation data base 
(such as Conflict Alert and TCAS, described in Section 1.4.1.2) 
serve as backups. In case of conflicts involving an aircraft 
with a lateral disparity, an indicator of the disparity 
accompanies the display of conflict information. 

2.2.4 Separation Criteria 

The values of FPCP horizontal separation criteria (advisory and 
priority) are an issue that is still the subject of study. 
They influence directly the optimal selection of cell size in 
the horizontal (x and y) dimensions. The AAS Contractor should 
regard separation parameters and cell size as· constants to be 
determined. A number of factors may influence the choice of 
the horizontal criteria. The rate of false alerts is one fac
tor. Another is the trade-off between resynchronization rate 
and the advisory (and priority) Seph: as more error is allowed 
before triggering a resynchronization, FPCP must use larger 
thresholds to assure separation just prior to the resynchroni
zation. It is possible that the time elapsed since the last 
resynchronization is a factor also. 

In later stages of automation, factors that are less easily 
measured may become important in setting horizontal criteria. 
These factors may include the overall complexity of the situa
tion, additional conflicts caused by possible resolutions, 
current/ future controller workload, metering plans, etc. 

In the vertical dimension, separation criteria for FPCP are 
more easily defined: all altitudes that an aircraft may 
legally reach (subject to controller restrictions) and can 
physically attain (subject to considerations of weather, 
weight, etc) must be protected. 

Trajectory Estimation provides information to FPCP regarding 
vertical separation criteria. An upper and lower bound are 
associated with each vertical maneuver. These bounds, like 
trajectories, consist of points or vertices in four-space con
nected by lines. The upper portion of Figure 2-8 illustrates a 
simple case, where a descent has been cleared with no inter
mediate restrictions. To achieve vertical separation, other 
aircraft must pass outside the bounds. Trajectory Estimation 
provides four vertices which identify a vertical maneuver 
envelope. The four vertices are as follows: 

2-17 



Altitude 

Altitude 

4 --.-.....--,-----, 
\ 
\ 
\ 
\ 
\ 
\ 

\ 
\ 

Distance Along Course 

\ 
\ 

la 
-~,~-~,-- \ 4a 

\ 
\ a t-or-below 

\ 
\ 
\ 

\ restriction 

lb\--- 3a'p---,4b 
\ \ 

2a, 

\ \ 

\ ', 

3 

2b '-------~---..... --
Jb 

Distance Along Course 

Legend: 

1 a left upstream vertex 
2 • left downstream vertex 
3 = right downstream vertex 
4 = right upstream vertex 
a = first maneuver envelope 
b • second maneuver envelope 

FIGURE 2·8 
UNRESTRICTED AND RESTRICTED VERTICAL MANEUVER ENVELOPES 

2-18 



1. The earliest point at which the maneuver may begin 
(left upstream vertex in a descent) 

2. The point at which the desired altitude is reached, 
if the aircraft maneuvers at its maximum vertical 
rate as early as possible (left downstream vertex) 

3. The latest point at which the maneuver may begin 
(right upstream vertex) 

4. The latest point at which the desired altitude must 
be reached, or some point far in the future if no 
such constraints exist upon the maneuver (right down
stream vertex) 

The controller may direct the pilot to achieve a given altitude 
(at, at or above, at or below) by a given place along the 
course. The maneuver envelope can be split into two separate 
maneuver envelopes to model this situation. For example, in 
the lower portion of Figure 2-8, the pilot has been instructed 
to be at or below the indicated altitude by point P on the 
course. The vertices defining the envelope around the first 
part of this maneuver are labelled la, 2a, 3a, and 4a, while 
those defining the second envelope are labelled lb, 2b, 3b, and 
4b. 

Note that very large amounts of vertical airspace may need to 
be protected in the absence of intermediate restrictions. How
ever, a small number of such restrictions, even just one, can 
result in large reductions in the amount of airspace needing 
protection. 

In level flight, FPCP uses as upper and lower bounds the flight 
altitude plus or minus a vertical threshold (a global constant 
with different values for altitudes below and above 29000 feet). 

2.2.5 Initiating the Display of FPCP Information 

When FPCP has completed its search for encounters involving the 
subject aircraft, the updated information is made available to 
the display function, including the display-as-advisory and 
display-as-priority times. The display function displays the 
advisory or priority message for an encounter to the 
appropriate controller(s) when the current time reaches the 
encounter's display-as-advisory or display-as-priority time. 

2-19 



2.2.6 FPCP, Sector Workload Probe and the Airspace Grid 

This specification assumes that SWP and FPCP use a common air
space grid. This assumption may allow considerable savings in 
computer storage and execution time. The updating of the grid 
is a significant portion of the FPCP processing which, with a 
common grid, needs to be done only once per invocation of 
FPCP. The width of the FPCP grid cells in the horizontal and 
time dimensions are system parameters. There are certain 
implications in setting them equal to the respective horizontal 
and time widths of the SWP cells. 

The exact horizontal dimensions of the grid cells are, within 
broad limits, not critical to SWP. They are critical to FPCP; 
the exact value is still to be determined but is expected to 
fall within SWP's broad limits. On the other hand, the exact 
dimension of each grid cell in the time dimension is, within 
broad limits, not critical to FPCP but is critical to SWP. 
Multiplied by 2k for some positive integer k, it must equal 
some convenient length of time (e.g., 15 minutes, rather than, 
say, 13.79) over which the outputs are calculated and dis
played. Further study may prove that the optimal range of the 
grid cell's time extent for FPCP does not include a value com
patible with SWP's need for a conveniently-sized time unit. If 
so, grid-commonality implies that the cell's time extent must 
be rounded up to such a value, at the cost of more nominees and 
more calls to the FPCP Fine Filter. There are certain advan
tages, however, even apart from SWP considerations, for the 
FPCP grid to be divided on the time dimension in convenient 
clock increments, even if these are not quite optimal in 
reducing nominees. For instance, to do a trial probe the 
controller might want a list of all encounters with display-as
advisory times earlier than 3:00 p.m. 

The costs associated with assuming common grids for both SWP 
and FPCP appear to be outweighed by the benefits. It is worth 
noting, however, in view of the fact that SWP and FPCP system 
parameter values have yet to be determined, that different 
grids could be used for SWP and FPCP without substantial 
changes in either specification. The Grid Chain Generator 
(Section 4.1) would simply be run twice, once for each grid, 
and at each trajectory update, both grids and both trees would 
be updated. 

2.2.7 Boundary Considerations 

FPCP determines conflicts throughout the planning region, which 
includes the center plus a buffer region. The algor! thm has 

2-20 



been designed under the assumption that controllers have as 
much time to resolve conflicts transitioning into their center 
as they have for conflicts entirely within the center. For 
boundaries with non-AERA airspace, the buffer region is assumed 
large enough to allow the usual level of information promptness 
and completeness for any conflict with a point of violation 
within the center's airspace. 

2.2.8 Controller Interface 

This section discusses controller interface issues, including 
who may access FPCP outputs and who may trigger and/or accept a 
trial probe. 

2.2.8.1 Who Is Informed of Conflicts 

This specification does not present an algorithm for deter
mining which controllers are notified automatically of 
conflicts. For FPCP to work as designed, however, the control
lers who are responsible for resolving the conflicts (including 
those responsible for the sectors the aircraft will occupy at 
the display-as-priority time and perhaps the display-as
advisory time) must be notified automatically. It may be 
necessary to notify the controller who would be responsible if 
the controller(s) currently responsible fail(s) to resolve the 
conflict. Other controllers may benefit from seeing the con
flict data upon request. It may also benefit the controllers 
responsible for conflicts to be able to access, upon request, 
data concerning encounters (which may become conflicts in the 
near future). 

2.2.8.2 Trial Probes 

This specification places no explicit constraints on who may 
perform trial probes. Any controller may probe any aircraft 
having a current trajectory. In later v~rsions of AERA, auto
mation functions such as Conflict Resolution and Metering may 
invoke a trial probe. Any number of controllers or functions 
may perform trial probes simultaneously, but each may test only 
one trial trajectory (that of its subject aircraft) at a time. 

2.2.8.3 Who May Accept Trial Flight Plans 

No change is anticipated for AERA 1 in the cur.rent rules for 
deciding which controller may give a clearance to a pilot for a 
new plan. These rules are discussed in the FAA's document "Air 
Traffic Control" [4]. Controllers must coordinate clearances 
with each other under AERA 1 just as they do in NAS. 

2-21 



3. FLIGHT PLAN CONFLICT PROBE FUNCTIONAL DESIGN 

Figure 3-1 illustrates the high-level organizational structure 
of the Flight Plan Conflict Probe algorithm. 

3.1 Environment 

This section describes required input and output data, and 
lists conditions causing activation of the FPCP algorithm. 

3.1.1 Input Data and Activation 

3.1.1.1 Input Data 

The input to FPCP consists of: 

• The trajectory and maneuver envelopes of each aircraft 
in the data base, and the trial trajectory and maneuver 
envelopes, if any 

• The stimulus for invoking FPCP (trajectory update, hori
zon update, trial probe) 

• The identity of the subject's trajectory (trajectory 
update and trial probe only) 

• The identity of the trial trajectory (trial probe only) 

3.1.1.2 Automatic Activation Sequences 

Flight Plan Conflict Probe is triggered automatically by either 
a trajectory update or a horizon update. 

3.1.1.3 Controller Initiating Sequences 

A controller may initiate a trial probe. for a particular air
craft. The controller enters a trial flight plan for the 
aircraft into the system and its trajectory is constructed by 
the Trajectory Estimation Function. FPCP is invoked with this 
aircraft as the subject. However, the current (original) tra
jectory would be used should FPCP be invoked immediately 
thereafter for a different subject, either automatically or via 
another controller's trial probe. 

3-1 



I 
Grid Chain 
Generator 

Section 
3.3.1 

I 
Coarse 
Filter 

Section 
3.3.2 

FPCP 

FIGURE 3-1 

I 
Fine 

Filter 

Section 
3.3.3 

FPCP ORGANIZATIONAL STRUCTURE 

3-2 

I 
Maintenance 

Section 
3.3.4 



3.1.2 Output Data 

3.1.2.1 Output to Global Data Base 

FPCP contributes the following to the global data base: 

• A table containing information on each current encoun
ter, including the identity of the aircraft involved and 
the geometry of the encounter. It is the culmination of 
the FPCP processing. The data are accessed by Sector 
Workload Probe. 

• A table containing information on each encounter that 
has been determined no longer current (due to a trajec
tory update). Sector Workload Probe uses this table for 
housekeeping purposes, after which it deletes the table. 

• A table containing information on the sparse grid chain 
of each object aircraft. Flight Plan Conflict Probe 
creates this table for determining conflicts. This 
table is also used by Sector Workload Probe to determine 
time and sectoring information for workload distribution. 

FPCP makes information on encounters available to the display 
function (not described in this specification). The table pro
vides enough information to determine when to display advisory 
and priority messages. 

3.2 Design Assumptions 

Three stimuli can cause an invocation of FPCP: the trajectory 
update, horizon update, and trial probe. The subfunctions are 
developed with the stimulus type as an input and use algorithms 
common to all three types. Any special logic required to 
perform an operation particular to a given stimulus can be 
invoked when necessary. 

For a trial probe, two additional inputs must be passed to 
FPCP: the identity of the subject aircraft's trial trajectory, 
and the identity of its existing trajectory. By the time of 
FPCP invocation, Trajectory Estimation will have output both 
trajectories to the global data base. The trial trajectory's 
identity must differ from that of the subject (as well as from 
those of the other aircraft) in order to avoid determining a 
"conflict" of the subject with itself. 

3-3 



For a trajectory update, the subject's identity is input to 
FPCP. Again, by the time of FPCP invocation, Trajectory Esti
mation will have updated the subject's trajectory. 

For a horizon update, FPCP requires no inputs except the stimu
lus type. FPCP is invoked periodically, at intervals of delta 
horizon. It determines the set of aircraft whose tra
jectories extend beyond the time horizon. The portions of the 
trajectories which are within a t~me interval of length delta 
horizon beyond the time horizon are processed in turn, leading 
to the identification of possible encounters. All of the 
subfunctions of FPCP, that is, the Grid Chain Generator, Coarse 
Filter, Fine Filter, and portions of Maintenance are invoked, 
in turn, for each trajectory portion. 

3.3 Subfunctions 

3.3.1 The Grid Chain Generator 

The Grid Chain Generator (GCG) uses the cusp data from the tra
jectories as input data for the subject aircraft. It orders 
these by time into consecutive pairs to form segments. It also 
uses data on the maneuver envelopes to provide additional pro
tection about the subject aircraft's maneuvers. Its outputs 
are the following: 

• The sparse grid chain 
• The buffer grid chain 
• The sparse subject tree 
• The buffer subject tree 

3.3.1.1 The Sparse Grid Chain 

The Grid Chain Generator algorithm loops through each segment 
of the subject's segment chain, marking certain cells it passes 
through as occupied (as defined in Section 2.1. 7, Cell Occu
pancy, Grid Chains, and Buffer Cells) and adding them to the 
sparse grid chain. First, the cell containing the segment's 
(beginning) cusp is added to the grid chain. The direction (x, 
y, or t) in which motion through the grid is most rapid (in 
terms of the number of cells crossed per unit length) is desig
nated the steepest direction. 

A point on the segment is considered whose projection is one 
cell width farther along the axis of the steepest direction; 
the cell in which it lies is added to the grid chain. This 
cell is an orthogonal or diagonal neighbor of the previous 
cell. Note that the trajectory may pass through other cells 

3-4 



that are not marked occupied. Such cells are only "nicked" by 
the segment, i.e., the segment intersects only one octant. 

The GCG continues adding occupied cells to the grid chain in 
this manner until the cusp marking the next segment is 
reached. For the new segment, the steepest direction is 
updated if it changes, and the cell occupied by the beginning 
cusp is added (if it is not already in the grid chain). The 
process continues until the last segment is reached. 

Figure 3-2 illustrates an example in two dimensions. Two 
straight line segments joined by a cusp are shown. The corres
ponding occupied cells are marked by a shaded circle. Such 
cells compose the sparse grid chain. 

3.3.1.2 Vertical Maneuvers and Holding Patterns 

The sparse grid chain as derived from the trajectory informa
tion requires no further modification for trajectory segments 
representing straight lines or turns in level flight. However, 
the existence of vertical maneuvers and holding patterns neces
sitates the addition of extra protection about the nominal 
trajectory derived solely from the cusp data. 

In the case of vertical maneuvers, the altitude range to be 
protected for each sparse cell is stored. 

The case of a holding pattern may require the use of additional 
cells to protect against uncertainty in the aircraft's 
position. The cells added represent the union of (a) those 
cells that would be added to the sparse grid chain were each 
boundary edge of the geometric structure enveloping the holding 
pattern (in (x, y, t) space) treated in turn as a segment, and 
{b) any interior cells. 

3.3.1.3 The Buffer Grid Chain 

The buffer grid chain is a list of all cells whose x, y and t 
coordinates differ by no more than one cell width from a cell 
in the sparse grid chain. Buffer grid chain cells are shown as 
unshaded circles in Figure 3-2. The sparse grid chain's cells 
form a subset of the cells of the buffer grid chain. 

It can be shown that if no cells of the buffer grid chain of a 
subject aircraft coincide with a cell of an object's sparse 
grid chain, the subject and object do not violate the FPCP 
separation criteria. 

3-5 



y 

7 

6 

5 

4 

3 

2 

1 

0 

0 0 0 

0 0 0 ~ r\.0 0 
/ 

~ 
v 

·"' 0 • 0 ~0 0 
/ v. 0 0 0 0 ~ ·0 

0 0 0 0 '\ 
0 0 

0 1 2 3 4 5 6 

Legend: 

• Cells in Sparse Grid Chain 

Oce11s Added to Form Buffer Grid Chain 

FIGURE 3-2 
SPARSE AND BUFFER CELLS ASSOCIATED 

WITH A TRAJECTORY 

3-6 

0 

0 

~ 
- X 

7 



3.3.1.4 Information Stored with Sparse and Buffer Cells 

The grid chain includes the following information for each of 
its cells: 

• the trajectory identifier (sparse cells only) 

• a cell number called a node identifier 

• the earliest and latest times of the first and last 
segments, respectively, occupying the cell 

• the minimum and maximum altitude for which protection is 
provided 

3.3.1.5 Generating a Tree from a Grid Chain 

The last task of the Grid Chain Generator is to construct the 
sparse subject tree and the buffer subject tree. The trees are 
built from the leaves to the root. Each cell in the sparse 
grid chain is referenced by a leaf in the tree. The GCG stores 
each parent node/child node relationship for the subject. This 
consists of determining the unique (2x2x2) block (composed of 8 
cells) containing the cell. The cells and blocks may be num
bered in such a way that these relationships can be identified 
by bit manipulations on the cell number. A tree node is 
created for the block if none yet exists. A two way link is 
established between the cell's node (the child) and the block's 
node (the parent). A list is made of each 2x2x2 block that is 
represented in the tree. Next, the process is repeated to in
clude in the tree the 4x4x4 blocks containing the 2x2x2 blocks, 
and so on, until the whole airspace (root of tree) is reached. 

A temporary tree is built for the buffer grid chain in a simi
lar way except that the subject trajectory identifier is not 
n~~d. · 

3.3.2 The Coarse Filter 

The Coarse Filter searches each cell of the subject's buffer 
grid chain to see if it is also a cell in the sparse grid chain 
of any of the object aircraft. The algorithm outputs a nominee 
table, which specifies for each object aircraft which cells are 
co-occupied with the subject and which segments are responsible 
for each co-occupancy. The nominee table is passed on to the 
Fine Filter (Section 3.3.3) for further, more detailed tests. 

3-7 



In practice, it is not always necessary to search each cell in 
the subject's buffer grid chain. The fact that the grid chains 
are stored as trees allows the algorithm to terminate a search 
quickly if no object aircraft are in the vicinity of the sub
ject. The algorithm compares the subject's tree with the 
allobject tree. An absent node in either tree indicates vacant 
airspace in the corresponding block of the (x,y,t) grid. If a 
node is absent in one or both trees, the Coarse Filter does not 
need to look at any descendants of the node (i.e., subsets of 
the node's (x,y,t) block). Appendix C develops some background 
on trees and the technique of recursion which is necessary in 
order to explain the Coarse Filter processing in more detail. 

Once an object aircraft is found to co-occupy an (x,y, t) cell 
with the subject, the altitude test simply checks for overlap 
of the two ranges (subject's minimum altitude this cell, sub
ject's maximum altitude this cell) and (object's minimum 
altitude this cell, object's maximum altitude this cell). When 
an overlap occurs, the necessary data on the subject and object 
segments contained in the cell are added to the nominee table. 

3.3.3 The Fine Filter 

The Fine Filter of Flight Plan Conflict Probe is a subfunction 
designed to identify all encounters (i.e., violations of FPCP 
separation criteria) between a single subject aircraft and an 
object aircraft in the nominee table provided by the Coarse 
Filter. It accomplishes this task by analyzing the segments of 
aircraft trajectories which are associated with co-occupied 
cells identified in the nominee table. Specifically, for every 
object aircraft in the nominee table, the Fine Filter performs 
a series of tests to determine if the subject and object air
craft segments which are associated with a co-occupied cell 
violate FPCP vertical and horizontal separation criteria. A 
special check is made to assure that no two segments are com
pared more than once, thus avoiding duplicate processing. If 
an encounter between the subject aircraft and a nominee is 
detected, then a table which maintains encounter information 
for all of the aircraft in the planning region is updated with 
this latest information. 

3.3.3.1 Tests of Time and Space 

The subject and object aircraft segment pair undergo a series 
of tests in time and space which indicate whether or not an 
encounter is possible. The tests are performed in sequence, 
each successive test checking for segment non-compliance with 
stated goals in a particular dimension. Only those segment 

3-8 



pairs which do not satisfy a goal are passed on to subsequent 
tests. All other pairs are eliminated from further considera
tion. Thus, it is desirable that the tests be ordered so as to 
eliminate as many of the non-conflicting segment pairs as pos
sible during the earlier stages of the process. Accordingly, 
the segments are first checked in time. If they overlap in 
time, they are checked for violation of vertical separation 
within the time interval in common between the two segments. 

The vertical separation criterion is a function of the alti
tudes of the aircraft. If the vertical separation criterion is 
violated during the common time interval, the segments are 
tested for violation of horizontal separation criteria. If 
both criteria are violated, an encounter is predicted to occur 
along the segments. Information relevant to · each encounter, 
such as the minimum separation distance in the horizontal plane 
and the time of minimum separation, is calculated and stored in 
an encounter table. 

3.3.3.2 The Encounter Table 

The encounter table is contained in the global data base and 
provides information about all aircraft in the planning region 
that are predicted to be involved in an encounter. Within the 
table is stored information about every encounter detected by 
the temporal and spatial tests. The table contains the flight 
plan identifications and a set of parameters which. include the 
start and end times of the advisory and priority violations, 
the display-as-advisory and display-as-priority times, the 
minimum separation distance of the aircraft in the horizontal 
plane, the time of minimum separation, and the positions 
(x,y,z) of the aircraft at the start and end of the advisory 
violatfon. This information is available to the AERA display 
function which notifies the appropriate controller(s) of 
possible conflicts. 

3.3.4 Maintenance 

Flight Plan Conflict Probe requires that up-to-date versions of 
all relevant data tables must be maintained. For this reason, 
FPCP includes as one of its principal subfunctions a procedure 
called Maintenance. Maintenance adds and deletes data asso
ciated with specific flight identifications from appropriate 
global and FPCP shared local tables. Details of the Main
tenance subfunction are provided in Section 4.4, Maintenance. 

3-9 



4. DETAILED DESCRIPTION 

The Flight Plan Conflict Probe has four subfunctions: 

• Grid Chain Generator 
• Coarse Filter 
• Fine Filter 
• Maintenance 

The first three subfunctions are activated in succession as 
they are listed. The fourth subfunction is invoked as needed. 
The Grid Chain Generator preprocesses trajectory data to 
produce a set of cells occupied by the subject aircraft and 
produces a tree representing these cells. The Coarse Filter 
compares this set of cells for the subject against cor res
ponding cells for the objects to determine any cells in both 
sets. '!he aircraft pairs are tested for violations of the 
vertical separation criterion within these co-occupied cells. 
For pairs with vertical violations, the Fine Filter analyzes 
the segments of the trajectories corresponding to the common 
cells. Tests are made sequentially to check if the segments 
overlap in time, altitude and horizontal distance. The 
Maintenance Subfunction updates the various local and global 
data structures, as required, during processing of the other 
su bfunc tions. 

4.1 Grid Chain Generator 

The Grid Chain Generator subfunction of FPCP is used to 
generate the sparse and buffer grid chains for the subject 
aircraft. Also, it generates the Sparse and Buffer Subject 
Trees to represent the cells of the respective grid chains. 
The Buffer Subject Tree is used by the Coarse Filter to detect 
co-occupied cells which indicate nominee status and the need 
for further checking by the Fine Filter. The Sparse Subject 
Tree is used by the Maintenance subfunction for insertion of 
the subject into the Allobject Tree and is kept for future use 
by Maintenance. 

The Grid Chain Generator consists of three major components: a 
Sparse Cell Generator to generate a sparse grid chain for the 
subject trajectory, a Buffer Cell Generator to generate a 
buffer grid chain for the subject, and the Grid To Tree 
Converter to convert a sparse or buffer grid chain to a Sparse 
or Buffer Subject Tree. 

The organizational structure of the Grid Chain Generator is 
illustrated in Figure 4-1. 

4-1 



I 
SPARSE 

CELL 
GENERATOR 

Section 
4.1.1 

GRID 
CHAIN 

GENERATOR 

BUFFER 
CELL 

GENERATOR 

Section 
4.1.2 

FIGURE 4·1 

1 
GRID TO 

TREE 
CONVERTER 

Section 
4.1.3 

GRID CHAIN GENERATOR ORGANIZATIONAL STRUCTURE 

4-2 



4.1.1 Sparse Cell Generator 

4.1.1.1 Mission 

The Sparse Cell Generator component of the Grid Chain Generator 
updates a global table listing all cells occupied in the sparse 
sense by the current subject aircraft trajectory. It 
accomplishes this objective by using data that describes the 
subject's nominal trajectory in (x,y,z,t) space. It also sets 
upper and lower altitude protection limits for each cell 
associated with a vertical maneuver or holding pattern segment. 

4.1.1.2 Design Considerations and Component Environment 

Input 

This component requires, as local inputs, the unique identifier 
for the subject aircraft flight plan (Subject Fl Id), the start 
time for the evaluation (T Start), and the- end time of the 
evaluation (T Horizon). Usually, T Start will be the present 
time, but for-a horizon update it wfll be the old time horizon 
less one cell time interval, and for a trial probe it will be 
one time cell less than the time of divergence from the current 
trajectory. lhe input T Horizon is the current time horizon. 
These inputs are provided-by the Grid Chain Generator component. 

Sparse Cell Generator also uses information from the global 
table TRAJECTORIES which describes the position and time of 
each trajectory cusp, as well as the type of maneuver envelope 
(if any) associated with each cusp. 

Information on maneuver envelopes is provided by the global 
table MANEUVER ENVELOPES and is used by the elements of Sparse 
Cell Generator: The table, SPARSE CELLS, which is updated by 
the elements of Sparse Cell Generator, is also a global input. 

Output 

The output of Sparse Cell Generator is an updated version of 
the global table SPARSE CELLS. This table contains information 
which is calculated by -the elements of Sparse Cell Generator. 
It contains a list of cells that are occupied in the sparse 
sense by the subject aircraft's trajectory. 

4-3 



4.1.1.3 Component Design Logic 

The Sparse Cell Generator uses a number of elements in 
fulfilling its goals. The organization and calling sequence of 
the Sparse Cell Generator is given as follows: 

!Sparse Cell Generator 
I Determine Independent Variable 
I Straight Line Generator 
I Encode 
I Vertical Protect 
I Hold Area Protect 
I Determine Independent Variable 
I Straight Line Generator 
I Encode --------------------------------

The processing logic of Sparse Cells Generator is given by the 
POL in Figure 4-2. First, this component locates Slll TRAJEC
TORY records pertaining to the subject aircraft trajectory. It 
then transfers the required data from that table to local 
arrays which are ordered by time. A count of the records 
retrieved is noted. 

Consecutive pairs of cusps are taken together to form trajec
tory segments. Sparse Cell Generator's main loop is repeated 
for all cusp pairs starting with the segment that bridges the 
starting time (or the first segment, if none do) and ending 
with the segment that bridges the time horizon (or the last 
segment, if none do). 

The coordinate data and the time data for the cusp pairs is 
operated on by the elements Determine Independent Variable and 
Straight Line Generator. These elements are responsible for 
translating each segment into a sparse chain of occupied cells 
for the trajectory's regular segment.s. All segments are 
processed in this manner before processing begins for maneuver 
envelopes. This order is followed because altitude limits for 
cells occupied by the segments which follow the envelope may be 
affected by the vertical maneuver. These cells must be 
selected before attempting to calculate their altitude limits. 

Following the creation of the sparse cells for the nominal 
trajectory, the Sparse Cell Generator loops on all of the 
segments searching for maneuver envelopes. If a vertical 
maneuver is found, then the Vertical Protect element is 
called. If a holding pattern is found (with or without 
altitude change), then the Hold Area Protect element is invoked. 

4-4 



ROUTINE Sparse Cell Generator; 
#component of Grid Chain Generator# 
PARAMETERS Subject Fl Id IN, T Start IN, T_Horizon IN; 
REFER TO GLOBAL TRAJECTORIES IN; -
DEFINE CONSTANTS -

Flag Flag set to 1 indicates that Straight Line Generator 
is called from this routine to produce the nominal 
trajectory; 

DEFINE VARIABLES 
Subject Fl Id Flight identifier of the subject aircraft 
T Start- - Starting time for sparse cell generator 

#This is set to the present time for new flight plans and I 
#resynchronization, to the time point of the alternate# 
#trajectory for a trial probe, and to the old time horizon# 
lminus one time cell for a horizon update# 

T Horizon Time horizon 
Time(*) The time values of the trajectory cusps 

ordered by time 
Cell Line_Parameters(6) Pass through vehicle for parameters from 

Determine Independent Variable to 
Straight Line Generator (includes xyt 
starting-cell-numbers and slopes) 

X(*) 

Y(*) 

Z(*) 
Cusp_ Type(*) 

M Count 

N_Beg 
N End 
N Count 
N-

DEFINE TABLES 
REGULAR CELLS 

time 

node-id 

The x values of the trajectory cusps 
ordered by the time of the cusps 

The y values of the trajectory cusps 
ordered by the time of the cusps 

Altitudes ordered by the time of the cusp 
The cusp types of the trajectory cusps 

ordered by the time of the cusps 
The number of cells traversed by the 

segment 
Starting value for maneuver envelope loop 
Ending value for maneuver envelope loop 
A count of trajectory records 
Index to loop on cusps; 

Table containing information on cells occupied 
by the regular segments 
The nominal time at which the cell was 

occupied 
The cell number; 

FIGURE 4-2 
SPARSE CELL GENERATOR 

4-5 



SELECT FIELDS time, x, y, z, cusp type 
FROM TRAJECTORIES ( TJ) -
INTO Time, X, Y, Z, Cusp Type 
WiiEiE TJ .fl_id ~ Subject_Fl_Id AND (TJ. time GT T_Start AND 

TJ.time LT T Horizon) 
ORDERED BY TR.AJE'CTORIES. time 
RETURN COUNT (N Count); 

N Beg • N Count; -
N=End- o; 
FOR N • 1 TO N Count - 1; 
---#determine lf any portion of the segment is within the time# 

#bound of the probe# 
IF Time(N+l) GT T Start AND Time(N) LT T Horizon 
THEN #Find regular segment# -- -
---rdetermine direction in which motion is most rapid# 

CALL Determine Independent Variable (Time(N+l) IN, 
--X(N+l) IN, Y(N+l) IN, Time(N) IN, X(N) IN, Y(N) IN, 

Cell Line Parameters OUT, M Count OUT);-- --
#generate-cells for regular-segmen~ 

CALL Straight Line Generator (Time(N+l) IN, Z(N+l) IN, 
--yime(N) IN-; Z(N) IN, Subject Fl Id IN-;-Flag IN, --

Cell Line Parameters IN, M Count IN-;-REGULARCELLS OUT); 
N Beg --MIN(N, N Beg); -- - -- - -
N-End • MAX(N, N-End); 

FOR N --N Beg TO N Endil Loop for maneuver envelopes# 
-IF CUsp_Type(N)-~ 'Vertical maneuver' 

THEN 
~add altitude range to cells for vertical maneuvers# 

CALL Vertical Protect (Time(N) IN, Subject Fl Id IN, 
--ai!:GULAR CELLS IN); -- - - --

IF (CUsp_Type(N) ~ 'iiold') OR (Cusp_Type(N) EQ 
'Vertical hold') . 

