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Dual-Beam Autocorrelation Based Wind Estimates from 
Airport Surveillance Radar Signals 

ABSTRACT 

This report describes an efficient, autocorrelation based algo­
rithm for estimating low altitude radial winds using signals from the 
two receiving beams of an airport surveillance radar (ASR ). The 
approach seeks to achieve the accuracy demonstrated previously for 
spectral domain dual beam velocity estimators with significantly 
reduced computational requirements. Fundamental to the technique 
is the assumption that the power spectrum measured with an air­
port surveillance radar's broad elevation beam can be fitted by a 
two component Gaussian model. The parameters of this model are 
estimated using measured low-order autocorrelation lags from the 
low and high beam received signals. The desired near surface radial 
velocity estimate is obtained directly as one of these parameters -­
the center frequency of the "low altitude" Gaussian spectrum com­
ponent. 

Simulated data and field measurements from Lincoln 
Laboratory's experimental ASR-8 in Huntsville-, Alabama were used 
to evaluate the accuracy of the autocorrelation based velocity esti­
mates. Monte Carlo simulations indicate that biases relative to the: 
near surface outflow velocity in a microburst would be less than 2.5 
m/s unless the microburst were distant (range > 12 km) or very 
shallow (depth of maxim um wind speed layer < 50 m ). Estimate 
standard deviations averaged 0.5 m/s after the spatial filtering 
employed in our processing sequence. The algorithm's velocity esti­
mate accuracy was sufficient to allow for automatic detection of 
measured microbursts during 1988 with a detection probability 
exceeding 0.9 and a false alarm probability less than 0.05. Our 
analysis indicates that the dual-beam autocorrelation based velocity 
estimator should support ASR wind shear detection at approxi­
mately the same level of confidence as the low-high beam spectral 
differencing algorithm evaluated by Weber and Noyes (1988). 
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Dual-Beam Autocorrelation Based Wind Estimates from 
Airport Surveillance Radar Signals 

I. INTRODUCTION 

This report evaluates an efficient, autocorrelation based algorithm for estimat­
ing low altitude radial winds using signals from the two receiving beams of an air­
port surveillance radar (ASR). The described approach seeks to achieve the accu­
racy demonstrated previously for spectral domain dual beam velocity estimators 
(Anderson,1989; Atlas,1987,1989; Weber and Noyes,1988) with significantly 
reduced computational requirements. 

The feasibility of a data processing augmentation to existing AS Rs that would 
allow for detection of low altitude wind shear has been under investigation by 
Lincoln Laboratory and cooperating universities since 1984. This capability would 
reqmre: 
(a) a signal processing module that would suppress ground clutter and estimate 

the radial velocity of near-surface precipitation wind tracers; 
(b) an algorithm to automatically recognize significant wind shear in the result­

ing velocity field. 

Anderson (1987), Weber and Moser (1987) and Weber (1987) considered the 
impact of ground clutter on ASR wind measurements. Simulations and analysis 
of real clutter data from airport surveillance radars indicated that wind measure­
ments were feasible even at short range provided that the reflectivity factor of the 
precipitation tracers was approximately 20 dBz or greater. Even when this condi­
tion is met however, accurate low-altitude radial wind estimates may not be 
obtained with "conventional" mean Doppler estimators when the radial wind com­
ponent varies rapidly with altitude. In this situation, an ASR's fan-shaped eleva­
tion beam intercepts scatterers moving at both the near-surface velocity and the 
velocity of wind aloft; the result is a broad, possibly multi-modal velocity spec­
trum whose power-weighted mean differs markedly from the near surface radial 
wind velocity. Since both microbursts and gust fronts exhibit strong vertical 
shear in the horizontal winds near the ground, this beam resolution issue is of 
obvious importance. 

Weber and Noyes (1988) used data from an experimental ASR operated during 
periods of nearby thunderstorm activity to evaluate three methods for estimating 
low altitude winds from ASR signals: 
(i) high-pass filtering to exploit the fact that microburst outflow winds are often 

higher in absolute magnitude than winds aloft; 
(ii) comparison of the strength of divergence regions detected in velocity fields 

from the high and low receiving beams of the ASR to "correct" the measured 
velocity shear values; 

(iii) resolution cell by cell comparison of the power spectra of the low and high 
receiving beams to determine the velocity domain associated with near sur­
face scatterers. 
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Our assessment included an end-to-end data processing evaluation whereby wind 
fields estimated from the ASR signals were passed into a slightly modified version 
of the Terminal Doppler Weather Radar's (TDWR) surface outflow detection algo­
rithm (Merritt, 1987). The resulting microburst alarms were scored on a scan-by­
scan basis against "truth" as determined from manual examination of wind fields 
measured with a colocated pencil-beam Doppler weather radar. Overall, the third 
method above -- transformation of high and low beam signals into the frequency 
domain followed by spectral differencing -- produced better detection performance 
(higher probability of detection and lower false alarm probability) and more accu­
rate velocity shear estimates than the other two methods evaluated. 

Use of this dual-beam signal processing approach, however, raises several 
implementation issues. ASRs normally transmit circularly polarized ( CP) signals 
during heavy rain in order to reduce precipitation clutter in the aircraft detection 
processor. In order to avoid a resulting 15 to 20 dB loss in received power from 
weather echoes, any weather processor on an airport surveillance radar should 
receive its input from the opposite-sense polarized antenna port. ASR-8's and 
ASR-9's have only one path through the rotary joint for opposite sense polarized 
signals; thus during operation with circular polarization, weather data from both 
high and low beams could not be accessed simultaneously. Power spectra for the 
two beams would have to be calculated on alternate antenna scans, requiring 
memory storage for all data from one of the scans. Assuming range coverage to 
20 km and two byte integer representation of the in-phase and quadrature signals, 
this would require 3 Mbytes of dedicated physical memory. 

Another issue is the computational requirement of estimating power spectra for 
the two beams in each resolution cell and calculating a velocity based on the 
difference of the two spectra. Assuming that the spectra were estimated using 
Fast Fourier Transforms (FFT), about 1000 floating point operations per resolu­
tion cell would be required. For the same 20 km range coverage considered previ­
ously, this translates to 17 million floating point operations per second. While 
both the memory storage and processing speed requirements could be met, they 
would certainly drive the cost of the signal processing computer higher. 

A third issue arises from the large variance and coarse quantization of power 
spectrum estimates obtained from a rapidly scanning airport surveillance radar. 
As implemented by Weber and Noyes (1988), the low and high beam power spec­
trum estimates were calculated from 34 successive pulses (2.6° in azimuth) and 
incoherently averaged over three successive range gates (360 m). Velocity resolu­
tion was about 2 m/s and the 90% confidence interval of the spectral estimates 
was 7 dB. Monte Carlo simulations indicate that the standard deviation of mean 
velocity estimates using our implementation is approximately 2 m/s. Thus addi­
tional spatial filtering had to be applied to the velocity field in order to achieve 
acceptable performance from the microburst detection algorithm. 

