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1. INTRODUC.TION 

A recent analysis of rotorcraft operations (Adams, 1984, section 3.1, The 
Environment) indicates that the ~'typical flight mission consists of Point A to 
Point B flights that average 22 minutes in length, incorporating 5 interim 
stops for a total round-robin flight averaging 1 hour 48 minutes." The 
granularity (geographic and time) of weather information for rotorcraft 
operations is very small in comparison with what is required for fixed wing 
operations. Thus, the rotorcraft pilot has little interest in mid-range 
(4-6 hours) weather forecasts. What is needed is short range (10-120 minutes) 
forecasts for short range distances. The unique characteristics of rotorcraft 
allow them to land at places where airplanes can not. Many of these landing 
areas have low density traffic which does not justify a weather observer much 
less a forecaster. The rotorcraft community is extremely interested in an 
automatic weather sensor and an associated system for short term weather 
forecasting. It is for this reason that the FAA is sponsoring the NWS effort 
described in this report as an operational requirement. 

The statistical technique for predicting the probability distribution of all 
surface weather elements minute-by-minute is called GEM for Generalized 
Equivalent Markov. It uses only the current local automated surface weather 
conditions as predictors. From these probability distributions, categorical 
predictions are made for each automated surface weather element. The 
technique is a Markov procedure which is briefly described in the following 
quotation from William Feller (1950): 

In stochastic processes the future is never uniquely determined, but 
we have at least probability relations enabling us to make predic
tions ••.• The term "Markov process" is applied to a very large and 
important class of stochastic processes •••• Conceptually, a Markov 
process is the probabilistic analogue of the processes of classical 
mechanics, where the future development is completely determined by 
the present state and is independent of the way in which the 
present state has developed ••• in contrast to processes •.• where 
the whole past history of the system influences its future. 

GEM is a multivariate linear regression system in which all variables, both 
predictors and predictands, are zero-one. It uses only the most recent obser
vation of the automated surface weather elements to predict the probability 
dis,tribution of those same automated weather elements. It does this in 
1-minute increments. A categorical forecast is then made of each element, 
satisfying the constraint of balancing the number of times an element category 
is predicted with the number of times it is observed to occur. 



If one were to approach the problem of predicting the probability distribu
tions of future weather events by employing the classical Markov-chain model, it 
would soon become evident that enumerating the required states of nature, under 
a realistic number of characteristics, is infeasible. A new, or at least dif
ferent, method must be tried. In GEM, a system of regression equations is set 
up to estimate the probability of all subsequent events at one time step. Then 
the transition probabilities in the usual Markov chain are essentially replaced 
by the regression-estimated probabilities. To accomplish this estimation of 
probabilities, all predictands are either a zero or a one in each observation. 
To facilitate the iterative characteristics of the chain, all predictors are 
similarly expressed as zero or one in each observation. The simplicity of such 
a system should be evident: Forecast all elements into the future by iterative 
steps, using only the present observed conditions of the events. 

The mathematical model, data preparation, statistical analyses, and nonlinear 
prediction approach are given in Section 2. Section 3 presents results 
comparing GEM with climatology and persistence. Section 4 is a summary of work 
performed under the contract. Section 5 deals with future work to be performed. 

2. TECHNIQUE DEVELOPMENT 

This section describes the procedure from the mathematical model, through 
data preparation and statistical analyses, to a discussion of a nonlinear 
prediction method. The reader is referred to a NOAA Technical Report for 
further details (Miller, 1981). 

2.1. Mathematical Model 

Assumed given are measurements on a set of Z1, Z2, ••• , Zp predictor 
variables and a set of Y1, Y2, ••• , Yq predictand variables for a group 
of N observations. The problem of multivariate regression is to construct a 
set of Q linear functions 

yl = al,O + al,lzl + a1,2z2 + + a Z + + a 1 Z l,p p ,p p 

y2 = a2,0 + a2,1z1 + a2,2z2 + + a Z + + a 2 Z 2,p p ,p p 

y = a + aq,lzl + aq,2z2 + + a z + .•. + a z q q,O q,p p q,p p 

YQ = aQ,O + aQ,lzl + aQ,2z2 + + aQ Z + ... + a Z ,p p Q,p p 

2 

(1) 



which have the property that the sum of the squares of the errors 

2 N ~ 

)2 N 
e: = l: (Y. - Y. = l: (Y. - a - a lz. 1 (2) 

q i=l ~,q ~,q i=l ~,q q,O q, ~, 

- a z. - a z. )2 
(q=l,2, ••• ,Q) q,p ~,p q,p ~,p 

are as small as possible. That is, the problem is to determine values of the 
aq,p's (q = 1,2, ••• , Q; p = 1,2, ••• , P) which minimize the quantities 

