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1.0 INTRODUCTION

The Workshop on Wind Shear/Turbulence Inputs to Flight Simulation and
Systems Certification (Frost and Bowles 1984) concluded that knowledge of the
inter-relation between turbulence and wind shear is required to provide a
better understanding of the microburst phenomenon. Actually, the distinction
between wind shear and turbulence is simply a matter of definition; wind shear
is low-frequency turbulence. JAWS radar-measured microburst data sets are
smoothed through synthesis to a spatial grid that is about 656 x 656 x 820 ft
(200 x 200 x 250 m). There are atmospheric disturbances within the volume
element that are relatively 1large compared to the aircraft. These
disturbances, however, are smoothed out by the data reduction process for the
JAWS microburst data sets. As Campbell (1984) and Frost (1984) pointed out,
high-frequency turbulence should be superimposed on the JAWS data. The
subject of this study is to develop an effective microburst turbulence model
to supplement the existing JAWS data.

As Taylor and von Karman have stated, turbulence can be generated by
friction forces at fixed walls or by the flow of layers of fluids with
different velocities past or over one another. Usually, turbulence generated
by fixed walls is designated as "wall turbulence" and turbulence in the
absence of walls 1is fdndicated as "free turbulence." In the literature,
several investigators (Fichtl 1973, Barr et al. 1974, Frost et al. 1978) have
summarized models of atmospheric boundary layer turbulence. Turbulence length
scale and intensity used in their models are proportional to the height above
leve] terrain, which is probably not true for microburst turbulence.

A number of studies (Zegadi et al. 1983, Boldman and Brinich 1977,
Costello 1976) are devoted to the problem of measuring the turbulence
characteristics in impinging Jjet flows which contain free turbulences.
Recently, the structure of turbulence in an fimpinging Jet in a uniform
crossflow was studied by Shayesteh et al. (1985) and Crabb et al. (1981).
Because microburst turbulence is a mixture of wall turbulence (in the
atmospheric boundary layer) and free turbulence (in the downburst flow), its
turbulence characteristics are essentially affected by the interaction between
two kinds of turbulence flows. JAWS radar-measured data provided turbulence
information (radar spectral width and wind standard deviation) associated with
a microburst (Elmore and McCarthy 1884). Based on this turbulence
information, a microburst turbulence model has been defined and its effect on
simulated aircraft flight studied in this report.

A detailed analysis of the JAWS radar-measured turbulence information
with emphasis on finding the significant turbulence parameters for JAWS
microbursts is first reported. The radar-measured turbulence data are then
compared with the in situv aircraft measurements. The comparison shows that
the analytical Dryden spectrum model is a reasonable approximation to the
partitioning of energy between frequencies within microburst turbulence (at
least higher frequencies). A polynomial curve-fitting technique is applied to
find the form of the JAWS microburst turbulence intensity as a function of the
radial distance from the microburst center and the height above ground. The
length scales associated with the microburst turbulence are commuted by

integrating the auto-correlation function of the quasi-steady mean wind
components.



To investigate the effect of turbulence on aircraft trajectories through
the JAWS data sets, three turbulent wind components are computer simulated
with a z-transformation technique. As statistical analysis of the simulated
turbulence wind components along the aircraft's trajectories is made and the

influence of the microburst turbulence on the aircraft performance is
investigated.



2.0 ANALYSES OF JAWS TURBULENCE DATA

In addition to the spatial velocity and reflectivity fields of the JAWS
microbursts, which were analyzed and reported by Frost et al. (1985), JAWS
data sets also provided turbulence information in the form of radar-measured
pulse, wind, and total standard deviations (defined below). Analyses of these
turbulence data are presented in this section. Figure 1 shows the locations
and the coordinates of three JAWS microbursts with respect to the CP-2 radar.
Table 1 1ists basic information about the three microburst data sets measured
on June 30, July 14, and August 5, 1982. Three radar stations, CP-2, CP-3,
and CP-4, were operated in the JAWS field experiment. The characteristics of
the radars are given in Table 2.

2.1 Definition of Measurements

The definitions of the JAWS turbulence measurements, pulse, wind, and
total standard deviations are:

Pulse standard deviation, op, is the total spectrum width, also called
the second moment. For a sing%e range gate, it dis calculated from the
equation (Keeler and Frush 1984):

APRE R ERC(T + Py/Ps)T m/s, Ps < -90 dBy

v8 x
%P 7 |APRF T (1)
P |APRE TRENET /s, P » -90 dBy

v8 n

with the constraint that [NC-(1 + PyN/Pg)] < 1 where X is the radar wavelength
(m), PRF is the radar pulse repetition frequency (1/sec), Py is the Tinear
channel noise power as determined from system measurement or the calibration
curve (dBp), Pg is the linear channel signal power as determined from the
calibration curve (dBy), and NC is the normalized coherent power estimate
equal to |[R(T)/R(0)|; R(x) 1is the auto-correlation function of the signal
power receijved by the radar system. However, the JAWS o, provided for
analysis is a Cressman weighted average at each grid point. Therefore, in
this analysis we assume that op represents the pulse standard deviation for a
pulse volume centered at the grid point. Without the raw data, the influence
of this assumption cannot be meaningfully assessed.

Wind standard deviation oy at each grid point is the square root of the

variance of the weighted velocity estimates used to compute the quasi-steady
mean wind at the grid point.

