
Report No. FAA-RD-73-17
~PR 9 1913

·......... C

~. lj b ';.l""
~,"<~::,>t .i.~n v

~ ~"-l., >" ?'-f'. l.t, 1:'~:i:~

KNOXVILLE ASSOCIATIVE PROCESSOR

EVALUATION

B.G. Dietzler

NOVEMBER 1972

FINAL REPORT

Document is avai lable to the public through the
National Technical Information Service,

Springfield, Virginia 22151

Prepared for

DEPARTMENT OF TRANSPORTATION

FEDERAL AVIATION ADMINISTRATION

Systems Research & Development Service

Washington, D.C. 20591

I. DOCUMENT NO r' GOVERNMENT ACIOESSION NO. 3. RECIPIENT 5 CATALOG NO.

FAA-RD-73-l7
4. TITLE ANO SUBTITLE 5. REPORT DAn

November 1972KNOXVILLE ASSOCIATIVE PROCESSOR EVALUATION
6. PERFORMING ORGANIZATION CODE

8.PERFORMING ORGANIZATION REPORT NO.

PX 6406 - REVISION AB. G. Dietzler
10. WORK UNIT NO.9. PERFORMING ORGANIZATION NAME AND ADDRESS

Univac
Defense Systems Division II. CONTRACT OR GRANT NO.

St. Paul, Minn. 55165 DOT FA70WA-2289
13. TYPE OF REPORT AND PERIOD COVEREC

12. SPONSORING AGENCY NAME AND ADDRESS

Evaluation Report
Federal Aviation Administration
Systems Research and Development Service

14. SPONSORING AGENCY CODE
Washington, D.C. 20590

15. SUPPLEMENTARY NOTES

This document satisfies the requirements of the 1 April 1971 Work
Statement paragraphs 3.3.2.5.12.3, 3.3.6.4, 3.3.6.5, 3.3.6.6.1,
3.3.6.6.2.1, 3.3.6.6.2.2, 3.3.6.10.2, and 3.3.6.11.

This document contains an evaluation of the Goodyear Aerospace
Associative Processor in performance of the tracking and conflict
detection functions in a real-time ATe environment. The AP evaluation
effort was performed at Knoxville, Tennessee, with Univac as the prime
contractor to the FAA and with Goodyear Aerospace and Lambda as sub
contractors to Univac.

7. AUTHOR (51

16. ABSTRACT

117. Kt:Y WORDS 18. DISTRllSUTION ",.. " ..,,'"

-"Knoxville
Air Traffic Control Document is available to the public through the
Terminal ATe National Technical Information Service,
Associative Processor Springfield, Virginia 2215/

CLASSIF.(OF THIS REPORT) 20. SECURITY CLASSIF. (OF THIS MGEI 21. NO. OF PAGES 22. PRICE

UnclassifiedUnclassified 327

19. SECURITY

TABLE OF CONTENTS

Paragraph

1.1
1.2
1.3

2.1
2.2
2.3
2.4
2.4 .1

2.4.2
2.4.3

2.4.4
2.4.5
2.4.6
2.4.7
2.4.8
2.5
2.6

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3
4.4

Ti tle

SECTION 1

INTRODUCTION AND CONCLUSIONS

Background 1-1

Objectives 1-2

Summary of Conclusions 1-2

SECTION 2

SYSTEM FUNCTIONAL DESCRIPTION

System Organization 2-1

1230/AP Software Interface 2-1

1230 Software 2-3

AP Software 2-3

Sensor Report Correlation at the Track Level 2-3

Automatic Track Initiation 2-5

Track Smoothing and Prediction (Horizontal

Plane) 2-5

Altitude Tracking 2-5

Turn Detection 2-5

Conflict Prediction 2-5

Conflict Resolution Verification 2-6

Associative Processor Programming Language 2-6

Tests and Demonstrations 2-6

Problems Encountered 2-7

SECTION 3

TRACKING EVALUATION

General 3-1

Sector Overlap Problem 3-1

Live Track Performance 3-1

Test Track Performance 3-2

AP Tracker Timing 3-11

SECTION 4

ALTITUDE TRACKING, TURN DETECTION,

AND CONFLICT DETECTION ANALYSIS

General 4-1

Altitude Tracking Performance Analysis 4-2

Turn Detection Algorithm Analysis 4-2

Turn Detection Performance Analysis 4-5

iii

TABLE OF CONTENTS (continued)

Paragraph

4.5
4.6
4.6.1
4.6.2

5. I

5.2
5.3
5.4
5.4.1
5.4.2

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.4
6.4.1
6.4.2
6.5
6.5.1
6.J.2

7. I

7.2
7.3
7.4
7.5

Title

SECTION 4 (continued)

Conflict Detection Algorithm Analysis 4-5

Conflict Detection Performance Analysis 4-5

Questionable Conflicts 4-8

AP Conflict Sequence Timing 4-17

SECTION 5

CONFLICT RESOLUTION ANALYSIS

Recheck Function 5-1

Vector Fences 5-1

Head-On-Conflicts 5-2

Conflict Resolution Performance 5-2

Improper Resolutions 5-2

Unacknowledged Conflicts 5-3

SECTION 6

OPERATIONAL PROGRAM DESCRIPTION

Program Intersequencing 6-1

Initialization Sequence 6-2

Tracking, Control, and Turn Detection Sequences 6-2

Beacon Tracking Sequence 6-2

Radar Report Processing 6-30

Control Sequence 6-34

Altitude Tracking 6-34

Turn Detection 6-37

Service Routines 6-40

Conflict Prediction Sequence 6-42

Flow Chart Description 6-52

Other Operations 6-59

Conflict Resolution Recheck Sequence 6-59

General Approach 6-75

Flow Chart Description 6-75

SECTION 7

CONFLICT RESOLUTION DESCRIPTION

General System Description 7 -I

Algori thm Design 7-2

RESOLV Subroutine 7-5

DETECT Subroutine 7-14

RSLVIT Subroutine 7-19

iv

--

TABLE OF CONTENTS (continued)
I[

'Paragraph

I

7.6
7.6.1
7.6.2
7.6.3
7.6.4
7.6.5
7.6.6
7.6.7
7.6.8
7.6.9
7.6.10
7.6.11
7.6.12
7.6.13
7.7
7.7.1
7.7.2
7.7.3
7.8
7.9

7-10

8.1
8.2
8.2.1
8.2.2
8.2.3

8.2.4
8.3
8.4

9.1
9.2
9.2.1
9.2.2
9.2.3

Title

SECTION 7 (continued)

Minor Entry Points
ZEROHR
SCALVEL
UNPCNF
UNPCFI
UNPVEL
UN PAS
GOTOEXEC
RESOLVI
GETVELPOS
GETCOMIC
TURNFIX
GAPFIX
SETXYFEN

File Structure and Variable
History File
Resolution File
Maneuver File

Data 'Tables
Important System Parameters
Formulae

SECTION 8

7-31

7-31

7-31

7-31

7-31

7.31

7-34

7-34

7-34

7-34

7-35

7-35

7-35

7-36

7-36

7-36

7-36

7-36

7-38

7-42

7-43

CONFLICT DETECTION ALGORITHM ANALYSIS

Introduction 8-1

Comments on the Relative Velocity 8-14

Relative Velocity Vector 8-14

An Assumption 8-15

Determination of the Relative Velocity

Vector Directional Uncertainty 8-20

The Parameter 6BR Versus R 8-24

Conflict Detection Systems Growth Potential 8-27

Summary 8-28

SECTION 9

FUNCTIONAL INTERFACE

General Description 9-1

Forced External Functions (1230 to AP) 9-1

Force 9-1

Initial Load 9-1

Clear AP 9-3

v

TABLE OF CONTENTS (continued)

Paragraph

9.2.4
9.2.5
9.2.6
9.3
9.4
9.4.1
9.4.2
9.4.3
9.4.4
9.4.5
9.4.6
9.4.7
9.4.8
9.4.9
9.4.10
9.4.11
9.4.12
9.4.13
9.5
9.5.1
9.5.2
9.5.3
9.5.4
9.5.5

10.1
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6
10.2.7
10.2.8
10.2.9
10.3
10.3.1
10.3.2
10.4
10.4.1

Ti tIe

SECTION 9 (continued)

Clear Interface 9-3

Master Clear 9-3

Resume 9-3

Buffered External Function Commands (1230 to AP) 9-3

AP I/O Instructions 9-3

Write CM 9-6

Interrupt 9-6

Clear -Interface 9-6

Load Output Register 9-6

Load Address Register 9-6

Load and Store 9-6

Store Output Register 9-6

Output-Output Register 9-6

Load and Output 9-8

Input-Command 9-8

Input-Data 9-8

Retrieve-Block 9-8

Retrieve-Single Word 9-9

Data Transfer Sequence and Format 9-9

Program Memory Load Interface 9-9

Radar-Reinforced Beacon Tracking Interface 9-9

Altitude Tracking and Turn Detection .Interface 9-14

Control Sequence Interface 9-14

Conflict Prediction Interface 9-23

SECTION 10

HARDWARE AND UTILITY SOFTWARE

Introduction 10-1

Interface Unit 10-1

1230 Trans lator 10-3

Input Register 10-3

Output Register 10-3

Address Register 10-3

Word Counter 10-4

Program Memory Translators 10-4

Program Memory 10-4

I/O Control Panel 10-4

Interface Control 10-5

Control Subsystem 10-5

Subsystem Control Logic 10-5

Control Memory 10-5

Associative Subsystem 10-7

Associative Control Logic 10-7

vi

TABLE OF CONTENTS (continued)

Paragraph

10.4.2
10.4.3
10.4.4
10.4.5
10.5
10.5.1
10.5.2
10.5.3
10.6
10.6.1
10.6.2
10.6.3
10.6.4
10.6.5
10.6.6
10.7
10.7.1
10.7.1.1
10.7.1.2
10.7.2

11.1
II. 2

1l.3

11.4

12.1
12.2

13.1
13.2
13.3
13.4
13.5

Title

SECTION 10 (continued)

Registers
Input Control
Maintenance and Test Panel and Control
Display Unit

Electrical Interface

1230 Computer

AP Program Memory

Associative Processor

Description of Utility Programs
Program Memory Load
Program Tape Format
AP Program Load (via 1230)
Interface Test Program Memory Dump
Associative Array Dump
Off-Line Diagnostic Program

Assembly Program
Language Elements and Syntax

Language Elements

Sytax

Description

SECTION II

AP PROCESSING CONSIDERATIONS AND ANALYSIS

Coding Considerations

Debugging Considerations

Timing Analysis

Programming Complexity

SECTION 12

STATUS AND RELIABILITY

History of Equipment Status

Reliability Summary

SECTION 13

AP ARCHITECTURE CONSIDERATIONS

Introduction

Bit Serial Search

Arithmetic Capabilities

Interface Considerations

Control Memory/Hardwired Control

vii

10-7

10-7

10-9

10-9

10-9

10-9

10-11

10-11

1O-11

10-11

10-12

10-14

10-14

10-17

10-22

10-38

10-39

10-39

10-41

10-44

II-I

II-I

II-2

II-3

12-1

12-3

13-1

13-1

13-1

13-4

13-5

TABLE OF CONTENTS (continued)

paragraph

14.1
14.2
14.3
14.4
14.5

15. I

15.2

15.3
15.4

15.5

15.6
15.7
15.8

Ti tle

SECTION 14
TIMING ANALYSIS

General 14-1
Tracking Programs 14-1
Application to Other AP Models 14-2
Conflict Prediction Program 14-3
Application to Other AP Models 14-3

SECTION 15
FAA TRACKING TESTS

Initial Tracking Test - STARAN IV - Knoxville, 15-1
Tennessee

Second Tracking Test - STARAN IV - Knoxville, 15-3
Tennessee

Tracking Tests (Beacon Only), 9 August 1971 15-6
Tracking Tests (Beacon and Radar Reinforcement)

10 Augus t 1971 15-8
Tracking Demonstration - STARAN IV - Knoxville,

Tennessee 15-11
Tracking Tests (Beacon and Radar Reinforcement) 15-15
Tracking Tests (Beacon Only) 9 September 1971 15-18
Radar - Reinforced Beacon 15-19

viii

LIST OF ILLUSTRATIONS

Figure Title

2-1 Knoxville System Configuration 2-2

2-2 System Program Control and Data Flow 2-4

3-1 Track (Live Target) 3-3

3-2 Live Radar Tracking Demonstration 3-4

3-3 Test Target (No Noise) 3-5

3-4 Test Target (Noise Added) 3-8

4-1 Altitude Tracking (Live Target) 4-3

4-2 Altitude Tracking (Test Target) 4-4

4-3 Turn Detection (Live Target) 4-6

4-4 Turn Detection (Test Target) 4-7

4-5 Velocity Projected (Live Targets) 4-9

4-6 Graphic Analysis 4-10

4-7 Live and Test Target (No Altitude Data) 4-12

4-8 Live and Test Target (A with Altitude Data) 4-13

4-9 Live Targets (A with Altitude Data) 4-14

4-10 Graphic Analysis 4-15

4-11 Live and Test Target (B with Altitude Data) 4-16

6-1 Operational Program Inter-Sequencing Flow

Diagram 6-3

6-2 Initialization Sequence 6-5

6-3 Tag Setting Routine 6-7

6-4 Box Fitting Routine 6-8

6-5 Beacon Correlation Routine 6-10

6-6 Uncorrelated Report Routine 6-16

6-7 Radar Correlation Routine 6-20

6-8 Second Pass Resolve Routine 6-23

6-9 Sector Select Routine 6-25

6-10 Firmness Update Routine (Track State Diagram) 6-26

6-11 Smoothing Routine 6-28

6-12 Prediction Routine 6-31

6-13 Output Routine 6-32

6-14 Radar Reinforced Beacon Tracking Sequence 6-33

6-15 Control Sequence 6-35

6-16 Altitude Tracking Routine 6-36

6-17 Turn Detection Routine 6-38

6-18 Service Routines 6-41

6-19 Non-Conflict Situation 6-42

6-20 Array Track Word Format (Tracking Program

Oriented) 6-43

6-21 Non-Conflict Situation in Relative Coordinates 6-50

6-22 Vector Relations With Velocity in Third Quadrant 6-55

6-23 Vector Relations With Velocity in Fourth

Quadrant 6-56

6-24 Conflict Prediction Sequence 6-60

6-25 Array Track Word Format Conflict Prediction

Program Oriented 6-68

6-26 Conflict Resolution Recheck Algorithm 6-76

ix

--Figure

6-27

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

8-1

8-2

8-3

8-4

8-5

8-6

8-7

8-8

8-9

8-10

8-11

8-12

8-13

8-14

8-15

8-16

8-17

8-18

8-19

8-20

9-1

9-2

9-3

9-4

9-5

9-6

9-7

9-8

9-9

9-10

LIST OF ILLUSTRATIONS (continued)

Title

Recheck Data Word Format (1230 to AP) 6-77

Data Processing Functions - Knoxville Experiment 7-3

Resolution Algorithm Calling Hierarchy 7-6

Subroutine RESOLV 7-7

Subroutine REFINE 7-15

Subroutine ENTRS 7-16

Risk Probability Calculation 7-18

Subroutine Detect 7-20

Subroutine RSLVIT 7-25

Subroutine UNPCNF 7-32

The Coordinate System 8-2

Angular Measurements 8-3

Reciprocal Bearings 8-4

Predicted Separation Distance 8-5

Relative Bearing Tolerance 8-6

Velocity Vector Directional Uncertainty 8-7

Angular Conflict Criteria 8-8

Positive Angular Conflict Criteria 8-9

Distance Conflict Criteria 8-10

Relative Velocity Vector 8-11

Relative Velocity Vector with Aircraft Turning

in Opposite Directions 8-12

Relative Velocity Vector with Aircraft Turning

in Same Direction 8-13

Velocity Error is Proportionally Less for the

Faster Aircraft 8-16

The Faster Aircraft B Turns 1800 Counterclock

wise 8-17

The Slower Aircraft A Turns 1800 Clockwise 8-18

Aircraft are Flying at the Same Speed 8-19

Veloci ty and Veloci ty Error Vectors 8-21

Root-Mean-Square Addition of Error Vectors 8-23

Minimum Separation Requirement 8-25

Worst Case 8-26

Forced External Functions (1230 to AP) 9-2

Normal Buffered External Function Commands

(1230 to AP) 9-4

AP I/O Instructions 9-5

Interrupt Codes (AP to 1230) 9-7

Univac Buffer Format for Program Memory Load 9-10

Univac Buffer Format for Tracking Sequence and

Control Sequence 9-11

Beacon Report Word Format (1230 to AP) 9-12

Radar Report Word Format (1230 to AP) (Radar

Reinforced Beacon Tracking) 9-13

Univac Table Storage 9-15

Sector Address Word Format (1230 to AP) 9-16

x

Figure

9-11

9-12

9-13

9-14

9-15

10-1

10-2

10-3

10-4 .