2 e: (q=l,2, ••• ,Q). 
q 

This is done by taking the partial derivatives of the Eq. (2) with respect to 
the unknown a's, setting each derivative equal to zero, and then solving for 
the a's. The process yields a set of normal equations which can be written in 
matrix notation as (underlining signifies a matrix or vector): 

(3) 

Expressed statistically this is the multivariate linear regression of the Y's 
on the Z's (Tatsuoka, 1971, pp. 26-38). In GEM, theY values are advanced by 
one hour from the corresponding Z values. Thus 

or 

= z. 
~,q 

= Z. (i=1,2, ... ,N; q=l,2, ... ,Q; p=l,2, ... ,P). 
~,p 

Once A has been determined, it can then be used to estimate the value of X 
at one time step, given a set of z values at a zero time step (lower case 
values denote new observations of-Y and Z): 

; = z 'A 
"'-1 .::.0 -

(4) 

To employ an iterative scheme, such as in GEM, the estimate of X at time T can 
be expressed as 

; = z A 
"'-T -T-1-

(multiplicative form) 

A 

with z at time T-1 taken to be the previous estimate YT-1· 

(5) 

An equivalent alternative to estimating X at time T is to power A as follows: 

T 
¥ (additive form) (6) 
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The distinction between the two forms, multiplicative and additive, is that in 
the former, the operation required is to postmultiply the observation and then 
subsequent forecasts by A, minute-by-minute. In the latter, since all obser
vations in ~0 ~re either-zero or one, the operation only requires adding the 
coefficients whose observations are one, at any projection. To permit this, 
however, the powered versions of A must be determined initially, stored, and 
made available for the projections of interest. 

2.2. Data Preparation 

Data began to be collected at the National Weather Service's Techniques 
Development and Test Branch location at Sterling, Virginia, in April 1984. 
The following weather elements are observed once a minute by equipment similar 
to the FAA's Automated Weather Observing System (AWOS). The elements are: 

o Lowest cloud hit 
o Second cloud hit 
o Third cloud hit 
o Fourth cloud hit 
o Visibility 
o Station pressure 
o Temperature 
o Dew point temperature 
o Wind speed 
o Wind direction 
o Precipitation amount in one minute 
o Precipitation occurrence 
o Frozen precipitation occurrence (when successfully measured) 
o Date of the observation 

The elements were transformed into categories, and dummy predictors and 
predictands were created. Table 1 shows the specific categories defined for 
each zero-one dummy predictor. Column 1 indicates the dummy variable number 
while column 4 gives the index of that variable. One dummy variable must be 
"left-out" because of mathematical redundancy. 

2.3. Statistical Analyses 

The statistical analyses which are performed on these data result from the 
processing of crossproduct matrices. The actual steps are as follows: 

Step 1. Compute the Z'Z and Y'Z crossproduct matrices from the data 
matrices Z and Y. 

Step 2. Solve for A from A= (Z'z)-l(y'z) where A is the matrix of 
regression coeffici;nts fo~ making a !~minute for;cast. 
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Step. 3. Solve for the threshold probabilities p* for making categorical 
forecasts. 

Derivation of the two crossproduct matrices Z'Z and Y'Z, in step 1, was 
accomplished by using a pointer system which s~v;d a c~nsiderable amount of 
computer time. This efficiency is made possible because of the zero-one 
nature of the observations. 

For the labeled predictors in Table 2, Column 4 gives the sum row of the 
!'!matrix and Column 5 the lowest ceiling row of the Y'Z matrix. This gives 
the products between the Y variable for lowest ceiling hit times each of the 
88 predictors over the sample N. 

We solved for the regression coefficient matrix A in step 2 using the Crout 
method (Crout, 1941). This method does not require solving for the inverse 
matrix, (Z'Z)-1, but instead derives the regression coefficients by first a 
foreward ~nd then a backward solution. Avoided are many of the computational 
instabilities encountered by inverting large matrices. The Crout method 
yields an 88 x 87 matrix--88 predictor coefficients for each of 87 predictands. 