THEN 
~add additional cells to account for boundary of hold# 

CALL Hold Area Protect (Time(N) IN, Subject Fl Id IN); 
END Sparse_Cell_Generator; -- - - --

FIGURE 4-2 
SPARSE CELL GENERATOR (Concluded) 

4-6 



Determine Independent Variable 

The element Determine Independent Variable determines in which 
dimension the trajectory is changing most rapidly. The 
variable or axis corresponding to this dimension is called the 
independent variable or independent axis. The following 
discussion describes the role of independent variables in 
finding the cells which are occupied in the sparse sense. 

It already has been noted in Section 2.1.7 that penetration of 
a cell does not imply that the cell will be declared occupied. 
Operationally, Section 3.3.1.1, The Sparse Grid Chain, defines 
a cell to be occupied if a line traversing it occupies more 
than one octant of the (three-dimensional) cell (or quadrant of 
a cell in the two-dimensional example of Figure 3-2). How then 
is this operational condition to be implemented algorithmical
ly? This volume does not attempt an explanation of the 
mathematics; instead, illustrative examples are given of how 
the correct grid chain is generated by using the correct 
independent variable, but not by using the incorrect 
independent variable. 

Figure 4-3 shows a straight line transversing a two dimensional 
grid where x is the independent variable. Using the "more than 
one quadrant" criterion, the cells having solid circles should 
be identified while cells penetrated for just one quadrant 
(open circles) should not. Each vertical "column" of cells 
along the x-axis is considered in turn. The y-coordinate is 
computed for the point on the segment whose x-coordinate (the 
independent variable) is the center of the current column of 
cells. The cell containing the resulting y value is marked 
occupied. Exactly one cell will be marked occupied for each 
column of cells. For each horizontal "row" of cells (along the 
non-independent y-axis), more than one cell may be marked 
occupied. 

Figure 4-4 shows a second straight line to which the "more than 
one quadrant" criterion has been applied. Cells marked with 
solid circles, both starred and plain, would be marked 
occupied. Applying the procedure as described above (with x 
chosen as the independent variable) will produce only the 
starred cells. The resultant grid chain (if passed as is--with 
gaps--to the Coarse and Fine Filters after applying the simple 
buffering scheme described in Section 4.1.2) will not provide 
reliable separation assurance. 

4-7 



y 
~~ 

0 

~ ~ .. 
0 ~ v. 0 .., 

• ~ ~ • 
...... .... 

X 

LEGEND: 

e Occupied cell 

OPenetrated but unoccupied cell 

FIGURE 4·3 
CELL OCCUPANCIES USING CORRECT INDEPENDENT AXIS 

4-8 



y .. ~ 

"Jf 
~· ., 

v. 
; 

J 
If. 

; 
'· ...... ... 

X 

LEGEND: 

*Occupied cell based on improper choice of 
independent axis 

e Cells needed to complete sparse grid chain 

FIGURE 4·4 
CELL OCCUPANCIES USING INCORRECT INDEPENDENT AXIS 

4-9 



A solution to this problem is to interchange the roles of x and 
y (and of "columns" and "rows" of cells) to make y the indepen
dent variable. Thus, in Figure 4-4, values of y at the center 
of a row's cells are input to the equation of the line and the 
resultant value of x determines which cell is marked occupied. 
'Ibis change in independent variable must take place when the 
net change in y exceeds the net change in x; that is, when the 
slope exceeds one. 

The scheme is readily extended to three dimensions as is done 
in Determine Independent Variable. The PDL for this element is 
given in Figure 4-5. First, the coordinates of the beginning 
cusp of the current segment are transformed to cell 
coordinates. This is a linear transformation, accomplished by 
dividing the geographic or time coordinates by the cell size. 
Then an offset is added such that the integer part of the cell 
coordinate at the lower bound of the cell corresponds to the 
cell's grid number along that axis. 

The length of the segment, projected along each cell coordinate 
axis, is computed and expressed in cell units. The absolute 
magnitude of these lengths (called extents) are then compared 
to one another and the axis associated with the greatest extent 
becomes the independent variable. 

Finally, M_Count, the number of grid divisions traversed by the 
independent variable, is computed, as well as the slopes of the 
dependent variable with respect to the independent variable. 
The cell coordinates of the segment starting point, the slopes 
for each of the three coordinates, and the number of grid 
divisions traversed by the independent variable are returned to 
the Sparse Cell Generator for use by the element Straight Line 
Generator. 

The PDL representation of this element is given in Figure 4-6. 

Straight Line Generator 

Straight Line Generator uses the output developed by the 
element Determine Independent Variable. In addition, Straight 
Line Generator uses the time coordinates for both nodes (which 
serve as keys for the end points of the current segment), the 
beginning and ending altitude for the segment, and a flag value 
indicating whether the Straight Line Generator is being used to 
service a regular segment or a holding pattern maneuver 
envelope. 

4-10 



ROUTINE Determine Independent Variable; 
PARAMETERS T End IN, X End IN7 Y End IN, T Beg IN, X Beg IN, Y Beg 

IN, T Beg -Cell OUT,-X Beg Cell OUT :Y aeg Cell OuT, T Slope-OUT, 
XSlope OUT' y Slope OUT' -M Count our; - -- - --

REFER TO SHill'D LOcAL T Cell Dimension IN, H_ Cell_ Dimension IN, 
T Offset IN, X Offset IN,-Y Offset IN; 

DEFINE VARIABLES- - - -
T End Ending value for time 
X-End Ending value for x 
Y End Ending value for y 
T _Beg Beginning value for time 
X Beg Beginning value for x 
Y-Beg Beginning value for y 
T=Bea_Cell Beginning value of time expressed in cell 

Y_Beg_Cell 

X_Beg_Cell 

T Extent 

Y Extent 

X Extent 

M Extent 
M Count 
T.=slope 

Y_Slope 

X_Slope 

coordinates 
Beginning value of y expressed in cell 

coordinates 
Beginning value of y expressed in cell 

coordinates 
Difference between beginning and ending values 

of time expressed in cell coordinates 
Difference between beginning and ending values 

of y expressed in cell coordinates 
Difference between beginning and ending values 

of x expressed in cell coordinates 
Maximum extent 
Number of cells traversed by the segment 
Change in time per unit change in independent 

variable 
Change in y per unit change in independent 

variable 
Change in x per unit change in independent 

variable; 

FIGURE 4-5 
DETERMINE INDEPENDENT VARIABLE 

4-11 



#Compute starting cell coordinates but do not quantize yet# 
T Beg Cell • T Beg/T Cell Dimension + T Offset; 
Y-Beg-Cell • Y-Beg/H-Cell-Dimension + Y-Offset; 
X-Beg-Cell • X-Beg/H-Cell-Dimension + X-Offset; 
#compute extents as the difference in beginning cell coordinate# 

#and ending cell coordinate# 
T Extent • (T Beg - T End)/T Cell Dimension; 
Y-Extent • (Y-Beg - Y-End)/H-Cell-Dimension; 
X-Extent • (X-Beg - X-End)/H-Cell-Dimension; 
#Determine independent variable as one having greatest extent# 
#Compute the count of cells along that axis# 
CHOOSE CASE #M Extent defines the independent variable# 

WHEN (ABS(TExtent) GE ABS(X Extent)) AND (ABS(T Extent) 
GE ABS(Y=Extent)) THEN - - - - -
M Extent • T Extent; 
M-Count • CEIL(T Beg Cell) - CEIL(T_End/T_Cell_Dimension + 
-T Offset); - -

WHEN (ABS(Y Extent) GE ABS(X Extent)) THEN 
--M Extent-- Y Extent;- - --

M-Count • CEIL(Y Beg Cell) - CEIL(Y_End/H_Cell_Dimension + 
- Y Offset); - -

OTHERWISE 
M Extent • X Extent; 
M-Count • CEIL(X Beg Cell) - CEIL(X_End/H_Cell_Dimension + 
- X Offse~ - -

#Compute slopes of each variable with respect to independent# 
#variable# 

T Slope • T Extent/M Extent; 
Y-Slope • Y-Extent/M-Extent; 
X-Slope • X-Extent/M-Extent; 

END Determine_Independent_Variable; 

FIGURE 4-5 
DETERMINE INDEPENDENT VARIABLE (Concluded) 

4-12 



ROUTINE Straight Line Generator; 
PARAMETERS T Exlt IN,-Z End IN, T Entry IN, Z Beg IN, Subj Fl Id IN, 

T Beg Cell IN, Flag IN, T~g Cell IN-:-x ~g Cell IN, Y-Beg Cell 
IN, T-SlopeiN, X Slope IN, Y-SlopeiN, M Count IN:-REG'U:LAR.-CELLS 
OOT·- - - - - - - -__ , 

REFER TO GLOBA.L SPARSE CELLS INOUT; 
REFER TO SHARED LOCAL T Cell Dimension IN, T_Offset IN; 
DEFINE VARIABLES 

T_Entry 
T Exit 
Z-End 
Z_Beg 
Flag 

T_Beg_Cell 

Y_Beg_Cell 
X Beg Cell 
T=Slope 

Y_Slope 

X_Slope 

Subject Fl Id 
T Cell- -
Y Cell 
X-Cell 
Temp_T 

ZUp 
Z-Down 
Temp_ Node 
M Count 
M-

DEFINE TABLES 
REGULAR CELLS 

time-
node id 

Entry time for current segment 
Exit time for current segment 
Ending value for altitude 
Beginning value for altitude 
Set to 1 when routine is called to find regular 

segment, 0 otherwise 
Beginning value of time expressed in cell 

coordinates 
Beginning value of y expressed in cell coordinates 
Beginning value of x expressed in cell coordinates 
Change in time per unit change in independent 

variable 
Change in y per unit change in independent 

variable 
Change in x per unit change in independent 

variable 
The flight id of the current subject 
Time expressed in cell coordinates 
Y expressed in cell coordinates 
X expressed in cell coordinates 
Time at which the regular segment passes through 

center of cell 
Altitude of regular segment at center of cell 
Altitude of regular segment at center of cell 
Temporary node id 
Number of cells traversed by segment 
Counting index; 

Information on cells occupied by regular segment 
Time for cell 
Cell number; 

FIGURE 4-6 
STRAIGHT LINE GENERATOR 

4-13 



I Loop through cells along independent variable axis I 
FOR M = 0 TO M Count; 
---T Cell ~CEIL(T Beg Cell + T Slope*M - 0.5); 

Y-Cell • CEIL(Y-Beg-Cell + Y-Slope*M - 0.5); 
X-Cell • CEIL(X-Beg-Cell + X-Slope*M- 0.5); 
#convert the cell grid coordinates to a Node number# 
CALL Encode(T CELL IN, Y Cell IN, X Cell IN, Temp Node OUT); 
Temp_T • (T_Cell - T_Offset - O.s)*T_cell_Dimension; --
z Up - z Beg; 
z-Down --z End· - - ' IF (Z_End NE Z_Beg) AND (Flag ~ 1) #altitude is changing and I 

#doing a regular segment# 
THEN 
--,-interpolate to find altitude# 

Z Up • Z Beg + (Temp T - T Beg)*(Z End - Z Beg)/ 
- ( T End - T Beg); - - - -

z Down- z up; 
IF COUNT((SPARSE CELLS.tree node id ~Temp Node) AND 
- (SPARSE_CELLS7£l_id ~ Subject_Fl_Id)) NE 0 --
THEN 
-uPDATE IN SPARSE CELLS (min z • MIN(min z, Z Down), 

max z • MAX(max z, Z Up)7 entry time-- MIN(entry time, 
T Beg), exit tiiiie • MAx( exit time, T EniD -
wHERE SPARSE= CELLS. tree_node=id ~ Temp_ Node AND 

SPARSE_CELLS .fl_id ~ Subject_Fl_Id; 
ELSE 
--:fNSERT INTO SPARSE CELLS (£1 id • Subject Fl Id, 

tree node id • Temp Node,-min z • Z Down,-max z • Z_Up, 
entcy time • T Beg,-erlt time-• T End); 

IF Flag~ I #routine called to produce-regular segment# 
THEN 
--INSERT INTO REGULAR CELLS (time • Temp_T, node id • 

Temp Node); 
END Straight_Line_Generator; 

FIGURE 4-6 
STRAIGHT LINE GENERATOR (Concluded) 

4-14 



Straight Line Generator then uses this information to compute 
cell occupancy. It does this by iterating over unit increments 
of the independent variable. Using the equation for a straight 
line, the position of the two dependent variables is computed 
as a formation of the independent variable and expressed in 
cell coordinates. (The independent variable is also 
recomputed, but since its slope is one, its computation returns 
the original value.) All of the coordinates are then truncated 
to integer values (using the CEIL function) which gives the 
grid coordinates of each occupied cell. 

For purposes of cell identification and future manipulations 
via recursive algorithms, it is convenient to merge the three 
cell coordinates into a single identifier called the tree node 
identifier or node identifier for short. This is done by the 
u til! ty element, Encode. There are many ways of encoding the 
cell coordinates into a single identifier. One such encoding 
method is particularly natural and is presented as an example. 
It helps illustrate the concepts involved and the close 
relationships existing between the grid cells and blocks and 
the corresponding tree nodes. 

Figure 2-4 shows a trajectory crossing an 8 by 8 grid and the 
tree structure that applies to that trajectory. Each leaf is 
characterized by a three-digit base four number. This version 
of Encode takes two coordinates and converts them to the leaf 
number. 

Figure 4-7 illustrates the conversion for a particular cell 
(labeled 022) in Figure 2-4 (the leftmost cell of the 
trajectory). The coordinates of that cell are x • 0 (first 
column) and y • 3 (fourth row from bottom). The binary 
expressions of these coordinates (x-000, y-011) are shown at 
the top of Figure 4-7. Shuffling the bits as shown results in 
the tree node identifier, 022. This is indeed an occupied 
leaf-level node as can be seen in Figur~ 2-4. 

In this same loop, Straight Line Generator derives the 
effective time (Temp_T) of each cell. This is the time at 
which the independent variable traverses the center of the 
cell. It is used for two purposes: 

• computing the altitude using linear interpolation 
methods 

• incorporating effective time for regular segments in a 
table called REGULAR CELLS. (This is needed to 
process vertical maneuver envelopes) 

4-15 



I 
3 

BINARY DIGITS OF 
y-COORDINATE 

• 

0 1 

0 0 

BINARY DIGITS OF 

0 
(LEVEL-l BRANCH IS 

LOWER LEFT BLOCK) 

\, 

1 

CELL IN GRID 
ROW 3 

COLUMN 0 
IN FIGURE 2-4 

* 

1 0 

BINARY DIGITS OF 

2 
(LEVEL-2 BRANCH IS 

UPPER LEFT BLOCK) 

y 
NODE 022 IN TREE 

IN FIGURE 2-4 

FIGURE 4·7 

' 0 

BINARY DIGITS OF 
X-COORDINATE 

• 

0 0 0 

T 

1 0 

BINARY DIGITS OF 

2 
(LEVEL-3 BRANCH IS 

UPPER LEFT CELL) 

tl 

AN EXAMPLE FOR A METHOD OF CONVERTING FROM GRID CELL 
COORDINATES TO A TREE NODE IDENTIFIER 

4-16 



Finally, the outputs of the Straight Line Generator element as 
called from Sparse Cell Generator are computed as follows: if 
the cell is new, then a record is inserted into SPARSE CELLS 
including the following fields 

• The subject flight identifier 

• The minimum and maximum altitude (which have the same 
value for regular segments) 

• The entry and exit times for the cell 

If the cell exists from previous computations as indicated by a 
duplication of the flight identifier and the node identifier, 
then the other fields are updated as follows: · 

• The minimum and maximum altitudes are the minimum and 
maximum of the old and current altitudes 

• The entry time is the minimum of current segaent 
beginning time or previous entry time 

• The exit time is the maximum of the current segment 
ending time or the previous en t time 

The Determine Independent Variable and Straight Line Generator 
processing has been applied to the entire trajectory shown in 
Figure 3-2, and the results are partially shown in Table 4-1. 
From left to right, the table shows, for each cell, the 
following: 

• The cell coordinates 

• The corresponding identifiers (using the scheme 
illustrated in Figure 4-7) 

• The entry time and exit time 

• Additional comments 

Vertical Protect 

If the current segment being processed by the Sparse Cell 
Generator is associated with a vertical maneuver, then the 
minimum and maximum altitudes are not identical. The element 
Vertical Protect determines their values. The PDL 
representation of this element is shown in Figure 4-8. 

4-17 



TABLE 4-1 
EXAMPLE SPARSE CELL TABLE 

CELL DATA 
Cell Node Entrl Exit Comment 

Coordinates I'D Time Time 
1. X 

2 0 020 tl t2 Entry into planning 
region at t1 

3 1 023 tl t2 
3 2 032 tl t2 
4 3 211 tl t3 Cusp at t 2 
3 4 122 t2 t3 
2 5 121 t2 t3 
1 6 112 t2 t3 
0 7 111 t2 t3 Exit from planning 

region at t3 

4-18 



ROUTINE Vertical Protect; 
PARAMETERS Beg Time IN, Subject Fl Id IN, Regular Cells IN; 
REFER TO GLOBAL MANEUVER ENVELOPES-IN, SPARSE CELLs IN OuT;" 
DEFINE VARIABLES - -- -

Subject_Fl_Id The flight id of the current subject 
Beg_Time The time at first cusp in the current segment 
Zru Current altitude 
Tru Latest time aircraft can leave current altitude 
Zlu Current altitude 
Tlu Earliest time aircraft can leave current altitude 
Zld Target altitude 
Tld Earliest time aircraft can arrive at target 

Zrd 
Trd 
Slope L 
Slope:R 
TempT 
Temp-Node 
Z_Entry 
z Exit 

DEFINE TABLE 
REGULAR CELLS 

altitude 
Target altitude 
Latest time aircraft can arrive at target altitude 
Left slope for vertical maneuver 
Right slope for vertical maneuver 
Temporary time variable 
Temporary node ID 
Altitude at entry to maneuver envelope 
Altitude at exit from maneuver envelope 

Like REGULAR CELLS in SPARSE CELL GENERATOR 

FIGURE 4-8 
VERTICAL PROXECT 

4-19 

- -



SELECT FIELDS rd z, rd t, ru z, ru t, lu z, lu t, ld z, ld t 
FROM MANEUVER-ENVEWPE (ME) - · - - - -
INTO Zrd, Trd7 Zru, Tru, Zlu, Tlu, Zld, Tld 
Wii'ERE ME.fl_id X& Subject_Fl_Id AND ME.time !Q Beg_Time; 
Slope R • (Zru - Zrd)/(Tru - Trd); 
Slope-L • (Zlu - Zld)/(Tlu - Tld); 
#Compute altitudes for the upper and lower limits of maneuver# 

#envelope# 
REPEAT FOR EACH REGULAR CELLS RECORD 

WHERE REGULAR_CELLS.time Q! Tlu 
AND REGULAR CELLS.time LT Trd; 

Temp_ T • REGULiR _CELLS. time; 
Z_Entry • Zlu; 
Z_Exit • Zrd; 
IF Temp T GT Tru 
THEN #time-within bounds of maneuver envelope, interpolate# 
---,to find exit time# 

Z_Exit • Z_Exit + (Temp_T - Tru)*Slope_R; 
IF Temp T LT Tru 
THEN #time-;ithin bounds of maneuver envelope, interpolate# 
---,to find entry time# 

Z Entry • Z Entry + (Temp T - Tld)*Slope L; 
Temp-Node • REGULAR CELLS.node; -
UPDATE IN SPARSE CELLS (min z • MIN(min z, Z Entry, Z_Exit), 

max z • MAX(max z, z Entry, zk!t))- -
WHERE SPARSE_CELLS.fl_id J!& Subject_Fl_Id ~ 

SPARSE_CELLS.tree_node_id !Q. Temp_Node; 
~ Vertical_Protect; 

FIGURE 4-8 
VERTICAL PROTECT (Concluded) 

4-20 



The two inputs, the time of the cusp and the subject trajectory 
identifier, are used to select the appropriate record from 
MANEUVER ENVELOPES. Only the z and t fields are extracted. 
The x and y fields are not used. (Indeed, they may have no 
physical meaning. Trajectory Estimation computes the four 
vertices of a cusp's maneuver envelope before considering later 
cusps. A later cusp may nevertheless occur prior to some of 
the vertices. If such a cusp represents a turn, the x and y 
coordinates of those vertices will not reflect the turn. The z 
and t coordinates, however, are valid.) 

Altitudes for the upper and lower limits of the maneuver 
envelope are computed by linear interpolation. This is done by 
looping on all cells occupied by the segment (stored in the 
local table REGULAR CELLS) that fall within the timeframe of 
the maneuver. Then -the node identifier for each regular cell 
is used to find the applicable SPARSE CELLS record that needs 
to be updated. 

Updating the altitude range in the table SPARSE CELLS is 
effected as follows: The maximum altitude is the maximum of 
(a) the old maximum altitude, {b) the upstream slope or "left" 
side of the envelope as applicable (see Figure 2-8), or (c) the 
downstream slope or "right" side of the envelope as appli
cable. Similarly the minimum slope is the minimum of the old 
minimum or of (b) or (c) above. 

Hold Area Protect 

If the current segment being processed by the Sparse Cell 
Generator is a hold, then the volume in (x,y,t) defined by the 
holding pattern must be protected. This is done by the element 
Hold Area Protect. The PDL representation for this element is 
shown in Figure 4-9. 

Two inputs, the subject's flight identifier and the time of the 
cusp, are used to select the appropriate record from the global 
table MANEUVER ENVELOPES. 

The outside loop in Hold Area Protect generates a complete set 
of hold cells in (x,y) space for each time unit (expressed in 
cell coordinates) for which the hold is planned. The inside 
loop creates a set of straight line segments parallel to the 
right side of the hold, and separated by no more than one 
horizontal cell width, as shown in Figure 4-10. Hold Area 
Protect generates the end points of these lines and uses the 
Determine Independent Variable and the Straight Line Generator 

4-21 



ROUTINE Hold Area Protect; 
PARAMETERS Time IN, Subject Fl Id IN; 
REFER TO GLOBAL MANEUVER ENVELOPESIN; 
REFER TO SHARED LOCAL T Cell Dimension IN, H Cell Dimension IN, 

T Offset IN; - - - - - -
DEFiNE CONSTANTS 

Flag 

DEFINE VARIABLES 
Time 
Subject Fl Id 
Xrd, Yrd-;Zrd ,Trd 
Xru,Yru,Zru,Tru 
Xlu, Ylu, Zlu,Tlu 
Xld, Yld, Zld , Tld 
T Beg 
T-End 
Z Max 
Z Min 
Cell Line 

Parameters(6) 
M Count 
M Extent 
X Extent 

Y Extent 

N Extent 

X Delta 

Y Delta 

T_Temp 

M 
N 
X End 
X=Beg 
y End 
y Beg 

DEFINE TABLES 
DUMMY 

Set equal to 0 To indicate that Straight Line 
Generator is called from this routine-to -
update the table of sparse cells only; 

Time key of the hold maneuver envelope 
Current subject flight identifier 
Coordinates of the right downstream vertex 
Coordinates of the right upstream vertex 
Coordinates of the left upstream vertex 
Coordinates of the left downstream vertex 
Start time of hold 
End time of hold 
Highest altitude of hold 
Lowest altitude of hold 
Pass through vehicle for parameters 

Number of cells traversed by the segment 
Number of time cells for time cell loop 
Length of x component of downstream side of 

hold 
Distance of y component of downstream side 

of hold 
Number of parallel straight line segments 

needed to cover hold 
X increment for locations and points of 

parallel lines 
Y increment for locations and points of 

parallel lines 
Current effective time for cells in hold 

maneuver 
Loop index 
Loop index 
Final x coordinate for line covering hold 
Starting x coordinate for line covering hold 
Final y coordinate for line covering hold 
Starting y coordinate for line covering hold; 

Dummy table defined like REGULAR_CELLS 

FIGURE 4-9 
HOLD AREA PROTECT 

4-22 



SELECT FIELDS right_downstream_vertex, right_upstream_vertex, 
left upstream vertex, left downstream vertex 
FROM-MANEUVER-ENVELOPES (ME) -
INTO Xrd, Yrd: Zrd, Trd, Xru, Yru, Zru, Tru, 
--x:tu, nu, Zlu, Tlu, nd, Yld, Zld, Tld 
WHERE ME.fl id Eq Subject Fl id AND ME.time ~Time; 

#Find start and end times of~oid# ---
T Beg • MIN(Trd, Tru, Tlu, Tld); 
T-End • MAX(Trd, Tru, Tlu, Tld); 
#Find highest and lowest altitudes in·hold# 
Z Max • MAX(Zrd, Zru, Zlu, Zld); 
Z-Min • MIN(Zrd, Zru, Zlu, Zld); 
#Find n~ber of cells corresponding to the hold duration# 
M Extent • CEIL(T Beg/T Cell Dimension + T Offset) -
- CEIL(T End/T Gell Dimension + T Offset)i · 

X Eiteiit -; Xrd = nd-: -- ' Y Extent • Yrd - nd; 
#Find independent variable along downstream side and set N Extent# 
Ito twice the maximum number of cell sized steps along that side I 
IF ABS(Y Extent) GE ABS(X Extent) 
THEN- - --- -

--N Extent • 2 * ~(Y_Extent/H_Cell_Dimension); 
ELSE-
--:i Extent • 2 * CEIL(X_Extent/H_Cell_Dimension); 
T Teiip • T Beg; 
#Find increments along downstream side for spacing of parallel# 
#lines to cover hold I 
X Delta • X Extent/N Extent; 
Y-Delta • Y-Extent/N-Extent; 
FOR M • 0 TO M Extent; #Step through the hold along the time axis# 
---T Temp ~T Temp + T Cell Dimension; 

FOR N • 0 TO N Extent; #step along the downstream side# 
-x End •nd-+ x Delta*N; 

X-Beg • X End --nd + nu; 
Y-End • Yld + Y Delta*N; 
Y-Beg • Y End --Yld + Ylu; . 
cALL Deterinine Independent Variable (T Temp IN, X End IN, 
---y End IN, T-Temp IN, X End IN, Y End IN, Cell Line -

Parameters OUT, MCount OUT); - - - -
CALL Straight ITiie Generator{T End IN, Z Min IN, T Beg IN, 
--z Max IN, Subj Fl Id IN, Flag IN,Cell-LineParai'eters 

iN, M Count IN: D'ITMMYOUT); -
END Hold_Area_Protect; - ---

FIGURE 4-9 
HOLD AREA PROTECT (Concluded) 

4-23 



0 0 0 0 

0 

0 0 

0 0 

0 0 

0 • 0 0 0 0 

0 0 0 

X 

LEGEND: 

Boundary of Hold 

• • e • Lines Input to Straight Line Generator 

tt Sparse Cells Designated by Straight Line Generator 

() Buffer Cell 

FIGURE 4·10 
OCCUPIED CELLS FOR A HOLDING PATTERN 

4-24 



elements to update or insert additional records in the global 
table SPARSE CELLS. 

4.1.2 Buffer Cell Generator 

4.1.2.1 Mission 

The Buffer Cell Generator component of the Grid Chain Generator 
outputs a shared local table of buffer cells using the sparse 
cells of the current subject. When these buffer cells are 
compared to the sparse cells of any other trajectory, 
violations of separation can be ruled out if no overlap 
occurs. It is sufficient that buffer cells include sparse 
cells and all nearest diagonal and orthogonal neighbors of the 
sparse cells to achieve separation assurance. 

In addition to buffering with respect to cells, Buffer Cell 
Generator determines vertical separation minima and maxima for 
each buffer cell. It allows the identification of all 
pertinent trajectory segments (used by the Fine Filter 
subfunction of Flight Plan Conflict Probe). 