10-5

10-6

10-7

10-8

Table

3-1

4-1

6-1

6-2

6-3

7-1

7-2

7-3

7-4

9-1

9-2

10-1

10-2

10-3

10-4

12-1

14-1

14-2

LIST OF ILLUSTRATIONS (continued)

Ti tIe

Track Word Format (AP to 1230) 9-20

Attitude - Turn Detection Word Format (AP

to 1230) 9-21

Control Status Word Format (1230 to AP) 9-22

Univac Buffer Format for Conflict Prediction

Sequence 9-24

Conflict Report Word Format (AP to 1230) 9-25

AP/1230 Interface Unit 10-2

Control Subsystem 10-6

AP Associative Subsystem 10-8

Electrical Interface Diagram 10-10

Paper Tape Format 10-13

AP Program Load 10-15

Interface Test Flowchart (Univac 1230 Reference) 10-18

Interface Test Flowchart (AP Referenced) 10-20

LIST OF TABLES

Title

AP Tracker Timing Data 3-12

AP Conflict Prediction Timing Data 4-18

Program Memory Map 6-4

List of Tracking Mnemonics 6-47

List of Conflict Prediction Mnemonics 6-72

COMICAL - Conflict Input Data Table 7-38

FENCES - Resolution Output Table 7-39

FENCESXY - Vector Base Position Table 7-40

MNVRT - Maneuver Turn Information Table 7-41

Beacon Box Sizes 9-17

R::ldar Box Si zes 9-19

Diagnostic Test Routines 10-23

Test Procedure Summary 10-26

List of AP Instruction Mnemonics 10-46

AP Instructions Requiring Micro-Programmed

Subroutines 10-52

AP Hardware Status Summary 12-4

Tracking Program Timing Data (Measured) 14-4

Conflict Prediction Timing Data (Measured) 14-5

xi

SECTION 1
INTRODUCTION AND CONCLUSIONS

1.1 BACKGROUND

This document contains an evaluation of the Goodyear Aerospace Associative
Processor (AP) in performance of the tracking and conflict detection functions
in a real-time terminal ATC environment. The AP evaluation effort was per
formed at Knoxville, Tennessee, with Univac as prime contractor to the FAA
under ARTS Enhancement Contract DOT FA70WA-2289 and with Goodyear Aerospace,
Lambda, and International Telephone and Telegraph (ITT) as subcontractors to
Univac.

The AP was installed and accepted at Knoxville on 11 May 1971 and 28 June 1971,
respectively. Following acceptance, an interface was estabished between the
AP and the Univac 1230 computer, part of the ARTS II system at Knoxville since
October, 1969. Goodyear and Univac worked together to integrate the AP into
the ARTS JI system and thus into the live terminal environment at Knoxville.
As a subcontractor to Univac, ITT equipped the IFR room displays with vector
generator capability and provided a Brite II display for the tower. Univac
made available a Radar Video Converter (RVC) , supplied to Knoxville as
government-furnished equipment. In addition, Univac provided the 1230 computer
programs for AP/1230 input/output (I/O) control, beacon and radar report pro
cessing, display and keyboard processing, system error detection, flight plan
processing, test target generation, and executive control. These functions
are primarily for support an~, as such, are not within the scope of this
report.

Goodyear, as a subcontractor to Univac, installed and tested the AP and designed
and built the interface unit. In addition, Goodyear provided the AP programs
for the beacon tracking function, radar reinforced tracking, radar-only
tracking, conflict prediction, and the AP portion of the AP/123O I/O interface.
Various utility programs were also provided by Goodyear. After the Knoxville
effort was under way, Goodyear proposed the additional functions of altitude
tracking and turn detection to improve performance of the conflict prediction
program. The proposals were accepted and incorporated into the effort.

Lambda, with Univac assistance, desiQned and coded the 1230 computer algorithm
for conflict resolution. This function is also evaluated herein.

In addition to the performance evaluations, this document also contains the
design data for the 1230 conflict resolution program and for all AP programs.
References are included to other documents containing the design data for the
required Univac 1230 support programs. The Knoxville effort also included
evaluation of the radar report processing function in the 1230. This evaluation
is the subject of another report referenced herein.

The evaluation comments in this report concern the algorithms used and the
program and hardware performance as indicated by analysis of the data obtained
during the Knoxville activity, including the conflict detection and resolution
demonstrations in December, 1971.

1-1

1. 2 OBJECTIVES

The Knoxville effort objective was to demonstrate and evaluate the AP in a live
terminal ATC environment. The specific automated functions demonstrated were as
follows:

1)	 Automatic track initiation for beacon and radar reports.

2)	 Radar backup capability for beacon initiated tracks.

3)	 Conflict detection.

Also demonstrated and evalutated was the conflict resolution function, programmed
on the Univac 1230 computer.

1.3 SUMMARY OF CONCLUSIONS

The list of conclusions that follows is a summary of the Knoxville effort
evaluations. This listing is provided for the convenience of the reader to
preclude the necessity of reading all of the technical material to determine
the evaluation results.

a)	 APs and conventional processors can be combined to perform ATC
functions in a real-time terminal environment.

b)	 The Knoxville effort did not resolve the question of whether or when
the combination of an AP and a conventional processor will be cost
competitive with a combination of conventional processors.

c)	 A capability spectru~ exists with APs, and the Goodyear AP at Knoxville,
being bit serial with search function logic outside the array, is at
the low-performance end of the spectrum with regard to execution time.
However, bit-serial, external search logic Aps are the most flexible.
Because the need for an AP presumes that extra processing power is
necessary, APs that are at least partially bit-parallel may be required.
Care must be taken that such APs remain flexible for implementing new
ATC functions as the needs arise.

d)	 Introducing new functions into the capability repertoire of an AP will
require additional bits in the word format. Therefore, to allow for
future expansion, the AP word formats must be initially designed to
contain spare bits, which reduces its cost effectiveness.

e)	 Tracking and confl ict detection are "parallel" in nature and are thus
suited for an associative processor. However, refinements beyond an
~/B tracker and a gross conflict filter require individual attention
and are "serial" in nature. The question of whether to perform
related serial operations in a parallel machine, or conversely, or in
some combination, is not resolved.

1-2

1.3 (continued)

f)	 Associative processors have an attractive throughput potential for
"parallel-type" functions. However, this potential is a function of
the size and speed of the array memory and control memory and, hence, a
function of AP cost. The questions of whether and when the combination
of conventional and associative processing will become cost competitive
with a combination of conventional processors has not been resolved by
the Knoxville effort.

g)	 The AP derives the arithmetic advantage that it has over conventional
processors only when the arithmetic is performed within a word. Arith
metic operations that must be performed on a word-to-word basis, except
for search operations, are more advantageously performed on a conven
tional processor.

h)	 The program debug effort for the Knoxville AP is more difficult than
debugging programs on conventional processors, particularly where
micro-coding was involved.

i)	 Because of the AP memory hierarchies (program memory, control memory,
and the array), redundancy can only be provided by an additional AP.
Even without the memory hierarchy, it remains unlikely that an array
can be made inherently fault-healing, since any bit can fail, including
that bit used to provide access on a "busy" or "not busy" basis.

j)	 At Knoxville, the AP and 1230 were interconnected via an r/o channel.
The data rates did not require a more direct connection, i.e., via
the processor memory bus. However, the addition of functions to an
AP for expansion purposes may require the more direct connection ai an
alternative. The AP may be located such that it can communicate
directly with the data source; therefore, the buffering activities of a
conventional processor would not be required.

k)	 The Knoxville ATe environment is inadequate for a thorough exercise of
the AP functions due to a lack of traffic. The effects of false
conflict predictions in dense traffic are impossible to extrapolate.

1)	 With an exception for the track jumps observed - which appear to be
minor program quirks - the AP tracker performs within acceptable
limits for straight-line a/p tracking. (In a contract following this
one, tracker changes were implemented which resolved this track jump
situation).

m)	 Radar-only tracking performed acceptable with one exception: sporadic
coasts. The sporadic coasts were due to missing radar reports and not
due to a fault in the tracker.

n)	 Radar reinforced beacon tracking time varies linearly as a function of
the number of tracks at approximately 2 milliseconds per track wi thin
the 60 track capability of the AP at Knoxville.

1-3

1.3 (continued)

0)	 Larger control memory and more sophisticated utility routines would
reduce AP debugging time and contribute to faster program optimization.

p)	 Altitude tracking appears to perform quite satisfactorily. On constant
altitude and velocity tracks, the tracker-predicted altitudes were
within 12.5 feet of the reported altitudes (12.5 feet is the least
significant bit of the altitude field).

q)	 The FAA aircraft separation requirement is a mInImum of 500 feet. How
ever, accumulative tolerances internal to the conflict detection
algorithm can cause a conflict alarm between two aircraft in level
flight and separated by as much as 1100 feet.

r)	 The conflict detection algorithm used in the AP at Knoxville will,
without change, perform a conflict detection function.

s)	 The conflict detection algorithm at Knoxville performs a gross fil
tering function and as such eliminates from further immediate concern
the predominant portion of aircraft pairs which obviously are incapable
of conflict during the look-ahead period. However, the algorithm's
potential for adapting to varying and evolving requirements and for
meeting the need for greater accuracy and discriminatory action is
suspect.

t)	 Although the AP conflict detection algorithm appears to be sound,
anomalies were evidenced such as scan-to~scan dropouts of reported
conflict situations. For tracks that are nearly parallel with
approximately equal velocities, the 68 could vary greatly, causing the
sporadic conflict reporting ment.ioned. However, some of the other
cases cited in this report are unexplainable.

u)	 As a rough approximation, the worst case conflict detection (up to 40
tracks in the system with 5 or fewer conflicts) varies linearly at the
rate of 10 milliseconds per track.

v)	 Conflict resolution, based on a probability-of-occurrence filter, can
reduce the reported conflicts. This filtering activity is essentially
a fine filter and should not be a requirement of a resolution algorithm
if the detection algorithm itself contains a fine filter.

w)	 Conflict resolution commands displayed to the controller in the third
line of a data block are acceptable.

x)	 The "freezing" of vectors recei ved from the AP to reduce the expected
"spastic" vector displays may be a necessity. Greater experience with
live traffic could provide confirmation. However, the "fences" concept
of conflict detection introduced at Knoxville is not the answer to this
problem. Furthermore, the vector presentation of the AP tracks was not
"spastic", as some people expected it would be.

1-4

1.3	 (continued)

y)	 A recheck of the resolution commands should be a part of a detection/
resolution interface. The number of tracks at Knoxville did not make
this apparent. However, it is obvious that, with more traffic in the
system, several successive maneuvers may be required unless recheck is
implemented. These maneuvers will be objectionable to the air traffic
community.

z)	 Two cases of improper resolution commands were seen during the
Knoxville resolution demonstration. It is believed that these commands
are attributable to an error in a math routine which caused 330 degree
turns to be displayed as suggested maneuvers.·

aa)	 Direct head-on collisions are irresolvable by the current detection/
resolution interface. This condition will be rectified only if finer
filters are obtainable.

1-5

SECTION 2

SYSTEM FUNCTIONAL DESCRIPTION

2.1 SYSTEM ORGANIZATION

In order to meet the functional requirements for the AP evaluation activity
at Knoxville, additional equipment was required to be integrated with the
existing ARTS II equipment. The new system configuration is shown in figure
2-1. The Goodyear Aerospace associative processor was added. Since radar
reinforced beacon tracking was included in the required functions, a Univac
furnished Radar Data Acquisition System (RDAS) was required as an additional
item of equipment. While portions of the existing Univac 1230 programs could
be retained (e.g., beacon within-beam processing) with only minor modification,
new 1230 programs were required to perform the functions:

1) Primary radar processing.

2) Input/output.

3) Data entry and display.

4) Executive.

In addition, Univac provided a BRITE II display to replace the BRITE I in the
tower. An additional monitor display was added for system test and demonstration
purposes.

2.2 1230/AP SOFTWARE INTERFACE

Since both the 1230 and AP are stored program machines, they can operate their
respective programs simultaneously. The AP interfaces with the system in a
simple and straightforward manner, via a single buffered I/O channel of the
1230. Compatible I/O instructions are performed in both machines to provide for
the proper control and data interchange. The system executive program resides
in the 1230 machine. It determines the time when each of the system functions
(AP and 1230) must be performed. When the EXEC determines that it is time to
perform a given AP function, it jumps to an I/O subroutine. The I/O subroutine
in turn generates an External Function (EXF) command which is sent to the AP.
This causes the AP to begin execution of the specified functional program. A
unique EXF command code is used to initiate each of the several AP programs.
If in the course of executing a given AP program, the AP requires data from the
1230, the 1230 I/O subroutine will have also activated an output buffer con
taining the required data. The AP program in this case will include the
necessary I/O instructions to effect the transfer of data from the 1230 output
buffer to the AP, independent of 1230 program control. Further, if the partic
ular AP program requires that data be sent to the 1230, the 1230 I/O subroutine
will also have activated an input buffer ready to receive the required data.
In this case, the AP program under consideration will include the necessary
I/O instructions to effect the transfer of data from the Ap to the 1230 input
buffer, independent of 1230 program control.

2-1

BDAS

\
f

HDAS
~

'"I
"-'

Pe ri phe ra 1s
I/O ConsDle

'lag Tape Dri ves
Line Prin ter
Card Header

1
Da tLl 8Entry

West Position

Goodyear
Associative
Processor

,

Beacon/RadDr Target Reports;
I OJ Control Status; EXF Control =Un i vac n,...,I ::r ,....,

OJ <'t
'""Processor I :::s:::s ~ Track Data: Conflict

ro 0(230) I I-' Reports; In terrupts
1

0

H

•

8

• Radar Video
~

I • I~

Data Data
En lry En try 8

Alpha
Numerics

Beacon

Video

~
/
• t L

Data 8Entry

East Position BRITE £1 (Tower) Moni tor

c:J
c:J

Existing ARTS III Equipment
Additional Equipment for
Enhanced ARTS

Figure 2-1. Knoxville System Configuration

2.2 (continued)

One of the final instructions executed in a given AP program is to send an
interrupt to the 1230 to indicate that the AP has completed the given program
sequence. A unique interrupt code is used to indicate completion of each of the
several AP programs. After the interrupt is sent to the 1230 to indicate
completion of a given program sequence, the AP jumps to an idle state until
another EXF command is received from 1230 under control of the system EXEC.

The operational programs performed by the AP are described in detail in section
6 of this report. A brief description of these functions is given later in this
section.

2.3 1230 SOFTWARE

The 1230 subroutines and their interface with the 1230 Executive and other
system hardware/software, including the APt ~re shown in figure 2-2. Conflict
Resolution is described in section 7. The detailed description of the re
maining 1230 programs is contained in the "Knoxville Operational Program Design
Description for use with the UNIVAC 1230", PX 6379.

2.4 AP SOFTWARE

The various Arc functions performed by the AP are listed below along with a
brief description of some of the more salient features. All of these functions
were demonstrated in the live environment at the Knoxville terminal.

2.4.1 Sensor Report Correlation at the Track Level
I

In this operation, the individual radar and beacon target reports are compared
simultaneously with the entire track file contained in the AP. Target reports
are prepared in the 1230 in XY coordinates to a precision of 1/32 nautical miles.
As described in greater detail in section 5, correlation is based initially
upon X-Y position agreement, and then, for beacon reports, upon beacon code and
altitude agreement. Four different correlation box sizes are employed. The
report which best correlates with a track is used on each scan. A report which
initially associated with a track can be replaced by a later, better fitting
report on the same scan. When both a radar and beacon report exist for a track,
the positional data is taken from the radar report since it is more accurate.
Multiple track correlations are resolved, when possible, after all reports in a
given sector have been received.