In this report, we evaluate an alternative dual-beam velocity estimation tech­
nique that significantly reduces both memory storage and computational require­
ments. The basic strategy is to estimate the parameters of an assumed bimodal 
Gaussian power spectra, based on low-order autocorrelation lags from the low and 
high beam received signals. The desired low-altitude velocity estimate is then 
obtained directly as the center frequency of one of the two components of this 
spectral model. Because only the zero and one sample delay autocorrelation lags 
for each beam are used, physical memory storage requirements would be reduced 
to 0.5 Mbyte. Computational requirements are about 2 million floating point 
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operations per second. Estimate standard deviations of 2 m/s can be achieved 
without the need for range smoothing as required for the spectral differencing 
approach. 

Section II describes the double Gaussian spectral model and algorithms for 
estimating its parameters from autocorrelation function measurements. This dis­
cussion draws heavily on measured microburst power spectra from our experimen­
tal ASR. In Section III, we evaluate the performance of the algorithm, using 
simulated and measured ASR signals from microbursts. Automatic microburst 
detection performance using this method and the spectral differencing approach 
evaluated by Weber and Noyes (1988) is compared statistically for our 1988 field 
measurements. Over the evaluated data set, the two methods provide similar per­
formance. Section IV summarizes our findings and describes ongoing work. 
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II. VELOCITY ESTIMATION BASED ON A DUAL GAUSSIAN SPEC­
TRUM SHAPE MODEL 

A. Velocity Spectra in Microburst Cores 

Figure II-1 shows examples of velocity spectra measured with our experimental 
airport surveillance radar in the cores of eight "wet" microbursts near Huntsville, 
Alabama. The spectra were estimated from FFTs of 34-sample Hamming win­
dowed data sequences, incoherently averaged over three contiguous range gates. 
An adaptively-selected clutter filter (Weber,1987) was applied to the signals prior 
to Fourier transformation; in most of the examples shown, however, the 
reflectivity factor in the microburst core was sufficiently high that no filtering was 
required. Although our experimental radar transmitted pulses at a uniform 
repetition frequency (PRF), the eight/ten-pulse alternating PRF sequence to be 
used by ASR-9s could be accommodated by preceding the clutter filters with a 
shift-variant interpolation filter as described by Weber (1987). 

The plots show calculated spectra for both high (dashed) and low (solid) receiv­
ing beams. The left hand panels are for the approaching radial velocity cores of 
the microbursts and those in the right column are for the receding cores. The 
spectra have been normalized so that the areas under the curves are equal. For 
reference, radial velocities measured by the pencil beam weather radar at the same 
range-azimuth locations and times are indicated by dashed vertical lines. The 
pencil beam radar was scanned at 0.6° elevation angle to estimate the near surface 
radial wind speed. 

As discussed in Weber and Noyes (1988) the broad width and multimodal 
nature of these power spectra result in significant differences between the "true" 
near surf ace radial velocity and the ASR-based measurement when a conventional 
mean Doppler estimator is used. The discrepancy results, of course because the 
applicability of the mean Doppler estimate rests on the assumption of narrow­
width, roughly symmetric power spectral shape. Of the displayed power spectra, 
only those in the approaching core on 1 August exhibit symmetry. The remaining 
spectra are strongly skewed and/or bi- or multi-modal. Some of this complexity 
arises from spectral estimate variance (recall that our procedure results in a 7 dB 
90% confidence interval). As illustrated in Appendix C however, the dominant 
features of the spectra can be attributed to the interaction of an ASR's fan-shaped 
elevation beam with the strongly sheared radial wind field in an a microburst 
outflow. 

Note that the low beam power spectral density always exceeds that of the high 
beam near the indicated surface wind speed. This reflects reduced high beam 
antenna gain near the surface, and is the basis for the spectral differencing tech­
nique alluded to above. 
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beam radar at 0. 7 degrees elevation at same locations and times. 

6 

26 



0.3 

0.2 

0.1 

0.0 
0.3 

0.2 

0.1 

0.0 
Vl 

0.3 +-c 
::J 

L. 
0 

0.2 <l.J 
c 
d 
L. 
<l.J 0.1 
~ o._ I/~, 

0.0 
__// \.JI' 

. 0.3 

0.2 

0.1 

0.0 

-26 

Septll :2350 
Range: 3.1 km 

Junel 4: 1933 
Range: 13.8 km 

Junel 4: 191'8 
Range: 7.4 km 

AugQl :2030 
I Range: 6.2 km 

-13 0 13 26-26 

Doppler Velocity (mis) 

Figure II-1. (continued) 

7 

-13 

Range: 7.8 knh 

I 

Range: 17.81 km 

Range: 12.1 km 

Range: 8.8 km 
I 

0 13 26 



B. Autocorrelation Based Dual Gaussian Fits to the Measured Spectra 

I. Estimates Using R ( r) and R (2r) 

Examination of the above measured spectra suggests that the parameters of a 
double Gaussian power spectrum model might provide a better estimate of the 
low altitude wind field than the conventional mean Doppler method. Physically, 
the presence of two separated modes in the power spectra implies a radial velocity 
field that is strongly discontinuous within the radar's beamwidth, as at the top of 
a shallow microburst outflow. In a region where the radial wind speed varies 
linearly with height or is constant, the double Gaussian model can also adequately 
represent the power spectrum that would be measured by an ASR since the two 
components may overlap substantially, producing a broad, unimodal spectrum. 

We assume therefore that the weather echo power spectra measured by the fan 
shaped elevation beam of an ASR can be approximately represented as: 

Si(!)= ai,I exp[-U-[1)2]+ ai,2 exp[-U-[2)2] (1) 
\/21ra1 2a1 \/21ra2 2a2 

where i=l,2 indexes the low and high receiving beams. The center frequencies 
and widths of the two spectral components are assumed to be identical between 
the two beams but the amplitudes will differ owing to the different weightings 
from the antenna patterns. 

Appendix A describes a method of estimating the eight parameters in equations 
(1) using measurements of the low and high beam autocorrelation functions at 
lags r and 2r. The solution is constructed using knowledge of the beam patterns 
so that the parameters ai 1, a1 and f 1 represent the spectral component associated 
with scatterers at low elevation angle. Figure 11-2 plots the resulting dual Gaus­
sian power spectra for the microburst cores shown previously. Although these are 
not optimum dual Gaussian fits to the measured spectra (for example, in a least 
squares sense) they generally correspond well to the data. 

Low altitude velocity estimates can be derived from the calculated spectral 
parameters by reconstructing the spectra and implementing a low-high beam 
differencing algorithm as described in Weber and Noyes (1988). Table Il-1 com­
pares the resulting velocity shear estimates for these eight microbursts to those 
measured by the pencil beam "truth" radar and to those calculated using the spec­
tral differencing technique applied directly to the measured power spectra. In 
seven of the eight cases considered, both ASR-based velocity shear estimates are in 
good agreement with the pencil beam measurements. For the spectra measured on 
9-11-87, dual Gaussian fitting resulted in a substantially larger wind shear esti­
mate than given by the pencil beam weather radar. and the spectral differencing 
technique; this produced the larger overall RMS error associated with the dual 
Gaussian approach. 