The lowest ceiling hit equation for the A matrix appears as Column 6 in 
Table 2. 

2.4. Nonlinear Prediction Approach 

Meteorologists have desired forecast guidance that is capable of predicting 
changes in the weather, such as frontal passages and their attendant 
variations, onset and discontinuation of severe weather (types and inten
sities), wind shifts and wind speed variations, as well as ceiling and 
visibility changes of a critical nature for aviation. Classical statistical 
approaches like regression have not succeeded in completely satisfying this 
desire, partly due to the additive nature of the statistical model currently 
employed. What seems to be needed is a model which will act in a multi
plicative fashion--one capable of completely shutting down the prediction of 
an event when the antecedent conditions warrant. For example, when it rains, 
it is "never" preceded 1 minute before by a clear sky. However, a statistical
regression operator will fail to turn off the chance of rain fully if there 
are other antecedent conditions, say, easternly wind, high humidity, fog, and 
low visibility--conditions which are usually associated with future occurrences 
of rain. Regression would tend to increase the probability of rain because of 
each of these elements. In general with regression, the lack of any clouds 
would not be enough to negate completely the effect of these other elements. 

5 
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Table 1. Predictor and predictand categories which specify the dummy variables 
used in GEM. Shown under the index column are the left-out categories not 
included because of redundancy. 

Number Weather Element Category Index 

1 (Always unity) 1 
2 Lowest cloud hit (00') 0 - 1 2 
3 2 - 4 3 
4 5 - 9 4 
5 10 - 29 5 
6 30 - 60 6 
7 61 - UNL Left out 
8 Second cloud hit (00') 0 - 1 7 
9 2 - 4 8 

10 5 - 9 9 
11 10 - 29 10 
12 30 - 60 11 
13 61 - UNL Left out 
14 Third cloud hit (00') 0 - 1 12 
15 2 - 4 13 
16 5 - 9 14 
17 10 - 29 15 
18 30 - 60 16 
19 61 - UNL Left out 
20 Fourth cloud hit (00') 0 - 1 17 
21 2 - 4 18 
22 5 - 9 19 
23 10 - 29 20 
24 30 - 60 21 
25 61 - UNL Left out 
26 Visibility (miles) 0 - 31/64 22 
27 1/2 - 63/64 23 
28 1 - 2 63/64 24 
29 3 - 4 64/64 25 
30 5 - 6 63/64 26 
31 7 - 100 Left out 
32 Station pressure (inches of Hg) 0 - 29.235 27 
33 29.236 - 29.530 28 
34 29.531 - 29.677 29 
35 29.678 - 29.825 30 
36 29.826 - 29.973 31 
37 29.974 - 30.120 32 
38 30.121 - 30.268 33 
39 30.269 - 30.563 34 
40 30.564 - 35.000 Left out 
41 Temperature (°F) -30 - 4 35 
42 5 - 14 36 
43 15 - 24 37 
44 25 - 34 38 
45 35 - 39 39 
46 40 - 44 40 
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Table 1. Continued. 

Number Weather Element Category Index 

47 45 - 49 41 
48 50 - 54 42 
49 55 - 59 43 
50 60 - 64 44 
51 65 - 74 45 
52 75 - 84 46 
53 85 - 94 47 
54 95 - 110 Left out 
55 Dew point depression (°F) 0 - 1 48 
56 2 - 7 49 
57 8 - 15 50 
58 16 - 25 51 
59 26 - 99 Left out 
60 Wind speed (kt) 0 - 1 52 
61 2 - 9 53 
62 10 - 19 54 
63 20 - 29 55 
64 30 - 99 Left out 
65 Wind direction (deg) 00 - 44 56 
66 45 - 89 57 
67 90 - 134 58 
68 135 - 179 59 
69 180 - 224 60 
70 225 - 269 61 
71 270 - 314 62 
72 315 - 359 Left out 
73 Precipitation amount (inches) .002 - .100 63 
74 .001 - .0019 64 
75 .000 - .0009 Left out 
76 Precipitation occurrence (Y or N) Yes 65 
77 No Left out 
78 Frozen precipitation (Y or N) Yes 66 

(when successfully measured) 
79 No Left out 
80 Month January 67 
81 February 68 
82 March 69 

0 83 April 70 
84 May 71 
85 June 72 
86 July 73 
87 August 74 
88 September 75 
89 October 76 
90 November 77 
91 December Left out 
92 Hour (LST) 00 - 01 78 
93 02 - 03 79 
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Table 1. Continued. 

