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ABSTRACT 

Storm Movement Prediction (SMP) is a proposed (future) product for Termi­
nal Doppler Weather Radar (TDWR), aiding controllers by tracking storm systems 
approaching and passing through the terminal environment. Because the scan strat­
egy (data acquisition) of TDWR has been critically desi:~ed to meet the needs of 
its primary function, which is the detection of hazardous low-altitude wind shear, 
there is the question of whether reliable storm tracking can be obtained from the 
TDWR data set. The objectives of storm tracking involve a scope (spatial range) 
much larger than that required for the wind-shear algorithms where detailed volume 
coverage is confined (in off-airport sited radars) to a sector covering the important 
approach and departure corridors and the only 360 degree scans are near-surface 
scans for gust-front detection. 

This report examines the application of a correlation based method for de­
tecting storm motion, testing the notion that reliable storm motion can be inferred 
from existing TDWR data. In particular, storm motion derived from an analysis of 
the TDWR Precipitation product (PCP) is studied. A summary description of the 
algorithm is presented along with an analysis of its performance using data from 
MIT Lincoln Laboratory's TDWR testbed operations in Denver (1988) and Kansas 
City (1989). 

The primary focus of the present analysis is on the Ieliability of tracking, since 
the algorithm is expected to operate in an autonomous environment. Some attention 
is given to the idea of prediction, in the form of storm extrapolation, considering 15, 
30, and 60 minute predictions. Specific areas for improvement are identified, and 
application of the algorithm track vectors for long-term prediction (30-60 minutes) 
is discussed with reference to example PCP images. 
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1. BACKGROUND 

1.1 Introduction 

Terminal Doppler Weather Radar (TDWR) is the FAA :;ponsored fully automated system 
that combines sophisticated analysis algorithms with Doppler radar surveillance in an attempt 
to improve the detection and classification of hazardous weather events in the airport terminal 
environment [1p7]. Increasing the safety of aircraft departure and arrival is perhaps the most 
important motivation for its development, but also the likelihood that TDWR will favorably impact 
the planning and operational efficiency of air-traffic control is another reason for its existence. 
Hence, a number of "augmenting" products have been suggested for TDWR (see Turnbull et al., 
[2]), among which is Storm Motion Prediction (SMP), defined by Turnbull et al. [2) as "predict[ing) 
positions of significant storm cells using a cell-tracking algorithm." A prototype TDWR SMP 
algorithm, based on a correlation processor, has been developed at MIT Lincoln Laboratory. 

1.2 Design Strategy 

1.2.1 TDWR Data 

The hazardous modes of TDWR (microburst, gust-front detection) define and thereby restrict 
the TDWR data available. One of the primary objectives of this report is to determine whether 
a viable storm tracking algorithm can operate from such a data. base. The TDWR scan strategy 
[3) allows for both on-airport and off-airport siting of its radar. Off-airport siting has the obvious 
advantage, for microburst detection, of allowing sectored scanning-concentrating attention directly 
over the airport. This can be perceived, however, as a disadvantage for storm tracking because 
sectored scanning does not provide a vertical sampling uniform in direction from the airport, and 
therefore it is not optimal for the larger scale objectives of storm tracking. Only low-elevation 360 
degree tilts, which are needed for gust-front detection, are assured by TDWR scanning. Although 
weather channel data may become available from an airport 'B surveillance radar (providing an 
integrated vertical profile), this report will not make that assum)tion and instead focus on whether 
robust autonomous tracking can be obtained from the low elevc:.tion tilts available from TDWR. 

In TDWR, storm-reflectivity data will be presented to ATC and TRACON1 personnel in 
the form of the Precipitation product (PCP)2: a "graphic display of precipitation ... in terms of 

1 Airport Traffic Control and Terminal Radar Approach Contra. 
2 As planned, the PCP product consists of high-resolution and low-resolution maps. The low­
resolution map will be a 1 km x 1 km Cartesian resampling of a single 360 deg reflectivity tilt 
reduced to the six-level National Weather Service (NWS) refledivity scale. The elevation of this 
tilt is selected to provide reflectivity maps covering the important airspace corridors (along, and 
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six levels of reflectivity" [2]. The notion of "storms", their motion, and prediction of their future 
locations therefore requires-for the end users-a consistency with that representation. Clearly 
the SMP product should complement (i.e., serve as an overlay to) the graphical PCP display. This 
desired association, plus a consideration for the computational requirements of storm tracking, 
suggests that the PCP product itself might serve as input for a storm-motion algorithm. Clearly, 
valid concerns are the limited vertical extent of the PCP product and its reduced resolution (only 
the low-resolution 1 km PCP map is currently planned for algorithm input and this map is updated 
only at 5 minute intervals). Preliminary studies have indicated that the resulting tracking resolution 
(see Section 2.2.1) would not degrade the algorithm's functioning below that of its intended use as 
a planning aid for air-traffic control. 

1.2.2 Correlation Tracking 

In a study comparing tracking algorithms for NEXRAD application, Brasunas [4] could not 
(unfortunately) determine one algorithmic form (centroid, correlation, etc.) to be best when given 
the variety of weather situations in his data base. In particular, the centroid tracker he examined did 
poorly when tracking extended storms. His correlation tracker performed well with extended storms 
but only tracked storm translation and not (as was desired) the vector sum of storm translation and 
propagation (see Section 1.2.3 below). Brasunas [4] hypothesized that a binary form of correlation 
tracker might succeed where his failed. Given that extended structures can be expected at some 
time in most locations (and also considering the coarse resolution of the PCP product), a binary 
correlation tracker was determined most appropriate for this prototype study. 

1.2.3 Storm Tracking vs Prediction 

Because the present algorithm design is based solely on the use of PCP map input (i.e., no 
ancillary data), expectations for algorithm success should focus on its performance as a storm­
tracking algorithm. Consequently, the "predictive" function is reduced to one of extrapolation. In 
this context, it is important to differentiate among 

1. the tracking of (existing) cell translation, 

2. the tracking of propagative (growth/decay) trends, and 

3. the prediction of new storm cell formation. 

Storm propagation, as described by Brasunas [4], can be categorized into steady-state and 
non-steady-state forms of growth/decay (see Chappell [5] for specific analysis). While individual 

projecting from, the runways) used for aircraft approach and departure. The low-resolution map 
has a range extent compatible with the TDWR range requirement. The high-resolution map will 
use a 0.25 km sampling resolution and extend only to a range of 5 km. 
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cells typically translate as per the steering-level winds, the propagative growth of new cells can 
impart an apparent motion to a storm's envelope. Propagation can occur in a uniform fashion, 
in which case it is hypothesized that regular sampling should be capable of tracking the "steady­
state" vector sum of translation and propagative motion for the storm envelope. This notion of 
storm movement "effected" by steady-state propagative growth is illustrated in Figure 1. Hence, 

o) b) c) 

STORM MOTION 

Figure 1. Examples of propagative storm motion (/rom Brasunas {4]). 

for situations that fit the models of Figure 1, there is the interpretation that extrapolation will 
follow regular growth and therefore "predict." The goals of th.e present algorithm are therefore 
directed at the above listed items 1 and 2, but not 3. A sepa:ate Convection Initiation product 
(Turnbull et al., [2]), intending to provide predictions of new thunderstorm cell formation, has been 
proposed but integration of this product with SMP is considered a subject for future study. 

1.2.4 Output Format 

A strict format for presentation of the SMP output to controllers has yet to be defined. 
One important question in this regard is whether the graphical display should explicitly illustrate 
predicted storm location (e.g., by using translations of contour overlays). In view of the above 
implied algorithm limitations regarding storm-cell growth and decay, there is valid concern that 
controllers would attempt to use the graphically extrapolated storms to vector aircraft. To be 
conservative, track-vectors, showing direction and speed, should be sufficient and most convenient 
(leaving the process of extrapolation implied, i.e., mental extrapolation by controllers). It is clear 
from experience with other TDWR products that controller input, after trial usage, can best focus 
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the output design. The present algorithm maintains flexibility by supporting multiple forms of 
output. 

