P e — - a X S e A o,)

The Flight Service Automation System (FSAS)
System Benchmark. Volume I: Summary
Introduction and Concepts

MITRE Corp.
McLean, VA

Prepared for

Federal Aviation Administration
Washington, DC

Aug 81

U.S. Department of Commerce _
National Techmical Information Serwce

a3 i b A

PB82-143538

THTIIIRRRRERRRRRIRRRS——,

$0272-10 g

1.

15. Supplementary Notes

REPORT DOCUMENTATION :! REPORT wO 2 3. Recipiont's Accession N3

16. Abstract (Limit: 200 werde).

PAGE PRO2 143538

__ S Report Dete
The Flight Service Automation System (FSAS) System Benchmark: August 1st 1981 publication

Volume I, Summary, Introduction and Concepts Z g 3 5_3 _0_4]_

lmhor(il I. Performing Orgenization Rept. No.

Tnh and Subtitie

o R. G. Nystrom, S. Koslow, C. R. Spooner MIR-81W13L , Vol. I
9. Pnumml Ofnmut-on Name -r;o Address 10. Project/Tesk/Work Unit Ne. T
The MITRE Corporation 1471C
;ig;;ell; Il)ivis;z:lli —_ 11. Contrect(C) or Grant(G) Mo
olley son vd.
McLean, Virginia 22102 = EE-EAGLBL-G=T000
(G)
lz Spe;:n-n:- Orglmnhon Neme ;M Address 13. Type of Report & Pericd Gov._u;]

Federal Aviation Administration
Systems Research & Development Service Technical Report
400 7th Street, S.W.

Washington, D.C. 20590

n

Implementation and application of this System Benchmarking methodology on the Flight
Service Station automation program was sponsored by the FAA. The project used an
Ultra High Order Language and environment driven translator adapted from other work.

—_— -—

“In support of the FAA procurement of the Flight Service Automation
System (FSAS), MITRE has developed a new system benchmarking technology to meet the
requirements of an interactive, dedicated application. This methodology is applicable
to procurements in which the hardware/operating system configurations are off-the-shelf
and the applications software has not yet been implemented in its eventual form. In
this methodology, a model of the application is interfaced with the operating system and
is executed, while being driven by a specified load, and performance of the proposed
configuration is measured. This report documents the requirements of the FSAS applica-
tion of this system benchmark methodology and is published in the present form to record
and make available the concepts and techniques of the methodology. A previous version
of this report had been invoked in the FAA's procurement process. This report consists
of eight parts published in four volumes. This volume contains The Executive Summary,
Part I, Summary, Part II, Technical Introduction, and Part I1I, Technical Concepts,
providing a brief summary for managerial personnel and an introduction to the concepts
and to the efforts required of the vendor.

17.

Document Analysis ». Descriptors Benchmarks, Synthetic Programs, Interactive Systems, Simulation,
Performance Measurement, High Order Languages, System Benchmarks, Modeling

b lGentifiers/OpenEnded Torms Tnteractive System Benchmarking, Interactive System Simulation,

Data Processing, Acquisition Risk Management, Command & Control System Benchmarks

c. COSATI Fieic 'Group

JE Eum o atiltv Staremer ’ " 19. Secunty Claws (This Fenon! T 21 o of Payes |
] U I
nclassified 77
Release Unlimited 2'0 Sezurity Class (Thia hn)) 22. Prce
Unclassified
iee BNTI T3 1E * See irurruzt one or Reverse OFTIONAL FORM 272 (4-7D

thormesny NTIS-3%
Ce;, o t~ent of Commerce

The Flight Service Automation System (FSAS)
System Benchmark: Volume I, Summary,
Introduction and Concepts

R.G. Nystrom
S. Koslow
C.R. Spooner

August 1981
MTR-81W131-01

CONTRACT SPONSOR:
Federal Aviation Administration
Systems Research and Development Service
CONTRACT:
DT-FAO01-81-C-10001
PROJECT:
1471C
DEPT.:
W-103

The MITRE Corporation
Metrek Division
1820 Dolley Madison Boulevard
McLean, Virginia 22102

——— ST

ABSTRACT

In support of the FAA procurement of the Flight Service Automation
System (FSAS), MITRE has developed a new system benchmarking
technology to meet the requirements of an interactive, dedicated
application. This methodology is applicable to procurements in
which the hardware/operating system configurations are off-the-shelf
and the applications software has not yet been implemented in its
eventual form. In this methodology, a model of the application is
interfaced with the operating system and is executed, while being
driven by a specified load, and performance of the proposed config-
uration is measured. This report documents the requirements of the
FSAS application of this system benchmark methodology and is
published in the present form to record and make available the
concepts and techniques of the methodology. A previous version of
this report had been invoked in the FAA's procurement process. This
report consists of eight parts published in four volumes. This
volume contains The Executive Summary, Part I, Summary, Part II,
Technical Introduction, and Part III, Technical Concepts, providing
a brief summary for managerial personnel and an introduction to the

concepts and to the efforts required of the vendor.

iii

ACKNOWLEDGEMENTS

The authors gratefully acknowledge the contributions and
support of Mr. R. Roche, Mr. H. J. Buck and Mr. J. Johnson
of the FAA's System Research and Development Service and

the contributions of Mr. D. L. Bashioum, Mr. R. Balder,

Ms. Claire Lohr, Mr. C. J. Lueder and Mr. T. L. Oliver of the

MITRE Corporation during the development and application of
this benchmarking methodology.

iv

S i

There are many uncertcisties in estimating the data processing

'emetty required for systems prior to their development. A system

benchmerk spproach has been developed which provides a simulation of
system operatiomn. In this spproach the impact of important,
difficult to estimate system capacity factors are reflected in the
ssasured result. The technique has been applied to the acquisition
of the key data processing complex in the Federal Aviation Adminis-
tration's national on-line weather briefing :-i flight plan collec-

tion system.
SYSTEM CAPMEIT! PROBLEM

There are many systems in which the data processor is the corner-
stone. Decisions concerning its size must be made to permit tlu
development of the basic system structure and the resulting schedule
and budgetary estimates. ‘nuu‘docu!m sust be made early in
development to give the. system form and allow it to be entered imto
the hlpﬁry process. However, making reasonable capacity
estimates early in system davelopment is an extremely dtfﬂ.euit and
uncertain task. For discussion, the uncertainty is classified into

three groups as functional, technical

M oyt

and competitive. Since the system has mot yet besn built, there
will be at least oﬁmﬁmhmm!muml
description and considerable umcertainty in the data processing
capacity meeded to implemsnt the functioms. Eetimates of future
demand are multiplicative with the functiomal uncertainty.
Techaical umcertainty compounds the problem because even good
estimates of raw capacity required sust be transformed to specific
system configurations. This process may be strongly affected by
unknown hardware and software structure factors vhen going from raw
capacity needed to effective capacity available. Another important,
perhaps even occasionally dominant, factor is overhead/operating
systea impact, vhich may be loosely coupled to the -”licition, may
not be linsar with load, and is wery difficult to predict.
Technical uncertainty will increass substantially if multiple
compute units are used and/or if differant overlay patterns of
systea stimuli are not readily pndictoblo‘. as in real-time
systems. This is further compounded by the introduction of
distributed minicomputer systems into procurements which formerly
only were feasible for mainframe systems. The need for full and
open competition in terms of system structure, as well as specific
machine selection, through the development process is emphasised by
OMB Circular A-109. This means additiomal uncertainty since optioms
in system design and machine choice sust be held open.

vi

v

Yot in the face of all this, demands come early for budget estimates
aod system descriptions on which the project's fate will rest and by
vhich project management will be judged. Project management must
strive to make informed, defensible judgements on performance, cost
and risk. An objective basis for coanfiguration selection in the
face of -:&uuq is needed. Reasonable estimates and a
consistent machanism for updating them, are aleso required to allow

program development to progress in a controlled and stable manner.

The system benchmerk is a dynamic simulation of the final system.
The major elements of the system are represented by the actual
elements themselves or models according to the logic of Figure 1.
Since it is sufficiently difficult to develop the applications
software and specific system configuration, it is generally required
that the hardware, and to a large extent the operating system, be
available off-the-shelf. In that case, they are physically
incorvorated into the simulation and represent themselves. The
application software and systeam stimuli (external demand) are not
available. Thess, therefore, are modeled. PFurther, the user does

vii

R —

NOT AVAILABLE AVAILABLE
(Model) (Measure)
Hardware v
Oparating System - v
Application Software v
External Load v
FIGURE |
SYSTEM ELEMENT AVAILABILITY

iho -ﬁuun since the user knows most about the application and
demand, and is impertial. The user may not know the hardvare or
operating system intimately, but no one need model them. They are
themselves incorporated in the simulatiom, and the impsct of these
key underlying elements of the system is measured. The result is
shown in Pigure 1i. :

Assuming agreement in theory to this point, there are two major
practical pro‘l.o-(They are: (1) the universiality of the
application software model, and (2) the amount of effort needed to
create the simulation. Relative to the first point, it is assumed
that the application can be reasonably well described. A top-dowm
design is done, stopping at a fairly high level. In particular, the
design is stopped vhen each block of the design represents an area
of application code which would be viewed by the operating system as
a single area of code. Each block is then given execution, memory
and linkage values, vhere appropriate, as a function of a character-
istic parameter. Specific connectivity, sequencing and normal
residence in the system is left as a choice to be determined for

each system implementation being considered.

ix

L e e s .

=r

SIMULATION
MODEL OF
APPLICATION

RESPONSE TIMES MEASURED

FIGURE ¥
THE END RESULT

The second problem concarns the amount of effort to be expended.
This problem is addressed by the provision c¢f a number of tools
developed to facilitate the process. A high order modeling language
has been adapted from other work. This language allows the applica-
tion to be modeled in implementation independent statements. These
statements are translated to standard higher order languages such as
FORTRAN or COBOL by a code production system. The generation of the
running simulation, including the linkage that comnmects the
individual functional blocks mapped into a specific design to the
available operating system, is aided by the availability of a number
of debugging aids.

While the characteristics of the individual blocks representing the
application are estimates, the impact of many of the most difficult
to estimate and highly variable factors (e.g., overhead, statis-
tically distributed stimuli, and resource demand conflicts) are
molgred in a reasonably realistic environment. The dynamics of the
simulated system substitute for factors which previously, at best,
had to be taken into account by educated guesses. Cerl:a.inly no
claim of perfection can be made, but substantial improvement of
accuracy, valid comparisons between alternates, and some protection
against large surprises should be expected by the successful appli-

cation of this new technique.

xi

FLICHT SERVICE AUTOMATION PROGRAM APPLICATION

'I‘!u system benchmark nn. developed for application in the
acquisition of the Flight Service Automation System by the Federal
Aviation Administration. The major functions of the system are the
on-line distribution of weather data and the collection of flight
plans. Each of the 20 hub dats processing complexes obtains weather
data from a central weather processor in the national system. The
hub complex provides data on an intcuctin basis to Flight Service
Specialists and directly to pilots in some cases. The key
facilities in the system are the hub complex which maintain national
aviation weather data bases and perform such functions as tailoring
wveather data for individual flight paths. The maximum design size

hub complex is the subject of the system benchmark (see Figure 1ii).