2-3

- - -

Preset
Beacon Hadar

DAS flVC Key Display
I
I Executive

board
Input

Key
boa rds

I

•
I

Test
Targe t

ConsoleBeacon Gene ra tor

Inpu t
 TYlle

wrl tel'Process

ing
 / \

I \ I
I

I Display/

l" T

Associative
I'rocessor

" -1 DisplaysI \ I Ou tpu t
I \ I

I I \.,
~ 11 Ii Ii

[{ada r

Ou tpu t

Beacon

Ou tpu t
l'.)
I Buffer Buffer

...... f

......
 I

(1)...... I
0>.... l::I co.......
 ...::
'-' x

:..:.: Sys tern FlightI
AP 0> ;-' AP IL Planl:: 0.. II Time

8 ;:s tOu t p~11 Inpu t Out Inpu t...::
;... ,~ 1) ,::..: ;-'

<::

"" H
:.I.: -I• I I V)1.-2 I -Software

SUb
rou ti ne

I' II 0
u 31~

Hardware or
Dn t3 Store

Figure ::~-::. Sysl~m Program Control and Data Flow

u<:: ;-' , ...
HI~I :=;
rl 0> 0.. et:: '-' ~ ~ ,,..'"'"I;-''" 12~~O
el~l~ rl l-i Track.;- f:-t 0
l:: I File<:: 0..

Flight
Plan

Data FlowStore I . --

Control

2.4.2 Automatic Track Initiation

Sensor reports which do not correlate with any track automatically initiate
new tracks. Two types of tracking were demonstrated at Knoxville:

1)	 Radar-Reinforced-Beacon Tracking - Tracks are automatically initiated
only by beacon reports but may be maintained by both radar and beacon
reports.

2)	 Radar Only Tracking - Tracks can be automatically initiated by radar
reports.

2.4.3 Track Smoothing and Prediction (Horizontal Plane)

The track smoothing and prediction computations proceed in parallel for all
tracks in the Ap track file. An 0 - P type tracker is used with seven active
firmness states and any selected number of coast states. Transition from one
track firmness state to another is based upon the previous state and the size
of the correlation box used on the current scan. Adaptivity is provided by
making the Q - P values a function of the track state. The AP used at Knoxville
has a capacity of 60 tracks.

2.4.4 Altitude Tracking

Altitude tracking makes use of the mode C reported altitude in a fixed para
meter Q - B tracker. The smoothing and prediction is such that altitude rates
to 12.5 feet/scan are obtained even though altitude is only reported to 100
feet.

2.4.5 Turn Detection

Turn detection is provided by comparing current scan X and Y velocity values
for each track with those from the fourth previous scan. If the difference is
over a threshold value, a turning track declaration is made. The heading
uncertainty values used in conflict prediction are increased for turning tracks.
A turn direction is also provided for the conflict resolution program performed
in the 1230.

2.4.6 Conflict Prediction

Three dimensional conflict prediction is performed based upon a 60 second look
ahead period, three mile horizontal separation for associated versus associated
conflicts, one mile horizontal separation for associated with non-associated
conflicts, and 500 feet vertical separation. A heading uncertainty tolerance
is introduced which is a function of aircraft velocity and turn status (turning
or non-turning). A fixed altitude rate uncertainty of 12.5 feet/scan is used.

2-5

2.4.6 (continued)

Two dimensional (X-Y plane only) conflict prediction was demonstrated at Knox
ville prior to demonstration of three dimensional prediction.

2.4.7 Conflict Resolution Verification

Conflict resolutions determined in the 1230 are verified in the AP to insure
that the suggested maneuver is safe and does not introduce additional conflicts.
The heading angles used in the conflict prediction process are changed to
encompass the suggested flight paths for the effected aircraft. This program
has been written and debugged but has not been demonstrated.

2.4.8 Associative Processor Programming Language

A special programming language called APPLE (Associative Processor Programming
Language) was developed to aid in programming the AP. It has a macro
instruction capability. One source statement (e.g. add fields - ADDF) generates
a sequence of machine instructions. The efficiency of APPLE (number of machine
instructions generated by APPLE versus those of an efficient programmer) is on
the order of 70 percent. A problem in writing efficient programs on the
Knoxville machine is that of partitioning the program into 256 word control
memory segments.

2.5 TESTS AND DEMONSTRATIONS

After the AP was installed and integrated with the 1230 by successfully con
ducting the acceptance test procedures on 29 and 30 June 1971, the evaluation
phase was begun. The purpose of this effort was to collect the data necessary
to evaluate beacon tracking, conflict detection, conflict resolution, and
radar tracking. The evaluation was thus done in an operational environment,
but the functions tested were not accepted for operational use by facility
personnel and were never used operationally.

The initial beacon tracking test was conducted on 21 July 1971 with two FAA
test aircraft flying overtake patterns and crossover patterns. On both patterns
there were numerous track drops and target swaps. Further testing was then
concluded since sufficient data had been obtained for further refinement of the
tracker.

After software modifications were made, a second tracking test was conducted
on 9 and 10 August 1971. This tracking test was conducted in two phases. In
the first phase conducted on 9 August, the system was operated in the beacon
tracking mode to insure that previously identified problems had been resolved.
All four patterns of the flight test plan were flown and tracking performance
was judged good on overtake patterns and reasonably good on crossover patterns.
The deviated course pattern was flown with very good results. In patterns
requiring flight over the radar origin, tracks were dropped when the aircraft

2-6

2.5 (continued)

were in the cone of silence. This pointed out the need for extending the track
holding capability. The second phase of this test was performed on 10 August,
using the radar backup mode of the tracker. This was the first time primary
radar correlation had been incorporated. The same test patterns were flown as
on the previous day and the tracker performed better than previously and appeared
to be adequate in utilizing the primary radar data for radar reinforced beacon
tracking.

After additional software modifications were made, a third tracking test was
conducted on 9 through 14 September.

On 8 September, single aircraft patterns were flown. Both the deviated course
and radar origin patterns were completed successfully. In order to test
primary radar-only track maintenance capability, the deviated course was flown
with the transponder off and excellent results were again obtained.

On 14 September, crossover patterns were flown in the beacon-only mode. As a
result of these tests, the tracker was judged to be suitable for operational
usage in the beacon-only mode.

On 2 December, a radar-only tracking test was conducted to demonstrate that the
AP could automatically initiate tracks on primary radar. The track initiation
and tracking properties were acceptable.

On 8 December, conflict detection with altitude tracking and turn detection
was demonstrated successfully.

A reprint of the complete description and critique of all the tracking tests
provided by the FAA can be found in section 15.

In addition to the tests described above, twelve presentations were conducted
for FAA officials, members of Congress, and other interested visitors.

2.6 PROBLEMS ENCOUNTERED

The normal difficulties were experienced in conducting the experiments at
Knoxville with R&D hardware. They are discussed for understanding of their
affect on the evaluation of the system.

The problems experienced became evident as the program progressed. One of these
was the limitation in processing capability of the AP hardware because it was a
laboratory model designed for evaluation of the arrays. The small array size
limited the tracking capacity to 60 tracks. A further limitation was the small
control memory in the AP. This resulted in programming difficulty, in that
each of the programs had to be divided into 256 instruction segments. Each
of these segments included both the application program and subroutines for that
segment. Because of this, program patches were difficult to effect. Nearly
every patch required program reassembly, which was done in Akron.

2-7

2.6 (continued)

A few hardware problems occurred in the AP system. These were corrected in
short time (seldom more than one day) and did not cause significant delays in
the program. A synchronization problem in the AP interface was found late in
the program. This intermittent condition was easily corrected, but did result
in a number of faults which at that time could not be attributed to either
hardware or software.

Shortcomings in the basic assembler existed during much of the program. The
problems existed in the subroutines for write and multiply. They were marginal
and were correctly executed most of the time. It is felt these errors were
responsible for a number of track swaps that were experienced by the controllers.
These marginal subroutines were identified and corrected during the final month
of the contract.

In the development of the tracking program, the choice of box sizes for beacon
and radar correlation and the a , Pweighting constants were based on simu
lation of the sensors. Use in the field resulted in a number of dropped and
swapped tracks until the sensor data could be evaluated and the parameters
changed. Other problems contributed to the swapping of tracks. Among these
were the existence of an offset between the radar and beacon reported positions,
and a substantial jump in beacon azimuth. These problems appear to have been
solved.

A problem which increased the workload of the controller involved beacon code
change for associated aircraft. In the system as designed, the code change
first requires the controller to change the status of an aircraft from
associated to non-associated by manually dropping data on that aircraft. A
solution to this problem involves storing the last reported code in an
additional field of the track word when it does not match the current established
code for the tracks. When this new code is repeated often enough to be consid
ered a legitimate change, it will become the new established code for the
tracks. Because of an anticipated requirement for conflict resolution, there
was no space in the AP to effect this desired modification. Since it has been
decided that resolution did not require the space saved in the AP word, this
change was implemented into the AP later in the tracking phase.

Noticeable changes in aircraft speed as displayed to the controller existed.
Some of the speed variations were attributable to the basic tracking algorithm
and improvements were made to correct this. Part of the problem was due to
the bias between radar and beacon reports and to the beacon azimuth jump.
These conditions were also remedied. The algorithm is designed to follow a
track through turns and missed reports, a task which it performed well.

The contract schedule was somewhal affected by system availability for program
debug. Since the Univac 1230 computer was used in the ARTS II system during the
day, only the third shift was available for debug of the new programs. Since
new programs were required for the 1230 as well as the AP, the third shift had
to be time shared between Univac and Gooflyear Aerospace.

2-8

2.6 (continued)

Program debugging was made more difficult because the simulated environment
could not be single stepped. Also, until late in the program, it was not
possible to recreate a given environment while using simulated traffic.

A large number of presentations were given. These had some affect on schedule
because they were not planned in the initial program. It is worth noting that
all of these presentations were performed as scheduled.

2-9

SECTION 3
TRACKING EVALUATION

3.1 GENERAL

The tracker performed adequately during the conflict detection and resolution
demonstration. Track swaps were not observed and coasting tracks were rare.
However, track jumps occurred commonly in the ll~ degree overlap area of the
sector where conflict prediction was performed.

3.2 SECTOR OVERLAP PROBLEM

Univac sends target reports in Univac's sector 5 (191~ degrees to 236~ degrees)
and Goodyear performs tracking by using reports in Goodyear's sector 5 (180
degrees to 225 degrees). Reports which lie between 225 degrees to 236~ degrees
are saved for the tracking sequence in Goodyear's sector 6 (225 to 270 degrees).
Conflict prediction is accomplished immediately after the tracking sequence in
sector 5 at the same point in time when reports in the overlap area must be
saved for tracking in sector 6. This seems to cause problems.

An example of an apparent problem within the particular sector overlap area
follows: one observed target jump had its predicted Y coordinate altered for
two scans and then remained constant until its reported coordinates traveled
outside the overlap area. The predicted X coordinate for this track was frozen
at its last good value which produced a track that jumped 2.5 miles in the
positive Y direction during one scan. The track then jumped 5.5 miles in the
positive Y direction on the next scan. The predicted track remained stationary
at this position in a coasting state and, after the proper number of coasting
scans, was dropped. When the reported position emerged from the ll~ degree
overlap area, a new track began and automatically acquired its old alphanumeric
tag which had been placed into tabular coast. The track then continued normally
until the end of the test. Similar situations were observed on all tracks in
this overlap area throughout the conflict detection and resolution demonstrations.

In mid-January, Goodyear reported a program fix for this track jump problem.
However, while collecting data for conflict prediction timing, track jumps
occurred randomly during one scan. This situation is presently being analyzed
during the continuation activity under the automatic VFR advisory program at
Knoxville.

3.3 LIVE TRACK PERFORMANCE

The tracker's performance on live tracks was observed during the final demon
strations for conflict prediction, conflict reSOlution, and radar only tracking.
The tracker's performance on test tracks (pure tracks and noise tracks) was
observed in mid-January. The following paragraphs describe the results of our
observations along with plots of some of the more interesting tracks.

3-1

3.3 (continued)

Radar-reinforced beacon tracking performance on live aircraft is shown in
figure 3-1. The predicted tracks closely followed the reported path of straight
flying aircraft. Turning tracks caused some sporadic fluctuations in the
veloci ty vectors, which jumped as much as 60 degrees from one scan to the next.
These vectors are derived from the XDOT and YOOT values and are calculated
using the current and the last smoothed position. One such vector jump is boxed
in figure 3-1. According to the beacon reports used for correlation, this
vector should not occur. The tracker did not lose the track in these turning
situations. The tracker's performance on live radar-only targets is shown in
figure 3-2. The radar-only demonstration showed sporadic coasting of tracks.
Examination of the data taken shows radar reports missing approximately twenty
five percent of the time. Further study shows that the missing reports are
not the result of a shift in azimuth by the radar acquisition system. Noisy
radar conditions at demonstration time may have caused the threshold levels to
be set such that good reports were obliterated at times. The observed target
coasting was due to multiple missing reports and not to loss of track by the
tracker.

3.4 TEST TRACK PERFORMANCE

Tracker performance was also observed after the demonstrations using target
generator-driven test tracks both with and without noise. Each track (one
with and one without noise) was driven at a constant 250 knot velocity
through exactly the same path as follows: first straight line flight, then
a 90 degree left turn at 1.25 degrees per second, then straight line flight,
then 45 degree left turn at 1.25 degrees per second, followed by a 45 degree
right turn at 1.25 degrees per second. and finally straight line flight.

The tracker's performance on the test track without noise is shown in figure
3-3. The predicted track followed the true position with a maximum positional
error of .53 nautical miles with an average positional error of .16 nautical
miles. The displayed velocity, derived from the tracker's XDOT and YOOT,
varied from the true velocity by a maximum of 40 knots with an average deviation
of 19 knots. Jumps in the velocity vector of as much as 30 degrees were
observed occasionally during the turns. The tracker did not lose track in
these turning situations.

The tracker's performance on the test track with noise added is shown in
figure 3-4. The track follows the true position with a maximum positional
error of .5 nautical miles. The displayed velocity derived from the
tracker's XDOT and YOOT varied from the true velocity by a maximum of 54
knots with an average deviation of 20 knots. Jumps in the velocity vector
of as much as 30 degrees were twice as abundant as those observed on the
target without noise. The tracker did not lose track in these turning
situations.

3-2

--

tiTJ~ " ++ + ++
H'~ .~.~;,

~r .
..1 _1-';'. ~-i '1 r '1

1
~4~#nt;~~

....,......,.
T·'lt·l

~ j.

,..,.~

m +
" :tt:

++.;. ·++-

.. +-',:wm"t
'~li lIi::fitiE ~

R'!'
~-t - .• H

.j..-t~ + ..• ~."

.
"!:t::" ~ .~J:l:t:rm-tljgr: ,.::t

o

W
I
W

. 'j'f'+f'Hlfl:HtHtrS~ll:~*Hi;t1-t~:.;t:t

j

... +1";'

+HitTt ' ... ~ r·

mm

.....

++-, ~

1~

,t

.....
~t~3tt

.....

t-f~

~-\;..,

:.::u..
~-~

-.o~~ttt
"1t-l-.o·

±tt-h-

"t~~m
t:t:l#

Direction\

Ut~'"

':H

Ai rcraft

';'L~'+-']'+++0',-- •• ';:t'a;-+-"- .tt;~ ~ ;- :1

'.+-ft·
,~.~ ·-Utili'; "1' 'I" f.-; -i.h + .. t.... _

+1 ~+ !-~-;: :11

-1
..... Iix ++-+t

t·, -.......
+ -+
... t;+:t4-+H++-+-I--"·'" ".

Beacon Reports
."

~t.:AP Predictions T·.~~P=~~-r
.' .. t~@:-t~4:t:l:J:P±:t$l-· ~

"crt! !+-H, +:n:m.+p H -- ~ YNI.•...
:1

,,...
+ H·-l-'

-t. "-r '@.+-t-.o.-. '-++ 1 ;..1-1
_ r . ' ~+t+t++t~ t lL~-L '~·tt +-,

..................--t.
-+-t -~++ ;...fiiF-fd
I' -~

t·-

.. -M-.' cr.;.. t tI; :1:.;:: 1:- h-I'~'+ ~tt_r:, .. 1. -L:. ~R: : h;-1 ::;:l.l t:::4tn.-- --:ti
.

~t ~~:: ~ E ..+
i-.....'.,.

IW-f+H4~ .a:!.::tHtl ' 1: -2
-4 -3 -2 -1•'WM

Figure 3-1. Track (Live Target)

t

fit H
;1 o
f.., .l--+

42

41

40

....-'t39

+

+1±+P-1
..j.+.J..4- •

38

37

36

++

35

34
o 2 ')

d 4

Figure Live Radar Tracking Demonstration

3-4

1

.f

r1 • . r : r36

,,, tH
It:

•

- t->-,+- j... t-
-I-- I-t-

,;- f

hIT f

t

J.