1.2.5 Algorithm Structure 

The SMP algorithm actually has been constructed as two separate algorithms: one executing 
a tracking function and the other, extrapolation. The extrapolator combines tracking information 
with symbolic-storm representations-here, contours derived from threshold analysis of the PCP 
maps-to produce display envelopes that delineate future storm location. A functionally separate 
extrapolation algorithm is favored because, in addition to output-format concerns (see above), it 
facilitates the creation of a flexible and interactive display. For the most part, this report will focus 
on evaluation of the tracking algorithm; the extrapolation algorithm will only be used to explore 
the predictive consequences of the tracking output. 
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2. ALGORITHM DESCRIPTION 

2.1 Introduction 

The SMP algorithm is not organized around a meteorological analysis of the PCP maps, as 
would occur with, for example, centroid [6), peak-cell [7], or even s:>me earlier attempts at correlation 
tracking (see, for example, Blackmer et al. [8]). Hence, it does not explicitly track storm cells from 
one scan to the next. Instead, the algorithm determines motion using a well-known computer-vision 
method for motion detection (see, for example, Glazer [9]) whereby small local image windows are 
tracked between time frames, defining a uniform grid of mea.mrement vectors representing the 
apparent motion (or "optic flow") between source images. A similar method was successfully 
applied by Vesecky et al. [10) to develop an automated system t b.at tracks sea-ice dynamics. Also, 
Rinehart (11] has considered the method for the tracking of internal storm motion, however in a 
non-automated setting. How well such a method can work in an <,utomated (meteorological) setting 
and how well the PCP-derived optic flow corresponds to actual storm motion are issues that are 
addressed here. 

The essential features of the tracking concept are illustrated in Figure 2. There, a hypotheti­
cal weather-radar reflectivity-channel image, Panel a, is illustrated as displayed using the National 
Weather Service six-level threshold scale. Two regions of storm activity are illustrated; one is 
an extended storm containing multiple cells. Panel b illustrates how the image is viewed by the 
Cross-Correlation Tracker (described in Section 2.2). Only reflEctivity levels 2 or greater (greater 
than 30 dBz) are tracked, and each above-threshold pixel is given equal weight (1.0). The image is 
partitioned into smaller overlapping sub-regions known as corre:ation boxes. Five such correlation 
boxes are outlined in the panel, where a 50% areal overlap between adjacent correlation boxes has 
been illustrated. The binary-pixel image contained within a correlation box is tracked from one 
time-frame to the next, and a displacement vector is computed and assigned the spatial coordi­
nate corresponding to the box center. A uniform grid of displhcement vectors is thereby derived 
corresponding to the locations marked by the cross hairs in Panel b. Panels c and d illustrate 
the original image with two possible output displays provided by the SMP algorithm. In Panel c, 
velocity vectors (with storm speeds in knots) have been provided for significant storms and, in the 
case of extended storms containing cells, significant storm cells. Centroid locations are determined 
using a Binary Storm Object algorithm; velocity values at the cE~ntroid locations are determined by 
interpolating the grid values in Panel b. Panel d illustrates a storm-envelope contour (correspond­
ing to level-2 and above weather) which has been extrapolated to indicate storm location 10-15 
minutes into the future. 

The algorithm can be segmented into four functionally disjoint components organized as 
illustrated in Figure 3: 

1. detect raw motion, 

2. perform (in parallel to 1) an independent meteorological analysis, 
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Figure 2. The Storm Movement Prediction {SMP) algorithm: processing steps. 
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Figure 3. Storm Movement Prediction: functio r~.al organization. 

3. refine raw motion estimates and reconcile with physical constraints, and 

4. integrate motion information with weather-oriented objectives. 

Input (Cartesian) PCP maps are processed in successive pairs by the Cross-Correlation Tracking 
(CCT) algorithm which estimates image motion between tim~ frames in the form of a field of 
displacement vectors [Figure 2(b )]. A series of smoothing proe<:!dures is applied next to the CCT 
output to improve continuity. In parallel, the Cartesian maps are also processed by a Binary 
Storm Object (BSO) algorithm which provides a single NWS-l,~vel3 storm characterization of the 
radar image. These binary-storm representations are used in two ways. First, they are used to 
compute centroids that define locations for SMP-output motton vectors, where output motion 
vectors are derived by interpolating displacement-vector-field data to these centroid locations [see 
Figure 2(c)]. Second, BSO representations are used by the Extrapolated Storm Overlay (ESO) 
algorithm which creates, from the current weather display, a storm-contour overlay extrapolated 
to predict future storm extent [Figure 2( d)]. The following subsections provide further details for 
each of the component algorithms. 

3 The correspondence between NWS levels and dBz values is <JS follows: Ievel-l = 18 to 30 dBz, 
level-2 = 30 to 41 dBz, level-3 = 41 to 46 dBz, level-4 = 46 to .)0 dBz, level-5 = 50 to 57 dBz and 
level-6 = above 57 dBz. 
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2.2 Cross-Correlation Tracking 

This algorithm, being the most substantial (regarding code length and execution time) of the 
component algorithms, provides the "raw data measurements" of image motion that, along with 
the output from the BSO algorithm, is the basis for most of the ensuing processing steps. 

2.2.1 Binary Cross-Correlation 

The CCT tracker is a binary correlation algorithm: motion is detected from the analysis 
of binary images created by thresholding the input Cartesian maps at NWS level-2. Because 
only (binary) storm envelopes are tracked, presumably the algorithm will follow the vector sum of 
translation and steady-state growth (see Section 1.2.3). 

Correlation Boxes: Local Image Windows. Figure 2(b) illustrates how binary Cartesian maps 
are partitioned into small local image windows, or "correlation boxes." The pattern of binary 
pixels within each correlation box constitutes a local feature of the image, and the CCT algorithm 
determines motion by tracking features from one time frame to the next. In the absence of noise 
and assuming translational motion only, a correlation box size of 5-7 pixels per side has been 
recommended as a general minimum [9]. Preliminary work, however, has indicated the need for a 
larger box size in the context of PCP processing; hence, the CCT algorithm currently implements 
a 28 X 28 pixel correlation box. Ideally, correlation boxes should be centered one per lattice point 
defined by the digital PCP image. This would provide the maximum amount of redundancy and 
ensure that all possible configurations of image features would be examined. Such an oversampling 
is desired to reduce the effects of outlier measurements, as are likely to result from correlation 
boxes containing weak image features. Computational limits make it necessary to compromise this 
sampling plan. Hence, correlation boxes are defined such that neighboring boxes overlap, at present 
by 50%. The above settings result in a displacement-vector field having a 14 km sampling interval. 
An operational example, illustrating the complete velocity vector grid is shown in Figure 4. 

Feature Displacement and Velocity Measurement. The CCT algorithm tries to track each 
time-1 correlation box to its most likely position in the time-2 frame as follows. For each time-1 
correlation box, a set of feasible displacement vectors is delimited by a radius corresponding to 
a plausible maximum storm velocity. For each feasible displacement, the correlation between the 
translated correlation-box image and the underlying time-2 map is computed. The correlation used 
is a variance normalized version of binary correlation (see Burt et al. [12]). The set of correlation 
values, indexed by feasible displacements, is said to generate a correlation surface. The time-
1 to time-2 box displacement is taken to be that displacement which maximizes the correlation 
coefficient over all feasible displacements. Velocities are computed by normalizing the displacement 
with respect to the time elapsed between frames. 
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Figure 4. Storm motion internal velocity grids: a. unfiltered, b. filtered. 
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Confidence Weighting. The selection of optimum displacE~ment by maximizing the correla­
tion coefficient is not robust: unimodal correlation surfaces ar·~ not guaranteed (nor are global 
maxima) and maxima can be masked easily by image noise. In addition, broad surface peaks (in 
the correlation surface) contribute to displacement measurements having large variability. Some 
form of confidence weighting is usually required to prune outlier measurements that result from 
inadequate feature content or poor feature correlation. Two such checks are internal to the CCT 
algorithm. First, before a correlation box is tracked, it must Eatisfy a criterion for a minimum 
number of "on" pixels. This is a check that the correlation-box feature is of sufficient size such 
that it is expected to exist at time-2. Second, a displacement measurement is accepted only if 
the correlation maximum surpasses a minimum threshold. This is to ensure that there is sufficient 
match of image detail before a displacement is considered likely. That these two measures alone are 
inadequate is evident in Figure 4(a) where errors due to edge effects and second trip weather are 
clearly evident (blue arrows represent the measurement points). Additional checks and constraints 
for the correlation process are clearly desirable, but must be left as a topic for future investigation. 