4.1.2.2 Design Considerations and Component Environment 

Input 

The input to Buffer Cell Generator includes the global table 
SPARSE CELLS, the subject aircraft's flight identifier, the 
current time, and the time horizon. 

Output 

The output is the shared local table BUFFER CELLS. Each buffer 
cell, like each sparse cell, must have -in its record the 
information needed to determine which segments of the subject 
trajectory are responsible for the occu~ncy of the cell. 

4.1.2.3 Component Design Logic 

The processing method of Buffer Cell Generator is given by the 
PDL in Figure 4-11. Its calling sequence is as follows. 

!Buffer Cell Generator 
I Decode 
I Encode 

4-25 



ROUTINE Buffer Generator; 
#Component of Cell Grid Chain Generator# . 
PARAMETERS T Present IN, T Horizon IN, Subject Fl Id IN; 
REFFB. TO GLOBAL SPARSECEW IN; - - - -
REFER TO SHARED LOCAL BUFFER_ CELLS OUT; 
DEFINE VARIABLES 

T Present 
T Horizon 
Temp_Node 
T Cell 

Y Cell 

X Cell 

T 
y 
X 

Current time 
Current time horizon 
A temporary value for a node ID 
Time at center of sparse cell in quantized cell 

coordinates 
Y point at center of sparse cell in quantized cell 

coordinates 
X point at center of sparse cell in quantized cell 

coordinates 
Index for iteration on time 
Index for iteration on horizontal y 
Index for iteration on horizontal x; 

FIGURE 4-11 
BUFFER CELL GENERATOR 

4-26 



REPEAT FOR EACH SPARSE CELLS RECORD 
WHERE SPARSE CELLS .fl id ~ Subject Fl Id; 
Temp Node • ~ARSE CELIS.tree node 'Id;-
CALL-Decode (Temp Node IN, T Cell OUT, Y Cell OUT, X Cell 

OUT); - - - - - -
FOR T • T Cell - 1 TO T Cell + 1; 
-IF (T GT T Present AiD T LE T Horizon) 

THEN-- ---

FOR Y • Y_Cell - 1 TO Y_Cell + 1; 
FOR X • X Cell - 1 TO X Cell + 1; 
-CALL Encode (T IN, YIN, X IN, Temp Node OUT); 

#Check to see ifthe buffercell is-already in# 
#BUFFER CELLS. If it is, update its record.# 
#OtherWise, create a record for it.# 

IF (COUNT(BUFFER_CELLS.node_id ~ Temp_Node)) NE 0 
THEN 
--UPDATE IN BUFFER CELLS 

(min z • MIN(min z, SPARSE CELLS.min z), 
max z • MA!tmax z, SPARSE ~.maxi), 
entry time • MIN(entry time, SPARSE
CELIS7entry time), exit time • MAX(exit 
time, SPARSE CELLS .exit-time)) -
WHERE BUFFER=CELLS.node-id !Q. Temp_Node; 

ELSE 
---yNSERT INTO BUFFER CELLS (node id • Temp Node, 

min z • SPARSE CELLS.min z,-max z • SPARSE 
CELLs.max z, entry time; SPARSE CELLS. -
entry time, exit time • SPARSE CELLS.exit 
time>"i 

END Buffer_Cell_Generator; 

FIGURE 4-11 
BUFFER CELL GENERATOR (Concluded) 

4-27 



Buffer Cell Generator searches through the records of SPARSE 
CELLS selecting out any record associated with the current 
subject flight identifier. The (integer) cell coordinates are 
obtained using a utility routine called Decode, which performs 
the inverse operation to Encode discussed in Section 4.1.1.3. 
Then, each of the three cell dimensions are processed in nested 
loops to create buffer cells at all positions situated within 1 
cell coordinate of the sparse cell. The nearest diagonal and 
orthogonal neighbors of the sparse cell are thus selected as 
buffer cells. 

Then the various attributes of the sparse cell are transferred 
to the buffer cells. If the buffer cell is not represented in 
BUFFER CELLS, the sparse cell attributes (minimum altitude, 
maximum altitude, entry time and exit time) are transferred 
directly to the buffer cell record along with the node 
identifier returned from Encode. If the buffer cell already 
exists, it is updated so that the buffer cell attributes have 
the greatest necessary range. In this manner, the buffer cell 
records, like the sparse cell records, provide vertical separa
tion assurance and the time information required by the Coarse 
Filter. 

4.1.3 Grid To Tree Converter 

4.1.3.1 Mission 

The Grid To Tree Converter component of the Grid Chain 
Generator uses applicable SPARSE CELLS and. BUFFER CELLS records 
to build the subject's sparse andlbuffer trees. 

4.1.3.2 Design Consideration and Component Environment 

Before entering the Grid To Tree Converter component, the 
global SPARSE CELLS table and the (local) BUFFER CELLS table 
have been completed for the subject trajectory. Grid To Tree 
Converter takes the applicable node ·identifiers of the sparse 
and buffer cells and generates the necessary node-parent 
relationships to establish the tree structure. This 
facilitates the Coarse Filter's process of ruling out object 
trajectories that are well separated in space or time from the 
subject. 

Input 

The inputs to Grid To Tree Converter include the SPARSE CELLS 
and BUFFER CELLS tables and the subject flight identifier.-

4-28 



Output 

The outputs are the shared local tables SPARSE TREE and BUFFER 
TREE, which contain information necessary for tree manipula-: 
tions. 

4.1.3.3 Component Design Logic 

The PDL representation of the Grid to Tree Converter is given 
in Figure 4-12. 

The Grid to Tree Converter component takes each record of the 
SPARSE CELLS table applicable to the subject and creates the 
tree structure starting at the leaf level and working back to 
the root. 

All of the information needed for determining parentage is 
contained in the cell identifier. This information is 
extracted using the utility Get Parent. Consider the example 
of a coordinate-to-node identifier mapping described' in Section 
4.1.1.3 and illustrated in Figure 4-7. For this mapping, Get 
Parent would drop the rightmost digit of a node identifier 
(say, node 022 in Figure 2-4) to yield the node identifier of 
its parent (02). 

Results, consisting of temporary node identifiers and the 
flight identifier from the sparse cells, are incorporated in 
the SPARSE TREE and the BUFFER TREE tables. 

4.2 Coarse Filter 

The Coarse Filter component of Flight Plan Conflict Probe is 
designed to reduce the number of object aircraft that need to 
be analyzed by the Fine Filter for possible conflict with the 
subject aircraft. It accomplishes this task by identifying the 
aircraft that occupy the same general region in space and time 
as the subject aircraft and eliminating all others from further 
consideration. Specifically, the Coarse Filter invokes a 
recursive routine called Nominee Detection. Nominee Detection 
eliminates, at every stage of the recursion, all those object 
aircraft whose trajectories do not occupy any of the blocks 
that contain subject aircraft buffer cells. The algorithm 
invokes itself to check each of the eight sub-blocks for 
co-occupancy. It continues dividing co-occupied blocks and 
eliminating non-neighboring object aircraft until the cell 
level of the grid is reached. thereupon, any object aircraft 
occupying a buffer cell of the subject aircraft is tested for 
an altitude separation violation with the subject aircraft for 

4-29 



ROUTINE Grid To Tree Converter; 
#Component of Grid Chain Generator# 
PARAMETERS Subject Fl Id IN; 
REFER TO GLOBAL SPARSE_CELLS IN, BUFFER_CELLS IN; 
REFER TO SHARED LOCAL SPARSE TREE OUT, BUFFER TREE OUT, MAX_LEVEL IN; 
DEFINE VillABLES - - - . -

Temp_Node Temporary storage of node id 
Temp Child Temporary storage of child_id 
Level Temporary tree level counter; 
REPEAT FOR EACH SPARSE CELLS RECORD 

WHERE SPARSE_CELLS .fl_id ~ Subject_Fl_Id; 
Temp Child • SPARSE CELLS.tree node id; 
FOR Level - Max Level TO 0; - -
--CALL Get Parent (Temp Child IN, Level IN, Temp Node OUT); 

INsERT INTO SPARSE TREE (fl id - SPARSECELLS.fl id,
node_id • Temp_Node, child_id • Temp=Child); -

Temp Child • Temp Node; 
REPEAT FOR-EACH BUFFER CELLS RECORD; 

Temp Node = BUFFER CELLS.node id; 
FOR Level • Max Level TO 0; -
-CALL Get Parent (Temp Child IN, Level IN, Temp Node OUT); 

INSERT INTO BUFFER TREE (nodeid • TempNode, - -
child id • Temp -Child); - -

Temp Child • Temp Node; 
END Grid To Tree_ Converter; 

FIGURE 4-12 
GRID TO TREE CONVERTER 

4-30 



these cells. This test is performed by invoking the element 
Nominee Detection Altitude Test. Those object aircraft for 
which this test indicates a violation of the vertical 
separation criterion are identified as nominees. The nominees 
are passed on to the Fine Filter where a more thorough analysis 
involving the segments of the conflicting aircraft is conducted. 

Figure 2-3 shows the planning region grid and the eight 
sub-blocks of each stage of this routine. As indicated in 
Section 2.1.8, octal tree data structures are used to represent 
the planning region blocks and cells occupied by the subject 
and object aircraft. 

Figure 4-13 illustrates the Coarse Filter organizational 
hierarchy. Flight Plan Conflict Probe calls . the Coarse Filter 
which, in turn, invokes Nominee Detection, its single component. 

4.2.1 Nominee Detection 

4.2.1.1 Mission 

The purpose of this component of the Coarse Filter is to 
identify all cells within the planning region's 
three-dimensional (x,y,t) grid which are buffer cells of the 
subject aircraft and are occupied by at least one object 
aircraft. For each subject-object aircraft pair so identified, 
an altitude check is performed to determine if the altitude 
ranges (minimum to maximum) of the aircraft over the cell are 
such that the aircraft may violate the vertical separation 
criterion. This test is performed by invoking the element 
Nominee Detection Altitude Test. Those object aircraft that 
are found to violate this criterion with the subject aircraft 
are labeled nominees and are placed in the NOMINEES table and 
passed to the Fine Filter for further processing. 

4.2.1.2 Design Considerations and Component Environment 

Input 

The information supplied to the Nominee Detection algorithm 
consists of parameters, global data, and shared local data. 
The parameters consist of Current Node Id, Level, Test Time 
Begin, and Test Time End. The Current Node Id is used in the 
recursion to identify the node being processed (in preorder) at 
a given level of the recursion. The parameter Level identifies 
which level of recursion is currently being processed. 
Test Time Begin and Test Time End are used to limit the scope 
of the search. The algorithm will search only those blocks 

4-31 



FPCP 

COARSE FILTER 

Section 

NOMINEE DETECTION 

Section 4.2.1 

FIGURE 4·13 
COARSE FILTER ORGANIZATIONAL STRUCTURE 

4-32 



whose time interval overlaps with these test times. For 
example, if the Coarse Filter is called because of a horizon 
update with Test Time Begin equal to the previous time horizon 
and Test Time End equal to the new time horizon, there is no 
need to -check blocks associated with times outside of this 
interval. 

The shared local tables and variables input into the algorithm 
are the ALLOBJECT TREE, BUFFER TREE, BUFFER CELLS , Max Level, 
Real Subject Fl Id;- and Trial Fhg. ALLOBJECT TREE and BUFFER 
TREE-are tables-which define the structure of the trees. These 
tables contain a record for each parent-child relationship in 
the tree. When the preorder traversal reaches a record 
including a leaf node (always as a child), the leaf (child) 
identifier is used to reference the corresponding cell data in 
BUFFER CELLS. This information is used to provide the 
infonaation on the subject aircraft segment in that cell to the 
NOMINEES table. The global table SPARSE CELLS provides the 
corresponding data for the leaf level of -the ALLOBJECT TREE. 
Max Level defines the maximum level of division used to -reach 
the-leaf level. The variable Trial Flag is set to TRUE if the 
call to Nominee Detection is due to-a trial probe and to FALSE 
otherwise. In case of a trial probe, the variable Real 
Subject_Fl_ld contains the flight identifier of the flight 
being probed. This is used to avoid detecting potential 
conflicts of the trial trajectory and the actual trajectory of 
the flight being trial probed. (Real Subject Flight Id is not 
used for a trajectory update or a .horizon update.) Finally the 
global variable Current Time is used to limit the search to 
cells that correspond to those portions of trajectories that 
occur in the future. 

Output 

The output of the Nominee Detection algorithm is the shared 
local NOMINEES table which contains the following information 
for each subject buffer cell occupied by ·an object (nominee): 

1. the flight identifier of the nominee aircraft 

2. the node identifier of the airspace cell where the 
co-occupancy occurs 

3. the subject entry time and subject exit time, which 
specify the t coordinates of two cusps on the 
subject's trajectory: a) the earlier cusp on the 
earliest segment which causes the cell to be declared 
occupied by the subject and b) the later cusp on the 

4-33 



latest segment which causes the cell to be declared 
occupied by the subject 

4. the nominee entry time and nominee exit time, which 
specify the t coordinates of two cusps along the 
nominee's trajectory, defined as in 3a and 3b above 

4.2.1.3 Component Design Logic 

Nominee Detection is a recursive algorithm which uses 
preordering to traverse (in parallel) those branches which 
occur in both BUFFER TREE (which reflects the trajectory of the 
subject aircraft) and ALLOBJECT_T.REE (which reflects the 
trajectories of all of the objects). A description of tree 
traversal methods is given in Appendix c. Each call to Nominee 
Detection considers a node that occurs in both trees, which is 
input as Current Node Id. On the first call to Nominee 
Detection, this nOde is the root of both trees. lbe Current_ 
Node Id is used as a key to locate records corresponding to its 
children in both trees. Only children common to both trees are 
considered. 

Two time tests are performed. First a check to see if the time 
intervals associated with the current child block exceeds 
Current Time. If so, testing for this child ends, since the 
aircraft has already passed this point in time. Next, the 
Test Time Begin and Test Time End are tested against the given 
block's time intervals to see 1.f they overlap. 

For each pair of children satisfying the above conditions, 
Nominee Detection calls itself with the child id of the 
subject's tree as the new Current Node Id. At every stage of 
the recursion, the algorithm also checks to see if the cell 
level (i.e., Max Level) has been reached. If it has been 
reached, then the- algorithm locates and retrieves the segment 
data for the subject in BUFFER CELLS. Included in this data 
are the minimum and maximum- altitudes attained for the 
segment. Next, the algorithm locates, iteratively, each 
SPARSE CELLS record of every object aircraft co-occupied with 
the subject in the cell and retrieves the corresponding segment 
data for that aircraft. For the current object aircraft, a 
comparison is made of its altitude range in the cell with that 
of the subject aircraft. If the vertical separation between 
the aircraft is less than that required by the vertical 
separation criterion, then the object aircraft is labeled a 
nominee and the NOMINEES table is updated with the appropriate 
data. '!he test for vertical separation is performed by the 

4-34 



Nominee Detection Altitude Check element. Figure 4-14 gives 
the PDL for the Nominee Detection component. 

Nominee Detection Altitude Check 

The Nominee Detection Altitude Check element performs a test to 
determine whether or not the subject and object (candidate for 
a nominee) segments violate the vertical separation criterion 
Vert Sep. The algorithm first determines whether or not the 
maximum altitude attained by either aircraft segment is larger 
than 29,000 feet. If so, the vertical separation criterion 
Vert Sep is set equal to the global parameter Sepz Hi; 
othe~se, it is set equal to Sepz_Lo. -

Finally, the algorithm determines if the · vertical distance 
between the segments is within Vert Sep. If it is, the status 
is set to a "nominee" status; otherwise, it is set to a "no 
nominee" status. 

Figure 4-15 is a PDL representation of the Nominee Detection 
Altitude Check element. 

4.3 Fine Filter 

The Fine Filter component of Flight Plan Conflict Probe 
identifies the encounters of a particular subject aircraft from 
the data in the aircraft's NOMINEES Table. Unlike the Coarse 
Filter, which is essentially a search and copy subfunction, the 
Fine Filter involves detailed mathematical analyses conducted 
on aircraft segments. (The word "segment" in the following 
paragraphs will be used to denote either a regular segment or a 
cusp pair representing entry and exit points of a holding 
pattern or vertical maneuver.) 

The first task of the Fine Filter algorithm is to create a list 
of subject-nominee segment pairs consisting of those subject 
and nominee segments which are associated with a co-occupied 
cell identified in NOMINEES. Each such pair is compared to 
those segment pairs previously analyzed by the Fine Filter for 
possible repetition. The objective of this test is to assure 
that no segment pair undergoes the same mathematical analysis 
more than once. If the segment pair has not yet been 
processed, the segments are tested for possible overlap in time 
by the Time Check component. Those segments that overlap are 
checked by the Altitude Check component for possible violation 
of the vertical separation criterion. If violation is 
detected, the segments are tested by the Horizontal Check 
component, within their common time interval, to determine 

4-35 



ROUTINE Nominee Detection; 
PARAMETERS Current Node Id IN, Level IN, Test_Time_Begin ,!!, Test_ 

Time_End IN; - - - -
REFER TO SHARED LOCAL ALLOBJECT TREE IN, BUFFER TREE IN, BUFFER 

CELLS IN, NOMINEES OUT, Ma:x: Level IN, Real_SUbject_Fl_Id !!_,-
Trial Flag IN; -- - -

REFER TO-GLOBA.LSPAR.SE CELLS IN, CURRENT TIME IN; 
DEFINE VARIABLES - - - -

Current Node Id 

Level 

Test Time Begin 
Test-Time-End 
Subject_Min_z 

Subject_Ma:x:_z 

Subject Entry Time 
Subject=Exit_Time 
Status 

Identifier of the current root of the 
subtree being traversed 

CUrrent level of the root of the subtree in 
the parent tree 

Time at which testing for co-occupancy begins 
Time at which testing for co-occupancy ends 
The lowest altitude through which this 

flight plan trajectory passes in this cell 
The highest altitude through which this 

flight plan trajectory passes in this cell 
Cusp which precedes entry into this cell 
CUsp which follows exit from this cell 
An indicator used to specify whether a given 

object aircraft is or is not a nominee; 

FIGURE 4-14 
NOMINEE DETECTION 

4-36 



IF Level LT Max Level 
THEN 

REPEAT FOR EACH BUFFER TREE RECORD 
#for eaCh child of a node, a record exists with node id as# 

#first field and child id as second field# 
WHERE BUFFER TREE.node id-~ Current Node Id; 
IF the time Interval associated with-the CUrrent Node Id 

is in the interval (Test Time Begin,Test Time-End)-
AND CURRENT TIME. time does not exceed this tiiiie interval 

THEN-rfcheck for matching child block in the ALLOBJECT tree# 
---,if match then blocks are co-occupied# 

IF COUNT(ALLOBJECT TREE.node id ~ Current Node Id AND 
ALLOBJECT_TREE.child_id ,!g_ BUFFER_TREE.chiid_id) NEO 
THEN #child was found, check next level in pre-order,# 
---,to find which cells are co-occupied with the subject# 

CALL Nominee Detection( BUFFER TREE. child id IN, Level+l 
--IN, Test Time Begin IN, Test Time End-IN); 

ElSE #at the leaf level-(celi level)of both trees,# -
---,determine all objects in the cell to be considered nominees;# 

#get altitudes and segments in this cell for the subject# 
SELECT FIELDS min z, max z, entry time, exit time 

INTO Subject Min z, Subject Mai Z, Subject Entry Time, 
---subject EXit Time - - - -
FROM BUFFER CELLs 
WHERE BUFFER CELIS. tree node id m Current Node Id; 

REPEAT FOR EACH-SPARSE_CELLS RECORD?for each-co-occupied object# 
WHERE SPARSE CELIS • tree node id ~ Current Node Id; 
fif this is a trial probe, ignore the real-subject# 
IF ( (Trial_Flag ~ FAlSE) OR (Trial_Flag ~ TRUE AND 

SPARSE CELLS.Fl Id NE Real Subject Fl Id)~ 
THEN #test for altitude-violation between aircraft# 
---cALL Nominee Detection Altitude Check (Subject Min Z, 

--Subject Mix Z, SPARSE CELIS .iin z, SPARSE Cil.LS7max z, 
Status>"i" - - - - -

IF Status • 'nominee' 
THEN #this object is nominee, add segments for the subject# 
---,and this object to the Nominee table# 

INSERT INTO NOMINEES 
(Fl id • SPARSE CELLS.Fl id, node id • SPARSE 
CELf.s.tree_node=id, subject_entry=time • Subject_ 
Entry Time, subject exit time • Subject Exit Time, 
nominee entry time -;;; SPARSE CELLS .entry-time: 
nominee=exit_time • SPARSE_CELLS.exit_ti'me); 

END Nominee_Detection; 

FIGURE 4-14 
NOMINEE DETECTION (Concluded) 

4-37 



ROUTINE Nominee Detection Altitude Check; 
#this routine determines if the required vertical separation# 

#distance is maintained between two aircraft in a given cell# 
PARAMETERS Subject_Min_Z IN, Subject_Max_z IN, Object_Min_Z IN, 

Object Max Z IN, Status OUT; 
REFER TO GLOBAL Sepz Hi IN, Sepz Lo IN; 
DEFINE VARIABLES - - - -

Vert_Sep Vertical separation criterion 
Subject_Min_Z The lowest altitude through which subject's flight 

plan trajectory passes in this cell 
Subject_Max_Z The maximum altitude through which subject's 

flight plan trajectory passes in this cell 
Object_Min_Z The lowest altitude through which object's flight 

plan trajectory passes in this cell 
Object_Max_Z The maximum altitude through which object's flight 

plan trajectory passes in this cell 
Status An indicator used to specify whether a given object 

aircraft is or is not a nominee; 
#determine required vertical separation# 
#If the maximum altitude of either aircraft exceeds the altitude# 

#at which the minimum separation requirement changes, set the# 
#maximum distance# 

IF MAX (Subject Min Z, Subject_Max_Z, Object_Mi~Z, Object_Max_Z) 
- GT 29000 feet -
THEN-
~ert Sep • Sepz Hi; 
ELSE - -
~ert Sep • Sepz Lo; 
#determine if the vertical distance between segments in the cell# 
#are in violation# 
IF (MAX (Subject Min Z, Object Min Z) - MIN (Subject Max Z, 
- Object_Min_z)) LTVert_Sep - - - - -
THEN 
---S-tatus • 'nominee'; 
ELSE 

Status • 'no nominee'; 
END Nominee_Detection_Altitude_Check; 

FIGURE 4-15 
NOMINEE DETECTION ALTITUDE TEST 

4-38 



whether or not the horizontal separation of the aircraft is 
less than the advisory separation criterion (Advisory Seph) 
and, if so, whether or not it is also less than the priority 
separation criterion (Priority Seph). The component 
distinguishes between regular segments and segments associated 
with a holding pattern or vertical maneuver in its calculation 
of the distance separating the two aircraft. If a violation of 
the advisory separation criterion is detected, an entry is made 
in the ENCOUNTERS Table by the Encounter List Builder 
describing details of the event •. This table includes encounter 
data for all of the aircraft in the planning region. 

Once all segment pairs associated with a co~ccupied cell have 
been tested, the Fine Filter repeats the entire process for the 
next co~ccupied cell, etc., until all cells are processed. 

Figure 4-16 illustrates the Fine Filter organizational 
hierarchy. Flight Plan Conflict Probe invokes the Fine Filter· 
after the Coarse Filter, whereupon the Fine Filter calls its 
various components in tandem. 

Figure 4-17 contains a glossary of the local variables and 
tables which are common to at least two components of the Fine 
Filter. It should be used as a supplement to the PDL 
descriptions of the various algorithms provided in the figures 
of Section 4.3. 

Figure 4-18 is a PDL presentation of the Fine Filter component. 

4.3.1 Segment Pair Builder 

4.3.1.1 Mission 

The mission of the Segment Pair Builder is to organize the 
subject aircraft and nominee aircraft cusps in the global data 
base TRAJECTORIES into subject-nominee segment pairs that are 
associated with each co~ccupied cell identified by the Coarse 
Filter. 

4.3.1.2 Design Considerations and Component Environment 

Input 

The inputs to the Segment Pair Builder Component include the 
unique identifiers for the subject and nominee aircraft trajec
tories, Subject Fl Id and Nominee Fl Id, respectively, and the 
times of the fi,rSt and last subject aircraft and nominee 
aircraft cusps associated with a co-occupied cell •. These times 

4-39 



i~ . 

(} 
FPCP ~. :r . 

' :'.' 

FINE FILTER 
\ 

Section 4.3· 

I I I I 
SEGMENT ALTITUDE HORIZONTAJ, ENCOUNTER 

PAIR TIME CHECK LIST 
BUILDER CHECK CHECK BUILDER 

Section 4.3.1 Section 4.3.2 Section 4.3.3 Section 4.3.4 Section 4.3.5 

FIGURE 4·16 
FINE FILTER ORGANIZATIONAL STRUCTURE 

4-40 



Advisory_Time_Viol_End 

Advisory_Time_Viol_Start 

Msep_Dist 

Nominee Fl Id 

Nominee Viol End Pt 

X 

y 
z 

Nominee Viol Start Pt 

X 

y 
z 

Priority_Time_Viol_End 

Priority_Time_Viol_Start 

Subject_Fl_Id 

Subject_Viol_End_Pt 

X 

y 
z 

VARIABLES 

Latest time that the advisory 
horizontal separation criterion is 
violated 

Earliest time that the advisory 
horizontal separation criterion is 
violated 

Minimum separation distance between the 
aircraft in the horizontal plane 

Unique identifier for the flight plan 
of the nominee aircraft 

Spatial coordinates of the nominee 
aircraft at the end of the advisory 
violation 
X coordinate 
Y coordinate 
Z coordinate 

Spatial coordinates of the nominee 
aircraft at the start of the 
advisory violation 
X coordinate 
Y coordinate 
Z coordinate 

Latest time that ~he priority 
horizontal separation criterion is 
violated 

Earliest time that the priority 
horizontal separation criterion is 
violated 

Unique identifier for the flight plan 
of the subject aircraft 

Spatial coordinates of the subject 
aircraft at the end of the advisory 
violation 
X coordinate 
Y coordinate 
Z coordinate 

FIGURE 4-17 
FINE FILTER GLOSSARY 

4-41 



Subject_Viol_Start_Pt 

X 
y 
z 

Time_MSep 

Time_Overlap_Max 

Time_Overlap_Min 

Spatial coordinates of the subject 
aircraft at the start of the 
advisory violation 
X coordinate 
Y coordinate 
Z coordinate 

Time of minimum separation between the 
aircraft in the horizontal plane 

Latest time that the subject and 
nominee segments overlap in time 

Earliest time that the subject and 
nominee segments overlap in time 

TABLES 

NOMINEE SEGMENT Pair of cusps representing the nominee 
segment being processed 

first t Time of the first cusp 
first-x X coordinate of the first cusp 
first:Y Y coordinate of the first cusp 
first z Z coordinate of the first cusp 
first_cusp_type Cusp type of the first cusp 
second t Time of the second cusp 
second-x X coordinate of the second cusp 
second-y Y coordinate of the second cusp 
second-z Z coordinate of the second cusp 
second:cusp_type Cusp type of the second cusp 
first~oint AGGREGATE (first_x, first_y, first_z) 
second point AGGREGATE (second x, second y, second z) 
first_xy~ir AGGREGATE (first-x, first_l) -
second_xy_pair AGGREGATE (second_x, second_y) 
hz first vtx AGGREGATE (first x,first_y) 
hz:sec_vtx AGGREGATE (second_i,second_y) 

FIGURE 4-17 
FINE FILTER GLOSSARY (Continued) 

4~2 



SEGMENT PAIR LIST 

subj first t 
sub£first~ 
subj first y 
sub£firs(:z 
subj first cusp type 
subi:second_t -
subj_second_x 

subj_second_y 

subj_second_z 

nominee first t 
nominee-first-x 
nominee-first-y 
nominee-first-z 
nominee first-cusp 

type- - -
nominee second t - -nominee second x 

nominee_second_y 

nominee second z 

Table containing the subject and 
nominee segment pairs for a 
co-occupied cell identified by the 
Coarse Filter 
Time of subject's first cusp 
X coordinate of subject's first cusp 
Y coordinate of subject's first cusp 
Z coordinate of subject's first cusp 
Cusp type of subject's first cusp 
Time of subject's second cusp 
X coordinate of subject's second 

cusp 
Y coordinate of subject's second 

cusp 
Z coordinate of subject's second 

cusp 
Time of nominee's first cusp 
X coordinate of nominee's first cusp 
Y coordinate of nominee's first cusp 
Z coordinate of nominee's first cusp 
Cusp type of nominee's first cusp 

Time of nominee's second cusp 
X coordinate of nominee's second 

cusp 
Y coordinate of nominee's second 

cusp 
Z coordinate of nominee•s·second 

cusp 
nominee_second_cusp_ Cusp type of nominee's second cusp 

type 
subject segment AGGREGATE (** first 10 fields **) 
nominee-segment AGGREGATE (** last 10 fields **) 
subject-nominee segment pair AGGREGATE C** all 20 fields **) 

SUBJECT SEGMENT - - Pair of cusps representing the 
subject segment being processed; 
fields defined like NOMINEE 
SEGMENT above 

FIGURE 4-17 
FINE FILTER GLOSSARY (Concluded) 

4-43 



ROUTINE Fine Filter; 
PARAMETERS Subject Fl Id IN; 
REFER TO GLOBAL ENCOuNTER.SINOUT, PRIOR_ENCOUNTERS OUT; 
REFER TO SHARED LOCAL NOMINEES IN; 
DEFINED IN GLOSSARY -

Subject_Fl_Id 
Time Overlap Min 
Time-Overlap-Max 
Advisory_Time_Viol_Start 
Advisory_Time_Viol_End 
Priorit~ Time Viol Start 
Priority=Time:viol=End 
Time_Msep 
Msep Dist 
SEGMENT PAIR LIST; 

DEFINE VARI~S 
Status Variable indicating the outcome of a 

particular Fine F~lter test; 
DEFINE TABLES 

PROCESSED SEGMENT 
PAIR LlST 

Subject-nominee segment pairs 
previously processed by the Fine 
Filter; fields defined like 
SEGMENT_PAIR_LIST in Glossary; 

FIGURE 4-18 
FINE FILTER 

4-44 



I produce copy of ENCOUNTERS Table for Sector Workload Probe I 
PRIOR ENCOUNTERS • ENCOUNTERS; 
# repeat for each co-occupied cell identified by the Coarse Filter I 
REPEAT FOR EACH NOMINEES RECORD; 

I o%ganize cusps into subject-nominee segment pairs I 
CALL Segment Pair Builder (Subject Fl Id IN, NOMINEES.fl id IN, 
--NOMINEES .subject_entry_time IN,-NOMINEES .subject_exit=time IN, 

NOMINEES.nominee entry time IN, NOMINEES.nominee exit time IN, 
SEGMENT PAIR LIST OUT); - - - -

REPEAT FOR -EACH-SEGMENT _PAIR_ LIST RECORD; 
WHERE SEGMENT PAIR LIST.subject nominee segment pair IS NOT IN 

PROCESSED SEGMENT PAIR LIST;-# repeat only for subject- # 
I nominee-segment-pairs not previously processed I 

INSERT INTO PROCESSED SEGMENT PAIR LIST 
(subject nominee s;gment pair --SEGMENT PAIR LIST.subject 
nominee_segment_j)air); - - - -

I conduct tests of the subject-nominee segment pair in the I 
I various dimensions I 
CALL Time Check (SEGMENT PAIR LIST.subject segment IN, 
--SEGMENT PAIR LIST .nominee segment IN, Status oUT-;-Time 

Overlap-Min OUT, Time Overlap Max OUT); --
IF Status !g_ 'Time intervals overlap'--
THEN 
---cALL Altitude Check (SEGMENT PAIR LIST.subject segment IN, 

--SEGMENT PAlR LIST.nominee-segment IN, Status OUT); -
IF Status~ 'Violation of vertical separation criterion' 
THEN 
~ALL Horizontal Check (SEGMENT PAIR LIST.subject segment 

IN, SEGMENT_PAIR_LIST.nominee_segment IN, Sub}ect_Fl_ 
Id IN, NOMINEES.£! id IN, Time Overlap Min IN, Time 
Overlap Max IN, Status OUT, AdVisory Time Viol Start 
OUT, AdvisocyTime Viol End OUT, Priority-Time-Viol 
Start OUT, Priority Time Viol End OUT, Time Msep OUT, 
Msep_Dist OUT); - - - - - --

IF Status ~ 'Violation of advisory horizontal separation 
criterion' . 