1he Flight Service Automation System procurement is the first appli-
cation of the system benchmark technique. Preparation for rumning
the system henel-.ark was in a complete and stable state at RFP
issue. However, additional tests and validation activities were
conducted and special emphasis was placed on assuring the accommo-
dation of all reasonable designs and on making the process as

reliable and efficient as possible.

xii

“$°N INOWDCURL NOLIVENOIANCO 1!--1
lé: QN i -.E.-

__

w08sAO0Ed
(X110 svsavy) WIHIVAM g SIHOATE WARIVAM
NOILIVIAV _

xiil

The tm Service Astomation System procuresent is currently under-
way. Initially, contracts were awarded to three contractors for a
one year design verification phase. Critical aspects of the system
were proved during that time and an award for the production system
is expected in 1981. Performance of the system benchmark was a
major feature of the design verification period. The end result of
this system benchmark has been a substantial set of results, useful
to the evaluation process and useful to contractor and Government
personnel in learning systeam characteristics having major potential
capacity and performance impact. Follow-on application of this tool
in modeling the wimning contractor's emerging design should yield
the further benefit of advance awareness of performance and of
linitations to performance. The bottom line benefit to the
Government is in limiting uncertainties and controlling procurement

risks.

xiv

TABLE OF CONTENTS

PART I: SUMMARY

1.

2.

3.

SCOPE

BACKGROUND

1 The Flight Service Automation System (FSAS)
2 The Problem

3 The Approach

1 Capacity Requirements
2 Capacity Assessment

SYSTEM BENCHMARK OVERVIEW

3.1 The Model

3.2 The Vendor Interface Package

3.3 Proposed FSDPS Hardware and Operating System
3.4 The Benchmark Driver

3.4.1 Driver Functions

3.4.2 The Input Load Tape

EFFORTS AND RESOURCES REQUIRED

4.1 Configuration
4.2 Facilities and Materials
4.3 Tasks

VENDOR TASK OVERVIEW

1 The Study and Acclimation Phase

2 Initial "reparation Phase

3 The Integration and Optimization Phase
4 The Demonstration Phase

5 Analysis of the Results

xv

10
10
10

10
11

12

12
12
12

14

14
14
15
15
15

TABLE OF CONTENTS

(Continued)

PART II: TECHNICAL INTRODUCTION

SCOPE OF PART 11

SYSTEM BENCHMARK OVERVIEW
BENCHMARK CONFIGURATION
3.1 Hardware

3.2 Software

3.3 Operating System
BENCHMARK DRIVER

Input

4.1
4.2 Output

THE VENDOR INTERFACE PACKAGE

THE MODEL

6.1 Languages

6.2 Vendor Options
6.3 Calibration

VENDOR TASK AREAS

7.1 Overview

7.2 Model Mapping

7.3 The VIP

7.4 The Benchmark Driver
7.5 Integration

7.6 Miscellaneous

16
17

20

20
20
20

22

22
24

25
26

26
26
27

28

28
28
31
33
3
35

TABLE OF CONTENTS

(Continued)

PART III: TECHNICAL CONCEPTS

1.

2.

INTRODUTION
DATA AREA CONCEPTS

2.1 Physical Memory

2.2 Abstract Storage

2.3 Working Space

2.4 Permanent Memory

2.5 Implementation of Abstract Memories

CODE CONCEPTS

3.1 Module

3.1.1 Unit of Code

3.1.2 Internal References

3.1.3 Transfer of Control

3.1.4 Unit of Compilation

3.2 The Vendor Interface Package In Command

1 Access to Code
«2 Scheduling

3.3 Representing the Application

3.3.1 One to One Translation
3.3.2 Module Packaging

3.3.3 Combining Cells

3.3.4 Combined VIP/Module

FLOW OF CONTROL: THE CONCEPT

1l Introduction
2 Functional Constraints

4.2.1 Natural Constraints

1 Natural Flow as Used In the Model
«2 Superimposing Natural Flows

xvii

37
38

38
38
39
39
39

41

41
41
41
41
41

42

42
42

42

42
43
43
43

44

44
44

b4

45
45

5.

7.

TABLE OF CONTENTS

(Concluded)

4.2.2 Coordination Constraints

4.3 Implementation Constraints

4.4 Multiprocessing and Multiprogramming
4.5 The Model

FLOW OF CONTROL: MAPPING TO VENDOR SYSTEMS
5.1 Spectrum of Operating Systems

5.2 Mapping to the Proposed Implementation
5.3 Mapping the Benchmark Representation
RELATIONSHIP BETWEEN THE VARIOUS ELEMENTS
6.1 Modules and Natural Flows

6.2 Working Space

6.3 Pernanent Memory

6.4 Coordination

SUMMARY

xviii

Page
46

46

47
47

49

49
50
53

55

55
55
57
57

58

FIGURE 1:
fIGURE 2:
FIGURE 3:
FIGURE 4:
FIGURE 5:
FIGURE 6:
FIGURE 7:
FIGURE 8:
FIGURE 9:
FIGURE 10:

FIGURE 11:

FIGURE 12:

LIST OF FIGURES

THE FSAS

PERFORMANCE VS. CAPACITY

SYSTEM BENCHMARK DEMONSTRATION OVERVIEW

THE SYSTEM BENCHMARK ELABORATED OVERVIEW
INPUT RECORD FORMATS

SIMPLIFIED ROAD MAP OF EVENTS

ROAD MAP OF MODEL MAPPING TASK

ROAD MAP OF VIP AND DRIVER PREPARATION TASKS
ROAD MAP OF INTEGRATION TASK

ROAD MAP OF MISCELLANEOUS TASKS

MAPPING NATURAL FLOWS TO THE EVENTUAL
IMPLEMENTATION

WORKING SPACE ALLOCATED TO NATURAL FLOWS

xix

Page

18
23
29
30
32
34
36

51
56

PART I: SUMMARY

1.

SCOPE

This report documents the FSAS application of this system
benchmark methodology. A previous version of this report ‘had
been invoked in the FAA's procurement process, but had only
been published and made available as part of the Request For
Proposals (RFP). It is published in the present form to record
and make available the concepts and techniques used in this
benchmarking technology. This description of the FSAS System
Benchmark is presented in four volumes with eight parts:

Volume I - Part I, Summary
Part II, Technical Introduction
Part I1I, Technical Concepts

Volume II - Part IV, Model
Volume III - Part V, Vendor Interface Package

Volume IV - Part VI, Driver
Part VII, Integration
Part VIII, Reference Material

Of these document parts, Part I is intended to provide a brief
summary for nontechnical personnel; the remaining parts are
directed at technical personnel concerned with planning and
accomplishing the benchmark effort and would also be useful to
future applications of this technology. Part II, the Technical
Introduction, introduces sume basic terminology, some basic
requirements and the effort to be accomplished by the vendor.
While it poss:ibly stresses complexity of some portions of the
effort more than it should, it is better that the tasks be
overestimated than underestimated. It provides an outline of
the tasks to be accomplished. More explicit detailed
directions for the major tasks, model mapping, Vendor Interface
Package preparation, benchmark driver preparation and benchmark
integration are provided in Parts IV through VII. The
technical concepts involved in this benchmarking methodology
are presented in Part III and reference material is presented
in Part VIII.

Throughout this technical report, the acron&ns FSAS and FSIS

are used interchangeably. The system name has been established
as the Flight Service Automation System.

-

2.

BACKGROUND

2.1 The Flight Service Automation System (FSAS)

The FSAS has four basic components. Thase components are the
Aviation Weather Processor (AWP), the Flight Service Data
Processing Systems (FSDPSs), the Automated Flight Service

Stations (AFSSs) and Direct User Access Terminals (DUATs). The
relationships of these components are depicted in Figure 1.
The AWP collects and processes aviation weather and NOTAMs
(Notices to Airmen) to establish and maintain one up-to-date
national weather and NOTAM data base. This data base and
updates are provided to the FSDPSs. The twenty FSDPSs serving
the conterminous United States (CONUS) are the interactive
"work horses” of the FSAS. They will provide interactive
automation support to Flight Service Specialists at AFSSs and
to pilots using terminals for direct access to the system.
Through this direct user access to the system, pilots may
receive aviation weather biiefings oriented to their route of
flight, may file flight plans and may enter pilot weather
reports. The Specialists provide a broad range of flight
services dominated by aviation weather briefings and flight
plan filing. The DUATs and AFSSs are required to provide
little beyond the kinds of capabilities expected of
state-of-the-art intelligent terminals. Hence the large,

functionally complex, interactive component of the FSAS is the
FSDPS.

2.2 The Problem

There are always uncertainties in estimating data processing
capacity requirements and in assessing the capacity of proposed
data processing systems to meet those requirements. These
result in risks to any procurement involving a data processing
capability. This is particularly true of large or functionally
complex, interactive systems. The FSDPS is such a system.

2.3 The Approach

The approach is considered in two parts: capacity requirements
and proposed system capacity assessment.

ro

SVSd 3HL

sivna

SOTHAVED ‘SISVOadOd

I 3UNOI4

SSJdV e o

sivna

N\

SSdvV

L R sdasd

SNOLLVANZSIO NAHIVIN

SHVION

e e
‘IModdd 1071d

SMN

SNOIIVAYIASHO YAHLVAM
vvd

2.3.1 Capacity Requirements

The FSAS provides automation in the delivery of Flight Services
to the aviation community. Years of FAA aviation demand
forecasting experience and many studies”® have arrived at
demand on the FSAS in future operational years and have
resolved this demand into functions per hour, during a busy
period, by geographical area to be served by each Flight
Service Data Processing System (FSDPS) in the FSAS. The worst
case load (i.e., heaviest demand) was chosen and specified 2.
as the maximum design size for the FSDPS.

2.3.2 Capacity Assessment

The capacity assessment of the proposed Model 2 FSDPSs could
have been done by analysis or modeling, but these very clearly
have major deficiencies. Capacity tests of the eventual system
or benchmavking of the proposed systems were the conventional
tools remaining. Since the eventual system will not be
available until well after the production contract is awarded,
only benchmarking remains as a tool to give useful results
prior to contract award.

Appiication of conventional benchmarking techniques to an
interactive system would measure the wrong parameters or would
measure only the hardware/compiler contributions. System
overheads can have an important impact on system capacity but
are not properly measured by conventional benchmarks on
interactive systems. System overhead measurements will only
yield realistic values when the system is stressed in the same
sort of way as it would be stressed in the eventual
application. It was concluded that the closest one could come
to stressing the proposed systems in the same way as the
evential application, would require a model of the application
with the same kind, quantity and distribution of resource
consumption as in the eventual application.

1'Pow1er, T. B., MITRE Technical Report, MTR-7847, Data Sources For
Flight Service Information System Performance Requirements,
December 1978.

2-FAA Specification, FAA-E-2683a.

4=

It is obvious that the model must be produced with care and it
should be produced by the Government to assure fairness and
uniformity in the test. It is also necessary to avoid turning
the benchmark into a test of the skill of the contractor's
specialized benchmarking team. It was further concluded that
"reasonable designs" were all that should be simulated since
unusually complex or exotic designs are not desired. This is
because of implementation risk and maintainability difficulty.
Variations in the kinds and distribution of resource
consumption to match the proposed designs were provided for via
options selected by the contractors and via abstractly defined
modeling components which could be implemented in different
ways by the contractors.