Missing Measurements. Generally only a subset of correlation boxes produce displacement 
measurements for any given time frame, often forming but a sparse sampling. In Figure 4, these 
vectors are illustrated in blue. However, displacements (velocities) are desired for all points of 
the correlation box lattice in order to support subsequent spatial and time-domain filtering. The 
present algorithm substitutes missing values with values derived from interpolation, shown as red 
vectors in Figure 4. In the event that the CCT algorithm cannot compute a displacement vector 
for any correlation box, the SMP algorithm treats this case as if there were no measurements for 
this time frame, identical to that of a gap in the input-map sequence, and the resulting output of 
the SMP algorithm depends on whether time-weighted filtering nas been selected (see below). 

Intrinsic Measurement Resolution. Output motion track vectors are scaled (as storm veloc­
ities) in knots. Because the PCP product has a spatial resolution of 1 km x 1 km and is updated at 
the nominal rate of once per five minutes, velocity estimates from raw displacement measurements 
have an intrinsic resolution of ±3.24 knots (i.e., a motion due east is determined as 6.48n ± 3.24, 
n = ... ,-1,0,1, ... knots). This should be sufficient since current display conventions call for 
storm velocities quantized in 5 knot increments. Temporal filtering can improve the accuracy of 
this speed estimate as described below (Section 2.4.3). 

2.3 Symbolic Storm Identification 

This portion of the SMP algorithm provides an analysis of image weather content and distills 
that information into a form that can be united with the motion information provided by the CCT 
algorithm. Symbolic identification is currently provided by the Binary Storm Object (BSO) algo­
rithm which simply characterizes storms using single fixed-level interval thresholding. A "storm" is 
defined to be any region of contiguous pixels with reflectivity values between given upper and lower 
threshold bounds. The algorithm is used in different ways to provide two forms of SMP output: 
motion vectors associated with significant storm elements and storm contours showing predicted 
storm location. 
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2.3.1 Output Vector Location 

For the purpose of tagging storms with motion vectors [ref. Figure 2(c)], it is recommended 
that motion information be provided for level-2 (and above) storms, assuming the storm also satisfies 
a minimum size criterion. This leads to difficulties in extended-storm situations where a region of 
level-2 reflectivity may contain a number of isolated higher-level reflectivity cells. In these cases, 
the association of a single motion vector with one large extended storm does not seem reasonable. 
At the same time, it is not desirable to eliminate the tagging of isolated, but significant, level-2 
(exclusive) storms. To resolve this issue, an adaptive storm cell definition has been adopted to 
define SMP output vector locations. 

Output vectors are located as follows. A list of centroids for motion-vector output is generated 
by a descending threshold analysis of the input map. First, level-6 "storms" are identified using the 
BSO algorithm. Centroids for these level-6 exclusive regions are computed and added to the output 
list if they satisfy a minimum size criterion. The analysis is repeated at level-5 and centroids are 
added to the output list for all significant level-5 regions that do not already contain a significant 
level-6 region. This procedure is repeated until isolated level-2 storms have been added to the list of 
output centroids. As a final measure, the list is pruned using a threshold for a minimum separating 
distance between centroids. This last step limits output vectors in the event that there is clustering 
among what otherwise appear as distinct cells. A limit on the total number of output vectors can 
be specified, in which case locations are taken from the top of the list. 

2.3.2 Storm Envelopes for Graphic Display of Extrapolations 

As with output storm-motion vectors, there is the need to keep the display of extrapolation 
contours to an efficient minimum. Extrapolation contours are generated only for level-2 thresholded 
storms. These symbolic storms are passed to a contouring algorithm that generates a list of contour 
segments circumscribing the level-2 weather [ref. Figure 2(d)]. Velocities, from the gridded field, 
are associated with the storms in order that the ESO algorithm may position the storm contours 
and illustrate the desired prediction. 

2.4 Smoothing Procedures 

The CCT algorithm does not provide reliable estimates of motion under all operating condi­
tions: image evolution and threshold noise strongly influence the occurrence of erratic (i.e., outlier) 
motion estimates. Figure 4(a) illustrates the nature of the variability. (Particular to the case in 
Figure 4 are errors due to storms crossing the radar field of view and the presence of second trip 
weather). There are many options that could be explored to introduce (continuity) constraints 
during calculation of motion vectors. This is considered an area for future work. For the present 
analysis, it was necessary to require some form of smoothing, both spatially and temporally. The 
effect of these measures on the image of Figure 4( a) are shown in Figure 4(b ). 
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Three stages of post-processing have been incorporated to achieve smoothing of the displace­
ment measurements. The stages are applied to the CCT algorithm displacement-vector field in the 
following order. 

2.4.1 Spatial Interpolation 

In practice, the (CCT algorithm) displacement measurenents always form an incomplete 
sampling ofthe two-dimensional correlation box grid (i.e., not all correlation boxes can be tracked). 
Missing measurement values are estimated by direct4 interpolation using inverse-distance-squared 
weighting. Inverse-distance-squared weighting has been used commonly in the geophysical sciences 
with good results, particularly when data are sparse. The primary objections to using this form of 
interpolation (see Watson and Philip [13]) are not considered significant in the present application. 

Except in some extended storm situations, the displacerr.ent measurements almost always 
do represent a sparse sampling of the correlation-box grid. Outlier values can be re-enforced (i.e., 
spread their influence) by the interpolation process. This is most serious when an outlier is spatially 
isolated. If isolated, the interpolator essentially replicates the bad value in bordering windows, and 
the effect will be to pass the outlier value through the subseqc1ent nonlinear spatial filter. The 
algorithm therefore relies on time-domain filtering to reduce the influence of these errors. 

2.4.2 Spatial Smoothing 

A nine-point median5 filter is applied independently to north-south and east-west displace­
ment components. Median filtering was selected for its ability to remove outlier measurements 
while minimizing spatial blurring. This works well when a suspect vector is neighbored by other 
displacement vector measurements. However, spatially isolated outliers are not handled well by 
this procedure as discussed above. 

2.4.3 Time-Weighted Smoothing 

Velocity Update: New Measurements. Recursive geometric time-weighted smoothing is per­
formed component-by-component and independent of any spatial filtering. Time smoothing is 
essential for two reasons. First, it ensures that a sequence of track vectors exhibiting temporal 

4By "direct" it is meant that the interpolation function takes th·~ value of the sample points at the 
sample point locations. 
5The displacement-vector set is not an ordered set; therefore, the median filter described is not 
a true median filter. In fact, the output of the filter as imple:nented here does not need to be, 
nor is it often, an element of the input set of vectors. Nevertheless, this method appears to yield 
better results than if an output vector is selected based on the median of an ordered product of 
the displacement-vector field. 
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continuity is produced. The previously mentioned measures for improving reliability and removing 
outlier measurements are only partially effective in this respect. Second, time-weighted averaging 
will alleviate the quantization error of reported storm velocities. A simple geometric time weighting 
with forgetting factor a is used: 

(1) 

where Vt-i represents velocity measurement from the CCT algorithm at timet- i and Vt represents 
the time-filtered output. This filtering method is simple to implement in real-time, and by selecting 
a less than 1, the algorithm can track accelerations. If measurement quantization is modeled as 
an (independent identically distributed) additive noise component with uniform distribution in 
the interval [ -q, q], then the quantization variance for the filtered estimate will be reduced by a 
multiplicative factor equal to 

Figure 5 plots r( a) for selected a values, illustrating the claim that quantization error can be 
improved to a limit specified by the bandwidth for motion acceleration. 

Velocity Update in the Absence of New Measurements. During the course of operation, gaps 
in the input product sequence or input products that do not generate displacement measurements 
are likely to occur. For these cases, it is necessary to have a model that will propagate the motion 
estimates forward in time until measurements resume. The filtering scheme of Equation (1) is 
therefore combined with a constant-velocity model resulting in the update formula 

where 

A { Vt-1 + ft 
Vt = 

Vt-1 

( 

t ) -1 

ft = ?: a' 
t=O 

2.5 Storm Extrapolation 

if there are measured displacements and 

otherwise, 
(2) 

The Extrapolated Storm Overlay (ESO) algorithm produces predictions by applying the fil­
tered motion-vector estimates of the CCT algorithm to the storm object contours derived from 

14 



,..--... 1.0 
~ 

'-" .... 
0::: 0.8 
0 
I-u 
<{ 
l.J.. 0.6 

a=0.24 

z 
0 
I-u 0.4 :::l 
0 

a=0.49 
w 
0::: 

0::: 0.2 
0 a=0.74 
0::: 
0::: 
w 0.0 

a=0.99 

0 5 10 15 20 25 
RECORD INDEX, n 

Figure 5. Reduction of quantization error with geometric time weighting. The reduction 
in error r(a) is plotted vs. record number n for three values c'f a: 0.24, 0. 74, and 0.99. 

the BSO algorithm output. Storm contours are extrapolated en masse in accordance with a storm 
velocity that is computed for the storm centroid. At present, extended level-2 storms are extrap­
olated as one element. (The algorithm does not at present use the velocity field to differentially 
extrapolate extended storm structures). 

