
FAA-HDBK-009-B
November 2012

FEDERAL	AVIATION	ADMINISTRATION	

HANDBOOK	

	

Common	Message	Handling	Protocol	(CMHP)	

	

This handbook is for guidance only. Do not cite this document as a requirement.

FAA-HDBK-009-B
November 2012

ii

Foreword

1. This handbook is approved for use by all Departments of the Federal Aviation Administration

(FAA).

2. This handbook documents the Common Message Handling Protocol (CMHP), which is an
application-level protocol that runs over Transmission Control Protocol/Internet Protocol
(TCP/IP).

3. This handbook is a reference document.

4. Address comments, suggestions, or questions regarding this handbook to:

Enterprise Product Support Program Management Office (EPS PMO)
FAA William J. Hughes Technical Center
Atlantic City International Airport
Atlantic City, NJ 08405

e–mail: 9-ACT-FTI-PST@faa.gov

FAA-HDBK-009-B
November 2012

iii

Table of Contents

1 SCOPE ... 1

1.1 Scope .. 1
1.2 Change Record ... 2

2 APPLICABLE DOCUMENTS ... 3

2.1 FAA Documents ... 3
2.2 Non-FAA Government Documents ... 3
2.3 Non-Government Documents ... 3

3 DEFINITIONS .. 4

3.1 Terms .. 4
3.2 Abbreviations and Acronyms ... 4

4 GENERAL GUIDANCE ... 5

4.1 Purpose ... 5
4.2 General History .. 6
4.3 Functional Description ... 7

4.3.1 Registration ... 7
4.3.1.1 Registration under CMHP v1.2 and Beyond ... 7

4.3.2 Stop Service .. 8
4.3.2.1 Normal Shutdown Processing ... 8
4.3.2.2 Abnormal Shutdown Processing ... 8

4.3.3 Message-Delivery Assurance Mechanism .. 9
4.3.3.1 Message Sent Count .. 9
4.3.3.2 Message Received Count ... 9

4.3.4 Keep-Alive Mechanism... 11
4.3.5 Application-Level Flow Control ... 11
4.3.6 Additional CMHP Error Handling .. 12

4.3.6.1 CRC Validation ... 12
4.3.6.2 CMHP Header Validation ... 12
4.3.6.3 Additional CMHP Validation under CMHP v1.3 .. 12

4.3.7 Byte-Order Mandate .. 13
4.3.8 TCP/IP Partial Read Timeout .. 13

5 DETAILED GUIDANCE .. 14

5.1 Protocol Stack ... 14
5.1.1 Transport Layer - TCP Segment Format ... 14
5.1.2 Application Layer – CMHP Message Format ... 15

5.2 CMHP Header .. 15
5.2.1 Host-Network Byte-Ordering Requirements ... 16
5.2.2 Message Length .. 16
5.2.3 Message Types .. 16
5.2.4 Version Fields ... 16
5.2.5 Status Field .. 16
5.2.6 Timestamp Fields .. 17

FAA-HDBK-009-B
November 2012

iv

5.2.7 Source Location Identification Field ... 17
5.2.8 Message Sent Count Field ... 17
5.2.9 Message Received Count Field ... 17
5.2.10 Flags .. 17

5.2.10.1 CMHP v1.1 .. 17
5.2.10.2 CMHP v1.2 .. 17
5.2.10.3 CMHP v1.3 .. 18

5.2.11 Spare Fields ... 18
5.2.12 Checksum Field ... 18

5.3 CMHP Management Messages .. 18
5.3.1 Acknowledgment Message ... 18
5.3.2 Registration Request Message .. 19
5.3.3 Registration Response Message .. 19
5.3.4 Stop Service Notification Message ... 19
5.3.5 Stop Service Notification Response Message ... 20

5.4 CMHP Data Messages .. 21
5.5 CMHP Timers .. 21

5.5.1 Keep-Alive Timer ... 21
5.5.2 Partial Read Timer .. 21
5.5.3 Poll Response Timer ... 21
5.5.4 Registration Timer .. 21
5.5.5 Shutdown Timer .. 21

5.6 Conformance Test Plan for CMHP .. 22
5.6.1 Scope ... 22
5.6.2 Purpose .. 22
5.6.3 CMHP Test Procedures ... 23

5.6.3.1 R1 – Registration Request – General Tests (Client) .. 25
5.6.3.2 R2 – Registration Request – Illegal Message Tests (Client) ... 26
5.6.3.3 R3 – Registration Request – Corrupted Message Tests (Client) ... 27
5.6.3.4 R4 – Registration Request – General Tests (Server) ... 29
5.6.3.5 R5 – Registration Request – Illegal Message Tests (Server) ... 31
5.6.3.6 R6 – Registration Request – Corrupted Message Tests (Server) ... 32
5.6.3.7 R7 – Registration Violation – General Tests (Either) ... 34
5.6.3.8 R8 – Registration Violation – Corrupted Message Tests (Either) 35
5.6.3.9 A1 – Acknowledgments – General Tests (Either) ... 36
5.6.3.10 A2 – Acknowledgments – Corrupted Message Tests (Either) .. 37
5.6.3.11 S1 – Stop Notification Request – Corrupted Message Tests (Either) 39
5.6.3.12 S2 – Stop Notification Request - Illegal Message Tests (Either) .. 41
5.6.3.13 S3 – Stop Notification Response - Corrupted Message Tests (Either) 42
5.6.3.14 S4 – Stop Notification Response - Illegal Message Tests (Either) 44
5.6.3.15 D1 – Application Data Transfer - Corrupted Message Tests (Either) 45
5.6.3.16 D2 – Application Data Transfer - SUT Receiving Tests (Either) .. 47
5.6.3.17 D3 – Application Data Transfer - SUT Sending Tests (Either) ... 48
5.6.3.18 F1 – Flow Control Tests (Server – v1.2 and Beyond) ... 49
5.6.3.19 F1 – Flow Control Tests (Client - v1.2 and Beyond) .. 50

6 NOTES .. 51

6.1 Intended Use ... 51
6.2 Superseding Documentation ... 51
6.3 Cross-Reference of Classifications and Substitutability Data .. 51

FAA-HDBK-009-B
November 2012

v

6.4 Subject Term (Key Word) Listing .. 51
6.5 International Interest ... 51
6.6 Identification of Changes ... 51
6.7 Updating this Handbook ... 51

List of Figures

Figure 4-1 CMHP Overview ... 5
Figure 4-2 Example of M(s) and M(r) .. 10
Figure 5-1 Protocol Stack ... 14
Figure 5-2 Standard TCP Segment Structure .. 14
Figure 5-3 CMHP Message Format .. 15
Figure 5-4 Test Setup .. 22
Figure 5-5 CMHP Roles ... 23

List of Tables

Table 4-1 Feature Set Support .. 6
Table 5-1 CMHP Header in v1.1, v1.2, and v1.3.. 15
Table 5-2 CMHP Management Message Types ... 16
Table 5-3 Registration Request Message .. 19
Table 5-4 Registration Response Message Status – Response Codes .. 19
Table 5-5 Stop Service Notification – Optional Field .. 19
Table 5-6 Stop Service Notification Message – Status Codes for Normal Conditions 20
Table 5-7 Stop Service Notification Message – Status Codes for Abnormal Conditions 20
Table 5-8 Conformance Test Groups .. 24

FAA-HDBK-009-B
November 2012

vi

FAA-HDBK-009-B
November 2012

1

1 SCOPE

1.1 Scope

This handbook provides the definitive detailed description of the Common Message Handling Protocol
(CMHP) that should be used to support the software development and implementation of the protocol. In
addition, it should be used as a reference document in the development of the Interface Requirement
Document (IRD) and Interface Control Document (ICD) that will be developed by systems using CMHP.

CMHP is an application-level protocol developed by the FAA. It is designed for TCP/IP users. TCP/IP
is a fire-and-forget protocol with no message receipt acknowledgment and little socket management.
CMHP adds functionality (at the application level) that provides message-delivery assurance, regardless
of the number of sockets that are traversed between end-systems.

The EPS PMO can provide CMHP source-code libraries under an “as-is” agreement to any user system
that wants that to develop CMHP-based applications. The EPS PMO also provides potential users with
the associated IRD and ICD to connect to the NADIN MSN, WMSCR, and ADAS.

This handbook describes how CMHP is implemented. It also provides the conformance test plan that the
EPS PMO arranges to conduct with new user systems that want to connect to WMSCR, ADAS, or
NADIN and who want to use CMHP features.

The scope of this handbook is restricted to the latest version of CMHP (v1.3), its predecessors CMHP
v1.2 and CMHP v1.1, and obsoletes CMHP v1.0. The scope is further restricted to CMHP use over
Transmission Control Protocol/Internet Protocol (TCP/IP).

Note: This handbook discusses the base functionality defined as part of CMHP v1.1. Any new
functionality defined by CMHP v1.2 and CMHP v1.3 is called out explicitly.

This handbook provides:

 An overview of CMHP
 A description of the functions CMHP provides
 A technical description of CMHP message elements
 The CMHP conformance test plan, which includes an overview of the test cases and a strategy to

execute them.

This handbook is for guidance only and cannot be cited as a requirement.

FAA-HDBK-009-B
November 2012

2

1.2 Change Record

Vertical lines in the margins (change bars) identify new or revised text added since the previous baseline.

Description Of Change Revised Date Version Number

Initial Baseline May 2011 -

Added guidance regarding Poll and Final flags (Sections
5.2.10.1 and 5.2.10.3)

Added further guidance on the use of status codes (Sections
4.3.2.2)

Added further information on the validation of Major and
Minor version fields and Source Location Identification field
(Sections 4.3.6.3)

Added new Section 4.3.8

Added clarification on user-defined Stop Service Notification
messages (Section 5.3.4)

April 2012 A

Added three new conformance tests: R6-20, A2-17, and S2-08;
modified D3-02 to accommodate an additional test scenario.

November 2012 B

FAA-HDBK-009-B
November 2012

3

2 APPLICABLE DOCUMENTS

The documents listed below are not necessarily all of the documents referenced herein, but are those
needed to understand the information provided by this handbook.

2.1 FAA Documents

This section is not applicable to this handbook.

2.2 Non-FAA Government Documents

This section is not applicable to this handbook.

2.3 Non-Government Documents

The following documents form a part of this document to the extent specified herein.

a. IETF RFC 793 Transmission Control Protocol, September 1981
(http://www.ietf.org/rfc/rfc793.txt)

b. IEEE 802.3 Local Area Network (LAN) Protocols
(http://standards.ieee.org/getieee802/802.3.html)

FAA-HDBK-009-B
November 2012

4

3 DEFINITIONS

3.1 Terms

Application The CMHP application is the software that performs the functionality described
in this handbook. Application refers to the client and the server applications.

Far-end application When two systems are communicating, the far-end application is the application
on the remote system.

Local application When two systems are communicating, the local application is the application at
the near end.

RFS Request For Service. This is a process within several FAA organizations that
covers the authorization and connectivity of users to access FAA systems for
application-level specific services.

3.2 Abbreviations and Acronyms

CMHP Common Message Handling Protocol

CRC Cyclic Redundancy Check

CTE Conformance Test Executive

FAA Federal Aviation Administration

FNTB FTI National Test Bed

FTI FAA Telecommunications Infrastructure

GPS Global Positioning System

ICD Interface Control Document

IP Internet Protocol

IRD Interface Requirement Document

LAN Local Area Network

NAS National Airspace System

NAT Network Address Translation

RFS Request For Service

SUT System Under Test

TCP Transmission Control Protocol

Tech Center William J. Hughes Technical Center

TPP Telecommunications Program Plan

FAA-HDBK-009-B
November 2012

5

4 GENERAL GUIDANCE

4.1 Purpose

CMHP is an application-level protocol that conceptually “sits” between the application and the TCP/IP
stack. Two CMHP-based applications initially communicate in a client-server relationship (as Figure 4-1
depicts) with one CMHP application configured to be a CMHP client application, and the other as a
CMHP server application.

Figure 4-1 CMHP Overview

Before any application-level data can be exchanged, the CMHP client application has to successfully
register for service with the CMHP server application. Once registered, the two applications operate in a
peer-to-peer relationship where either side has the ability to send and receive application-level data
messages, and each side provides positive acknowledgment back to the other that it has successfully
received and processed the other side’s data messages. In addition, either application has the ability to
gracefully notify the other to terminate service before closing the TCP socket.

CMHP enables the exchange of application data with assurance that the data sent has been successfully
received and processed by the far-end application. It has been developed to provide several management
functions to support TCP socket-based applications.