Oy = [% 2(Ve? - Vr'z)]l/z (2)

where N is the number of range gates involved in a grid volume. The effects
of motion scales larger than the pulse volume and smaller than the grid volume
are approximated by the variance, square of oy. Finally, total standard

3
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TABLE 1. Three JAWS Microburst Data Sets.
Number of  Grid Spacing,

Data Sets Nomenclature Grids ft (m) Description of Data
August 5, 1982 5AU1845 81x81x9 492x492x820 Each measurement including:
(1845, 1847, 1850, 5AUT847 (150x150x250) 1) u, v, and w wind speed components

and 1852 MDT 5AU1850 2) Radar reflectivity
measurements) 5AU1852 3) Pulse SD (from CP-4)
4) Wind SD (from CP-4)
5) Total SD (from CP-4)
June 30, 1982 30IN1821 90x90x5 820x820x820 Same as above
(1821, 1823, and 303N1823 (250%x250x250)
1826 MDT 30JN1826
measurements)
July 14, 1982 14911452 61x61x11 656x656x492 1) u, v, and w wind speed components
(1452 MDT (200x200x150)  2) Radar reflectivity
measurement) 3) CP-2 pulse SD (from CP-2)
4) CP-2 wind SD (from CP-2)
5) CP-2 total SD (from CP-2)
6) CP-4 pulse SD (from CP-4)
7) CP-4 pulse SD (from CP-4)
8) CP-4 total SD (from CP-4)
9) Pulse average SD
10) Wind average SD
11) Total average SD




TABLE 2.

Characteristics of JAWS Doppler Radar.

Parameter cp-2 CP-3 P-4

Coordinates w.r.t.

CP-2 (km) (0,0) (14.15,-11.19) (10.43,-25.45)
Wavelength (cm) 10.67 5.45 5.49
Pulse duration (us) 0.4-1.5 1.0 1.0
Average power (dBm) 59 55 55
Pulse repetition

frequency (Hz) 960, 480 1666, 1250 1666, 1250
Antenna diameter (m) 8.534 3.658 3.658
System gain (dB) 43.9 43.0 41.0
Beamwidth (deg) 0.97 1.17 1.09

No. of samples in
estimate

No. of range gates

Azimuthal scan rate
(deg/sec)

Min. elevation angle
increment (deg)

Range gate spacing
(m)

Max. unambiguous
range (km)

Max. unambiguous
velocity (m/s)

32,64,...,2048
256,512,768,1024

0-15

0.1

90-600

150, 300

25.7, +12.8

32,64,...,2048
512

0-35

0.1

150-240

90, 120

+22.6, +17.0

32,64,...,2048
512

0-35

0.1

150-240

90, 120

+22.8, #17.2




deviation is computed by squaring Sp and oy, summing them, and taking the
square root of the result.

As reported by Doviak and Zrnic' (1984), there are four potentially
important contributions to the width or second moment of the Doppler spectrum
for a narrow beam radar: turbulence, wind shear, antenna motion, and the
spread of particle fall speeds.

op = (042 + 052 + 042 + 0q?)1/2 (3)

where og 1is spectrum width broadening due to radial -wind shear, ot is
turbulence intensity, oy is the broadening due to antenna motion, and o4 fis
the broadening due to different precipitation fall velocities. Rearranging
Equation 3, the turbulence intensity is given by:

ot = (cp2 - 052 - 042 - o42)1/2 (4)

The cited spectral broadening mechanisms are independent of one another. If
one can determine the contributions of the last three in Equation 4, one can
isolate the contribution of turbulence for use in the microburst turbulence
simulation.

The spectrum width broadening due to the radial wind shear, og, can be
determined directly from the angular dependence of the mean radial velocity
as:

o5 = [(orkp)2 + (RoogKg)2 + (RoogKy)211/2 (5)

where Ky, Kg, and K4 are the radial wind shears in the directions r (radial),
8 (elevation), and $ (azimuth), respectively. The radial wind shear terms at
point P can be evaluated from (see Figure 2):

Radial V at Ppo (m/s) - Radial V at Ppo (m/s)

Ky

150 m
Radial V at Pgo (m/s) - Radial V at Pgp (m/s)
Kg = y (radians) x Rg (m) (6)
Radial V at Pyp (m/s) - Radial V at Pgy (m/s)
K¢=

y (radians) = Rq (m)

Using the volume-weighted interpolation technique developed by Frost et al.
(1985), the radial velocities at points Ppi, Pr2, Pg1, Pg2, Py1, and Pgp in
Figure 2 are interpolated from the JAWS full-volume wind speed data. However,
the JAWS wind speed at each grid point is a Cressman weighted average. In
this analysis, the center of a pulse volume is assumed to be the grid point.
Ro is the radial distance of the pulse volume from the radar system. og2 and



8 = elevation

‘f beam width

s = azimuth
/,,»7 \ .

Radar Station

Radial V at P (m/s) - Radial V at P_, (m/s)
K = r2 rl
r 150 m

Radial V at PeZ (m/s) - Radial V at Pe] (m/s)

5 v (radians) x R0 (m)
Radial V at P (m/s) - Radial V at P, (m/s)
K = $2 61
b Y (radians) x RO (m)

Figure 2. DJefinition of radial shear terms, Kr’ Ka’ and K¢.



042 are the second central moments of the two-way antenna power pattern in the
directions 6 and ¢, which in terms of the one-way half-power pattern width, ¥,
in radians, are (Doviak and Zrnic' 1984):

g2 = 0y = ¥2/(16 n 2) (7)

Finally, the second central moment of the distance-weighting function is given
as (Doviak and Zrnic' 1984):

ol = (0.35 Ct/2)2 ‘ (8)

where C is the speed of 1light (m/s) and t is the pulse duration (sec) of the
Doppler radar.

If the antenna pattern is Gaussian with a one-way half-power pattern
width, 61, and rotates at an angular velocity of a, the spectrum width
broadening associated with the antenna motion is:

oy = [&A cos (8)/2ay]vIn2 | (9)

Finally, the spectrum width broadening due to the radial components fall
speeds of different sized drops 1is related to the radar and meteorological
parameters by:

o4 = 0do Sin B (10)

where the spectrum width ogqg is caused by the spread in terminal velocity of
various size drops falling relative to the air contained in a given volume.
Lhermitte (1963) reported that for rain o4 = 1.0 m/s and 1is nearly
independent of the drop size distribution.