Ideally, the ESO algorithm should work in conjunction with user display software to provide a 
flexible tool that can be used to produce envelopes of predicted storm regions. An example display 
is depicted in Figure 2(d). Here, the predicted storm positions (shown by bounding contour lines) 
are presented as an overlay to the current PCP product display. 

There are no current plans to implement an extrapolated contours product for ATC use. The 
ESO algorithm described here is currently used only for evaluation purposes, as in Section 4. 
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3. PERFORMANCE EVALUATION 

Because the present focus regarding TDWR SMP is that of a tracking algorithm used to 
extrapolate storm location, evaluation of the algorithm logically focuses first on how well it tracks 
weather. Only as a secondary objective is an analysis of the "predictive" capabilities considered. 

Tracking performance focuses on a scoring of the SMP motion-vector output against an 
equivalent6 set of truth vectors: vectors derived from an off-line H posteriori analysis of the weather 
radar data. Scoring is founded on a qualitative measure of agreement (defined below), but quan­
titative characterizations will also be used to substantiate conchsions. The algorithm's predictive 
capabilities are evaluated by a subjective analysis using specific weather examples. 

3.1 Track Vector Scoring: Prediction-Step Errors 

Track vector evaluation is based on an analysis of vector-prediction error as follows. Assuming 
a constant-velocity model as expressed by Equation (2), the SMP output vectors (when scaled by 
selected time intervals) predict storm displacements. If the selected time intervals are multiples of 
the nominal sampling rate, n-step predictors of storm displacements-conditioned on the motion 
history up to and including the current-time measurement-are obtained from the algorithm. The 
truth vectors are estimates as well, but they are computed using data up to and including that 
obtained at the n-step sampling time. The truth vectors are viewed as the optimal n-step storm 
displacements and are used to gauge the predicted (SMP algorithm) displacements. A one-step 
prediction-error analysis is the basis for an evaluation of tracking performance. 

3.2 Vector Characterization 

Qualitatively, output motion vectors are classified into one of three categories. Motion vectors 
that agree (in a proximal sense that is described below) with ·;heir companion truth vectors are 
considered to be "accurate" (within the limits of the input-product resolution); they are referred 
to as "hits." Vectors that are not hits are "misses." Misses are classified into two categories: 
those that, in a general sense, conform to the truth-vector field-but do not satisfy the proximal 
criterion-and those that are of gross error. The class of "one-pixel-error" prediction vectors, 
defined in the following section, is used to distinguish between the two types of misses. 

3.3 Classification of Hits: Proximal Agreement 

The criterion for scoring a test vector is illustrated in Figure 6. As discussed in Section 2.2.1, 
each vector has an associated intrinsic resolution. In Figure 6, displacement vectors are illustrated 

6 By an equivalent set, it is meant that truth vectors are computed in one-to-one correspondence 
with an archived list of SMP output vectors. 
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N-Step 

Figure 6. Scoring a test motion vector. 

for a given prediction interval, and displacement-vector resolutions (determined by input image 
resolution and sampling interval) are indicated by bounding boxes for both test and truth vectors. 
The proximate scoring criterion accepts (scores as a hit) a test vector if there is any overlap between 
the bounding resolution boxes for test and companion truth vectors. Proximate-scoring results are 
summarized by Probability of Detection (POD) statistics. Vector agreement (or lack thereof) is 
further characterized by a quantitative analysis of directional, ed, and speed, fv, discrepancies 
between test and truth. 

3.4 Classification of Misses: One-Pixel Errors 

Although scored as a miss, vectors are deemed to conform to the truth-vector field if a 
quantitative analysis (see below) finds them to be of the one-pixel-error type. Figure 7 illustrates 
the class of one-pixel-error prediction vectors. A vector, with terminus equivalent to that of the 
truth vector, is allowed to vary ±1 pixel (using the test resolution) in any direction. The eight 
vectors (illustrated with dashed lines) derived by such one-pixel shifts are referred to as one-pixel­
error vectors. Maximum and minimum one-pixel-error directional and speed errors can be computed 
for a given truth speed as the truth vector direction varies from 0 to 180 degrees. 

3.5 Classification of Misses: Gross Errors 

Vectors that score as a miss and that are not of the one-pixel-error class are "gross" errors. 
These errors are considered unacceptable as output at any time during operation. 

18 



- ..... -.. --...... 

Figure 7. The class of one-pixel-error predidion vectors. 

3.6 Quantitative Characterization 

Further quantitative characterization is obtained by considering directional and speed errors, 
(Jd and fv. In scoring for numerical accuracy, however, two important issues should be kept in mind 
when interpreting results. First, truth does not represent an altogether independent observation of 
the same data set. As described in the section below, truth is in part generated from an analysis of 
the same radar data (although at a higher resolution and usin~; a layered product) by algorithms 
similar to those producing the test vectors. Second, the inherent resolution of the truth vectors 
places a lower limit on the confidence limits, and usefulness (in an absolute sense), of quantitative 
error analysis. Nevertheless, given that the truth data base ~atisfies the objective criteria of a 
human observer/editor (see below), a numerical characterizatic,n is useful for classifying the type 
and extent of deviations within the test data base. 

3. 7 Reference "Truth" 

A data base of truth, for scoring the SMP algorithm, was obtained by combining an off-line7 

tracking algorithm with human-observer data-base editing. The najor steps of truth generation and 
product scoring (for a one-step prediction example) are illustrated in Figure 8. The genesis of truth 

7Here, off-line refers to a non real-time, floating-point version of the correlation tracking algorithm. 
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parallels that of the SMP motion vectors but with the following important differences. First, truth 
is based on the analysis of improved-quality image data: layered reflectivity images obtained using 
a finer (spatial) sampling resolution. Second, the off-line tracking algorithm used for truth genesis 
is a floating-point correlation algorithm providing improved discrimination of correlation maxima 
and localization of displacement measurements. Third, the off-line tracker is used to produce an 
a posteriori analysis of storm displacements. That is, in contrast to the SMP algorithm which 
provides predictions, the off-line tracker uses the correlation image processing to compute actual 
displacements (i.e., truth is obtained as the product of a smoothing algorithm). Last, the truth 
data base is subject to human verification/editing. This final step ensures that the truth data base 
provides, at the very least, a subjective portrayal of storm motion. 

The assertion of "truth" is founded primarily on the observations that truth 

1. is an a posteriori analysis of storm motion and that 
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2. human verification/editing ensures a subjective analysiB consistent with the objec­
tives of TDWR SMP. 

The increased quantitative accuracy of the truth product injects meaning into a quantitative char­
acterization of test vectors against truth. 
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4. RESULTS FROM 1988/89 FL-2 OPERATION 

4.1 Introduction 

Eighteen days from the 1988 FL-2 TDWR test-bed operation in Denver, Colorodo, and eight 
days from the 1989 operation in Kansas City, Kansas, were seleded for study. In both cases, the 
operational dates8 span a range of months covering the important spring and summer storm seasons 
of both regions. Denver storms tended to be smaller and slower moving in comparison to those 
recorded in Kansas City. Denver operations were also significantly influenced by nearby mountains. 
Hence, the two data sets offer somewhat complimentary evaluations. 

The PCP product was not available during the evaluation period. Hence, raw radar data tapes 
were processed off-line to simulate real-time operation with emulation of PCP images. Tables 1 
and 2 record the dates and times of operation, the number of SMP tilt records processed, and the 
number of motion-track vectors output for each day. 

4.2 Quantitative Summary 

4.2.1 Proximate Scoring Results 

Tables 3 and 4 contain POD scoring results for the proximate scoring criterion discussed in 
Section 3.3. Of the total 6546 vectors in Denver, 5732 vectors ar~reed sufficiently with truth to be 
classified as hits, yielding an overall POD of 0.87. Fourteen of the eighteen days scored near or 
better than 90% agreement between the truth- and test-vector da.ta bases. The exceptions-Apr24, 
Jun25, Aug21 and Sep10-are examined later in closer detail inasmuch as they underscore some 
algorithm limitations. In Kansas City, 9287 of 9931 vectors agreed with truth yielding an overall 
POD there of 0.93. POD scores below 90% were obtained for the days May14, May21, and Jun12, 
but there were no major departures as noted above for the Denver data set. 