Sizing and calibration of the model is a different matter. The
Government has extensive experience with the FSAS application
and hence could establish resource consumption for the modeling
components. Provision of this data by the Government avoids
potentially conflicting assumptions on the part of contractors,
and allows each contractor design to be tested against uniform
and conservative assumptions.

Given that one can stress the system properly, the parameters
to be measured must still be carefully selected. To the user
of an interactive system, the important performance factor is
the system's time to respond to each of the interactive
transactions entered into the system, given of course that the
programs work and give correct results. This response time
includes many complex factors, which are virtually impossible
to predict with any degree of certainty. Included is not just
the sum of times spent using various resources. The response
time also includes the times spent competing in queues with
other transactions for those resources, as well as the times
associated with bottlenecks which may appear as the load
transitions from light to moderate to heavy. The genera! ‘orm
of the performance curve observed for interactive systems is
illustrated in Figure 2. The scale on both axes and the shape
of the curve will vary for different systems and for different

.

RESPONSE TIME

REQUIRED RESPONSE TIMES
(UPPER BOUND)

7272220277722

REQUIRED LOAD

N

SYSTEM LOAD

FIGURE 2
PERFORMANCE VS CAPACITY

applications software designs, and for different load mixes.
The theoretical limit to system capacity may be defined as
being located at the '"dog-leg" of the curve since unit
increases in load cause large disproportionate increases in
response time. However, for a system to be satisfactory, it
must operate with acceptable response times at the specified
load as depicted by the shaded area.

In summary, the interactive performance parameter of interest

is response time measured across the range of loads of interest
in the procurement.

SYSTEM BENCHMARK OVERVIEW

The System Benchmark is a real time capacity test of the
vendor's proposed FSDPS. During the vendor's accomplishment of
the System Benchmark Demonstration, a Government supplied model
of the operational software must be run on the vendor's
proposed FSDPS hardware with the proposed operating system, as
depicted in Figure 3. A software "bridge”, called the Vendor
Interface Package, must be provided by the vendor to interface
the model to the proposed operating system. The vendor must
also provide the benchmark driver hardware and software,
including a portion of the required FSDPS data communications
channels. The Government will provide a load tape to drive the
benchmark demonstration and will remove the output tapes at
completion of the demonstration for later analysis. The
elements depicted in Figure 3 are described briefly below.

3.1 The Model

Effectively, the model is a sizing model of the FSAS
operational software. Operational functions are represented by
modules of code in the model and the flow of control within and
between FSAS operational functions. Internally, however, the
modules of code in the model are synthetic. They do not
perform the actual operational functions, but are designed to
impose the appropriate strain on FSDPS resources, including
main store occupancy, processing time, input/output, and disk
occupancy and usage. The resource consumption characteristics
of the model represent the Government's capacity reservation
for each of the functions.

The model has been designed to be very flexible in allowing the
vendor to map it to the vendor's proposed FSOPS configuration
so that it represents the proposed operat’onal software
design. The model is composed of many sr.ll cells of code,
which will be combined into larger modules as requested by the
vendor, within allowable functional constraints. The modules
of code may be distributed across computer subsystems, with
extra copies of modules as necessary; however, intermodule
communications must be preserved. Where this degree of
flexibility does not span the range of design possibilities,
options have been built in which may be ad justed by the vendor
to better reflect the proposed design. The model will be
available in either COBOL or FORTRAN, at the contractor's
option.

INPUT
LOAD TAPE
FROM COVERNMENT

OuTPUT
TAPE
TO GOVERNMENT

BENCHMARK
DRIVER
(HARDWARE
AND
SOFTWARE)

VENDOR
PROVIDES

X,

N
N .

PROPOSED

FSDPS
(HARDWARE)

VENDOR
PROVIDES

SECONDARY OUTPUT
TAPE(S) TO
GOVERNMENT

FIGURE 3

A%
I
|
|
|
PROPOSED | MODEL
OPERATING | (SOFTWARE)
SYSTEM
(SOFTWARE) |
|
|
VENDOR | GOVERNMENT
PROVIDES | PROVIDES

VENDOR INTERFACE
PACKAGE, VENDOR
PROVIDES THIS
"SOFTWARE BRIDGE"
BETWEEN MODEL AND
OPERATING SYSTEM

SYSTEM BENCHMARK DEMONSTRATION OVERVIEW

3.2 The Vendor Interface Package

The Vendor Interface Package (VIP) plays a key role in
benchmark performance. This vendor prepared interface between
the wodel and the system, allows use of a standard model for
all vendors without restricting their choice of system. The
VIP provides this interface by handling all VIP Service
Requests (VSRs) from the model. An important aspect of the VIP
is that the model issues VSRs to the VIP for all services
normally expected of an operating system or an applications
executive including services such as resource allocation,
input/output and intertask communications. This provides the
VIP with a maximum degree of control and hence flexibility in
matching the resource usage distribution characteristics of the
proposed operational software design and in optimizing
benchmark performance. Of course, since the vendor is writing
the VIP, it may have as little or as much sophistication as the
vendor desires. It is also apparent that a more complete
operating system will allow a simpler VIP. The VIP may be
prepared in the software language of the vendor's choice.

3.3 Proposed FSDPS Hardware and Operating System

The proposed FSDPS operating system and hardware configuration
is the subject of the benchmark demonstration. The config-
uration required is described more fully in Paragraph 4.1. The
benchmark performance will also be affected by efficiency of
the proposed compiler.

3.4 The Benchmark Driver

The benchmark driver consists of a data processing resource
with an appropriate interface to the FSDPS, with at least two
tape units and with a vendor developed software package to
provide the necessary functions. The benchmark driver software
may be prepared in the software language of the vendor's choice.

3.4.1 Driver Functions

The benchmark driver represents the FSDPS's external interfaces
and has two primary functions. First is reading of messages
from the input load tape and delivery of the individual
messages to the model at the time indicated within each
message. Second is the receiving of output messages from the
model, which are written to an output journal tape after the
addition of time on receipt.

-10-

s g et o b e B S L A
T >

e R b b

L, ST P DI (T R Rty WP 0 A AL N g T e P TDe REEN TE L e T iR

Secondary functions are added due to the real-time nature of
the benchmark demonstrations, due to the realism required of
the communications load to be imposed on the FSDPS, and due to
the large size of some messages versus the finite capacity of
magnetic tapes. The first of these poses requirements for
software initialization and updating of a real-time clock and
for buffering a substantial number of input messages to provide
the model with each message at the right time. The second of
these poses a requirement for the communications hardware and
protocols to be included in the driver. The third of these
poses a requirement for message expansion and compaction. The
input tape contains compacted messages with directions for the
driver, which will then provide the synthetic messages of the
correct length and content to the model. Some model output
messages will be very long and these must be compacted by the
driver prior to being written on the output journal tape.

3.4.2 The Input Load Tape

The input tape is in many senses the key to the driving of the
benchmark. The statistical distributions of function
frequencies used by the Government's Load Tape Generator
Program are identical to those specified in the procurement
specification. The functions are each represented by a
sequence of transactions. This is particularly true of the
interactive sequences. The Load Tape Generator Program uses
stochastic methods to simulate the frequency distributions of
functions and to simulate the transaction sequences within
functions. Secnario directed parameters within the
transactions control some aspects of model operation, including
in some instances, the usage of CPU and the accesses to files.

-11-

EFFORTS AND RESOURCES REQUIRED

The requirements for vendor efforts and resources essential to
successful completion of the demonstration are provided in more
detail in other parts of this document. They are summarized
here.

4.1 Configuration

For the benchmark demonmstratiom, the vendor shall provide the
full proposed FSDPS operating system and data processing
equipment configuration, excluding the card reader/punch and
position equipment interfaces other than an operator's console
or terminal. The magnetic tape, line printer and input/output
terminal equipment shall be present in the configuration, but
may be reduced by the vendor from those quantities required by
the FSAS specification. The full proposed FSDPS configuration
shall be that compliment of equipment proposed by the vendor to
satisfy the maximum design size requirements of section 3.6 of
FAA-E-2683. In addition, the proposed compiler must be
available. During the initial phases of preparation, the
vendor may use a single CPU configuration. The vendor must
also provide the data processing equipment and software for the
benchmark driver, including at least approximately one fourth
of the data communications channels required in the full FSDPS
design, in accordance with the requirements of Part VI of this
document. The vendor shall assume full responsibility for
adequacy of the communications channels provided. More than
one communications channel will be necessary in some of the
physical ports and in some particular cases, the full
compliment of proposed communications capacity may be necessary.

4.2 Facilities and Materials

The vendor shall accomplish the demonstration at a location and
in a facility chosen and provided by the vendor. Materials,
documents, listings, magnetic tapes, manpower, and other
resources necessary in the preparation and accomplishment of
the demonstration shall be provided by the vendor. The demon-

stration shall be witnessed by the Government's Benchmark
Demonstration Team.

4.3 Tasks

A variety of tasks must be accomplished by the vendor. These
can be categorized into the following task areas:

-12-

a. Preparation of the Vendor Interface Package.
b. Mapping the model to the configuration.
c. Preparation of the Benchmark Driver.

d. Benchmark integration, testing, optimization, and
demonstration.

e. Miscellaneous tasks:
(1) Calibration measurements.
(2) Reading the documentation.
(3) Attending workshops.

(4) Assessing compatibility of Government provided
P
programs with the proposed compiler and
linker/loading programs.

(5) Development of a Benchmark Demonstration Plan
document.

(6) Compilation of Government provided programs
(7) Planning and organization of the effort.

(8) Development of a Benchmark Demonstration
Procedure document.

A one-to-one correspondence between task areas and personnel 1is
not intended. The miscellaneous tasks should be straight-
forward and should not be excessively time consuming. Tasks a.
and b. will be the most demanding of both man-hours and quality
of personnel. The critical path through this effort is
expected to include tasks a. and d. in series. Task c. should
be straightforward if adequate driver hardware, support
software and communications protocol software exists.

-13-

VENDOR TASK OVERVIEW

The previous sections have introduced the System Benchmark and
have summarized the efforts required of the vendor. To put the
whole effort into its proper perspective, a brief overview of
the vendor's efforts through the various parts or phases ot the
benchmarking process is provided in Paragraphs 5.1 through

5.5. A brief statement of how the results will be used is
provided last. There are four major phases to the vendor's
efforts in the benchmarking process.

5.1 The Study and Acclimation Phase

Upon receipt of the Flight Service Automation System (FSAS)
System Benchmark document, vendor personnel should be started
on studying the documentation and planning the effort. This
phase extends through vendor attendance at the workshop to be
presented by the Government. During this phase the vendor
personnel assigned to this effort may move ahead with some of
the more straightforward tasks, including perhaps, starting the
preparation of the benchmark driver. The more demanding tasks
of model mapping and VIP preparation should move ahead more
carefully. However, they should be carefully studied and
considered prior to the workshop. The workshop will provide
more detailed guidance and information to these efforts.