:t
.j

. (i

i' •
I·

t-+-

_ -

.~

••----~. AP

7

t

f
t-

y

..
. ~- ...

H 4, 1

i~'l H t~±1 -r+
 . +~.35

+
... i 1:"'+++}l±
, • t. I H+H.;I~I+it

< h
1 ,tt ~. 1-+

.1,

j ,

t

.it:-''ji ; " .
t·

t<

+- T

34

Aircraft Direction

:' t-

True Posi tions

ht++1++tmfttttttH +
Predictions -rt ...

(No Noise Added)
~:. H

33
6 8

I • X

Figure 3-3. Test Target (No Noise) (Sheet 1 of 3)

3-5

33

32

+

INI; Nojsd (Sheet 2 of 3)

t.ol

,
t

+

8

H

+

Aircraft Direction

x6

+

i't r ,
+r

j

+ .
+

y

" :)1

31

30

,~

.J

-+_-I.~

J.~~i ~* -::::.F

-or

29

3-11

'. +

"
28 F

1-4

.,t

Y r f
t

"
J

rf'

ft

Aircraft Direction~
_ --	True Posi tions

• •	 AP Predictions

(No Noise Added) 26

27 It f

t+ "

25
6 x 7

~ 8

Figure 3-3. Test Target
I

(No Noise) (Sheet 3 of 3)

3-7

37

36
.~,
+

+ 1- +.

y
~t 5:::
~1 • +t.:

H ~I ,'+t~-r.:r+ "'-'
"'-+ 1+1-+.

h

t:1ii,:. + -t,

35 t •

"+

t
" .~

r •
H

1" "

,...ttt-t :t- .t
-+-t+t .tlIT ,
~~rtt~1:iti: t: ,"1 -<;~ , • "l::J:tr+ tt'34

'1l ~tt·tHf L
....... +.! l' :±
 Aircraft Direction" ,t

f •

-- True Positions t:L, -
,1 1:', ~tHr tf l$

h TtI· t l - 1 ••----~. AP Predictions
Hi t +' rn-iJt

"+ '" i-- _·tt! ttl (Noise Added)

t-~rt,-+·

It

~tt+ ~l"$f ...

l
33

6

•
7 8I X

~ Figure 3.,4
0 (Sheet 1 of 3)Test Target (Noise Added)

3-8

33

32

y

t 11 .
-\... ~ t

31

1 .1

30
t

~ Aircraft Direction

- - _. True Posi ti()ns

• • AP Predictions

(Noise Added)

29
6 \

\ 8
\ X

Figure 3-4. Test Target (Noise Added) (Sheet 2 of 3)

7

3-9

I

• t
T

4 ,-<- +'

••---•• AP Predictions

y

28

27

26

- __ True Positions

+

t: .t

;r

f

~l"~.tH ~'

,.,

. j.

t-+'"+

...... t-'

f

T

8J7 X I6
25

Figure 3-·4. Test Target (Noise Added) (Sheet 3 of 3)

3-10

3.4 (continued)

It would appear from the two previous paragraphs that positional accuracy is
better on noisy tracks than on tracks without noise. Since noise generation
is random for each report and not dependent on the preceding report, and also
since this flight pattern was flown only once, it is reasonable to assume
that the noise generated during the worst-case turn allowed the tracker to be
more accurate at that point. If a number of runs had been made, maximum
deviations would have appeared which were greater than the maximum deviation
for the track without noise.

Except for the track jumps, which appear to be due to unsolved program bugs, the
AP tracker in Knoxville performs within acceptable boundaries for straight-
line Q, ~ trackers.

3.5 AP TRACKER TIMING

The worst case timing for the AP tracking sequence occurs when executing radar
reinforced beacon tracking with at least two reports per track (one beacon
report and one radar report). The matrix of timing data shown in table 3-1
was acquired using up to 40 test tracks in one track sector with one beacon and
one radar report per track. The timing data Shows that tracking requires
approximately 2 milliseconds per track, for the Knoxville AP (up to 60 track
maximum).

3-11

TJ.BLE 3-1. ~ TRACKER TDUNG DATA

DATA
OATEGORIES

RiADJR&
BFAOON
REPORTS 0-5 TRKS 6-10 TRKS

DATA

11-15 TRKS 16-20 TRKS 21-30 TRKS 31-40 TRKS

No. SAMPLES
AVG TIME
MIN TIME
MAX TIME

0-5
7657

06.5
005
013

103
07.5

006
011

NO. SJAMPLES
AVG TIME
MIN TIME
MAX TIME

6-10
123
12.7

010
016

082
11.6

010
016

NO. SAMPLES
AVG TIME
MIN TIME
MAX TIME

11-15
012

15.5
015
016

052
17.2

015
020

NO. SJAMPLES
AVG TIME
MIN TIME
MAX: TIME

NO. SAMPLES
AVG TIME
MIN TIME
MAX TIME

16-25
1

I

I
26-50

089
22.1

019
025

057
26.2

022
029

100
32.0

029
037

102
39.1

030
045

168
48.1

037
055

NO. SAMPLES
AVG TIME
MIN TIME
MAX TIME

>50
211

63.0
054
074

133
71.6

067
079

All times in milliseconds

[1

3-12

SECTION 4

ALTITUDE TRACKING, TURN DETECTION, AND CONFLICT DETECTION ANALYSIS

4.1 GENERAL

The performance of the altitude tracking, turn detection, and conflict detection
programs was observed during the final conflict resolution demonstration on 14
December 1971. Both live aircraft and test targets were observed. The evalu
ation is based on the reduced data obtained during the first half-hour of the
demonstration.

No comment can be made concerning performance of the conflict detection function
in an operational environm~nt, as the program was never scrutinized in an
operational environment. Conflict detection was tested by flying test targets
through a variety of conflict scenarios. In the scenarios, the test targets fly
converging paths which include turns, overtakes, and angular intersections.
Targets of opportunity also entered the system and were observed to be in
conflict with the test targets.

The primary concern in evaluating the conflict detection function was to have
a conflict predicted for all test targets flying a collision course. Having the
conflicts predicted at exactly the proper time was of secondary concern. Also,
the uncertainty allowances developed for heading and velocity make it difficult
to determine exactly when the conflict should be predicted.

The conflict detection demonstration occurred.on 8 December 1971 and all planned
scenario conflicts were predicted as expected. Numerous conflicts with live
targets were also observed. Two problems with the tracker occurred during the
demonstration: a track in sector 5 jumped sporadically, and question marks
appeared, indicating duplicate tracks. A problem also exists with the altitude
separation criteria used in the conflict prediction algorithm. With the
addition of altitude tracking, the altitude separation parameter for conflict
was changed from 500 feet to 1100 feet to allow for altimeter inaccuracy and
computational errors. This standard causes two tracks flying with a constant
1100 foot separation to be determined to be in conflict if the X-Y criteria is
satisfied. Using this standard will undoubtedly cause many more conflicts to
be predicted than realistically exist.

Altitude tracking was introduced as an add-on function to the conflict detec
tion effort originally proposed for Knoxville. Admittedly, conflict detection
using only reported altitude, without the ability to project this information,
would also result in many false alarms. The alternative, then, is to look more
closely at the altitude tracking parameters and the AP algorithm to determine
how much improvement can be expected within the constraints of the current
Knoxville system.

4-1

4.2 ALTITUDE TRACKING PERFORMANCE ANALYSIS

Altitude tracking performance on live tracks is shown in figure 4-1. Reported
altitude is plotted scan-by-scan along with the altitude prediction. Maximum
error in predicting the altitude change is 100 feet, which is the granularity
of the altitude reporting capability. Altitude reports with validity less than
3 are not u~ed and will not affect the altitude prediction.

Altitude tracking performance on test tracks is shown in figure 4-2. Reported
altitude is plotted scan-by-scan along with the altitude prediction. The
plot in the figure shows a test track starting to climb at constant 100 ft/scan
from level flight. The initial change causes maximum errors of 124 feet. The
error then decreases to 12.5 feet, which is the granularity of the altitude
tracker. However, if this climb rate continues, the altitude tracking will not
reach the exact reported altitude until the aircraft levels off and the altitude
remains constant. This 12.5 foot error will not significantly affect the con
flict prediction program because the uncertainty parameters are increased when
ever the aircraft's altitude is changing.

4.3 TURN DETECTION ALGORITHM ANALYSIS

Turn detection as currently performed within the Goodyear associative processor
utilizes threshold tests to determine if any aircraft within the track file has
negotiated a turn from scan to scan.

As shown in the turn detection flowchart in section 6, the scan to scan variation
(~X and QY) of the track's velocity vector components Xand Yare tested ag~inst
a s¥s!em parameter THRS, which has been selected as 35 knots. If either IQXI
or 16yI is greate~ than 35 knots, then the track is defined as turning and
further tests are performed to determine the direction of turn.

Thus, any track where velocity increases or decreases by 35 knots in four
seconds will be defined as turning. Any aircraft heading eigher due north,
south, east, or west that changes velocity by more than 35 knots will be
defined as a turning track; any aircraft flying in other than these cardinal
directions that changes velocity enough so that the X or Y coordinate of the
Xor Yexceeds 35 knots will also be defined as turning.

It is felt that tests based upon determining the algebraic sign of the quantity,

Y4 ~ , where.
X4 ~

track's current X, Y velocityX4 ' Y4 =

track's X, Y velocity of the past scan,~, ~=

4-2

136

'~J.i

134
'-+

>-t-+t ';"+.J.:::nr
"i-, . '"",,

132
.....,:.4++.,;_ ~

+;~-.~
H~ ~F

.;.,130 _.,,!i:.11'.
:+

128

:to

~
1-3
H 126 t+1-~~ +~

.+ .-....~
0:.-i

t'!] ; ... r

H 124 Aircraft Direction
:z \

1:3 -- - Altitude Report VA = 3

H

:z 122 .-+-......l..,. 0 ...
I :::c • AP Prediction•
"" t'!]0

en 120
0 Altitude Reports VA = 2
~ ':"~ * (Not Used for Prediction)
~
t'!] 118 '. i it;±i:H1L~

l-rtF"'''}~
L-l-t.i.';"", .1.,:EiitaE! ~ 116

+l ~ l. 't

+-f-+-t"t-ttt+

t·+Htti- J ...H-l4 ...~·r
114 .. ~~.···"1· '::i+1Pa0.ttP-t-U. ~

+-~ I ~ ,+.+t: 0H-:r+t1;t:::::tt:t"t+ .
,.j

112 _w...
; , r

u:i±it+..ti.:lit.i:±i:triill:.+

110
1 2 3 4 5 6 7 8 9 10 11 1213 14 15 1617 18 192021 22 2324252627 2829 303132 333435 3637 38 394041

SCAN NUMBER

Figure 4-1. Altitude Tracking (Live Target)

32

31

30

29
it

rt:±iit-tJ±±J '

28

27
:J:>

L'

t---3
H 26
~
0
trl

H 25:z

a
w::... :z
I 0 24

w::... ::0
trl
0
CfJ

23

i+t+~ .+

.J.4+H

'4+± i. T

~-+

1
i t+ +FFt++-'-···~
+

t:

+ -+ •

ttt;li t 7tr
'-+ ...~a:

I+l-+I-iHII! i 11111111' I,! At t~~ . .. ~: :t~t :4"i::;:t;-~
-+rl-+- --t ,+0.+ ..U41 ••+-j l-.,

0
~

T+ '-+
~

22 ~I-:
'-'

trl

.trl .1.+' 'l"

t---3 .t.t+ :-r -t-r-Tt1-
+

.;. ++
21

---r+........~+

r ·w ..'t20
! - - - Altitude Repol"·ts

19 'rl
AP Prediction

~r...,..-r~Hlfl+f ...,-.

..;.-~1-·

18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

SCAN NUMBER

Figure 4-2. Altitude Tracking (Test Target)

4.3 (continued)

would resolve these discrepancies. This does require a divide but is required
only once per scan on aircraft indicating a turn, and therefore should not
constitute too great an impact on the turn detection sequence in the AP.

4.4 TURN DETECTION PERFORMANCE ANALYSIS

Turn detection performance on live tracks is shown in figure 4-3. This figure
shows a typical live track flying a straight course. The beacon reports do not
appear to be excessively noisy on this track. In the representative twenty
scans that are plotted, six scans gave left turn indications, twelve scans gave
right turn indications, and only two scans showed no turns. In addition, the
turn indications are not consistent with the predicted heading. It appears
that only a slight deviation in aircraft movement immediately warrants turning
status from the program.

Sporadic conflicts could be predicted as a result of these turn indications
because the uncertainty angle around the relative velocity is doubled for
turning tracks.

Turn detection performance on pure test tracks is generally acceptable with the
exception of at least one case, shown in figure 4-4. The plotted track shows
pure, straight-line beacon reports with straight-line tracking varying only in
velocity. Of fifteen scans of straight line tracking, eleven scans indicate
a left turning condition. This is an example of the situation discussed in
4.3 above. ..

/ -/

4.5 CONFLICT DETECTION ALGORITHM ANALYSIS

A brief summary of algorithm operation is provided in section 8, followed by
an evaluation of several features and limitations. The algorithm is described
in greater detail in section 6 (conflict prediction sequence).

4.6 CONFLICT DETECTION PERFORMANCE ANALYSIS

The conflict detection analysis consists of an examination of all active tracks
to determine if any violate a minimum separation criteria. The conflict
criteria established is as follows:

Type 1 - Three mile separation within a 60-second look-ahead time.
Altitude data, if complete, indicates a separation of less
than 500 feet within a 60-second look-ahead time. Both
aircraft are associated.

Type 2 - One mile separation wihin a 60-second look-ahead time.

Altitude data is incomplete.

One aircraft is associated.

4-5

+....

lit17 nmmpT It'4

T+

+P-l

t-f
~+

++

i-+-i..... T --_

h
T

16

,.+

->

.4
I
0'

12

15

14

13

.-'

H
-'

1::tt..--t.~
+•-,

4

-+

+tW:'~

::;.....'T"

-h-.

, ; 'i " ' H+J liili 't+-"" "~:i+ =C;:r ,~, it" CL' -'

~:' :+ •. t :t!H::EtJ t.:+ I' ±+:httf:tt: .:: Hi; .+ +n~
u ,I· '·H--i:tti:;+ ~L't' t ~.,~. '" -+ + q.L ~ +-+ f·<, iH. '-Hr +. t t. t·· .--t t ->- + ' i..-Lj

+1 .. , +++-.. t-H-t t - .• -+-' r ...-.+ 1" • _ + 1.++ + ~';'-I-• •;; j ,r, rHt ~. '-L t·', ~ .++.:Ef ' ct" -1-1 -+-; • "4 ,-+4 ±ttt.~"

mtit t'," ,'4-'. I ,,~tc: # tIt· ·t-;~ t--+ ,;1+*+, . ~a1' +.'' .++ :11ti ' -t-t <-~-rt Ht-li' -++ ~-.....,.. ntJ ;-'-:',' r-l-,r ~...,., ---ol-t ~-"''''H---H'"+ -t . HU.+ l-l-+-o. ::-.!j1::.+
--. +T!+ ·_t~:-.. ~..: ::.1. f-trt "'tt1 0=t~: ::-~, :+i!... ~tr 11: ~ ~t--+ ~ 1-:: "!.. 1 tti:: T'+:' "',i

rtW..--I.",H-H,Sifi: E+.~t. it ,R''1' iE" 1-: i . +-to ;.+.. ;-h-'-fH-L+-,-,-:r.ii'lC, T+' ··-t d-l 'IDTI . +. t--+- ~. ;...~. J... t-1"4.·....1.. J-~ -l---++-l- -r-,aoir.:::I ","-J,..;-l-..... ++.•-+-+-O -~t 1

tt~:-jr:: ~ _...+ ~1: ttt· t-:+~-1"- ' l~.t-~+- .. L i +t1:,W=1-~l ff i-t-i:t~

:lit. ~.~,-!-, 1th'1 :.,:. ,q I·h+ ·,1 ·-+-±+t fB: tfi1n :I: .f-tt.; ~"r:ftf m·'t+ .~t- ~+. -rt -Mt-t... + l::11.~ :..1'::'++++
"1 +-oft + . rtt ~+- --1-++4 t- T , . ..j. ~.;l ..