In both Tables, scoring statistics for an SMP algorithm without time-domain filtering are 
presented also (Denver POD= 0.46; Kcillsas City POD= 0.61). These poor results with unfiltered 
track vectors illustrates the (interim) need for processing the CCT algorithm output. For the 
remainder of this report, the focus will be on an SMP algorithm that includes post-processing (i.e., 
filtering) of the CCT algorithm vectors. 

8 As there are no overlapping days from the two locations days will be referenced solely by date. 
Tables 1 and 2 can be used to identify the site if needed. 
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TABLE 1 

Summer 1988 (DEN) days selected for storm motion analysis 

Date Begin Time End Time Hours of Number of Number of 
(1988) (Universal) (Universal) Operation Tilts Vectors 

Apr 24 18:23:50 20:24:05 2.00 23 38 

May 10 18:13:24 20:26:59 2.23 26 107 

May 18 19:30:22 00:14:44 4.74 55 513 

Jun 9 18:24:06 00:52:44 6.48 78 906 

Jun 10 21:08:14 23:52:54 2.74 33 120 

Jun 11 23:13:01 01:43:54 2.51 30 164 

Jun 15 19:31:26 23:54:43 4.39 49 297 

Jun 21 18:50:30 00:26:31 5.60 68 566 

Jun 22 21:20:30 00:05:11 2.75 29 399 

Jun 25 18:28:25 23:17:55 4.83 58 959 

Jun 29 22:36:15 23:46:34 1.17 15 51 

Jul 4 18:05:31 00:59:16 6.90 84 664 

Jul 7 17:34:56 01:22:56 7.80 94 550 

Jul11 18:56:49 00:01:33 5.08 61 167 

Jul 16 18:05:12 00:54:42 6.83 83 476 

Aug 12 18:09:35 00:50:36 6.68 81 242 

Aug 21 18:08:30 01:09:57 7.02 85 255 

Sep 10 21:32:28 23:35:45 2.05 25 72 

Total - - 81.80 977 6546 
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Date 
(1989) 

May 14 

May 21 

Jun 12 

Jun 24 

Jun 26 

Jul 1 

Jul 10 

Jul 12 

Total 

TABLE 2 

Summer 1989 (KC) days selected for storm motion analysis 
(A "*" indicates non-continuous opE:ration) 

Begin Time End Time Hours of Nl.lmber of Number of 
(Universal) (Universal) Operation Tilts Vectors 

18:18:35 21:17:02 2.97 25 212 

14:51:52 18:27:01 3.59 58 2308 

11:56:03 23:04:39 4.39* 53 215 

18:32:38 02:01:57 6.49 83 622 

20:13:36 02:35:12 6.36 77 2317 

15:43:06 02:26:49 9.73 108 2380 

20:05:30 02:51:54 5.77 82 1168 

04:58:37 02:53:54 7.98* 112 709 

- - 45.32 598 9931 

4.2.2 Characterization of Hits 

Figures 9 and 10 contain the results of a quantitative analy:>is (i.e., comparison against truth) 
of the accurate motion vectors (the "hits"). Histogram distributions of speed and directional errors 
are presented in Panels a and b, respectively. Scatter plots of !ipeed and directional error versus 
truth speed are shown in Panels c and d, respectively. A scatter plot of speed error versus directional 
error is contained in Panel e. In general, both days shown simil.:.r results. 

In each figure, Panel a shows that speed errors for hits an:, as expected, sharply distributed 
and within the limits of a one-pixel excursion (i.e., ±6.28 knot:>). In fact, the majority of errors 
measure less than that of a 1/2-pixel excursion (the bin-width resolution of each figure's histogram 
is 1.39 knots). Also, as evident from Panel c, the magnitude of a speed error has no apparent 
correlation with true storm speed. 

The distribution of directional errors is more broad (Panel o) with a number of vectors deviat­
ing from truth by 30 degrees or more. However, large directional errors(> 30 degrees) are confined 
to very slow moving storms (0-1 pixel excursions - storm speed :$ 6.28 knots) as can be seen 
in Panel d. In Panel d a significant, but not surprising, inverse relation between directional error 
and storm speed is clearly evident. Three curves illustrating the maximum, mean, and minimum 
one-pixel directional errors (see Section 3.2 and Figure 7) are included also in Panel d. For the most 
part, accurate track vectors cluster at or below the level representing a mean one-pixel directional 
error. 
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TABLE 3 

Denver POD scores for motion vector proximity analysis 

Number of Hits (POD) 

Date Total Avg. Vectors Speed (knots) 
Filtered Unfiltered 

(1988) Vectors per Tilt Mean (Maximum) 

Apr 24 38 1.65 7.47 {10.93) 21 {0.55) 12 {0.32) 

May 10 107 4.12 2.49 {4.69) 98 {0.92) 77 {0.72) 

May 18 513 9.33 15.13 {18.22) 500 {0.97) 211 {0.41) 

Jun 9 906 11.62 9.43 {13.15) 828 {0.91) 461 {0.51) 

Jun 10 120 3.64 7.47 {12.23) 113 {0.94) 51 {0.43) 

Jun 11 164 5.47 5.72 {8.41) 163 {0.99) 61 {0.37) 

Jun 15 297 6.06 9.11 {12.88) 261 {0.88) 126 {0.42) 

Jun 21 566 8.32 5.69 {8.31) 547 {0.97) 410 (0.72) 

Jun 22 399 13.76 1.90 {10.17) 394 {0.99) 325 {0.81) 

Jun 25 959 16.53 17.95 {24.12) 554 (0.58) 415 {0.43) 

Jun 29 51 3.50 11.96 {13.95) 50 {0.98) 20 {0.39) 

Jul 4 664 7.90 11.95 {17.27) 647 {0.97) 160 {0.24) 

Jul 7 550 5.90 6.28 {10.24) 518 {0.94) 188 (0.34) 

Jul11 167 2.74 4.82 {9.61) 167 {1.00) 59 {0.35) 

Jul 16 476 5.73 2.76 {6.08) 476 {1.00) 329 {0.69) 

Aug 12 242 3.00 10.15 {15.19) 217 {0.90) 68 {0.28) 

Aug 21 255 3.00 14.70 {26.58) 149 {0.58) 58 {0.23) 

Sep 10 72 2.88 24.57 {25.86) 29 {0.40) 30 {0.42) 

Total 6546 - - 5732 {0.87) 3061 {0.47) 
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TABLE 4 

Kansas City POD scores for motion vector proximity analysis 
Number of Hits (POD) 

Date Total Avg. Vectors Speed (knots) 
Filtered Unfiltered 

(1989) Vectors per Tilt Mean (Maximum) 

May 14 212 9.52 6.58 {10.41) ].77 {0.84) NA ( - ) 

May 21 2308 39.79 23.75 {31.24) 1!171 (0.85) 1314 (0.57) 

Jun 12 215 4.06 17.22 (21.36) J.86 (0.87) 134 (0.62) 

Jun 24 622 7.49 16.68 (20. 73) !i64 (0.91) 297 (0.48) 

Jun 26 2317 30.09 11.19 (29.10) 2:l94 (0.95) 1343 (0.58) 

Jul 1 2380 22.04 4.65 {10.88) 2:158 (0.99) NA ( - ) 

Jul 10 1168 14.24 13.42 (16.81) 1155 (0.99) 969 (0.83) 

Jul 12 709 6.33 6.42 (14.91) 682 {0.96) 454 (0.64) 

Total 9931 - - 9:~87 (0.93) 4511 (0.61) 

In Panel e, there is no evidence of any unusual relation between speed and directional errors 
outside of the slight negative correlation required by the scoring criterion (i.e., the speed errors 
must be coupled with the directional errors and vice versa to pass the proximate criterion). 