The above results indicate that the fidelity of the dual Gaussian spectral model 
to the measured signal characteristics may be sufficient to generate a reliable low 
altitude velocity estimate from ASR data. However, the described solution is not 
computationally efficient. Calculation of the first and second autocorrelation lags 
requires 1.5 times as many operations as would be needed to estimate R (0) and 
R ( r). More importantly, the double Gaussian spectral parameters are determined 
iteratively (Appendix A), followed by numerical integration to derive a velocity 
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Table II-1: Microburst Velocity Shear Estimates Using Spectral 
Differencinr and R(r) R(2r) Dual Gnrnsian Fit 

Date/Time Pencil Beam ASR Spectral ASR Spectral 
Radar 6 V (m/s) Differencing Differencing 

(Measured) (Dual Gaussian 
Fit) 

9-10-87 22:47 23 21 23 
5-21-87 14:14 28 28 27 
6-21-87 20:45 27 29 30 
6-21-87 20:38 23 23 22 
9-11-87 23:50 24 25 32 
6-14-87 19:33 19 15 16 
6-14-87 19:18 32 33 32 
R-1-R7 9.0~~n 1Q 17 ')') 

Average 
6 VASR 0.96 1.05 

6 V~n··-
RMS Relative Difference 6 VAsR 0.09 0.15 
vs. 6 V~-.--

estimate. In the following section we describe an approximate solution for the 
dual Gaussian parameters that leads to an .efficient velocity estimation algorithm. 

II. Estimates Using R (0) and R ( r) 

The number of unknowns in equations (1) can be reduced from eight to six by 
assuming that the ratio of high and low beam amplitudes for each spectral com­
ponent can be determined from a known beam weighting function, wi,j: 

al -(f-J i)2 
a2 -(!-/ 2)

2 

Si(!)= wi,l V?.; exp[ 2 ] + wi,2 \/?.; exp[ 2 ] (2) 
27r0"1 20-1 27r0"2 20-2 

Appendix B describes a solution for the six spectral parameters using measure­
ments of R (0) and R ( r) in the two receivinfi: beams of an ASR. The important 
result is that the center frequency of the 'low altitude induced" spectral com­
ponent can be derived as: 

1 -1 R 1(0) W1,2 J 1=-tan [R 1(r) - -(-) - R2(r)] (3) 
21TT R 2.0 W2,2 

Thus if this center frequency can be shown to accurately represent the low alti­
tude wind field, the ASR velocity estimation algorithm could be simplified to a 
standard pulse pair estimate, preceded by linear combination of the low and high 
beam autocorrelation estimates. This method was in fact proposed by Weber and 
Moser (1987) although we indicated there that better performance would be 
expected if the high and low beam signals were "orthogonalized" through linear 
combination of their in-phase and quadrature components prior to calculation of 
autocorrelation lags. 

As described in Appendix B, the precomputed beam weights wi,j in equation 
(3) can be parameterized by an upper elevation angle (corresponding to the height 
of a micro burst outflow) for the low altitude spectral component. In this report we 
will treat this angle as range independent, although better performance might be 
expected were it a decreasing function of range. For the microbursts treated pre­
viously, Table II-2 compares velocity shear estimates from equation (3) with those 
from the pencil beam weather radar. Upper elevation angles, 80 of 1°, 2° and 3° 
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were used in computing the wi,j. 

Table 11-2: Microburst Velocity Shear Estimates Using 
R(O) R(r Dual Gaussian Fit 

Date/Time Pencil Beam ASR (00 = 3°) ASR (00 = 2°) 
Radar b. V 

9-10-87 22:47 
5-21-87 14:14 
6-21-R.7 20·45 
6-21-87 20:38 
9-11-R.7 23:50 
6-14-R.7 19:33 
6-14-87 19:18 

(m/s) 
23 
28 
27 

24 

32 
10 

RMS Relative Difference 
b. V.~n vs. b. V~n .. ~ 

18 
26 31 
20 22 
lR 22 
17 
1?. 16 
33 36 
14 18 

0.76 0.91 

0.27 0.15 

26 
36 
28 
27 
25 
22 
39 
2S 

1.20 

0.19 

Note that as B0 is decreased, the weight w 1,2/ w 2,2 increases (see Appendix B). 
When wind speed decreases with altitude as is normally the case in a microburst, 
the magnitude of the phase angle of the high beam's R ( r) autocorrelation lag will 
be smaller than that of the low beam. A simple vector construction illustrates 
that these observations account for the observed inverse relationship between B0 
and the magnitude of the velocity shear estimate from equation (3). 

Since the heights of microburst outflow winds vary considerably and since the 
above events were at different ranges from the radar, the "best" value for B0 was 
variable; indeed in many of these microbursts the best velocity measure for the 
approaching core corresponded to a different value for B0 than that for the reced­
ing core. Over the eight events however, weights wi,j computed using a value of 
2° for B0 resulted in a shear estimates that on average were closest to those meas­
ured by the pencil beam radar; the corresponding RMS relative error was likewise 
minimum for this setting. While the match to the pencil beam radar measure­
ments could have been improved by selecting a B0 slightly less than 2.0, we felt 
that such fine tuning was unwarranted given the small number of events used for 
the evaluation. 

Comparison of Tables 11-1 and 11-2 suggests that the simple velocity estimator 
of equation (3) might provide comparable accuracy to the less constrained 
approach discussed in the previous subsection, provided that a suitable weight 
w 1,2/ w2,2 were selected. The following section examines the extent to which a sin­
gle value for this weight would provide acceptable velocity estimates for a much 
larger data set than evaluated above. 
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III. EVALUATION OF VELOCITY ESTIMATES USING SIMULA­
TIONS AND FIELD MEASUREMENTS 

This section compares ASR radial velocity estimates from equation (3) to those 
derived from the full spectral differencing technique and to "truth" as defined from 
microburst models (part A) or simultaneous measurements from the pencil beam 
weather radar (part B). The data processing sequence involves the elements 
described in Weber (1987) and Weber and Noyes (1988): 
(i) clutter-map based high pass filtering of 34 sample sequences from the high 

and low receiving beams; 
(ii) velocity estimation using equation (3) or the spectral differencing algorithm 

described by Weber and Noyes (1988). For the autocorrelation based 
method, beam weights wi ,j were calculated with B0 set to 2.0°; 

(iii) nine-point nearest neighbor spatial median filtering of the velocity field fol­
lowed by smoothing along the range axis with a five-point Gaussian filter; 

(iv) divergence detection using the surface outflow portion (Merritt, 1987) of the 
TDWR microburst detection algorithm. 

All data used in part B were collected during 1988 in wet microbursts near Hunts­
ville, Alabama. We note that the value of B0 used in calculating the weighting 
coefficient w1,2/w 2 2 was derived from independent microburst data collected dur­
ing 1987 as described in the preceding section. 

A. Velocity Estimates using Simulated ASR Signals 

As a function of "true" surface outflow radial velocity, Figures III-1 compare 
the bias and standard deviation of velocity estimates from the spectral 
differencing and autocorrelation based algorithms . Estimate standard deviations 
are shown both before and after the spatial smoothing described above. The cal­
culations assume that the outflow velocity is constant from the surface to 100 m 
height; the radial wind then changes linearly to an "upper level" velocity that is 
one-third the magnitude of the surface wind and opposite in direction. 
Reflectivity factor and spectrum width are taken as constant in altitude with 
values of 40 dBz and 2 m/s respectively. Figure III-2 illustrates this model for a 
surface outflow velocity of 15 m/s towards the radar. 