The key management functions provided by CMHP are:

a. User Registration – In IP-based networks, the use of proxy servers and Network Address
Translation (NAT) devices have the ability to modify the source IP address field, thereby making
it impossible for end systems to uniquely identify the originating system of the TCP socket.
CMHP provides an application-level message exchange mechanism that enables a CMHP server
to uniquely identify the CMHP client, thereby enabling the CMHP server to determine whether to
accept or deny service.

b. Message-Delivery Assurance – IP-based protocols are not message-based, but are stream-
oriented. There are no robust mechanisms in place in the underlying IP protocols to provide
message-delivery assurance at the application level. CMHP provides a built-in sliding window
protocol that enables a system to acknowledge the receipt of application-level data messages back
to the sender.

c. Keep-Alive – Although there is an acknowledgment within TCP, there is a requirement at the
application-level to ensure that TCP sockets are still active. This cannot be accomplished without
transmitting something across the socket. CMHP provides an application-level Acknowledgment
message that applications can use after a period of communications inactivity to ensure that the
TCP socket is still active by forcing the far-end application to reply.

FAA-HDBK-009-B
November 2012

6

CMHP requires that a common header be used for all application-level message exchanges, regardless of
whether they are management or data messages. The CMHP header has two key fields: the Message
Length and the Message Type fields.

a. A Message Length field is needed by any application using TCP/IP sockets, and is the first field
of all messages sent across the interface. As TCP/IP is a streams-based protocol, there is no
concept of messages. Applications generally use a length field to determine the number of bytes
to associate with an incoming message and read that number of bytes off the TCP/IP stack before
passing the complete message up for further processing. The next byte(s) read off the TCP/IP
stack after that should be the length field of the next message.

b. CMHP specifies a field in the header to be used to define the type of message being processed.
This can be either one of several CMHP management messages or a CMHP data message that
contains application-specific data. Each type of CMHP message should have a unique message
type value.

4.2 General History

This section provides a detailed description of the protocol and the application-level CMHP messages that
are supported. There are three variants (versions) of the CMHP protocol (1.1, 1.2, and 1.3), with each one
encompassing the prior version.

a. CMHP v1.1 is the core version of the protocol that provides most of the CMHP functionality.

b. CMHP v1.2 encompasses all of CMHP v1.1 functionality, supports a new feature (application-
level flow control) as well as adding some flexibility for message exchange during the
registration process.

c. CMHP v1.3 encompasses all of CMHP v1.2 (and therefore all of CMHP v1.1), adds no additional
features, but includes additional validation checks on the CMHP header.

Table 4-1 lists the feature sets and the versions under which they are supported.

Table 4-1 Feature Set Support

Feature CMHP
v1.1

CMHP
v1.2

CMHP
v1.3

Registration X X X
Stop Service X X X
Message Delivery Assurance X X X
Keep-Alive Mechanism X X X
Application-Level Flow Control X X

FAA-HDBK-009-B
November 2012

7

4.3 Functional Description

4.3.1 Registration

Registration is the process in which a client sends a request-for-service to a server before the exchange of
information can begin. Under CMHP, the roles of client and server are configurable and agreed upon
between two systems during an up-front agreement (such as the FAA’s RFS process). This CMHP role is
independent of which side initiates the TCP socket connection. A system can be assigned a server role
with one user, but can be a client with another user; that is, the CMHP role should be configurable on a
per-socket basis.

Regardless of which system establishes the TCP socket connection, the first CMHP message sent over
this interface is the Registration Request, which is a CMHP management message. This message is only
sent by the CMHP client and contains either one or two identification fields (that are agreed upon during
the RFS process). The CMHP server application uses this information to identify the incoming system. In
response to the incoming Registration Request message, the CMHP server system responds with a
Registration Response (another CMHP management message) indicating if the Registration Request has
been accepted.

If a CMHP server system rejects a Registration Request, it sends a Registration Response message back
to the CMHP client (indicating the reason why the registration was refused), and then closes the TCP
socket.

When a TCP socket connection is established, the CMHP server should wait a configurable amount of
time (Registration Timer) for a Registration Request message. If one is not received within this
timeframe, the CMHP server sends a Stop Service Notification (another CMHP management message)
and closes the socket. If the first message received by the CMHP server across this interface is not a
Registration Request message, the CMHP server sends back a Stop Service Notification message and
closes the socket.

A CMHP client application should wait a configurable amount of time (Registration Timer) for a
Registration Response message. If one is not received, it sends a Stop Service Notification message and
initiates socket-closing procedures.

If the CMHP server application detects any error with any of the CMHP header fields of the Registration
Request message, the CMHP server sends back a Stop Service Notification message with the appropriate
error code and closes the socket.

4.3.1.1 Registration under CMHP v1.2 and Beyond

In CMHP v1.1, the first message to be sent over the TCP socket is a Registration Request message, which
the CMHP client sends. Starting with CMHP v1.2, this has been loosened to enable the CMHP client to
send a Stop Notification Request as the first message across the interface. However, this message should
only be sent when the CMHP server is responsible for establishing the TCP socket connection to the
CMHP client, and the client application is not ready to initiate the registration process. The Stop
Notification Request sent by the CMHP client contains the status code (see Table 5-7 for a list of status
codes) indicating this condition and when the CMHP server application receives this Stop Notification
Request, it closes down the socket and should not attempt to re-establish the socket connection to the
CMHP client until an agreed-upon time has passed.

In a similar scenario, when a CMHP client establishes the socket connection to a CMHP server, and
issues the normal Registration Request message, the CMHP server may not be ready to support the
incoming request and can now respond with a Stop Notification Request message, which contains an
abnormal stop indicating the reason why the Registration Request has been refused. An example of this
case would be when a CMHP client attempts to establish a connection to a backup server, instead of the

FAA-HDBK-009-B
November 2012

8

primary server. The backup server can now respond back, indicating that it is in a backup state and the
client should re-attempt to connect to the primary server.

4.3.2 Stop Service

The stop service mechanism provides a graceful application-level notification for either side to use as a
precursor to closing the TCP socket. A CMHP application uses this mechanism to close the connection
during normal and abnormal conditions.

It is strongly recommended that CMHP applications always perform a graceful close of the TCP socket.
A graceful close is an orderly shutdown process of the socket that requires all data transmitted in both
directions to be acknowledged (by TCP) before the connection may be closed. A graceful close of the
TCP socket allows for the far-end system to process any Stop Service Notification message before the
socket is closed.

4.3.2.1 Normal Shutdown Processing

The transmission of a Stop Notification Request message (with a reason code less than 0x1000) by a
CMHP application indicates that it is not transmitting any more application messages, and is requesting a
graceful shutdown for normal operational reasons. The application should then wait for a configurable
period (Shutdown Timer) to receive a Stop Notification Response message back. On receipt, or if the
period for waiting expires, the CMHP application should initiate socket-closing procedures.

The CMHP application that initiates the stop service can implement one of the two following options on
how to handle subsequent incoming messages from the far-end system.

a. It can either ignore all subsequent incoming messages (whether they are valid or not) and wait for
the Stop Notification Response (or associated timer to expire), or

b. It can process the incoming messages, acknowledge them as normal, and then wait for the Stop
Notification Response message (or associated timer to expire).

The CMHP application receiving a Stop Notification Request message (indicating a normal shutdown)
should issue a Stop Notification Response (in response), but the transmission of this message also
indicates that it will not send any subsequent CMHP messages and will initiate its own socket-closing
procedures. However, the transmission of the Stop Notification Response message can be deferred until
any and all messages in the process of being transmitted are sent and acknowledged by the far-end
system.

4.3.2.2 Abnormal Shutdown Processing

If either side has a major problem with processing any CMHP message, it should send a Stop Service
Notification message indicating the problem before initiating socket-closing procedures. The Stop Service
Notification message provides the reason for the socket being shutdown, and contains a Reason Code
(found in the Status field) whose value is greater than or equal to 0x1000. An optional free-text area can
also be used to provide additional system-specific information. The recipient of a Stop Service
Notification message, indicating an error condition, should not respond with a Stop Service Notification
Response message but should initiate socket-closing procedures.

Table 5-7 defines a list of specific status codes that must be used where applicable. If this table does not
provide a status code that is pertinent, then the status codes 0x1007, 0x100E, or 0x1013 can be used, but
text must be put into the optional field to supplement the use of any of these three codes. Note: if in
doubt, review the conformance test plan (Section 5.6) for further insight on applicable use of status codes.

FAA-HDBK-009-B
November 2012

9

4.3.3 Message-Delivery Assurance Mechanism

The CMHP message-delivery assurance mechanism provides positive feedback that the far-end system
has acknowledged the receipt of (and assumed responsibility for) one or more CMHP data messages. The
premise is that a CMHP application that is receiving messages should process them and acknowledge
them promptly. The feedback mechanism uses two fields in the CMHP header: the Message Sent Count
M(s) and the Message Received Count M(r).

4.3.3.1 Message Sent Count

Each system maintains a Modulo-256 count for all CMHP data messages sent across the socket
connection. The count is transmitted as part of the header (the M(s) field) for all messages sent across the
socket connection. The count is initialized to zero upon socket establishment, and each CMHP data
message is sequentially numbered to a maximum value of 255. The count then cycles back to zero. The
first CMHP data message sent across the interface has an M(s) value of zero, and CMHP applications
should increment the count after processing an outgoing CMHP data message. This means that all CMHP
management messages always indicate the number of the next CMHP data message to be sent, and all
CMHP data messages reflect their own number.

Each system maintains its own configurable transmit window so that while this transmit window is open,
it enables the system to transmit CMHP data messages. The size of the transmit window can be between 1
and 255, and is a count of the number of CMHP data messages that have been sent, but have not been
acknowledged by the far-end system. If a system fills its transmit window, it cannot not send any
additional CMHP data messages until the far-end system sends messages back that acknowledge the
receipt of one or more of those sent messages. The far-end system acknowledges messages by sending
CMHP data or management messages that contain an M(r) field with the value of the message it last
processed (see Section 4.3.3.2 for more details).

If no acknowledgment is received after a system-configurable period of time (Poll Response Timer) (after
the last message in the transmit window was sent), the local application should prompt the far-end
application for a reply by sending an Acknowledgment message with the Poll flag set. If there is still no
response received within a specified timeframe (Poll Response Timer), then the system has the flexibility
to repeat this polling mechanism by re-issuing an Acknowledgment message with the Poll flag set. This
Acknowledgment message is re-sent periodically one or more times until a message is received that
contains an updated M(r) value. If the limit for retransmitting these Acknowledgment messages is
reached, then the system issues a Stop Service Notification message (indicating this error condition) and
initiates TCP socket-closing procedures.

Note that instead of waiting to send the first Acknowledgment message with the Poll flag set, a system
can set the Poll flag in the last CMHP data message sent before the transmit window is closed. As an
example, if a system has a transmit window of three, it can either send three data messages, wait, and then
send the first Acknowledgment message with the Poll flag set; or it can set the Poll flag on the third data
message.

4.3.3.2 Message Received Count

Each system maintains a Modulo-256 count for all CMHP data messages it receives. The system uses this
count to acknowledge to the sending system (the far-end system) that it has successfully received and
processed a specific message or group of consecutive messages. This count is transmitted as part of the
CMHP header (the M(r) field) in all CMHP data and management messages sent back to the far-end
system.

The value reflected in the M(r) field value is the number of the next CMHP data message that the system
is expecting to process. If the M(r) value seen on incoming messages is equal to the M(s) value (for the

FAA-HDBK-009-B
November 2012

10

next message to be sent), it indicates there are no outstanding/unacknowledged messages. (Note: M(r)
should have a value of zero at socket initialization.)

A system should change the M(r) value when an incoming CMHP data message has been successfully
processed. The system can process one or a group of consecutively numbered messages, modifying the
M(r) field to the value of the next unacknowledged message, and then sending the updated M(R) back to
the far-end system.

When a system processes an incoming M(r) value of x, it assumes that all messages numbered up to and
including x-1 have been successfully received and processed by the far-end system.

A system acknowledges receipt of incoming messages in two ways:

a. The first is to update the M(r) field in any CMHP management or data message it sends back
across the interface.

b. The second is if there are no data messages waiting to be sent, a system sends a CMHP
Acknowledgment message updating the M(r) field.

Figure 4-2 depicts a simple interaction where a CMHP client system (that has a transmit window of three)
sends five messages to a CMHP server system, and then closes the socket. (Note the TCP socket
establishment and closure are not shown.)

Figure 4-2 Example of M(s) and M(r)

In the above example, the client system has a transmit window of three (that is., the maximum number of
unacknowledged messages it can transmit before it requires an acknowledgment). After the client system
successfully registers, it sends the first three messages and forces a far-end acknowledgment by setting
the Poll flag in the header of the third message. In this example, although the server has received the first
three messages, it has not had time to process any of them and replies as such with an Acknowledgment
message with the Final flag set as well as setting the value of the M(r) field to zero. However, after a few
seconds, when the server has processed all three incoming messages, it sends an acknowledgment with
the M(r) value set to three (indicating the number of the next unacknowledged message it expects to
process). On receipt of the acknowledgment, the client’s transmit window re-opens and the client system

FAA-HDBK-009-B
November 2012

11

 is then able to transmit its final two messages. The server is able to process these messages and send back
an Acknowledgment message with the Final flag set and with an M(r) value set to five to indicate that the
next message it is looking to process is five.