4.2.3 Characterization of Misses 

The above characterization of the "accurate" vectors underscores the resolution limitations of 
the algorithm (and scoring procedure) and provides a useful refe::ence for an analysis of the misses. 
Figures 11 and 12 contain an equivalent speed- and directional-error description for the misses. In 
Panel a, most of the speed errors are within the range corresponding to a one-pixel excursion, and 
virtually none exceed that of a two-pixel excursion. The distribudon of directional errors for misses 
(Panel b) has a distribution similar to that for hits but with less of a skew toward zero directional 
error. The scatter plot distributions (Panels c and d) also are similar to their counterparts for 
hits: most errors are within the one-pixel error range (i.e., below the maximum directional error 
curve). The scatter plot in Panel e (speed error versus directional error) clearly shows that most 
misses border on being classified as hits and that the occurrence!: of gross errors were limited. This 
analysis shows that "hits" and "misses" form a continuum with relatively few examples of gross 
error which cannot be characterized within the resolution limitations of the tracking algorithm. 
Figures 13 and 14 illustrate a clear data trend that associates these gross errors with either the 
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Figure 9. Characterization of hits: Denver. {a) Storm speed error distribution. (Bin 
width is 1.99 knots). (b) Directional error distribution. (Bin width is five degrees). (c) 
Scatter plot of speed error versus truth speed. (d) Scatter plot of directional error versus 
truth speed. Solid lines: maximum, mean, and minimum possible directional errors. (e) 
Scatter plot of speed error versus directional error. 
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Figure 10. Characterization of hits: Kansas City. (a) St.mn speed error distribution. 
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(c) Scatter plot of speed error versus truth speed. (d) Scatter ]•lot of directional error versus 
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Scatter plot of speed error versus directional error. 
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Figure 11. Characterization of misses: Denver. {a) Storm speed error distribution. {Bin 
width is 1.39 knots). (b) Directional error distribution. (Bin width is five degrees). (c) 
Scatter plot of speed error versus truth speed. (d) Scatter plot of directional error versus 
truth speed. Solid lines: maximum, mean, and minimum possible directional errors. {e) 
Scatter plot of speed error versus directional error. 
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Figure 12. Characterization of misses: Kansas City. {a) Storm speed error distribution. 
{Bin width is 1.39 knots). {b) Directional error distribution {Bin width is five degrees). 
(c) Scatter plot of speed error versus truth speed. (d) Scatter plot of directional error versus 
truth speed. Solid lines: maximum, mean, and minimum pc•ssible directional errors. (e) 
Scatter plot of speed error versus directional error. 
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Figure 13. Directional error: effect of scan index and storm speed (Denver). Panels are 
arranged in order of increasing average storm speed. (a) Jul16, 2.8 knots {6.1 max). (b) 
JunlO, 7.5 knots {12.2 max). (c) Jun09, 9.4 knots {13.1 max). {d) Ju104, 12.0 knots 
{17.3 max). {e) Aug21, 14.7 knots {26.6 max). (f) May18, 15.1 knots (18.2 max). 

initial-record segment of a day's operation or a day having very slow storm speeds. These figures 
also illustrate how directional error is modulated by storm speed. 

In Figures 13 and 14, directional error for twelve days (six from each operational period) is 
plotted indexed by scan number. In each figure, the panels are arranged in order of increasing 
average storm speed (based on either the entire day's average, or a selected significant portion) 
beginning with the upper-left panel, proceeding down each column, and ending with the lower­
right panel. In all twelve examples, the largest directional errors occur at the beginning of each 
day-the period before which time-domain smoothing becomes effective. Three exceptions, Jul16 
[Figure 13(a)], Jul12 [Figure 14(a), first half of record], and Jul01 [Figure 14(b), last third of 
record], exhibit gross directional error throughout. The performance for these three days is easily 
understood, though, after noting that the average storm speeds for Jul16, the first part of Jul12, 
and the last third of Jul01 were 2.75, 2.65, and 2.42 knots respectively. Clearly, for storms moving 
below the resolution of the system it is unreasonable to expect good directional performance. 
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Figure 14. Directional error: effect of scan index and storm speed (Kansas City). Panels 
are arranged in order of increasing average storm speed. (a) Jul12, 6.4 knots (2.65 before 
break, 11.28 after, and 14.9 max overall). (b) JulOl, 4-7 knots {8.64, 4-75, and 2.42 for 
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{31.2 max). 
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4.3 Performance and Meteorological Context 

The previous section introduced one way in which algorithm performance is data dependent: 
performance was shown to improve with increasing storm speed. In this section, other correlations 
between algorithm performance and meteorological context are examined. Attention is focused on 
days that scored poorly (in overall POD) and days that illustrate specific algorithm limitations. 

4.3.1 Denver. 

Jun09. This day is noteworthy because significant storm activity was observed during nearly 
seven hours of continuous operation. Figure 15 contains a scan-by-scan record of tracker perfor­
mance ("scan POD" versus scan) and selected precipitation profiles that highlight storm evolution 
(covering about a five hour period). Initially, isolated regions of convective activity appear west 
(Panels a and b) and track eastward at a moderately slow speed {9.43 knot average). Cells quickly 
develop cores above level-3 and level-4, and during this period the algorithm performs well {see 
scan POD record). Cells coalesce weakly to form a line structure (Panels d and e), and significant 
cell decay precedes the appearance of a preponderance of level-1 precipitation. (It is important 
to keep in mind that the algorithm does not "use" the level-1 weather for tracking). As areas of 
level-1 precipitation begin to dominate and as the areal distribution of level-1 regions corresponds 
less with active cell location and extent, the performance of the algorithm is seen to deteriorate 
(Panels d, e, and/). Misses appearing in the latter half of the record are all of the one-pixel class. 
Because there is the continued presence of cells with level-3 and level-4 activity throughout the 
recorded data, the tracker continues to perform reasonably well. This is in contrast to Jun25 (see 
below) where few cells are present in the later scans, and algorithm performance deteriorates in a 
more precipitous fashion. The lower plot also illustrates the "storm size" of each contiguous region 
that is tracked within the image. As can be seen from that plot, deterioration in storm tracking is 
not correlated with a decrease in the amount (areal extent) of storm regions being tracked. Instead, 
this figure {and those that follow) clearly show that performance is less reliable during decay phases 
of storm evolution when there is a preponderance of (Ievel-l) stratiform precipitation, which results 
in a "noisier" data environment for the tracker. 

Jun25. The day Jun25 is interesting because it is characterized by significant storm activity 
and a poor overall POD value. Roughly half of all recorded misses for the Denver data set are 
from Jun25. Figure 16 presents the tracker-performance (POD) record and selected precipitation 
profiles (covering about a four hour interval). Briefly, isolated convective activity begins to form 
to the east and north-east (Panel a), and all precipitation generally tracks in a WNW direction. 
As convective activity increases, a squall line forms containing level-3 and level-4 storm cells that 
continue to track WNW (Panel b). The line increases in size with some cells attaining level-5. In 
Panel c, a portion of the line begins to dissipate (area due north of radar) giving way to stratiform 
precipitation, but a major portion of the line is still intact. 
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Figure 15. Tracking performance and storm evolution: Jun09. 
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Figure 16. Tracking performance and storm evolution: Jun25 . 
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Figure 17. Tracking performance and storm evolution: J un25, early convective growth. 
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Figure 18. Tracking performance and storm evolution: Jlln25, later dissipative decay. 
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Moving further west, the squall line begins to break apart although level-3 and level-4 cells 
are still apparent (Panel d). Also, isolated convective activity continues to form east of the 0-degree 
radial. By Panel e the squall line has given way to widespread stratiform precipitation although 
some convective activity continues to the east. Eventually, aU activity dissipates to scattered 
precipitation at levels 1 and 2 only (Panel!). 

The figure's scan-by-scan scoring summary shows a clear correspondence between dissipation 
of the squall-line and deterioration of tracker performance. Note that prior to the squall-line 
breakup, the algorithm performed with near 100% efficiency. Also, an analysis of the miss type 
showed that the misses for Jun25 were clustered and of the one-pixel-error type. That is, the 
performance decline in the scan-by-scan scoring summary repres,~nts a degradation in the accuracy 
of the track vectors as opposed to the sudden occurrence of gross tracking errors (there where no 
gross errors for Jun25). 

Level-2 (i.e., level-2 thresholded) storm size or the amount of "trackable" weather will clearly 
influence algorithm performance, but this does not appear sufficient to explain the decline in per­
formance in Figure 16. Included with the scan-by-scan POD st:.mmary is a scatter plot of level-2 
storm size versus scan. Although there is close agreement between storm size and POD value as the 
squall line dissipates, a similar correspondence between storm size and POD value is not manifes t 
during the convective growth phase. 