Number· Weather Element Category Index 

94 04 - 05 80 
95 06 - 07 81 
96 08 - 09 82 
97 10 - 11 83 
98 12 - 13 84 
99 14 - 15 85 

100 16 - 17 86 
101 18 - 19 87 
102 20 - 21 88 
103 22 - 23 Left out 
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Table 2. Quantities derived for the designated dummy variables; the number of 
times each category occurred in the sample (EZ), the number of times each 
predictor occurred when it was followed by the lowest ceiling hit one minute 
later (EYZ), and the regression coefficient for each predictor when lowest 
ceiling hit was the predictand (A). 

Index Element Category EZ zzy A 

1 (Always unity) 51882 1620 -.37821 
2 Lowest cloud hit (00') 0 - 1 1620 684 .06854 
3 2 - 4 2954 167 -.00320 
4 5 - 9 2348 19 .00741 
5 10 - 29 3342 21 .00465 
6 30 - 60 5771 40 -.00437 
7 Second cloud hit (00') 0 - 1 646 536 • 33712 
8 2 - 4 1442 227 .01249 
9 5 - 9 1638 3 -.01058 

10 10 - 29 2773 9 -.00494 
11 30 - 60 4777 36 -.00751 
12 Third cloud hit (00') 0 - 1 474 375 .08702 
13 2 - 4 1332 339 .02272 
14 5 - 9 1575 5 .01517 
15 10 - 29 2655 4 .00173 
16 30 - 60 4002 31 .00283 
17 Fourth cloud hit (00') 0 - 1 251 188 -.02576 
18 2 - 4 1245 433 .00099 
19 5 - 9 1505 3 -.05200 
20 10 - 29 2436 0 -.02365 
21, 30 - 60 3109 12 -. 01352 
22 Visibility (Miles) 0 - 31/64 508 413 .44201 
23 1/2 - 63/64 544 306 • 34377 
24 1 - 2 63/64 2443 118 .02758 
25 3 - 4 63/64 2132 78 .02444 
26 5 - 6 63/64 2049 43 .00145 
27 Station pressure 

(inches of Hg) 0 - 29.235 0 0 .00000 
28 29.236 - 29.530 1461 26 -.00045 
29 29.531 - 29.677 722 7 -. 00125 
30 29.678 - 29.825 8054 303 -.01045 
31 29.826 - 29.973 15669 489 -.01004 
32 29.974 - 30.120 19879 699 -.01522 
33 30.121 - 30.268 5793 86 -.01149 
34 30.269 - 30.563 304 10 .00000 
35 Temperature (°F) -30 - 4 0 0 .00000 
36 5 - 14 0 0 .00000 
37 15 - 24 0 0 .00000 
38 25 - 34 216 9 .02964 
39 35 - 39 549 9 .00781 
40 40 - 44 1937 26 .00826 
41 45 - 49 3454 5.2 .00659 
42 Temperature (°F) cont. 50 - 54 5955 288 .00636 
43 55 - 59 9335 517 • 00017 
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Table 2. Continued. 

Index Element Category l:Z l:ZY A 

44 60 - 64 8601 236 .00433 
45 65 - 74 12494 236 .00662 
46 75 - 84 7648 151 .01197 
47 85 - 94 1692 32 .01222 
48 Dew point depression (°F) 0 - 1 2943 581 .00123 
49 2 - 7 18062 550 -.00827 
50 8 - 15 13835 195 -.00682 
51 16 - 25 12817 214 -.00670 
52 Wind speed (kt) 0 - 1 1357 84 .41415 
53 2 - 9 40844 1386 .40452 
54 10 - 19 9420 150 .40351 
55 20 - 29 260 0 .31831 
56 Wind direction (deg) 00 - 44 2932 93 -.00687 
57 45 - 89 2435 121 -.00160 
58 90 - 134 4893 234 .00886 
59 135 - 179 5913 392 -.00877 
60 180 - 224 11272 356 -.00500 
61 225 - 269 4655 93 -.00009 
62 270 - 314 11514 184 -.00896 
63 Precipitation amount (inches).002 - .100 22 2 -. 01724 
64 .001 - .0019 97 4 .00564 
65 Precipitation occurrence 