2.2 Analysis of Pulse SD and Wind SD

A Doppler radar system is only capable of detecting the characteristics
of the wind field along the radar beam. Therefore, the spectrum width s a
measure of the turbulent fluctuations in the radial velocity component along
the beam. In this study, the radial velocity at each grid point was obtained
by transforming the JAWS Jlongitudinal, 1lateral, and vertical velocity
components at the grid points back to the component in the radial direction
relative to the given radar. Although this process introduces some
inaccuracies, it does not affect the results.

Figure 3 shows the contours of the radial velocity and pulse SD at
ground level from the CP-4 radar for the JAWS July 14 1452 MDT (14JL1452)
microburst (whose quasi-steady wind field is quite symmetric about the
microburst center). Figure 4 shows the contours of the same parameters in a
horizontal plane at a height above ground of approximately 1 km. In the
radial velocity plots, the dashed T1ine contours represent radial velocity
toward the radar whereas the solid 1ine contours represent the radial velocity
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Corner Coordinates w.r.t. CP-2

Contour from 3.0 to 10.0m/s (11.37 mi, 1.80 mi)

Contour interval = 0.5 m/s  Mean value = 3.12 m/s [(18.30 km, 2.90 km)]
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Corner Coordinates w.r.t. CP-2
Contour from 3.0 to 10.0m/s (11.37 mi. 1.80 mi)
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away from the radar. Inspection of Figures 3 and 4 shows that increased o
coincident with the larger shear regions in Figure 4 but not necessarily in
Figure 3. Intuitively one anticipates a correspondence between regions of
high turbulence and strong shear. It is believed that this inconsistency at
ground level in Figure 3 is possibly due to terrain effects. Similar results
are also obtained for the data from the CP-2 radar.

Figure 5 shows contours of the radial velocity and the pulse SD at 1 km
above the ground for the August 5 1847 MDT (5AU1847) microburst as measured
with the CP-4 radar. The similar ¢oincidence of the larger shear regions with
the higher measured spectrum width at upper levels is apparent. Similar
results were also obtained from the June 30 microburst data.

CP-2 and CP-4 radars, whose characteristics are listed in Table 2,
simultanecusly measured the turbulence information associated with the JAWS
July 14 microburst. Since the two radars view the same turbulence from
different directions (an angle of almost 90°), agreement between their
respective measurements will indicate to what degree the microburst turbulence
may be considered isotropic. Figure 6 shows contours of the wind SD at a
height of 0.9 km from the CP-4 and CP-2 radars. Figure 7 shows contours of
the absolute value of the wind SD difference between the CP-4 and CP-2 radars,
Aoy = |ow,cP-4 - ow,cp-2| at a height of 0.9 km. Similar analysis for the
pulse SD s shown in Figures 8 and 9. The SD measurements from both CP-4 and
CP-2 radars show good correlation with the exception of a few highly localized
locations. These localized values cannot be described on a physical basis and
are believed to be signal anomalies.

A cumulative probability technique has been used to quantitatively
illustrate the characteristics of the JAWS microburst turbulence measurements.
Figure 10 shows the cumulative probability distributions of the pulise SD and
the wind SD for the 14JL1452 microburst measured with both the CP-2 and CP-4
radars. Figure 10 also shows the cumulative probability distributions of the
SD differences, Aoy and Aocp.  These probabilities are derived from the
full-volume data set including 61 x 61 x 11 grid points. About 80 percent of
Aoy are less than 1 m/s, which is approximately equal to the background
turbulence level of the microburst, and 80 percent of Agy are less than 0.5
m/s. Therefore, it is concluded that the SD's from the CP-2 and CP-4 radars
have good correlation with each other in over 80 percent of the full volume.
This correlation shows that both radars are measuring similar properties in
the same way and also suggests the turbulence to be isotropic. As expected,
op is larger than oy. This is because the second moment estimate involves a
difference while the velocity estimate does not. Moreover, the second moment
estimate is a better representation of turbulence intensity on a smaller scale
compared with the grid scales. Therefore, it is argued that the microburst
turbulence intensity should be derived from the pulse SD by removing the
spectral broadening effects mentioned earliier. A value of pulse SD in excess
of 2.5 m/s exists for 50 percent of the full-volume data set. This suggests
that over half of the microburst volume contains light to moderate turbulence.
The wind SD, however, exceeds 2.5 m/s in less than 1 percent of the full
microburst volume. Finally, Figure 10 shows a limiting value of the spectrum
width of about 1 m/s which represents the background turbulence 1level
throughout the full microburst volume. This significant background value is
attributed to the radial wind shear effects and was not found in any of three
tornadic storms reported by Doviak and Zrnic' (1984). As it is clearly seen
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Contour from 1.0 to 4.0 m/s (11.37 mi, 1.80 mi)
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Corner Coordinates w.r.t. CP-7
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from Figure 11, the background turbulence intensity is significantly decreased
by the spectrum width broadening due to wind shear.

The spectrum width broadenings due to the radial wind shear, antenna
motion, and the different fall speeds for various sized drops--as defined in
Equations 5, 9, and 10 respectively--were evaluated and subtracted from the
total spectrum width. In most situations, the broadening from both the
antenna motion and the different fall speeds is small compared to that from
the radial wind shear. The cumulative probabilities of the spectrum width
contribution due to the radial wind shear, og, and the microburst turbulence,
at, are shown in Figure 11 for the 14JL1452 measurement from both the the CP-4
and CP-2 radars. Microburst turbulence intensity, ot, derived from the CP-4
radar is consistent with that from the CP-2 radar over 80 percent of the full
voiume. This, in turn, suggests that the microburst turbulence is essentially
isotropic turbulence. It is interesting to note that the cumulative
probability distribution of the wind SD, oy (see Figure 10), is very close to
that of the spectrum width broadening due to the radial wind shear shown in
Figure 11.