4.3.4 Keep-Alive Mechanism

The CMHP keep-alive mechanism is used to periodically probe the other end of a connection when the
connection has been idle for a configurable amount of time (Keep-Alive Timer). This mechanism is used
by the system that is responsible for establishing and maintaining the TCP sockets (typically, the client);
however, in reality, the system that has the smaller inactivity timer always triggers the keep-alive
mechanism.

When a system’s Keep-Alive Timer expires (that is, the condition has been detected that no messages
have been sent or received on a connection), a system sends an Acknowledgment message with the Poll
flag set. If the originator (of the Acknowledgment message) does not receive a response, it resends the
Acknowledgment message and repeats this cycle for a configurable number of attempts. If the limit of
attempts is reached, the system transmits a Stop Service Notification message and initiates socket-closing
procedures.

When a system receives an Acknowledgment message with the Poll flag set, it replies with either a data
message that it has queued up ready for transmission, or with an Acknowledgment message. In either
case, the Final flag is set.

4.3.5 Application-Level Flow Control

CMHP v1.2 introduced a new feature, application-level flow control, which enables one application to
notify the other of its ability to receive data. The Flow Control flag has been defined (in the CMHP
header) that when clear (set to zero by the local application), it indicates that the local application is able
to receive data. When set (to 1), it indicates that the local application is temporarily unable to process any
more incoming data.

Any time after a successful registration when CMHP is notified by its local application of a change in the
application’s ability to receive incoming CMHP data messages, the CMHP application should change the
Flow Control flag accordingly. The change to the flag should trigger CMHP to notify the far-end
application in one of two ways.

a. If there is any type of message in the queue ready to be sent to the far-end, then the CMHP
application should send that message (in the usual manner), but reflects the new state of the Flow
Control flag;

b. Otherwise, if there is nothing queued, the CMHP application sends an immediate CMHP
Acknowledgment message, which reflects the new state of the Flow Control flag.

The Flow Control flag can be set on any type of CMHP message (including the Registration Request and
Registration Response messages) and should remain in effect (that is, will be set) on all subsequent
CMHP messages. The same is true for the flag being cleared; it can be cleared on any type of CMHP
message and should remain in effect (cleared) on all subsequent CMHP messages.

When the local application receives a CMHP message with the Flow Control flag set, it should cease
transmission of all subsequent CMHP data messages until the Flow Control flag is cleared by the far-end
application. Note, however, this flag has no impact on the local application’s ability to transmit CMHP
management messages, nor on the local application’s ability to continue to receive CMHP data messages
from the far-end application.

FAA-HDBK-009-B
November 2012

12

When a local application sets the Flow Control flag, it may still receive a few incoming data messages.
This condition typically occurs when these messages are in transit from the far-end application before the
far-end application is able to receive and process the Flow Control flag. How the local application handles
these last incoming messages is beyond the scope of this handbook.

4.3.6 Additional CMHP Error Handling

4.3.6.1 CRC Validation

CMHP supports a 32-bit Cyclic Redundancy Check (CRC) field in the CMHP header. Before
transmission of all CMHP messages, the CRC field is zeroed out and a standard CRC-32 calculation
(CRC-32-IEEE 802.3) is performed across the entire CMHP message. The resulting checksum is stored in
the 32-bit CRC field of the CMHP header.

On receipt of all incoming messages, the value in the CRC field is saved, the field zeroed out, and the
CRC calculated and compared against the saved value. If the comparison fails, the system should issue
the Stop Service Notification message with the applicable error code and initiate socket-closing
procedures.

4.3.6.2 CMHP Header Validation

The CMHP applications must perform validation on specific fields in the CMHP header every time an
incoming message is received. For any problem detected, the only way to recover is to send a Stop
Service Notification message that indicates the error and to initiate socket-closing procedures. Table 5-7
defines a number of predefined error codes covering the anticipated error conditions.

At a minimum, the following CMHP header validations are to be performed:

a. Verify that the CMHP version is supported.

b. Verify that the Message Type field contains a valid value for the application.

c. Verify that the Message Type field contains a value that is valid for the current protocol state.

d. Verify that the Message Length is valid for the Message Type.

e. Verify that the Major and Minor fields are valid.

f. Verify the M(s) and M(r) values.

g. Verify that the status field has a value valid for the Message Type.

4.3.6.3 Additional CMHP Validation under CMHP v1.3

The following validation checks on the CMHP header are to be performed under CMHP v1.3:

a. Verify that Major and Minor versions do not change after registration. Note that the CMHP
client sets the CMHP version on the outgoing Registration Request message. A CMHP server
application has the option to either statically define the CMHP version for a specific CMHP client
and verify every incoming CMHP message against that statically defined value, or to dynamically
set the value when receiving the incoming Registration Request message. Note that the system-
specific IRD/ICDs should define whether they support the static or dynamic nature of these
fields.

b. Verify that the remote application’s Source Location Identification is valid. This value can either
be statically defined, or can be dynamically set by an incoming Registration Request (for a
CMHP server application) or by an incoming Registration Response (for a CMHP client

FAA-HDBK-009-B
November 2012

13

application). Note that the system-specific IRD/ICDs should define whether they support the
static or dynamic nature of these fields.

c. Verify that the Flag field only uses the bit fields associated with the selected CMHP version.

d. Verify that the Spare fields are set to binary zero.

4.3.7 Byte-Order Mandate

Byte-order handling is the ability to convert multi-byte numeric fields from host byte-order to network
byte-order for outbound messages and to convert from network byte-order to host byte-order on inbound
messages. This functionality enables CMHP applications to send and receive messages over IP-based
communication networks regardless of the “endianness” of either system.

The CMHP application is responsible for the byte-order handling of the CMHP header for all messages
and the CMHP payload for CMHP management messages only. Applications are responsible for the byte-
order handling of the CMHP payload for all CMHP data messages.

4.3.8 TCP/IP Partial Read Timeout

Although CMHP can reside on top of any underlying communications protocol, the anticipation is that
TCP/IP will be the prevalent protocol. It is strongly recommended for time-sensitive applications that
when using TCP/IP, the handling of the TCP/IP partial read timeout be leveraged to detect missing
incoming data rather than using CMHP’s Keep-Alive mechanism.

FAA-HDBK-009-B
November 2012

14

5 DETAILED GUIDANCE

This section defines the CMHP functionality supported, message formats, and message structures.

5.1 Protocol Stack

CMHP is an application-layer protocol that is used to exchange application data using TCP/IP, as per the
Internet Protocol stack that Figure 5-1 shows.

Application Layer

Link Layer

Physical Layer

Network
Interface

Internetwork
Layer

Transport Layer

Link Layer

Physical Layer

Network
Interface

CMHP

TCP

IP

CMHP Server CMHP Client

Application Layer

Internetwork
Layer

Transport Layer

IP
Lower Layer

Protocols

Intermediate IP Service

Physical Connection/Point of Demarcation

Figure 5-1 Protocol Stack

5.1.1 Transport Layer - TCP Segment Format

A TCP segment consists of the TCP header and TCP data fields (as Figure 5-2 depicts) that reside within
the data field of an IP datagram. The definition of the individual fields within the TCP header is
contained in RFC 793 (IETF STD-7). The TCP header field is 20 bytes in length.

IP Header IP Data

20 Bytes 1-1480 bytes

TCP DataTCP Header

20 Bytes 1-1460 bytes

Figure 5-2 Standard TCP Segment Structure

FAA-HDBK-009-B
November 2012

15

5.1.2 Application Layer – CMHP Message Format

A CMHP message consists of the CMHP header and an optional CMHP payload (as Figure 5-3
illustrates). A CMHP message can reside anywhere in the TCP data field of a TCP segment. There could
be multiple CMHP messages in one TCP data field or a CMHP message could span multiple TCP data
fields, which would mean that not all TCP data fields include a CMHP header.

CMHP Header CMHP Payload

Variable length40 bytes

TCP Data

1-1460 bytes

Figure 5-3 CMHP Message Format

CMHP supports CMHP management messages, which the rest of this section describes in detail, and
CMHP data messages. System-specific Interface Requirement Documents and Interface Control
Documents (IRDs and ICDs) define CMHP data messages.

5.2 CMHP Header

All CMHP messages (data and management) transmitted over a TCP/IP socket connection should include
a CMHP header as Table 5-1 defines.

Table 5-1 CMHP Header in v1.1, v1.2, and v1.3

Name

Length
(Bytes)

Format

Description

Message Length 4 Numeric Length of the CMHP message including the CMHP header
Message Type 2 Numeric Defines the type of message – for example, AFTN, WMO,

OMO, Keep-Alive, Registration Request
Major Version 1 Numeric Set to 0x01
Minor Version 1 Numeric Set to 0x01, 0x02, or 0x03
M(s) 1 Numeric Message Sent Count
M(r) 1 Numeric Message Received Count
Flags 1 Bit Bit 0 – Poll flag

Bit 1 – Final flag
Bit 5 – Flow Control flag (v1.2 only)

Spare 1 Numeric Set to 0x0
Status 2 Numeric This field provides supporting information based on the

Message Type – Default value 0x0000
Timestamp - Minutes 2 Numeric Minute of the Day message sent (0 – ((24*60)-1)
Timestamp - Seconds 4 Numeric Microsecond of the Minute (0 – (60*100000)-1)
Source Location ID 8 ASCII Identifier used to depict the sender of the message. Pad with

binary zeros
Spare 8 ASCII To be used for future options – Set to 0x0.
Checksum 4 Numeric 32-bit CRC

FAA-HDBK-009-B
November 2012

16

5.2.1 Host-Network Byte-Ordering Requirements

As per Section 4.3.7, the CMHP application is responsible for converting the following multi-byte
numeric fields in the CMHP header:

a. Message Length

b. Message Type

c. Status

d. Timestamp fields

e. Checksum.

5.2.2 Message Length

The Message Length field is the first four bytes of the CMHP header and contains the length of the
CMHP message. The length field includes the total number of bytes of the CMHP header (including the
Message Length field) and the (optional) CMHP payload.

5.2.3 Message Types

CMHP supports the following CMHP management message types. See Section 5.4 for the list of currently
defined CMHP data message types.

Table 5-2 CMHP Management Message Types

CMHP Management Messages

Message Type
Value

Message Length
(bytes)

CMHP Management Requests/Notifications
Registration Request 0x0002 72 or 88
Stop Service Notification 0x0003 40 – 296

CMHP Management Request/Response
Acknowledgment 0x0040 40

CMHP Management Responses
Registration Response 0x0082 40
Stop Service Notification Response 0x0083 40

5.2.4 Version Fields

All headers contain a version number representing the Major.Minor format. The major number should
only change if there is an update to the structure of the header, which results in a change to the header
size. Therefore, the major version should always be associated with the same size header. The v1.x series
header is 40 bytes. The minor field should change if new fields are defined in the spare areas of the
header, or if new functionality is added.

5.2.5 Status Field

The use of the Status field is specific to each type of CMHP message. For those CMHP management
messages where the Status field has no relevance, it is set to 0x0000 on output and is ignored on input for
CMHP v1.1 or v1.2. However for v1.3, this field must be verified to be non-zero and is detected and
reported by sending a Stop Notification Message with the appropriate status code (see the status codes for
CMHP v1.3 in Table 5-6).

FAA-HDBK-009-B
November 2012

17

5.2.6 Timestamp Fields

The current concept is to provide a mechanism to determine network latency in both directions, but for it
to be useful, systems using this feature need to be synchronized, that is, based on GPS or quantum clocks.

5.2.7 Source Location Identification Field

The Source Location Identification field is used to depict the source of the message.

5.2.8 Message Sent Count Field

Every message transmitted across the interface is numbered in each direction. A Modulo-256 scheme is
used for the sequence-numbering scheme. The message sequence cycles through the whole range from 0
to 255. The first message sent after the establishment of the socket connection has the send-sequence
number set to zero.

5.2.9 Message Received Count Field

This byte field represents the last acknowledged message received by a system. A Modulo-256 scheme is
used for the sequence number. The message sequence cycles through the whole range from 0 to 255. The
initial value upon socket establishment is zero.

5.2.10 Flags

5.2.10.1 CMHP v1.1

In CMHP v1.1, this byte field defines the use of only two flags: the Poll and Final flags. These flags
support the message-delivery assurance mechanism. The Poll flag is used as a command indicating that
the far-end has to respond back. The Final flag is used to acknowledge the Poll flag. (Note: Bit 0 denotes
the least-significant bit.) A flag is set when it has a value of 1, and it is clear when it has a value of 0. The
other six unused flags are set to 0.