(Y,N) Yes 2766 141 • 01106 
66 Frozen precipitation 

(Y,N) (when 
successfully measured) Yes 0 0 .00000 

67 Month January 0 0 .00000 
68 February 0 0 .00000 
69 March 0 0 .00000 
70 April 5655 92 .00684 
71 May 37790 1342 .00688 
72 June 8437 186 .00000 
73 July 0 0 .00000 
74 August 0 0 .00000 
75 September 0 0 .00000 
76 October 0 0 .00000 
77 November 0 0 .00000 
78 Hour (LST) 00 - 00 4334 209 .00684 
79 02 - 03 4314 172 .00688 
80 04 - 05 4103 215 .00000 
81 06 - 07 4254 270 .00978 
82 08 - 09 4223 156 -.00461 
83 10 - 11 4370 50 -.01057 
84 12 - 13 4425 70 -.00257 
85 14 - 15 4389 65 -.00758 
86 16 - 17 4376 78 -.00703 
87 18 - 19 4380 62 -.00346 
88 20 - 21 4373 99 -.00787 
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Fortunately, there is a statistical model or operator which possesses this 
necessary capability. The discrete likelihood function (DLF) approach is 
fairly new (see Miller, 1979), but the basis for its existence is founded on 
the work of the eminent statistician, Sir Ronald A. Fisher, whose own work and 
ideas on this subject were derived in the mid:-eighteenth century from the 
inverse probability notions of Bayes. Basically, the concept is this: given 
that we observe a set of current conditions of the weather, the question to be 
asked is "What is the likelihood that these current conditions are those that 
would be the conditions preceeding rain and, conversely, what is the likeli
hood that these current conditions are those that would be the conditions 
preceeding no rain?" The two likelihoods are obtained by multiplying the 
conditional probabilities of each antecedent condition thus getting the joint 
probability of the entire observation. It should be emphasized that the 
presence of any antecedent condition which is incongruous with an event of 
interest (say, rain) will have a dramatic effect on that likelihood: it will 
force the likelihood to zero. Such a nonlinear system would seem to conform 
to meteorologists' desires. Should the usual conditional probabilities 
(posteriors) be of interest, they can be gotten directly from Bayes' theorem 
and the climatological frequencies of the possible events (priors). The 
likelihoods are obtained from a set of regression estimated probabilities 
(REEP) (see Miller, 1964). Empirical evidence has shown that rarely if ever 
is a REEP probability of an event < 0 when the event occurs and > 1.0 when it 
does not occur. Certainly the situations arise when REEP forecasts P < 0 and 
P > l. However, truncating these REEP forecasts to 0 and 1.0, respectively, 
will not invalidate the reliability of the estimates. 

Finally, a method which makes optimum use of these likelihoods for selecting 
categorical forecasts is an event selection based on a function of the 
likelihood ratio (see Von Mises, 1945). 

3. RESULTS 

To demonstrate the ability of the GEM equations to predict at a 1-minute 
projection, Brier scores have been computed for climatology, persistence, and 
GEM for each of the predictands of interest. These are given in Table 3 for 
the specified dummy variables. At the present time, only the dependent sample 
scores are presented. When one year's data has been compiled, Brier scores 
will be computed on a running sample of that next independent year. The Brier 
score for persistence as defined here uses only that dummy element correspond
ing to the specific predictand dummy. A greater reduction (lower values are 
better) in Brier score for persistence could have been achieved if all dummies 
of the predictand element were used as predictors. All dummies of a predictand 
element were not used as predictors in computing persistence's Brier score for 
two reasons: a) the procedure is so complex that it would severely strain the 
resources available to this project, and b) more importantly, persistence's 

11 
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Table 3. Brier scores of each specified predictand for climatology, persistence, 
and GEM based on the developmented sample of 51882 cases. Dashes denote 
inapplicability. 