THEN I store the encounter data in a table I 
CALL Encounter_List_Builder (SEGMENT_PAIR_LIST. 

subject segment IN,SEGMENT PAIR LIST.nominee 
segment-IN, Subject_Fl_Id IN, NOMINEES.fl_id-IN, 
Advisory Time Viol Start IN, Advisory Time Viol 
End IN, Priority Time ViolStart IN, Priority Time 
Viol_End IN, Time_Msep IN,-Msep_Dist IN); - -

END Fine_Filter; 

FIGURE 4-18 
FINE FILTER (Concluded) 

4-45 



are denoted by the local variables Subject Entry Time, Subject 
Exit Time, Nominee Entry Time, and Noaiinee iii t Time. Iii 
addition to all of-these-variables which are-provided by the 
Fine Filter routine, the Segment Pair Builder Component uses 
the global table TRAJECTORIES from which it obtains the cusp 
information for the two aircraft. 

OUtput 

The output of the Segment Pair Builder Component is a table, 
SEGMENT PAIR LIST, which contains · in each record a pair of 
segments, one from each aircraft, that are associated with a 
specific co-occupied cell identified by the Coarse Filter. 
Each segment in a record is a pair of cusps. The subject 
segment and the nominee segment in each record are passed on to 
other components of the Fine Filter for specific testing. 

4.3.1.3 Component Design Logic 

The Segment Pair Builder component is called by the 'Fine Filter 
for every co -occupied cell in the NOMINEES Table. Using the 
parameters Subject Entry Time and Subject Exit Time (obtained 
from this table) to identify the subject cusps associated with 
the cell, it selects these cusps from the TRAJECTORIES Table 
and sorts them in increasing order of time. Every consecutive 
pair of cusps in the resulting list represents a segment in the 
trajectory of the aircraft. The component then repeats the 
process for the nominee cusps associated with the same cell. 
Finally, it combines subject and nominee segments from each 
list into pairs, storing every possible combination in a local 
table called SEGMENT PAIR LIST. 

Figure 4-19 shows the PDL representation of the Segment Pair 
Builder algorithm. 

4.3.2 Time Check 

4.3.2.1 Mission 

The mission of the Time Check component of the Fine Filter is 
simply to determine if the pair of segments under consideration 
overlap in time and, if so, to calculate the endpoints of the 
common time interval. 

4-46 



ROUTINE Segment Pair Builder; 
PARAMETERS Subject Fl Id IN, Nominee Fl Id IN, Subject Entry Time IN, 

Subject Exit Tiiiie IN, Nominee Entry TimeiN, Nominee Exit-Time IN, 
SEGMENT-PAIR-LIST OUT; - - - - - -

REFER TO GLOBAL-TRAJECTORIES IN; 
DEFINED IN GLOSSARY 

Subject_Fl_Id 
Nominee Fl Id 
SEGMENT PAIR LIST; 

DEFINE VARIABLES 
Ordered Subject 

cusps <* ,5) -
Subject_Entry_Time 

Subject_ Exit_ Time 

Subject_CUsp_Count 

Ordered Nominee 
cusps (*,5) -

Nominee_ Entry_ Time 

Nominee Exit Time 

Nominee_CUsp_Count 

I 
J 

Array whose rows are subject cusps 
ordered according to increasing time 

Time of the first subject aircraft cusp 
associated with the co-occupied cell 

Time of the last subject aircraft cusp 
associated with the co-occupied cell 

Total number of rows in Ordered 
Subject Cusps 

Array whose rows are nominee cusps 
ordered according to increasing time 

Time of the first nominee aircraft cusp 
associated with the co-occupied cell 

Time of the last nominee aircraft cusp 
associated with the co-occupied cell 

Total number of rows in Ordered 
Nominee Cusps 

Row index for Ordered Subject CUsps 
Row index for Order~d=Nominee:cusps; 

FIGURE 4-19 
SEGMENT PAIR BUILDER 

4-47 



# select the subject cusps that are associated with 
# cell and order them by increasing time 
SELECT FIELDS cusp, cusp_type 

FROM TRAJECTORIES 
INTO Ordered Subject Cusps 
WHERE (TRAJECTORIES.fl_id ~ Subject_Fl_Id) AND 

(TRAJECTORIES.time GE Subject Entry Time AND 
TRAJECTORIES. time LE Subject Exit Time) -

ORDERED BY TRAJECTORIES. time - -
RETURN COUNT (Subject_Cusp_Count); 

the co-occupied # 
# 

# select the nominee cusps that are associated with the co-occupied # 
I cell and order them by increasing time # 
SELECT FIELDS cusp, cusp type 

FROM TRAJECTORIES -
INTO Ordered Nominee Cusps 
WiiiRE (TRAJECTORIES.fl_id ~ Nominee_Fl_Id) AND 

(TRAJECTORIES.time GE Nominee Entry Time AND 
TRAJECTORIES.time LE Nominee_Exit_Ttme) -

ORDERED BY TRAJECTORIES.time 
RETURN COUNT (Nominee Cusp Count); 

# construct a table of subject-nominee segment pairs associated # 
# with the co-occupied cell # 
FOR I • 2 TO Subject_Cusp_Count; 

FOR J • 2 TO Nominee Cusp Count; 
-INSERT INTO SEGMENT PAIR LIST 

(subject segment-- Ordered Subject Cusps(I-1,*) CONCAT 
Ordered Subject Cusps(I,*): nominee segment • Ordered 
Nominee-Cusps(J=l,*) CONCAT Ordered-Nominee Cusps(J,*)); 

END Segment_Pair=Builder; ,.... -

FIGURE 4-19 
SEGMENT PAIR BUILDER (Concluded) 

4-48 



4.3.2.2 Design Considerations and Component Environment 

Input 

The inputs to the Time Check component are two tables, the 
SUBJECT SEGMENT and the NOMINEE_ SEGMENT, which are obtained 
from the SEGMENT PAIR LIST created by the Segment Pair Builder 
Component. The tables- contain data describing the subject and 
nominee segments under consideration. 

Output 

The output of this component consists of a variable called 
Status which indicates whether or not the time intervals of the 
two segments overlap and two parameters, Time Overlap Min and 
Time Overlap Max, which are the bounds of the common Interval, 
if such an interval exists. 

4.3.2.3 Component Design Logic 

The Time Check Component is called by the Fine Filter for each 
subject-nominee segment pair not previously processed by the 
Fine Filter. It establishes whether or not the two segments 
under consideration overlap in time simply by determining if 
either the subject aircraft segment occurs entirely before the 
nominee segment or, conversely, the nominee segment occurs 
entirely before the subject aircraft segment. If either case 
is true, Status is assigned a message indicating that the time 
intervals do not overlap. Otherwise, it is assigned a message 
designating that an overlap exists. The beginning and end of 
the overlap is computed by finding the latest starting time and 
earliest ending time, respectively, of the two segments. 

Figure 4-20 is a PDL presentation of the Time Check Algorithm. 

4.3.3 Altitude Check 

4.3.3.1 Mission 

The purpose of the Altitude Check Component of the Fine Filter 
is to analyze those segment pairs that pass through the Time 
Check for possible violations of the vertical separation 
criterion by their respective aircraft. 

4.3.3.2 Design Considerations and Component Environment 

If either aircraft is transitioning in altitude over its 
segment (this may include an aircraft in a holding pattern with 

4-49 



ROUTINE Time_Check; 
PARAMETERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Status OUT, 

Time Overlap Min OUT, Time_ Overlap_ Max OUT; -
DEFINED-IN GLOSSARY -

Time_Overlap_Min 
Time Overlap Max 
SUBJ~CT SEGMENT 
NOMINEE_SEGMENT; 

DEFINE VARIABLES 
Status Variable indicati~ whether or not the subject and 

nominee segments overlap in time; 
# check to determine if subject segment ends before nominee segment I 
# begins or nominee segment ends before subject segment begins I 
IF SUBJECT SEGMENT.second t LE NOMINEE SEGMENT.first t OR 

NOMINEE-SEGMENT.second-t LE SUBJECT-SEGMENT.first-t 
THEN - - -

Status = 'Time intervals do not overlap'; 
ELSE 
--Status • 'Time intervals overlap'; 

# calculate the endpoints of the overlap in time I 
Time Overlap Min • MAX (SUBJECT SEGMENT.first t, 

NOMINEE SEGMENT.first t); - -
Time Overlap Max • MIN (SQBJECT SEGMENT. second t, 

NOMINEE SEGMENT. SeC'ond t); - -
END Time_CheCk; -

FIGURE 4-20 
TIME CHECK 

4-50 



vertical extent), the subject-nominee segment pair is 
automatically considered a candidate for the Horizontal Check 
Component without further testing by the Altitude Check 
Component. Detailed analysis of such segment pairs by this 
component is considered infeasible given the relatively small 
number of cases expected to be eliminated from such an 
analysis. For all practical purposes, the Coarse Filter 
prefiltering of transitioning aircraft in the vertical 
dimension seems sufficient. 

Input 

The data to be input into the Altitude Check Component consist 
of the subject aircraft segment and the nominee segment in the 
form of the local tables SUBJECT_SEGMENT and NOMINEE_SEGMENT, 
and the vertical separation criteria, Sepz Hi and Sepz Lo. The 
separation criteria are global parameters which are -the FPCP 
standards for aircraft flying above and below 29,000 feet, 
respectively. 

Output 

The output from the component is the variable Status which 
indicates whether or not the subject-nominee segment pair 
violates the vertical separation criterion. 

4.3.3.3 Component Design Logic 

The Altitude Check Component is invoked by the Fine Filter 
whenever a subject-nominee segment pair passes through the Time 
Check Component. A PDL representation of the Altitude Check 
Algor! thm is presented in Figure 4-21. The segments are first 
checked for transitions in altitude. If at least one of the 
aircraft changes altitude over its segment, Status is assigned 
a message indicating that there is a violation of the vertical 
separation criterion and the algorithm. is terminated. This 
allows the segment pair to proceed directly to the Horizontal 
Check for reasons indicated in Section 4.3.3.2. 

If the flights are both level, the algorithm selects the 
appropriate value of the vertical separation criterion, 
Vert_Sep, on the basis of the altitudes of the two aircraft. 
Whenever the altitude of either aircraft exceeds 29,000 feet, 
Vert_Sep is set equal to Sepz_Hi. Otherwise, it is set equal 
to Sepz Lo. The difference between Sepz Hi and Sepz Lo 
reflects- the greater separation required at -higher altitudes 
where the aircraft travel at faster speeds. 

4-51 



ROUTINE Altitude Check; 
PARAMETERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Status OUT; 
REFER TO GLOBAL Sepz Hi IN, Sepz Lo IN; 
DEFINED IN GLOSSARY - - - -

SUBJECT SEGMENT 
NOMINEE-SEGMENT; 

DEFINE VARIABLES 
Status Variable indicating whether or not the subject and 

nominee aircraft violate the vertical separation 
criterion 

Vert_Sep Vertical separation criterion; 

# if either segment is associated with a vertical maneuver 
I vertical hold, no altitude check is performed 

or a # 
I 

IF SUBJECT_SEGMENT.first_cusp_type ~ 'vertical maneuver' OR 
SUBJECT_SEGMENT.first_cusp_type ~ 'vertical hold' OR 
NOMINEE_SEGMENT.first_cusp_type ~ 'vertical maneuver' OR 
NOMINE~SEGMENT.first_cusp_type ~ 'vertical hold' 

THEN 
---S-tatus= 'Violation of vertical separation criterion'; 
ELSE 
---r set value of vertical separation criterion according to I 

H whether or not either aircraft is above 29000 feet I 
IF MAX (SUBJECT SEGMENT.first z, NOMINEE SEGMENT.first_z) 
- GT 29000 - -
THEN 
~ert Sep • Sepz_Hi; 
ELSE -

Vert Sep • Sepz Lo; 
I determine whether or not vertical separation criterion is I 
I violated I 
IF ABS (SUBJECT_SEGMENT.first_z - NOMINEE_SEGMENT.first_z) 

GE Vert Sep 
THEN -

Status • 'No violation of vertical separation criterion'; 
ELSE 
----Status= 'Violation of vertical separation criterion'; 

END Altitude_Check; 

FIGURE 4-21 
ALTITUDE CHECK 

4-52 



If the algor! thm determines that the vertical distance between 
the two aircraft equals or exceeds Vert_Sep, it assigns to 
Status a message indicating that there is no altitude 
violation. Otherwise, Status is assigned a message indicating 
the occurrence of an altitude violation. 

4.3.4 Horizontal Check 

4.3.4.1 Mission 

The Horizontal Check Component of the Fine Filter is designed 
to test those subject -nominee segments that filter through the 
Time Check and Altitude Check Components for possible 
violations of the FPCP advisory and priority horizontal 
separation criteria. 

4.3.4.2 Design Considerations and Component Environment 

The component distinguishes between regular segments and 
segments which correspond to a holding pattern or a vertical 
maneuver in its determination of whether or not the horizontal 
separation criteria are violated. The reason for the 
distinction between the two cases is that the procedures 
required to determine whether a violation occurs are 
fundamentally different for the two cases. In addition, the 
type of data that describes a violation for two regular 
segments differs from that which describes the violation 
involving at least one holding pattern or vertical maneuver 
segment. 

Input 

The Horizontal Check component requires, as local inputs, the 
subject aircraft segment (SUBJECT SEGMENT), nominee aircraft 
segment (NOMINEE SEGMENT), unique Identifiers for the subject 
and nominee flight plans (Subject Fl Id and Nominee Fl I d), and 
the bounds on the time interval in common between- the two 
aircraft (Time Overlap Min and Time Overlap Max). These inputs 
are provided by the Fine Filter.- In addition to the local 
inputs, a global table called MANEUVER ENVELOPES is used by one 
of the elements of the Horizontal check Component to access 
information regarding any vertical maneuvers or holding 
patterns that may be associated with at least one of the 
aircraft. 

4-53 



Output 

The output of the Horizontal Check component is Status, a 
variable indicating whether or not the advisory horizontal 
separation criterion is violated and, if so, a set of parameters 
describing the violation. If the priority horizontal separation 
criterion is also violated, then a set of parameters describing 
this violation are included in the output. The complete list of 
parameters include the Advisory Time Viol Start, Advisory Time 
Viol End, Priority Time Viol Start, Priority Time Viol End-; the 
time- of minimum separation In the' horizontal plane, Time Msep, 
and the minimum separation distance in the plane, Msep_Dist.-

4.3.4.3 Component Design Logic 

The Horizontal Check component is invoked by the Fine Filter 
whenever a subject -nominee segment pair passes through the Time 
Check and Altitude Check. It, in turn, calls one of two possible 
elements, the Regular Segment Horizontal Check or the Maneuver· 
Envelope Horizontal Check, depending on whether or not both 
segments are regular or at least one of the segments is 
associated with a holding pattern or a vertical maneuver. Fach 
of the elements invokes other routines, as indicated in the 
following representation of the organizational structure of the 
Horizontal Check Component and in paragraphs below. 

Horizontal Check 
Regular-Segment Horizontal Check 

Relative Vectors 
Violation Times 

Maneuver Envelope Horizontal Check 
Maneuver_Envelope_Test -

En.velope_Envelope_Violation_Check 
Get Box 
Envelope Envelope Intersect Check 
Edge Containment Check -

Segment:Envelope_Violation_Check 
Get Box 
Envelope Regular Segment Intersect Check 
Edge_Containment=Check - -

Figure 4-22 shows a PDL representation of the Horizontal Check 
algorithm. 

4-54 



ROUTINE Horizontal_Check; 
PARAMETEKS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Subject Fl Id IN, 

Nominee Fl Id IN, Time Overlap Min IN, Time Overlap Max-IN~ -
Status OUT~ Advisory rime Viol-star~OUT, Advisory Time Viol End 
OUT, Priority Time VIol Start OUT, Priority Time VIol End OUT, 
Time Msep OUT~ Msep Dist OUT; --- - - - ---

DEFINF..D-IN GLOsSARY - -
Subject Fl Id 
Nominee-Fl-Id 
Time Overlap Min 
Time Overlap-Max 
Advisory Time Viol Start 
Advisory-Time-Viol-End 
Priority-Time-Viol-Start 
Priority=Time=Viol=End 
Time Msep 
1vfsep=Dist 
SUBJECT SEGMENT 
NOMINEE_ SEGMENT; 

DEFINE VARIABLES 
Status Variable indicating whether or not the subject and 

nominee aircraft violate the advisory horizontal 
separation criterion; 

IF SUBJECT_SEGMENT.first_cusp_type ~ 'regular' AND 
NOMINEE_SEGMENT.first_cusp_type ~ 'regular' 

THEN 
CALL Regular_Segment_Horizontal_Check (SUBJECT_SEGMENT 

ELSE 

IN, NOMINEE SEGMENT IN, Time Overlap Min IN, Time Overlap Max 
IN, Status OUT, Advisory Time Viol Start our, Advisory Tiie 
Viol End OU~Priority Time VIol Start our;-Priority Time -
Vio{)nd OUT, Time_Msep OUT-; Msep_Dist OUT); - -

CALL Maneuver_Envelope_Horizontal_Check (SUBJECT_SEGMENT IN, 
NOMINEE SEGMENT IN, Subject Fl Id IN, Nom~nee Fl Id IN, Time 
Overlap-Min IN, Time Overlap Max IN, Status OUT,-Advisory -
Time Viol Start OUT,-Advisory Time-viol End our, Priority
Time-Viol-Start OUT, Priority-Time-viol-End OUT, Time Msep 
OUT,-Msep-Dist OUT); - - - --- -

END Horizontal_Check;---

FIGURE 4-22 
HORIZONTAL CHECK 

4-55 



Regular Segment Horizontal Check 

The Regular Segment Horizontal Check algorithm uses the 
relative velocity and relative position vectors of the aircraft 
over their segments to identify violations of the horizontal 
separation criteria and to calculate the parameters which 
describe these violations. It invokes a routine called 
Relative Vectors which calculates the relative velocity and 
relative position vectors of the two aircraft. It then uses 
these relative vectors to compute the three coefficients which 
define the separation distance function (see Appendix B for the 
mathematical derivation of all of the parameters in the Regular 
Segment Horizontal Check). The algorithm calls the routine 
Violation Times, supplying it with the separation distance 
function coefficents and the advisory horizontal separation 
criterion Advisory Seph. Violation Times determines if a 
violation of this criterion exists and, if so, calculates the 
start and end time of the violation. Under this circumstance, 
the routine is called again with the priority separation 
distance criterion, Priority_Seph, serving as an input. 

The final portion of the algorithm calculates the time of 
minimum separation in the (x,y) plane, Time Msep, and the 
minimum separation distance, Msep Dist, using the formulas 
derived in Appendix B. Time Msep ialreplaced by a bound of the 
common time interval if it- falls outside of this interval. 
Specifically, if Time Msep is less than Time Overlap Min or 
greater than Time_Overlap_Max, then its value is set equal to 
Time Overlap Min or Time Overlap Max, respectively, since, 
under such circumstances, tlie "true- time of minimum separation 
is one of the common time interval's endpoints (Figure 4-23 
illustrates the need for this reassignment of values). With 
the time of minimum separation calculated, ·the algorithm 
finally computes Msep Dist by simply substituting Time Msep 
into the separation distance function. -

Figure 4-24 shows the PDL representation of the Regular Segment 
Horizontal Check Algorithm. 

Relative Vectors 

This element of the Regular Segment Horizontal Check calculates 
the horizontal relative velocity and the relative position vec
tors of the subject and nominee aircraft over their segments. 
It first computes the horizontal velocities of the subject 
aircraft and the nominee within their respective segments using 
the information provided in the cusps. The relative velocity 
vector, Rel_Vel, is then obtained by subtracting the nominee 

4-56 



CASE 1: Time_Overlap_Min ~ Time_rlsep ~ Time_Overlap_liax 

Consequence: Time_Msep is left unchanged 

Separation 
Distance 

CASE 2: Time Msep L Time_Overlap_Min 

Consequence: Time_Msep set equal to Time_Overlap_Min 

Separation 
Distance 

CASE 3: Time M8ep .::.. Time_ Overlap __Iiax 

Consequence: Time_Msep' set equal to Time_Overlap_Max 

Legend: 

Separation 
Distance 

1 = Time Overlap Hin 
2 = Time-Overlap-Max 
3 = Time =!isep -

FIGURE 4·23 
DERIVATION OF TIME OF MINIMUM SEPARATION 

4-57 



ROUTINE Regular Segment Horizontal Check; 
PARAMETEKS (SUBJECT_SEGMENT IN, NOMI.NEE_SEGMENT IN, Time_Overlap_Min 

IN, Time Overlap Max IN, Status OUT, Advisory Time Viol Start OUT, 
Advisory-Time Viol En~OUT, Priority Time Viol Start OUT, ---
Priority-Time-Viol-End OUT, Time Msep our: Msep Dist OUT); 

REFt:R TO GLOBAL Advisory Seph IN, Priority Seph IN7 --
DEFINEu IN GLOSSARY - - - -

Time_Overlap_Min 
Time Overlap Max 
Advisory Time Viol Start 
Advisory=Time=Viol=End 
Priority Time Viol Start 
Priority=Time=Viol=End 
Time_Msep 
Msep Dist 
SUBJECT SEGMENT 
NOMINEE-SEGMENT; 

DEFINE VARIABLES 
Status 

A 

B 

c 

Rel Vel 

X 

y 
Rel Pos 

X 

y 
State 

Delta T 

Variable indicating whether or not the subject and 
nominee aircraft violate the advisory horizontal 
separation criterion 

Coefficient of the quadratic term in the separation 
distance function (see Appendix B) 

Coefficient of the linear term in the separation 
distance function (see Appendix B) 

Constant term in the separation distance function 
(see Appendix B) 

Relative velocity of the subject and nominee aircraft 
in the horizontal plane (i.e., subject aircraft 
velocity minus nominee aircraft velocity) 

X component of the relative velocity 
Y component of the relative velocity 

Relative position of the subject and nominee aircraft 
at Time Overlap Min in the horizontal plane (i.e., 
subject-aircraft position minus nominee aircraft 
po3ition) 

X component of the relative position 
Y component of the relative position 

Variable indicating whether or not the subject and 
nominee violate the specific horizontal separation 
criterion under consideration 

Length of time between Time Overlap Min and the time 
of minimum separation; - -

FIGURE 4-24 
REGULAR SEGMENT HORIZONTAL CHECK 

4-58 



# calculate the relative vectors needed by this routine # 
CALL Relative Vectors (SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, 
----Time Overlap Min IN, Rel Vel OUT, Rer-Pos OUT);- --
# calculate the-coefficients of the separation distance function I 
A = MAGNITUDE(Rel Vel) ** 2; 
B = 2 * DOT(Rel Vel, Rel Pos); 
C = MAGNITUDE(Rel Pos) *T 2; 
# determine if the advisory horizontal separation criterion 
# violated and, if so, calculate the start and end times of 
II violation 

is # 
the I 

I 
CALL Violation Times (A IN, B IN, C IN, Advisory Seph IN, Time 
----Overlap Min-IN, Time Overlap-Max IN, State OUT, Advisory Time 

Viol Start OUT, Advisory Time Vior-End OUT)_;__ - -
IF State .!9_ 'violation' - ---
THEN 
--Status = 'Violation of advisory horizontal separation criterion'; 

II given that a violation of the advisory horizontal separation I 
II criterion has been detected, determine if the priority I 
II separation criterion is violated and, if so, calculate the I 
II start and end times of the violation I 
CALL Violation Times (A IN, B IN, C IN, Priority Seph IN, 
----Time Overlap 11in IN, Time Overlap~x IN, State OUT:-Priority 

Time-Viol St~rt OUT, Priority Time Vio~End OUT)_;__ -
II calculate time of minimum separation and-minimum separation # 
II distance of the two aircraft in the horizontal plane I 
Time Msep = (-B I (2 * A)) + Time Overlap Min; 
IF Tfme Msep LT Time Overlap Min - -
THEN - -- - -

Time Msep = Time Overlap Min; 
ELSE - - -
---yF Time_Msep GT Time_Overlap_Max 

THEN 
----Time Msep = Time Overlap Max; 

Delta T = Time Msep - Time Overlap Min; 
Msep_Dist = SQRT(A * Delta=T ** 2 -+ a * Delta T + C); 

END Regular_Segment_Horizontal_Check; 

FIGUKE 4-24 
REGULAR SEGMENT HORIZONTAL (Concluded) 

4-59 



velocity from the subject velocity. Similarly, the relative 
position vector, Rel Pos, is derived by first calculating the 
respective horizontal position vectors of the two aircraft at 
Time Overlap Min, the earliest time that the two segments 
overlap in time, and then finding the difference of the two 
vectors. 

Figure 4-25 shows a PDL representation of the Relative Vectors 
Algorithm. 

Violation Times 

This element of the Regular Segment Horizontal Check determines 
whether or not the two aircraft violate the horizontal separa
tion criterion, Seph, supplied as an argument to the routine 
and, if so, calculates the starting and ending times of the 
violation. The mathematical derivation of the relevant 
formulas is provided in Appendix B. 