The Poll and Final flags are clear for Registration Request or the Registration Response messages.
However, these fields should be ignored on input, that is, no validation needs to be performed on these
fields.

The Poll and Final flags can be set for the Stop Notification Request (when the status code < 0x1000), as
this message indicates a normal shutdown and requires receipt of a Stop Notification Response message
before the socket is closed.

The Final flag can be set for the Stop Notification requests (when the status code >= 0x1000) indicating
an error condition. Setting the Poll flag in this case makes no sense, and should be ignored on input.

For Stop Notification Response messages, although setting the Final flag is valid, setting the Poll flag is
not. The Poll flag should be ignored on input.

5.2.10.2 CMHP v1.2

In CMHP v1.2, this byte field defines the use of three flags. The Poll and Final flags are used as per
CMHP v1.1. The third flag, defined in CMHP v1.2, is the Application-Level Flow Control flag. This is a
pass-through flag that is set and cleared by the application to denote its ability to receive data (flag is set
to 0) and when the application is unable to receive data (flag is set to 1). The other five flags are to be set
to 0 on output and should be ignored on input.

FAA-HDBK-009-B
November 2012

18

5.2.10.3 CMHP v1.3

The Poll and Final Flags must be cleared on Registration Request and Registration Response messages.
However, if the Poll or Final flag is set on a Registration Request or a Registration Response, the
condition must be detected and reported by sending a Stop Notification Message with the appropriate
status code (see the status codes for CMHP v1.3 in Table 5-6).

5.2.11 Spare Fields

The Spare fields within the header are used to pad structures to 4-byte boundaries, to provide flexibility
for future capability, and to ensure the CMHP header is 40 bytes in length. These spare fields must be set
to binary zero. Under CMHP v1.3, a non-zero condition must be detected and reported by sending a Stop
Notification Message with the appropriate status code (see the status codes for CMHP v1.3 in Table 5-6).

5.2.12 Checksum Field

This field contains a standard CRC-32 (CRC-32-IEEE 802.3) value, which is calculated on the CMHP
header and CMHP payload. Note that the checksum field is set to binary zero before the calculation is
performed, and is replaced with the calculated CRC value on transmission.

5.3 CMHP Management Messages

CMHP supports the following types of CMHP management messages:

a. Acknowledgments

b. Registration Requests and Responses

c. Stop Notifications and Responses.

5.3.1 Acknowledgment Message

The Acknowledgment message consists solely of the CMHP header with the Message Type field set to
0x0040. It is used for the Keep-Alive mechanism, as well as being one of the ways to acknowledge the
receipt of one or more incoming CMHP data messages, and one of the ways to indicate a change in
application-level flow control status.

If the acknowledgment is being forced (by the receipt of an incoming message with the Poll flag set), the
local system must respond with the Final flag set; otherwise, for all other conditions, the Final flag is set
to zero.

If a system receives an Acknowledgment message with the Final flag set, but the system has no
outstanding Poll flag set, the Acknowledgment message is processed normally and the Final flag is
ignored.

If a system receives an Acknowledgment message with the Poll flag clear, but the system has an
outstanding Poll flag set, the system should ignore the Acknowledgment message.

For CMHP v1.2 and later, whenever the local application changes the value of the Application-Level
Flow Control flag, an Acknowledgment message is sent to notify the far-end of the new status of the flag,
unless there is a pending message to be sent, in which case, that pending message can be used to reflect
the new status of the Flow Control flag.

FAA-HDBK-009-B
November 2012

19

5.3.2 Registration Request Message

The Registration Request message consists of the CMHP header (with the Message Type field set to
0x0002) and a CMHP payload that consists of either one or two supporting fields.

The Primary Identifier field is mandatory and is a fixed length 32-byte field, and if the primary identifier
itself is less than 32 ASCII characters, then the remainder of this field is filled with binary zeros (0x0).

The Secondary Identifier field is optional, and is not sent as part of the Registration Request message if
the CMHP server application does not require a secondary identifier. If required, this field is a fixed
length, 16-byte field, and if the secondary identifier itself is less than 16 ASCII characters, then the
remainder of this field is filled with binary zeros.

Table 5-3 Registration Request Message

Name Length Format Description
Primary Identifier 32 ASCII Mandatory identifier
Secondary Identifier 16 ASCII Optional identifier

5.3.3 Registration Response Message

The Registration Response message is sent by the CMHP server application in response to a Registration
Request message. It should consist only of the CMHP header, with the Message Type field set to 0x0082
and the Status field, which should contain one of the following values.

Table 5-4 Registration Response Message Status – Response Codes

Status Field Value Meaning
0x0001 Registration Successful
0x1001 Registration Failed – Unknown Primary Id
0x1002 Registration Failed – Invalid Secondary Id
0x1003 Registration Failed – Access Barred

5.3.4 Stop Service Notification Message

The Stop Service Notification message consists of the CMHP header (with the Message Type field set to
0x0003) and an optional CMHP payload that consists of a free-text variable-length field to be used to
provide additional information/reason for stopping the service.

Table 5-5 Stop Service Notification – Optional Field

Name Length Format Description
Text 256 ASCII Free text area to provide additional error condition information

If the Status field (in the CMHP Header) contains a value that is the range 0x0001-0x0FFF it indicates a
“normal” shutdown condition and requires the far-end system to respond back with a Stop Notification
Response message. Table 5-6 defines the one predefined status code; the range allocated for future
CMHP use, and the range allocated for system-specific conditions.

FAA-HDBK-009-B
November 2012

20

Table 5-6 Stop Service Notification Message – Status Codes for Normal Conditions

Status Value Meaning
0x0001 Normal operational request for shutdown

0x0002 – 0x01FF Reserved for future CMHP use for non-error conditions
0x0200 – 0x0FFF System-defined shutdown codes for non-error conditions.

If a system-specific status code is used, then the optional text field (see Table 5-5) must contain
supporting text.

If the Status field (in the CMHP Header) contains a value that is in the range 0x1000-0xFFFF, it indicates
an abnormal condition has occurred and no Stop Notification Response message is required to be
returned. Table 5-7 lists pre-defined status codes that CMHP applications must use when applicable.
However, there is a range of status codes available to support system-specific conditions (0x2000-
0xFFFF). If a system-specific status code is used, then the optional text field (see Table 5-5) must contain
supporting text.

Table 5-7 Stop Service Notification Message – Status Codes for Abnormal Conditions

Status Value Meaning
0x1006 Poll response timeout
0x1007 Illogical condition – catch-all
0x1008 Received message length not valid
0x1009 Received message type not defined
0x100A Received message has unexpected version
0x100B No local buffers
0x100C Received message byte count error
0x100D Non-registration message received when not registered
0x100E System in wrong state
0x100F Bad checksum on received message
0x1010 Registration request timeout
0x1011 Registration response timeout
0x1012 Message larger than max allowed for this interface
0x1013 Interface status not ok for received message
0x1014 Received M(s) is not expected
0x1015 Received M(r) out of valid range
0x1019 Partial Read timeout
0x101A Received message invalid as declared by application

0x2000 – 0xFFFF System-specific errors
Added under CMHP v1.3

0x101B Received message has illegal flags set for CMHP version
0x101C Invalid Source Location field detected
0x101D First spare field contains non-zeros
0x101E Second spare field contains non-zeros
0x101F Invalid status code detected
0x1020 Registration message received with Poll flag set – illegal condition
0x1021 Registration message received with Final flag set – illegal condition

5.3.5 Stop Service Notification Response Message

The Stop Service Notification Response message consists of the CMHP header with the Message Type
field set to the value 0x0083. This message is only sent back in response to a Stop Service Notification
message that has a Status field value of less than 0x1000.

FAA-HDBK-009-B
November 2012

21

5.4 CMHP Data Messages

All CMHP data messages are specific to the CMHP-compliant applications and should, therefore, be
defined in the associated system-specific IRD and ICDs.

5.5 CMHP Timers

This section describes a set of timers associated with the implementation of this protocol.

5.5.1 Keep-Alive Timer

The Keep-Alive Timer tracks the time an application tolerates inactivity in both directions over a
connection before sending an Acknowledgment message with the Poll flag set, forcing the far-end to
respond with an Acknowledgment message with the Final flag set. The recommendation is for the side
that initiates the socket connection be the one with the smaller Keep-Alive Timer to detect and recover
from a loss of the underlying TCP connection.

5.5.2 Partial Read Timer

This timer is a function of the underlying TCP protocol, and is the time the application waits after
receiving at least the first byte of a message until receiving the complete message. If this timer expires,
the system should send a Stop Notification Request message with a code of 0x1019. The system should
then initiate socket-terminating procedures.

5.5.3 Poll Response Timer

The Poll Response Timer is the time an application waits after sending a message with the Poll flag set to
receiving a response that includes an updated M(r) value.

5.5.4 Registration Timer

For CMHP servers, this timer is associated with the time between a TCP socket being established and the
time to wait for a Registration Request message to be received from the CMHP client. If the Registration
Timer expires, the CMHP server should send a Stop Notification Request message with a code of 0x1010.
The CMHP server then initiates socket-terminating procedures.

For a CMHP client, this is the time between sending a Registration Request message and receiving a
Registration Response message. If the Registration Timer expires, the CMHP client sends a Stop
Notification Request message with a code of 0x1011. The CMHP client then initiates socket-terminating
procedures.

5.5.5 Shutdown Timer

This is the time after sending a Stop Notification Request with a status code <0x1000 to receive a Stop
Notification Response. If this timer expires, then the application should initiate socket-closing procedures.

All CMHP applications should wait a minimum time after sending a Stop Notification message with an
error code (>=0x1000) before initiating socket-closing procedures to allow the Stop Notification message
to be sent by the local stack across the interface to the far-end system.

FAA-HDBK-009-B
November 2012

22

5.6 Conformance Test Plan for CMHP

This section describes the CMHP Conformance Test Plan. The CMHP Conformance Test Plan provides
a starting point for the detailed planning required to test any CMHP implementation to determine its
conformance to this handbook. This section provides an overview to the test cases, an understanding of
the overall goals, and the strategy to accomplish them.

5.6.1 Scope

The CMHP Conformance Test Plan documents the test scripts that have been developed as part of the
CMHP Conformance Test Executive (CTE) test tool that can be run against CMHP v1.1, CMHP v1.2,
and CMHP v1.3, and against an application that can be configured either as a CMHP client or a CMHP
server.

5.6.2 Purpose

The purpose of the CMHP conformance tests is to ensure that any application that has developed CMHP
is fully compliant with this handbook. This is accomplished by running a series of conformance test
scripts against the CMHP implementation to ensure that it operates correctly during normal and abnormal
conditions.

Figure 5-4 is a high-level overview of the test setup. The CMHP test tool runs test scripts that generate a
stimulus to the CMHP application running on the System Under Test (SUT). The SUT responds to that
stimulus and its response is verified against the list of responses that are valid for that particular stimulus.

Figure 5-4 Test Setup

For example, if the stimulus is a CMHP Registration Request message, the response (under normal
conditions) the SUT sends back a CMHP Registration Response. However, in a subsequent test the test
tool sends a CMHP Registration Request, receives back a Registration Response from the SUT, and then
sends a second Registration Request to verify that the SUT can handle this error condition.

The conformance test scripts verify three main areas of the SUT’s implementation of CMHP:

 Normal CMHP protocol exchanges.
 Illegal protocol exchanges – that is, sending a valid CMHP message that is not appropriate for the

current state of the protocol – such as stated above
 Corrupted messages – that is, a CMHP message whose header has been deliberately corrupted,

shortened, or lengthened.

FAA-HDBK-009-B
November 2012

23

CMHP itself requires a CMHP implementation to be configured as either a CMHP client application or a
CMHP server application. Some systems may implement both capabilities and act as a CMHP server with
one system, but as a CMHP client with another system, as Figure 5-5 depicts.

Figure 5-5 CMHP Roles

Therefore, the conformance test scripts are able to test the SUT regardless of which CMHP role it is
configured as.

These CMHP conformance tests are pertinent to all versions of CMHP (v1.1, v1.2, and v1.3).

Successful completion of the CMHP conformance tests is one of the entry requirements that the SUT
must complete before the SUT is allowed to test against any of the FAA test bed systems.

The CMHP conformance tests do not verify any application-level data. Application data sent and received
by the test scripts as part of these tests should be ignored.

5.6.3 CMHP Test Procedures

This section describes each of the tests that constitute the baseline conformance tests for CMHP v1.1,
CMHP v1.2, and CMHP v1.3.

For CMHP v1.1, the tests are broken down into the first 17 test groups as Table 5-8 reflects.