Index Element Category Climatology Persistence GEM 

1 (Always unity) 
2 Lowest cloud hit (00') 0 - 1 .03025 .02532 .01969 
3 2 - 4 .05370 .04582 .03732 
4 5 - 9 .04328 .03256 .02578 
5 10 - 29 .06037 .03229 .02481 
6 30 - 60 .09876 .04538 .03768 

.. 
7 Second cloud hit (00') 0 - 1 .01224 .00510 .00413 
8 2 - 4 .02691 .01204 .00954 
9 5 - 9 .03068 .01218 .01006 

10 10 - 29 .05061 .01449 .01219 
11 30 - 60 .08361 .03010 .02495 
12 Third cloud hit (00') 0 - 1 .00898 .00449 .00373 
13 2 - 4 .02496 .00899 .00734 
14 5 - 9 .02935 .01008 .00838 
15 10 - 29 .04859 .01236 .01034 
16 30 - 60 .07127 .02483 .02082 
17 Fourth cloud hit (00') 0 - 1 .00474 .00314 .00276 
18 2 - 4 .02337 .00813 .00661 
19 5 - 9 .02826 .01050 .00877 
20 10 - 29 .04475 .01441 .01179 
21 30 - 60 .05633 .02305 .01999 
22 Visibility (Miles) 0 - 31/64 .00979 .00143 .00137 
23 1/2 - 63/64 .01030 .00333 .00318 
24 1 - 2 63/64 .04478 .00909 .00854 
25 3 - 4 63/64 .03946 .01384 .01312 
26 5 - 6 63/64 .03800 .01702 .01649 
27 Station pressure 

(inches of Hg) 0 - 29.235 
28 29.236 - 29.530 .02737 .00008 .00008 
29 29.531 - 29.677 .01370 .00029 .00029 
30 29.678 - 29.825 .13112 .00203 .00203 
31 29.826 - 29.973 .21082 .00357 .00356 
32 29.974 - 30.120 .23634 .00259 .00259 
33 30.121 - 30.268 .09923 .00129 .00128 
34 30.269 - 30.563 
35 Temperature (°F) -30 - 4 
36 5 - 14 
37 15 - 24 
38 25 - 34 .00415 .00070 .00069 
39 35 - 39 .01041 .00335 .00325 
40 40 - 44 .03594 .00856 .00820 
41 45 - 49 .06228 .01488 .01441 
42 Temperature (°F) cont. 50 - 54 .10162 .02654 .02577 
43 55 - 59 .14739 .04132 .03965 
44 60 - 64 .13928 .04266 .04152 
45 65 - 74 .18288 .02990 .02923 
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Table 3. Continued. 

Index Element Category Climatology Persistence GEM 

46 75 - 84 .12567 .01705 .01655 
47 85 - 94 .03160 .00679 .00666 
48 Dew point depression (°F) 0 - 1 .05339 .03719 .03084 
49 2 - 7 .22691 .06910 .05609 
50 8 - 15 .19571 .04583 .04504 
51 16 - 25 .18597 .03262 .03178 
52 Wind speed (kt) 0 - 1 .02565 .01008 .00995 

v 53 2 - 9 .16756 .04999 .04867 
54 10 - 19 .14856 .04221 .04069 
55 20 - 29 .00497 .00231 .00225 
56 Wind direction (deg) 00 - 44 .05342 .01359 .01330 
57 45 - 89 .04450 .01226 .01200 
58 90 - 134 .08548 .01578 .01541 
59 135 - 179 .10103 .02544 .02490 
60 180 - 224 .17003 .02868 .02759 
61 225 - 269 .08169 .02400 .02369 
62 270 - 314 .17264 .03634 .03520 
63 Precipitation amount 

(inches) .002 - .100 .00044 .00036 .00034 
64 .001 - .0019 .00189 .00186 .00174 
65 Precipitation Occurrence 

(Y,N) Yes .05037 .00503 .00498 
66 Frozen precipitation 

(Y,N) (when 
successfully measured) Yes 

67 Month January 
68 February 
69 March 
70 April 
71 May 
72 June 
73 July 
74 August 
75 September 
76 October 
77 November 
78 Hour (LST) 00 - 00 
79 02 - 03 
80 04 - 05 
81 06 - 07 
82 08 - 09 
83 10 - 11 
84 12 - 13 
85 14 - 15 
86 16 - 17 
87 18 - 19 
88 20 - 21 
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function is as a simple readily-available "no skill" statistical control. The 
more complex procedure is neither "readily available" nor simple, but a 
full-blown statistical forecasting procedure unto itself. The development of 
such a procedure is beyond the scope of this project. 