5.2 Initial Preparation Phase

During this phase, the vendor should complete preparation of
the benchmark driver, should complete many of the miscellaneous
tasks and should complete a very careful and thorough model
mapping effort. The results of the model mapping task shall be
provided to the Government at least ten (10) days prior to
generation and delivery of the first trial version of the full
model in compilable high order language. The VIP preparation
must also be completed in this phase and must include
exhaustive testing of the VIP on at least a single CPU config-
uration. Although the contractor is free to be inventive, this
VIP testing is visualized as a two step process. The first
step is to do a single shot test against the Test Model, run
from an interactive terminal. The second is to interface the
driver with the VIP and a single FSDPS CPU for dynamic testing
of the VIP against the Small-Scale Model and its corresponding
load tape. An intermediate step, using an internal driver,
might also be included. This phase should complete the
vendor's preparations, such that the full FSDPS configuration
and all of the other pieces depicted in Figure 3 are available
for start of the Integration Phase.

—14-

5.3 The Integration and Optimization Phase

When the driver and the full FSDPS configuration are available,
integrated and working, and the VIP is ready, the vendor should
integrate the hardware and software pieces. Additional
versions (up to two) of the model with variations upon the

mapping of modules to computer subsystems and the option
settings may be requested and used to optimize performance of
the benchmark. A ten (10) day lead time is required for each
request.

5.4 The Demonstration Phasé

On the designated day of the benchmark demonstration, the
vendor shall prepare for and conduct the demonstration for the
Government's Benchmark Demonstration Team, using tapes provided
by the Team on that day. The Govermment's Benchmark Demonstra-
tion Team will certify the configuration prior to start of the
demonstration. All steps in the demonstration shall be
conducted in accordance with the vendor prepared and Government
approved Benchmark Demonstration Plan and Procedure documents.
Upon completion of the demonstration, the Government personnel
will remove the tapes and will use the output tapes for the
benchmark demonstration performance analysis.

5.5 Analysis of the Results

The content of each message recorded on the output tapes will
be examined by the Govermment's Benchmark Performance Analysis
software. The primary parameter of concern is system response
tine for primary responses from the model for each input
message. Other checks will also be performed. The Government
will analyze the results for missing messages, delayed input
messages, and for any evidence that the required flow through
the model has been tampered with. In the analysis of message
response times, the messages will be categorized into the types
for which response times are specified in the FSAS
specification. A statistical analysis of response times will
be performed for each category.

=15~

PART I1: TECHNICAL INTRODUCTION

xe

SCOPE OF PART I1I

This portion of Volume I is Part II of an eight part document
presenting requirements and guidance for the System Benchmark.

Part I is a summary addressed to the vendor's management; the
remaining seven parts present information addressed to the
vendor's technical personnel. Part 1II serves as an
introduction to parts I1I through VIII and should be read by
all technical persons involved in the benchmark. It provides
an overview of the whole benchmark process, and introduces some
of the technical terms that should be known by all members of
the team.

The vendor's efforts in the benchmark process can be readily
divided into several task areas; and this part of Volume I is
organized according to these areas. Section 7 of this part
discusses the various task areas, and provides guidelines for
the order in which the documentation of Parts III through VII
should be read for each of the task areas. Parts IV through
VII each contain reference material which is unique to that
task area. Reference material, which is applicable to several
task areas, is provided in Part VIII. Technical terms are
defined as they are introduced. Definitions are repeated in a
glossary provided in Part VIII.

-16-

2.

SYSTEM BENCHMARK OVERVIEW

The System Benchmark is designed to do a real-time capacity
assessment of the vendor's proposed Flight Service Data
Processing System (FSDPS). In this assessment, capacity is
measured as response time versus input/output demand and the
assessment is of measured values against specified values in
accordance with the procedures of MIL-STD-105 and a confidence
level of ninety (90) percent. In this assessment procedure,
the vendor's risk is fixed at ten (10) percent and the
Government's risk then varies with sample size, going from a
very low risk at large sample sizes to a higher risk at smaller
sample sizes. A more qualitative procedure should be used if
any of the transaction sample sizes is very small, as explained
in MTR-79W00157, Revision 1.

The vendor's proposed hardware and operating system are
subjected in real time, over a period of at least three hours,
to input transaction conditions designed to simulate those of
the real application; and the system's performance under these
conditions is measured. Figure 4 provides an overview of the
System Benchmark.

A Govermment provided model of the FSAS application
(operational software) runs as a program under the proposed
operating system, and is driven by simulated inputs arriving in
real time. For each inmput message, the model simulates the
resource requirements necessary for dealing with that input and
then, in real time, outputs a response message. The measured
response times provide the data by which the adequacy of the
vendor's proposed FSDPS is assessed.

The model is composed of a set of modules, each of which
represents part of the code of the eventual application. Each
module contains a certain amount of code whose purpose is to
organize the benchmark run; and each is padded out with
synthetic code (that is, code that serves no purpose except to
simulate) to bring it to the size and CPU requirements
anticipated for the eventual code that it simulates. The rode
also contains calls to the system to request memory resc es
and external 1/0. The size and CPU usage of the model
represent the Governmnent's capacity reservations for each of
the functions.

-17-

Model of Application:
Provided by < Simulates Resource Model
Government Requirements of Each
Transaction Type
> Vendor
VIP Interfaces the In;:zi:c:
Model to the -
Operating System f
Operating
System
Being
Provided by Benchmarked ﬁ
Vendor <
Hardware
~
REAL-TIME /Iﬂ' y
e LS e S S — DRIVER
\

NON-REAL-TIME I"

A4

INPUT-SCENARIO o
TAPE

(

Secondary Output Tape(s)

Provided by
Government <

Analysis of OUTPUT TAPE(S)
Response Times
g Note: Not to scale.
Relative amount
of resources

required are not
depicted.

FIGURE 4
THE SYSTEM BENCHMARK ELABORATED OVERVIEW

-18-

Figure 4 also distinguishes between real time and non real
time. In the real time area, note that a component is inserted
between the model and the system: that is the Vendor Interface
Package (VIP). The vendor provides this to interface the model
to the system. Providing the VIP is a major part of the
vendor's effort on the System Benchmark.

In the non real time area of Figure 4, note that the simulated
inputs are prepared in advance on a Government computer and
brought to the vendor's site on a load tape. The vendor
provides a computer, the benchmark driver, plus software, to
read the tape and forward the messages in real time. The
benchmark driver also accepts the real time responses from the
model, time stamps them, and writes them to the output tape, on
which they are taken to a Government computer for subsequent
analysis. This benchmark driver is outside the configuration
being benchmarked. The various components portrayed in Figure
4 are further described in the following sections.

..

BENCHMARY. CONFIGURATION

3.1 Hardware

The vendor shall provide the following hardware for the
benchmark demonstration:

a. FSDPS as proposed: excluding the card reader/punch
equipment, the position equipment subsystem, and all but
one or two tape drives.

b. Benchmark driver: which is specified in Part VI of
this documentation.

c. Communications between (a.) and (b.): this is
specified in Part VI of this documentation.

The FSDPS shall be that configuration proposed for the maximum
design size requirements of paragraph 3.6 of FAA-E-2683. 1In
addition, operator's consoles shall be provided on the FSIPS
and on the driver and the vendor may elect to have magnetic
tape drives on each of the computer subsystems in the FSDPS.

3.2 Software

The software provided by each vendor shall include:
a. Operating system and compiler.

b. VIP; #tich is specified in Part V of this
documentation.

c. Software for the benchmark driver; this is specified
in Part VI of this documentation.

3.3 Operating System

The hardware and/or operating system shall provide:
a. A timed interrupt.

b. Facilities for external I/0, I/0 to backing store
(disk) and communication between processors.

c. The means for the VIP to invoke and control the model.

=20~

If the hardware and operating system provide more than this,
then less may need to be provided in the VIP. The VIP and the
benchmark driver software may be written in any language
(including Assembly Language); however, the code is deliverable
to the Government at the time of the benchmark demonstration.
A preliminary copy of VIP and driver source code shall be
provided to the Government thirty (30) days prior to the
demonstration. The delivered code shall be annotated for easy
understanding.

The Government will provide the model and the load tape. The
model will be available in FORTRAN or COBOL. The vendor shall
compile the vendor model with the compiler that the vendor
proposed to offer.

2=

BENCHMARK DRIVER

As introduced in Section 2, the vendor shall provide the
benchmark driver in accordance with the requirements specifi..
in Part VI of this documentation. The driver is required to
provide the appropriate data communications strain on the
FSDPS. The benchmark driver includes a data processing
capability, with communications to the FSDPS being
benchmarked. It also includes software needed to read the load
tape for input to the FSDPS and to accept, time stamp and
record model output messages.

4,1 Input

The load tape provided by the Government consists of a sequence
of time ordered messages which simulate the statistical
characteristics of the loads specified in paragraphs 3.6.1 and
3.13.2.3 of FAA-E-2683. Each record describes one transaction;
it contains header information addressed to the driver, and
text (transaction) to be passed to the model. The text
consists of parameters that direct the action of the model.

The driver must reformat the message as depicted in Figure 5
and nust pass the resulting message to the FSDP5 at the time as
specified in the input message.

The model expects input on 136 logical ports (1-135, 137). For
example, it treats each specialist terminal as a separate
logical port. The vendor must multiplex, via the driver

sof tware, the logical ports into a smaller number of physical
ports, each of which must be implemented as one or more
hardware channels between driver and FSDPS. The text that the
driver sends to the FSDPS carries the logical port number
internally. The VIP must accept and buffer the message and
deliver the message to the model when the model asks for it by
logical port number. The message handed to the model by the
VIP must have had any added data communications control
characterers and fields removed. For each input to the model,
the driver shall generate and write a journal entry on the
output tape. The time field of this entry shall be the time at
which the last character of the message was sent to the
FSDPS.Input messages are characterized by Input Type. Do not
confuse Input Type with the Message Types that are specified
for the application in FAA-E-2684. Each Input Type represents
a particular kind of strain on the system; thus an Input Type
may represent several Message Types.

-22-

80 Characters

On Load-Tape

Header

Text for
Model

Unused

Delivered to Model

Optional
Communi-
cation
Charac-
ters

N

Straight
Copy

Padding
Inserted
by
Driver

Optional
Communi-
cation
Charac-
ters

J\

>of

Removed from
> Message Before
Input to Model

Modeled
Length

Input
Message

J\

Removed from

> Message Before

Input to Model

FIGURE §
INPUT RECORD FORMATS

=R

4.2 Output

On output the benchmark driver time stamps and verifies the
output message response from the FSDPS, then journals it on the
output tape. Each input gives rise to one or two, aad
sometimes more than two, journal entries:

a. to record input message delivery to the FSDPS;

b. for most input types, to record the matching output
message response from the model;

c. for some inmput types, to record second order responses.

Output from the model to the printer (Logical Port 136), and to
Legal & Analysis Recording (Logical Ports 138, 139,), must
be written to secondary output tapes and delivered to the
Government. The vendor can write this output on the most
convenient tape drives in the FSDPS.

=24~

3.

THE VENDOR INTERFACE PACKAGE

The interface between model and VIP is standard across all
vendors. It is specified in Part V of this documentation. The
specification consists basically of the method by which the VIP
is to invoke the model, and a series of VIP Service Requests
(VSRs) which the model issues, and which the VIP must honor.
The VSRs are requests for such services as:

o Spawn parallel processing.

o Transfer control to another module.
o Allocate resources. -

o 1/0.