Figures 17 and 18 contain sequences (five minute interval sampling) of precipitation products 
corresponding, respectively, to the early convective growth phase and later dissipative phase of 
Figure 16. The most apparent difference is the appearance of widespread stratiform precipitation 
during the later storm phases. The implication for tracking is that there is a much greater variability 
in the above level-2 weather during storm dissipation because of the extensive presence of sub­
threshold level-1 precipitation. 

Junl 5. The early part of this day (ref. Figure 19) was characterized by small isolated regions 
of convective activity that dissipated quickly, leaving behind only small regions of light precipitation. 
A few of the cells were large and/or contained significant level-3 and level-4 activity that resulted in 
satisfactory algorithm performance. Some smaller cells, howeve: , that did not increase in size and 
that did not attain the higher precipitation levels (i.e., greater than level-2) contributed to a more 
variable algorithm performance in the first half of the day's act ivity (Panels a, b and c). Toward 
the middle of the day's data record, convective activity quickly developed into a squall line which 
the algorithm tracked satisfactorily (Panels d and e). In contrast to the days Jun09 and Jun25, the 
decay of the squall line was quick and did not leave behind widEspread level-1 precipitation (Panel 
!). Correspondingly, algorithm performance toward the end of the storm did not deteriorate at all 
during the recorded period (Panel f, compare scan POD). 
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Figure 19. Tracking performance and storm •!Volution : Jun15 . 
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Figure 20 Tracking performance and storm evolution: Aug21. 
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Figure 21. Tracking perf ormance and storm ~ vo lution: Sep 10. 
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A ug21. Storm activity for this day was characterized hy only weak convective activity 
throughout the recorded period (Figure 20). Few cells can b·:! observed at level-3 (or above), 
and cumulative scoring for the day is low at 0.58. Smaller level-2 storms embedded in regions of 
more widespread level-1 reflectivity contribute to a more variable tracker performance (all panels). 
Again, errors incurred during continuous operation of the tracker (i.e., after initial startup) are 
all of the one-pixel-error class. That is, the track vectors show general agreement with the truth 
vectors . There is a slight correlation between level-2 storm size and scan POD implying that level-2 
(exclusive) storms of sufficient size can be adequately tracked. 

Sep10 (and Apr24). The days Sep10 and Apr24 did not contain severe storm activity, but 
their analysis has been included for completeness, by showing that some of the recorded tracking 
errors are attributable to days with insignificant weather. Only the data of Sep10 will be presented 
(Figure 21). These data are from short periods of system operation, and storm activity for each 
day only consisted of scattered weak convective activity with virtually no cell reaching level-3 or 
higher. Furthermore, level-2 storm size was low for all storms during the period of observation (see 
storm size vs. scan plot). (The data for Apr24 was contaminated, in addition, by the presence of 
severe clutter "breakthrough"). 

4 .3.2 Kansas City. 

May21. This day had one of the weaker squall lines ob5erved, with reflectivity generally 
staying in the level-2 to level-3 range (Figure 23). The most errat ic performance for this day occurs 
when stratiform precipitation is at its greatest extent, as can be seen by comparison of Panels a-c 
with Panels d-f. 

Jun24. It was unfortunate that the strong storm shown in Figure 22(a) tracked only near 
the edge of the PCP map. During the time of Panels a-c, tracking that storm was difficult because 
of edge artifacts. To the correlation tracker, objects crossing au image edge can appear to move 
in a direction parallel to that edge. Without a previous history or other nearby storms to observe 
(see JulJO, below), there is no current way to resolve this ambi~;uity. As more of the storm enters 
the field of view, tracking improves (Panels d and e), although the proximity of this storm to the 
upper left (image) corner resulted in less than perfect scoring. A later storm, entering from the 
south east (Panel fJ, also introduced an edge artifact, but as the storm moved through the image . 
center tracking performance improved. 

51 



Storm 
Size 125 

(pixels) 

0 10 20 30 40 50 
Scan Number 

Figure 22. Tracking performance and storm •!volution: Jun24 . 
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Figure 23. Tracking performance and storm evolution: May21 . 
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Figure 24. Tracking performance and storm etalution: Jun26 . 

57 

70 

o.sScan 
POD 



Storm 
Size 250 

(pixels) 

0 10 20 30 40 50 60 
Scan .Number 

Figure 25. Tracking performance and storm evolution: JullO. 
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Jun26. This day (Figure 24) had multiple squall lines and contained much convective ac­
tivity. Initial misses at startup were due to the effect of storms crossing the image edge (Panel a) . 
Generally, individual cells tracked in a north-east direction, altb.ough the formation of new cells 
(to the south east) resulted in apparent storm motion to the south east (compare Panels d, e, and 
!J. To an extent, these panels follow the conceptual growth model of Figure 1(b ). Some tracking 
error occurred as a result of this cell growth veering from the steering wind direction. (The ability 
to distinguish these two "types" of motion is examined again iu Section 4.4). During periods of 
high convective growth, overall tracking performance was good (Panels b-d). As the amount of 
stratiform precipitation increased, some performance deterioration occurred (Panels e and fJ. 

JullO. In contrast to some of the above Kansas City da.ys, convective activity began this 
day (Figure 25) within the field of view (i.e., the algorithm's fin;t view of weather did not require 
an attempt to track across an image edge, Panel a). Tracking the developing line and, later, more 
mature cells presented no problems (Panels b and c). By the time of Panel d there were multiple 
lines. One line is clearly just entering into view (i.e., crossing the edge). This line, in an isolated 
situation, would have caused difficulties for the tracker , as with Jun24 above. However , because 
this particular example contained two additional lines within the image interior and there was a 
history of their tracking, enough information existed such tha·: the algorithm could handle the 
edge crossing problem. (It was also fortuitous in this case that motion was roughly orthogonal to 
the image edge, also alleviating the artifact). In Panels e and f storms decay without leaving an 
extensive amount of stratiform precipitation, and, consequently, algorithm performance does not 
deteriorate until after Panel fwhen most of the significant storm activity has subsided. 

4.4 Extrapolation Performance 

This section presents a few examples where extrapolated storm contours (predictions) are 
compared to the weather (PCP maps) later observed. Clearly, f e notion of extrapolating current 
storm envelopes to obtain longer term (30-60 minute) predictions is too simple. Many factors 
can affect perceived performance, and for such a literal interpretation of prediction as many bad 
examples as good can be found in the data. The examples presented here are an attempt to identify 
some of the more important issues that bear on the SMP product and its use for long-term planning. 

4.4.1 Isolated Storms 

Figure 26 (May18) can be considered one of the better examples of performance for this 
data base. The figure contains a sequence of PCP maps at inte rvals of 0, 15, 30, and 60 minutes . 
Left column images contain storm contours derived from the t tme-0 image. Contours at 15 , 30, 
and 60 minutes are extrapolations assuming a constant velocity model and the velocity profile of 
time 0. The right column repeats the presentation of the PCP maps with the relevant motion 
vector estimates for each time. (Older vectors are kept in each illustration so that by time 60, the 
illustrated vector field is a composite of old vectors and new). 
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Figure 26. Extrapolation analysis: Mayl8. 
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Figure 27. Extrapolat ion analysis: Mayl8, bounding error contours. 
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In Figure 26, only three storms are identified at time zero. For 15 and 30 minute predictions, 
a close correspondence exists between extrapolated contours and moving storm areas. However, 
even at 15 minutes elapsed time there exist new regions of unaccounted storm activity. At 60 
minutes elapsed time the correspondence between predicting con tours and actual weather is slight. 
Of the three contours, two no longer overlap with any weather after 60 minutes . At 60 minutes, 
the unaccounted-for major storm due west of the radar is now clearly important. 

The quick evolutionary nature of the PCP map is clearly evident in the sequence of Figure 
26. The appearance and disappearance of new storm cells within 15-30 minutes (3-4 time frames) 
elapsed time clearly eclipses any hope of predicting the •ontent of the 60 minute map from t he 
content at time 0. A layered precipitation product might allevia te this to some extent. 