4. BACKGROUND MATERIAL AND SUMMARY 

Work on this contract began with a familiarization of the microcomputer 
programming language S Basic (structured compiler Basic) for the KAYPRO 10--a 
Z80 machine with a 10 megabyte Winchester hard disk, one floppy drive, and two 
RS232C ports plus a centronics port for a printer. Two such computers were 
acquired along with a letter quality printer about 3 months into the contract. 

We engaged ARTAIS, Inc. through a subcontract to modify the experimental 
system at Sterling, Virginia. As a consequence, we now receive raw 
minute-by-minute sensor data plus observations derived from an algorithm 
developed for the Automated Surface Observation System (ASOS). One KAYPRO 10 
computer was wired to the ARTAIS equipment at one of the KAYPRO's RS232C ports 
and was dedicated to the Sterling facility. 

Capturing these data into files on the hard disk could not be done through 
the S Basic language. It was necessary to seek other ways of performing this 
task. Two such ways were found. One was through a C program written by Donald 
Ouimmette and the other through the purchase of MITE commercial telecommunica
tion software. Both approaches succeeded; however, the former way was chosen 
for use because the program better suited our needs. We began collecting live 
data before the end of April and have collected data almost continuously since 
that time. Data collection has been interrupted very infrequently. The only 
serious type of interruption was caused by lightning striking elements of the 
observing system. When there is an interuption, we lose data until the outage 
has been brought to our attention or until we arrive at the Sterling facility 
to download the data onto floppies once a week. Most important: such outages 
will here bias the observations collected (e.g., deficiency in thunderstorm 
cases) to an, as yet, unknown degree. 

Processing of the ASCII data, collected through the C program, is performed 
in the S Basic computer language. Gross error checking is performed on both 
the fixed and variable length data records. Eighty-eight predictors are set 
up to predict 87 predictands (described in Section 2.B). A pointer system was 
employed to get the crossproducts needed to solve the statistical equations for 
making a 1-minute forecast. Such a system is very efficient when dummy 
variables, such as are employed with GEM, are used. Nevertheless, it was 
necessary to acquire an additional KAYPRO 10 in June to permit the testing of 
the nonlinear DLF approach. Further details on DLF can be found in 
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Section 2.D. DLF can enhance the project in two ways: a) the DLF approach 
captures all the information contained in first-order interactions between 
each pair of predictors, avoiding the need to add such terms in the regular 
minute-by-minute GEM, and (b) the two methods, GEM and DLF, are compatible and 
will be used together should the contribution made by DLF be deemed worthwhile, 
based on further testing. 

At the present time, we have exercised all the necessary development programs 
on as much data as have been collected. We will monitor the equations as they 
are produced on more and more data. Tests will be made to judge the value of 
DLF. 

5. 'Ftn'URE WORK 

Our plans for the remainder of the contract are: 

o Complete the collection of a full year of AWOS and ASOS data at 
Sterling. 

o Process these data for making a set of minute-by-minute (for 10-, 20-, 
30-, 40-, 50-, and 60-minute projections) GEM equations for both AWOS 
and ASOS variables, both probabilities and categorical forecasts. 
These efforts will spe.cifically predict ceiling, visibility, wind, 
precipitation, and temperature. 

o Perform a verification on these equations on observations independent 
of the original sample. 

o Test the effectiveness of Discrete Likelihood Functions (DLF). 

o Prepare a plan for demonstration of the GEM system. 

o Process any data acquired from other locations akin to the manner in 
which the Sterling data were processed. 

One of the objectives during the period of this contract is to develop a 
prototype computer facility that will be self-standing as a: 

o Real-time collector of automatic weather observations data 
minute-by-minute, both AWOS and ASOS. 

o Decoder of each observation into dummy variables for processing into 
GEM. 
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o Accumulator of the statistical crossproduct into statistical covariance 
matrices within each predictand category. 

o Creator of updated reg.ression prediction 'equations. 

o On-demand predictor of each element out to 60 minutes in 10-minute 
intervals. 

Features of this facility will be that maintenance 
Only hardware breakdowns will disrupt the facility. 
affect the operation, and it will not be required to 
facility as was once thought necessary. 
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will be at a minimum. 
Power breakdowns will not 
periodically maintain the 
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