The VIP's role is to interface these requests to the vendor's

operating system, and to supply any required services that the
operating system does not supply.

-25-

6.

THE MODEL

6.1 Languages

The model is written in a high-level language referred to as
Modeling Language (ML). It is available to the vendor as a
listing in this language. At this level the model is the same
for all vendors. The vendor is not required to read and to
understand the ML listing of the model. If the vendor chooses
to do so, the necessary guidance is provided in section 2 of
Part VIII. '

Government software referred tc as the ML Translator
automatically translates the Modeling Language into COBOL or
FORTRAN (referred to collectively as HOL in the benchmark
documentation), in which form it is delivered on magnetic tape
to the vendor. During the translation, parameterised values
are inserted, so that the HOL delivered to the vendor is in
some respects vendor dependent. The differences across vendors
come under two headings; vendor options, and calibration. The
use of an automatic translator ensures the proper control over
the vendor dependent features.

For testing purncses the vendor can edit the HOL as desired,
but for the official demonstration, the Government will bring a
clean copy which the vendor shall compile without editing.

6.2 Vendor Options

In some places, the model allows for more than one way in which
the application could be designed. The choice is implemented
as a parameterized vendor option, so that the vendor can select
which way this version of the HOL will perform.

For the official rum, the vendor shall state in advance the
option settings to be used, and the Government will bring a HOL
copy of the model that reflects the settings requested. During
early development, however, the vendor may not know what values
are optimum. If the vendor wishes to experiment without making
frequent requests for further HOL copies, a trial version of
the HOL model can be requested in which some of the options can
be changed at the HOL level (HOL-editable options) or can be
controlled dynamically by the VIP (dynamic options). The
Government will also consider, on a case by case basis, using
the option mechanism to tailor the HOL to a vendor's compiler
or loading system. The vendor shall justify the degree to
which the compiler is not standard for all versions of the
model.

-26-

6.3 Calibration

Each module of the model represents a part of the application.
Its size and CPU requirements have generally been assessed from
experimental, prototype and operational software that already
exists; and are expressed in the Modeling Language version by
statements of the form:

o Code Length 10 Code Units.
o Use CPU 3 CPU Units.

Both code units and CPU units are artificial units.

Each wiit is converted to actual space or time on the vendor's
hardware by applying a factor derived from measurements taken
with the Sample Program.

When the ML Translator translates the Modeling Language into
HOL, it adds HOL code to bring the space and time requirements
up to the size that is being modeled. Two sets of

measurements, both on the vendor's hardware, are used by the ML
Translator when the HOL is produced.

a. The Sample Program (Processor Benchmark) measurements,
to establish a target size in the vendor's machine.

b. Subsequent calibration measurements to establish how

much padding code will produce that target size on the
vendor's machine, with modeling overheads subtracted out.

-27-

VENDOR TASK AREAS

7.1 Overview

Figure 6 illustrates the interrelationships between various
tasks already introduced. The vendor's work is shown broken
down into nine task areas; the straightforward tasks are:

a.
b.
Ce
d.

Processor Benchmark measurements s
Calibration measurements

Compiling the HOL models

Reading the documentation

Preparing the FSDPS and driver configurations.

The tasks for which the vendor should budget a significant
amount of effort:

f.

Deciding option settings (which requires a good

understanding of the model and of the vendor's proposed

design)
g. Preparing the VIP
h. Preparing the Benchmark Driver
1. Benchmark integration, testing and optimization
j. Demonstration run
Tasks f, g and 1 will be the most demanding, in terms of both

man—hours and caliber of personnel. Task h may be substantial,
in terms of required effort, if the vendor must also develop
data communications software for the driver.

The major tasks for the vendor in the System Benchmark are
discussed in paragraphs 7.2 through 7.6. Although the tasks
are described separately, a 1:1 correspondence between tasks
and people is not intended.

7.2 Model Mapping

This task requires careful study of Parts III and IV.

Pertinent statistical data will be found in Part IV. A road
map of the model mapping tasks is shown in Figure 7. The model
mapper has to study both the model and the vendor's
proposedsoftware architecture and must then decide both how to
map the model to the configuration (that is, which components

to place

in which processor) and what settings to give the

various vendor options.

-28-

g

e S S B s T p—

S RS G s |

T AT I TR SV M O D A RS 1S RS O RN A TR AR AL A Ry e

i ISSUE SYSTEM BENCHMARK ,

> READ DOCUMENTATION

DOCUMENT e
_______)
:_ ISSUE CALIBRATION —L PREPARE
PROGRAMS ’ DRIVER
| A . Jd
CALIBRATION PREPARE
MEASUREMENTS VIP
r TRANSLATE MODELS :‘_‘ 4 Pp———
INTO HOL MODEL
A . MAPPING
COMPILE
HOL MODELS
r- - ———7 y_L 3
ISSUE SAMPLE . »| INTEGRATION, TESTING
| LOAD TAPES F AND OPTIMIZATION
B e s e - ,
FINAL
VENDOR |t
l_ OPTIONS
H————
| COMPILE DEMONSTRATION
| AND LOAD TAPE TO e woL MopEL =] s
DEMONSTRATION !
O —
[RI es g
| ANALYZE RESULTS [E°%
| | LEGEND:
= =7 GOVERNMENT
L——d ACTIVITY
VENDOR
ACTIVITY
FIGURE 6

SIMPLIFIED ROAD MAP OF EVENTS

29

1
| ISSUE HOL TAPE [®

STUDY: PART II
PART III
PART IV
PART VIII

0

STUDY PROPOSED
OPERATIONAL SYSTEM
ARCHITECTURE

'

ATTEND WORKSHOP

:

STUDY OPTIONS
- SELECT MANY
- DECIDE ROUTE OF
EXPERIMENTATION
ON OTHERS

.

REQUEST FIRST SET
OF TRIAL OPTIONS

| OF MODEL FOR

|
| TRIAL RUNS -

S —————

LEGEND:

=== GOVERNMENT
L _ __J ACTIVITY

VENDOR
ACTIVITY

FIGURE 7

v

TO INTEGRATION TASK

ROAD MAP OF MODEL MAPPING TASK

e ——————c——— . i

The model mapper's task will fall into two phases; study, and
trial. During the model mapping study phase, the VIP writer
will be requesting various HOL tapes, from the Government, that
are designed to help develop the VIP. When the VIP is ready,
the model mapper can then request trial full scale versions of
the model for experimentation and tuning of the model to
achieve the best benchmark performance on the proposed FSDPS
configuration.

The trial versions can make use of HOL editable and dynamic
option settings as described in paragraph 6.2. Finally, the
model mapper shall tell the Government what settings are wanted
for the HOL tape that the Government will bring for the
demonstration run. Instructions for requesting HOL versions
will bde found in Part VIII.

The magnitude of the model mapper's task should not be under-
estimated. The workshop is designed, in part, to help the
model mapper comprehend what has to be done.

7.3 The VIP

Parts III and V pertain to the VIP. Part V contains the

specifications of the VIP/model interface. The specifications
are preceded by explanations, and followed by suggestions. The
workshop is designed to help the VIP writer approach the VIP
design and development effort. A road map of the VIP
preparation task is shown in Figure 8.

Though vendor options in the model are provided, it should be
appreciated that the specification of the VIP leaves
considerable latitude in the VIP for such things as scheduling
and resource allocation. Thus, the VIP contains implied
options which can be as important for optimizing performance as
are the explicit options in the model.

Various aids have been developed by the Government which the
vendor can make use of to the extent desired. They include:

o A listing of a Sample VIP in ML, which can be copied
and adapted.

o A listing of a set of debugging aids, which can be
copied and adapted.

VIP GENERATION TASKS

| ISSUE SYSTEM
(BENCHMARK
L DOCUMENTATION

PART 11
PART III
PART V

STUDY:

v

STUDY PROPOSED
OPERATIONAL SYSTEM
ARCHITECTURE

4

ATTEND WORKSHOP

}

DESIGN AND PRODUCE
VIP AND TEST AIDES

y

[o ey

| WORKSHoP b

r——"——=-= A

| ISSUE TEST MODEL | J
-

TEST WITH TEST
MODEL

1

pheiendanionimy |

| ISSUE SMALL MODEL, |,

TEST* WITH SMALL

SMALL LOAD TAPE J

———

r-—---

ISSUE
SAMPLE
LOAD
TAPES

BENCHMARK DRIVER
GENERATION TASKS

STUDY: PART 11

PART VI

!

PRODUCE
DRIVER

TEST
DRIVER

NOTE*MULTIPROCESSING MAY BE
INTRODUCED AS CONVENIENT.

INITIAL TESTING MAY USE
AN FSDPS-INTERNAL DRIVER.

MODEL

TO INTEGRATION TASK

FIGURE 8

ROAD MAP OF VIP AND DRIVER PREPARATION TASKS

LEGEND:

™ = == GOVERNMENT

L — - = ACTIVITY

[i
ACTIVITY

o A "Test Model” which is for

a. Confirming that the vendor's compiler will
accept the Govermment produced HOL.

b. Testing the interface between model and VIP by
checking out the VSRs, one by one.

o A small scale model, for further testing on a single
CPU system before the full configuration is assembled.

The first thr:e aids listed will be provided and described at
the workshop. The latter will be provided within ten days
after receipt of the vendor's request or 30 days after the
workshop, whichever occurs last.

7.4 The Benchmark Driver

Provided that the vendor already has adequate communications
software and adequate capacity in the driver and communications
lines, the tasks of writing the software for the benchmark
driver shoul'd be straightforward, and considerably quicker than
the two tasks just described. However, it is a separable

task. The person responsible should read Part VI of the
documentation. A road map of the driver preparation task is
shown in Figure 8.

7.5 Integration

There are three areas of integration:

a. Hardware integration of multiprocessors, if not
already integrated.

b. Operating system integration with interprocessor
communications, if not integrated in an off-the-shelf
version.

c. Integrating the model, the VIP, and the drivaer, first

into a single processor FSDPS, then into a multiprocessor
FSDPS .

The benchmark documentation does not address the first two,
beyond specifying the allowable hardware. Part VII should be
read by those responsible for integration of model, VIP and
benchmark driver. A road map for the integration task is shown
in Figure 9.

- -

OPTION SETTINGS

sl Set== famiem fr—m——r

| ISSUE HOL TAPE |

| OF MODEL FOR COMPILE
| TRIAL RUNS

O — 4

VIP DRIVER FSDPS

TEST AND ANALYZE
PERFORMANCE

| LOAD TAPES I

il

TUNE EDITABLE AND
DYNAMIC OPTIONS,
ANALYZE PERFORMANCE

:

UP TO TWO SETS, MAXIMUM

SELECT NEXT SET OF
OPTION SETTINGS

r=-=-=-=="===="

| ISSUE AMENDED HOL TAPE |

| FOR TRIAL RUNS | ki

| SR U PR P

!