The algorithm computes the discriminant of an algebraic 
equation. This equation is obtained by subtracting the square 
of Seph from the square of the separation distance function and 
setting the result equal to zero. The nature of its roots 
indicate whether or not Seph is violated. If the discriminant 
is either a negative number or zero, the separation distance 
between the aircraft is equal to or exceeds Seph. Thus, no 
violation is expected to occur and the variable State is 
assigned a message indicating this. The parameters Time 
Viol Start and Time Viol End are set equal to a null value. If 
the discriminant is-positive, then a violation is theoretically 
possible, glven the magnitudes and directions of the relative 
vectors. Nevertheless, it is also possible that the violation 
of the separation criterion occurs outside of the time interval 
in common between the two aircraft. Whenever the derived 
earliest and latest time of violations indicate that the 
violation occurs outside the interval in common between the two 
aircraft, then State is assigned a message that there is no 
violation of the horizontal separation criterion. In this 
case, the parameters Time Viol Start and Time Viol End are set 
equal to a null value. Otherwise, State is made -to indicate 
that there is a violation. If either of the two time bounds of 
the violation interval is located outside of the common time 
interval, say Time Viol Start is less than Time Overlap Min, 
then the corresponding- bound of the common time int;rval 
becomes the new bound of the violation, that is (for the same 
example), Time_Overlap_Min becomes the new starting time of the 
violation period. The objective of this substitution is to 

4-60 



ROUTINE Relative Vectors; 
PARAM.c.TERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Time_Overlap_Min 

IN, Rel Vel OUT-; Rel_Pos OUT; - -
DEFINED nrGLOSSARY 

Time Overlap Min 
SUBjECT SEGMENT 
NOMINEE SEGMENT; 

DEFINE VAKfABLES 
Rel Vel 

X 

y 
Rel Pos 

X 

y 
Subject_Velocity 

X 

y 
Nominee_ Velocity 

X 

y 
Suoject_Position 

X 

y 
Nominee Posit1on 

X 

y 

Relative velocity of the subject and nominee 
aircraft in the horizontal plane (i.e., 
subject aircraft velocity minus nominee 
aircraft velocity) 

X component of the relative velocity 
Y component of the relative velocity 

Relative position of the subject and 
nominee aircraft at Time Overlap Min in 
the horizontal plane (i.e., subject 
aircraft position minus nominee 
aircraft position) 

X component of the relative position 
Y component of the relative position 

Horizontal velocity of the subject aircraft 
within its segment 
X component of the subject ale velocity 
Y component of the subject ale velocity 

Horizontal velocity of the nominee aircraft 
within its segment 
X component of the nominee ale velocity 
Y component of the nominee ale velocity 

Position of the subject aircraft in the 
horizontal plane at time Time Overlap Min 

X component of the subject-ale position 
Y component of the subject ale position 

Position of the nominee aircraft in the 
horizontal plane at time Time Overlap Min 

X component of the nominee-ale position 
Y component of the nominee ale 

position; 

FIGURE 4-25 
RELATIVE VECTORS 

4-61 



# calculate the subject aircraft velocity, the nominee aircraft # 
# velocity, and the relative velocity of the two aircraft # 
Subject Velocity = (SUBJECT SEGMENT.second xy pair - SUBJECT SEGMENT. 

first xy pair) I (SUBJECT SEGMENT.second t-- -
SUBJECT SEGMENT.first t);- -

Nominee Velocity = (NOMINEE SEGMENT.second xy pair - NOMINEE SEGMENT. 
first xy pair) I (NOMINEE SEGMENT.secona t--
NOMINEE SEGMENT.first t);-

Rel Vel = Subject Velocity - Nominee Velocity; 
# calculate the subject aircraft position, the nominee aircraft 
# position, and the relative position of the two aircraft at 

# 
# 

# Time_Overlap_Min 
Subject Pvsition = SUBJECT SEGMENT.first xy pair + 

SUBJECT_SEGMENT.first_t) * Subject_Veloclty; 

# 
(Time_ Overlap_ Min-

Nominee Position = NOMINEE SEGMENT.first xy pair + (Time_Overlap_Min
NOMIN~~ SEGMENT.first t) * Nominee Velocity; 

Rel Pos = Subject Position - Nominee Position; 
END-Relative_Vectors; -

FIGURE 4-25 
RELATIVE VECTORS (Concluded) 

4-62 



define the true violation period and not the theoretical one 
obtained through straight calculations. 

Figure 4-26 provides a PDL representation of the Violation 
Times Algorithm. 

Maneuver Envelope Horizontal Check 

The Maneuver Envelope Horizontal Check algorithm tests for 
violations of the FPCP horizontal separation criteria whenever 
the subject and/or the object aircraft are engaged in hold 
maneuvers or vertical maneuvers and previous tests for time 
overlap and vertical separation have not ruled out the 
possibility of an encounter. A test is first made to see if 
the advisory horizontal separation criterion, Advisory Seph, is 
violated and if it is, a test for violation of the-priority 
separation criterion is made. These tests are done by the 
Maneuver Envelope Test element. When either criterion is 
violated, the corresponding start and end times of violation 
(Advisory Time Viol Start, Advisory Time Viol End, and/or 
Priority_Time_Viol_Start, Priority_Tim~Vio(_Endf are returned. 

Figure 4-27 shows the PDL representation of the Maneuver 
Envelope Horizontal Check algorithm. 

Maneuver Envelope Test 

The Maneuver Envelope Test element performs the tests for 
violation of the horizontal separation criterion, Seph, when 
either the subject or the object aircraft is in a maneuver. 
Figure 4-28 illustrates the two holding pattern cases in which 
this algorithm is invoked and Figure 4-29 illustrates the 
vertical maneuver case. The horizontal criteria used are 
independent of the position of the aircraft within the 
maneuver. Violations depend only on the distance between the 
regions, in the horizontal plane, covered by the envelopes or 
segments involved. It is assumed that these regions are 
rectangles in the. horizontal plane. 

In the following discussion, the horizontal projection of a 
vertical maneuver will refer to the line segment in the 
horizontal plane corresponding to the two extreme time points 
of the maneuver (e.g., the right downstream and left upstream 
points). 

When both the subject and object aircraft are involved in an 
airspace sweeping maneuver, a violation, in the horizontal 
plane, occurs in any of the following three cases: 

4-63 



ROUTINE Violation Times; 
PARAMETERS A IN, B IN, C IN, Seph IN, .Time Overlap Min IN, Time 

OVerlap Max-IN, State OUT, TimeViol Start OUT,-TimeViol End OUT; 
DEFINED UfGLOSSARY - - - - - - -

Time OVerlap Min 
Time-Overlap-Max; 

DEFINE VARIABLES 
A 

B 

c 

Seph 
State 

Time Viol Start 

Time Viol End 

Discriminant 

Coefficient of the quadratic term in the 
separation distance function (see 
Appendix B) · 

Coefficient of the linear term in the 
separation distance function (see Appendix B) 

Constant term in the separation distance 
function (see Appendix B) 

Horizontal separation criterion 
Variable indicating whether or not the subject 

and nominee aircraft violate the specific 
horizontal separation criterion under 
consideration 

Earliest time that the horizontal separation 
criterion is violated 

Latest time that the horizontal separation 
criterion is violated 

Discriminant of the quadratic equation formed 
by setting the difference of the separation 
distance function squared and the horizontal 
separation criterion squared to zero (see 
Appendix B) ; 

FIGURE 4-26 
VIOLATION TIMES 

4-64 



Discriminant • B ** 2 - 4 * A * (C - Seph ** 2); 
IF Discriminant LE 0 
~equivalent to separation distance function # 
I being greater than or equal to Seph I 
THEN 
--State = 'no violation' ; 

Time_Viol_Start • NULL; 
Time_Viol_End = NULL; 

ELSE 
~ calculate the times of violation start and end # 

Time_Viol_Start = (-B - SQRT(Discriminant)) I (2 * A) + 
Time Overlap Min; 

Time_Viol_End --(-B + SQRT(Discriminant)) I (2 * A) + 
Time Overlap Min; 

# determine if the entire violation period occurs outside of the I 
I time interval common to both segments # 
IF Time Viol Start GT Time Overlap Max OR Time Viol End LT 
- Time-Overlap Min- - -
THEN - -
---state= 'no violation'; 

Time Viol Start = NULL; 
Time-viol-End • NULL; 

ELSE - - --
---state • 'violation'; 

I calculate the "true" times of violation start and end I 
Time Viol Start • MAX(Time Viol Start, Time Overlap Min); 
Time-Viol-End "" MIN(Time Vlol End, Time Overlap Max); 

END Violation_Times; -- - - - -

FIGURE 4-26 
VIOLATION TIMES (Concluded) 

4-65 



ROUTINE Maneuver Envelope Horizontal Check; 
Hchecks for violation of horizontal separation criterion when the# 

#segments are maneuver envelopes# 
#tests for violation of both advisory and priority horizontal# 

#separation criterion are made; if a violation is detected# 
#returns the start and end times of the violation# 

PARAMETERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Subject Fl Id IN, 
Nominee Fl Id IN, Time Overlap Min IN, Time Overlap Max-IN-; -
Status OUT: Advisory Time Viol-Star~OUT, Advisory Time Viol End 
OUT, Priority Time viol Start OUT, Priority Time viol End OUT, 
Time Msep OUT: Msep Dist OUT; -- - - - --

REFER TO GLO~Advisory Sep~IN, Priority Seph IN; 
DEFINED IN GLOSSARY - - - -

Subject_Fl_Id 
Nominee Fl Id 
Time Overlap Min 
Time=Overlap=Max 
Advisory Time Viol Start 
Advisory=Time:viol=End 
Priority Time Viol Start 
Priority=Time=Viol=End 
Time Msep 
Msep-Dist 
SUBJECT SEGMENT 
NOMINEE=SEGMENT; 

DEFINE VARIABLES 
Status Variable indicating the outcome of a particular Fine 

Filter test; 

FIGURE 4-27 
MANEUVER ENVELOPE HORIZONTAL CHECK 

4-66 



Time_Msep = NULL; 
Msep Dist = NULL; 
#first test for violation of advisory separation criterion# 
CALL Maneuver Envelope Test (SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, 
--S-ubject Fl-Id IN, Nominee Fl Id IN, Time Overlap Min IN, Time-

OVerlap-Max IN:-Advisory Seph IN:-status-OUT, Advisory-Time viol 
Start OUT, Advisory Time-Viol End OUT); -- - - -

#test for priority violation only if an-advisory violation has been# 
#detected// 

IF Status EQ 'violation' 
THEN lltest:for violation of priority separation criterion# 
---Status= 'violation of advisory horizontal separation criterion'; 

CALL Maneuver Envelope Test (SUBJECT SEGMENT IN, NOMINEE SEGMENT 
--I-N, Subject Fl Id IN, Nominee Fl ld IN, Time Overlap Min IN, 

Time Overlap Mix IN:" Priority-Seph IN:" Status OUT, Priority 
Time-Viol Start OUT, Priority-Time Viol End OUT); -

END Maneuver_Envelope_Horizontal_Check; - - ---

FIGURE 4-27 
MANEUVER ENVELOPE HORIZONTAL CHECK (Concluded) 

4-67 



r----------
-
,
 

I 
I 

/ 
/ 

1
/ 

I 
I 

/ 
/ 

/ 
/ 

I 
I 

l I I I I I 

ret 
~
I
 I I I I I I 



y-axis 

z-axis 

Aircraft 2 Path~ 

Aircraft 1 Path\ 

Buffer Region\ ,-- ~ __ ,__ ----
. ---- ---r-~-~ 

(xl,Yl) 
\_~ 

Seph 

x-axis 

(a) Aircraft Paths and Buffer Region in (x,y) Plane 

' ' ' ' (xl 'Yl' zlt tl) 
I t I I 

(xz,y2,z2,t2) 

Aircraft 2 Path~ 

t-axis 

(b) Vertical Maneuver Envelope of a First Aircraft and 
Path of Second Aircraft in (z,t) Plane 

FIGURE 4·29 
EXAMPLE OF HORIZONTAL CHECK FOR A VERTICAL MANEUVER 

4-69 



• the horizontal maneuver envelope of one of the aircraft 
is completely contained in the other 

• the horizontal maneuver envelopes intersect 

• the horizontal maneuver envelopes (closest points on 
each) are within a distance of (advisory or priority) 
Seph of each other 

These cases are checked in the element Envelope Envelope 
Violation Check. 

When one of the subject or object segments is regular, a viola
tion occurs in any of the following three similar cases: 

• the regular segment is contained within the horizontal 
maneuver envelope in the horizontal plane 

• the regular segment intersects the horizontal maneuver 
envelope 

• the distance (closest points on the segment and 
envelope) between the regular segment and the horizon
tal envelope are within a distance of (advisory or 
priority) Seph of each other in the horizontal plane 

These cases are checked in the element Segment Envelope 
Violation Check. 

The variable Seph is an input parameter, thus pemitting this 
algorithm to be used for the testing of the violation of both 
the advisory and the priority horizontal separation criteria 
(that is, Advisory Seph and Priority Seph) by its calling 
routine, Maneuver Envelope Horizontal Check. Output from this 
routine are the variables Time Viol Start and Time Viol End, 
and a status variable indicating-whether or not a violation has 
occurred. Whether the times of violation indicate advisory or 
priority times depends on which input value for Seph was used. 

Figure 4-30 shows the PDL representation of the Maneuver 
Envelope Test element. 

Envelope Envelope Violation Check 

The Envelope Envelope Violation Check element tests 
violation of the horizontal separation criterion whenever 
aircraft are involved in maneuvers. The envelope of 
aircraft is extended around its perimeter by one-half 

4-70 

for 
both 
each 
Seph 



ROUTINE Maneuver Envelope Test; 
#tests fo~ violation of a-horizontal separation criterion Seph# 

#whenever either of the two aircraft is in a maneuver envelope# 
PARAMETERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Subject Fl Id IN, 

Nominee Fl Id IN, Time oVerlap Min IN, Time OVerlap Max-IN-;- Seph 
IN, Status-oUT:-Time viol Start oUT:-Time viol End OUT; -

DEFlNED IN GLOSSARY - - - - - -
Subject Fl Id 
Nominee-Fl-Id 
Time_ Overlap_ Min 
Time_Overlap_Max 
Time Viol Start 
Time-Viol-End - -SUBJECT SEGMENT 
NOMINEE SEGMENT 

DEFINE VARIABLES 
Seph Horizontal separation criterion 
Status Variable indicating the outcome of a particular Fine 

Filter test; 
CHOOSE CASE 

WHEN SUBJECT SEGMENT.first cusp type IS IN ('hold', 'vertical 
--hold', 'vertical maneuver') AND NOMINEE SEGMENT.first cusp 

type IS IN ('hold', 'vertical hold', 'vertical maneuver') THEN 
#check the two maneuver envelope easel ---
CALL Envelope Envelope Violation Check(SUBJECT SEGMENT IN, 
--NOMINEE SEGMENT IN,-Subject FI Id IN, Nominee Fl Id iN, 

Time Overlap MiniN, Time oVerlap Max In, Seph IN, -
Status OUT, Time Viol Start OUT, Time Viol End OUT); 

WHEN SUBJECT SEGMENT.first cusp type IS IN ('hold', 'vertical 
---m&neuver') THEN #object-in hold, nominee regular# 

CALL Segment Envelope Violation Check(Subject Fl Id IN, 
--SUBJECT SEGMENT IN-; NOMINEE SEGMENT IN, Seph IN, Time 

Overlap-Min IN, Time Overlap Max IN,Time ViolStart OUT, 
Time Viol End OUT, Status OUT); - . - - --

OTHERWISE #nominee in-a maneuver~velope, subject is regular# 
CALL Segment Envelope Violation Check(Nominee Fl Id IN, 
--NOMINEE SEGMENT IN-; SUBJECT SEGMENT IN, Seph lN, Time 

Overlap-Min IN, Time Overlap Max IN,Time ViolStart OUT, 
Time_Viol_EndOUT, Status OUT); - - - --

END Maneuver_Envelope_Test; 

FIGURE 4-30 
MANEUVER ENVE.LOPE TEST 

4-71 



(advisory and, in a subsequent call, priority), thus forming 
two temporary two-dimensional envelopes in the horizontal plane 
which are then compared to determine if a violation has 
occurred. This is done by the Get Box element. Once this 
extension is made, it is sufficient to test the two new 
extended envelopes for the following cases. Let A be the 
subject's extended envelope and let B be the object's extended 
envelope. Then the three cases to be tested are the following: 

• Do the boundaries of A ~nd B intersect? 
• Is region A contained within the boundary of region B? 
• Is region B contained within the boundary of region A? 

Note that it is not necessary to test for closeness of regions 
A and B since this is already accounted for in the extensions 
made to the original envelopes. 

The first case is accomplished by testing each edge of o.ne 
envelope against each edge of the other. If any two edges 
intersect, the test ends and a violation message is set. If no 
intersection is determined, then the envelopes are tested to 
see if either is contained within the other. These tests are 
done in the Envelope Envelope Intersect Check element. 

This case may be implemented by testing any edge (say the edge 
connecting the right downstream and right upstream vertices) of 
the boundary of region A against all edges of the boundary of 
region B. The element Edge Containment Check is called to 
perform the test for the selected edge being contained in the 
boundary of region B. 

If this test does not produce a violation, then the next case 
is tested. The test for region B being contained within the 
boundary of region A is accomplished by reversing the roles of 
A and B in the discussion above. If a violation is determined, 
then the times of violation start and end are set equal to the 
minimum and maximum times of the overlap period, respectively. 

Figure 4-31 illustrates a PDL representation of the Envelope 
Envelope Violation Check element. 

Get Box 

The element Get Box builds a rectangular box around the 
horizontal projection, of the maneuver. Using the input 
parameter S as the separation distance, the algorithm extends 
the perimeter of a holding pattern by this distance. In the 
case of a vertical maneuver the extension is made by forming a 

4-72 



ROUTINE Envelope Envelope Violation Check; 
#tests for violation of a-horizontal separation criterion Seph# 

llwhenever both aircraft are in maneuvers, (either holds or# 
#vertical maneuvers)# 

PARAMETERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Subject Fl Id IN, 
Nominee Fl Id IN, Time Overlap Min lN, Time Overlap Max-IN-; Seph 
IN, Status-our:-Time Vfol Start our:-Time Viol End OUT; -

DEFINED IN GLOSSARY - - - - - -
Subject Fl Id 
Nominee-Fl-I d 
Time Overlap Min 
Time:Overlap=Max 
Time Viol Start - -Time Viol End - -SUBJECT SEGMENT 
NOMINEE_ SEGMENT; 

DEFINE VARIABLES 
Seph Horizontal separation criterion 
Status Variable indicating the outcome of a particular Fine 

Filter test; 
DEFINE TABLES 

SUBJECT BOX VERTICES Vertices in horizontal plane of the 
subject box surrounding the maneuver 
envelope 

right_downstream_vertex 
X 

y 
right_upstream_vertex 

X 

y 
left downstream vertex 

X 

y 
left_upstream_vertex 

x coordinate 
y coordinate 

x coordinate 
y coordinate 

x coordinate 
y coordinate 

x x coordinate 
y y coordinate 

edgel AGGREGATE(right downstream vertex, right upstream vertex) 
edge2 AGGREGATE(right-upstream vertex, left upstream vertex) 
edge3 AGGREGATE(left upstream vertex, left downstream vertex) 
edge4 AGGREGATE(left-downstream vertex, right downstream 

vertex) - - - -
NOMINEE BOX VERTICES Vertices in the horizontal plane 

of the box surrounding the nominee 
maneuver envelope; fields defined like 
SUBJECT_BOX_VERTICES; 

FIGURE 4-31 
ENVELOPE ENVELOPE VIOLATION CHECK 

4-73 



#check the two maneuver envelope case# 
#get the coordinates for the subject, extended by a distance of# 

#Seph/2 surrounding the horizontal hold or the horizontal segment# 
#of the vertical maneuver# 

CALL Get Box(Subject Fl Id IN, SUBJECT SEGMENT.first t IN, Seph/2 
--IN, SUBJECT SEGMENT.firstcusp type-IN, SUBJECT BOX VERTICES OUT, 

Time Overlap Min INOUT, Time OVerlap~x INOUT); - ---
lget the coordinates for the nominee, extended by a distance of# 

#Seph/2 surrounding the horizontal hold or the horizontal segment# 
#of the vertical maneuver# 

CALL Get Box(Nominee Fl Id IN, NOMINEE SEGMENT.first t IN, Seph/2 
--IN, NOMINEE SEGMENT.firstcusp type-IN, NOMINEE BOX VERTICES OUT, 

Time Overlap Min INOUT, Time OVerlap~x INOUT); - ---
#first test if the segments intersect# -
CALL Envelope Envelope Intersect Check(SUBJECT BOX VERTICES IN, 
----rioMINEE BOX VERTICES IN, Status ouT); - - -
IF Status !q 'no violation' ---
THEN #they do not intersect# 
---rtest if subject envelope is contained within nominee envelope# 

#need only check one edge of the hold since they don't# 
#intersect take the edge connected by the vertices right I 
#downstream vertex and right upstream vertex# -

CALL Edge Containment Check(SURJECT BOX VERTICES.Edgel IN, 
---"NOMINEE BOX VERTICES IN, Status OUT)i . -
IF Status !q 'no violation' -
THEN #subject box is not contained within the nominee's# 
---rtest if the nominee envelope is contained within the# 

#subject's# 
CALL Edge Containment Check(NOMINEE BOX VERTICES.Edgel IN, 
--SUBJECT BOX VERTICES IN, Status OUT); -

IF Status ~ 'violation' - --
THEN 
~set the time of violation to the overlap times# 

Time Viol Start = Time Overlap Min; 
Time=Viol=End = Time_OVerlap_Max; 

END Envelope_Envelope_Violation_Check; 

FIGURE 4-31 
ENVELOPE ENVELOPE VIOLATION CHECK (Concluded) 

4-74 



box a distance of S around the line segment connecting the 
right downstream and left upstream points of the envelope in 
the (x,y) plane. Also in this case the Time Overlap Min and 
Time Overlap Max are reset to coincide with tfle time 
coo~inates of these points. 

Figure 4-32 illustrates a PDL version of the Get Box algorithm. 

Envelope Envelope Intersect Check 

The Envelope Envelope Intersect Check element tests the 
extended box around the subject's envelope to see if it 
intersects the extended box around the object's envelope. This 
is accomplished by testing each edge of the subject against 
each edge of the object iteratively until a violation is 
detected. If a violation is detected, the flag, Status, is set 
to a violation status. 

Figure 4-33 illustrates a PDL version of the Envelope Envelope 
Intersect Check element. 

Edge Containment Check 

The Edge Containment Check element takes as input the vertices 
of a box in the horizontal plane (BOX VERTICES) and the 
vertices of an edge (Edge) and tests to see if Edge is 
completely contained within the rectangle defined by BOX 
VERTICES. This is accomplished by first determining the points 
of intersection of the line passing through the vertices of 
Edge and the rectangle defined by BOX VERTICES. Once this is 
done, if there is an intersection,- then the line segment 
defined by Edge is tested to see if the x coordinates and y 
coordinates of Edge are within the intervals defined by the x 
and y coordinates of the intersection points. If they are, 
then Edge is completely contained in the rectangular region 
defined by BOX VERTICES and the flag, Status, is set to a 
violation. 

Figure 4-34 illustrates a PDL version of the Edge Containment 
Check algorithm. 

Segment Envelope Violation Check 

If either of the segments to be tested is a regular segment, 
then the horizontal envelope of the other is extended around 
its perimeter by Seph miles to provide a buffer to guarantee 
sufficient separation. This is done by the element Get Box, 
described above. A similar test to the ones above is then 

4-75 

. . : ·._ . . .. ~ . 
.. 

". :' ~ .. : -~ .: .. :·.' . . .. ' . 

. ·: .. ': ~:_?~.: ~·: ~;,·:.····.: .. ~: ·:,· 



ROUTINE Get Box; 
PARAMETERS Fl Id IN, T IN, S IN, Cusp Type IN, BOX VERTICES OUT 

Time_Overlap_Min INOUT, Time_Overiap_MaxiNOUT;- --
REFER TO GLOBAL MANE1NER_ENVELOPES IN; 
DEFINED IN GLOSSARY 

Time Overlap Min 
Time-Overlap-Max; 

DEFINE VARIABLES 
Fl Id Flight plan identifier of aircraft in hold 
T Time of entry into hold · 
S Separation criterion 
Cusp Type Type of cusp associated with this segment; 

DEFINE TABLES 
BOX VERTICES Vertices of the extended box; fields 

defined like SUBJECT BOX VERTICES in 
ROUTINE Envelope Envelope Violation 
CheCk - -

MANE1NER ENVELOPE TEMP Temporary copy of one record of MANEUVER 
ENVELOPES, stored as a table; fields -
defined like MANEUVER ENVELOPES 

vert edge AGGREGATE(lu x,lu y,rd x,rd y) #vertices of edge# 
#defined by the start and end-of the envelope in the# 

#horizontal plane associated with the minimum and# 
#maximum time in the envelope#; 

MANE1NER ENVELOPE TEMP "" SELECT FIELDS ALL 
FROM MANEUVER ENVELOPES 
WHERE MANE1NER_ENVELOPES.Fl_id ~ Fl_Id AND MANEUVER_ENVELOPES. 

time~ T; 
IF Cusp_Type ~ 'hold' OR Cusp_Type ~ 'vertical hold' 
THEN #hold case# 

BOX VERTICES • MANEUVER ENVELOPE TEMP; 
Calculate the coordinates of the-extended holding pattern for the 

holding pattern with vertices BOX VERTICES extending it by a 
distance S around its perimeter; -

ELSE #vertical maneuver envelope# 
----Calculate the coordinates of the box arou~d the segment 

MANEUVER ENVELOPE TEMP.vert edge a distance of S surrounding 
the segment; - -

#override the values of the overlap times by the endpoint times# 
#of the vertical maneuver, given by the right# 
#downstream and left upstream vertices# 

Time Overlap Min = MANEUVER ENVELOPE TEMP.lu t; 
Time-Overlap-Max = MANEUVER-ENVELOPE-TEMP.rd-t; 

Store the resulting extended box vertices back In BOX VERTICES; 
END Get_Box; -

FIGURE 4-32 
GET BOX 

4-76 



ROUTINE Envelope_Envelope_Intersect_Check; 
PARAMETERS SUBJECT BOX VERTICES IN, NOMIN.EE BOX VERTICES IN, Status 

OUT; - - -
DEFINE VARIABLES 

Status Variable indicating the outcome of a particular Fine 
Filter test; 

DEFINE TABLES 
SUBJECT BOX VERTICES 

NOMINEE BOX VERTICES 

Status = 'no violation'; 

Vertices of the box surrounding the 
maneuver envelope of the subject in 
the horizontal plane; fields defined 
like SUBJECT BOX VERTICES in ROUTINE 
Envelope Envelope Violation Check 

Vertices of-the box surrounding the 
maneuver envelope of the nominee in 
the horizontal plane; fields defined 
like SUBJECT_BOX_VERTICES; 

REPEAT UNTIL Status~ 'violation' OR all edges of SUBJECT BOX 
VERTICES have been tested; 
Select the next edge from SUBJECT BOX VERTICES; 
REPEAT UNTIL Status ~ 'violationT OR-all edges of NOMINEE BOX 

VERTICES have been tested; 
Select next edge from NOMINEE BOX VERTICES; 
IF the edges selected intersect in the horizontal plane 
THEN 
---S-tatus • 'violation'; 

END Envelope_Envelope_Intersect_Check; 

FIGURE 4-33 
ENVELOPE ENVELOPE INTERSECT CHECK 

4-77 



ROUTINE Edge_Containment_Check; 
PARAMETERS REGULAR SEGMENT IN, BOX VERTICES IN, Status OUT; 
DEFINE VARIABLES - - -

Status 

Box Test Vertex(4) 
Regular_Line_Coeff(~) 

Variable indicating whether or not the 
subject and nominee segments violate 
the horizpntal separation criterion 

Array containing vertices of the box 
Coefficients of the line through the 

regular segment 
Box_Line_Coeff(3) 

I 
J 

Xl 
X2 
Yl 
Y2 
Test Point 

X 
y 

Int_Pt(2) 

X 
y 

DEFINE TABLES 
REGULAR SEGMENT 

BOX VERTICES 

Coefficients of the line through an 
edge of the box 

Index tracking sides of the box 
Number of intersecting points 

between line and lines of the box 
Minimum intersection x coordinate 
Maximum intersection x coordinate 
Minimum intersection y coordinate 
Maximum intersection y coordinate 
Variable used to test point of 

intersection 
x coordinate 
y coordinate 

Points of intersection, if they intersect 
end points of overlap of edges if edges 
coincident with an edge of the box 
x coordinate 
y coordinate; 

Pair of cusps representing the regular segment 
being processed; fields defined like SUBJECT 
SEGMENT in Glossary 

Vertices of the box surrounding the manuever 
envelope in the horizontal plane; fields 
defined like SUBJECT BOX VERTICES in ROUTINE 
Envelope_Envelope_Horizontal_Check; 

FIGURE 4-34 
EDGE CONTAINMENT CHECK 

4-78 



Status= 'no violation'; 
Box Test Vertex(l) = BOX VERTICES.right downstream vertex; 
Box-Test-Vertex(2) = BOX-VERTICES.right-upstream vertex; 
Box-Test-Vertex(3) = BOX-VERTICES.left downstream vertex; 
Box-Test-Vertex(4) = BOX-VERTICES.left-downstream-vertex; 
#determine equation of the line connecting vertices of# 

#REGULAR SEGMENT in the xy plane# 
Regular Line Coeff = LINE(REGULAR SEGMENT.hz first vtx, 

REGULAR SEGMENT.hz-sec vtx); - - -
I = 1; J =-0; - -
#determine points of intersection of line coincident to Edge and the# 

#edge of BOX VERTICES# 
REPEAT UNTIL I GT 4 OR J GE 2 

#test Ith edge# --
Box Line Coeff = LINE(Box Test Vertex(!), Box Test Vertex(I+l)); 
IF the llnes Box Line Coeff and Regular Line Coeff-intersect 
TiffiN - - - -
~get intersection point# 

Test Point = Box Line Coeff INTERSECTION Regular Line Coeff; 
#test if the point lies on the edge of the box# - , -
Xl = MIN(Box Test Vertex(I).X, Box Test Vertex(I+l).X); 
X2 = MAX(Box-Test-Vertex(I).X, Box-Test-Vertex(I+l).X); 
Yl = MIN(Box-Test-Vertex(I).Y, Box-Test-Vertex(I+l).Y); 
Y2 = MAX(Box-Test-Vertex(I).Y, Box-Test-Vertex(I+l).Y); 
IF Test Point.X is in the open interval-(Xl,X2) AND 
-- Test-Point.Y is in the open interval (Yl,Y2) ---
THEN #lies on the edge# 
---J- = J + 1; 

Int Pt(J) == Test Point; 
#check for containment-within the box# 
IF J NE 0 the lines intersect# 
THEN 1test if Edge is contained in the box by checking if the# 
~line segment# 

Xl = MIN(Int Pt(l).X, Int Pt(2).X); 
X2 = MAX(Int-Pt(l).X, Int-Pt(2).X); 
Yl = MIN(Int-Pt(l).Y, Int=Pt(2).Y); 
Y2 = MAX(Int-Pt(l).Y, Int Pt(2).Y); 
IF the projection of REGULAR SEGMENT on the x-axis is in the 
--interval [Xl, X2] AND the-projection of REGULAR SEGMENT on 

the y-axis is in the closed interval [Yl, Y2] 
THEN 
---S-tatus= 'violation'; 
I = I + 1; #next edge# 

END Edge_Containment_Check; 

FIGURE 4-34 
EDGE CONTAINMENT CHECK (Concluded) 

4-79 



performed. First, the regular segment is tested to see if it 
intersects the extended envelope in the horizontal plane. This 
test is performed by the element Segment Envelope Intersect 
Check. If they intersect, then a violation exists and the 
appropriate status message is set. In this case, the time of 
violation start is set equal to the maximum of the time of 
overlap start and the minimum of the intersection times. The 
time of violation end is set equal to the minimum of the time 
of overlap end and the maximum of the intersection times. If 
the intersection occurs at a single point, then the end and 
start time of violation are equal~ 

If no violation is detected, then the segment is tested to 
check whether it is completely contained within the region of 
the extended horizontal envelope. This is accomplished by 
calling the element Edge Containment Check, described above. 
If a violation is detected, then an appropriate message is set 
and the time of violation start and end are set equal to the 
time of overlap minimum and maximum, respectively. 