The sequence of motion vectors (right column, Figure ~ ~6) indicates a steady (i.e., non­
accelerating) motion, so that the vectors at time 0 continue to be representative of motion 60 
minutes later (counter examples to this are presented below). The extrapolated contours track t he 
mature storms albeit with a slight error bias, which naturally increases with extrapolation amount . 
As pointed out in Section 2.2.1, each motion vector is limited in its accuracy due to sampling resolu­
tion. If this uncertainty is accounted for when extrapolating contours, a representation as in Figure 
27 results. In this figure, an error of ±3.24 knots has been used to expand the contours during 
extrapolation. (To ease the implementation, convex hulls of the expanded contours are used) . Now 
the extrapolated contours reflect the uncertainty in calculation of the motion vectors. When viewed 
in this context, two of the three storms are easily contained wit hin the prediction contours out to 
60 minutes. In both of these cases, the storm that was tracked was stable throughout the tracking 
period (mature with minimum nearby convective growth). The third system, located in the NW 
quadrant, does not appear to be successfully tracked. In contrast to the other two, this storm 
exhibited convective growth veering from the prevailing track drection. Evidence for this comes 
from examining the scan-by-scan images (not shown) and from the right column portion of Panel 
c in Figure 26. There, it can be seen that the local motion vector estimate has turned eastward 
(evidence of this turning is mitigated because time-domain filtering was in effect) in comparison 
to the vector estimates of Panels a, b, and c. Hence, the NW quadrant cell shown in panels dated 
30 minutes and after is new, having replaced the one present in the original time-0 frame . This 
perturbation clearly appears as a non steady-state acceleration, which was not in evidence at time 
0. 

Figure 28 (Jun24) is a similar example taken from the Kansas City data. Again, the motion 
vector history is uniform in trend (no large accelerations) and the extrapolated con tours follow storm 
translation well out to 30 minutes. If vector uncertainty is accounted for, then an analysis using 
expanded contours (as in Figure 27) shows good agreement out to 60 minutes. Major discrepancies 
result with new growth and a storm that enters from outside the field of v~ew (SW quadrant at 60 
minutes elapsed time). Also present in this example is an insta.nce in which a storm has decayed 
completely, resulting in a "false alarm" prediction (NW quadrant) . 
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Figure 28. Extrapolation analysis: J un24 . 
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Figure 29. Extrapolation analysis: Junl5 . 
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Figure 30. Extrapolation analysis: J unl5, u '!.filtered vectors. 
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4.4.2 Line Structures 

Figure 29 shows a mature line storm from Denver (Jun15). There is some new growth "filling" 
the line in the NE quadrant, and the "tail end" located in the ,SW quadrant appears to undergo 
some convective growth differing (in direction) from the prevailing line translation. Extrapolation 
of the contour matches storm location well, except that because the line decays from 30 minutes and 
on, there remained little to predict at 60 minutes elapsed time. ~ he motion vectors largely appear 
uniform during the period and do not indicate any motion attributable to (apparent) convective 
growth in the SW quadrant. Did the tracker not detect this growth or was the growth "weak" in the 
sense that the time-domain filtering masked its detection? Figure 30 contains the unfiltered motion 
vectors for the time frames between 0 and 15 minutes elapsed time. Comparison of the unfiltered 
and filtered vectors shows that the algorithm was able to detect local differences in motion, and 
that much of this evidence was lost when filtered to obtain the motion vectors in Figure 29 (note 
an acceleration at 10 minutes in Panel c of Figure 30). Figure 30 is an exceptional example for 
unfiltered measurements and, in general, filtering cannot be rela.xed unless correlation processing 
can be improved (i.e., made more robust). As a consequence, small accelerations such as some due 
to convective growth are not reflected in the filtered output. In any event, extrapolation has been 
based on the assumption of a constant velocity model. Are there situations when a more or less 
steady-state acceleration could be measured and accounted for? 

Figure 31 (Kansas City) is the final example and illustra·;es a fast moving line storm with 
significant convective growth veering from the steering direction. At 30 and 60 minutes elapsed 
time, large deviations between extrapolated contours and actual weather are evident. At 30 and 60 
minutes (even at 15) large accelerations are present in the motion field (even though it is strongly 
filtered). However, because extrapolation was based on a constant velocity model, and used the 
velocities at 0 minutes, a prediction based on long- term extrapolation could not predict the turning 
motion even though it was clearly tracked by the algorithm. Such a vector turning was evident 
in this case for an extended period of time. Therefore, extrapolation including vector acceleration 
could have improved the extrapolation performance in this exantple. 
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Figure 31 . Extrapolatwn analysis: Jun26 . 
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5. Conclusions 

The overall results of this work should be encouraging. In general, the algorithm was found 
to perform within its expected capabilities. While the limited vertical extent and resolution of the 
presupposed PCP-map input do pose difficulties, neither prevented the development of a viable 
storm tracker. The algorithm operates mostly within an uncer·;ainty range defined by the PCP 
sampling resolution. Instances of "gross" algorithm error were few and usually associated with the 
initial startup period, known (and therefore avoidable) edge effects, or storms moving so slow as to 
be below the resolving power of the algorithm. Moderate errors (one-pixel errors in displacement 
calculations) were shown to be strongly correlated with the decay phase of most storm systems. 
New developing storms and storms exhibiting moderately fast motion correlate with the best algo­
rithm performance. An exceptional note applies to situations with highly convective storms and is 
discussed below. 

It was verified that correlation processing can be used to track storm motion from a PCP 
map sequence. However, the resolution of the PCP maps is such that filtering of the correlation 
output is currently necessary for its stabilization. This does have an undesirable effect regarding the 
algorithm's ability to track accelerations. As expected, no difficulties were encountered in regard 
to tracking cell spiltsfmergers. Binary correlation was chosen t:> explore whether tracking storm 
envelopes would successfully follow the vector sum of storm translation and storm propagation (see 
Section 1.2.3). Clear evidence exists to support a conclusion in the affirmative, that the correlation 
processor does track the vector sum. Unfortunately, the extensive filtering required for output 
stabilization smooths much of the detected accelerations, many of which are very short lived events 
(3-4 time frames). Hence, although the correlation processor appears capable of detecting "vector 
sum motion," algorithm output more often resembles the translational motion, which is most stable 
over longer periods of time. 

Many of the deficiencies identified in this report are clea.rly approachable with additional 
work. There are two issues that bear strongly on the use of this product for long-term predictions. 
First, the variability of the PCP map, in particular its low vertical resolution, often does not 
provide adequate content for long-term prediction. In addition, as shown in some of the examples, 
the volatile nature of the PCP maps destabilizes processing. Second, propagative storm motion 
(whether "steady state" or not) often is detected as an acceleration in the storm locations. Under 
the current notion of using velocity vectors to indicate storm motion, there is required some form of 
approximation, matched to the user's time frame, if acceleration is to be accounted for. Otherwise, 
in the case of rapid convective growth, the algorithm's output wi.l be perceived to be in large error. 
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6. Recommendations 

The notion of a cross-correlation storm motion algorithm is appealing in the context of the 
TDWR data set, and work with this type of algorithm should cC>ntinue. Below are listed specific 
recommendations directed at improving the algorithm's operation. 

Because of the nature of the PCP map, raw correlation processing can be erratic and requires 
substantial filtering for stabilization. It is likely desirable that a layered reflectivity product (such 
as generated by NEXRAD) be used for the correlation input. In'lestigations substituting the ASR 
weather channel should be encouraged. 

Also desirable would be additional work to develop a more robust correlation processor, 
possibly incorporating local or model based constraints during processing. This would alleviate 
the need for extensive filtering and allow the overall system to exhibit a greater sensitivity for 
acceleration (i.e., "steady-state" growth). Many processing artifacts (edge boundaries, clutter 
breakthrough, second trip weather, etc.) could be handled by an improved correlation processor as 
well. 

In like fashion, improved correlation processing could also alleviate the processing deterio­
ration that occurs with widespread stratiform precipitation. However, to an extent this difficulty 
is induced by the arbitrary use of level-2 weather thresholding;. An examination of alternative 
thresholding (different from the NWS levels) may reveal a level :>etter suited for storm tracking. 

The possible use of "hybrid" maps, combining long-range portions of the low-PRF scan with 
the PCP maps, should also be considered as a possible means fer reducing edge (and second trip) 
artifacts. These extended maps are also desirable because they increase the spatial scope of the 
weather observed (the notion of extrapolating weather 30-60 minutes into the future only makes 
sense if the algorithm can "see" weather within a 30-60 minute window [centered on the airport] of 
the present). 

This algorithm appears capable of detecting (tracking) propagative growth. While storm 
translation appears to be steady over an extended period of time, "propagative growth" often 
appears short lived relative to the stated goal of 30-60 minute planning. Such propagative growth 
may be better viewed as an acceleration vector than as a velocity vector to be summed with a 
translational component. Can this information be used to impnve the prediction of future storm 
location or conveyed to the end user in useful form? These are c.reas for consideration but having, 
as yet, no clear solution. 
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