~ llil - ." IF+ H-" , L H-+' .;..,~ ;-J++ 'ES
.--Ii .'-': 'f-!. t· ~t+ -H-t . t· :+:i+;' ::ri:; +t-', ++"':' ::.r::u1-t +-t r :-trl t+t t.t-+ -= t ~±i""' .. r+-~" :.t.+ti -I1~~' ::.:+ .++--W-J

,ff"·,H· -ff, 1 +l+-l- -t'--t ' '''', • :g"j' 't,·, ,., "'1'· .:-t1' '''' -ft"t'·+t-+la-t-+ +t-+ ~,. H..., ,,-'-, ·~t+ ~r -+-., ...,. 'cr'.· '.'1-'+ ~ .": ' -',:lTi'
~-4-t -~.+ :~lL-';:~: ::U:.+..: -: ±+~ +~'-;:r :-... :~ +-!1"1. i. . >--++·Il
p.,++.. '4+'; .,-It' ,+' .,. :t:' ::;-t+"".l-'. tIFt .+ :rr-+=j

d--t+-H-"1it ~~ ? ~ .: "t~: ~-~"t~ ~ +til
, ::t±.+++t;i ~ , -riE: ~!-li Hi:; ::;:;i +Pl.J-ml

.. .j...W-. ~Ut 1 ~~ ... -4... ·-:t±·t ·/.--H ·-++tttttrt

ill'::+: -' '+t ++11 +t" ""t.'d:+'+ '" ,_. t_iC •••. ' .,.--1 '1", -+
. . t4 . _-'-.. 1 + . '. tt~ -r--+++ I!1.l !..... t-:-:-i ; t!~ t":;; : ++4 -i-++ .f H-I--J .1'1' +~ '.+ f=+.t±±:t .iti::FL .i, -l.,.;t _·tt ,t., H-J. " t '.,+.......=tl

, .-H-:± IIh· ,,; H-f -T+ "H.'- ++----, iitt++-' d"," ;'--T< -+-f. .+ '++-1 'r'-'.' '.... :;, '- w...: .itt~+
f.-+~.:1+H: l-fti-t-h'~ +:t..:t:::~i-tt o. +rr+1 ~ !·r+:+.1~_::tt'::_T:~'t + l-+ :+ :r'~
t+t-+' ~:....t-+ ':'1,':' , -to, -4 -t-~++-;'·lr.,...-+ 0 --t--f-+~ :_1 :::tr-4 ~.l.; ...-.+. .

~
~ t-h'rI~ ,'w ,-,... "-'"~" ,t· ~H+ '1 :-t" '~i--''----l"" ++-, +..j,·W-W--L-iI~ .;..uu·l-~---:+:!: 4-+-+1'1-.'. "r'- '+-Ie +++-". "". T--t-t • '~.'4'+ r'-!- ,~'+-i:.i+. ,J'" +-+., ·,!-i--i-+'r ~~'- ,+ •. h--f

.. ; -::.1.4 o;.ti >-::T: t'~o or:=+. tR'±-'" tit t:;tt :+-+~ T_t-+lTt ~L -r'~~~:t ·~:t;: Ttt 1m

ijl.·· '-t t'T' • , -. . + . +~.,~ ;u:. -im .+:;:;,m 1E--+'~':i, U;:;"f++'!:iiie:t:"r l:tt~ ,f~.: +:;:::tE' t+t ~++ t i;1::rm:;:r.t-1- ,;-'
-+ ~ + ··":'+4 l~-r -i--:-H +~+ '!' 1'. ++ ., I+: -r++-f -I ·,

o+r'11ffij.' -'-~. '. ,. r:-:;:-.,• ''-h •. '++. Il~.I. 1.:::t -+t·t T-.--+-t :.-t+-t j--tt-' 1" ::!it; f-iLt riG +H ni"+ -+-+++

/

R =

L =

--
AP Predictions

Left Turn Indicated

Aircraft Di~ection

Beacon Reports

Right Turn Indicated

26 2719 20 21 22 23 24 25

Figure 4-3. Turn Detection (Live Target)

Ii
++

...

i

:t:tfff-7 .
d'+H++

~
It :amy

A
I
-.l

-8 • -- I •~

tf--l-+ ... 4 Aircraft Direction4_

:r~ f" ,i.~1 ... r
~ .• . ..

@- ~ Beacon Reports
,t'

~ . . • • AP Predictions ~
t .

~ +. .4i. .j--r- ..+ -: -....1. ..t . ~:~ t . . . L = Left Turn Indication •.. + - 't'"t-··

, ~··T t. ..,... . +::-~ . t ' , ,

.. ...j .~ .. I-9
-3 -2 -1 o

x

FIgure 4-4. Turn Detection (Test Target)

1

4.6 (continued)

Type 3 - One mile separation within a 60-second look-ahead time.
Altitude data is complete and indicates a separation of less
than 500 feet within a 60-second look-ahead time.
One aircraft is associated.

Although all the conflicts displayed during the detection demonstration
appeared legitimate, many other conflicts were detected which were not dis
played because the tracks involved were both unassociated. This condition
existed when live aircraft were in the area, and the resulting conflicts were
not displayed because of the 1230 filtering action based on type definition.
However, they are reported by the AP and are, therefore, of importance here.
An examination of the reduced data is necessary to evaluate all conflicts pairs
which were predicted. All data pertinent to the definition of a conflict was
extracted and examined in detail. The following is a discussion of the data
analysis.

4.6.1 Questionable Conflicts

Five questionable conflict areas were discovered. Figures 4-5, 4-7, 4-8, 4-9,
and 4-11 represent the track's projected path during this time period. All
tracks involved were unassociated; therefore, these conflicts were not displayed.

The vectors drawn on each figure represent the track's velocity projected for
60-seconds from its predicted position along the predicted heading. ~~ in each
figure is the uncertainty angle placed around the relative bearing between the
reference and the match tracks. This angle is constructed by"drawing a line
from the match track position tangent to the four-mile separation circle around
the reference track. 68 in each figure is the uncertainty angle placed around
the relative velocity vector. Since the relative velocity in all the figures
is greater than 200 knots, a ~e of approximately 7~ degrees for straight tracks
and 15 degrees for turning tracks should be used. A discussion of these areas
folloWS.

The two tracks in figure 4-5 are both live targets. Target A has no altitude
data and target B has good altitude data. Scans 2 and 3 are the only conflicts
predicted for these two tracks, yet an "eyeball" check of the projected paths
indicates that scans 4 and 5 should be considered more of a conflict situation
than scans 2 and 3. Figure 4-6 is a graphic representation of a Goodyear
conflict prediction algorithm applied to scan 4 of this case: ~~ is the
uncertainty angle placed around the relative bearing, BA; A8 is the maximum
uncertainty angle which could be placed around the relative velocity vector,
BV, and not satisfy the angular conflict criteria; ~~ is approximately 15
degrees and A8 is approximately 3 degrees. In examining figure 4-6, it is
obvious that if a ~8 larger than 3 degrees were used in this computation, the
uncertainty angles 6~ and 68 would defini tely overlap, thus satisfying the
angular conflict criteria. Since both tracks are turning, a ~8 of 15 degrees
should be used in the Goodyear conflict algorithm. No explanation can be given
for the angular conflict criteria not being satisfied. The length of the

4-8

16

14

12

10

8

t .+

:-t:'+
e 1- .

,
ltii r_

e
Jtt

-t

6

4

Scan No.

1
2
3
4
5

Conflict

No
Yes
Yes
No
No

2

o

(-3,-2) o 2

Figure 4-5.
4 6 8

Velocity Projected (Live Targets)

4-9

16

14
+

12

10
t +! t

+

t
"~fr n~ 'If

t -r ~ + +- I ".
~, HilJtt1 ti t

-,

I
n,

ift' :1'
'I:

1.1

..
K~f1 It ~t+ ttl 1±I:t ttt t

h' n' if ftft1 . ~~f-<
-1. H

tt irE ;1 :i.J i't ,

.ot "Jf
J-t'-" -11- rt:t:f' ' • • ;n- r'"H-+

't '2 [1 It l-
1,.

"

t

tfF •:it

rf'
,.,t

,
t r

of:'
H ~H~

~

'~ir +
~. H- . , H

:t r l., ff ffi • t
-+- +

+ "

t
1= ~ r

I: rt

• ~l:t 1
~'+

t
'-

-t

..

): 4-t
" _t

!:
I:l: It ~ i I

~,

ffftlltt
l-

"1 m i 1++
tl 1:1U'"

~

+
-e -,':j U 1ft 1

8 ' ' ':tit,' H utut , Hh ..
~; ~t::l " ~ +il + ..-, +

e
<- tL-I.~ ~- , tlt:t .+-.. .. '

~ -t):t

++

6
 /'

•"'t Ii (

;i:;

" tl t

'I
4 . I

rt, .
t +u., -,

1

2

o

10o 246 8(-3, -2)
Figure 4-6. Graphic Analysis

4-10

4.6.1 (continued)

relative velocity vector BV measured along the relative bearing BA creates line
segment BS, which is definitely withing the four mile separation, thus satisfying
the distance criteria.

In conclusion, this pair of targets appears to be in conflict this scan and will
be for several succeeding ones, y~!, no conflict was reported by the AP. There
is no apparent explanation for this inconsistency in conflict prediction. All
conflict criteria have been examined and definitely indicate a conflict situa
tion.

In figure 4-7, track B is a test target with no altitude. Track A is a live
target with no altitude. These tracks were in conflict for the five scans
previous to scan 1 and no conflicts were predicted after scan 5. Assuming
scan 3 is the proper time to drop the conflict for these tracks, a conflict
prediction for scans 4 and 5 is abnormal. The track's projection for these
scans place the two aircraft at a greater separation than scan 3, yet a conflict
is predicted. A thorough examination of the pertinent data involved reveals
no explanation for this inconsistency.

In figure 4-8, track A is a live target with good altitude data. Track B is
a test target with no altitude data. These tracks are predicted to be in
conflict for four scans following scan 7. No conflict is predicted prior to
scan 3. The lack of conflict for scans 4 and 5 is inconsistent with the pre
diction for scans 3, 6, and 7.

Figure 4-9 depicts a single conflict between two live targets. No previous or
later conflict is predicted for these targets. Track A has good altitude data
and track B has no altitude data. Figure 4-10 is a graphic representation of
the Goodyear conflict prediction algorithm applied to scan 3 of this situation.
BV is the relative velocity vector. The length of this vector measured along
the relative bearing, AB, is line segment BS, which is definitely within the
four mile miss distance. t:lJ is the uncertainty angle around the relative
bearing, AB. AS is the minimum uncertainty angle which could be placed around
the relative velocity vector, BV, and still satisfy the angular conflict cri
teria. By measurement, S can be determined to be approximately 27 degrees. No
turn was detected by the AP for this scan, so a 6 of ~ degrees should have
been used. Because the conflict was predicted, the angular criteria must have
been satisfied. No explanation is available as to why such a large S was used.

Figure 4-11 depicts another situation where a single conflict is predicted for
two tracks. No conflict is predicted other than for scan 2. Track B is a test
target with good attitude data. Track A is a live target with no altitude data.
This situation also indicates that rather large uncertainty angles must have
been used in order for a conflict to be predicted.

In summary, there appear to be "holes" in the conflict detection performance
which do not appear consistent with the detection algorithm (the algorithm must
be assumed to be continuous for all airspace). All pertinent data used for

4-11

-4 -2 o 2

j.'

j'

• + .
-I

~ ;.;.

... ,. r
+ +-t t-

+
+
.,~ t

1:i+

E .
f [~tJ'".......-1-

+4..-
H

a t~

-H-

'-j

;+

-6

-8

.,.., ··'t .
+P
j' -10

..,.., t

t

1.1- +

" .t 12

j~ .I' .
t: -t- -r t tt,- :u +

j. +

.!-"t

~+- '-t +

t , t-

L
.' , rn Jt·
" 1 Hi

.. t

t
+ 0 ~+ j'''''

.. l t
-I"

-t~
+

t''$ •

H
tt ~

.+1.

Sean No. Conn iet +

1 Yes

2 Yes

3 No

4 Yes

5 Yes

6 No

Figure 4-7. Live and Test Target (No Altitude Data)

4-12

(7,-1) 8 10 12 14 16 18 20

-2

-4

-6

-8
I
I

II

-10

-12

-14

J t • .L.'·';

Figure 4-8. Live and 'rest Target (.A 'With Altitude Data)

4-13

-40 -38 -36 -34 -32 -30 -28 (-27 -13)

-14

-16

-18

-20

-22

-24

-26

t~
t1·t. I

Scan No. Confl ic t

1
2
3
4
5

No
No
Yes
No
No

Figure 4-9. Live Targets (A with Altitude Data)

4-14

-42 -40 -36 -34 -32 -30 -28 {-27

-14

-16

-18

+ t

-20

+I

t +

F

-22

-24

-26

-28

Figure 4-10. Graphic Analysis

4-15

26

, "

24): .

22

20

18
-'j:

16 ,~

-t+" rt

Scan No. Conflict

1 No
2 Yes14
3 No
4 No
5 No

o 2 4 6 8.
Figure 4-11. Live and Test Target (B with Altitude Dat~)

4-16

4.6.1 (continued)

defining a conflict was available and was examined in an attempt to find an
explanation for the inconsistencies discussed here. No explanation can be
found to SUppOlt an assumption that there is a bug in the program or an inter
mittent hardware problem that caused these anolamies.

4.6.2 AP Conflict Sequence Timing

The worst case timing for the AP conflict prediction sequence occurs when the
ratio of conflict to tracks is very low. The matrix of timing data shown in
Table 4-1 was acquired using up to 40 test tracks. Also, as the ratio of
conflicts to tracks raises, the average time required within each track category
goes down. This happens because matching tracks are not used as future reference
tracks, thus eliminating one logic loop for each conflict found. Analysis of
the table shows that worst case time for conflict detection varies linearly with
number of tracks and the sequence requires about 10 milliseconds per track.
This is the Knoxville system time with up to 50 tracks included in the sample.

4-17

TABLE 4-1. AP CONFLICT PREDICTION TIMING DATA

DATA 0-5 6-10CATEGORIES CONFLICTS TRKS TRKS

DATA

TRKS TRKS
21-30
TRKS

31-40
TRKS

41-50
TRKS

NO. SAMPLES 28 100 115 018 033 003 015
AVG. TIME 0-3 38.2 70.8 105.9 173.6 241.8 350.7 372.0
MIN TIME 005 041 068 164 188 319 362
MAX TIME 051 097 138 191 270 387 387

NO. SAMPLES 006 097 003 005 000 008
AVG TIME 4-6 53.5 96.9 113.3 238.8 00.0 358.6
MIN TIME 051 068 090 233 000 348
MAX TIME 062 119 125 244 000 366

NO. SAMPLES 065 016 001 001 008
AVG TIME 7-9 88.2 110.8 231.0 309.0 341.5
MIN TIME 069 091 231 309 316
MAX TIME 114 136 231 309 354

NO. SAMPLES 013 062 003 002 010
AVG TIME 10-12 85.8 105.4 134.7 287.0 336.7
MIN TIME 071 080 130 284 326
MAX TIME 099 134 138 290 346

NO. SAMPLES 029 024 018 026
AVG TIME 13-15 110.1 128.9 217.2 327.9
MIN TIME 088 092 256 307
MAX TIME 128 165 291 348

NO. SAMPLES 115 241 007
AVG TIME 15 129.1 182.8 320.1
MIN TIME 090 113 308
MAX TIME 197 256 330

NOTE: ALL TIMES IN MILLISECONDS

4-18

SECTION 5

CONFLICT RESOLUTION ANALYSIS

5.1 RECHECK FUNCTION

Before evaluating the performance of conflict resolution in detail, some
general comments about this function, as observed at Knoxville, are required,
beginning with the concept of the recheck function. The recheck function is
defined as running the resolution command through AP conflict detection
algorithm to determine 1) that the conflict is indeed resolved by the suggested
maneuver, and 2) that new conflicts are not created by this maneuver. The
Knoxville evaluation efforts did not validate this function because resolution
commands were not enacted; they were simply examined for their credibility
based on system traffic at the time of issuance. Had the recheck function been
implemented, it would have been necessary to evaluate this function by enacting
the maneuver. Without the recheck function, it is safe to say that conflict
resolution is not dangerous. If the resolution command were to create a new,
immediate conflict, the newly conflicting aircraft would be reported in multiple
conflict with the controlled aircraft. However, conflict detection would be
unacceptable because of the probability that an evasive maneuver could create a
new evasive maneuver in 30-60 seconds.