The velocity estimate performance metrics were calculated using 500 trials of 
the Monte Carlo signal simulation described in Appendix C. Since essentially all 
data from our experimental ASR in Huntsville were obtained at a uniform pulse 
repetition frequency, the simulations here assume a constant PRF of 980s-1• We 
show in Appendix C that utilization of the ASR-9's 8/10 pulse alternating PRF 
waveform would produce only small changes in velocity estimate accuracy. Fig­
ures III-l(a) and (b) correspond to a resolution cell where the weather signal to 
ground clutter ratio is sufficiently large that high pass filtering is not required 
(Weber, 1987). Part (a) assumes that the resolution cell of interest is at 6 km 
range and part (b) considers a range of 12 km. 

At 6 km range, biases associated with either method are less than 1 m/s. Esti­
mate standard deviations average about 2 m/s before spatial smoothing and are 
reduced to 0.5 m/s after smoothing. Note that our spectral differencing algorithm 
(Weber and Noyes, 1988) incoherently averages power spectrum density (PSD) 
estimates using a running three gate average in range before calculating radial 
velocity. Thus, more extensive spatial smoothing is required for the spectral 
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(a) Range of 6 km and no clutter filtering are assumed. 

Figure III-1. Spectral differencing and autocorrelation based velocity estimate bias 
and standard deviation versus "true" outflow velocity. The velocity model of Fig­
ure 111-2 is scaled proportionally to the abscissae. Solid, dashed and chain dashed 
curves for standard deviation pertain respectively to single resolution cell esti­
mates, estimates after spatial median filtering and after Gaussian smoothing along 
the range axis. 
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Figure III-1. (continued) 
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Figure III-1. (continued) 
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differencing algorithm than for the autocorrelation based method to achieve the 
stated estimate variance. 

Near zero Doppler, the standard deviation of the spectral differencing estimates 
increases slightly. In our model, there is no vertical shear in the radial wind for 
zero velocity (i.e. at the micro burst center). Without this shear, underlying high 
and low beam PSDs are the same and the placement in the velocity domain of the 
low-high beam difference spectrum's positive lobe is governed by statistical 
fluctuations in the spectral estimates. This lobe -- which is used to generate the 
low altitude velocity estimate -- can occur anywhere where the PSDs are within a 
few decibels of their maximum values. This circumstance accounts for the 
increase in estimate standard deviation at low Doppler. Conversely, for the auto­
correlation based algorithm, velocity estimate standard deviations are minimum 
at zero Doppler where the integrated spectrum width is smallest. This is con­
sistent with Zrnic's (1977) findings that the conventional weather radar pulse-pair 
mean velocity estimate variance decreases with decreasing spectrum width. 

The larger biases at 12 km range (III-1 (b)) represent an underestimate of the 
surf ace wind speed; the error increases as surface velocity and vertical shear 
become larger in magnitude. Maximum calculated bias for the spectral 
differencing and autocorrelation based algorithms are 3 m/s and 4 m/s respec­
tively. Standard deviations are slightly larger than at 6 km range. 

In Figure III-1( c) we repeat the 6 km range calculation assuming that high pass 
clutter filtering as described by Anderson (1987) or Weber (1987) is required. The 
filter's stop band width is ±4.7 m/s, providing 39 dB attenuation of scan modu­
lated ground clutter. In addition to removing low Doppler signal power, the 17-
coefficient filter reduces the number of valid data points for velocity estimation 
from 34 to 18. We did not include a ground clutter-induced spectrum component 
in our signal simulation. Thus, simulated weather spectrum distortion may be 
larger than would occur with real data where the additional low Doppler power 
from ground clutter would at least partially offset the filtering. 

The overestimate of velocity magnitude resulting from spectrum distortion is 
maximum when the surface velocity approaches the edges of the filter stop band; 
at this velocity biases are about 2 m/s for either algorithm. Estimate standard 
deviations are also large at low Doppler where most of the weather power spec­
trum lies inside the filter's stop band; even after spatial smoothing, estimate stan­
dard deviation would be about 2 m/s for low Doppler signals. At higher Doppler 
velocities, the effect of the smaller number of available data samples is evident in 
increased estimate variance relative to the no-filter situation; this increase is more 
pronounced for the autocorrelation based algorithm. Outside the low Doppler 
interval however, spatial smoothing is effective in reducing the standard deviation 
for either method to less than 1 m/s. 

Figure III-3 plots velocity estimate bias and standard deviation as a function of 
micro burst reflectivity factor. The calculation used the profile of figure III-2 (sur­
face velocity -15 m/s) except that the reflectivity factor was varied from 30 dBz 
down to -10 dBz. We assumed a range of 6 km and a sensitivity time control 
function that places the receiver noise level at an equivalent weather reflectivity 
factor of 0 dBz (see Weber and Moser, 1987). When the reflectivity factor is 
greater than 0 dBz, both the spectral differencing and autocorrelation based velo­
city estimates exhibit minimal bias and standard deviations less than 1 m/s after 
spatial smoothing. As the signal to noise ratio becomes negative, bias and 
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Figure IIl-3. Spectral differencing and autocorrelation based velocity estimate bias 
and standard deviation versus outflow reflectivity. The velocity model of Figure 
IIl-2 is assumed. The curve for standard deviation pertains to estimates after spa­
tial median filtering followed by Gaussian smoothing along the range axis. 
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standard deviation increase rapidly. The positive bias reflects the trend of the 
velocity estimates towards 0 m/s when noise dominates the spectrum. Note that 
this calculation does not consider the impact of ground clutter. Weber (1987) 
showed that ground clutter may prevent accurate velocity measurements at short 
range when the reflectivity factor is less than 20 dBz. 

The dependence of velocity estimate accuracy on the vertical extent of the 
outflow is illustrated in Figure III-4. Here, bias and standard deviation are plot­
ted as functions of outflow height, assuming a range of 6 km. The radial velocity 
profile is that of III-2 scaled in height by a factor varying from 0.25 to 2.25. The 
shallowest outflow considered, therefore; has maximum radial winds extending 25 
m above the surface and reaches the 'upper level" velocity at 250 m. For this 
height, both algorithms result in significant underestimates of the near surface 
radial wind magnitude. The bias is 6 and 7 m/s respectively for the spectral 
differencing and autocorrelation based algorithms. With increasing outflow depth, 
the bias decreases rapidly to values less than 1 m/s when the outflow layer is 75 
m deep. Estimate standard deviation increases by about 50 percent for very shal­
low outflows. 

For Huntsville microbursts in 1987, Weber and Noyes (1988) plotted the distri­
bution of heights at which the radial velocity dropped to half of its maximum 
value. The median value for this "half-height" was 350 m and about 15 percent of 
the microbursts exhibited half-heights less than 200 m. These data were com­
piled from events centered as far as 12 km from the radar where the 3 dB beam 
width spanned 300 m. Thus, angular resolution may have been inadequate for 
measuring the actual depths of some of the microbursts. Biron and Isaminger 
(1989) analyzed RHI scans of microbursts within 8 km of Lincoln Laboratory's 1° 
pencil beam weather radar. Vertical resolution was therefore 140 m or better. The 
median half-height for microbursts they measured during 1986 in Huntsville was 
400 m; all events were between 300 and 1000 m deep by this measure. For 
Denver micro bursts observed during 1987, the half-height distribution extended 
from 200 to 1100 m with a median value of 600 m. The median height of max­
imum velocity in both locales was within the lowest 200 m AGL. For comparison 
with these statistics, the upper abscissa labels on III-4 give the half-height for the 
vertical wind profile we assumed in our calculations. At 400 m half-height, esti­
mate bias is less than 1 m/s for either method; the shallowest 15 percent of 
outflows measured in Huntsville during 1987 would be subject to biases 2.5 m/s or 
greater at 6 km range. 