Similar analyses are shown in Figures 12 and 13 for the 5AU1847 and
30JN1823 microbursts, respectively. Among the three microbursts analyzed, the
JAWS June 30 microburst contains the strongest turbulence, whereas the August
5 microburst has the most complicated wind profile structure.

Finally, cumulative probabilities of the radial wind shear terms K., Kg,
and K4, as defined in Equation 6, for CP-4 and CP-2, are shown in Figures 14
through 17 for the JAWS microbursts. It is seen that the microburst contains
larger shear in the elevation direction than in the azimuthal direction. In
the July 14 microburst, only 5 percent of all azimuthal shears are larger than
5 x 1073 1/sec, while 35 percent of all elevational shears are in excess of 5
x 10-3 1/sec. In the August 5 case, 10 percent of the azimuthal shears are
larger than 102 1/sec and over 30 percent of the elevational shears are
higher than 102 1/sec. The radial velocity shear 1in the elevational
direction of the JAWS microburst is larger than twice the values associated
with the storms investigated by Istok (1981). The difference is probably due
to the strong localized wind shear inherent in microburst storms which are a
mixture of an atmospheric boundary layer and downburst flow. An additionail
explanation is that Istok's grids are much coarser than JAWS data. Comparing
the wind shear terms shown in Figures 14 through 17, one can easily see that
the August 5 microburst contains the strongest wind shear effects of the three
microbursts analyzed. The August 5 microburst is, therefore, recommended as a
good scenario for use in flight simulators for training avoidance and
operational procedures if penetration is unavoidable.

2.3 Comparison of Radar Data and Aircraft Data

A comparison between the turbulence intensities measured simultaneously
by JAWS Doppler radar and aircraft has been made. Using a ground-based radar
system and an instrumented aircraft, turbulence characteristics associated
with thunderstorms at high altitudes (>3500 m above ground level) were
detected and studied by Burnham and Lee (1969), Lee (1977 and 1981), and Bohne
(1981 and 1985). A comparison of some results from these previous studies
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with the current experimental measurements of microbursts at Tow altitudes
(<2000 m above ground level) is made in this section.

During the JAWS field experiment, the NASA B-57B gust gradient aircraft
was used to measure turbulence along paths near microburst storms.
Unfortunately, because of aircraft control restrictions during storms in the
Stapleton airport area, very few of these research aircraft flights coincided
with the Doppler radar measurements. Table 3 shows the gust gradient flights
of the NASA B-57B aircraft during JAWS experiment. Among these flights, only
Runs 23, 24, and 25 for Flight 6 coincide with Doppler data. These data were
measured during the JAWS July 14 microburst. Figure 18 shows the relative
positions of the JAWS microburst and the aircraft flight paths for Runs 23,
24, and 25. Run 24 was flown through the microburst almost simultaneously
with the JAWS radar measurement. The run started at 14:50:50 MDT and lasted
for 87 seconds. Run 23 was flown through the field about 4 minutes earlier
than the JAWS measurment while Run 25 was flown approximately 2 minutes later
than the radar scan and slightly outside of the microburst measurement volume.

Figures 19 and 20 depict the flight path information for Runs 24 and 23,
respectively. Both runs are flown through the field at approximately 450 ft
(150 m) above the ground. Figure 21 compares the total spectrum width, oy,
with the calculated turbulence intensities from Run 24 of the NASA B—S?B
measurements. The plotted longitudinal, lateral, and vertical SD's from the
aircraft data are relative to the body axis of the aircraft. The total
spectrum width (without subtracting any broadening) is about five times the
turbulence intensity obtained from the aircraft. This agrees with the
reported results of Robison and Konrad (1974) and Lhermitte (1968). Since the
SD's from the aircraft measurements are relative to 2 to 3 second means, Tow
turbulence intensity values are expected.

As mentioned earlier, the JAWS microburst turbulence intensity, o, can
be calculated by subtracting the other spectrum width broadening effects from
the total spectrum width. Comparison of the ot with the calculated SD's from
the NASA B-57B measurement 1is shown in Figure 22 for Run 24 and in Figure 23
for Run 23. The wind standard deviation, o, from the radar is also shown in
the figures. The oy 1is very consistent with the aircraft measurement.
However, the microburst ot is about three times that of the aircraft data. A
comparison between the turbulence intensities obtained from a NOAA/WPL 1lidar
and the NASA B-57B aircraft was reported by Huang et al. (1985). One of their
comparisons is shown in Figure 24. The lidar spectrum width is again about 4
to 5 times that of the aircraft-measured turbulence intensity. Bohne (1981)
reported another comparison between a turbulence variance of a so-called
“true" vertical gust velocity which was derived from an aijrcraft-measured
vertical gust velocity and a Doppler spectrum variance (shown in Figure 25).
The turbulence variance of the "true" vertical gust velocity is relative to

the mean of the whole run. The correlation coefficient of these two variances
is 0.891.

Doppler radar and aircraft, of course, use different methods for
measuring turbulence information. The former measures turbulence contained in
a full three-dimensional volume 1in space whereas the latter measures
information along the aircraft trajectory, i.e., a 1line 1in space. Thus,
turbulence intensity meaured by the Doppler radar will, in general, be larger
as shown 1in Figures 22 and 23. A better understanding of the relationship
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TABLE 3. Gust Gradient Flights of NASA B-57B Aircraft During JAWS

1982.
Start End
Flight Date (MDT) (MDT) Comments
1 7/07  15:41:38 15:59:39 Landmark familiarization flight

2 7/08  14:49:11 16:40:35 Light to moderate turbulence

3 7/09  13:17:10 15:42:34 Light to moderate turbulence with
data correlation with JAWS 02 and
03

4 7/11 14:46:07 17:02:44  Moderate turbulence and lightning

5 7/13  15:20:18 16:44:56  ILS approaches to Stapleton in
1ight turbulence

6 7/14  13:41:13 15:55:21 Severe turbulence and outfliows
visible on radar

7 7/15  14:08:13 16:26:20 Qutflows, severe turbulence, and
ILS approaches

8 7/17  15:49:35 17:17:56  Rain with light to moderate
turbulence

9 7/20 15:59:30 18:35:52 Light to moderate turbulence with
some ILS approaches

10 7/21 16:05:05 18:04:40 Good downburst with moderate to
severe turbulence

11 7/22  13:36:09 15:24:45 Light to moderate turbulence
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between these two measurements is required in order to perfect a turbulence
model to support the FAA and NCAR JAWS wind shear data sets. Also, this
understanding will be highly beneficial to the development of terminal Doppler
wind shear algorithms. More investigations, however, must be conducted to
fully address this issue.