The main reasons for not implementing recheck were the following AP algorithm
design characteristics which were not in accordance with the previously agreed
upon interface:

1)	 Asymmetrical heading errors were used in the Goodyear algorithm with
the resolution command enacted on only one side of the heading vector.
The Lambda algorithm relied on the fact that this error would be
applied on both sides of the vector, so that the original conflict
would be re-detected for use as an entry into its linked table of
conflicts.

2)	 The Goodyear algorithm design required that a "fan" of bearings be
provided for checking, rather than an index to standard turns, which
was generated by the resolution algorithm.

5.2 VECTOR FENCES

The "fences" vectors, as displayed at Knoxville, are not acceptable. Because
it w~s.expected that the conflict displayed by velocity vectors representing
the X Y information received from the AP could jump from scan-to-scan, a vector
freeze method was incorporated. The vectors are placed on the screen as re
ported with the original conflict indications and are not moved with the air
craft. As used operationally, this system would require the controller to
determine whether the conflicting aircraft (indicated by overbars or blinking
data blocks) remain within the vector fence and, thus, remain in conflict.

5-1

5.3 HEAD-ON-CONFLICTS

Direct head-on conflicts are always shown as irresolvable. This phenomenon is
usually unacceptable to an observer of the system. Because of the uncertainty
placed around aircraft headings, it is understandable that attempting to
resolve a head-on collision could actually place both the aircraft in greater
jeopardy than continuance with their current headings. Therefore, no attempt
is made by conflict resolution to resolve these cases. In the future, with
more refined heading parameters and finer treatment in the conflict resolution
program, head-on conflicts should be resolvable.

5.4 CONFLICT RESOLUTION PERFORMANCE

Observations of conflict resolution obtained during the 14 December 1971
demonstration are presented on the following pages. Sketches accompany the
situations described and the following definitions are required:

H. = initial heading in degrees
1

H =final heading in degrees.f

5.4.1 Improper Resolutions

Two occurences of improper resolution occurred. These resolutions were both
improper because they required turns of 3300 • It is obvious that these large
turns were not required to avoid conflict, as will be seen from the sketches
representing the situation.

+x
Pattern: Turn Convergence (Approach)

B
,,- - - - - - Hi = ZlOo

~
/

Hf = 1800 (left turn at 10 per sec.)
A

----~ Hf =900

~---------------+y

Actual Resolution Command: Aircraft A, turn right to final heading of 60°.

Probable Intended Command: Aircraft A, turn right to final heading of 120°.

5-2

5.4.1 (continued)

-x---------------01-
Pattern: Turn Conver~ence

(Overtake)

I I
Hi = 180° I IK Hf =1800

Actual ResolutionI L I
Command: Aircraft K,

Hf = 90° (Left turn I I turn left to heading of
at 1°	 per sec.) 210°.I I

\	 t
Probable Intended Command:,~

-y	 Aircraft K, turn left to
final heading of 1500.

As noted, both maneuvers result in turns of 3300
• It is important to note that

the resolution algorithm was designed to disallow resolution commands that result
in turns of greater than 1800

• Therefore, t~e .suspect is an arctant subroutine
within the resolution program that converts X Y to a heading. The condition
could occur intermittently with this conversion as the probable cause because
the arctan routine involved is dependent on sign, heading, and suggested turn.
Assuming this is the case, the "probable intended command" shown in the sketches
represent reflections about the axis that would be created with proper sign
conversion.

5.4.2 Unacknowledged Conflicts

Another observation during the demonstration that deserves comment is the
treatment of an unacknowledged conflict. Lambda chose to rewarn the controller
if a Type I or Type II conflict is not acknowledged. The rewarning method
implemented was to cause an unacknowledged Type I or Type II conflict to appear
as a Type III conflict (vectors, format blink, and all other data blocks removed
from the screen). An instance which occurred during the demonstration and
caused confusion is illustrated in the following sketch.

5-3

5.4.2 (continued)

Patterns Multiple Straight Convergence

-+-------------------- +x

I I

G
'

+
I

1.5 miles-I~I

IH
I
I

G and H associated;
I Unassociated.

I 1~1--1.5 miles

I
'¥

I
I

.1.
Y

-y I
I

The scenario illustrated was set up to determine if resolution would properly
handle the conflict between G, H, and I, with the conditions specified. Because
of heading uncertainties, the AP will properly report a conflict between the
aircraft as they approach each other in the pattern.

Conflict resolution, upon detecting the presence of a double Type III conflict
(between G and I and H and I) attempted to resolve the conflict which is
irresolvable for the same reason that head-ons are irresolvable (heading
uncertainty considerations). The Type III conflict was then properly displayed,
and the displayed resolution was properly shown as irresolvable. After the
occurance of the Type III conflict, aircraft G and H continued a parallel path,
with 3 mile separation. Since they are both associated tracks and three mile
separation criteria are met, they initially show as a Type I conflict (overbars
indicating the conflict). The console operator did not acknowledge this con
flict, since the aircraft positions after the multiple straight convergence
conflict is accomplished were not part of the test intent. Consequently, because
of the means of implementing the rewarn method, the conflict will begin to
appear as a Type III conflict after about 60 seconds. To the observer, con
fusion is possible because indications (both aircraft associated and 3 mile
separation) are that a Type I conflict should be displayed.

This situation is also easily corrected. The Type I or II conflict indication
can be properly displayed and a bit can be set on the interface to rewarn
the console operator by some other means that he has not acknowledged the
conflict.

5-4

5.4.2 (continued)

Although the logic to create a "level" command to resolve a conflict is in
cluded in the algorithm design, it was never demonstrated that this command
was issued. Lambda and Univac scenarios, designed to cause the "level" command
to result, always resulted in turn resolution instead. Inspection of the coding
did not turn up this logic. Also, notably lacking in the RESLVIT flow chart,
figure 7-3, is a "yes" branch on the decision block "will the level-off command
suffice as a resolution?"

Because the conflict resolution was not evaluated in a "quasi-operational"

mode, and because contract time did not allow for exhaustive error analysis,

the algorithm demonstrated at Knoxville cannot be said to be fool-proof or bug

free to the same extent as the other algorithms (tracking, conflict detection,

and the operational program).

5-5

SECTION 6
OPERATIONAL PROGRAM DESCRIPTION

6.1 PROGRAM INTERSEQUENCING

The system under consideration involves the combination of two different types
of processors, the Univac 1230 sequential processor and the Goodyear associative
array processor. Although both are the stored program type, they are vastly
different in most other respects. The purpose of the system is to perform the
many types of functions required in a real-time air traffic control environment.

Since both processors have their own stored program, they can operate simul
taneously. The EXEC program will reside in the Univac 1230 machine. The EXEC
will determine when 1230-assigned functions, as well as AP-assigned functions,
must be performed.

The functions, or sequences assigned to the AP are:

1) Initialization sequence.

2) Radar-reinforced beacon tracking sequence.

3) Altitude tracking and turn detection sequence.

4) Control sequence.

5) Conflict prediction sequence.

6) Radar-only tracking sequence.

7) Conflict resolution recheck sequence.

These sequences are described in detail in subsequent items of this report. All
sequences are programmed, debugged, and operated, with the exception of conflict
resolution recheck sequence. An interface problem concerning this sequence
developed with one of Univac's other subcontractors; consequently, although
Goodyear coded the recheck program, it was never debugged or operated.

The initialization sequence is not performed in real-time since it is only
performed once for any given period of continuous operation. The other sequences
are performed in a real-time mode of operation. The interaction of 1230
programs and AP programs has been designed to minimize complexity. After
initializatiQn, the AP is in a wait state until the 1230 sends a buffered exter
nal function command. The purpose of this command is to initiate AP execution
of a particular operational sequence. If the AP program requires data from
the 1230, then the 1230 must set up the proper output buffer. If the AP
program is to output processed results, then the 1230 must set up the proper
input buffer. When the AP program has completed its task, an external interrupt

6-1

6.1 (continued)

is sent to the 1230. The AP then resumes its former wait-state until the 1230
initiates another AP sequence by means of a buffered external function command.
If sequences are not completed in the allotted time, a "System Timeout" message
appears on the displays.

The program intersequencing is shown in block form in figure 6-1. All AP
programs are stored in the AP program memory. The program memory map
(table 6-1) shows the location of all routines, including utilities.

6.2 INITIALIZATION SEQUENCE

The initialization sequence is performed only once for each continuous period
of system operation. The AP program memory has to be loaded prior to performing
this sequence. The procedure for loading the AP program memory is described in
section 10.

The ini tialization sequence is shown in flow diagram form in figure 6-2. The
AP initiate portion of the sequence is performed first. This simply involves
the transfer of a small initiate routine (made up of several AP instructions)
from the AP program memory to the AP control memory. This transfer is effected
by the 1230 issuing a forced external function termed "FORCE." At this point,
the AP is in a state ready to accept from the 1230 a command to begin the
array initialize sequence. This command will be in the form of a normal
buffered external function. This sequence will not be further described in a
later section since it only involves the following two steps: (1) clearing
the AP array by writing zero into all bits of all words in the array, and (2)
storing a unique address in the address field of all words of the array.

This completes the AP initialization sequence, and the AP is in a state to
accept from the 1230 a normal buffered external function command to begin
any required operational sequence.

6.3 TRACKING, CONTROL, AND TURN DETECTION SEQUENCES

The following sections describe tracking, control, and turn detection sequences
and related topics.

6.3.1 Beacon Tracking Sequence

The tracking sequence can be described by di viding its functions into two
sections: 1) association, and 2) track update. Box fitting, correlation,
and second pass resolve are used to establish the proper association between
a target report and a stored track word. Sector select, update track firmness,
smoothing and prediction are used to update track data. Track data is then
output. Each of these functions will be described in greater detail in the
following paragraphs.

6-2

Commands &

Data From

Univac 1230

l I•
In terruptsRadar-ReinforcedProgram Once Per Sec tor

& DataBeacon X-Y TrackingIni tiate r--.o--+
~. to Univac 1230SequenceSequence

,-,:
/'

-'

I I
Al ti tude

Conflict Prediction
Sequence

Tracking
&

Turn Detec tion
Sequence

. ~I Once Per _I
I Scan

1
I

"'l Ico Control Status Update Sequence s::: Once Per Sector (MAX)..., I -I I-

0 (Once Per Scan)
1-

-, 1-0' >-4 C II ::s"O
~ (J)W Conflict Resolution Interrupts(J) ...,

..., Ql
 -t Recheck Sequence J- - --..I & Data
I"'"

I I
VJ to Univac 1230 (J) 0
.0 ::s 1s::: Ql

(J) ::s
(')"i::I

Commands &

Data From

Univac 1230

InterruptsProgram Once Per Sec tor ___ Radar-Only - & Data..Initiate Tracking Sequence to Univac 1230 Sequence

I~

T

..... -;
::s 0
coco...,
"'lQl
-3
o
~

o
ell

co
-;
Ql
3

Figure 6-1. Operational Program Inter-Sequencing Flow Diagram

TABLE 6-1 - PROGRAM MEMORY MAP

FROMNO. TO PROGRAM

01. *X'10' Unassigned

X'10'2. X'lF' Program Initiate

X' 20'3. X'3F' Input Block Parameters

X' 40' X' lSF' Dump PM4.

X' 160' X' lE3' Dump AMS.

X'200'6. X'2BB' Ini tialize AM

X'2CO'7. X'343' Memoscope Trk. Display

8. X'344' X'3EF' Tagset

9. X'400' X'4AF' Track Start

X'4BO'10. X'4FF' Control Status
X'SOO'll. X'6FF' Boxfit
X'700'12. X'8FF' Correlation 1

13. X'900' X'AE7' CorreIa tion 4
X'BOO'14. X'BDF' Second Pass Resolve

IS. X'COO' X'DFF' Sector Select
16. X'EOO' X'ESF' Sector Select Continued

X'E60'17. X' lOSF' Track State Update
18. X'1060' X'llFF' Smoothing
19. X'l200' X'13FF' Prediction & Output
20. X'1400' X' 15FF' Radar Reinforced Beacon

X'1600'2L X' 17C3' CorreIa tion 3
22. X'1800' X'1881' Veloci ty Table (X'1880' is PMADDR)
23. X'1882' XIA3D' CorreIa tion 2

X'lA40'24. X'IBFF' Altitude Tracking
X' ICOO'2S. X'IDFF' Turn Detection 1
X'lEOO'26. X'lFFF' Turn Detection 2

27. X'2000' X'22FF' Save & Restore, Conflict Prediction
28. X'2300' X'35B4' Conflict Prediction
29. X'3FOO' X'3FFF' Sa ved Tra ck Da ta
~'X' 10' = 1016

6-4

START

Transfer AP Program
Segment, "Ini tiate"
from Program Memory
to Control Memory

Execute
Array Initialize
Sequence Upon

1230 CODllland

AP Ready to Execute
Any AP Operational
Sequence Upon 1230
CODllland

Figure 6-2. Initialization Sequence

6-5

6.3.1 (continued)

Tag set (figure 6-3) is used to identify certain track conditions. Tempora:y
tag columns are set up to identify tracks with emergency codes and tracks wIth
firmness greater than two. A column is also set up which can identify emergency
reports. The box fitting routine (figure 6-4) is performed for.each tar~e~
report and it checks the distance between a report and the predIcte~ posItIon
of all tracks. The positional difference is then compared to the SIze of the
small, medium, and large correlation boxes. Track words which have positional
differences smaller than the small, medium, or large box are marked accordingly.

The correlation routine (figure 6-5) uses the results of the box fitting and
tag set (figure 6-3) routines and attempts to associate the tracks by code
and/or altitude. For correlation to associate a report to a track, the reports
code must match the tracks code if no other track is close enough to cause
the codes to garble. Otherwise the codes are used only to help distinguish
between multiple associations, and the position responders are used if no track
matches in code. If the correlation routine is successful in establishing
association between the report and one track, then the reported data will be
stored within the track word. Tracks which have associated uniquely (i.e.,
a single track) with a report are not permitted to associate with another report
unless the position association is with a smaller box than the previous report.
Code and altitude association are permitted only with reports whose validity is
two or three. In addition, altitude association is not allowed unless a track(s)
being considered has current altitude data with validity of two or three. If
the correlation routine results in no association between the target report
and the stored track file, a new track word will be established for the report,
provided it was a strong (report signal intensity) report and its code is valid.
If the correlation routine results in association between a report and two or
more tracks, the reported data will be stored within each associated track word,
but the data will not be used for track update unless the multiple association
is later resolved. Multiple associations can be resolved if subsequent reports
correlate with only one of the track words. An attempt is made to resolve the
remaining multiple associations with the second pass resolve routine which is
discussed after the uncorrelated reports routine.

The uncorrelated reports routine (figure 6-6) processes reports which were not
correlated in the beacon correlation routine. Only reports which are near one
or no tracks can enter this routine. These reports are then processed for
code changes, automatic track reposition, or new track starts. If a report is
not strong or does not have a valid code, it is ignored. If the report has an
emergency code, a position association is made and the code is written into the
associated track. A new track is started if position association is not
successful.

If the report contains a discrete code, tracks within 4 nm are checked for
identical codes. If a track is found, the track is repositioned to the reports
position, and the track is tagged for starting new velocity vectors. If no
track exists near the report, a new track is started. If a track with an
emergency code is near the report, the tracks code will be changed to the new
discrete code.

If an uncontrolled track is near the report and this is the second report
with a different code, the code will be changed. Under any other conditions,
the report will be used for the nearby track but the code will not be changed.