Radial velocity versus range signatures through a model microburst are simu­
lated in Figures III-5. The basic profile is again that of III-2 but the surface 
outflow velocity was varied sinusoidally with range and upper level winds were 
scaled proportionally. Thus the overall structure exhibits surface divergence with 
compensating convergence aloft as is characteristic of measured microburst wind 
fields. The model's maximum approaching and recedin9 velocity cores are 
separated by 2 km. In each plot, the solid line is the "true' surface radial wind 
pattern; dashed and chain-dashed curves are single realizations of the velocity sig­
nature estimated with the spectral differencing and autocorrelation based algo­
rithms. 

In III-5(a) and (b) the "microburst" is centered at 6 and 12 km respectively; the 
upper panels in each figure simulate velocity estimates where no spatial smoothing 
has been applied. The variance of the unsmoothed velocity estimates disrupts 
the monotonically increasing pattern between the velocity extrema to the extent 
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Figure III-5. Simulated microburst radial velocity versus range measurements 
from an ASR. The solid sinusoid is the model for the surface radial wind associ­
ated with the microburst. Dashed and chain dashed curves represent estimates 
using the spectral differencing and autocorrelation based algorithms. The upper 
plot simulates single resolution cell estimates; the lower plot includes the spatial 
filtering described in the text. 
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that the TDWR microburst detection algorithm might not identify shear seg­
ments. The lower panels simulate the spatial smoothing described above. The 
smoothed velocity fields correlate well with the model wind pattern although the 
bias indicated in Figure III-l(b) is evident when the micro burst is centered at 12 
km range. 

This simulation based analysis indicates that velocity estimates from the auto­
correlation based and spectral differencing algorithms exhibit very similar bias and 
standard deviation. A representative value for standard deviation after spatial 
filtering is 0.5 m/s. The most significant factor determining the bias associated 
with either algorithm is the rate of change of radial velocity with elevation angle. 
For very shallow microbursts ("half-height" less than 200 m) and microbursts 
beyond about 12 km range, differential velocity underestimates of 15 percent or 
more could be expected. However, for the majority of microbursts in the opera­
tionally significant region within 12 km of an ASR, our analysis indicates that the 
accuracy of either velocity estimator is good. 
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B. Field Measurements from Huntsville Experimental ASR 

Lincoln Laboratory's airport surveillance radar weather detection experiment in 
Huntsville, Alabama during 1987 was described by Weber and Noyes (1988). 
Equipment and operating procedures during the summer of 1988 were identical 
except that the scan rate of the C-band pencil beam radar used for "truth" was 
increased. The basic scan pattern for microbursts in 1988 consisted of two 360° 
PPI scans at elevation angles of 0.6° and 1.5°, followed by two RHI scans through 
the outflow. This sequence was repeated at one minute intervals. 

Figures III-6 compares images of the radial velocity field estimated from our 
airport surveillance radar's signals with that measured by the pencil beam 
weather radar. Data are from a microburst producing thunderstorm on 15 
August 1988. The upper left panel is the pencil beam measurement from a scan 
at 0.6° elevation angle, Two microbursts were present, a strong outflow centered 
at 10 km range/130° azimuth and a weaker event at 15 km/65°. ASR estimates 
using the low-high beam spectral differencing technique are shown in the upper 
right panel with the corresponding autocorrelation based estimate in the lower 
left. High and low beam signals from the same antenna scan were employed for 
these estimates. The autocorrelation based estimate obtained when the high beam 
signal was collected from the following antenna scan is shown in the lower right. 
For current ASRs, this mode of data collection would be required for operation 
using circular polarization. 

The velocity fields derived from the ASR signals are in good agreement with 
that measured by the weather radar. In particular the presence of the two micro­
bursts is clearly indicated and the ASR velocity differential estimates are within 1 
m/s of the pencil beam measurements. The spectral domain and autocorrelation 
based wind field estimates from the ASR signals are likewise in good agreement, 
particularly within the microbursts. Collection of high and low beam autocorrela­
tion estimates on alternate antenna scans (lower right panel) did not significantly 
change the velocity estimates. 

We suspect that the 1.4° beamwidth of the weather radar was too large for 
accurate measurement of the receding outflow component in the microburst to the 
southeast. As in some of the other ca.."ies presented below, the stronger, more 
homogeneous receding volume depicted in the ASR-based fields may well be a 
better representation of the actual wind field. 

Additional examples are shown in Figures III-7 through III-9 . In each figure, 
the upper panel displays the pencil beam radar 0.6° velocity field. The lower left 
and lower right panels are ASR-based estimates using respectively the autocorrela­
tion and spectral differencing approaches. High and low beam signals were from 
the same antenna scan since we do not normally transfer data from adjacent scans 
for analysis. 

These examples again indicate good agreement amongst the pencil beam and 
ASR derived velocity fields. For the displayed scans on 21 June and 25 June, 
both ASR based velocity differential estimates are within 2 m/s of the pencil beam 
radar's measurement. The velocity shear estimate from the autocorrelation based 
ASR field depicted in Figure III-8 is 6 m/s (23%) larger than that derived from 
the pencil beam radar; the spectral differencing approach resulted in a 3 m/s 
"overestimate" in this case. Note that the the divergent outflows shown in these 
examples extend to ranges as large as 20 km (Figures III-8 and III-9). 

25/26 





N 
--.J -N 
00 

Figure IIl-6. Images of the radial velocity field in a microburst producing thunderstorm near Huntsville, Ala­
bama on 15 August 1988 . The upper left panel shows measurements from the MIT C-band beam weather 
radar scanning in PPI mode at 0.6° elevation angle. Upper right panel is field estimated from ASR signals 
using the spect ral differencing method. Lower left panel is corresponding field from autocorrelation based 
a lgorithm. Lower right panel uses autocorrPlation b2..Sed :l!go rithm and higl1 and low beam signals collected 
on different antenna scans. I 
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Figure III-7. Im ages of the radial velocity fi eld in a microburs t producing thunderstorm near Huntsville, Ala­
bama o n 21 June 1988. The upper panel shows measurements from the MIT C-band beam weat her radar 
scanning in PPI mode at 0.6° elevation angle . Lower right panel is fi eld estimated fro m ASR signals using 
Lhe spect ral differencing method . Lower lefL panel is corresponding fi eld from autocorrelation based algo­
riLhm. 
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l"i gure III-8. Images of the radial velocity field in a microburst producing thunderstorm near Huntsville, Ala­
bama o n 24 June 1988 . The upper panel shows measurem ents from the MIT C-band beam weather radar 
scannin g in PPI mode at 0.6° elevation ang le. Lower right panel is field estimated from ASR signals using 
the spect ra l differencing method. Lower left panel is corresponding field from autocorrelation based algo­
rithm. 
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Figu re III-g , Im ages of rad ia l velocity fi eld in a mi croburst producing thundersto rm near Huntsvill e, A labama 
on 25 J une rn88 . The upper pane l shows meas urements from t he MIT C-b and beam weather radar scanning 
in PPT mode at 0.6° elevation a ngle. Lower ri gh t pane l is fi eld estim at ed from ASR signa ls usin g th e spect ral 
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A more extensive evaluation of the accuracy of the ASR velocity estimates was 
derived by "scoring" detections from the TDWR surface outflow detection algo­
rithm against truth as determined from manual examination of the pencil beam 
weather radar data. The procedure and associated scoring rules are described in 
Weber and Noyes (1988). Our evaluation utilized approximately 600 scans from 
the airport surveillance radar in 1988, taken during 35 microbursts on 13 separate 
days. The scoring was confined to microbursts centered within the operationally 
significant area extending 12 km from the radar. 