Figure 4-35 illustrates a PDL version of the Segment Envelope 
Violation Check element. 

Segment Envelope Intersect Check 

The Segment Envelope Intersect Check element tests a regular 
segment of an aircraft and the extended rectangular region 
about the horizontal projection of the envelope for 
intersection. Each edge of the rectangular region is tested 
against the regular segment to see if they are coincident and 
overlap and if they intersect. If this is the case, testing 
ends with a violation status and the points of overlap are 
determined. If not, the edge of the rectangular region is 
tested for intersection with the regular segment and the points 
of intersection are determined. 

In the case of a violation, the times.of violation are computed 
by first computing the times associated with the points of 
intersection and then determining the maximum between the Time 
Overlap Min and the first time intersect in the case of the 
Time Viol Start and determining the minimum between the Time 
Overlap Ma-x and the second time intersect in the case of Time
Viol End. The times associated with the intersection points 
are determined by interpolating using the fact that the 
velocity is assumed constant for a given aircraft. 

Figure 4-36 illustrates a PDL version of the Segment Envelope 
Intersect Check algorithm. 

4-80 



ROUTINE Segment Envelope Violation Check; 
PARAMETERS Env Fl Id lN, ENVELOPE SEGMENT IN, REGULAR SEGMENT IN, 

Seph IN, Time Overlap Min IN,Time Overlap Max IN, Time Viol-
Start-ouT, Time Viol End OUT, Status OUT;- -

DEFINED IN GLOSSARY - - - -
Nominee Fl Id 
Time Overlap Min 
Tim~OVerla~Max 
Time Viol Start 
Time=Viol=End; 

DEFINE VARIABLES 
Env Fl Id Flight identifier of maneuver envelope segment 
Status Variable indicating the outcome of a paricular Fine 

Filter test 
Seph Horizontal separation criterion; 

DEFINE TABLES 
ENVELOPE SEGMENT 

REGULAR SEGMENT 

BOX VERTICES 

Pair of cusps representing the segment being 
processed for the segment that is in a 
maneuver envelope; fields defined like 
SUBJECT SEGMENT in Glossary 

Pair of cusps representing the segment 
being processed for the regular segment; 
fields defined like ENVELOPE SEGMENT 

Vertices of the box surrounding-the maneuver 
envelope in the horizontal plane; fields 
defined like SUBJECT BOX VERTICES in ROUTINE 
Envelope_Envelope_Horizontal_Check; 

FIGURE 4-35 
SEGMENT ENVELOPE VIOLATION CHECK 

4-81 



#get the coordinates for the nominee hold extended a distance# 
#of Seph about its perimeter# 

CALL Get Box(Env Fl Id IN, ENVELOPE SEGMENT.first cusp t IN, 
--Seph IN, ENVELOPE SEGMENT.first cusp type IN, BOX VERTICES OUT, 

Time Overlap Min lNOUT, Time Overlap-Max INOUT); - ---
#test if the box around the envelope and the reqular segment# 

#intersect# 
CALL Segment Envelope Intersect Check(BOX VERTICES IN, REGULAR 
--SEGMENT IN, Time oVerlap Min-IN, Time Overlap MaxiN, Time Viol 

Start OUT, Time Viol End-OUT,-status OUT); - --
IF Status ~ 'no violation' --- --
THEN 
---,check if regular segment is contained in box# 

CALL Edge Containment Check(REGULAR SEGMENT IN, BOX_VERTICES IN, 
--Status-OUT); - - --
IF Status ~ 'violation' 
THEN 
--orime_Viol_Start • Time_Overlap_Min; 

Time Viol End • Time Overlap Max; 
END Segment_Envelope_Violation_Check; 

FIGURE 4-35 
SEGMENT ENVELOPE VIOLATION CHECK (Concluded) 

4-82 



ROUTINE Segment Envelope Intersect Check; 
PARAMETERS BOX VERTICES IN, SEGMENT IN, Time Overlap Min IN, Time 

Overlap_Ma:x-IN, Time_Viol_Start OUT, Time=Viol_End OUT-;-Status
OUT; 

DEFINED IN GLOSSARY 
Time Overlap Min 
Time=Overlap:Max 
Time Viol Start 
Time:viol:End; 

DEFINE VARIABLES 
Status 

Int_Pt(2) 

T 
Hz_comp 

X 
y 

Variable indicating the outcome of a 
particular Fine Filter test 

Points in x,y,t of intersection between the 
box and segment 
t coordinate 
Horizontal coordinates 

x coordinate 
y coordinate 

Test_Bo:x_Edges(4) Array of edges used in testing for 
intersection 

first x 
first-y 
second x 
second-y 

Line_Segment_Coeff 

x coordinate of first vertex 
y coordinate of first vertex 
:x coordinate of second vertex 
y coordinate of second vertex 

Coefficients of the equation of the line 
passing through all points of the segment 
named SEGMENT 

Line Box Coeff 

I, J 
DEFINE TABLES 

BOX VERTICES 

SEGMENT 

Coefficients of the equation of the line 
passing through all points of an edge of 
the box defined by the vertices BOX 
VERTICES 

Indices for looping; 

Vertices of the box surroun~ing the manuever 
envelope of the segemnt being considered; 
fields defined like SUBJECT BOX VERTICES in 
ROUTINE Envelope_Envelope_Horizontal_Check 

Pair of cusps representing the regular segment 
being considered; fields defined like SUBJECT 
SEGMENT in the Glossary; 

FIGURE 4-36 
SEGMENT ENVELOPE INTERSECT CHECK 

4-83 



Test Box Edge(l) • BOX VERTICES.edgel; #temporary array of box edges# 
Tes~Box-Edge(2) • BOX-VERTICES.edge2; 
Test-Box-Edge(3) • BOX=VERTICES.edge3; 
Test-Box-Edge(4) • BOX VERTICES.edge4; 
Status --'no violation'; 
I • 1; J • 0; 
#determine the coefficients of the line passing through SEGMENT# 
Line Segment Coeff • LINE(SEGMENT.hz first vtx, SEGMENT.hz sec vtx); 
#determine tne points-or-intersection# - - -
REPEAT UN'l'IL J ~ 2 OR all edges of BO~_VERTICES have been tested; 

Line Box Coeff • LINE(Test Box Edge(!)); #line through Ith edge# 
IF Line_Box_Coeff ~ Line_Segment_Coeff AND the edges (SEGMENT.hz_ 

first vtx, SEGMENT.hz sec vtx) and Test Box Edges(!) overlap 
THEN #lines coincide, get intersect end pts# -
--Status • 'violation'· ' . Int Pt(l).X • MAX(MIN(SEGHENT.first x, SEGMENT.second x), 

icrN(Test Box Edges(I).first x, Test Box Edges(I).second x)); 
Int Pt(2).X-· MlN(MAX(SEGHENT.first x,-SEGMENT.second x), -

~(Test Box Edges(I).first x, Test Box Edges(I).second x)); 
Int Pt(l).Y-- MAx(MIN(SEGHENT.first y,-SEGMENT.second y),

MIN(Test Box Edges(I).first y, Test Box Edges(I).second y)); 
Int Pt(2).Y-- MIN(MAX(SEGHENT.first y,-SEGMENT.second y), -

MAx(Test_Box Edges(!) .first_y, Test_Box_Edges(I) .second_y)); 
ELSE #test for unique intersect point# 
--IF SEGMENT and Test Box Edge(!) intersect in the (x,y) plane 

THEN - -
J - J + 1; 
Status • 'violation'; 
Int Pt(J) • Line Box Coeff INTERSECTION Line_Segment_Coeff; 

I • I + i"i #next edgef -
IF Status ~ 'violation' 
THEN #obtain the times of violation# 

FOR J • 1 TO 2; #compute the intersect points' time coordinates# 
Int Pt(J).T • (SEGMENT.first t - SEGMENT.second t) * 

- (DIST(SEGHENT.hz first-vtx, SEGMENT.hz sec vtx) / 
DIST(SEGMENT .hz first Vtx, Int Pt(J) .Hz Comp)) + 
SEGMENT.first t; - - -

Time Viol Start • MAX(Time Overlap Min, MIN(Int Pt(l).T, Int 
Pt(2)~T); - - - - -

Time Viol End • MIN(Time Overlap Max, MAX(Int Pt(l) .T, Int 
Pt(2).T); - - - - -

IF Time_Viol_Start ~ Time_Viol_End 
THEN #no violation as they intersect in a point# 
--Status • 'no violation' ; 

END Segment_Envelope_Intersect_Check; 

FIGURE 4-36 
SEGMENT ENVELOPE INTERSECT CHECK (Concluded) 

4-84 



4~3.5 Encounter List Builder 

4.3.5.1 Mission 

The mission of the Encounter List Builder is to insert into the 
global table, ENCOUNTERS, information describing the violation 
detected by the three previous components (Tim~ Check, Altitude 
Check, and Horizontal Check) of the Fine Filter. Given that a 
complete encounter may extend over several segments for one or 
both ait"craft, this information may. describe only part of an 
encounter. Under such circumstances, the information is metged 
with data associated with other portions of the encounter, if 
the data is already in the table as a result of previous 
iterations of the Fine Filter. 

The ENCOUNTERS table is a source of encounter information 
available for use in the display provided to the controller. 

4.3.5.2 Design Considerations and Component Environment 

Input 

The list of inputs to the Encounter List Builder consists of 
all those local tables and parameters which are used to 
describe the violation. They include the subject and nominee 
aircraft segments (SUBJECT SEGMENT and NOMINEE SEGMENT), unique 
identifiers for the subject and nominee aircraft flight plans 
(Subject Fl Id and Nominee Fl Id), advisory violation start and 
end times -(Advisory Time-Viol Start and Advisory Time Viol 
End), priority violation start- and end times (Priority-Time
Viol Start and Priority Time Viol End), time of minimum 
separation between the aircraft-in the horizontal plane (Time 
Msep), and minimum separation distance in the plane (Msep
Dist). In addition, the Encounter List Builder accesses the 
global table ENCOUNTERS which it updates with information from 
the current encounter or portion of an encounter. 

OUtput 

The output of the Encounter List Builder is an updated version 
of the ENCOUNTERS Table. 

4.3.5.3 Component Design Logic 

The Encounter List Builder is called by the Fine Filter 
whenever the subject-nominee segment pair under consideration 
passes through the checks in the Time Check, Altitude Check, 
and Horizontal Check elements. It, in turn, calls the element 

4-85 



Violation Boundaries, which calculates the spatial coordinates 
of the two aircraft at the start and end of the advisory 
violation, and the elements Prefix Merge and Suffix Merge, 
which essentially merge the data associated with the current 
violation with that already in the table if the current 
violation is found to be part of an already identified 
encounter. 

As indicated in Figure 4-37, which shows a PDL representation 
of the Encounter List Builder algorithm, Violation Boundaries 
is called first. The algorithDi then iterates through each 
record in the global table ENCOUNTERS, searching for the 
possible occurrence of an encounter portion that immediately 
precedes or follows the current violation. Specifically, if the 
advisory violation end time of a record in the table is equal 
to the advisory violation start time of the current violation, 
then the record defines an encounter portion which immediately 
precedes and adjoins the current violation. Under such a 
circumstance, the Encounter List Builder Algorithm calls Prefix 
Merge which compares the data in the record with that of the 
current violation and changes the values of the violation 
parameters so they are descriptive of the merged encounter 
portions. 

Similarly, if the advisory violation start time of the 
ENCOUNTERS record is equal to the advisory violation end time 
of the current violation, then the record describes an 
encounter portion which immediately follows the current 
violation. Suffix Merge is called to re-evaluate the violation 
parameters so that the parameters describe the merged encounter 
portions. 

Subsequent to each merge, the corresponding record in the 
ENCOUNTERS Table is deleted. Once all of the records in the 
table are tested, the new violation parameters are inserted in 
the table in the form of a new record. If the table does not 
contain portions of the same encounter as the current 
violation, the algorithm simply inserts the unaltered values of 
the violation parameters (as calculated by the Horizontal Check 
element) directly into the table. 

It should be noted that if the table contains an encounter 
portion that precedes the current violation and another portion 
that follows it, the algorithm will combine all three portions, 
and the data inserted into the table will describe the new 
encounter or encounter portion. In the following paragraphs, 
the phrase "current violation" is used to refer to either the 
violation identified by the Fine Filter in this iteration or 

4-86 



ROUTINE Encounter_List_Builder; 
PARAMETERS SUBJECT SEGMENT IN, NOMINEE SEGMENT IN, Subject Fl Id IN, 

Nominee Fl Id IN, Advisory Time Viol Start IN, Advisory -Time -
Viol End IN, Priority Time-Viol-Start IN, Priority Time-Viol-End 
IN, Time Msep IN, Msep Dist IN;- - - - -

REFEl TO GWBAL AdVisory Sept Ii7 Priority Sept IN, ENCOUNTERS IN OUT; 
DEFINED IN GLOSSARY - - - -

Subject Fl Id 
Nominee-Fl-Id 
Advisory Time Viol Start 
Advisory~ime:Viol=End 
Priority Time Viol Start 
Priority=Time:Viol:End 
Time Msep 
Msep:Dist 
Subject_Viol_Start_Pt 
Subject Viol End Pt 
Nominee-Vio~Start Pt - - -Nominee Viol End Pt 
SUBJECT-SEGMENT 
NOMINEE_SEGMENT; 

FIGURE 4-37 
ENCOUNTER LIST BUILDER 

4-87 



I calculate the spatial coordinates of the subject and nominee H 
H aircraft at the start and end of the violation I 
CALL Violation Boundaries (SUBJECT SEGMENT IN, NOMINEE SEGMENT 
--IN, Advisory Time Viol Start IN-; AdvisocyTime Viol-End IN, 

Subject Viol-Start Pt OUT, Subject Viol Elld Pt-OUT,-Nominee 
Viol Start Pt OUT,-Nominee Viol End Pt OUT); -- -

REPEAT FOR EACH ENCOUNTERS RECORD - - -
WHERE ENCOUNTERS.first_fl_id ~ Subject_Fl_Id AND ENCOUNTERS. 

second_fl_id ~ Nominee_Fl_Id; 
I if the data in this record describe an encounter portion which # 
I adjoins the newly detected encounter, re-evaluate the violation# 
H parameters so that they describe the combined encounter I 
IF ENCOUNTERS.adv_viol_end_time ~Advisory_Time_Viol_Start 
THEN 

CALL Prefix_Merge (ENCOUNTERS IN, Advisory_Time_Viol_Start 
INOUT, Priority_Time_Viol_Start INOUT, Priority_Time_Viol_ 
End INOUT, Msep Dist INOUT, Time Msep INOUT, Subject Viol 
Start Pt INOUT,-Nominee Viol Start Pt INOUT); - -

DELETE FROM ENCOUNTERS; #Remove-current record being# 
#considered# 

ELSE 
IF ENCOUNTERS.adv_viol_start_time ~ Advisory_Time_Viol_End 
THEN 
--CALL Suffix Merge (ENCOUNTERS IN, Advisory Time Viol End 

--I-NOUT, Priority Time Viol Start INOUT, Priority Time 
Viol End INOUT,-Msep-Dist-INOUT, Time Msep INOuT, -
Subject Viol End Pt lNOUT, Nominee Viol End Pt INOUT); 

DELETE FROM ENCOUNTERS; - - -
I record the encounter data I 
INSERT INTO ENCOUNTERS (first fl id • Subject Fl Id, second fl id • 

Nominee Fl Id, adv viol start-time • Advisory-Time Viol Start, 
adv viol end time -;;;Advisory Time Violation End, display as 
advisory-time = Advisory Time Viol Start - Advisory Sept: prior 
viol start time • Priority Time Viol Start, prior viol end time • 
Priority Time Violation End, display-as priority time -;;; Priority 
Time_Viol_Start - Priority_Sept, msep_time • Time_Msep, msep 
distance = Msep_Dist, fll_viol_start_pt • Subject_Viol_Start_Pt, 
fl~viol_end_pt = Subject_Viol_End_Pt, fl2_viol_start_pt • 
Nominee_Viol_Start_Pt, fl2_viol_end_pt • Nominee_Viol_End_Pt); 

END Encounter_List_Builder; 

FIGURE 4-37 
ENCOUNTER LIST BUILDER (Concluded) 

4-88 



Figure 4-39 contains a PDL presentation of the Prefix Merge 
Algorithm. 

Suffix Merge 

This element provides values for the parameters of the complete 
encounter or encounter portion that results from the merging 
of the current violation and the encounter portion which 
follows it in time. The data for the encounter portion which 
follows it in time is contained in the single record table 
called SUFFIX. The general nature of the Suffix Merge 
algorithm is the same as that of Prefix Merge. Only the list of 
parameters that are reset is different. 

Figure 4-40 contains a PDL presentation of the ~lgorithm. 

4.4 Maintenance 

The role of the Maintenance subfunction is to maintain updated 
versions of the various global and shared local tables used by 
FPCP. Whenever the stimulus that invokes FPCP indicates a 
trajectory update, and the nature of this update is a revised 
flight plan, an outbound flight or a terminated flight, all 
references to the flight identification are removed in the 
shared local tables SPARSE TREE, ALLOBJECT BLOCKS, 
ALLOBJECT TREE, and in the global tables SPARSE CELLS and 
ENCOUNTERS. The removal of the references to the flight 
identification from all but the ALLOBJECT BLOCKS and the 
ALLOBJECT TREE tables is a trivial process involving the 
deletion of appropriate records from these tables. Hence, the 
process is not discussed further here. On the other hand, 
removing the references to the flight identification from the 
ALLOBJECT BLOCKS and ALLOBJECT TREE tables is not trivial. The 
routine that accomplishes this task, Delete Aircraft, is 
considered to be a principal component of the Maintenance 
subfunction. 

After the data associated with an aircraft with a revised 
trajectory have been removed from the appropriate tables, the 
various Coarse Filter and Fine Filter tests are invoked. These 
same tests are invoked directly (without any prior updating of 
the tables by Maintenance) for a new trajectory, a horizon 
update, and a trial probe. In the case of a trajectory update 
(new or revised) or a horizon update, once the tests are 
completed, the subject aircraft is referenced as an object 
aircraft in the tables. Thus, information about its trajectory 
gets included in the ALLOBJECT TREE table. The 
ALLOBJECT BLOCKS Table is modified to reflect the new occupancy 

4-91 



ROUTINE Prefix_Merge; 
PARAMETERS PREFIX IN, Advisory Time Viol Start INOUT, Priority Time 

Viol Start INOUT'; Priority Time Viol End INOUT, Msep Dist INOUT,
Time-Msep INOUT, Subject Viol Start Pt INOUT, Nominee Viol Start 
Pt INOUT; - - - -

DEFINED IN GLOSSARY 
Advisory Time Viol Start 
Priority-Time-Viol-Start 
Priority-Time-Viol-End 
Msep_Dist - -
Time_Msep 
Subject_Viol_Start_Pt 
Nominee Viol Start Pt; 

DEFINE TABLES - -
PREFIX Single record table which contains data 

describing an encounter portion which 
immediately precedes the current encounter 
portion in real time; fields defined like 
global table ENCOUNTERS; 

Advisory Time Viol Start • PREFIX.adv viol start time; 
IF PREFIX.prior viol start time NE NULL - -
THEN - - - ---

Priority Time Viol Start • PREFIX.prior viol start time; 
IF Priority_Time_VIol_End ~ ~ - - -
THEN 
--:Priority Time Viol End • PREFIX.prior viol end time; 

IF PREFIX.msep-distance NE NULL AND Msep Dist NE NULL 
THEN - --- - - ---

IF PREFIX.msep_distance LT Msep_Dist 
THEN 

Msep Dist • PREFIX.msep distance; 
Time:Msep • PREFIX.msep=time; 

ELSE 
IF Msep_Dist ~NULL 
THEN 

Msep_Dist • PREFIX.msep_distance; 
Time_Msep • PREFIX.msep_time; 

Subject_Viol_Start_Pt • PREFIX.fll_viol_start_yt; 
Nominee_Viol_Start Pt • PREFIX.fl2_viol_start_yt; 
END Prefix_Merge; 

FIGURE 4-39 
PREFIX MERGE 

4-92 



ROUTINE Suffix_Merge; 
PARAMETERS SUFFIX IN, Advisory Time Viol End INOUT, Priority Time 

Viol Start INOUT; Priority Time Viol End INOUT, Msep Dist-INOUT, 
Time-Msep INOUT, Subject Viol End Pt-INOUT, Nominee Viol End Pt 
INOuT; - - -

DEFINED IN GLOSSARY 
Advisory Time Viol End 
Priority-Time-Viol-Start 
Priority-Time-Viol-End 
Msep Dist - -
TimeMsep 
subject Viol End Pt 
Nomine~Viol=End=Pt; 

DEFINE TABLES 
SUFFIX Single record table which contains data 

describing an encounter portion which 
immediately succeeds the current encounter 
portion in real time; fields defined like 
global table ENCOUNTERS; 

Advisory Time Viol End • SUFFIX.adv viol end time; 
IF Priority_Time_VIol_End ~NULL - - -
THEN 
--Priority Time Viol Start • SUFFIX.prior viol start time; 

Priority-Time-Vio~End • SUFFIX.prior Vfol end time; 
ELSE - - - - - -
--IF SUFFIX. prior viol end time NE NULL 

THEN - - - ---

--Priority Time Viol End • SUFFIX.prior viol end time; 
IF SUFFIX.msep=distance NE NULL AND Msep_Dist NE NUu. 
THEN 
--IF SUFFIX.msep distance LT Msep Dist 

THEN - - -

ELSE 

Msep Dist· • SUFFIX.msep distance; 
Time=Msep • SUFFIX.msep=time; 

IF Msep_Dist ~ NULL 
THEN 
--:Msep_Dist • SUFFIX.msep_distance; 

Time Msep • SUFFIX.msep time; 
Subject Viol End Pt • SUFFIX.fll viol end pt; 
Nominee-Viol-End-Pt • SUFFIX.fl2=viol:end:pt; 
END Suffix_Merge; 

FIGURE 4-40 
SUFFIX MERGE 

4-93 



count of each block. This is all accomplished by Insert 
Aircraft, the second of Maintenance's two components. 

For the case of the trial probe, the ALLOBJECT TREE and 
ALLOBJECT BLOCKS tables are not altered. This is to-prevent a 
new subject trajectory from being declared in conflict with the 
trial trajectory while a controller decides whether to accept a 
trial flight plan or not. In either case, whether a trial 
trajectory is accepted or not, all references to the trial 
flight identification are .removed from SPARSE CELLS, 
SPARSE_TREE, and ENCOUNTERS once the controller's deciSion is 
entered into the automation system. 

Figure 4-41 illustrates the organizational structure of the 
Maintenance subfunction. 

4.4.1 Delete Aircraft 

4.4.1.1 Mission 

The purpose of the Delete Aircraft component is to remove 
obsolete data in ALLOBJECT TREE and ALLOBJECT BLOCKS pertaining 
to the aircraft under -consideration by - the Maintenance 
subfunction. This occurs every time that a trajectory is 
revised due to resynchronization or a request for a flight plan 
change. The intent is to "clean the slate" before invoking the 
Coarse Filter, thus making it possible for the Coarse and Fine 
Filters to treat this aircraft as if it were a new subject 
aircraft entering the planning region. 

4.4.1.2 Design Considerations and Component Environment 

The Delete Aircraft routine is invoked by the Maintenance 
subfunction whenever the trajectory of an aircraft in the 
planning region is revised. A discussion of the tree traversal 
technique used in this algorithm is g~ven in Appendix C. 

Input 

The inputs to the Delete Aircraft component consist of a 
combination of global tables, shared local tables and 
variables, and input parameters. The input parameters to the 
routine are Current Node Id, which identifies the node 
currently being traversed in a search of the subtree to be 
deleted, and Level, which specifies the node's level. Shared 
local data consist of the SPARSE TREE and ALLOBJECT BLOCK 
tables and the variable Max Level. SPARSE TREE defines the 
structure of the tree associated with the subject aircraft. 

4-94 



FPCP 

MAINTENANCE 

Section 4.4 

I I 
DELETE AIRCRAFT INSERT AIRCRAFT 

Section 4.4.1 Section 4.4.2 

FIGURE 4·41 
MAINTENANCE ORGANIZATIONAL STRUCTURE 

4-95 



The table includes data for other aircraft as well; the 
specific subject being referenced is keyed on the global 
variable Subject Fl Id. ALLOBJECT BLOCKS contains the 
occupancy count (that is, the number -of aircraft in a given 
block) of the current root and is keyed on Current_Node_Id. 
The shared local parameter Max Level specifies the cell (leaf) 
level of the tree. Finally, the global tablP. ALLOBJECT_TREE, 
which is both input to and updated by the element Delete 
Subtree, defines each node and all its children in the 
subject's tree. 

Output 

The Delete Aircraft and Delete Subtree routines update both 
ALLOBJECT TREE and ALLOBJECT BLoCKS by dele~ing the appropriate 
records from each table as described below. 

4.4.1.3 Component Design Logic 

The Delete Aircraft algorithm is recursive. The algorithm 
performs a preorder traversal through the tree searching for a 
subtree to delete. Once found, a post order traversal of that 
subtree is performed to delete each node of that subtree. Each 
invocation corresponds to a move down the octal tree modelled 
by the table ALLOBJECT TREE. Essentially, Delete Aircraft 
searches those nodes (or:- equivalently, blocks of the (x,y, t) 
Coarse Filter grid) in ALLOBJECT TREE which are occupied by the 
subject aircraft. If the subject aircraft is the sole occupant 
of the input node (or, more accurately, of its corresponding 
block), the entire subtree (whose root is the input note) is 
deleted. Deletions of such subtrees are performed by the 
element Delete Subtree (which is itself recursive). If the 
subject aircraft is not the sole occupant, the algorithm 
reduces the current value of Occupancy Count in the table 
ALLOBJECT BLOCKS associated with the node by one. It then 
loops on -the node's children, calling itself whenever one of 
the child nodes is occupied by the subject aircraft. 

Figure 4-42 shows a PDL representation of the Delete Aircraft 
algorithm. 