6-6

Tag

Setting

Set-up a Tag Column
Corresponding to
Address Identical to
Emergency Codes

Set-up a Tag Column
for Tracklf wi th
Fi rmness > 2

Set-up a Tag Column
for Tracks with
Emergency Codes

Figure h-3. Tag Setting Routine

6-7

Box

Fitting

~
Inpu t a

Target Report

~
Enable Small r Med r 2 Large

& Extra Large Box
Responders in all

Busy Words

~
Inhibit Large Box

Responder (LBR) for

Trks Previously

Uniquely Correlated

•
Inhibit Med (MBR)
Box Responder for

Trks Previously
Uniquely Correlated

with the Small or
!\-led Box

•Subtrac t

XR-XP

~
Form Absolute Value

IXR-XPI

L

Select Trkswith

IXR-XPI < t::.S

~
'And' with Possible
Small Box Responders

I

!::.S = 1/2 Small Box Side
t::.M = 1/2 Medium Box Side
t::.L = 1/2 Large Box Side
XR Reported X Position:::

XP = Predicted X Position
YR Reported Y Position:::

YP = Predicted Y Position

J,
Save RS in Small

Box Responder

Tag Bit RS -> SBR

1
Select Trks with

IXR-Xpi < AM

~
'And' with Possible
Med. Box Responders

~

Save RS in Medium

Box Responder Tag Bit

RS - MBR

•
Selec t Trks with
IXR-XP! < t::.L

•
'And' with Possible
Large Box Responders

1

Save RS in Large

Box Responder Tag Bit
RS - LBR

Exit
To Fig.,

3A

Figure 6-4. Box Fitting Routine (Sheet 1 of 2)

6-8

C(
Subtract

YR-YP

~
Form Absolute Value

IYR-YPI

~
Selec t Trks. wi th

IYR-YP I <65

L

'And' with Possible
Small Box Responders

•
Save RS in Small

Box Responder

Tag [H t.

RS SBR
--0

•
Select Trks. with
IYR-YP I < ~M

•
'And' with P.ossible
Medium Box Responders

•

Save RS in Medium

Box Responder
Tag Bi t
RS MBR--0

I

•
Selec t Trks with
IYR-YPI <D.L

~
'And' wi th Poss ible
Large Box Responders

1
Save RS in Large

Box Responder Tag

Bi t. RS LBR
--0

~
Eliminate Trks with

Firmness < 3 from

LBXRESP and Extra

Large Box Responders

~
If More Than One

Track Exis ts in the

Large Box Wri te all

Ones in MULTLRGBX

~
Wri te One In to

SOMBR for Trks Which

Correlated with the

Small or Med Box

and are not

Uniquely Correlated

--l

EXIT TO

(BEACON)
CORR.

Figure 6-4. Box Fitting Routine (Sheet 2 of 2)

6-9

Set-up Tag Fields
Indicating aNo
Nondiscrete or

Emergency Report

No

Select Tracks with
Alt. Validity > 2

Associate

Code

Set RS Indicating
if the Report is
Discrete or if
Only One Track

Exists Within the
Large Box

These Tracks are
Selected From Small
Box Responders Only

Yes

No
Recall Posi tion

Responders
Save RS

No

Figure 6-5. Beacon Correlation Routine (Sheet I of h)

6-10

Rule Out Tracks
Already Uniquely
Correlated

US.RS -> RS

No

Recall

Posi tion

Responders

Write XR, YR, ALT,
[~Alt. Validity

If Code Val. 5 2,
Write Code

1 -> lJpd3 te 8i t
o -> MULTCORR

01 -> Box Size

No

No

Wri te IC, in miLTCOH
Write XH, YR

01 -> Box Size

Figure 6-~. Beacon Currelation Routine (Sheet 2 of h)

6-11

No

No

Selec t Tracks
Wi th Al t.
Validi ty '5 2

No

Associate
Code

Set RS Indicating

if the Report is

Discrete or if

Only One Track

Exists Within the

Large Box

Yes

No

Recall Posi
tion Respon
ders Save-+ RS

Yes

No

Recall
Position

Responders

No

Figure 6-5. Beacon Correlation Routine (Sheet 3 of 6)

6-12

Yes

Rule Out Tracks Already

Uniquely Correlated

UB·RS -+ RS

No

No

Write RS in MULTCORR
Write XR, YR

10 Box Size

Write XR, YR, ALT,
[.,. Al t. Validi ty

if Code Val. > 2,
Wri te Code

I Update Bi t
o -> MULTCORR
10 -+ Box Size

Figure 6-~. Beacon Correlation Routine (Sheet 4 of 6)

6-13

No

Select Tracks With
Alt. Validity> 2

These are Responders
to the Large Box

These Tracks are
Selected From Large
Box Responders Only

Set RS Indicating
if the Report is
Discrete or if
Only One Track

Exists Within the
Large Box

Recall Posi tion
L----...O-----I Res ponders

Save --0 RS

Yes

Associate
Code

Yes

No

4J

Figure 6-5. Beacon Correlation Routine (Sheet 5 of 6)

(l-14

4L

Rule Out Tracks Already
Uniquely Correlated

UB.RS - RS

No

Yes

Write RS in Multeorr
Write XR, YR

00 - Box Size

No

Recall
Position
Responders

Write XR. YR, ALT,
& ALT. Validity
if Code Val. ~ 2,
Write Code

1 - Update Bi t
o - Mul ticorr
00 - Box Size

Figure 6-5. Beacon Correlation Routine (Sheet 6 of 6)

6-15

Uncofre1ated Reports

Replast

COR3, Discrete Reports

Select TRKS Within
Ex Lrg Box with
TF > 2 & Not Updated No

Exact Match
Code

TRYEMER

Select Tracks
Within MediumNo
Box with TF 2
& Not Updated

'And' withInitialize Velocity
Emergency

Vectors. 1 -TFIRMNESS (MSB Code Tracks

Write: X,Y, Report Number
Altitude Validity, Altitud

Select Tracks No1 - Update, 01 ~ Box Size
Within Med Boxo - Multcorr

X,Y - Predict Position
o - Notbecon

Figure 6-6. Uncorrelated Report Routine (Sheet 1 of 3)

6-16

A

'And' With Contl'd
or Uncontrolled &
Not Sectime

Write: X,Y,ALT, ALT V
REPBUMB

10 ... Box Size No B1	 Update, Sectime

o - Multcorr

o Not Becon

Emergency
Reports

Select Tracks
Wi thin the Large
Box wi t h TF > 2
and not Updated

Yes

Write: X, Y, Code, Alt
& ALT Validity, REP
Number.
X Y Box Size 1 Update
o Multicorr, Sectime
o Not Becon

Car4, Nondiscrete Reports

Select Tracks D
In Med Box

A

NDISSWAP

Select Contro
lled in Ex Lrg
Box wi th Code
Match*

Select Controlled

Yes
 Tracks in

Med Box*

Write: X, Y, ALf, ALT V
Yes REP Number

10 Box Size
1 Mul tcorr
o Notbecon

*TF 2 and not Updated

Figure 6-6. Uncorrelated Report Routine (Sheet 2 of 3)

6-17

Reposition

Start Track

E

No

Select the Nonbusy
WD with the Small
est Address

X,Y REP No.
VAL,

Box Size
Multcorr
Notbecon

Write: 10, ALT, X, Y,
ALT, Validity, REP No.
Update, BSY

1 ~TFIRMNES (MSB)
X,Y ~ Predicted

Position

Write:
ALT, ALT
00 -
1 ~

o

Interrupt 1230
for Track Overflow

Figure 6-6. Uncorrelated Report Routine (Sheet 3 of 3)

6-18

6.3.1 (continued)

If the report contains a nondiscrete code, it is first checked for association
with a controlled track withing approximately one mile. If such a track is
located, the reports position is used but the tracks code is not changed. If
an uncontrolled track is located, the new code is written into the track. If
no track is located within about 1 mile, a code match is attempted with tracks
within 4 nm. If only one track matches, it is tentatively marked for reposition.
The reposition becomes final (for this scan) if no other report is received
for the track.

When a new track is started, the array is searched for nonbusy track words.
If all track words are busy, an interrupt is sent to the 1230 and tracking
continues to process subsequent reports. The reports data is otherwise written
into the lowest address nonbusy track word pair. The tracks busy and update
bit are set and its firmness will subsequently go to level one. Radar report
correlation (figure 6-7), performed next, is described in section 6.3.2.

The second pass resolve routine (figure 6-8) is performed after all reports for
a 45 degree sector have been processed through box fitting correlation. Only
tracks which were part of a multiple association during correlation will be
passed through the second pass resolve. The second pass resolve is described by
means of two examples:

Example #1 - Assume that during the correlation routine, a report associates
with two tracks called A and B. The reported position is
written into both track words during the correlation routine,
and the multiple correlation bit is set for both tracks.
Next, suppose that a report is received which associates with
only one of the two tracks, say track B. The position of the
second report will be written into track B and its update
bit set. The multiple correlation bit for track B will be
reset. At this point one could assume that the first report
should be used for track A. Without the second pass resolve,
the first report would not be used and track A would be
coasted. The second pass,resolve investigates, in turn, all
tracks which have their multiple correlation bit set. In
this example, track A meets this condition. The reported
position of each such track is matched against the reported
position of all other tracks. The reported position will
be used to update the track if its reported position does
not match the reported position of any other track. In this
example, the track A position would match no other track.
As a result, the track A update bit is set and the multiple
correlation bit is reset. This allows the first report to be
used with track A.

Example #2 - Assume that both reports 1 and 2 associate with tracks A and
B. The multiple correlation bit will be set in both tracks
and first report 1 and then report 2 will be written into
both tracks. In this example, the reported position of track

6-19

Radar
Correlation

Input A Radar Target Report

No

Rule Out
Sma 11 Box
Responders

NoYes

Rule Out Tracks Already

Uniquely Correlated

UB'RS - RS

No

Indicate
Small Box

Correlation
10 - Box Si ze

6C60

- Box Size

Box Size

No

01
Yes

6A

Figure 6-7. Radar Correlation Routine (Sheet 1 of 3)
6-20

6A 6F 6C

Rule Out Tracks Alread
Uniquely Correlated

USeRS RS

Yes

Yes

Rule Out

Large Box

Responders

Indicate
Medium Box
Correlation

10 -- Box Size

Rule Out Tracks
in State 7

Indicate
Large Box
Correlation

00 - Box Size

6e

Figure 6-7. Radar Correlation Routine (Sheet 2 of 3)
6-21

6A 6G 6H 6C

Rule Out Tracks Already
Uniquely Correlated

UB'RS RS

No

Yes

68

1230 for

No

Write XR, YR
1 Radar Bit
1 Update Bi t

o Multcorr
o Coast

No

Write
Mult

Write

Interrupt
Radar Track File

Overflow

Wri te: X, Y,
Rep No. Update, BSY

Select the Non-busy WIl
with the Smallest Addr.

Figure 6-7. Radar Correlation Routine (Sheet 3 of 3)

()-22

Second Pass
Resolve

I

Select the First Words
of all Tracks which
were Part of a Multiple

Correlation.

,1

Any

Responders No

Mv.ltcorr:	 All Multiple Responders

Nottried:	 All Multiple Responders
which have not passed
through the ~econd pass
resolve.

Currtrk:	 Current TRK. being passed
through the 2nd pas s resolve.

-
Exit

to

-I Sector)
1 Select

Wri te RS into
Nottried

I

00 a Minimum Search

on Address Field

to Select One Track

II Store Responder -CRRTRK

I

Read out the TRKS.

Reported Position

I

Transfer the Reported

Position to the
Comparand

I

Exact Match on

Reported Position

I

'AND' RS with

Nottried

Exclusive or
the RS with
Nottried

I ... Upda te Bit
o - Not Beacon Bi t

Reset the
Corresponding
MU.L-o___

1B__~i_l_e_c_o_r_r __

OneR d-Y
 v~~

Exclusive or the

RS with Nottried

Figure 6-8. Second Pass Resolve Routine

6-23

6.3.1 (continued)

A would also match track B during the second pass resolve
operation. Therefore, the multiple correlation bit will not
be reset and both tracks will be coasted.

In summary, the second pass resolve routine will provide useful answers in
cases like example #1. Example #1 described a condition where initially a
report correlated with more than one track. The set of tracks is composed of
tracks called multiple correlators. Subsequent reports have been uniquely
associated with all except one of the tracks within the set. The second pass
resolve permits the initial report (which correlated with the set of tracks)
to be used with the single track that is still unresolved, thereby resolving
it as well. In example #2, more than one track in a set of multiple correlators
was left unresolved. This is a situation which cannot be logically resolved
and the second pass resolve would provide no benefit.

After the report-to-track association~ have been completed for a 45 degree
sector, the new track data is used to update track firmness, smooth and predict
the next reporting position of the tracks, and finally to output the current and
predicted data to the 1230 for display. All of these functions are performed
on only those tracks whose predicted positions for the current scan are within
the sector just passed by the antenna. The sector select routine (figure 6-9)
locates only those tracks within the proper sector and marks their track words
for the remaining processes of the tracking sequence. The sector selected for
updating is ll~ degrees behind the sector for which target reports were pro
cessed. This assures that tracks are not coasted prematurely.

The next part of the tracking sequence takes all tracks within the proper sector
and updates their firmness levels (figure 6-10). The firmness of a track is a
number between I and 7 which denotes a confidence level for the tracks' predicted
position and velocity. Small box correlations will cause track firmness to
increase towards level 7. If track firmness is greater than 3, large box
correlations will cause track firmness to decrease. If track firmness is
greater than 4, medium box correlations will cause track firmness to decrease.
Failure to correlate results in a firmness reduction. The firmness of tracks
which are multiple correlations will be left unchanged. Upon initial track
start-up, reports must associate with a beacon report for three consecutive
scans in order for a track to reach the minimum firmness for outputting, which
is firmness level 3. If the track word fails to correlate while in firmness
levels I or 2, the track word will be dropped. After a track word has reached
firmness level 3 or greater, it can fail to correlate for several (SP) scans
before it is dropped. Since track firmness indicates a confidence in the track
data and reliability of track prediction accuracy, the firmness is used to
modify the relative weights given to the predicted and observed positions
and velocity. The modifiers are called ~ and p. The quantity a is used to
modify the position data; p is used to modify the velocity data. A value of

6-24

Select and

Save X ~ Y

Select al'\d

Save x>Ixl

Select and

Save lsi> y

Select
 Select X < y(Ix IS) '. (X<O) And X~ 0
(~O)

Select
(IXI ::: y) •

(X;~)O)

Select
(X Sy)· (Y< 0)

Select
(X>y). (X<O)

Select
l----~\X>y). (y~ 0)

SeleCft
(X > Iyo 0

(y < 0)

SeljC\
(X s yo .

(X ~ 0)

"And"
with
Y<O

"And"
with
}{:to

"And" Response
Store with
Busy Words

Rule Out Tracks
outputted the
Previous Sector

Save Selected
Tracks in a
Tag Bit
1 -+ Busysect

Figure 6-9. Sector Select Routine
6-25

C

Set Tag to
Clear Velocity
after Outputting

I - STRTOVERC

Yes

TF + I-TF--

No

No

C

C

o -. TF, XDOT , YOOT, Notbecon, Altitude
Identity, Altdotp. Latestav, Altvalid

A

o

Set Drop
"'--4 Bit

Yes

S = Small box correlation.
M= Medium box correlation.

L = Largp. box correlation.

C = Correlation with any

box. Reset coast bit.
C = No correlation. Set

coast bit.
A = Correlation with more than one

track (ambiguous). Set coast bit.
TF = Track firmness

V = Logica I OR
+ = Plus

CS = Coast State

Figure 6-10. Firmness Update Routine (Track State niagram)

6-26

6.3.1 (continued)

a and P is assigned to each firmness level and it is during the tra~k firmness
update that the appropriate a and P are written into each track. After a and
P have been written into the track words, the smoothing, i.e., correction
routine, is performed.

The following table shows a, P values for respective firmness states:

FIRMNESS a /3

I I 0
2 I I
3 0.9375 0.3125
4 0.750 0.2500
5 0.5625 0.1875
6 0.4375 0.1250
7 0.3125 0.0625

2...3 0.9375 0.3125
CS-3 I 0

CS-3-03 I 0.75

Track correction (figure 6-11) will be performed on all tracks that have been
correlated in the sector just passed. The correction equations are the same
as those used by the ARTS-III beacon tracker, and are given below:

(X) = (X) + Q(X - X) ,c n p n r p n

where: is the track's corrected positionXc

X is the track's predicted positionp

X is the beacon report's position
r

a is the position smoothing factor

n refers to the current scan.

(X) = (X) - X) c n c n-I + Pit (Xr p n

X is the corrected velocityc

t is 4 seconds

is the veloci ty smoothing parameter.f3

Two expressions similar to those shown above are used for the Y component.

6-27

CORRECTION
OR SMOaTHING

I

Select Tracks
in Sector to
be Outputted
(Current Sector)

I

Select Non-updated
Trks. and Wri te
zeroes in Q and f3.