Table III-1 summarizes the results of scoring on a scan by scan basis. The 
listed performance metrics are: 
(i) probability of detection -- the number of detected microburst signatures 

divided by the total number of microburst signatures; 
(ii) probability of false alarm -- the number of algorithm alarms not associated 

with microbursts divided by the total number of alarms; 
(iii) bias -- the average difference between ASR-based and pencil beam radar 

microburst differential velocity estimates. This is expressed both in absolute 
units (m/s) and relative to the pencil beam radar .6. VR measurement; 

(iv) root mean squared (RMS) difference between the pencil beam radar and 
ASR-based velocity differential estimates. This equals the square root of the 
sum of squared estimate bias and estimate variance. 

These metrics are tabulated separately for all microbursts and for microbursts 
with differential velocities greater than 15 and 20 m/s. 

TABLE IIl-1. Microburst detection alirnrithm 
nerformance for ASR-based velocitv fields. 

Dual Be 1m Autocorrelation Method 
D. VD > lOm Is D. VD > 15m Is D.VD > 20mls 

Detection Probabilitv 0.91 0.90 0.96 
False Alarm Probabilitv 0.05 0.04 0.0 

D. v,, Bias (m/s) 2.4 0.9 0.5 
Relative D. v,, Bias .0.19 0.05 0.02 

RMS D. v,, Discrenancv (m/s) 4.8 3.8 3.7 
RMS Relative D. VD Discrenancv 0.36 0.19 0.16 

Low-Hi12: i Beam Snectral Di ferencin12: 
D. Vn > lOm Is D. Vn ; 15m IS D.Vn > 20mls 

DetPction Probabilitv 0.93 0.93 0.97 
FalsP Alarm Probabilitv 0.02 0.02 0.0 

D. V,, Bias (m/s) 0.4 -1.0 -1.0 
Relative D. v,, Bias 0.05 -0.05 -0.04 

RMS D. V" Discrenancv (m/s) 3.4 3.2 3.4 
RMS Relative D. Vn Discrenancv 0.23 0.15 0.14 

The results confirm the favorable prognosis for an ASR's capability to detect 
wet microbursts that we derived from analysis of data collected during 1987 
(Weber and Noyes, 1988). Both velocity estimation algorithms supported detec­
tion and false alarm probabilities within the 0.9 /0.1 bounds called for by the FAA 
in its TDWR system requirements statement. Over all microbursts scored, the 
dual-beam autocorrelation method resulted in somewhat reduced detection perfor­
mance relative to full spectral differencing; detection probability decreased by two 
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~ercent while the false alarm probability and discrepancy with pencil beam radar 
~ VR measurements increased. These differences disappeared when scoring was 
restricted to the subset of microburst scans where the velocity differential exceeded 
20 m/s. 

Detailed analysis of these data indicates that, for either velocity estimation 
method, eighty percent of the missed detections were associated with recognizable 
(by a human observer) divergence patterns in the ASR-based radial velocity field. 
The automatic microburst detection algorithm did not declare an alarm in these 
cases because its spatial size and/or continuity requirements were not met (Mer­
ritt, 1987). The remaining misses occurred in weak micro bursts ( ~ VR < 15m / s) 
where the ASR based velocity differential estimates did not exceed the 10 m/s 
microburst threshold. Our analysis of missed detections does not suggest that 
divergent outflows are depicted more clearly in spectral differencing versus auto­
correlation based velocity fields. Given the subtleties of the automatic microburst 
detection algorithm, we regard the 2 percent overall difference in detection proba­
bilities using the two velocity estimators as insignificant. 

Almost all false alarms occurred in regions where the pencil beam radar meas­
ured divergence, but below the required threshold. As seen from Table III-1, auto­
correlation based estimates of velocity divergence were larger on average than 
measured by the pencil beam radar, particularly for weak ( ~ VR < 15m / s) micro­
bursts. This "bias" produced the higher overall false alarm rate associated with 
that estimator. 

Our simulations (Section III-A) predict that biases, if present, should 
correspond to underestimates of velocity differential and should be larger for 
strong microbursts where the vertical gradient in radial wind speed is highest. 
This is clearly inconsistent with Table III-1. A possible explanation, as alluded to 
previously, is that the beamwidth and/or ground clutter suppression capability of 
the pencil beam radar were inadequate for accurate measurement of the strongest, 
near surface microburst winds. A uniform increase in "true" velocity differential 
for the 1988 data set would at least produce the expected trend for bias versus 
micro burst intensity. t 

Overall, these statistics confirm the previous simulations and case studies indi­
cating that the dual-beam autocorrelation based velocity estimate of equation (3) 
should support wet microburst detection at approximately the same level of 
confidence as would be obtained through full spectral differencing. Examination 
of the storm cases used for the detection performance statistics in Table III-1 is 
continuing. The analysis will provide more detailed understanding of missed 
detections or false alarms, and the small differences in detection algorithm perfor­
mance observed using the two velocity estimators. 

t Measured bias for the spectral differencing algorithm applied to our 1987 data set was 
qualitatively consistent with simulations in Section III-A. Compare for example Figures 
III-l(b) from this report and the "shear ratio" (i.e. bias) plotted in Figure VI-15 of Weber 
and Noyes (1988). 
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IV. DISCUSSION AND FUTURE WORK 

The analysis herein confirms our previous assessment that a suitably modified 
airport surveillance radar would provide an operationally useful capability for 
automatic detection of "wet" microbursts. In this report, we developed an 
efficient, autocorrelation based low altitude velocity estimator based on the 
assumption that the power spectrum of weather echoes measured by an ASR 
could be adequately represented with a bimodal Gaussian model. Evaluation of 
microburst detection algorithm performance using the resulting velocity fields 
indicated that accuracy comparable to the most effective velocity estimator 
treated by Weber and Noyes (1988) -- low-high beam spectral differencing -- might 
be achieved with considerable reduction in computational and hardware require­
ments. The combination of high confidence and computational efficiency make 
this technique an attractive initial candidate for implementation in our real time 
wind shear processor. 

Ongoing evaluation of ASR velocity estimation techniques will seek to further 
quantify tradeoffs between accuracy and processing complexity. In addition to the 
autocorrelation based and spectral differencing methods treated here, we are con­
tinuing to assess: 
(i) low beam only estimators, for example pulse pair processing following high 

pass filtering. Necessary front end modifications would be reduced if an ASR 
wind shear processor only accessed signals from the low receiving beam; 

(ii) mapping from the phase of the cross spectral density between low and high 
beam signals to elevation angle (Anderson, 1989). This technique may pro­
duce more accurate near-surface velocity estimates and offers the potential for 
three-dimensional reflectivity and wind measurements. Note however that 
high and low beam signals must be accessed simultaneously; thus on current 
ASRs this method could not be employed during operation with circular 
polarization. 