 There are 3 test groups that contain client-specific tests (24 tests).
 There are 3 test groups that contain server-specific tests (29 tests).
 The remaining 11 groups are common for both client- and server-oriented tests (93 tests).

For CMHP v1.2, the tests are broken into 19 test groups as Table 5-8 reflects.

 There are 4 test groups that contain client-specific tests (27 tests).
 There are 4 test groups that contain server-specific tests (32 tests).
 The remaining 11 groups are common for both client- and server-oriented tests (93 tests).

For CMHP v1.3, the tests are broken into 19 test groups as Table 5-8 reflects.

 There are 4 test groups that contain client-specific tests (33 tests).
 There are 4 test groups that contain server-specific tests (39 tests).
 The remaining 11 groups are common for both client- and server-oriented tests (111 tests).

FAA-HDBK-009-B
November 2012

24

Table 5-8 Conformance Test Groups

Test Overview

Group SUT Description
v1.1
Tests

v1.2
Tests

v1.3
Tests

R1 Client Registration Request - General Tests 8 9 9
R2 Client Registration Request - Illegal Message Tests 3 3 3
R3 Client Registration Request - Corrupted Message Tests 13 13 19
R4 Server Registration Request - General Tests 11 12 12
R5 Server Registration Request - Illegal Message Tests 5 5 5
R6 Server Registration Request - Corrupted Message Tests 13 13 20
R7 Either Registration Violations - General Tests 2 2 2
R8 Either Registration Violations - Corrupted Message Tests 13 13 13
A1 Either Ack - General Tests 5 5 5
A2 Either Ack - Corrupted Message Tests 12 12 17
S1 Either Stop Notification Request- Corrupted Message Tests 12 12 17
S2 Either Stop Notification Response - Illegal Message Tests 8 8 8
S3 Either Stop Notification Response - Corrupted Message Tests 12 12 16
S4 Either Stop Notification Response - Illegal Message Tests 1 1 1
D1 Either Data Transfer - Corrupted Message Tests 13 13 17
D2 Either Data Transfer - SUT Receiving Test Data 5 5 5
D3 Either Data Transfer - SUT Sending Test Data 10 10 10
F1 Server Flow Control - General Tests 0 2 2
F2 Client Flow Control - General Tests 0 2 2

 Total 146 152 183

CMHP is a predominantly balanced protocol except for the Registration exchange. Only a CMHP client
application can initiate the Registration process after a TCP socket has been established. After a
successful Registration, either side has the ability to send and receive data and to initiate service-
termination procedures.

These tests have been designed so that each test is self-contained and does not require successful prior test
execution for it to run. Each test starts with a TCP socket establishment and concludes (explicitly or
implicitly) with the TCP socket being closed.

FAA-HDBK-009-B
November 2012

25

5.6.3.1 R1 – Registration Request – General Tests (Client)

These tests are only valid for an SUT that is configured as a CMHP client. The purpose of this group of
tests is to ensure that the SUT is able to initiate the registration process and to handle normal and error
responses from the CTE test tool.

Test # Overview Test Purpose
R1-01 Valid Registration

(PID only) and
Shutdown

Verify that when the SUT sends a Registration Request containing only the
PID, that it accepts the Registration Response as well as the subsequent
normal Stop Notification Request.

R1-02 Registration Timeout Verify that when the SUT sends a Registration Request containing only the
PID, that the SUT then sends a Stop Notification Request with a status code
0x1011 after no response is received to its Registration Request.

R1-03 Stop Notification Verify that when the SUT sends a Registration Request containing only the
PID, but it receives a Stop Notification Request message in response, that the
SUT either sends a Stop Notification Response, or a Stop Notification with a
status code 0x100D.

R1-04 Bad Primary Id Verify that when the SUT sends a Registration Request containing only an
invalid PID, that the SUT closes the socket when it receives a Registration
Response with a status code of 0x1001.

R1-05 Bad Secondary Id Verify that when the SUT sends a Registration Request containing only the
PID (but the CMHP server is expecting a PID and a SID), that the SUT closes
the socket when it receives a Registration Response with a status code of
0x1002.

R1-06 Empty Secondary Id

Verify that when the SUT sends a Registration Request containing the PID
and SID, but the SID field is “empty” (all nulls), that the SUT closes the
socket when it receives a Registration Response with a status code of 0x1002.

R1-07 Valid Registration
(PID & SID) and
shutdown

Verify that the SUT accepts a Registration Response in response to its
Registration Request containing a PID and SID, and that it handles a
subsequent normal Stop Notification Request.

R1-08 Registration (PID &
SID) 32 & 16 char

Verify that the SUT is able to send a 32-character PID and a 16-character SID
in the Registration Request message.
New Tests added for v1.2 and Beyond

R1-09

Stop Notification
Request

Verify that when the SUT sends a Registration Request that the SUT closes
the socket when it receives a Stop Notification Request with a system-specific
status code and text field.

Additional Notes:

 Test R1-02 should also be used to verify the accuracy of the SUT’s Registration Timer.
 Test R1-06 requires the SUT to be reconfigured to send the PID and SID fields.
 Tests R1-07 and R1-08 require the SUT to change the contents of the PID and SID fields.
 Test R1-09 is a new test for CMHP v1.2 (and beyond) systems, and verifies such cases where a

system [configured as a CMHP server] might be in a backup role and accepts incoming sockets,
but uses the Stop Notification Request to respond to an incoming Registration Request to indicate
its state and implicitly indicate that the client should re-reroute its next socket request to a
primary system.

FAA-HDBK-009-B
November 2012

26

5.6.3.2 R2 – Registration Request – Illegal Message Tests (Client)

The purpose of this group of tests is to ensure that the SUT (when configured as a CMHP client) is able to
correctly handle valid CMHP messages that are not valid for the current state of the protocol.

Test # Overview Test Purpose
R2-01 Send Data Verify that when the SUT receives application data in response to its

Registration Request, it sends a Stop Notification Response with a status code
0x100D, 0x100E, or 0x1013.

R2-02 Send an Ack Verify that when the SUT receives an Acknowledgment message in response
to its Registration Request, it sends a Stop Notification Response with a status
code 0x100D, 0x100E, or 0x1013.

R2-03 Send a Stop
Notification
Response

Verify that when the SUT receives a Stop Notification Response in response
to its Registration Request, it sends a Stop Notification with a status code
0x100D, 0x100E, or 0x1013.

FAA-HDBK-009-B
November 2012

27

5.6.3.3 R3 – Registration Request – Corrupted Message Tests (Client)

The intent of this Test Group is to ensure that the SUT (when configured as a CMHP client) successfully
handles the set of conditions where it receives a corrupted Registration Response message in response to
its Registration Request message. In all cases, the SUT shall issue a Stop Notification Request message
with the appropriate status code.

Test # Overview Test Purpose
R3-01 Short Message

Length
Verify that when the SUT receives a Registration Response message with a
message length less than 40 bytes, it issues a Stop Notification Request with
the status code 0x1008, 0x100C or 0x1019.

R3-02 Long Message
Length

Verify that when the SUT receives a Registration Response with a message
length exceeding the number of bytes sent, it issues a Stop Notification
Request with the status code 0x1008, 0x100C, or 0x1019.

R3-03 Invalid Message
Type

Verify that when the SUT receives a Registration Response message, but the
Message Type field contains an invalid value, it issues a Stop Notification
Request with the status code 0x1009, 0x101A, or 0x100D.

R3-04 Invalid Major Id Verify that when the SUT receives a Registration Response message with an
invalid Major Id field, it issues a Stop Notification Request with the status
code 0x100A.

R3-05 Invalid Minor Id Verify that when the SUT receives a Registration Response message with an
invalid Minor Id field, it issues a Stop Notification Request with the status
code 0x100A.

R3-06 Invalid Status Verify that when the SUT receives a Registration Response message with an
invalid status code, it issues a Stop Notification Request with the status code
of 0x1007 or 0x101F.

R3-07 Invalid Checksum Verify that when the SUT receives a Registration Response message with an
invalid CRC field, it issues a Stop Notification Request with the status code
0x100F.

R3-08 Invalid M(s) Verify that when the SUT receives a Registration Response message with an
invalid Message Sent field, it issues a Stop Notification Request with the
status code 0x1014.

R3-09 Invalid M(r) Verify that when the SUT receives a Registration Response message with an
invalid Message Received field, it issues a Stop Notification Request with the
status code 0x1015.

R3-10 Short Message Verify that when the SUT receives the start Registration Response message
but never receives the complete message, it issues a Stop Notification
Request with the status code 0x1008, 0x100C, or 0x1019.

R3-11 Long Message Verify that when the SUT receives a valid Registration Response message
that has additional bytes immediately following it, it issues a Stop
Notification Request with the status code 0x1008, 0x100C, or 0x1019.

R3-12 Smaller Message
Length for Message
Type

Verify that when the SUT receives a Registration Response message whose
Message Length matches the bytes received, but is the wrong (smaller) length
for this message type, that it issues a Stop Notification with the status code
0x1008, 0x100C, or 0x1019.

R3-13 Longer Message
Length for Message
Type

Verify that when the SUT receives a Registration Response message whose
Message Length matches the bytes received, but is the wrong (larger) length
for this message type, that it issues a Stop Notification with the status code
0x1008 or 0x100C.
New Tests introduced for v1.3 and Beyond

R3-14 Undefined Flags Verify that when the SUT receives a Registration Response message that has
undefined Flag bits set for the version of CMHP, that it issues a Stop
Notification with the status code 0x101B.

FAA-HDBK-009-B
November 2012

28

Test # Overview Test Purpose
R3-15 Invalid Source

Location
Optional Test for v1.3: Verify that when the SUT receives a Registration
Response message whose Source Location does not match the registered
Source Location, it issues a Stop Notification with the status code 0x101C.

R3-16 Invalid Spare Field1 Verify that when the SUT receives a Registration Response message whose
first Spare Field is not all zeros, it issues a Stop Notification with the status
code 0x101D.

R3-17 Invalid Spare Field2 Verify that when the SUT receives a Registration Response message whose
second Spare Field is not all zeros, it issues a Stop Notification with the status
code 0x101E.

R3-18 Registration
Response received
with Poll flag set

Verify that when the SUT receives a Registration Response with the Poll flag
set, it sends a Stop Notification with status code 0x1020.

R3-19 Registration
Response received
with Final flag set

Verify that when the SUT receives a Registration Response with the Final
flag set, it sends a Stop Notification with status code 0x1021.

Additional Notes:

 Test R3-01 should also be used to verify the SUT’s ability to handle the Partial Read Timeout and
the accuracy of that timer.

 Test R3-15 is an optional test (for v1.3) that is run only if the SUT pre-defines the Source
Location being used for the CMHP server (that is, CTE test tool). If, however, the SUT uses the
Registration Response message to dynamically set the Source Location field for the CMHP
server, then this test is not valid.

FAA-HDBK-009-B
November 2012

29

5.6.3.4 R4 – Registration Request – General Tests (Server)

The intent of this Test Group is to ensure that the SUT (when configured as a CMHP server) successfully
handles a variety of incoming Registration Request messages for three different combinations of primary
and secondary identifiers (identified below as USER1, USER2, and USER3):

 USER1 is used to indicate that the CMHP server (SUT) will expect the CMHP server (CTE test
tool) to use only the PID field to register.

 USER2 is used to indicate that the CMHP server (SUT) will expect the CMHP Server (CTE test
tool) to use both the PID and SID fields to register.

 USER3 is used to indicate that the CMHP server will define a user account that requires the
CMHP client (CTE test tool) to use the maximum number of characters for the PID and SID
fields.

Test # Overview Test Purpose
R4-01 Valid Primary Id

only
Verify that when the SUT receives a valid Registration Request containing only a
Primary Identifier (USER1), it sends a Registration Response with a success code
in acknowledgment.

R4-02 Invalid Primary Id Verify that when the SUT receives an invalid Primary Identifier (USER1), it sends
a Registration Response with the error status 0x1001.

R4-03 Invalid Secondary
Id

Verify that when the SUT receives a valid Primary Identifier, but receives an
unexpected Secondary Identifier (USER1), it sends a Registration Response with
the error status 0x1002.

R4-04 Valid Primary and
Secondary Id

Verify that when the SUT receives a Registration Request containing valid
Primary and Secondary Identifiers (USER2), it sends a Registration Response with
a success code in acknowledgment.

R4-05 Valid Primary,
invalid secondary
identifier

Verify that when the SUT receives a Registration Request containing a valid
Primary Identifier but an invalid Secondary Identifier (USER2), it sends a
Registration Response with the error status 0x1002.

R4-06 Valid Primary Id,
but no Secondary Id

Verify that when the SUT receives a Registration Request containing a valid
Primary Identifier but fails to send a Secondary Identifier (USER2), it sends a
Registration Response with the error status 0x1002.