Delete Subtree 

The Delete Subtree element performs a postorder traversal of 
the ALLOBJECT TREE starting at the node whose Occupancy Count 
is 1. First:- the ALLOBJECT BLOCK record involving the root 
node is deleted. Then Delete- Subtree calls itself for a given 
child of the root node and recursively traverses the tree until 

4-96 



ROUTINE Delete Aircraft; 
PARAMETERS Sub}ect Fl Id IN, Current Node In IN, Level IN; 
REFER TO SHARED LoCAL-SPARSE TREE IN-; Max-Level IN, ALLOBJECT BLOCKS 

INOUT; - - - -
DEFINE VARIABLES 

Subject_Fl_Id Unique identifier for the flight plan of the 
subject aircraft 

Current Node Id Identifier of the current root of the subtree 
being traversed 

Level Current level of the root of the subtree being 
traversed 

Occupancy Count Number of aircraft co-occupying the block; 
IF Level LT Max Level 
THEN #block level# 
---,test to see if the subject is the only aircraft in block# 

I of the ALLOBJECT tree# 
SELECT FIELDS occupancy count 

INTO Occupancy Count
FROM ALLOBJECT-BLOCKS 
WHERE ALLOBJECT_BLOCKS.node_id ~ Current_Node_Id; 

IF Occupancy Count ~ 1 #last one# 
THEN #delete-the subtree with root equal to Current Node Id# 
---CALL Delete Subtree(Current Node Id IN, Level IN); -
ELS~ore than one aircraft in the-block# -
---rreduce number of aircraft in the block# 

UPDATE IN ALLOBJECT BLOCKS 
(occupancy count-- occupancy count - 1) 
WHERE ALLOBJECT BLOCKS.node ld ~ Current Node Id; 

#compare children of the SPARSE tree and the-ALLOBJECT tree# 
Ito see which subtree if any should be deleted# 

REPEAT FOR EACH SPARSE TREE RECORD #for each child# 
#the SPARSE tree is-identified by the flight plan id and# 

#the children are identified by all records with the# 
#same node id (e.g. Current Node Id)# 

WHERE SPARSE_TREE.Fl_Id ~ Sub}ect_Fl_Id AND 
SPARSE_TREE.node_id _!& Current_Node_Id; 

#recursively check to see if the subtree with root node id# 
#equal to SPARSE TREE.child id should be deleted# 

CALL Delete Aircraft(SPARSE TREE.child id IN, Level+! IN); 
END Delete_Aircraft;- - - - -

FIGURE 4-42 
DELETE AIRCRAFT 

4-97 



the leaf level is reached. Once the leaf is reached, this 
routine returns to the previous level and deletes the 
ALLOBJECT TREE record associated with the root at that level. 
It then invokes itself for the next child, continuing until all 
children have been processed and then returns to the previous 
level and repeats the process. 

Figure 4-43 shows a PDL representation of the Delete Subtree 
algorithm. 

4.4.2 Insert Aircraft 

4.4.2.1 Mission 

The mission of the Insert Aircraft componen~ of Maintenance is 
to modify the ALLOBJECT TREE and ALLOBJECT BLOCKS in order that 
they include the trajectory data of the subject aircraft. This 
is accomplished by combining (obtaining the union of) the 
ALLOBJECT TREE and the SPARSE TREE records associated with the 
subject aircraft. 

4.4.2.2 Design Considerations and Component Environment 

The Insert Aircraft component is invoked by the Maintenance 
subfunction after a new or revised subject aircraft trajectory 
has been processed by the Coarse and Fine Filters. A 
discussion of the tree traversal techniques used by this 
algorithm is given in Appendix C. 

Input 

The inputs to the Insert Aircraft component are basically the 
same global tables, local shared tables and variables, and 
input parameters that are required by the Delete Aircraft 
component (Section 4.4.1, Delete Aircraft). In Delete 
Aircraft, the SPARSE TREE records refer to the tree prior to 
any trajectory revisions, whereas in Insert Aircraft, they 
refer instead to the tree after the revisions have been made. 

Output 

Like Delete Aircraft, Insert Aircraft is a recursive 
algorithm. Every invocation results in a modification of the 
ALLOBJECT_TREE and associated data in ALLOBJECT_BLOCKS, which 
are the outputs of this routine. When the process is finished, 
the output is a new ALLOBJECT_TREE containing references to the 
trajectory data for the subject aircraft. 

4-98 



ROUTINE Delete_Subtree; 
PARAMETERS Current Node Id IN, Level IN; . 
REFER TO SHARED LoCAL ALLOBJECT TREE IN OUT, Max_ Level IN, 

ALLOBJECT BLOCKS INOUT; -
DEFINE VARIABLES 

Current Node Id Identifier of the current root of the subtree 
being traversed 

Level Current level of the root of the subtree being 

IF Level LT Max Level 
THEN 

traversed; 

---D-ELETE FROM ALLOBJECT BLOCKS #delete records corresponding to the# 
#tree that will be~eleted# 
WHERE ALLOBJECT_BLOCKS.node_id ~ Current_Node_Id; 

#delete subtree nodes# 
REPEAT FOR EACH ALLOBJECT TREE RECORD #for each child# 

#the children are identifed by all records with the same node I 
lid# 

WHERE ALLOBJECT TREE.node id ~ Current Node Id; 
#delete next level of the-current subtree referenced by the# 

#child# · 
CALL Delete Subtree(ALLOBJECT TREE.child id IN, Level+l IN); 
DELETE FROM-ALLOBJECT TREE; #delete current child record;J 

#the record to delete is known from the above WHERE clause# 
~; #nothing to delete at leaf level, since the leaf node is# 

#referred to by the last non-leaf node. This reference is# 
#to SPARSE CELLS# 

END Delete_Subtree;-

FIGURE 4-43 
DELETE SUBTREE 

4-99 



4.4.2.3 Component Design Logic 

The Insert Aircraft algorithm is a recursive procedure. Each 
invocation of the algorithm corresponds to a move one level 
down the ALLOBJECT TREE. In essence, the algorithm copies all 
those nodes which -are in the SPARSE TREE associated with the 
spbject aircraft, but not in the ALLOBJECT TREE'"' and attaches 
them in the proper positions of the ALLOBJEC~_TRE~. 

The algorithm begins by adding 'one to the current value of the 
occupancy count in the ALLOBJECT BLOCK associated with the root 
(that is, key on Current_Node_Id). This is to indicate that a 
new aircraft has been added to the list of object aircraft in 
the ALLOBJECT TREE. The algorithm then loops on the children 
of the SPARSE-TREE and ALLOBJECT TREE roots in parallel (that 
is, all recordS with node id equal to the Current Node Id). If 
it finds that a child node exists in the SPARSE -TREE;- but not 
in the ALLOBJECT TREE, it adds records to the ALLOBJECT TREE 
associated with the current root and all children found in 
SPARSE TREE. The outcome is the creation of a new version of 
the ALLoBJECT TREE which contains a new node indicating 
occupancy of a block that was previously unoccupied. Following 
this procedure, the algorithm invokes itself, replacing the 
previous root by the child node it has just created in 
ALLOBJECT TREE and the parallel child node in the SPARSE TREE. 
It incre.;ents the value of Level by one, signifying that the 
following iteration will focus on the next level down in the 
two trees. This process will be repeated until the last level 
of both trees is reached. 

In addition to invoking itself whenever a node is copied, the 
algorithm also invokes itself if it discovers that a child node 
exists in both trees. The new roots become the node 
identifiers associated with the two child nodes and the value 
of Level is incremented by one. 

During each iteration of the algorithm, 
Max Level. If it is determined that 
reached, the algorithm returns to the 
repeats the process for the next child at 
Figure 4-44 shows a PDL version of 
algorithm. 

4-100 

Level is compared to 
Max Level has been 
previous level and 

that level. 
the Insert Aircraft 



ROUTINE Insert_Aircraft; 
PARAMETERS Subject Fl Id IN, Current Node Id IN, Level IN; 
REFER TO SHARED LoCAL-SPARSE_TREE IN:- ALLOBJECT_TREE INOOT, Max 

Level IN, ALLOBJECT _BLOCKS IN OUT; 
DEFINE VARIABLES 

Subject_Fl_Id Unique identifier for the flight plan of the 
subject aircraft 

Current Node Id Identifier of the root of the current subtree 
being traversed 

Level Level of the root of the current subtree; 
IF Level LT Max Level 
THEN 
---,check if block already exists# 

IF COUNT(ALLOBJECT BLOCKS.node id ~ Current_Node_Id) ~ 0 
THEN #Uew block, add i tl -
--INSERT INTO ALLOBJECT BLOCKS (node id • Current Node Id, 

occupancy count • l); - - -
ELSE #block already exists, update count# 
---vPDATE IN ALLOBJECT BLOCKS(occupancy count • occupancy count + 

1) - - -
WHERE ALLOBJECT_BLOCKS.node_id !Q Current_Node_Id; 

REPEAT FOR EACH SPARSE TREE RECORD #for each child# 
#the SPARSE tree is-identified by the flight plan id. and the# 

#children are identified as all records with the same# 
#node_id (that is, Current_Node_Id)# 

WHERE SPARSE_TREE.node_id ~ Current_Node_Id AND SPARSE_ 
TREE.fl id!Q Subject Fl Id; 

#check for-matching child block in the ALLOBJECT tree# 
IF COUNT(ALLOBJECT_TR.EE.node_id ]g, Current_Node_Id AND 

ALLOBJECT_TREE.child_id ~ SPARSE_TREE.child_id) _m 0 
THEN #child block not found,-
~add child to ALLOBJECT tree# 

INSERT INTO ALLOBJECT TREE (node id • Current Node Id, 
child id • SPARSE TREE. child Id); . - -

#check next-level for insertion# -
CALL Insert Aircraft(SPARSE TREE.child id IN, Level + 1 IN); 

ELSE; #nothing at-leaf to create,-since the Ieafnode data is#
#referred to by the child of last nonleaf node. The# 
Ilea£ level data is in SPARSE CELLS# 

END Insert_Aircraft; 

FIGURE 4-44 
INSERT AIRCRAFT 

4-101 



APPENDIX A 

FLIGHT PLAN CONFLICT PROBE DATA 

SPARSE TREE: 

+------------·-----------·---+ 
I FL_ID I NODE_ID CHILD_ID I 
+ ---+ 
This table defines the blocks of the airspace grid through which 
each flight plan trajectory passes and their relationships to larger 
blocks in the grid. 

FL ID 

NODE ID 

CHILD ID 

Unique identifier which distinguishes one flight 
plan from all other flight plans currently 
defined on the system 

Unique identifier of a block of airspace in an x,y,t 
grid 

Unique identifier of a block of airspace in an x,y,t 
grid which is an octant of that given by NODE_ID 

A-1 



BUFFER CELLS: 
+-----------------------------+ 
I NODE_ID I min_z I max_z I entry_time I exit_time I 
+---------------- ---------+ 
This table defines the cells in the vicinity of the flight plan 
trajectory of the subject aircraft, the range of altitudes the 
trajectory covers in each cell, and the times associated with the 
cusp preceding entry and the cusp following exit for each cell. 

NODE ID 

min z 

max z 

entry_time 

exit time 

Unique identifier of an airspace cell in an x,y,t 
grid 

The lowest altitude through which the subject 
aircraft's trajectory passes i~ the vicinity of 
this cell 

The highest altitude through which the subject 
aircraft's trajectory passes in the vicinity of 
this cell 

The time associated with the cusp which precedes 
entry into the vicinity of this cell 

The time associated with the cusp which follows exit 
from the vicinity of this cell 

("Vicinity" means the cell and its orthogonal and diagonal 
neighbors.) 

A-2 



BUFFER TREE: 
+---=------+ 
I NODE_ID I CHILD_ID I 
+------------+ 

This table defines the blocks of the airspace grid in the vicinity 
of the flight plan trajectory of the subject aircraft and their 
relationships to larger blocks in the grid. 

NODE ID Unique identifier of a block of.airspace in an x,y,t grid 

CHILD ID Unique identifier of a block of airspace in an x,y,t grid 
which is an octant of that given by NODE_ID 

ALLOBJECT BLOCKS: 
+ ----------------+ 
I NODE_ID I occupancy_count 
+---------------------+ 
This table defines the blocks of the airspace grid through which any 
current flight plan trajectory passes, the number of octants in each 
block through which the trajectories pass, and the number of trajec
tories which pass through each block. 

NODE ID 

occupancy_ count 

Unique identifier of a block of airspace in an 
x,y,t grid 

The number of trajectories which pass through this 
block 

A-3 



ALLOBJECT TREE: 
+-----------------·--+ 
I NODE_ID CHILD_ID I 
+ --+ 

This table defines the blocks of the airspace grid through which any 
current flight plan trajectory passes and their relationships to 
lar.ger blocks in the grid. 

NODE ID Unique identifier of a block, of airspace in an x,y,t grid 

CHILD ID Unique identifier of a block of airspace in an x,y,t grid 
which is an octant of that given by NODE_ID 

A-4 



NOMINEES: 
+----·--------------------- ·----------------------------
1 FL ID NODE ID subject_entry_time I subject_exit_time 

+--------------------- -----------·-----
------------------------------I nominee_entry_time I nominee_exit_time 
------------ -------+ 

This table defines the cells for which other flight plan trajec
tories may be in conflict with the subject aircraft's trajectory, 
the times associated with the cusp preceding entry and the cusp 
following exit for each cell for both the subject aircraft's 
trajectory and the nominee aircraft's trajectory. 

FL ID Unique identifier which distinguishes one 
nominee flight plan from all other flight 
plans currently defined on the system 

NODE ID Unique identifier of an airspace cell in an 
x,y,t grid 

subject_entry_time The time associated with the cusp which 
precedes entry into this cell for the 
subject aircraft's trajectory 

subject_exit_time The time associated with the cusp which follows 
exit from this cell for the subject 
aircraft's trajectory 

nominee_entry_time The time associated with the cusp which 
precedes entry into this cell for the 
nominee aircraft's trajectory 

nominee exit time The time associated with the cusp which follows 
exit from this cell for the nominee 
aircraft's trajectory 

A-5 



SPARSE CELLS: 
+--
1 FLIGHT_PLAN_ID NODE_ID I min_z I max_z I entry_time I exit~time 

+-----------------------
This table defines the cells which each flight plan trajectory 
enters, the range of altitudes the trajectory covers in each cell, 
and the times associated with the cusp preceding entry and the cusp 
following exit for each cell. 

FLIGHT PLAN ID Unique identifier which distinguishes one flight 
plan from all other flight plans currently detined 
on the system 

NODE ID 

min z 

max z 

entry_time 

exit time 

Unique identifier of an airspace cell in an x,y,t 
grid 

The lowest altitude through which this flight plan 
trajectory passes in this cell 

The highest altitude through which this flight plan 
trajectory passes in this cell 

The time associated with the cusp which precedes 
entry into this cell 

The time associated with the cusp which follows exit 
.from this cell 

A-6 



SHARED LOCAL VARIABLES 

H Cell Dimension Quantization size for cells in horizontal x-y 

Max Level The level number associated with the leaf level 
of the octal trees SPARSE_TREE, BUFFER TREE 
and ALLOBJECT TREE 

Real_Subject_Fl_Id In the case of a trial probe, this variable 
contains the flight plan identifier 
associated with the subject aircraft's 
actual flight plan and Subject_Fl_Id 
contains a dummy flight plan identifier 
associated with the trial flight plan 

T_Cell_Dimension Quantization size for cells in time 

T Offset A translation in t in the conversion of time to 
cell coordinates 

Trial_Flag A flag indicating whether or not the FPCP was 
called for a trial probe 

X Offset A translation in y in the conversion of 
geometric to cell coordinates 

Y Offset A translation in x in the conversion of 
geometric to cell coordinates 

A-7 



APPENDIX B 

MATHEMATICAL DERIVATION OF FORMULAS 

B.l The Time of Violation Formulas 

Definitions: 

Analysis: 

D(t) • horizontal separation distance between the 

two aircraft at time t 

T • Time_Overlap_Min 

Ps(t) • position vector of subject aircraft at 

time t 

P (t) • position vector of nominee at time t n 
V

8 
• velocity vector of subject aircraft (assumed 

to be constant over the length of the segment) 

Vn • velocity vector of nominee (also assumed to 

be constant) 

Pr(t) • Ps(t) - Pn(t) • relative position 

vector at time t 

Vr • V - V • relative velocity vector s n 
II II • norm (length) of a vector 

• dot product of two vectors 

First calculate D(t): 

D(t) • IIPs(t) - Pn(t) II • I!Pr(t) II • [Pr(t) • Pr(t)]~ 

• {[Pr(T) + (t - T) Vr] • [pr(T) + (t-T.) Vr]}~ 

.. { ,,p (T) 1r + 2(t-T)P (T)· v + (t-T) 2 11v ,, 2 }~ r r r r 

To calculate the time at which D(t) is equal to Seph, i.e., the 
starting and ending times of the violation, set D(t) =- Seph or, 
equivalently, n2(t) • Seph2 (to produce a quadratic equation) 
and solve for t. 

B-1 



Let 

B • 2P (T) • V 
r r 

then the above equation becomes: 

A(t-T) 2 + B(t-T) + C - Seph2 • 0 

If the discriminant of this equation, B2 - 4A(C - Seph2) is less 
than 0, then the roots are imaginary, implying that the separation 
distance is never equal to Seph; consequently no encounter is. 
predicted. If the discriminant is 0, there are two real and equal 
roots, meaning that the separation distance is equal to Seph at some 
time t*, but is never less than Seph which would be considered a 
violation of the FPCP horizontal separation standard. Thus, in this 
case, as in the case above, no encounter is predicted. If the 
discriminant is greater than 0, then there are two real and unequal 
roots which provide the starting and ending times of a violation. 
These times are obtained by way of the quadratic formula. 

2 - Seeh2)J~ Time Viol Start • -B - (B - 4A~C + T 2A 

Time Viol End • -B + (B2 - 4A~C - Seeh2p~ +T 2A 

B.2 The Minimum Separation Formulas 

Definitions: Same as those above 

Analysis: First calculate D(t) as above, obtaining 

D(t) - {IIPr(T)II 
2 

+ 2(t-T)Pr(T) • Vr + (t-T)211Vr112}~ 

.. { A(t-T) 2 + B(t-T) + c}~ 

B-2 



where 

c -II p (T) II 2; 
r 

To find the time t* when this function is a minimum (t* • Time 
Msep), one needs to differentiate D(t), set the result equal to 07. 
and solve for t. 

dD(t) • 2A(t-T) + B • O 
dt 2 [A(t-T)2 + B(t-T) + C J Ji 

implying that 

2A(t-T) + B • 0 

and, consequently, that 

-B 
t • t* • Time_Msep a lA + T 

Substituting into D(t) to obtain the minimum separation distance, 
one gets 

Msep_Dist • D(t*) • [A(t* - T)
2 + B(t* - T) + CJ~ 

B-3 



APPENDIX C 

TREE TRAVERSAL TECHNIQUES USED BY THE COARSE FILTER 
AND MAINTENANCE 

C.l Recursion 

Data structures in the form of trees lead naturally to 
algorithms using recursion--that is, algorithms that call 
themselves as subroutines. Typically, a recursive algorithm 
must do some processing at each node of a tree. Some of this 
processing, which may be denoted PBEFORE' may be required 
before any of the node's children are processed, while other 
processing, say PAFTER' may be required only after all chil
dren have been processed. Other processing at the node may be 
required on a per-child basis; however, the bulk of this, 
especially that involving grandchildren and more remote descen
dants, is similar to PBEFORE and PAFTER one level down, 
with each child in turn taking the role of the parent. 

A recursive algorithm generally looks only at a single node and 
its immediate children at any one time. In this volume, all 
trees have the property that all leaves are at the same level. 
An algorithm can then determine whether a node is a leaf by 
knowing its level. When a leaf is reached, there are no more 
children, and different processing, say PLEAF, is performed. 
A typical recursive algorithm, which we denote Treesearch, is 
called via a statement such as CALL Treesearch (ROOT IN, 0 IN), 
while the procedure Treesearch looks like this: 

ROUTINE Treesearch (Node IN, Level IN); 
IF Level ~ Leaf_ Level -
THEN 

CALL Pr.EAF; 
ELSE 

CALL PBEFORE; 
REPEAT FOR EACH Child; 

CALL Treesearch (Child IN, Level+ 1 IN); 
CALL p AFTER; 

END Treesearch; 

Preorder and Postorder 

It is sometimes useful to assign an ordering to a tree's 
nodes. Consider an ant which starts at the root and crawls 
along the branches, always taking the leftmost unvisited 
branch, doubling back at the leaves, so that each branch is 
eventually traversed exactly once ending at the root, as shown 

C-1 



{a) Path of the ant around the tree 

1 

9 

3 10 

{b) Preorder. The ant assigns the labels as it visits the nodes 

10 

9 

1 

(c) Postorder. The ant withholds the parent's label until 
all its children are labeled 

FIGURE C·1 
ORDERINGS OF NODES ON A TREE 

C-2 



in Figure C-la. If the ant counts (and labels) each node as it 
is first visited, the labels will appear as in Figure C-lb. 
Note that the root of each subtree has a lower label than any 
of its descendants. This ordering is called a preorder. 
Treesearch can be used as a template to generate a preordering 
of a tree: PBEFORE and PLEAF consist simply of labeling 
the current node with the next available number, starting with 
"1" at the root. PAFTER is null. Specifically, using a 
global variable NUMBER initialized to "1" and an initial call 
such as CALL Preorder (ROOT IN, 0 ·IN), the algorithm is as 
follows: - -

ROUTINE Preorder (Node IN, LEVEL IN); 
Assign Number to Node; 
Number • Number + 1; 
IF Level LT Leaf Level 
THEN 
--uP EAT FOR EACH Child; 

CALL Preorder (Child IN, Level + 1 IN); 
END Preorder; 

Another useful ordering of a tree's nodes is the postorder, 
which resembles the preorder except that a node's label is 
withheld (by the ant) until all its children have received 
labels (Figure C-lc). Treesearch generates a postordering if 
the roles of PBEFORE and PAFTER ("label" and "do nothing") 
are reversed: 

ROUTINE Postorder (Node IN, Level IN); 
IF Level LT Leaf Level -
THEN 

REPEAT FOR EACH Child; 
CALL Postorder (Child IN, Level + 1 f!); 

Assign truiiiber to Node; 
Number • Number + 1; 
END Postorder; 

C.2 Insertion To and Deletion From the ALLOBJECT Tree Using 
Treesearch 

Treesearch can also be used as a template for inserting or 
deleting the cells of a grid chain (sparse or buffer) from the 
set of cells represented in the Allobject Tree. For an insert, 
the Allobject node corresponding to each subject node must be 
updated (to reflect one extra aircraft). Of course, if the 
Allobject Tree node does not exist, it must first be created, 
and created before any of its children can be added to the 
object tree. The insertion must be accomplished in preorder; 

C-3 



the node's creation belongs to PBEFORE. For a delete, the 
Allobject node corresponding to each subject node must be 
updated (to reflect one fewer aircraft). If the count is 
thereby reduced to zero, the Allobject node must be 
deleted--but any of its children must be deleted first 
(otherwise they would become inaccessible). The deletion must 
be accomplished in postorder; the node's deletion belongs to 
P AFIER. In an insert or delete, a leaf node may be treated 
like any other node, except that its children are not checked. 

C.3 Coarse Filter Using Treesearch 

Treesearch can serve as a template for the coarse filter 
itself. The search proceeds (in preorder) only along nodes 
found in both the subject and the Allobject Tree (no conflict 
can occur for a node unless both subject and object occupy the 
corresponding grid block). Thus, PBEFORE consists of 
eliminating from further consideration any of a node's children 
not found in both trees. PLEAF consists of adding the object 
to the table of nominees {after an altitude screening). 
P AFTER is null: 

ROUTINE Coarse Filter (Node IN, Level IN); 
IF Level LT Leaf Level --
THEN 

REPEAT FOR EACH of the eight possible children; 
IF Child exists in both trees 
1flrEN 

CALL Coarse_Filter (Child IN, Level + 1 IN); 
ELSE 
----IF Altitude conditions met 

THEN Add each object occupying this cell (corresponding 
----to Node) to a table of nominees; 

END Coarse~Filter; 

Section 4.2 describes the details of ~n algorithm named Nominee 
Detection which is called by the Coarse Filter to perform this 
process. 

C-4 



APPENDIX D 

GLOSSARY 

Number in parentheses at the end of the definition refers to the 
section in which the term is first used. 

AAS 

Advisory 
message 

Advisory 
separation 
criteria 

Advisory Seph 

Advisory Sept 

Advisory tiae 
of violation 

Air traffic 
controller 

Airspace grid 

A11object Tree 

Altitude 
restriction 

Ancestor (of 
a tree node) 

Advanced Automation System (1.1) 

Message displayed to the controller for conflicts 
not necessarily requiring prompt resolution; may 
be in the form of text and/or a graphic display 
(2.1.11) 

The criteria used by the Fine Filter in the 
horizontal and time dimensions to declare an 
advisory conflict (2.1.11) 

The horizontal distance used by FPCP for declaring 
an advisory conflict between two aircraft (2.1.11) 

The time in advance of the advisory time of 
violation that is allowed to the controller to 
resolve the conflict (2.1.11) 

The initial time at which the distance between two 
aircraft trajectories falls below the advisory 
SEPH (2.1.11) 

Automated En Route Air Traffic Control (1.4.1.1) 

Same as "Controller" (1.4.1) 

Grid dividing the horizontal dimensions of the 
planning region over time into discrete cells 
(2.1.6) 

A tree which is the union of all individual object 
trees (2.1.8) 

A directive from a controller to a pilot to be at, 
at or above, or at or below a given altitude by a 
given point along the flight path (1.4.1) 

Either a parent of the node, or a parent of an an
cestor of the node (2.1.8) 

D-1 



Area 

Area supervisor 

AR.TCC 

ATC 

Block 

Buffer grid 
chain 

Buffer 
Subject Tree 

Cell 

Center 

Child (of a 
tree node) 

Coarse Filter 

Coaponent 

Second level division (see "Center," "Sector") of 
the Continental United States airspace. Con
trollers are specially trained for an area's 
airspace, a region bounded horizontally by a 
polygon and stretching vertically up to 60,000 
feet (1.4.1) 

The first-line supervisor of an area (1.4.1) 

Air Route Traffic Control Center (see "Center") 
(1. 4.1) 

Air Traffic Control (1.1) 

A subset of the (x,y,t) airspace grid associated 
with one tree node (2.1.8) 

The sparse grid chain plus all the cells which · 
share at least one vertex with a cell in the 
sparse grid chain (2.1.7) 

The tree formed from the subject's buffer grid 
chain (2.1. 8) 

Individual parallelepipeds in (x,y,t) 
within the airspace grid (2.1.6) 

space 

Administrative headquarters and operational 
facility for control of a first level division 
(see "Area," "Sector") of the Continental United 
States airspace (there are currently 20 centers); 
controls a region bounded horizontally by a 
polygon and stretching vertically from the center 
floor to 60,000 feet (1.4.1) 

A node sharing an edge with the given node and 
having a higher level than the given node (2.1.8) 

An algorithm that compares the Buffer Subject 
Tree to the Allobject Tree, eliminating from 
further consideration those objects which do not 
share occupancy of at least one cell with the 
subject (2.1.9) 

Third level algorithmic unit in breakdown of AERA 
(see "Function," "Subfunction," "Element") (1.3) 

D-2 



Conflict 

Controller 

Cusp 

Delu horizon 

Descendant (of 
a tree node) 

Display
as-advisory 
t:lae 

Display
as-priority 
t:lae 

DP 

Ele~~ent 

ELOD 

Encounter 

Encounter 
aircraft 

FAA 

Fine Filter 

Displayed violation of the FPCP advisory separa
tion criteria by one aircraft's trajectory with 
respect to another aircraft's trajectory (1.5.1) 

In this document, an en route radar controller as 
defined in "Glossary of Common Terms in Air 
Traffic Control Operations" [13] (1.4.1) 

A regular cusp or a maneuver envelope cusp; a 
point in (x,y,z,t) space. (2.1.4) 

Interval at which horizon updates are invoked 
(2.1.2) 

Either a child of the node, or a child of a des
cendant of the node (2.1.8) 

The time at which an advisory message is first 
displayed to the controller (2.1.11) 

The time at which a priority message is first 
displayed to the controller (2.1.11) 

Density Probe (1.4.2.2) 

Fourth level algorithmic unit in breakdown of 
AERA (see "Function," "Subfunction," ··component") 
(1.3) 

Enroute Sector Loading (1.4.1.2.1) 

Violation of the FPCP separation criteria found 
by the Fine Filter between the trajectories of 
the subject and a nominee (may be too far in the 
future to display as a conflict) (2.1.10) 

Nominee aircraft whose trajectory is in violation 
of the FPCP separation criteria relative to the 
subject's trajectory according to the Fine Filter 
(2.1.10) 

Federal Aviation Administration (1.1) 

An algorithm that tests subject-nominee segment 
pairs against FPCP separation criteria using 
rigorous mathematical analyses (2.1.10) 

D-3 



Fli&ht plan 

FPCP 

FPCP advisory 
separation 
criteria 

PPCP hori~on 
update 

PPCP priority 
separation 
criteria 

PPCP trajectory 
update 

Function 

GOO 

Grid cell 

Grid chain 

Hold 

Holding pattern· 

Holding pattern 
cusp 

Ho1cling pattern 
segaent 

Hori~on update 

Pilot's intended route to reach his destination 
as cleared by the air traffic control system 
(1.4.1) 

Flight Plan Conflict Probe (1.1) 

Same as "Advisory separation criteria" (2.1.11) 

Same as "horizon update" (2.1.2) 

Same as "Priority separation criteria" (2.1.11) 

Same as "trajectory update" (2.1.3) 

A major building block of AERA--a principal 
algor! thm which is the top level unit in the 
breakdown of AERA (see "Subfunction," 
"Component," "Element") (1.1) 

Grid Chain Generator (3.3.1) 

Same as "Cell" (2.1.6) 

List of an aircraft's occupied cells (2.1.7) 

Same as "Holding pattern" (2.1.5) 

An aircraft maneuver to delay its en route 
progress; usually a circling or spiraling within 
a specified airspace (2.1.5) 

The entry or exit point of the holding pattern 
expressed in spatial and temporal coordinates 
(2.1.5) 

Portion of the trajectory containing a holding 
pattern and defined by a pair of holding pattern 
cusps (2.1.5) 

A periodic updating of the time horizon which 
causes an invocation of FPCP (2.1.2) 

D-4 



ID 

Independent 
Variable 

Leaf (of a tree) 

Level (of a 
tree node) 

Maneuver 
envelope 

Maneuver 
envelope cusp 

Maneuver 
envelope segaent 

HASP 

Node 

Nollinee 

Noldnee 
aircraft 

Object 

Occupied cell 

Occupied block 

Identification (1.5.1) 

The variable (x, y, or t) in which a trajectory 
segment changes most rapidly (4.1.1.3) 

A node with no children (2.1.8) 

Nonnegative integer assigned to the node (number 
of edges on path to root) 

The geometric structure which encloses an air
space-sweeping maneuver (2.1.5) 

The entry or exit point of the maneuver envelope 
expressed in spatial and temporal coordinates 
(2.1. 5) 

Portion of the trajectory containing a maneuver 
envelope and defined by a pair of maneuver 
envelope cusps (2.1.5) 

National Airspace System (1.1) 

National Airspace System Plan (1.4.1) 

Same as "tree node" (2.1.8) 

An aircraft which was not eliminated from further 
consideration by the Coarse Filter and therefore 
will have its trajectory examined by the Fine 
Filter (2.1.9) 

Same as "Nominee" (2.1.9) 

An aircraft (which is not. the subject) whose 
current trajectory has already been processed by 
FPCP (1.5.2) 

Cell selected by one of two mathematical formulas 
to be in the grid chain for a trajectory; there 
are sparse and buffer criteria for determining 
occupancy (2.1.7) 

A block containing an occupied cell (2.1.8) 

D-5 



Octant (of a 
block) 

Parent (of a 
tree node) 

PDL 

Planning region 

Postorder 

Preorder 

Priority .essage 

Priority 
separation 
criteria 

Priority Seph 

Priority Sept 

Priority time of 
violation 

Regular cusp 

Regular sepent 

Resynchroni
zation 

One of eight blocks obtained by dividing the 
given block in half along each of the x, y, and t 
axes (2.1.8) 

A node sharing an edge with the given node and 
having a lower level than the given node (2.1.8) 

Program design language (1.2) 

A center's airspace.plus a buffer zone around it 
for handoffs between centers (1.5.2) 

.Ordering of tree nodes by labelling child nodes 
before their parent node (3.3.2.1.1) 

Ordering of tree nodes by labelling a parent node 
before its child nodes (3.3.2.1.1) 

Message displayed to the controller when two 
trajectories are in violation of FPCP priority 
separation criteria (2.1.11) 

The criteria used by the Fine Filter in the 
horizontal and time dimensions to declare a 
priority conflict (2.1.11) 

The horizontal distance used 
declaring . a priority conflict 
aircraft (2.1.11) 

by FPCP 
between 

for 
two 

The time in advance of the priority time of 
violation that is allowed to the controller to 
resolve the conflict (2.1.11) 

The initial time at which the distance between 
two aircraft trajectories falls below the 
priority SEPH (1.5.2) . 