2.4 Microburst Turbulence Parameters

The important parameters for modeling turbulence are the turbulence
intensity, length scale, and spectrum. The Dryden spectrum is currently
recommended by the FAA AC-120-41 for wind shear turbulence modeling. Table 4
shows the turbulence intensity and the turbulence length scale suggested in
this Advisory Circular for input to this spectrum. Both turbulence intensity
and length scale are represented as a function of height only. In addition to
the height, turbulence parameters associated with a microburst should be a
function of the mean wind direction and the radial distance relative to the
microburst center. In this study, microburst turbulence 1is assumed to be
locally isotropic, at least for the smaller scales of interest here but not
homogeneous on the large scale. Figure 26 schematically shows the top view of
a microburst. MC represents the center of the microburst; circles a, b, c,
and d designate locations at different radial distances from the center; and
1, 2, 3 ... A, B, C represent twelve directions emanating radially from the
microburst center. The arrows represent the quasi-steady mean wind direction
at ground Tlevel for JAWS July 14, June 30, and August 5 microbursts,
respectively. Coordinates of the three microburst centers relative to the
CP-2 radar are listed in Table 5.

2.4,1 Turbulence Intensity

The profiles of o¢/V, which is the microburst turbulence intensity
normalized by the local quasi-steady mean wind, at four radial distances 4, 8,
12, and 16 times the data set grid interval from the microburst center of the
July 14 measurement are shown in Figure 27. Although the data are highly
scattered, a characteristic trend is discernible. To more clearly understand
this trend and to provide a functional relationship between the turbulence
intensity, o¢/V, radial distance from MC, and height above ground, a curve-
fitting technique was applied.

The twelve directions given in Figure 26 were collected such as to
divide the field into quarters. The directional dependence of the turbulence
intensity on the direction of the quasi-steady mean wind could then be
studied. The profile ot/V in each quarter is then curve-fitted by the method
of least squares (see Figure 28). Comparison of the profiles at various
radial distances shows that the normalized turbulence intensity has higher
variations along the mean wind direction (quarters, (3,4,5) and (9,A,B)) than
the direction normal to the mean wind (quarters, (C,1,2) and (6,7,8)).

The ot/V profiles at the various radial distances in a direction normal
to the mean wind (quarters (C,1,2) and (6,7,8)) converge to a small value at
radial distances greater than about four times the horizontal grid interval
from the MC. However, the ot/V profiles in the upwind direction (quarter
(3,4,5)) increases with radial distances especially at lower levels, and then
attains a maximum value at radial distance over 15 times the grid interval
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TABLE 4. FAA Turbulence Model in AC-120-41,

RMS Intensities Scale Lengths
Altitude (kts) (ft)
(feet) Long Lat Vert Long Lat Vert
20 3.40 2.70 2.34 105.7 49.7 10.4
100 4.05 3.40 3.53 216.7 134.2° 53.0
200 4.43 3.95 4.35 306.5 213.5 106.0
400 4.85 4.50 5.36 433.5 339.6 212.0
600 5.11 4.86 6.05 530.9 445.6 318.0
1500 5.74 5.78 7.94 840.9 824.5 795.3
o =2.33 2012 L =21.7 290
u u ,
- 0.18 _ 0.73
o, = 1.56 2z LV = 4,2 z
5 = 0.98 20-28 L =0.53 20
W W
TABLE 5. Center of JAWS Microbursts.

Data Sets

Coordinates of
Microburst Center
w.r.t. CP-2

(Mile) (km)

August 5, 1982
June 30, 1982

July 14, 1982

(-1.03, -14.94) (-1.65, -24.05)
(9.63, -11.18) (15.50, -18.00)
(8.76, -2.42) (14.70, -3.90)
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Figure 26. Schematic of sectors and radial lines relative to the
microburst center along which turbulence intensity was
evaluated.

44



0 m)

5

Height (1/1

(8]

~J

m

o o o

a o

o

o

o

(=) «

()

Figure 27. Turbulence intensity ot/V'profi1es at different radial
distances from the microburst center for the 14JL1452
microburst.

S A 10.0 BT T T T T T
L =5m —‘ 5.0 =FBR S —
—EEF 2 - 3.0 —ERS ~
— &2 CA - 7.0 3»3 8 {
L mspe & C - 5.0 o2 B —,
— @ BC A — s.0 T —
— oA - 10 lewms —
] — 5.0 Lemas -

=5 & — 2.0 Fias 4 -
Ly 4 - Lo g -
I B, L 2o lgsle 1o L —

0.02.30.680.2 1.2 1.2 1.8 2.1 2.4 2.7 2.0 0.00.30.63.81.2:.5 1.2 2.12.32.7 2.
a. Radius 4 aX b. Radius 8 :X

SEEETT— , 10,0 R
— L8572 3 = — 3.0 =28 F —
- EB3ZF 3 A — 3.0 7235 5 —
— B S A — 7.0 E3TA -
I—Cﬁl A 5 — 5.0 —EEdR 4 —
RS — 0 A 3 —
#5945 - 4,0 rEmI3 4 —
Lams 3 . 3.0 FW85 i —
—FHC S 4 ji 2.0 F®325 4 -
LsFC 5 4 L0 FEER 4 -
ey L1 L —l to bah L 1