R4-07 Access Barred Optional Test: Verify that when the SUT disables a user account, subsequent
attempts to register are blocked and the SUT sends a Registration Response with
the error status 0x1003.

R4-08 Valid Primary and
Secondary Id

Verify that when the SUT receives a Registration Request containing valid
Primary and Secondary Identifiers (USER3) that use the maximum number of
characters for the PID and SID fields, it sends a Registration Response with a
success code in acknowledgment.

R4-09 Registration
Request timeout

Verify that the SUT sends a Stop Notification with the status code (0x1010) when
no Registration Request is received by the SUT within a timeout period after a
socket is established.

R4-10 Registration
Request timeout;
Send SNR in
response

Ensure that the SUT ignores the receipt of a Stop Notification Response after
sending a Stop Notification Request indicating a Registration timeout.

R4-11 Registration
Request received
after a Registration
Request timeout

Ensure that the SUT ignores a valid incoming Registration Request after sending a
Stop Notification indicating a Registration timeout.

New Tests added for v1.2 and Beyond
R4-12 Stop Notification

Request
Optional Test: Only use when CMHP server (SUT) initiates socket connection to
a CMHP client. A Stop Notification Request with a system-specific status code is
sent instead of a Registration Request.

FAA-HDBK-009-B
November 2012

30

Additional Notes:

 Test R4-07 is an optional test for those SUTs that have the ability to disable user accounts when
one or more failed registration attempts are detected.

 Test R4-09 should also be used to verify the accuracy of the SUT’s Registration Timer.

 Test R4-12 is an optional test that is only valid for a SUT (CMHP server) that can initiate a TCP
socket connection to the CTE test tool (CMHP client), and under CMHP v1.2 (and beyond), that
the CMHP client can respond to the incoming socket request with a Stop Notification Request
indicating that it is not ready to establish an application-level connection with the CMHP server.
(If the CMHP client was ready, then the normal response to the incoming socket connection
would be to send a Registration Request.)

FAA-HDBK-009-B
November 2012

31

5.6.3.5 R5 – Registration Request – Illegal Message Tests (Server)

The intent of this Test Group is to ensure that the SUT successfully handles the set of conditions where
the CMHP client has initiated the TCP socket, but instead of sending in a Registration Request, it sends in
another (valid) CMHP message type. In all cases, the SUT must issue a Stop Notification Request
message with an appropriate status code.

Test # Overview Test Purpose
R5-01 Registration

Response
Verify that when the SUT receives a valid Registration Response message, it
issues a Stop Notification Request with the status code 0x100D, 0x100E, or
0x1013.

R5-02 Application data Verify that when the SUT receives a valid application data message, it issues
a Stop Notification Request with the status code 0x100D, 0x100E, or 0x1013.

R5-03 Acknowledgment Verify that when the SUT receives a valid Acknowledgment message, it
issues a Stop Notification Request with the status code 0x100D, 0x100E, or
0x1013.

R5-04 Stop Notification
Request

Verify that when the SUT receives a valid Stop Notification Request
message, it issues a Stop Notification Request with the status code 0x100D,
0x100E, or 0x1013.

R5-05 Stop Notification
Response

Verify that when the SUT receives a valid Stop Notification Response
message, it issues a Stop Notification Request with the status code 0x100D,
0x100E, or 0x1013.

FAA-HDBK-009-B
November 2012

32

5.6.3.6 R6 – Registration Request – Corrupted Message Tests (Server)

The intent of this Test Group is to ensure that the SUT successfully handles the set of conditions where it
receives a corrupted Registration Request message. In all cases, the SUT shall issue a Stop Notification
Request message with the appropriate status code.

Test # Overview Test Purpose
R6-01 Short Message

Length
Verify that when the SUT receives a Registration Request message with a
message length less than 40 bytes, it issues a Stop Notification Request
with the status code 0x1008, 0x100C, or 0x1019.

R6-02 Long Message
Length

Verify that when the SUT receives a Registration Request with a message
length exceeding the number of bytes sent, it issues a Stop Notification
Request with either the status code 0x1008, 0x100C, or 0x1019.

R6-03 Invalid Message
Type

Verify that when the SUT receives a Registration Request message but the
Message Type field contains an invalid value, it issues a Stop Notification
Request with the status code 0x1009 or 0x101A.

R6-04 Invalid Major Id Verify that when the SUT receives a Registration Request message with
an invalid Major Id field, it issues a Stop Notification Request with the
status code 0x100A.

R6-05 Invalid Minor Id Verify that when the SUT receives a Registration Request message with
an invalid Minor Id field, it issues a Stop Notification Request with the
status code 0x100A.

R6-06 Invalid Checksum Verify that when the SUT receives a Registration Request message with
an invalid CRC field, it issues a Stop Notification Request with the status
code 0x100F.

R6-07 Invalid M(s) Verify that when the SUT receives a Registration Request message with
an invalid Message Sent field, it issues a Stop Notification Request with
the status code 0x1014.

R6-08 Invalid M(r) Verify that when the SUT receives a Registration Request message with
an invalid Message Received field, it issues a Stop Notification Request
with the status code 0x1015.

R6-09 Short Message Verify that when the SUT receives the start Registration Request message
but never receives the complete message, it issues a Stop Notification
Request with the status code 0x1008, 0x100C, or 0x1019.

R6-10 Long Message Verify that when the SUT receives a valid Registration Request message
that has additional bytes immediately following it, the SUT issues a Stop
Notification Request with the status code 0x1008, 0x100A, 0x100C, or
0x1019.

R6-11 Short Message
Length for
Message Type

Verify that when the SUT receives a Registration Request message whose
Message Length matches the bytes received but is the wrong (shorter)
length for this message type, it issues a Stop Notification Request with the
status code 0x1008, 0x100C, or 0x1019.

R6-12 Medium Message
Length for
Message Type

Verify that when the SUT receives a Registration Request message whose
Message Length matches the bytes received but is the wrong (larger than
CMHP Header but less than PID field) length for this message type, it
issues a Stop Notification with the status code 0x1008, 0x100C, or
0x100D.

R6-13 Longer Message
Length for
Message Type

Verify that when the SUT receives a Registration Request message whose
Message Length matches the bytes re but is the wrong (larger) length for
this message type, it issues a Stop Notification with the status code
0x1008, 0x100C, or 0x100D.

New Tests introduced for v1.3 and Beyond
R6-14 Undefined Flags Verify that when the SUT receives a Registration Request message that

has undefined Flag bits set for the version of CMHP, it issues a Stop
Notification with the status code 0x101B.

FAA-HDBK-009-B
November 2012

33

Test # Overview Test Purpose
R6-15 Invalid Source

Location
Optional Test for v1.3: Verify that when the SUT receives a Registration
Request message whose Source Location does not match the registered
Source Location, it issues a Stop Notification with the status code 0x101C.

R6-16 Invalid Spare
Field 1

Verify that when the SUT receives a Registration Request message whose
first Spare Field is not all zeros, it issues a Stop Notification with the
status code 0x101D.

R6-17 Invalid Spare
Field 2

Verify that when the SUT receives a Registration Request message whose
second Spare Field is not all zeros, it issues a Stop Notification with the
status code 0x101E.

R6-18 Poll flag set Verify that when the SUT receives a Registration Request with the Poll
flag set, it sends a Stop Notification with status code 0x1020.

R6-19 Final flag set Verify that when the SUT receives a Registration Request with the Final
flag set, it sends a Stop Notification with status code 0x1021.

R6-20 Non-zero Status
field

Verify that when the SUT receives a Registration Request message whose
Status Field is non-zero, it issues a Stop Notification with the status code
0x101F.

Additional Notes:

 Test R6-15 is an optional test that is required to be run only if the SUT pre-defines the Source
Location for the CMHP client. However, if the SUT uses the incoming Registration Request
message to dynamically set the Source Location field for the CMHP client, then this test is not
valid.

FAA-HDBK-009-B
November 2012

34

5.6.3.7 R7 – Registration Violation – General Tests (Either)

The purpose of these tests is to send Registration Request messages after a successful registration has
already occurred. These tests can be run against the SUT regardless of whether it is configured as a
CMHP client or server application.

Test # Overview Test Purpose
R7-01 Same User Verify that when the SUT receives a second Registration Request message

from the same user, it issues a Stop Notification Request with the status code
0x100E or 0x1013.

R7-02 Different User Verify that when the SUT receives a second Registration Request but this
time for a different user, it issues a Stop Notification Request with the status
code 0x100E or 0x1013.

FAA-HDBK-009-B
November 2012

35

5.6.3.8 R8 – Registration Violation – Corrupted Message Tests (Either)

The purpose of these tests is to send corrupted Registration Request messages after a successful
registration has already occurred. These tests can be run against the SUT regardless of whether it is
configured as a CMHP client or server application.

Test # Overview Test Purpose
R8-01 Short Message

Length
Verify that when the SUT receives a second Registration Request message but
with a message length less than 40 bytes, it issues a Stop Notification Request
with the status code 0x1008, 0x100C, 0x100E, or 0x1019.

R8-02 Long Message
Length

Verify that when the SUT receives a second Registration Request but with a
message length exceeding the number of bytes sent, it issues a Stop
Notification Request with either the status code 0x1008, 0x100C, 0x100E, or
0x1019.

R8-03 Invalid Message
Type

Verify that when the SUT receives a second Registration Request message but
the Message Type field contains an invalid value, it issues a Stop Notification
Request with the status code 0x1009 or 0x101A.

R8-04 Invalid Major Id Verify that when the SUT receives a second Registration Request message
with an invalid Major Id field, it issues a Stop Notification Request with the
status code 0x100E or 0x100A.

R8-05 Invalid Minor Id Verify that when the SUT receives a second Registration Request message
with an invalid Minor Id field, it issues a Stop Notification Request with the
status code 0x100E or 0x100A.

R8-06 Invalid Checksum Verify that when the SUT receives a second Registration Request message
with an invalid CRC field, it issues a Stop Notification Request with the status
code 0x100E or 0x100F.

R8-07 Invalid M(s) Verify that when the SUT receives a second Registration Request message
with an invalid Message Sent field, it issues a Stop Notification Request with
the status code 0x100E, 0x1013 or 0x1014.

R8-08 Invalid M(r) Verify that when the SUT receives a second Registration Request message
with an invalid Message Received field, it issues a Stop Notification Request
with the status code 0x100E, 0x1013, or 0x1015.

R8-09 Short Message Verify that when the SUT receives the start of the second Registration
Request message but never receives the complete message, it issues a Stop
Notification Request with the status code 0x1008, 0x100C, 0x100E, 0x1013,
or 0x1019.

R8-10 Long Message Verify that when the SUT receives a second Registration Request message
that has additional bytes immediately following it, it issues a Stop Notification
Request with the status code 0x100E or 0x1013.

R8-11 Short Message
Length for
Message Type

Verify that when the SUT receives a second Registration Request message
whose Message Length matches the bytes received but is the wrong (shorter)
length for this message type, it issues a Stop Notification with the status code
0x1008, 0x100C, 0x100E, or 0x1019.

R8-12 Medium Message
Length for
Message Type

Verify that when the SUT receives a second Registration Request message
whose Message Length matches the bytes received but is the wrong (larger
than CMHP Header but less than PID field) length for this message type, it
issues a Stop Notification with the status code 0x1008, 0x100C, 0x100D,
0x100E, 0x1013, or 0x1019.

R8-13 Longer Message
Length for
Message Type

Verify that when the SUT receives a second Registration Request message
whose Message Length matches the bytes received but is the wrong (larger)
length for this message type, it issues a Stop Notification with the status code
0x1008, 0x100C, 0x100E, 0x1013, or 0x100D.

FAA-HDBK-009-B
November 2012

36

5.6.3.9 A1 – Acknowledgments – General Tests (Either)

The purpose of this test group is to ensure that the SUT is able to handle the use of the Acknowledgment
message, such as when it is used for the keep-alive mechanism, and to ensure that the SUT appropriately
processes Acknowledgment messages.

Tests A1-01 and A1-02 require the CTE test tool to have its Keep-Alive Timer less than the Keep-Alive
Timer of the SUT. The remaining tests require the CTE test tool to have a Keep-Alive Timer greater than
the Keep-Alive Timer of the SUT.

Test # Overview Test Purpose
A1-01 Send Single Ack Verify that when the SUT responds to the receipt of an Ack message (with

the Poll bit set), it responds back with an Ack message (with the Final bit set).
A1-02 Send Multiple

Acks
As above but verifies that the SUT keeps responding to Ack messages (Keep
Alives) sent by the CTE test tool.

A1-03 Receive Multiple
Acks

Reverse the timer relationship, and verify that the SUT generates Ack
messages with the Poll bit set (Keep Alive) in accordance with its Keep-Alive
Timer.