Each of the candidate algorithms will be scored against all available data from 
our field experiments in Huntsville and our current site near Kansas City, Mis­
souri. Our goal is to develop reliable performance statistics in order to specify the 
design of an ASR wind shear processor. 

We did not consider here the use of reflectivity factor measurements from an 
ASR as a supporting and/or precursory indicator of microburst activity. Field 
measurements with pencil beam Doppler weather radars have shown that descend­
ing reflectivity cores frequently presage the development of strong surface outflows 
(Isaminger, 1988). While temporal growth of the reflectivity field measured by the 
low beam of an ASR may provide indirect evidence of a descending core, less 
ambiguous information could be be derived from comparison of reflectivity in 
"upper" and "lower" beams. The high and low beams could be used directly in 
this manner although they overlap substantially. Better differentiation would be 
provided by combining data from the two beams in an effort to explicitly separate 
received power into upper and lower altitude components. This could be done in 
the frequency domain using techniques analogous to those described for velocity 
estimation. Alternately, amplitudes from the dual Gaussian spectral model -- cal­
culated as in the appendices to this report -- could provide the desired reflectivity 
measures. We are examining the development of the reflectivity field as seen by 
our experimental ASR to determine appropriate data processing approaches for its 
use in microburst detection. 
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As pointed out by Weber and Moser (1987), slightly lower gain and increased 
"beamfilling loss" for an ASR's high beam reduce sensitivity to low reflectivity 
weather. This may limit the utilization of dual beam techniques for "dry" micro­
burst and gust front detection. As currently implemented, our dual-beam velocity 
estimation algorithms compare received power from both beams to receiver noise; 
if only the low beam signal passes this threshold test, we revert to a standard low 
beam mean velocity estimate for that resolution cell. Analyses of gust fronts 
observed in Huntsville and simulation of dry microbursts using volume-scan pencil 
beam weather radar data are underway to quantify the ability of ASRs to detect 
low reflectivity wind shear. These will establish firm low-end reflectivity limits for 
ASR wind measurements. 

We noted previously instances where the accuracy of our pencil beam "truth" 
radar's velocity field was questioned owing to its relatively broad 1.4° beam. Lim­
ited clutter suppression capability and slow scanning also reduce confidence in 
velocity measurements from this radar. To more reliably quantify the accuracy of 
ASR wind estimation algorithms, we have located our experimental ASR at the 
same site as Lincoln Laboratory's TDWR test bed. That system will provide a 
narrower beam (1° in 1989 and 0.5° after conversion to C-band operation in 
1990), good clutter suppression and rapid volumetric scanning. The scan strategy 
facilitates direct comparisons with an ASR's surface wind estimates and under­
standing of errors through analysis of the three-dimensional wind field. Field 
measurements will continue in 1990 at Orlando, Florida. Collection and analysis 
of ASR wind measurements in these varied environments will refine our under­
standing of the capabilities of ASRs for wind shear detection. 
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APPENDIX A: ESTIMATION OF DUAL GAUSSIAN SPECTRAL 
PARAMETERS USING R ( 7) and R (27) 

The first three autocorrelation lags associated with the assumed dual Gaussian 
spectra in equation (1) are: 

Ri(O) = ai,1+ai,2 (A-1) 
Ri(7) = ai,1exp(-27r2a}r2)exp(i2nJ 17) + ai,2exp(-27r2a-i72)exp(i27rf 27) (A-2) 

Ri(27) = ai,1exp(-87r2a-fr2)exp(i47rf 17) + ai,2exp(-8~a-ir2)exp(£47rf 27) (A-3) 

where i=l,2 indexes the low and high beams. 

Measurement of Ri (0) and Ri ( 7) provide only six relations for the eight unk­
nown spectral parameters whereas the addition of Ri (27) results in an over­
determined system of equations. We derive therefore a solution based on measure­
ments of the autocorrelation function at lags 7 and 27. We first eliminate 
between the two beams in equations (A-2) and (A-3) the autocorrelation function 
components due to one of the spectral modes. For example: 

a12 a11a22-a12a21 2 2 2 ) R 1(7)--' R 2(7) = [ ' ' ' ' Jexp(-21!" a-17)exp(i27rf 17) (A-4 
a2,2 a2,2 

a12 a11a22-a12a21 2 2 2 ( ) R 1(27)--' R 2(27) = [ ' ' ' ' ]exp(-87r a-17 )exp(i47rf 17) A-5 
az2 az2 

The center frequency f 1 of this spectral component may be determined itera­
tively by finding the weight (a 1,2/ a2,2) such that the phase angle of equation (A-5) 

. is twice that of (A-4 ). The phase angle of equation (A-5) may have to be unfolded 
before comparison to that in (A-4). In performing the search, we make use of the 
known high and low beam patterns to constrain the possible values of this weight. 
Our convention is that the first Gaussian component in equation ( 1) is associated 
with low altitude winds (below an elevation angle B0 ) and the second with winds 
aloft. Thus the desired weight: 

7f 
-2 
f Z( B)B 1( B)B 1( B)d B 

a1,2 Bo 
(A-6) 

7f a2,2 -
2 
f Z( B)B 1( B)B 2( B)d B 
Bo 

can be shown to be in the range 0 to 1.0 for reasonable values of B0 and the 
reflectivity factor profile Z(B). Here B 1 and B2 are the low and high beam one­
way elevation antenna patterns. 

Having determined the weight ( a 1 2/ a2,2) the spectrum width a-1 is calculated by 
dividing the magnitude of (A-4) by that of (A-5): 

a12 IR 1(r)--' R 2(r) I 
2 1 a2,2 

0"1 - -- -------'-----
61!"272 

(A-6) 
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alla22-a12a21 • . • · ( ) ( ) The factor [ ' ' ' ' ] 1s now readily denved from either A-4 or A-5 . 
a2,2 

An analogous procedure is used to derive the center frequency and width of the 
"upper level" Gaussian component as well as the ratios (al,1/a 2,1) and 

a11a22-a12a21 
[ ' ' ' ' ]. Four functions of the ai,j have now been determined; from 

a21 
these the' values of these amplitudes can be readily determined. 
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APPENDIX B: ESTIMATION OF DUAL GAUSSIAN SPECTRAL 
PARAMETERS USING R(O) and R(r) 

We now assume that the two spectral components have intrinsic amplitudes ai 
that are modified by known beam weighting coefficients wi,j· The weighting 
coefficients are determined by equating the integrated power of the spectrum in 
equation (2) with that which would be determined from a known profile of the 
radar reflectivity factor Z( 0): 

Ri(O) = a 1wi,1+a2wi,2 

2 

= fZ(O)B 1(0)Bi(O)d0 (B-1) 
0 

2 

= Z1-avuf B1(B)Bi(O)dO + Z2-avuf B1(B)Bi(O)dB 
0 00 

Note that the radar constant is taken as unity in equation (B-1). The amplitudes 
ai are seen to be "average" reflectivities within assumed lower (below 00) and 
upper elevation angle intervals. The wi,j are integrals between the appropriate 
elevation angle limits of the low or high beam two-way elevation patterns. 