0.06.30.68.91.2 1.5 1.8 2.12.¢2.72.0 5.00.3€.535.91.21.51.32.12.42.7 ¢
Cc. Radijus 12 2X d. Radius 16 2X



Height (1/150 m)

m

N W e W
o o o o o o o

-

o o o O

o O O o o o o o o o o

T 1T T 1 1 10.0 1 1 T 1
— C.1.2 s.0 —
----- 3.4.5 | 5 0 B
cve.. 6.7.8 ’
e — 9.AR 7.0 —
— 6.0 -
- 5.0 T
— a.0 —
- 2.0 —
J 1.0 -
L r<w‘ 1.0 [ 1 L
§1.21.51.82.12.42.73.0 0.00.3C.60.5:.21.51.82.12.4 2.
a. Radius 4 aX b. Radius 8 aX
e T T 1 1T T 1T 7 [ ] i
IRV - i
S B ;
/ ] |

]
e
|

~

N

]
L1

1
/__,:;%.. e

) S S S O O O S

0.0C.30.60.91.21.51.82.12.42.73.0

c. PRadius 12 aX d. Radius 16 aX

Figure 28. Curve fit of the turbulence intensity profiles o¢/V
at different radial distances from the microburst
center for the 14JL1452 microburst.

46



approximately at level 4 (750 m above the ground). Moreover, the ot/V in the
downwind direction (quarter (9,A,B)) increases first at h1gher levels then
reaches a maximum value at radial d1stance about 12 times the grid interval at
a level of approximately 9 (2000 m above the ground) and decreases at farther
radial distances from MC. At altitudes below 600 m, the upwind side of
turbulence is more severe than the downwind side of turbulence. However, this
is not true at higher altitudes (>600 m). These at/V profile characteristics
suggest that the microburst turbulence intensity is not only a function of the
radial distance and height above the ground but also depends on the direction
of the quasi-steady mean wind. The August 5 and June 30 microbursts have
similar ot/V profiles but because the wind prof11e structure is much more
comp11cated than the July 14 case whose quasi-steady wind field is quite
symmetric about the microburst center, the results obtained for ct/V from the
July 14 microburst are not completely the same for either the August 5 or Jdune
30 cases.

A functional form of the normalized oy as a function of r, the radial
distance normalized by the horizontal grid 1interval, and h, the height
normalized by the vertical grid interval, is written:

ot (r,h) . r2 h2 ()
v r h ‘
1 1

where

ap byc1 dp

ap bp co dp
A= lagbz ez ¢

ag bg cq dg

where the elements of the matrix are determined by the curve-fitting
technique. Table 6 1ists the matrix elements for the 14JL1452 microburst.

2.4.2 Turbulence Length Scales

Length scale is another critical parameter for developing a turbulence
model. The auto-correlation coefficient of the quasi-steady mean wind
components along each radial direction shown in Figure 26 were curve-fit for
each level. Figures 29 and 30 are the three component auto-correlation curves
at three levels for the 14JL1452 and the 5AU1847 microbursts, respectively.
The longitudinal component is in the direction of the horizontal mean wind.
Based on the auto-correlation calculations, the integral length scales were
evaluated with the well-known relationship:

= [ R(x)dx (12)
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TABLE 6. A Functional Form of Turbulence Intensity for 14JL.1452

Microburst.

ay by ¢y ) [ ")

9t{r,h) _ Jla, by ¢y 4 e h?

v a3 b3 Cs d3 r h

2y by Cq dy) 1 1

Quarter (C,1,2) (3,4,5) (6,7,8) (9,A,B)

a, -0.557049E-06 0.741460E-05 0.911788E-06 0.657271E-06
b1 0.407547E-05 -0.180272E-03  -0.246583E-04 0.334910E-05
< 0.197432E-03 0.102663E-02 0.104663E-03  -0.394346E-03
d, -0.184692E-02  -0.130838E-02  -0.356118E-03  -0.268900E-03
a, 0.332280E-05 -0.116770E-03  -0.270999E-04  -0.225209E-04
b2 0.327677E-04 0.284746E-02 0.804118E-03 0.353057E-03
<, -0.262014E-02  -0.163677E-01  -0.477002E-02 0.288334E-02
d2 0.229965E-01 0.241284E-01 0.824520E-02 0.266095E-02
as 0.664155E-04 0.529400E-03 0.215985E-03 0.179236E-03
by -0.229589E-02  -0.132217£-01  -0.684668E-02  -0.457740E-02
C3 0.208904E-01 0.782930E-01 0.507962E-01 0.189846E-01
d3 -0.569887E-01 -0.149245+00  -0.642522E-01 -0.589026E-02
3, -0.180032E-03  -0.704053E-03  -0.258038E-03  -0.180251E-03
b4 0.562896E-02 0.186553E-01 0.874772E-02 0.576422E-02
Cy -0.434284E-01 -0.962702E-01 -0.779505E-01 -0.458536E-01
d4 0.327257E+Q0 0.525894E+00 0.374366E+00 0.282357E+00
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Table 7 shows the integral scale at each level for the July 14 and August 5
microbursts. As mentioned earlier, most investigators use a simple function
of height to model the turbulence length scale in the atmospheric boundary
layer. These functions are probably not true for microburst turbulence.
Therefore, the relation between the turbulence scale and the height shown in
Table 7 is used in the microburst turbulence simulation reported later in this
study. The magnitude of the turbulence length scales, however, is too large
because they include scales larger than the grid size (150-200 m) of the JAWS
data sets. These scale sizes are already included in the quasi-steady wind
data. To obtain a more representative length scale to use in the microburst
turbulence simulation, the integral scales shown in Table 7 were somewhat
arbitrarily multiplied by a constant factor of one-third to reduce them to
typical grid sizes.