ANALYZE
PERFORMANCE

}

REQUEST FINAL SET
OF OPTION SETTINGS

N

T

N. TAPE
| ISSUE FINAL HOL I FINAL TO VENDOR

| OF MODEL, FINAL - FINAL TESTS
| LOAD TAPE I DRY RUNS
—_——a-—-—— Jd
|
]
HAND CARRY BY GOVERNMENT DEMONSTRAT ION
L s s il o
e ey | !
| BENCHMARK PERFORMANCE |g _ . _ OUTPUT JOURNAL, __
I ANALYSIS) HAND CARRY BY
R —— | GOVERNMENT
LEGEND:
™ === GOVERNMENT
Lo ——J ACTIVITY
I s
ACTIVITY
FIGURE 9

ROAD MAP OF INTEGRATION TASK

=3l =

7.6 Miscellaneous

Instructions for the miscellaneous tasks are in Part VII of the
documentation. A road map of the miscellaneous tasks is shown

in Figu=e 10. The tasks are listed in no particular or
required chronological order.

-35-

v B SAMPLE PROGRAM

' ISSUE SAMPLE | MEASUREMENTS

" PROGRAM :

|

| 4 : é AND TO MODEL MAPPER

' l

: SYSTEM i

I BENCHMARK) STUDY: PART II,

DOCUMENTATION PORTIONS OF PART VIII

| A — |
CHECK HOL FOR
COMPILER COMPATIBILITY
REQUEST HOL REVISION
IF NECESSARY

(i o o s) ey

1 ISSUE CALIBRATION | CALIBRATION

L PROGRAMS _} MEASUREMENTS

999 O

COMPILE
ISSUE HOL TAPES (
[UESTED
| - TEST MODEL : .
|

- SMALL SCALE MODEL l

| _ FULL SCALE MODEL

| I | TO INTEGRATION,
=

PPY

-
! ISSUE FINAL HOL ' COMPILE
! TAPE OF MODEL |
s e s s T | l
DEMONSTRATION
LEGEND:
T =="=7 GOVERNMENT
L —=-dJd ACTIVITY

L1 onr
ACTIVITY

FIGURE 10
ROAD MAP OF MISCELLANEOUS TASKS

-36-

PART III: TECHNICAL CONCEPTS

1.

INTRODUCTION

This portion of Volume I is Part III of an eight part document
presenting requirements and guidance for the System Benchmark.
It assumes the reader is familiar with the introductory
information provided in Part II. Part III presents material
that is a prerequisite to the understanding of Parts IV and V
of this document.

Many of the concepts that are presented in this document are
not new. Some of the concepts are new ways of viewing the ways
in which software systems are construc’' >d and the ways in which
they are executed and interact. All of the concepts presented
are necessary in the synthetic program approach used in this
benchmark and must be thoroughly understood by those personnel
who are to work on the model mapping and VIP preparation tasks
presented in Parts IV and V, respectively. Some of the new
terminologv may appear unnecessary to some readers since they
may be familiar with different terms for similar definitions.
Where new terminology is encountered, it has been introduced to
avoid the misunderstandings created by use of existing
terminology which has been assigned varying meanings in various
segunents of the industry. An effort has been made to provide a
definition and in some cases, an illustration of each new term
as it is encountered. In addition a glossary of terms is
provided in the reference material of Part VIII.

-37-

DATA AREA CONCEPTS

This section concerns the technical concepts followed in the
System Benchmark in the use of memory for storing data and
working variables. '

2.1 Physical Memory

Physical memory can be divided into that which is addressable
by a CPU instruction in units of a word or less, for immediate
fetching and storing, and that which is not. For brevity,
these two cases are referred to as main store and backing
store, respectively, throughout all the documentation on the
benchmark. Main store includes both core store and its more
recent equivalents such as semiconductor memory. Main store
may include cache memory. For the FSAS application, backing
store i1s synonymous with disk.

2.2 Abstract Storage

To allow greater latitude in the choice of hardware
configuration and operating system, the model has been
developed with no mention of the physical form of memorv (main
store or backing store) or of the allocation strategies
(virtual memory, buffered, etc.). Instead, the model refers
only to two kinds of abstract storage; Working Space and
Permanent Memory. The physical forms of storage, main store
and backing :tore, are only mentioned in the mapping of the
model onto real hardware.

The operating system is free to move pieces of abstract storage
around physical memory as long as each piece retains its
identity, the content of each is preserved and so that each is
available for access when needed. Moving and updating abstract
storage inv~lves .cusekeeping, and the requirement for this
housekeeping is different in the cases of Working Space and
Permanent Memory. The differences in management of the two
types of abstract storage become particularly important when
recovery from a system crash is considered, and such
considerations play an important part in distinguishing Working
Space from Permanent Memory. The other distinguishing
characteristic is accessibility to the CPU. The criteria of
accessibility and recoverability are clarified in the following
paragraphs.

-38-

2.3 Working Space

Working Space is abstract storage whose authoritative copy, or
only copy, can be in main store when required. Working Space
is not, in general, expected to survive a system crash although
in particular situations some limited recovery might be
possible. It can be implemented as dedicated space in main
store, as backing store space buffered to main store, or as
virtual memory. Working Space is allocated through calls to
the Vendor Interface Package (VIP), so that the vendor can

control what kind and amount of Working Space, and where it is
allocated.

2.4 Permanent Memory

Permanent Memory is abstract storage which need not be directly
available to the CPU, but Permanent Memory shall survive a
system crash, both physically and logically. By this
definition, not only must the physical bits survive the crash,
but their meaning must also survive; hence there must be at
most a negligible chance that a crash will damage the directory
structure that identifies the data. Also by this definition,
Permanent Memory must be accessible by another processor in the
event of a processor crash. Main store as it is normally used
does not qualify; but backing store can, if the directories are
suitable. However, if the vendor wishes to use main store for
Permanent Memory, the vendor shall provide a failure mode
analysis to justify that this use satisfies the Permanent
Memory survivability requirements.

As with Working Space, the allocation of Permanent Memory is
handled through calls to the VIP which can do the allocation
itself or pass the request through to the operating system.
Reads and writes of blocks of data from Permanent Memory are
likewise requested via the VIP, which can use Read/Write
instructions (if available to it) or can invoke the operating
system. Therefore, the vendor plus the proposed system have
complete control over the allocation.

2.5 Implementation of Abstract Memories

The vendor's general plan for the intended use of hardware in
the Model 2 FSDPS shall be replicated in the benchmark.
Therefore, the vendor shall implement Permanent Memory in the
benchmark in a manner that reflects the design proposed for the
final implementation.

-39~

A particular case arises when the vendor proposes similar
implementation for Permanent Memory and for Working Space. For
example, the vendor might propose to implement both in well
engineered main store, or both in virtual memory. For each
vendor that proposes such an arrangement, the Government will
examine the implementation technique. In particular, the
Government will question the integrity of the directory
struc’.ure over a system crash. In certain circumstances, such

an arrangement may, if allowed, result in fewer backing store
transfers.

3.

CODE CONCEPTS

The model has been developed in Modeling Language and is
translated by Government software (ML Translator) into the high
order language (either FORTRAN or COBOL) version requested .by
the vendor. This section addresses the form of the code that
the vendor receives and the form that this takes when compiled
and run.

3.1 Module

The code of the model, together with the padding that simulates
applications code which is not yet written, is divided into
physical pieces referred to as modules. In the model, the word
module is used to mean a unit of code with the following four
properties.

3.1.1 Unit of Code

The module 18 a unit of code which is allocated space in main
store, or is moved between backing store and main store. More
precisely, the module is that unit of code which must all be in
main store when any of it is executed, or (in the case of
demand paging) will all be brought to main store by references
to itself. Internally, the modules of the model are coded so
that each one refers to various parts of itself; either to
ensure that the operating system has brought all of it to main
store, or to force the virtual memory machinery into action.
The vendor can package modules into larger units, for moving
around within the system; the model would be unaware of this.

3.1.2 Internal References

Internal references within a module (both data references and
branching addresses) can be direct. The only occasion for
involving the operating system should be when virtual memory or
pagination administration is brought into play.

3.1.3 Transfer of Control

Transfers of control from one module to another go via the VIP.

3.1.4 Unit of Compilation

The module is presented to the vendor's compiler as a unit of
compilation.

]

3.2 The Vendor Interface Package In Command

Transfer of control from one module to another goes through the
VIP. This gives the vendor the opportunity to invoke VIP
housekeeping routines during the transfer to reflect two
separate code related topics.

3.2.1 Access to Code

The vendor can insert calls to fetch the code from backing
store. This allows the code to be buffered, otherwise it must
be resident in main store or, if the operating system provides
for it, in virtual memory.

3.2.2 Scheduling

If the compiler does not produce reentrant code, the vendor can
insert.the scheduling that makes up for the absence of
reentrancy. The vendor can insert housekeeping routines that
select one copy from a set of multiple copies of the same
module, or insert code that schedules, in a non-overlapping
manner, the work performed by the one non-reentrant copy.

3.3 Representing the Application

In its abstract Modeling Language (ML) version, the model of
the application is broken down into small pieces, called

cells. The vendor can have the cells combined, in the HOL
version received, into units of code, called modules. Thus, in
the HOL version, which is compiled and run, the unit of code is
the module. It is expected that in mo t cases the mapping from
cells to modules will be one to one, and therefore, that a
module will contain exactly one cell. However, the ML
Translator allows multiple cells to be combined into ome
module. This mapping shall be selected by the vendor as
described in Part IV of this document.

In doing this mapping, the vendor must make various trade-offs
between overheads, backing store transfer statistics, and main
store. These represent real trade-offs for the final
implementation, therefore the vendor is allowed to make them in
the benchmark as well. There are several alternatives, each
with important characteristics.

3.3.1 One to One Tramslation

The vendor may let cell and module be synonomous.

—49-

3.3.2 Module Packaging

The vendor can package modules together into large move units.
Thus two or more modules, as presented to the vendor's
compiler, move around together. Transfers between them are
stil? via the VIP. Main store administration is simplified, at
the expense of reduced flexibility.

3.3.3 Combining Cells

The vendor can request the Government to have its ML Translator
combine cells. Thus, a module in the HOL code that is
presented to the vendor's compiler, represents one or more
cells in the model. Transfers of control between cells within
a module, which otherwise would be via the VIP, now become
internal. (The ML Translator arranges this.) By doing this,
the vendor reduces the number of intermodule transfers via the
VIP, but at the expense of also reducing the number of
occasions on which the VIP can gain control.

3.3.4 Combined VIP/Module

If concerned about intermodule transfers, the vendor can
isolate a small piece of the VIP, namely the front end that
interfaces with the module, and package a copy of this front
end with each module.

-43-

4.

FLOW OF CONTROL: THE CONCEPT

4.1 Introduction

With any real time system the flow of control of each CPU is
quite complicated, because it is a mosaic of a number of
simpler patterns of flow, superimposed on each other. To
understand a system one has to do two things:

a. Identify the simpler patterns that compose this
mosaic.

b. Understand the reasons that lead to the particular
form of superimposing.

Over any particular stretch of real time the actual pattern of
superimposing is to some extent coincidental, being subject to
the random arrival of independent events. The randomness of
the superimposing is limited by certain identifiable
constraints. These constraints are the key to understanding a
system. The corstraints fall into two classes; those that are
necessary because of the function that is to be performed, and

those that are purely implementation dependent.

4.2 Functional Constraints

The necessary constraints, which are termed functional
constraints, can be further subdivided into natural constraints
and coordination constraints.