A1-04 Ack Timeout Verify that the SUT sends a Stop Notification Request with the status of
0x1006 when it fails to receive an Ack from the CTE test tool to any of its
Keep-Alive Acks.

A1-05 Ack Poll Bit
Clear

Verify that the SUT ignores the receipt of an Ack with the Poll bit clear and
initiates its own Keep-Alive mechanism.

Additional Notes:

 Test A1-03 is the first test that can be used to verify the accuracy of the SUT’s Keep-Alive
Timer.

FAA-HDBK-009-B
November 2012

37

5.6.3.10 A2 – Acknowledgments – Corrupted Message Tests (Either)

The purpose of these tests is to ensure that the SUT can handle “corrupted” Acknowledgment messages
and initiates socket-closing procedures by issuing the Stop Notification Request with the appropriate
status code for the condition detected.

Test # Overview Test Purpose
A2-01 Short Message

Length
Verify that when the SUT receives an Acknowledgment message with a
message length less than 40 bytes, it issues a Stop Notification Request with
the status code 0x1008, 0x100C, or 0x1019.

A2-02 Long Message
Length

Verify that when the SUT receives an Acknowledgment message with a
message length exceeding the number of bytes sent, it issues a Stop
Notification Request with the status code 0x1008, 0x100C, or 0x1019.

A2-03 Invalid Message
Type

Verify that when the SUT receives an Acknowledgment message but the
Message Type field contains an invalid value, it issues a Stop Notification
Request with the status code 0x1009 or 0x101A.

A2-04 Invalid Major Id Verify that when the SUT receives an Acknowledgment message with an
invalid Major Id field, it issues a Stop Notification Request with the status
code 0x100A.

A2-05 Invalid Minor Id Verify that when the SUT receives an Acknowledgment message with an
invalid Minor Id field, it issues a Stop Notification Request with the status
code 0x100A.

A2-06 Invalid Checksum Verify that when the SUT receives an Acknowledgment message with an
invalid CRC field, it issues a Stop Notification Request with the status code
0x100F.

A2-07 Invalid M(s) Verify that when the SUT receives an Acknowledgment message with an
invalid Message Sent field, it issues a Stop Notification Request with the
status code 0x1014.

A2-08 Invalid M(r) Verify that when the SUT receives an Acknowledgment message with an
invalid Message Received field, it issues a Stop Notification Request with the
status code 0x1015.

A2-09 Short Message Verify that when the SUT receives the start of an Acknowledgment message
but never receives the complete message, it issues a Stop Notification
Request with the status code 0x1008, 0x100C, or 0x1019.

A2-10 Long Message Verify that when the SUT receives a valid Acknowledgment message that
has additional bytes immediately following it, it processes the Ack, but then
issues a Stop Notification Request with the status code 0x1008, 0x100A,
0x100C, or 0x1019 when the additional bytes are 0xA5.

A2-11 Smaller Message
Length for Message
Type

Verify that when the SUT receives an Acknowledgment message whose
Message Length matches the bytes received but is the wrong (smaller) length
for this message type, it issues a Stop Notification with the status code
0x1008, 0x100C, or 0x1019.

A2-12 Longer Message
Length for Message
Type

Verify that when the SUT receives an Acknowledgment message whose
Message Length matches the bytes received but is the wrong (larger) length
for this message type, it issues a Stop Notification with the status code
0x1008 or 0x100C.

New Tests added for v1.3 and Beyond
A2-13 Undefined Flags Verify that when the SUT receives an Acknowledgment message that has

undefined Flag bits set for the version of CMHP, it issues a Stop Notification
with the status code 0x101B.

A2-14 Invalid Source
Location

Verify that when the SUT receives an Acknowledgment message whose
Source Location does not match the registered Source Location for the
Conformance Test system, it issues a Stop Notification with the status code
0x101C.

FAA-HDBK-009-B
November 2012

38

Test # Overview Test Purpose
A2-15 Invalid Spare Field 1 Verify that when the SUT receives an Acknowledgment message whose first

Spare Field is not all zeros, it issues a Stop Notification with the status code
0x101D.

A2-16 Invalid Spare Field 2 Verify that when the SUT receives an Acknowledgment message whose
second Spare Field is not all zeros, it issues a Stop Notification with the
status code 0x101E.

A2-17 Non-zero Status
Field

Verify that when the SUT receives an Acknowledgment message whose
Status Field is non-zero, it issues a Stop Notification with the status code
0x101F.

FAA-HDBK-009-B
November 2012

39

5.6.3.11 S1 – Stop Notification Request – Corrupted Message Tests (Either)

The purpose of these tests is to ensure that the SUT can handle corrupted Stop Notification Request
messages received in response to a SUT-initiated Stop Notification Request.

Test # Overview Test Purpose
S1-01 Short Message

Length
Verify that when the SUT receives a Stop Notification Request message with
a message length less than 40 bytes, it issues a Stop Notification Request with
the status code 0x1008, 0x100C, or 0x1019.

S1-02 Long Message
Length

Verify that when the SUT receives a Stop Notification Request with a
message length exceeding the number of bytes sent, it issues a Stop
Notification Request with either the status code 0x1008, 0x100C, or 0x1019.

S1-03 Invalid Message
Type

Verify that when the SUT receives a Stop Notification Request message but
the Message Type field contains an invalid value, it issues a Stop Notification
Request with the status code 0x1009 or 0x101A.

S1-04 Invalid Major Id Verify that when the SUT receives a Stop Notification Request message with
an invalid Major Id field, it issues a Stop Notification Request with the status
code 0x100A.

S1-05 Invalid Minor Id Verify that when the SUT receives a Stop Notification Request message with
an invalid Minor Id field, it issues a Stop Notification Request with the status
code 0x100A.

S1-06 Invalid
Checksum

Verify that when the SUT receives a Stop Notification Request message with
an invalid CRC field, it issues a Stop Notification Request with the status
code 0x100F.

S1-07 Invalid M(s) Verify that when the SUT receives a Stop Notification Request message with
an invalid Message Sent field, it issues a Stop Notification Request with the
status code 0x1014.

S1-08 Invalid M(r) Verify that when the SUT receives a Stop Notification Request message with
an invalid Message Received field, it issues a Stop Notification Request with
the status code 0x1015.

S1-09 Short Message Verify that when the SUT receives the start of a Stop Notification Request
message (less than 40 bytes) but never receives the complete message, it
issues a Stop Notification Request with the status code 0x1008, 0x100C, or
0x1019.

S1-10 Long Message Verify that when the SUT receives a valid 40-byte Stop Notification Request
message that has additional bytes immediately following, it issues a Stop
Notification Response, ignores the extra bytes, and shuts down.

S1-11 Smaller Message
Length for
Message Type

Verify that when the SUT receives a Stop Notification Request message
whose Message Length matches the bytes received but is the wrong (smaller)
length for this message type, it issues a Stop Notification with the status code
0x1008, 0x100C, or 0x1019.

S1-12 Longer Message
Length for
Message Type

Verify that when the SUT receives a Stop Notification Request message
whose Message Length matches the bytes received but is the wrong (>256)
length for this message type, it issues a Stop Notification with the status code
0x1008 or 0x100C.

New Tests added for v1.3 and Beyond
S1-13 Undefined Flags Verify that when the SUT receives a Stop Notification Request message that

has undefined Flag bits set for the version of CMHP, it issues a Stop
Notification with the status code 0x101B.

S1-14 Invalid Source
Location

Verify that when the SUT receives a Stop Notification Request message
whose Source Location does not match the registered Source Location, it
issues a Stop Notification with the status code 0x101C.

S1-15 Invalid Spare
Field 1

Verify that when the SUT receives a Stop Notification Request message
whose first Spare Field is not all zeros, it issues a Stop Notification with the
status code 0x101D.

FAA-HDBK-009-B
November 2012

40

Test # Overview Test Purpose
S1-16 Invalid Spare

Field 2
Verify that when the SUT receives a Stop Notification Request message
whose second Spare Field is not all zeros, it issues a Stop Notification with
the status code 0x101E.

S1-17 Invalid Status Verify that when the SUT receives a Stop Notification Request message that
contains zero in the status field, it issues a Stop Notification with the status
code 0x101F.

FAA-HDBK-009-B
November 2012

41

5.6.3.12 S2 – Stop Notification Request - Illegal Message Tests (Either)

The purpose of these tests is to verify that the SUT handles valid CMHP messages that are not valid for
the current protocol state. Depending on its implementation, the SUT can either ignore all incoming
messages or it will process all of them accordingly.

Note: For each of these tests, the SUT is required to be able to send a Stop Notification Request with a
normal status code (<0x1000) on request to initiate the test. If not, then this group of tests is not valid.

Test # Overview Test Purpose
S2-01 Send Registration

Request
Verify that when the SUT sends a Stop Notification Request Message and
receives a Registration Request message in return, it ignores it (or sends a
Stop Notification Request message with a status code of 0x100E or 0x1013)
and closes the socket.

S2-02 Send Registration
Response

Verify that when the SUT sends a Stop Notification Request Message and
receives a Registration Response message in return, it ignores it (or sends a
Stop Notification Request message with a status code of 0x100E or 0x1013)
and closes the socket.

S2-03 Send application
data message

Verify that when the SUT sends a Stop Notification Request Message and
receives an Acknowledgment message in return, it ignores it (or responds
with an Ack) and closes the socket.

S2-04 Send Ack with PB
Clear

Verify that when the SUT sends a Stop Notification Request Message and
receives an Acknowledgment message (with the Poll bit clear) in return, it
ignores it and closes the socket.

S2-05 Send Ack with PB
Set

Verify that when the SUT sends a Stop Notification Request Message and
receives an Acknowledgment message (with the Poll bit set) in return, it
ignores it (or responds with an Ack with the Final bit set) and closes the
socket.

S2-06 Send Stop
Notification
Request

Verify that when the SUT sends a Stop Notification Request Message and
receives a Stop Notification Request (with a normal status) in return, it sends
a Stop Notification Response and then closes the socket.

S2-07 Timeout Verify that when the SUT sends a Stop Notification Request Message and
fails to receive a Stop Notification Response within a timeout period, it closes
the socket.

S2-08 Normal Condition Verify that the normal condition to respond to the Stop Notification Request
Message with a Stop Notification Response is handled correctly.

Additional Notes:

 Test S2-08 is actually a valid exchange for a Stop Notification Request issued by the SUT, and
has been added to this group (even though the rest of these tests are verification of illegal
message conditions) solely based on the fact that the S2 and S3 tests are the only groups of tests
where the Stop Notification Request is initiated by the SUT.

FAA-HDBK-009-B
November 2012

42

5.6.3.13 S3 – Stop Notification Response - Corrupted Message Tests (Either)

The purpose of these tests is to ensure that the SUT can handle corrupted Stop Notification responses
received in response to a SUT-initiated Stop Notification Request. Depending on its implementation, the
SUT can either ignore all incoming messages or it will process all of them accordingly.

Note: For each of these tests, the SUT is required to be able to send a Stop Notification Request with a
normal status code (<0x1000) on request to initiate the test. If not, then this group of tests is not valid.

Test # Overview Test Purpose
S3-01 Short

Message
Length

Verify that when the SUT receives a Stop Notification Response with a message
length less than 40 bytes, it ignores the message (or sends a Stop Notification Request
with a status code of 0x1008, 0x100C, or 0x1019) and shuts down.

S3-02 Long
Message
Length

Verify that when the SUT receives a Stop Notification Response with a message
length exceeding the number of bytes sent, it ignores the message (or sends a Stop
Notification Request with a status code of 0x1008, 0x100C, or 0x1019) and shuts
down.

S3-03 Invalid
Message
Type

Verify that when the SUT receives a Stop Notification Response message but the
Message Type field contains an invalid value, it ignores the message (or sends a Stop
Notification Request with a status code of 0x1009 or 0x101A) and shuts down.

S3-04 Invalid
Major Id

Verify that when the SUT receives a Stop Notification Response message with an
invalid Major Id field, it ignores the message (or sends a Stop Notification Request
with a status code of 0x100A) and shuts down.

S3-05 Invalid
Minor Id

Verify that when the SUT receives a Stop Notification Response message with an
invalid Minor Id field, it ignores the message (or sends a Stop Notification Request
with a status code of 0x100A) and shuts down.

S3-06 Invalid
Checksum

Verify that when the SUT receives a Stop Notification Response message with an
invalid CRC field, it ignores the message (or sends a Stop Notification Request with a
status code of 0x100F) and shuts down.

S3-07 Invalid M(s) Verify that when the SUT receives a Stop Notification Response with an invalid
Message Sent field, it ignores the message (or sends a Stop Notification Request with
a status code of 0x1014) and shuts down.

S3-08 Invalid M(r) Verify that when the SUT receives a Stop Notification Response message with an
invalid Message Received field, it ignores the message (or sends a Stop Notification
Request with a status code of 0x1015) and shuts down.