The first two autocorrelation lags of the the spectra in equation (2) are given by 
the first line in (B-1) and: 

Ri(r) = wi,1a 1exp(-27r20"fr2)exp(i27rf 1r) + wi,2a 2exp(-27r20"?r2)exp(£27rf 2r) (B-2) 

The six unknown parameters are now the ai, O" i and f i of the two Gaussian spec­
tral components. 

The amplitudes ai are easily computed by applying the inverse of the precom­
puted beam weighting matrix wi,i to the measured Ri(O). Center frequencies and 
widths of the two spectral components can be determined by eliminating the other 
component between the high and low beams in equation (B-2). For example: 

R ( ) W1,2 R ( ) [ W1,1W2,2-W2,1W1,2 l ( 2 2 2-2) ( ·2 J ) 
1 r --- 2 r = a 1 exp - 7r O" 1 r exp z 7r 1 r 

W2,2 W2,2 
(B-3) 

The phase angle of (B-3) determines the center frequency f 1• The spectrum width 
171 can be determined from the magnitude of (B-3), since the ai are now known. 
An analogous procedure can be used to compute f 2 and 172• 

The important result is that the phase angle of equation (B-3) is proportional 
to the desired "low altitude" Doppler velocity. The phase angle, however, will be 
incorrectly computed if the amplitude a 1 is negative. In order that a 1 be positive, 
it can be shown that R 1(0) must be greater than w 1,2 R 2(0)/w 2,2 or about 0.6 R 2(0). 
Owing to the stochastic nature of weather echoes and the limited number of sam­
ples available from an ASR for integration, this condition may not be met, partic­
ularly if the autocorrelation lags for the two beams are computed on alternate 
antenna scans. To ensure valid determination of the phase angle, we solve a 
modified set of equations where the high beam data samples are scaled to have the 
same integrated power as the low beam. The resulting estimate for the "low­
altitude" mean Doppler frequency f 1 is equation (3) in Section II-B-2. 
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APPENDIX C: SIMULATION OF AIRPORT SURVEILLANCE 
RADAR SIGNALS FROM MICROBURSTS 

The power spectrum, S, measured in an range-azimuth cell by a fan beam ASR 
can be expressed in terms of the elevation angle resolved field of velocity spectra, 
S, as: 

2 

f s( O,</>,R, v )BTR ( O)d e 
S(</>,R,v) = _o __ ir ____ _ (C-1) 

2 

I BTR(O)dO 
0 

where BTR(O) is the two-way elevation power pattern of the ASR antenna. Given 
either measured or assumed vertical profiles of weather velocity spectra, this rela­
tionship can be used to synthesize the power spectrum that would be measured by 
an ASR. 

As an example, Figure C-1 shows power spectra that would be measured in the 
model 11microburst 11 described in Section III-A. Plots in the left column are for the 
approaching radial velocity cores and those in the right column are for the reced­
ing cores. Center ranges of 3, 6, 9 and 12 km are assumed. Recall that in both 
cores, the magnitude of the surface radial wind component is taken as 15 m/s 
(dashed vertical line), decreasing to 5 m/s with opposite sign 1000 m above the 
surface. The simulations are in good agreement with the bimodal spectrum model 
assumed in this report. The more complex structure sometimes observed in meas­
ured spectra results from vertical wind profiles more complicated than assumed, or 
from statistical error in the spectrum estimates (see below). 

The stochastic nature of radar signals scattered from precipitation can be 
simulated using a Monte Carlo method proposed by Zrnic (1975) and used by Sir­
mans and Bumgarner (1975). Equation (C-1) is evaluated on a discrete grid of 
equispaced frequencies spanning the Nyquist interval. A single realization of the 
discrete Fourier transform (DFT) of a signal conforming to this spectrum shape is 
then simulated by multiplying the square root of the spectral lines by randomly 
generated complex numbers. The amplitudes of these numbers are Rayleigh dis­
tributed and the phases are distributed uniformly between 0 and 2Jr. An inverse 
DFT then provides synthetic in-phase and quadrature radar signals with the 
appropriate spectral distribution. Our simulations employed 64-point Fourier 
transforms, from which the 34 samples required for emulation of the signal pro­
cessing operations described in the text were extracted. 

Simulation of spatial smoothing was accomplished by generating the appropri­
ate number of independent signal realizations. Adjacent range and azimuth gates 
in real radar data are not fully independent because radar pulse and beam shape 
create an overlap region where the same scatterers contribute to the echoes. This 
effect was not simulated and would result in estimate variance slightly larger than 
our calculations. 

Figures C-2 are simulated power spectral estimates for the underlying spectra 
in Figure C-1. Incoherent averaging of three independent realizations has been 
performed to reproduce the range averaging applied to our real data. Substantial 
distortion of the underlying shapes occurs owing to the large variance for power 
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Figure C-1. Simulated underlying ASR power spectra for microburst wind field 
model of Figure III-2 (and its mirror image). Plot format is as in Figures II-1 and 
II-2. 
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Figure C-2. Simulated three-degree-of-freedom ASR power spectra estimates. 
Underlying spectra are as in Figure C-1. 
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spectrum estimates with three degrees of freedom. In general however, the esti­
mate fidelity is sufficient to show the overall width of the spectra and the impor­
tant low-high beam amplitude relationship in the velocity interval associated with 
near surface scattering. 

Signals from an ASR-9's 8/10 pulse alternating PRF waveform can be simu­
lated by expanding the frequency domain for spectrum synthesis to a value equal 
to the reciprocal of the largest time increment that is a submultiple of both pulse 
repetition intervals. After inverse Fourier transformation, the non-equispaced 
data samples are extracted from the resulting oversampled sequence. Using simu­
lated alternating PRF data, Figure C-3 repeats the calculations of velocity esti­
mate bias and standard deviation shown previously in Figure Ill-I. As described 
by Weber (1987), a four-coefficient shift-variant interpolation filter has been used 
to reconstruct a uniformly sampled data sequence prior to clutter filtering and/or 
velocity estimation. The bias of velocity estimates would be unchanged by use of 
the alternating PRF waveform; estimate standard deviation increases slightly rela­
tive to the constant PRF calculation. After spatial smoothing, calculated esti­
mate standard deviation varies from 0.5 to 1.0 m/s increasing with range and the 
magnitude of the true surface velocity. As previously, larger standard deviations 
apply for low Doppler weather when a clutter filter is used (part c ). 

Note that the interpolation procedure would break down for weather signals 
that exceed the Nyquist velocity associated with the lower PRF (about 25 m/s). 
In this situation, aliasing to different parts of the velocity spectrum would occur 
at the two PRFs, causing potentially significant spectrum distortion. To prevent 
resulting velocity estimate errors, tests should be performed on received signal 
parameters within each PRF block (for example, the first spectral moment) to 
detect differential aliasing. Appropriate dealiasing procedures could then be 
applied to the signals prior to velocity estimation. 
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Figure C-3. Spectral differencing and autocorrelation based velocity estimate bias 
and standard deviation versus "true" outflow velocity. The simulations used here 
reproduce the alternating PRF waveform of an ASR-9 and the use of a four­
coefficient interpolation filter. Plot format is as in Figure IIl-1. 
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Figure C-3. (continued) 
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Figure C-3. (continued) 
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