One of the endpoints of a segment expressed in 
spatial and temporal coordinates (2.1.5) 

Portion of the trajectoly delimited by a pair of 
(x,y,z,t) coordinates called cusps and 
approximated by a straight line (2.1.5) 

Recomputation of the estimated aircraft trajec
tory when the trajectory is inconsistent with the 
aircraft's recent radar track history (2.1.1) 

D-6 



Root (of a tree) The (unique) node with level zero (and no parent) 
(2.1.8) 

Sector Third level division (see "Center," "Area") of 
the Continental United States airspace to which a 
controller is assigned; a region bounded horizon
tally by a polygon an.d stretching vertically from 
a floor (the ground or a specified altitude) to a 
ceiling altitude (1.4.1) 

Sepent A regular segment or maneuver envelope segment 
(2.1.4) 

Sepent chain 

Sparse grid 
chain 

Sparse Subject 
Tree 

Subblock (of a 
b1oek) 

Subfunction 

Subject 

SWP 

TCAS 

Ti.e horizon 

Trajectory 

Sequence of segments modelling a trajectory 
through the planning region (2.1.4) · 

The grid chain consisting of cells selected as 
occupied using the sparse criterion (2.1.7) 

A tree genera ted from an subject's sparse grid 
chain; it is used for subsequent maintenance 
operations on the Allobject Tree (2.1.8) 

Same as "octant" (2.1.8) 

Second level unit in the breakdown of AERA (see 
"Function," "Component," "Element"") (1.3) 

The aircraft whose new, updated, revised, or 
alternative (trial probe) trajectory is currently 
being tested by FPCP (1.5.2) 

Sector Workload Probe (2.2.7) 

Traffic Alert and Collision Avoidance System 
(1.4.1.2.3) 

Time bound on FPCP consideration of future 
trajectory information (2.1.2) 

Description of an aircraft's position in 
(x,y,z,t) space, produced by applying altitude 
and timing assumptions to the filed flight plan 
and revised when necessary (1.4.1.1) 

D-7 



Trajectory 
update 

Tree 

Tree node 

Trial probe 

Vector 

Vertical 
maneuver 
envelope 

Vertex 

One of three events: 1) a trajectory is added, 
2) a trajectory is resynchronized, or 3) a 
trajectory is amended (2.1.3) 

A graph (set of (tree) nodes connected by edges) 
with certain properties. Each node is assigned a 
level (integer); each edge connects nodes whose 
levels differ by 1; a single node has level 0; no 
node has edges to more than one lower-level node 
(2.1.8) 

(also called node) An endpoint of an edge in a 
tree (2.1.8) 

A test using FPCP on a flight plan proposed as an 
alternative to one which already exists (1.5.1) 

Controller-directed maneuver to provide 
aircraft with a change in route (2.1.5) 

an 

A set of four points (vertices) associated with a 
cusp that defines the vertical protection 
provided around an aircraft (2.2.4) 

One of the four points in (x,y,z,t) space 
defining a vertical maneuver envelope (2.2.4) 



APPENDIX E 

AERA PDL LANGUAGE REFERENCE SUMMARY 

E.l Overview of the Use of AERA PDL 

'Ihe AERA Program Design Language (PDL) has been created for the 
single purpose of presenting algorithms in this specification 
document. It evolves from previous ~ uses, and from MITRE 
WP-81W552, "All About!," October 1981. 

'!he description of this appendix is intended to support readers and 
users of AERA PDL. AERA PDL supports readable, yet structured and 
consistent, descriptions of algorithms. 

AERA PDL Features 

• Relational data tables can be defined and manipulated by 
constructs in the language. 

• Builtin functions are used to provide routine calculations 
without showing all of the detail. 

• Routines are used to modularize logic paths and data scope. 

• Indentation is used to indicate statement grouping, 
statement continuation, and levels of nesting. 

• Routines explicitly define data or refer to predefined data. 

AERA PDL Statements 

The types of statements used in AERA PDL are: 

• English language statements 
• assignment statements 
• routine declaration statements 
• data manipulation statements 
• flow of control statements 

E.2 Elements of AERA PDL 

Keywords 

Keywords are words reserved for the usage of AERA PDL. Figure 
E-1 presents all the keywords used in the current version of 
AERA PDL, grouped for convenience. 

E-1 



routine construction keywords 

CALL 

data reference keywords 

PARAMETERS 
REFER TO GLOBAL 

END 

REFER TO SHARED LOCAL 
DEFINED IN GLOSSARY 

data definition keywords 

DEFINE CONSTANT(S) 
DEFINE VARIABLE(S) 
DEFINE TABLE(S) 

IN 
OUT 
INOUT 

ROUTINE 

common arithmetic builtin function keywords 

AVG 
"SUM 
PROD 

MIN 
MAX 
MEDIAN 

ABS 
CEIL 
FLOOR 
SIGNUM 
MOD 

EXP 
LOG 
SQRT 

cos 
SIN 
TAN 

coordinate geometry builtin function keywords 

ARCCOS 
ARCSIN 
ARCTAN 

DIST 
MAGNITUDE 
DIRECTION 

DOT 
CROSS 
LINE 

INTERSECTION 
INTERPOLATE 

set builtin function keywords 

UNIQUE COUNT CONCAT BOOL 

FIGURE E-1 
KEYWORD GROUPINGS 

E-2 



set operator keywords 

UNION INTERSECT 

table manipulation keywords 

SELECT FIELDS 
INSERT INTO 
DELETE FROM 
UPDATE IN 

value constant keywords 

TRUE 

comparison keywords 

NOT 
OR" 
AND 

GT 
'GE 
LT 
'LE 

FALSE 

flow of control keywords 

IF ••• THEN ••• ELSE - --

ALL 
FROM 
INTo 
WHERE 
ORDERED BY 
RETURN COUNT 

.!1 
NE 
IS IN 

NULL 

IS NOT IN 

ANY 
ill 

CHOOSE CASE • • • WHEN • • • THEN • • • OTHERWISE 
FOR ••• TO - -REPEAT WHILE 
REPEAT UNTIL 
REPEAT FOR EACH • • • RECORD 
GO TO 

FIGURE E-1 (Concluded) 
KEYWORD GROUPINGS 

E-3 



Operators 

The operators of AERA PDL are summarized in Figure E-2. 

The Assignment Operator 

• The format of the assignment statement is: 
"target" = "expression" 

• The target may be any type of ~ata allowed by AERA PDL. 

• The assignment operator includes the ability to fill a table 
from data contained in other tables. The form of this use 
of the assignment operator is: 

"table name" • "table_expression" 

Builtin Functions 

The builtin functions of AERA PDL accept either an single value 
or data organized into an array. The author of a routine must 
make it clear in comments and text what form of data is being 
processed by the builtin function. Builtin functions are 
listed in Figure E-3. 

E.3 Routine Construction 

The order of appearance of constructs in a routine is: 

e ROUTINE -- required 
• PARAMETERS -- optional 
e REFER TO GLOBAL -- optional 
• REFER TO SHARED LOCAL - optional 
• DEFINED IN GLOSSARY -- optional 
e DEFINE CONSTANTS -- optional 
• DEFINE VARIABLES -- optional 
• DEFINE TABLES - optional 
• logic flow-- required, but will vary by routine. 
• END -- required 

Three of the constructs are noted below: 

The ROUTINE Construct 

• The ROUTINE construct names the routine. 

• The syntax of the ROUTINE construct is: 
ROUTINE "routine name" 

E-4 



assignment operator 

A • B 

arithmetic operators 

A+ B 
A- B 
A* B 
A I B 
A ** B 

comparison operators 

A LT B 
ALE B 
A GT B 
A GE B 
A!QB 
ANEB 

logical operators 

set operators 

A INTERSECT B 
A UNION B 
A IS IN B 
A IS NOT IN B 

A is assigned the value of B 

A plus B 
A minus B 
A times B 
A divided by B 
A to the power of B 

A is less than B 
A is less than or equal to B 
A is greater than B 
A is greater than or equal to B 
A is equal to B 
A is not equal to B 

The logical opposite of A 
Logical OR of A and B 
Logical AND of A and B 

The set intersection of A and B 
The set union of A and B 
A is an element.of the set B 
A is not an element of the set B 

FIGURE E-2 
GROUPINGS OF AERA PDL OPERATORS 

E-5 



FUNCTION 

ABS(x) 

ARCCOS(x,y) 

ARCSIN(x,y) 

ARCTAN(x,y) 

AVG(A) 

BOOL(x) 

~(x) 

CONCAT(sl,s2, ••• ,sN) 

COS(x) 

COUNT(A) 

CROSS(vl,v2) 

DIRECTION( pl, p2) 

DIST(pl,p2) 

DOT(vl,v2) 

EXP(x) 

FLOOR(x) 

MEANING 

Absolute value of x 

Inverse cosine of the ratio of y to x 

Inverse sine of the ratio of y to x 

Inverse tangent of the ratio of y to x 

Mean of the elements in A 

Numerical equivalent of logical condition: 
1 if x is ~' 0 if x is FALSE 

Smallest integer greater than or equal to x 

Concatenation of strings sl through sN 

Cosine of x 

Number of elements of a set A 

Cross product of vectors vl and v2 

Direction of p2 from pl in degrees from the 
north; usually will be expressed in degrees 
clockwise from true north 

Euclidean distance between points pl and p2 

Dot product of vectors vl and v2 

e to the x power 

Greatest integer less than or equal to x 

FIGURE E-3 
BUILTIN FUNCTIONS 

E-6 



FUNCTION 

INTERPOLATE(a,b,t) 

INTERSECTION(Ll,L2) 

LINE(pl,p2) 

LOG(x) 

MAGNITUDE(v) 

MAX(A) 

MEDIAN(A) 

MIN(A) 

MOD(xl,x2) 

PROD(A) 

SIGNUM(x) 

!!!!_(x) 

SQRT(x) 

SUM(A) 

~(x) 

UNIQUE(A) 

MEANING 

The point (1-t)a+tb 

The point of intersection of the lines Ll and 
L2 
Vector (a,b,c) c9rresponding to the line 
ax + by • c which passes through the points 
pl and p2 

Log of x in base e 

Length (i.e., norm) of the vector v 

Largest of the elements in the set A 

Median value of the elements in set A 

Smallest of the values in set A 

Remainder when xl is divided by x2 

Product of the elements in A 

Function yielding 1 if x GT 0, -1 if x g 0, 
and 0 if x ~ 0 

Sine of x 

Square root of x 

Sum of the elements in A 

Tangent of x 

The set A with no duplicate elements 

FIGURE E-3 (Concluded) 
BUILTIN FUNCTIONS 

E-7 



The CALL Construct 

• The CALL construct invokes use of another routine as a 
subroutine and passes to it the data on which it is to 
operate. 

• The syntax of the CALL construct is: 
CALL "routine_name" ( "'data_usage_list" ) ; 

• The data usage list in the CALL statement must match in 
number and data utilization (IN, OUT, INOUT) the PARAMETERS 
statement of the called routine7 ---

The END Construct 

• The END construct shows the formal end of the routine. 

• The syntax of the END construct is: 
END "routine name" 

E.4 Data Definitions 

Data usage is defined in the constructs placed at the beginning of 
each routine. 

The structures, or 
include constants, 
variables, arrays, 
structured variables 

organization of data, recognizable to AERA PDL 
atomic variables, hierarchically structured 

tables, and field-types. The hierarchically 
are the same as the structure variables of PL/I. 

Within a table, the values corresponding to the definition of a 
field-type are called fields when they are referred to individ
ually. The values for a whole column of a table (or a subset of the 
whole column) may be referred to as a set of fields. 

The following data definition constructs appear in the order shown, 
if any are needed. The first line of each construct begins in 
column 1, aligned with the ROUTINE construct. 

The PARAMETERS Construct 

• This construct provides usage information about the data 
that are being provided by the calling routine in the form 
of specification of read-only 'IN', write-only 'OUT', or 
modification of an existing value '!NOUT' ---

E-8 



• Variables appearing in the PARAMETERS construct are still 
local data for the routine being defined and as such appear 
in the definition constructs. 

• The syntax of the PARAMETERS construct is: 
PARAMETERS "data_usage_list" 

The REFER TO GLOBAL Cons true t 

• This construct provides reference to, and usage information 
for, data from the Global data model. 

• The syntax of the REFER TO GLOBAL construct is: 
REFER TO GLOBAL "data_usage_list" 

The REFER TO SHARED LOCAL Cons true t 

• This construct provides reference to, and usage information 
for, data from the Shared Local data model described in 
Appendix A of the specification. 

• The syntax of the shared local construct is: 
REFER TO SHARED LOCAL "data_usage_list" 

The DEFINED IN GLOSSARY Construct 

• This construct provides reference to, and usage information 
for, data from a specially prepared Glossary that central
izes the definition of data variables that are used re
peatedly within a given function of the algorithmic 
specification. 

• The syntax of the shared local construct is: 
DEFINED IN GLOSSARY "data_usage_list" ; 

The DEFINE CONSTANTS Construct 

• The use of named constants instead of in-line numerical 
constants is available at the discretion of the author of an 
algorithm. Named constants, if present, are to be declared 
with this construct. 

• The syntax of the DEFINE CONSTANTS construct is: 
DEFINE CONSTANTS "constant definition block" 

E-9 



The DEFINE VARIABLES Construct 

• The syntax of the DEFINE VARIABLES construct is: 
DEFINE VARIABLES "variable definition block" 

The DEFINE TABLES Construct 

• The syntax of the DEFINE VARIABLES construct is: 
DfFINE TABLES "table_definition_block"; 

E.5 Flow of Control Constructs 

The IF ••• THEN ••• ELSE Construct 

• The syntax of the IF ••• THEN ••• ELSE construct is: 
IF "condition" - - -

THEN 
~statement block" 

[ ELSE 
---wstatement block" 1 

The CHOOSE CASE Construct 

• This construct provides a choice of one of several alterna
tive logic paths depending on the first condition satisfied 
among the conditions specified. 

• The OTHERWISE phrase is optional. 

• The syntax of the CHOOSE CASE construct is: 
CHOOSE CASE 

WHEN "condition" THEN 
---wstatement blo~ 

[ WHEN phrases repeated as necessary 1 
[ OT'iiERWISE 

"statement block" 1 

The REPEAT WHILE Construct 

• The syntax of the REPEAT WHILE construct is: 
REPEAT WHILE "condition" 

statement block" 

The REPEAT UNTIL construct 

• The syntax of the REPEAT UNTIL construct is: 
REPEAT UNTIL "condition" 

"statement block" 

E-10 



The REPEAT FOR EACH RECORD Construct 

• '!his construct explicitly loops over all records in table, 
or the subset of a table as specified in a WHERE phrase. 

• The syntax of the REPEAT FOR EACH construct is: 
REPEAT FOR EACH "table name" RECORD 

[ WHERE "condition" ]-; 
"statement block" 

• Within the statement block of this loop, the construct of 
"table name". "field name" means only the ONE value that is 
associated with the-record for that iteration of the loop. 

• If it is necessary to refer to entire columns of the table 
that is being looped on, the correct form of the reference 
is ALL("table name"."field name"). This construct means 
exactly what ''table name". "field name" would have meant if 
the loop had not been in effect. -

The GO TO Construct 

• The syntax of the GO TO construct is: 
GO TO "label" ; 

'!he FOR ••• To ••• Construct 

• The syntax of the FOR ••• TO ••• construct is: 
FOR "loop index.-; "initial value" TO·"last value" ; 
--"statement block" -

E.6 Table Manipulation Constructs 

The SELECT FIELDS Construct 

• '!his construct extracts data from a table, or from a collec
tion of tables, and makes it available to the routine. 

• '!he syntax of the SELECT FIELDS construct is: 
SELECT FIELDS [ UNIQUE ) [ "field list" I ALL] 

FROM "table name list" - -
[ INTO "local-variable name list" ] 
[ WHERE "condition" ] -
[ ORDERED BY "field name" ] 
[ RETURN COUNT ( "local variable" ) ] 

E-ll 



The INSERT INTO Construct 

• "ntis construct allows a new record to be inserted into a 
table. 

• The syntax of the INSERT INTO construct is: 
INSERT INTO "table name" ("field assignments") 

[ WHERE "condition"] ; -

• All insertions will preserve the assumption of no duplicate 
records allowed in the table. 

The UPDATE IN Construct 

• This construct allows existing records in a table to have 
certain of their values changed. 

• The syntax of the UPDATE IN construct is: 
UPDATE IN "table name" ("field assignments") 

[ WHERE "condition" ] ; -

The DELETE FROM Construct 

• This construct removes selected records from a table. 

• The syntax of the DELETE FROM construct is: 
DELETE FROM "table name" 

[ WHERE "condition" ] ; 

E. 7 Glossary 

"comparison" 

• There are four possible syntaxes for the comparison. These 
are not given separate names, but will all be shown as if 
they shared the same element of the language. 

• The first syntax is for arithmetic comparisons: 
"individual" GEILEI.Q!Ig ''individual" 

• The second syntax is for general comparisons: 
"individual" ~INE "individual" 

• Both of these syntaxes are also valid if they are used to 
compare two variables with the same complex organization, 
for example two vectors of the same length or two field 
types from the same table. In this case the result has as 
many answers as there are elements in the compared variables. 

E-12 



• The third syntax is for arithmetic comparisons: 
"individual" GEILEIGTILT ANYIALL "set" 

• The fourth syntax is for general comparisons: 
"individual" IS INIIS NOT IN "set" 

• The latter two syntaxes are used to qualify an individual 
based on any value in a set of values. 

"condition" 

• The syntax of the condition is: 
"comparison" [ANDIAND NOTI~IOR NOT "comparison"] 

• The optional part of this syntax can be repeated as often as 
required. 

"constant definition block" 

• The content of the constant definition block is three 
columns: the constant names, the constant values, and the 
constant descriptions. 

• The constant names are aligned in a column 3 spaces indented 
from the DEFINE CONSTANTS line. 

• The other two columns are aligned as convenient, so that 
there is no visual overlap between the columns. 

"data usage list" 

• A routine must declare the type of use for all of its data 
that are known outside the routine. 

• The three types of use are: read only (IN), create (OUT), 
and modify an existing copy (INOUT). 

• The format of a data usage list is: 
"variable_name" "usage_type", ••• 

• An example of the format for data usage list is: 
An_Input_Parameter IN, A LOCAL TABLE INOUT 

"expression" 

• Variables may be formed implicitly in expressions without 
being separately named or defined. 

E-13 



• Expressions are combinations of defined variables with the 
operators and builting functions of AERA PDL. 

• In an expression, the implicit variable output from any 
builtin function may be used as the input to any other 
builtin function or operator. 

• An expression, when fully evaluated, yields one variable. 

"field assignments'' 

• '!his term only appears in statements referring to exactly 
one table: INSERT and UPDATE. 

• The form of the term is a comma-separated list: 
"field_ assignment", ••• 

• The form of a single assignment is: 
"field_name" • "value_expression" 

• In this term the field names do not have to be qualified by 
the table name (that is-given in the statement). 

"table definition block" 

• Three types of definition are made in this block: table defi
nitions, field-type definitions, and AGGREGATE definitions. 

• Table definition lines are formatted as: 
"table name" "table definition" 

• Field-type definitions lines are formatted as: 
"field name" "field definition" 

• Aggregate definitions are formatted as: 
"aggregate_name" AGGREGATE ("field_name_list") 

• Fields will contain only atomic (single-valued) variables. 

• Aggregates may be used so that a program can manipulate 
multiple fields in one statement when it makes sense to do 
so. 

"table-expression" 

• Tables may be used implicitly in assignments or comparisons 
being separately named or defined. 

E-14 



• A table expression is either a table name or a SELECT state
ment specifying the contents of the implicit table. 

"table name" 

• Generally, this is just the name of a table. 

• In a few statements, there is a syntax that allows a user to 
define a synonym and use it in the rest of that statement. 
The intent of this option is to allow shorter where clauses 
that are easier to read. The format of the synonym refer
ence is: 

"existing_table_name" ( "synonym" ) 

• The statements that allow this use are those that have the 
where clause: SELECT, INSERT, DELETE, UPDATE, and REPEAT. 

"variable definition block" 

• The content of the variable definition block is two columns: 
variable names and variable descriptions. 

• Align variable names in a column that is indented 3 spaces 
from the DEFINE VARIABLES line. 

• Align variable definitions in a column as convenient; when a 
structure element is defined, both the variable name and the 
variable definition should be indented three spaces from the 
name and definition of the next higher level variable. 

• Three types of variables may be defined in this block: 
atomic variables, arrays, and structured variables. 

• Each element variable is described by a line: 
"variable name" "variable definition" 

• Each array variable is described by a ·line: 
"variable_name" ("dimensions") "variable_definition" 

• Each structured variable is described by multiple lines, one 
line per lowest level element, and one line for each named 
level of grouping/structure, with indentation levels used to 
indicate the grouping. 

• The names of subordinate elements of a structured variable 
are named in all lower case letters. 

E-15 

, 



• The use of complex structured variables is not encouraged; 
one reasonable use for them is to receive the values of 
AGGREGATEs. 

E.8 Other Uses and Conventions 

Use of Special Characters in AERA PDL 

• Parentheses are used for grouping statements and setting off 
special parts of the constructs. 

• Semicolons are used as statement terminators. 

• Colons are used to terminate labels. 

• Underscore is used to separate words in multi-word 
identifiers. 

• The symbols'+','-','*', and'/' are used as arithmetic 
operators. 

• The pound sign 'II' is used as a comment delimiter, for 
beginning and end of each comment line. 

• Commas are used as separators in lists of operands. 

• Periods are used to separate fully qualified names. 

Naming Conventions 

• Keyword identifiers use only uppercase letters and are 
underlined. They are the only underlined identifiers in the 
PDL. 

• Table identifiers from the relational data base also use 
only uppercase letters. 

• AGGREGATE identifiers for combinations of fields use no 
uppercase letters. 

• References to fields in a table, used in the normal course 
of reference in AERA PDL, will be fully qualified by 
including the table name. 

E-16 



Other Identifiers 

• Identifiers for constants, routines, labels, arrays, and 
hierarchically structured variables are all be named using 
word-initial capitals. 

• For hierarchically structured variables, all of the sub
ordinate elements within the structure use only lowercase 
letters. 

e For hierarchically structured variables, all references to 
the subordinate elements in the structure will be in fully 
qualified form using separate identifiers. 

• Global data and shared local data can include both tables 
and parameters. The individual parameters are named using 
word-initial capitals. 

Use of the Formal Constructs in AERA PDL Statements 

• Statements may use formal constructs or clear English 
descriptions to specify the intended test or action. 

• Any AERA PDL statement is terminated by a semicolon, 
including any English statement outside of a comment. 

• Below the level of statement, some statements have a finer 
organization in terms of "phrases", usually occupying a line 
per phrase and indented one level from the first line of the 
original statement. 

Statement Organization 

• Indentation is used to indicate statement grouping, 
statement continuation, and levels of nesting. 

• Any statement may have a label starting in column 1 • 

• Continuation lines are indented three spaces from the 
original line of the statement. 

• Comments are used as needed, bracketed by the special 
character 'II' • 

E-17 



APPENDIX F 

REFERENCES 

1. U.S. Department of Transportation, Federal Aviation Administra
tion, Advanced Automation Systems: System Level Specification, 
FAA-ER-130:005B, April 1983. 

2. U.S. Department of Transportation, Federal Aviation Administra
tion, National Airspace System Plan: Facilities, Equipment, 
and Associated Development, April 1983. 

3. William J. Swedish, Barbara c. Zimmerman, Audrey W. Lipps, J. 
Glenn Steinbacher, "Operational and Functional Description of 
AERA 1.01," MTR-83W69, The MITRE Corporation, McLean, Virginia, 
September 1983. 

4. U.S. Department of Transportation, Federal Aviation Administra
tion, Air Traffic Control, Order 7110.65C, January 1982. 

5. William J. Swedish, "Evolution of Advanced ATC Automation 
Functions," WP-83Wl49, The MITRE Corporation, McLean, Virginia, 
March 1983. 

6. U.S. Department of Transportation, Federal Aviation Administra
tion, "National Airspace System Configuration Management 
Document: Automatic Tracking," NAS-MD-321, August 1, 1982. 

7. William P. Niedringhaus and Andrew D. Zeitlin, "Collision 
Avoidance Algorithms for Minimum TCAS II," MTR-82Wl58, The 
MITRE Corporation, McLean, Virginia, March 1983. 

8. Audrey W. Lipps, William J. Swedish, Barbara C. Zimmerman, 
"Operational and Functional Discriptions of the AERA Packages," 
MTR-83Wl25, The MITRE Corporation, McLean, Virginia, September 
1983. 

9. Gregory M. Hunter and Kenneth Steiglitz, "Operations on Images 
Using Quadtrees," IEEE Transactions on Pattern Analysis and 
Machine Intelligence, Vol. PAMI-1, No. 2, pp. 145-153, April 
1979. 

10. Hanan Samet, "An Algorithm for Converting Rasters to 
Quad trees," IEEE Transactions on Pattern Analysis and Machine 
Intelligence, Vol. PAMI-3, No. 1, pp. 93-95, January 1981. 

F-1 



11. Hanan Samet, "Region Representation: Quad trees from Boundary 
Codes," Communications of the Association for Computing 
Machinery, Vol. 23, No. 3, pp. 163-170, March 1980. 

12. Charles R. Dyer et al., "Region Representation: Boundary Codes 
from Quadtrees," Communications of the Association for 
Computing Machinery, Vol. 23, No. 3, pp. 171-179, March 1980. 

13. Glenn C. Kinney, Glennis L. Bell, and Martin A. Ditmore, 
"Glossary of Common Terms in Air Traffic Control Operations," 
WP-83W22, The MITRE Corporation, McLean, Virginia, March 1983. 

F-2 