4.2.1 Natural Constraints

It is a perfectly natural and functional constraint that when a
user types a request at a terminal, the computer should input
the reqwet before trying to do whatever the user requested be
done. Otherwise, the computer would be guessing what the user
wants. In this case, it is in the nature of the function that
input precede execution. This is a natural functional
constraint. Whatever the implementation, the functioral
requirement implies that things be done in this order.

If one regards the system in terms of functions to be
performed, one can perceive natural sequences, dictated by the
natural functional constraints just described. For example,
with real time systems of the kind being considered here, there
is a natural sequence of functions associated independently
with each terminal. It is usually based on the loop:
Read-{nterpret-execute-output-Read-.... This natural sequence
is referred to as a Natural Flow of control.

~bh

4.2.1.1 Natural Flow as Used In the Model

There are many such Natural Flows in a real time system,
usually one per terminal, plus a few others. These Natural
Flows are the simple patterns that make up the mosaic referred
to above. Natural Flows form the basis of the model. Natural
Flows can exist temporarily or permanently. The model is based
on permanent Natural Flows, with vendor options to include
temporary ones at specific points.

The definition of Natural Flow as used in the model is as
follows. A Natural Flow is a course of action that is driven
by data from one or more specific sources and, for a given set
of input data, can be represented as a sequence of unic actions
which must be performed in a particular order. In the model,
sources can be external inputs, interrupt timer, and other
Natural Flows. Where the modeling is sufficiently fine grained
to reveal alternative allowable orders, the Natural Flow spawns
further, Temporary Natural Flows which can proceed in parallel,
but which in themselves obey the property that their course of
action follows a predetermined order.

4.2.1.2 Superimposing Natural Flows

To form a mosaic, these natural sequences, called Natural
Flows, have to be interleaved. To illustrate with a very
simple example, suppose a system serves two terminals (terminal
1 and terminal 2), and that for each, independently, there is a
natural functional constraint that A be done before B, where A
and B each represent one module of code. Suppose also, to
simplify the discussion, that the system does not provide
hardware interrupts, and that each module completes its
execution before relinquishing control.

In an actual implementation at run time, these two Natural
Flows can superimpose in any of the six possible mosaic
patterns:

A(1)-- A(2)-- B(1)-- B(2)
A(1)-- A(2)-- B(2)-- B(1)
A(1)-- B(1)-- A(2)-- B(2)
A(2)-- A(1)-- B(2)-- B(1)
A(2)-- A(1)-- B(1)-- B(2)
A(2)-- B(2)-- A(1)-- B(1)

-45-

Each of these six alternative sequences preserves the natural
functional constraint A-- B, for each terminal independently;

that is, in all cases, A(1l) is before B(l) and A(2) is before
B(2).

4.2.2 Coordination Constraints

It is perfectly possible to specify a real time system (like
the example just shown) in which, from the functional point of
view, the natural flows of control for the various terminals
are entirely independent of each other. However, if their
function also requires that they cooperate in some way (for
example, using the same data) then there is a new kind of
constraint. This is a coordination constraint between the
various flows of control, that derives from the functional
requirements. This is a functional coordination constraint.
Again, whatever the implementation, it must be honored.

To consider the effect of coordination constraints on the
example in paragraph 4.2.1.2, suppose the functional
specification also states that A must be done for terminal #1
before B is done for terminal #2. (Maybe A(1) writes to a file
and B(2) reads what was written.) Now there are two kinds of
constraints, the natural functional comnstraints A-- B

separately for each terminal as before, and the functional
coordination constraint A(1)-- B(2). In an actual
implementation at run time, the mosaic is reduced to the first
five of the six possibilities listed above, because the last one

A(2)-- B(2)-- A(1)-- B(1)
violates the coordination comstraint.

4.3 Implementation Constraints

The way in which Natural Flows may be interleaved may be
constrained for a different reason, which has nothing to do
with the functional specifications, and can vary from
implementation to implementation. There may be conflicts
between these flows of control, because they are competing to
use the same working resources (for example, the same CPU, the
same buffer pool, etc.).

The confliicts may be resolved quite haphazardly, being subject
only to random arrival times. On the other hand, the order of
execution may be constrained by deliberate scheduling; if so,
the choice of algorithm will be system dependent and will vary
from vendor to vendor. This kind of constraint is called an
implementation constraint.

46~

To consider the effect of implementation constraints on the
example in paragraph 4.2.1.2, an implementation might have an
optimizing algorithm which constrains A to be done to all
terminals before B is attempted. The possibilities for the run
time mosaic are now reduced to:

A(1)-- A(2)-- B(1)-- B(2)
A(1)-- A(2)-- B(2)-- B(1)
A(2)-- A(1)-- B(2)-- B(1)
A(2)-- A(1)-- B(1)-- B(2)

A second implementation might optimize, instead, by finishing
one terminal before attempting another. In the limited
example, only one possibility is left:

A(1)-- B(1)-- A(2)-- B(2).

4.4 Multiprocessing and Multiprogramming

To introduce the concept of Natural Flow of control, &n
extremely simple example has been applied to a single CPU with
no interruption capability. The reader is invited to take a
slightly more complicated example (e.g., three terminals doing
A-- B-- C, where A, B and C are of equal duration) and apply it
to a multiprocessor with two noninterruptable CPUs. Then
further constrain the solution with the implementation
constraint that A only be done in CPU #1.

An interruption capability usually forms the basis for
multiprogramming. Adding this allows the sequence of each
Natural Flow to be still further fragmented, greatly increasing
the possibilities for the run time mosaic. The effects of
introducing multiprogramming and multiprocessing are covered in
Part V of this document.

4.5 The Model

In summary, the concept of the pattern of the flow of control
of each CPU being a mosaic of simpler patterns superimposed on
each other has been introduced. The choice of actual mosaic is
subject to random events, so it will vary from run to run; but
it is also governed by some identifiable nonrandom
constraints. There are functional constraints, natural and
coordination, which all implementations must honor; and there
are implementation constraints that will vary from system to
system. The natural functional constrainte define natural
sequences, or Natural Flows of control, which are the simple
patterns whose superimposing makes up the run time mosaic.

-47-

The model is described primarily in terms of Natural Flows; and
at specific points in the descriptions of these Natural Flows
there are statements that coordination is required with other
Natural Flows. The model is described this way because these
are the implementation independent constraints on the order in
which things are to be done. These constraints have to be
honored in all implementations. Hence they are common to all
implementations. Any other constraints may vary from
implementation to implementation.

Natural Flows with similar properties are also referred to as a
family of Natural Flows. As an example, if there are 91
specialist terminals, then there will be 91 parallel and
independent threads of action. Each separate thread of action
is a separate Natural Flow. Thus, there are 91 Permanent
Natural Flows serving specialist terminals. However, all 91
have similar properties, and have the same choice of routes
through the code. The set of similar Natural Flows is referred
to as a family of Natural Flows.

-48-

FLOW OF CONTROL: MAPPING TO VENDOR SYSTEMS

It was stated in the last section that the model specifies only
those constraints on the order of execution which are function
oriented. The order of execution can critically affect the
responsiveness of a real time system. Therefore, it is
important that the benchmark model the order of execution that
the eventual implementation will follow. The construction of
the model with the basic minimum of time oriented constraints
provides tie necessary latitude in the order of execution
needed to map the Model in a simulation of the implementation.

The question of mapping to vendor systems is treated thoroughly

in Parts IV and V of this document. This section gives a
general overview.

5.1 Spectrum of Operating Systems

Systems differ from each other in the order in which they do
things. The differences are important. Internally, they often
reflect differences in structure. Externally, these
differences are important because of their effect on response
time. In a batch mode, the order of execution is subordinated
to considerations of throughput, because relatively lengthy
turn around times are tolerated. In a real time system, .
however, the concern is response times, and here the order in
which things are done can have a critical impact, both directly
and indirectly. Directly, a response can be needlessly delayed
if less urgent work is given equal or higher priority. Less
obvious, but also important, the order in which things are done
is closely related to the strategy of getting material into
main store; if material is not in main store when it is needed,
then response times degrade.

Real operating systems do not fit into neat categories.
Nevertheless, concerning the order in which things are done, a
broad spectrum of characteristics exist. In general, it is
true that nperating systems dispatch things to be done, on the
basis of priority. The question is, "What is the entity to
which priorities are attached?”. In considering the nature of
the entities that enjoy priorities, a broad spectrum can be
observed, with particular systems at particular points in the
spectrum.

At the snort end of the spectrum are systems in which
priorities are associated with modules of code. In such
systems, modules assigned a high priority tend to serve all the
users who are waiting for their services, before they
relinquish the CPU.

-49-

In the middle of the spectrum are systems in which priority is
associated with a short lived entity which is not a piece of

code. The word task is commonly used for this entity; so tu a
certain extent is the word process. This entity corresponds to

a short lived Natural Flow, or to a phase in the life of a
Permanent Natural Flow.

At the long end of the spectrum are systems in which priorities
are assoclated with entities of permanent duration which are
not pieces of code. This entity corresponds very closely with
the Natural Flow as it is employed in the benchmark model. In
the real world, examples of it are found under both names; task
and process.

5.2 Mapping to the Proposed Implementation

Implementation, in this section, refers to the vendor's
proposed implementation of the application, not the
implementation of the benchmark. As a purely paper exercise
the following discussion shows how, for various types of

operating systems, the model can represent an actual
implementation.

The model is comprised of a large number of Natural Flows,
proceeding in parallel, and proceeding independently of each
other except where functional coordination is specified. In an
actual implementation, it may be hard to discern these Natural
Flows, because they are so camouflaged by implementation
constraints. Nevertheless, they will be present in all cases.
The main difference between implementations will lie in the
manner in which the superimposing is worked out. This is
influenced heavily by the type of dispatching which the
operating system supports.

A simple example will illustrate the kind of mapping that is
involved. Consider a system in which the model is composed of
three Natural Flows, each of which cycles around the same loop
of modules, A-— B-— C—— D-- A-- ..., and in which there are no
functional coordination requirements. Also, so as not to
confuse the issue, assume that there is only one CPU and,
furthermore, that when an interrupt occurs, the current module
is allowed to complete serving the current Natural Flow.

Figure 11 shows how this simple model can map to typical
systems at the three different points in the spectrum
identified in paragraph 5.1. Real time is from left to right
in the figure. The vertical axis has no significance, so is

-50-

Example: take 3 Natural Flows (NF1, NF2, NF3)
4 Modules (A, B, C, D)
each Natural Flow is as follows:
A—pB —C—D AP -

NFL—rA (1) =85 B(L)—C(1) —8> D(1)] — === == == == === ncemme el e mssmm mmsmmmm e mmessaanas
NF2—p oo mmemmemm o m e ----LA(z)—M(2)+C(2)+ D(2)q <<= == nn-—em o mmm e nee
e e Nt ------;L(J)—’B(s)-bc(a)-bn(a};
PROCESS' 1 PROCESS 2 PROCESS 3
FIGURE 11(A) IMPLEMENTATION #1 ("LONG END" OF SPECTRUM)
NFL—B-A(1) = B(L)=y--- = - = = == === = = = =o=g@-C(1)— D(1)—y--—B= === === = - cmee = oo =
NF2—9 ---- --- 1».\(2)-&5(2 --------- R ()= D(2)—---—p ----
NF3 === == e - = ----:—--l(s):on(a e e -;---—:lyc(s)?M
TASK X1 TASK X2 TASK X3 TASK Y1 TASK Y2 TASK Y3
FIGURE 11(B) IMPLEMENTATION #2
("MIDDLE" OF SPECTRUM; SUPPOSE A + B = TASK X, C + D = TASK Y)
NF1—8-A (1)~ & et s
NF2—>- - -1.;\(2 -——LD(Z)-[;---- -
NF3 - --— - ==~ oo = L B(3)

BT 55
MODULE A MODULE B
REAL TIME —

FIGURE 11(C) IMPLEMENTATION #3 ("SHORT END" OF SPECTRUM)

FIGURE 11
MAPPING NATURAL FLOWS TO THE EVENTUAL IMPLEMENTATION

51

used to improve the clarity. Each Natural Flow is shown on a
line by itself, to make its internal sequence more obvious.
The solid arrows trace the flow of control of the CPU, and the
dotted lines trace the sequence of each Natural Flow.