S3-09 Short
Message

Verify that when the SUT receives the start of a Stop Notification Request message
but never receives the complete message, it ignores the partial message (or sends a
Stop Notification Request with a status code of 0x1008, 0x100C, or 0x1019) and
shuts down.

S3-10 Long
Message

Verify that when the SUT receives a Stop Notification Response that has additional
bytes immediately following it, it issues a Stop Notification Response, ignores the
subsequent bytes (or sends a Stop Notification Request with a status code of 0x1008,
0x100C, or 0x1019), and shuts down.

S3-11 Smaller
Message
Length for
Message
Type

Verify that when the SUT receives a Stop Notification Response message whose
Message Length matches the bytes received but is the wrong (smaller) length for this
message type, it ignores the message (or sends a Stop Notification Request with a
status code of 0x1008, 0x100C, or 0x1019) and shuts down.

S3-12 Longer
Message
Length for
Message
Type

Verify that when the SUT receives a Stop Notification Response message whose
Message Length matches the bytes received but is the wrong (larger) length for this
message type, that it ignores the message (or sends a Stop Notification Request with a
status code of 0x1008 or 0x100C) and shuts down.

FAA-HDBK-009-B
November 2012

43

Test # Overview Test Purpose
New Tests added for v1.3 and Beyond

S3-13 Undefined
Flags

Verify that when the SUT receives a Stop Notification Response message that has
undefined Flag bits set for the version of CMHP, that it issues a Stop Notification
with the status code 0x101B.

S3-14 Invalid
Source
Location

Verify that when the SUT receives a Stop Notification Response message whose
Source Location does not match the registered Source Location, that it issues a Stop
Notification with the status code 0x101C.

S3-15 Invalid Spare
Field 1

Verify that when the SUT receives a Stop Notification Response message whose first
Spare Field is not all zeros, it issues a Stop Notification with the status code 0x101D.

S3-16 Invalid Spare
Field 2

Verify that when the SUT receives a Stop Notification Response message whose
second Spare Field is not all zeros, it issues a Stop Notification with the status code
0x101E.

FAA-HDBK-009-B
November 2012

44

5.6.3.14 S4 – Stop Notification Response - Illegal Message Tests (Either)

The purpose of this test is to ensure that the SUT can handle a Stop Notification response received after a
successful registration.

Test # Overview Test Purpose
S4-01 Send Stop

Notification
Response

Verify that when the SUT receives a Stop Notification Response after a
successful registration, it issues a Stop Notification Request with a status
code of 0x100E or 0x1013, and then shuts down.

FAA-HDBK-009-B
November 2012

45

5.6.3.15 D1 – Application Data Transfer - Corrupted Message Tests (Either)

The purpose of these tests is to ensure that the SUT can handle corrupted application data messages.

Test # Overview Test Purpose
D1-01 Short Message

Length
Verify that when the SUT receives a data message with a corrupted message
length, it issues a Stop Notification Request with the status code 0x1008,
0x100C, or 0x1019.

D1-02 Long Message
Length

Verify that when the SUT receives a data message with a message length
exceeding the number of bytes sent, it issues a Stop Notification Request with
either the status code 0x1008, 0x100C, or 0x1019.

D1-03 Invalid Message
Type

Verify that when the SUT receives a data message but the Message Type field
contains an invalid value, it issues a Stop Notification Request with the status
code 0x1009 or 0x101A.

D1-04 Invalid Major Id Verify that when the SUT receives a data message with an invalid Major Id
field, it issues a Stop Notification Request with the status code 0x100A.

D1-05 Invalid Minor Id Verify that when the SUT receives a data message with an invalid Minor Id
field, it issues a Stop Notification Request with the status code 0x100A.

D1-06 Invalid Checksum Verify that when the SUT receives a data message with an invalid CRC field,
it issues a Stop Notification Request with the status code 0x100F.

D1-07 Invalid M(s) Verify that when the SUT receives a data message with an invalid Message
Sent field, it issues a Stop Notification Request with the status code 0x1014.

D1-08 Invalid M(r) Verify that when the SUT receives a data message with an invalid Message
Received field, it issues a Stop Notification Request with the status code
0x1015.

D1-09 Short Message Verify that when the SUT receives the start of a data message but never
receives the complete message, it issues a Stop Notification Request with the
status code 0x1008, 0x100C, or 0x1019.

D1-10 Long Message Verify that when the SUT receives a valid data message that has additional
bytes immediately following it, it processes the data message but then issues a
Stop Notification Request with the status code 0x1008, 0x100A, 0x100C, or
0x1019 when the additional bytes 0xA5 are processed.

D1-11 Smaller Message
Length for Message
Type

Verify that when the SUT receives a data message whose Message Length
matches the bytes received but is the wrong (less than 40 bytes) length for
this message type, it issues a Stop Notification Request with the status code
0x1008, 0x100C, or 0x1019.

D1-12 Minimum Message
Length for Message
Type

Optional Test: Verify that when the SUT receives a data message that is
smaller than the minimum message length for the application, it issues a Stop
Notification with the status code 0x1008, 0x100C, or 0x1019.

D1-13 Wrong data message
type

Verify that when the SUT receives a data message containing an invalid
message type for the SUT’s application, the SUT sends a Stop Notification
Request with the status code 0x1009 or 0x101A.

FAA-HDBK-009-B
November 2012

46

New Tests added for v1.3 and Beyond
D1-14 Undefined Flags Verify that when the SUT receives a data message that has undefined Flag

bits set for the version of CMHP, it issues a Stop Notification with the status
code 0x101B.

D1-15 Invalid Source
Location

Verify that when the SUT receives a data message whose Source Location
does not match the registered Source Location, it issues a Stop Notification
with the status code 0x101C.

D1-16 Invalid Spare Field 1 Verify that when the SUT receives a data message whose first Spare Field is
not all zeros, it issues a Stop Notification with the status code 0x101D.

D1-17 Invalid Spare Field 2 Verify that when the SUT receives a data message whose second Spare Field
is not all zeros, it issues a Stop Notification with the status code 0x101E.

Additional Test Note:
 Test D1-12 is only valid if the SUT checks for a minimum length on its application-level data

messages.

FAA-HDBK-009-B
November 2012

47

5.6.3.16 D2 – Application Data Transfer - SUT Receiving Tests (Either)

The purpose of this group of tests is to increase the level of confidence that the SUT can receive
application-level data messages and provide a timely acknowledgment to all of them. The final test
verifies that the SUT can handle the rollover condition for the Message Received count.

Test # Overview Test Purpose
D2-01 Send 1 data

message
Verify that when the SUT receives a data message, it responds with an
Acknowledgment message in a timely manner.

D2-02 Send 2 data
messages

Verify that when the SUT receives two data messages, it acknowledges both
in a timely manner.

D2-03 Send 10 data
messages

Verify that the SUT can receive 10 data messages and that it acknowledges
all of them in a timely manner.

D2-04 Send 100 data
messages

Verify that the SUT can receive 100 data messages and that it acknowledges
all of them in a timely manner.

D2-05 Send 300 data
messages

Verify that the SUT can receive 300 data messages and that it acknowledges
all of them in a timely manner. The test ensures that the SUT’s handling of
the M(r) rollover is correct.

FAA-HDBK-009-B
November 2012

48

5.6.3.17 D3 – Application Data Transfer - SUT Sending Tests (Either)

The purpose of this group of tests is to increase the level of confidence that the SUT can send application-
level data messages and process the associated acknowledgments from the CTE test tool. The final test
verifies that the SUT can handle the rollover condition for the Message Sent count.

Test # Overview Test Purpose
D3-01 Send No Ack Verify that if the SUT receives no acknowledgment to a sent message, it

prompts the CTE test tool for an acknowledgment and sends a Stop
Notification with a status code of 0x1006 when it reaches its maximum
number of retries.

D3-02 Send Ack, but not
with an updated
M(r)

Verify that if the SUT receives no indication to a sent message, that it
prompts the CTE test tool for an acknowledgment and sends a Stop
Notification with a code of 0x1006 when it reaches its maximum number of
retries. The CTE test tool sends two Acknowledgments messages back – the
first after immediate receipt of the sent message (with no flags set and no
updated M(r)) and later when prompted by the SUT – this time with the Final
bit set, but again does not update M(r). These Acknowledgments messages
should be ignored by the SUT and have no impact to its retry mechanism.

D3-03 Send ack with
updated M(r)

Verify that the SUT prompts for a response after sending a message and after
it receives an updated M(r) that the next Acknowledgment message it sends is
part of its Keep-Alive mechanism.

D3-04 Send an updated
M(r) with a
Shutdown message

Verify that the SUT handles an updated M(r) as part of the incoming
Shutdown Notification message.

D3-05 Receive two
messages and ack

Verify that the SUT can send two messages and that it handles the associated
acknowledgments.

D3-06 Receive 10
messages and ack

Verify that the SUT can send 10 messages and that it handles the associated
acknowledgments.

D3-07 Receive 20
messages and ack

Verify that the SUT can send 20 messages and that it handles the associated
acknowledgments.

D3-08 Receive 100
messages and ack

Verify that the SUT can send 100 messages and that it handles the associated
acknowledgments.

D3-09 Receive 300
messages and ack

Verify that the SUT can send 300 messages and that it handles the associated
acknowledgments. Verifies that the SUT handles the M(s) rollover correctly.

D3-10 Verify SUT’s
Transmit Window

Optional Test: Verify that the SUT transmits its Tx window size before it
requests an acknowledgment from the CTE test tool.

Additional Test Notes:

 Test D3-01 should also be used to verify the SUT’s ability to use the Poll Response Timer and
verify its accuracy.

 Test D3-03 should be used to verify the SUT’s ability to switch between using its Poll Response
Timer to its Keep-Alive Timer.

 Test D3-10 is an optional test and is only applicable where the SUT’s Transmit Window Size is
greater than 1.

FAA-HDBK-009-B
November 2012

49

5.6.3.18 F1 – Flow Control Tests (Server – v1.2 and Beyond)

The purpose of this group of tests is to verify that a CMHP server is able to handle the basic flow control
mechanism.

Test # Overview Test Purpose
F1-01 Flow control stated

at Registration
Verifies that a CMHP server (with messages ready to send) accepts an
incoming Registration Request Message with the Flow Control flag set, and
then responds to subsequent periodic Keep-Alive messages that also have the
Flow Control flag, but never sends the queued messages.

F1-02 Flow control stated
at Registration and
incoming data
received. Outgoing
data sent after flow
control lifted

Verifies that a CMHP server (with messages to send) accepts an incoming
Registration Request Message with the Flow Control flag set. Verify that the
SUT receives incoming messages with the Flow Control flag set and
acknowledges receipt accordingly. When the SUT receives an
Acknowledgment message with the Flow Control flag cleared, it then
transmits the queued messages and receives the appropriate acknowledgment.

Additional Note:

 For both of these tests, the SUT is required to have messages queued up ready to send.

FAA-HDBK-009-B
November 2012

50

5.6.3.19 F1 – Flow Control Tests (Client - v1.2 and Beyond)

The purpose of this group of tests is to verify that a CMHP server is able to handle the basic flow control
mechanism.

Test # Overview Test Purpose
F2-01 Flow control stated

on Registration
Response

Verify that the SUT does not send its queued messages when it receives a
Registration Response with the Flow Control flag set. Verify that the SUT
does not send its queued messages until it receives an Acknowledgment
message with the Flow Control bit cleared.

F2-02 Flow control stated
on Registration
Response – send
data

Verify that the SUT does not send a queued data message when it receives a
Registration Response with the Flow Control flag set. Verify that the SUT
receives messages and only sends its messages when the Flow Control flag is
cleared.

Additional Note:

 For both of these tests, the SUT is required to have messages queued up ready to send.

FAA-HDBK-009-B
November 2012

51

6 NOTES

6.1 Intended Use

This handbook is intended to provide guidance regarding the application-level protocol, CMHP. The
document is intended for those individuals who will play a role in designing TCP/IP connections between
systems that require a degree of assurance that the data sent has been successfully received and processed
by the far-end application.

6.2 Superseding Documentation

This section is not applicable to this handbook at this time.

6.3 Cross-Reference of Classifications and Substitutability Data

This section is not applicable to this handbook at this time.

6.4 Subject Term (Key Word) Listing

CMHP, application-level protocol, message delivery assurance

6.5 International Interest

This section is not applicable to this handbook at this time.

6.6 Identification of Changes

This is the first issue of this handbook.

6.7 Updating this Handbook

This handbook is designed to be updated and refined over time through changes in the NAS. The change
process is only possible if the users of this handbook comment on its use. Users should keep notes
regarding the areas where the handbook is either helpful or where it is lacking. These notes and comments
about the handbook should then be provided to the organization referenced in the Foreword.

FAA-HDBK-009-B
November 2012

52