2.4.3 Turbulence Spectrum

In constructing a turbulence model, a key parameter is the spectrum of
the turbulence. The spectrum is a measure of the energy associated with
fluctuations of specific frequencies within the turbulence flow. The
normalized auto-spectra of the turbulence components measured in Flight 6 Runs
24 and 23 of the NASA B-57B aircraft program are shown in Figures 31 and 32.
The corresponding analytical Dryden and von Karman spectrum models are also
shown in the figures. It can be seen that both the Dryden and von Karman
spectra are reasonable approximations to the turbulence spectra measured near
the microburst. Thus, since the two models appear to give similar results and
because the form of the Dryden spectrum 1is more readily adaptable to
mathematical manipulation, it 1is used in this study. Also, the Dryden
spectrum is the spectrum currently recommended by the FAA in AC-120-41. The
Dryden spectra for the three velocity fluctuation components, respectively,
can be written as:

) . 2A1 1

$1(K) = ¢

' o 1+ A12K2
Ao 1+ 3 Ap2K2

K) = 092 —

$2(K) = 02% 7 (1 + A2K2)2 (13)
A3 1 +3 /\32K2

$3(K) = 03¢ —

(1 + A32K2)2

where the subscripts 1, 2, and 3 represent the longitudinal, lateral, and
vertical components, respectively; A is the length scale; o is the turbulence
intensity; and K is the wave number.
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TABLE 7.

Integral Scales.

August 5, 1982, 1847 Microburst

Longitudinal Lateral Vertical

Level (m) (m) (m)
1 (0m) 319 513 0
2 (250 m) 419 450 355
3 (500 m) 464 666 351
4 (750 m) 559 632 338
5 (1000 m) 520 713 317
6 (1250 m) 403 473 292
7 (1500 m) 473 334 254
8 (1750 m) 468 475 234
9 (2000 m) 524 521 236

July 14, 1982, 1452 Microburst
Longitudinal Lateral Vertical

Level (m) (m) (m)
1 (0 m) 422 422 0
2 (150 m) 558 336 292
3 (300 m) 465 432 310
4 (450 m) 549 515 338
5 (600 m) 553 421 369
6 (750 m) 526 427 391
7 (900 m) 433 435 395
8 (1050 m) 437 417 385
9 (1200 m) 365 409 374
0 (1350 m) 456 577 367
1 (1500 m) 418 500 367
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Run z4; NASA B-57B aircraft).
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3.0 MICROBURST TURBULENCE MODEL AND ITS APPLICATION
IN FLIGHT SIMULATION

The microburst turbulence intensity and length scale obtained in the
previous sections, although somewhat subjective and based on 1imited data,
were used to develop a microburst turbulence simulation model. A
z-transformation technique, which is based on the Dryden hypothesis of the
spectral density function of turbulence and Taylor's frozen eddy hypothesis,
has been developed by Wang and Frost (1980) and Huang and Frost (1984). We
assume that .the isotropic shapes of the spectrum hold for the non-isotropic
conditions which occur at a very 1low aititude but that the turbulence
intensity and the integral scale vary spatially.

Microburst turbulence components along an aircraft's trajectory are
calculated by utilizing the z-transform technique. This technique wuses a
filter function, namely, the Dryden spectrum. Gaussian white noise signals
are computer generated and passed through the filter to provide the simulated
time history of the turbulence as output (see Figure 33). The same technique
is also applied to generate the turbulence model suggested by the FAA in
AC-120-41, and the two models are compared in a later section.

Using a rational spectral model, simulated turbulence can be generated
with the difference equations. The z-transformation technique is a digital
simulation model where the nth turbulent point is a function of the previous
turbulence fluctuation values and noise signals. For the Dryden model, the
difference equations are written as (see Huang and Frost 1984):

Yn = Cl¥p-1 + C2¥n-2 + diXp-1 + d2Xp-2 (14)

where cy, cp, dj, and do are parameters depending on the sampling rate (At),
mean wind speed (V), turbulence intensity (o1, o2, and o3), and turbulence
length scale (A1, A2, and A3); y represents the digital generated turbulence
component; and x designates the digital random noise signal. For the Dryden
model, the constant parameters ci, cp, di, and do are given as:

T
——
3
N
l—"\)

[ |
[N

Gaussian Filter Simulated
White Noise Atmospheric
Turbulence

Figure 33.. Turbulence simuiation technigue.
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-V

€1 = exp[XI At}

cop =0 (15)
2\ %

dp = o1|—| (1-c1)
xV

dop =0

for the longitudinal component and

c] = 2expL- %E-At
- L, T - 16
cy = -exp|-2 v At (16)
(3Vo221% [ A A2
dl = 2 2 +—C1[[1 -1—_}At '—:—:}]
(™2 ] 3V 2 3 AV
WVoo2\% [ A2 1 1 1
o« || (e -1 - (- L (Fe)

for the lateral component. The vertical component has the same form as the
lateral component, except for a different Tength scale and turbulent

intensity, i.e., A3 and o3. The sampling interval used in the simulation fis
0.5 second.

Results of the simulation are presented in Figures 34 through 37 using
the FWG/JAWS and the FAA turbulence models, respectively. Figures 34 and 35
show three typical turbulent wind velocity components (quasi-steady mean wind
+ turbulence fluctuation) and resulting trajectories of a B727-type aircraft
approaching through the JAWS 5AU1847 microburst along path AB (zo5 = 300 ft).
The nomenclature used in defining the orientation of the runway to the wind
field for both approach and takeoff cases are those described in Frost et al.
(1985) (see Appendix). The simulation in Figure 34 uses the turbulence model
derived from the JAWS data; Figure 35 shows similar results using the
turbulence model suggested by the FAA in AC-120-41. While microburst
turbulence may increase the worklocad of a pilot, dits dinfluence on the
aircraft's trajectory would not, in general, be significant enough to alter
the outcome of an approach or take off. Figures 36 and 37 show the spatial
history of the turbulence fluctuations encountered by the aircraft in the
simulation results given in Figures 34 and 35, respectively. Since the same
noise signals are used for both the FWG/JAWS and the FAA models, the
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(path AB, z, = 300 ft) using the FAA turbulence model (5AU1847 microburst).



turbulence fluctuation patterns encountered by the aircraft are roughly
similar to each other. However, the figures do show that the aircraft
encounters more severe turbulence with the JAWS model than with the FAA model,
especially near the microburst center. This 1increased turbulence in the
region of strong shear is very consistent with physical reasoning and suggests
that the JAWS model is physically more realistic.