Start, in Figure 11(A), with the simplest case of mapping;
mappin, to the long end of the spectrum. In this case, the
mapping is to a system in which the entities that are
dispatched, on the basis of priority, correspond exactly with
Natural Flows. This entity is referred to, in real systems,
both as a task and as a process. In the model, a different
term, the Natural Flow, is used because the model is at a
different level of description (i.e., before mapping rather
than after mapping). The Natural Flow is a concept used in the
model to describe the functional time ordered relationships
between modules in a vendor independent model. It is
convenient to limit the use of the words task and process to
the implementation level; to the entity to which, if it is
implemented suitably, the Natural Flow so conveniently maps.

If there are no other implementation considerations, such as
whether the material is in main store, etc., then the
implementation at run time for the long end of the spectrum
will follow the time order pattern of Figure 11(A), or one of
five similar patterns. The six randomly selectable patterns,
of which this one, differ only in the order in which the
Natural Flows are served. For example, a second pattern is
obtained by interchanging Natural Flows 1 and 2. Note how the
sequence A-- B-- C-- D is honored as an uninterpreted sequence
for each of the Natural Flows.

In Figure 11(B) it is shown how the same model could map to the
middle of the spectrum. This is based upon priority based
dispatching of tasks: the word being used in its most frequent
sense, of something to do of short duration, that is performed
by a sequence of selected modules.

~52-

S—

Suppose that the functions required of the system divide
naturally into two groups, one performed by modules A and B,
and the other performed by modules C and D; and that a group
executed on behalf of a Natural Flow represents an entity
holding a priority. Let such a group be referred to as a
task. The model then has six tasks to perform, and 90
legitimate orders in which they can be done. If there are no
other implementation considerations, then the run time order of
execution will be the one shown, or one of 89 similar orders,
depending on how priorities are set. The individual sequences
A-- B-- C-- D, one for each Natural Flow, are now partially
obscured; but note how each one is still honored.

Figure 11(C) shows the mapping to the short end of the
spectrum, where the entity that is priority dispatched is a
module of code (or a one module task). A is performed for each
Natural Flow, then B for each Natural Flow, then C, then D.

If there are no other implementation considerations, then the
order of execution will be as shown, or one of a large number
of similar patterns (once again there is a random selection of
patterns, depending on the order in which the Natural Flows are
served). The individual sequence for each Natural Flow is
still further obscured, but note that it is nevertheless still
honored.

The first of the three cases was clearly the simplest to map;
and any design which is based on long-lived processes gains
thereby in simplicity. However, it is not the role of the
benchmark to prejudge the vendor's choice of system design.

The benchmark is designed to allow all reasonable mappings, and
to let the resulting response times be the judge.

An actual implementation may not be based on Natural Flows, and
the designer may not be conscious of them during the design
effort. Nevertheless, if the design is functionally correct,
then the Natural Flows will be present, however camouflaged.

5.3 Mapping the Benchmark Representation

As a paper exercise, it has been demonstrated how the model,
composed of Natural Flows and modules of code, can map to the
kind of implementation that the vendor is likely to produce,
based on the type of operating system used. It will now be
discussed how this is represented in the benchmark run.

-53-

To obtain a fair result, the synthetic modules in the model
must be exercised in the same order that their real counter-
parts will be exercised in the final implementation. The
mapping just described, between model and final implementation,
must be enacted in a translation between the model on paper and
the running model. The mapping, which is vendor dependent, is
achieved at benchmark run time by the VIP.

As a Natural Flow proceeds, the model calls on the VIP for
various services. In particular it goes through the VIP
whenever it passes from one module to another. At all these
points, therefore, the VIP has the opportunity to intervene.
These represent the points at which a real operating system

would be able to intervene, except for one further and
important form of intervention.

In most systems, but not all, the operating system is able to
iutervene at a hardware interruption, and this can be an
important occasion for scheduling. If the mechanism is
available for the real implementation, then it must also be
available to the vendor at benchmark run time.

Thus, the VIP is in control at all the points where a
scheduling decision might be required. It is in a position to
force whatever type of superimposing of Natural Flows will
fairly represent the intended implementation. Whenever it is
in contcnl, the VIP can address the question, "Which module
next, and on behalf of which Natural Flow?". In the particular
example of Figure 11, it would address the question at each of
the solid arrows. With suitable answers to this question it
can create whatever run time mosaic is appropriate.

Bl

RELATIONSHIP BETWEEN THE VARIOUS ELEMENTS

6.1 Modules and Natural Flows

It should be clear from the above that modules of code and
Natural Flows are different at all levels, including the
conceptual level. A Natural Flow will pass through many
modules; many Natural Flows can use the same module. The
vendor is free to choose how a module can serve many Natural
Flows. For example, the vendor can use reentrant code, or
schedule the Natural Flows one at a time through each module,
or implement multiple copies, with one copy dedicated to each
Natural Flow.

6.2 Working Space

Working Space is allocated by the VIP in response to calls that
originate from within modules. However, the Working Space is
not allocated to the module; it is allocated to the Natural
Flow for which the module is currently acting.

This becomes relevant when Natural Flows interrupt each other.
The allocated Working Space is carried by the Natural Flow as
it makes its progress through the various modules. If the
progress of a Natural Flow is interrupted then the correct
VWorking Space must be present again, unaltered, at its
resumption. The accessibility of the Working Space can be
regarded as physical evidence of the proper continuity of the
(interrupted) thread of the Natural Flow.

As an example, consider a Natural Flow which uses three modules
A, B, and C, in that order. Furthermore, suppose that it owns,
throughout, a piece of Working Space which it refers to as WSi;
and that a second piece which it refers to as WSj is acquired
by module A and released by module C.

The individual Natural Flow is depicted in Figure 12(A), where
real time moves from left to right, and where the vertical axis
is used to increase the clarity. A Natural Flow has a line to
itself, with a solid bar indicating execution by a module.

Each piece of Working Space also has a line to itself; in this
case the solid bar indicates accessibility to the Natural Flow.

If two such Natural Flows are superimposed, then there are four
pieces of Working Space; WSi(l) and WSj(l) are owned by Natural
Flow #1, while WSi(2) and WSj(2) are owned by Natural Flow #2.
Two instances (one of each Natural Flow) of Figure 12(A) are
now superimposed: a typical result of superimposing might be
as shown in Figure 12(B).

-55-

Example: 2 Identical Natural Flows: lFl and NF2
3 Modules A, B, C
Working Space:
wSi owned througnout the Natural Flow
WSj acquired by A, released by C witiiin the atural Flow

A B c
NF] : 1 L L] 1
| ! ol
' ! l o)
WS1i ACCESSIBLE L : : L
] |] |
| | [
WSj ACCESSIBLE L | L
FIGURE 12(A)
INDIVIDUAL NATURAL FLOW
A B c
NFl ——— — '_'l "_'I—‘.
! |
' : : A B ! e ! : :
NF2 —— H | r T 3 .__r_* q |
| | | | ! | o
] |] | I] | | |]
WSi(l) ACCESSIBLE TO NF1 by : l—_ll 1 ——
| | [} o
| 1 :] 1 | [
WSj(1) ACCESSIBLE TO NF1 '———-ll 1 s :_I
] ! | : b
| | | | [} |
1 : | o
WSi(2) ACCESSIBLE TO NF2 L ' | ——
1 1
[}] [

WSj(2) ACCESSIBLE TO NF2

NOTE: 4 different items of WS: WSi(l), WSi(2), WSj(1), wSj(2)

REAL TIME —

FIGURE 12(8) .
TYPICAL EXAMPLE OF RUN-TIME SUPERIMPOSING

FIGURE 12
WORKING SPACE ALLOCATED TO NATURAL FLOWS

-56-

[

The point to observe is that, while a Natural Flow is
proceeding, its Working Space is accessible to it, as if there
had never been an interruption. When the VIP decides that
module X must now execute on behalf of Natural Flow N, this
means that it must do two things. First it must make Natural

Flow N's Working Space accessible to it, then it passes control
to module X.

6.3 Permanent Memory

It has not been found necessary to associate Permanent Memory
exclusively either with modules or with Natural Flows. The VIP
is merely required to recognize the distinction between
"allocated to the model" and "in the VIP administered free
pool"”. The model requests Permanent Memory space from the VIP
then administers the space it has received. The administrator
within the model could be a hatural Flow created for the
purpose, but for the FSAS application this has only been found
to be necessary for certain file operations.

6.4 Coordination

The subject of coordination is treated thoroughly in Parts IV
and V of this document. It is mentioned here because it
provides another example of the central role played by the
Natural Flow. Coordination is between Natural Flows, not
between modules. Two methods of coordination are used. One is
explicity oriented to Natural Flows; one Natural Flow names
another and initiates its resumption. In the second method,
Natural Flows access shared working space and expect the VIP to
manage the access.

The request to gain or relinquish sole access to a shared
working space is issued by a module, so it is tempting (and
easy) to associate the access right with the module, but such
association would be false. Conceptually, access right is
gained and relinquished by Natural Flows. At the
implementation level, when the module issues such a request, it
does so on behalf of the current Natural Flow. This becomes
important when there is potential conflict. When there is a
request to gain access to a shared working space that is
already in sole access to another Natural Flow, the would be
accessor is kept waiting. But the would be accessor is a
Natural Flow, not a module. The Natural Flow is therefore
halted; the module is not. The module is free to continue
executing as long as there are unhalted Natural Flows that
require its services.

-57-

7. SUMMARY

This part of the document has introduced the abstract elements
which provide a basis for the model of part of the FSAS
application as a vendor independent model. The abstract data
areas, Working Space and Permanent Memory, map to various
physical forms, and various allocation strategies, at the
choice of the vendor. The modules of code in the model are
implementable as reentrant or not, single or multiple copies,
resident in main store (or in virtual memory) or explicity
buffered (overlayed). For the order of execution, on which
response time and main store allocation critically depend, only
the necessary functional constraints are specified. The
simplest way to express them is via Natural Flows and
functionally required coordination between Natural Flows. At
benchmark run time the VIP maps the Natural Flows onto the
order of execution that is most suited to the vendor's system.

-58-

R

MITRE Department
and Project Approval:

vt

S. Koslow