Finally, a number of takeoffs with turbulence superimposed were
simulated. Turbulence effects on the aircraft were assumed negligible until
the aircraft's 1iftoff. Results of five takeoffs for different turbulence
realizations based on the FWG/JAWS model (5AU1847 microburst) along the
intended path AB (zy = 66 ft) are presented in Figure 38. Total turbulent
velocity components %quasi-steady mean wind + turbulence fluctuations) and the
aircraft's trajectories in a vertical plane are shown in the figure. Based on
these five simulations, the maximum deviation of the climb-out trajectory from
the reference flight path computed without turbulence is approximately 80 ft
at a horizontal distance about 2 nautical miles from brake release. The
standard deviations of the aircraft trajectories about the no turbulence
flight path at horizontal distances of 1.5, 2.0, and 2.5 nautical miles are
25, 45, and 50 ft, respectively. Turbulence effects clearly influence the
climb-out trajectory; however, this influence on the ultimate outcome of the
departure is not, in general, significant. This conclusion is also true for
the landing simulations shown eariier. However, 1in those cases, maximum
departure from the intended flight path was on the order of 250 to 300 ft.
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4.0 CONCLUSIONS

Turbulence information associated with the JAWS microburst data sets
measured on August 5, July 14, and June 30, 1982, has been analyzed.
Microburst turbulence intensity is calculated by subtracting the spectrum
broadenings due to wind shear, antenna motion, and precipitation fall speeds
from the second moment, namely, the radar spectral width. (Note that the
pulse volume was a Cressman weighted average as discussed in Section 2.1.)
The analysis shows that local isotropic turbulence is a reasonable assumption
for the microburst turbulence model. The August 5 microburst, recommended as
a good scenarios to be used in flight simulations, contains the strongest wind
shear and most significant turbulence effects among the three microbursts.
Both the von Karman and Dryden analytical spectrum functions appear to be good
approximations of the partitioning of energy among the turbulent eddies (at
least for high frequency) in a microburst.

Comparison of the turbulence intensity derived from the JAWS radar
second moment with that from the in sftu measurement of the NASA B-57B
aircraft shows the former is about three times of the latter. This difference
is probably caused by the fact that the radar-measured turbulence intensity is
representative of three-dimensional spatially distributed turbulence and the
aircraft-measured value is based on the aircraft's trajectory only. Several
investigators reported a similar inconsistency between the radar/lidar
spectral width which is regarded as a turbulence indicator and the
aircraft-measured turbulence intensity. Efforts to examine this area
theoretically and experimentally are highly recommended.

A z-transformation turbulence simuiation technique has been developed to
account for small-scale perturbation not previously contained in the smoothed
JAWS microburst quasi-steady wind profiles (JAWS microburst data sets). The
turbulence model derived from the radar-measured turbulence information is
believed to be physically more realistic than the FAA AC-120-41 model because
it shows stronger turbulence intensity in the high shear regions of the
microburst. Flight simulations of a B727-type aircraft through the JAWS
microbursts with turbulence superimposed suggest that although workload of a
pilot may be significantly increased, the outcome of the approach or takeoff
is, in general, not changed.
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APPENDIX

NOMENCLATURE USED IN APPROACH/TAKEOFF SIMULATIONS

The nomenclature used in defining the orientation of the runway to the
wind field are illustrated in this Appendix for both approach and takeoff
cases. To investigate the influence of the microburst position relative to
the intended touchdown or 1iftoff point on the runway, the center of the
microburst 1is mathematically shifted along the path with respect to the
runway. The runway is positioned relative to the center of the microburst
such that an aircraft following the glide slope or takeoff path passes through
the center of the microburst at a given height to be designated as z,.

Figure A.1 schematically depicts the nomenclature used in the approach
simulations. The intended touchdown point, TD, is the threshold of the runway
corresponding to the specific flight path. The distance of the threshold from
the microburst center is calculated as zy/tan y, where y is the glide slope
angle. A value of z5 = 0 corresponds to the threshold of the runway
coinciding with the microburst center. The orientation of the runway, g, is
measured relative to the positive x direction. The (Xg,Y¥g) coordinates
designate the position 1in the horizontal plane at which zy is measured.
Values of x5 and yy are measured relative to an origin Tocated at the
northwest corner of the full-volume data set. For the August 5 microburst,

the origin is at (-4.38 mi, -11.22 mi), (-7.05 km, -18.05 km), as measured
from CP-2.

Takeoff path definition and orientation are shown in Figure A.2. The
1iftoff point, LO, is the end of the runway corresponding to the specific
flight path. A 10° 1iftoff path with 5000 ft ground run (see Figure A.2) is
selected as a refernce only for purposes of defining the position of the
microburst relative to the runway. The B727-type aircraft, for example, would
1iftoff after approximately a 5000 ft run but would climb-out on an
approximate 6.4° path if there was zero wind. The location of the center of
the microburst is selected relative to the Tiftoff point, in a manner similar
to that of the approach. The value of z, for takeoff is defined as the height
at which the aircraft would pass through the center of the microburst when
accelerating along the runway for 5000 ft and then climbing out along an
arbitrarily defined 10° reference path. A negative z, indicates the aircraft
is passing through the center of the microburst while still on the runway.
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