I

Select Updated
Trks. in States 1-7

and Write
Corresponding
Q, ~ Values

I

Zero Update Bit,

Multiple Correlation
Bit, and Box Size
Bits for Tracks
in the Current

Sector.

I

'And' RS with Drop Bit
To Select Dropped Trks.

I

Zero Sectime, Mu1tcorr,

Busy, TFirmness, XOOT, YOOT

Indemnity, A1tdotp, Altitude

Contrld

I

Select State 3 Trks. with
XDOT, YOOT = O(q

I

Write Q!= 1,{f= 0.75

Select Trks. with
STRTOVER = 1. (**)

Wri te Q = 1, fJ= 0

Exclusive or These
Trks.with Those in the

Current Sector, and Store
Responders in STRTOVER-1

Select Trks. in the

Current Sector

Subtract XR-XP. The
Hesults Are Put Back
Into XP

lOA

*Tracks which went from
a coast state to state
3 and then state 3 again.

**Tracks WhICh went from
a coast state to state3.

Figure 6-11. . Smoothing Routine (Sheet 1 of 2)

6-28

lOA

Subtract YR-YP. The
Results are Put Back
Into YR.

Multiply (a) X (XR-XP)
and Put the Results
in Temp.

Form X Smoothed by
Adding ~he.Jlesu1ts ~ ire Put Into XP

XP(n)+ ~(XR-XP(n) -0 XP(n+l)

Multiply (a) X (YR-YP)

Form Y Smoothed
YP(n)+ a:(YR-YP(n) .. YP(n+I)

Multiply (8) XIXR-XP)

Inhibit Smoothed XOOT
Changes of More Than 218

Knots

.

YR =Y Reported

YP = Y Predicted

Form YOOT Smoothed
(Y)n_l + P/t (YR-YP) -0 (Y)n

I Multiply (Il) X (YR- YP) I
I

Inhibit Smoothed YOOT
Changes of More Than 218

Knots

Form XOOT Smooth~d

CX)n_l +fJ/t (XR-XP -0 (X)n

-
Exit
to

IPrediction

Figure 6-11. Smoothing Routine (Sheet 2 of 2)

6-29

6.3.1 (continued)

After correction, the tracks within the sector just passed will be processed by
the prediction routine (figure 6-12). For all tracks which have been correlated,
the prediction routine will use the corrected position and velocity to predict
the position of the track's next report. The prediction equation for the
correlated tracks is shown below, where Xp is the X component of the tracks
predicted position:

This expression is similar for the Y component. For all tracks which did not
correlate, the prediction routine will use the predicted position and the
correlated velocity of the last scan to predict the position of the track's
next report. The prediction equation for these coasted tracks is:

This expression is similar for the Y component.

After the prediction routine is completed, the AP is ready to transfer track
data to the 1230. Four words of thirty-bits per track will be transferred
to the 1230. The output routine is shown on figure 6-13.

6.3.2 Radar Report Processing

Since the beacon-only tracking process was described in a previous item, only
exceptions and differences will be treated here in describing radar report
processing. The radar-reinforced beacon tracking sequence is shown in flow
chart form in figure 6-14.

Since no code or altitude data is available for radar reports, the association
of reports to tracks is based on position only. This results in simpler pro
gramming for the radar report association than for the beacon report association.
However, since there are many more radar reports than beacon reports, processing
time required for radar reports may be as great or greater than the processing
time required for beacon reports.

When both radar and beacon data is available, the beacon reports will be
associated first. The report which fits a track with the smallest box will be
used to update the track. This is true regardless of whether the report is
beacon or radar derived. When a track associates with both radar and beacon
report in the same size box, the radar report will be used. In this paragraph,
the term box size is used to indicate small, medium, or large boxes. As an
example, even though the small radar box is smaller than the respective small
beacon box, both boxes are referred to as small boxes.

6-30

PREDICTION

Select Tracks in
The Current Sector
Except Tracks Which
Just Exited a Coast

State
STRTOVER-I - RS

Calculate X Predicted
(XP)n+1 = XC+XT (For Updated Trks.)

(XP)n+1 = (Xp)n + XT (For Nonupdated Trks.)

Calcul~te Y Predicted
(YP) I = YC+YT (For Updated Trks.)n+

(YP). I = (YP) + rr (For Nonupdated Trks.)n+ n

Note: Since &. Pwere made
zero for non-updated

Xc - X Smoothed TRKS, Xc = XP(n)
(Stored in XP) AND Yc = YP(n) for non

updated tracks.

Figure 6-12. Prediction Routine

6-31

Data

Output

I

Select Tr.Ks in the

Sector to be
----.....-l~uutputted. Busysect RS

(See Fig. 8)

Output WD. 3

To The 1230

Any No
Responders

Yes

Select Minimum

Address

I

Separa te Trk
Just Selected

From Those Still
to be Outputted

I

Read WD. 1 Data

Into Output Reg.

I

Output WD. 1

To The 1230

I

Read WD. 2 Data

Into Output Reg.

I

Output WO. 2

To The 1230

Set Up A Tag Indicating

AIITrks In The

Current Sector

(See Fig. 8)

I

Set The Notbeacon &

Notradar Bits

I

Select Trks Which

Correlated While In

A Coast State.

Strtover RS

(See Fig. 9)

I

Clear XDOT, YOOT

I

Send 1230 Tracking

Function Complete

1

, Exi t
(Tracking)

-
• I
Read WD. 3 Data

Into Output Reg.

Figure 6-13. Output Routine

6-32

Start

I

Setup Track Tag Fields

I

Input Beacon

Target Reports

I

Beacon Box Fitting
(Once Per Report)

I

BeacdnCorrelation
(Once Per Report)

I

Uncorielated

Reports Routine

I

Radar

Correlatlon

I

Second Pass Resolve
(Once Per Ambiguous

Track)

I

Sector Select

(Once Per 1/2 Sec.)

I

Update Track

Firmness
(Once ~er 1/2 Sec.)

*

'*

lie

b:c

*

**

*:t~

Smooth Track ,)

- Position & Velocity
(Once Per 1/2 Sec.)

I
Predict Tracks Next **
Reporting Positions
(Once Per 1/2 Sec.)

I

Output Track

Data
(Once Per 1/2 Sec.)

~

Exit)

Trackin~

* One Report Against All Tracks
11'* All Tracks In 1/2 Second Se~oJ:

-** All Correlated Tracks in 1/2 Second Sequence

Figure 6-14. Radar Reinforced Beacon Tracking Sequence

6-33

6.3.2 (continued)

Radar-reinforced and radar-only correlation differ in the method of processing
uncorrelated radar reports. The radar-reinforced routine ignores uncorrelated
radar reports but the radar-only routine uses the reports to start new track
words. By starting new track words on uncorrelated radar reports, radar-only
tracking permits all aircraft to be tracked, not just those with beacon trans
ponders. Radar reports include noise reports as well as actual target reports.
In order to filter out noise reports, AP track storage is required for starting
tracks for uncorrelated noise reports as well as uncorrelated actual reports.
A track must be correlated in two successive scans after starting in order to
become an established track. The probability of establishing a noise track is
low. Thus, most of the noise tracks that are started will be dropped before
they become established. The associative processor array has a maximum storage
capacity of 64 tracks. Although unlikely, the requirement for starting noise
tracks may exceed this capacity. Therefore, in order to demonstrate radar
only tracking in heavy clutter, it may be necessary to perform this function
in a limited region of antenna coverage.

6.3.3 Control Sequence

The control sequence is used to record the control status of any given track(s)
in response to a controller's wishes either to initiate control or drop control
of that given track(s). In the present system, the controller can only commu
nicate directly with the 1230, via the data entry keyboard or the Position
Entry Module (PEM). Since the AP is performing the tracking function, any
control status change requests must be relayed by the 1230 to the AP, so that
new control status can be recorded. To accomplish this, the Univac 1230 must
first accept the control status change request for a given aircraft from the
controller. Then the 1230 identifies the track number of the aircraft and
places it, along with the specific control status change request, into a single
word output buffer. This single word is then transferred to the AP via a 1230
data output channel. The AP uses the track number to select the track requiring
the status change. After selecting the track, the requested change is written
into the control bit of the track word. For each track requiring a control
status change, a separate control sequence is executed. This sequence is not
performed if there are no current control status change requests. Figure
6-15 shows the flow diagram of this sequence.

6.3.4 Altitude Tracking

The purpose of altitude tracking (figure 6-16) is to provide accurate altitude
and altitude rate information that can be used to reduce the number of false
conflict predictions. It is desired that the predicted altitude error be less
than 200 feet for 60 seconds. This requires that the altitude rate should be
known to 12.5 feet/scan. For this reason, the reported altitude from which
the predicted altitude and altitude rate are calculated is extended three bits
to the right. This changes the value of the least significant bit from 100
feet to 12.5 feet.

6-34

Input Control

Status Word

Track Number

Search

Control Bit

Write

Figure 6-15. Control Sequence

6-35

For All Busy

Tracks Extend

Reported Altitude

3 Bits To The Right

Calculate Yes
6 H=~-Hp

No

Calculate
~....;;Y~e....;;;s -.l	 (H() n = (flp) n+ . ~MI

(tic) n=(1\)n-l+. 256H

If	 H > 387.5 Ft/scan
H - 387.5

If H <-387.5 Ft/scan
H --387.5

Calculate
H =H -tH t

P c

t=l

Figure 6-16. Altitude Tracking Routine

6-36

6.3.4 (continued)

The current altitude validity is interrogated for all busy tracks. For several
special cases, the altitude validity being used here has been modified from
the original reported validity by the XY tracking programs. Any track with a
reported validity of 3 that has multiple large box correlations has its
altitude validity reduced to a 2. Any track which was not associated with a
beacon report has its last reported altitude validity decreased by 2. This
causes the track to be coasted in altitude tracking.

The only tracks with a last reported altitude validity of 3 are those which meet
the following conditions:

1) Current reported validity of 3.

2) Uniquely correlated, with no other tracks near enough to cause garble.

For these tracks, the difference between the reported altutude (H) and previ
predicted altitude (Hp) is calculated (Hp for all new tracks is z~ro). If the
magnitude of this altitude difference (AH) is greater than 1600 feet, the re
ported altitude field is moved into the predicted altitude field and the alti
tude rate (A) is set to zero.

For those tracks with AH within +1600 feet, altitude and altitude rate are
smoothed similarly to the XY tracking. The values used for alpha and beta
are 0.5 and 0.25, respectively. The altitude rate field in the AM !S 6 bits,
including signs. The least significant 9it is 12.5 ft/scan; hence H must be
between +387.5 feet/scan. The smoothed H is checked for values exceeding these
limits, with Hbeing set to 387.5 feet/scan if H>387.5 feet scan. If H<-387.5
feet/scan, H is set equal to -387.5 feet/scan. The smoothed altitude and
smoothed altitude rate are added to give the predicted altitude for the next
scan.

For those tracks with an altitude validity not equal to 3, the track is
coasted and the predicted altitude is the sum of the predicted altitude and
altitude rate from the last scan.

6.3.5 Turn Detection

In conflict prediction in the horizontal plane, an angular uncertainty is
associated with the velocity vector of each track. The number of conflicts
which will be predicted is directly proportional to this angular uncertainty,
and the angular uncertainty increases for turning tracks. The purpose of turn
detection (figure 6-17) is to distinguish between straight and turning tracks.

The method used for turn detection is the finite XY velocity differences.
This method requires that the X and Y track velocities be stored for four scans.
Lack of space in the Associative Memory (AM) requires that previous velocities
be stored in the Program Memory (PM). The Xand Yare each 8 bits; hence, to
store the four previous values requires two 32 bit words for each track. The
four Xvalues are stored in one word and the corresponding Yvalues in the next
PM location.

6-37

Select
First
Track

Input From

Program Memory

4 Prevjous V~lues

Of X And Y

Store
X 4 And Yn-4n_

In AM

Output Current
Xn, Yn, And

3 Previous X & Y
To Program Memory

Select

Next

Track

Select

Tracks

With

Fi rmness > 2

Figure 6-17. Turn Detection Routine (Sheet 1 of 2)

Tag Track
As A
Right
Turn

Yes

No

Calculate

AX =Xn-X 4
n n+. . .
AYn=Yn-Y +4n

No

Tag Yes No
Track

As Turning

YesNo

Tag Track

Output A Word of
Altitude & Turn Data Exit To

To Univac for Each Co.nict FmD
Busy Track

No As A
Right
Turn

Figure 6-17. Turn Detection. Routine (Sheet 2 of 2)

6-39

6.3.5 (continued)

The velocities stored in the PM must be input serially for each track. First
the word of X velocity data is input into the argument register and then
written into the AM. Only the velocity ~rom t~e fou~th previous scan (Xn-4)
is saved; !he other three X velocities, X _3' Xn_2, Xn_l , and the currentn
velocity, Xn, are loaded into the output register and output to the PM. Simi
larly, the Y values are input, updated, and output.

After all tracks have been processed, a search of the AM flags all tracks with
a firmness greater than 2. For these tracks, ~X and 6Y are calculated by the
equations:

6X = X Xn n n-4

AY = Y - Y 4·n n n-

The AX and 6Y values are compared to a threshold (THRS) value of +35 knots.
All tracks with AX and/or 6Y values outside the threshold values are tagged as
turning tracks.

All turning tracks are examined to determine if the turn is a right turn or
left turn. The turning tracks are separated into categories depending on which
coordinate has the.greater change. When the magnitude of AY is greater than
the magnitude of 6X , right turns are indicated by the folloaing conditions: n.

1) X is non-negative and AY is negative.n n

2) X is negative and AY is non-negative.
n n

When the magnitude of bXn is greater than the magnitude of AYn, right turns are
indicated by the following conditions:

1) Yn is non-negative and is non-negative.~n

2) Yn is negative and 6Xn is negative.

All turning tracks that are not flagged as right turns are considered as left
turns.

The last section of the turn detection program outputs to the 1230 one word
(32 bits) containing track number, right turn bit, turn bit, altitude rate, and
predicted altitude. This word is output for each busy track.

6.3.6 Service Routines

Some miscellaneous service routines are shown in figure 6-18. Although these
routines reside in the tracking program, they involve other programs in some
cases.

6-40

Select Trk~. in the Sector to
Be Outputted Which correlated

With a Beacon Report

'And' Responders With
The Altitude Validity Bit

This Routine is for
Altitude Tracking,
And is located in
State-Update of Tracking.

Write Responders
LATESTAV

In

Set Addresses In
2 Data Registers

Load Data Register 61

With X'400000006'

Load Data Register 62

With X'600000000'

This Routine is for Se
quincing Between Conflict
Prediction and Resolution and
is Located in Tag-Set of
Tracking.

LATSSTAV:	 A Bit Indicating That The Track Correlated with a
Beacon Report That Had Altitude Validity of 2 or 3
the last scan.

Figure 0-18. Service Routines

6-41

6.3.6 (continued)

The track parameters are stored in the associative array. The array format
for track parameters involving the functions of tracking, control and turn
detection is shown in figure 6-19 (see following page). Table 6-2 provides
additional information on the mnemonics used in the format.

6.4 CONFLICT PREDICTION SEQUENCE

This section describes the conflict prediction algorithm used with the associa
tive processor at the FAA-Knoxville installation. However, in order to under
stand the algorthm, the general approach used should be known first. The
conflict prediction algorithm projects the flight path of each aircraft into
future time. Aircraft pairs which will violate separation requirements in the
future are determined and output as conflict pairs. Since the heading angle
of each aircraft is subject to uncertainty, the projected path of each aircraft
assumes a triangular shape.

There are two main parameters associated with the conflict prediction algorithm:
the look-ahead time and the minimum separation. The look-ahead time is the
extent of the time interval through which the aircraft flight paths are projected.
The minimum separation is the minimum distance (point of closest approach) which
must be maintained between the aircraft during the entire look-ahead period if
there is to be no conflict report. Because of aircraft turn maneuvers or
changes in altitude, the point of closest approach may occur at any time during
the look-ahead time, not just at the end of the period. The conflict prediction
algorithm must account for this condition.

The triangular projected areas associated with two aircraft may actually over
lap without the aircraftbeing in conflict. Such a situation is illustrated
in an extreme case in figure 6-20A. Here the triangular projected areas over
lap but the aircraft need be called conflict pairs only if no information at
all were available regarding the speeds of the two aircraft. However, if
speed data is available, it can be shown that when aircraft A has reached the
position currently occupied by aircraft B, aircraft B will have moved to the
extreme right hand portion of its triangular area, probably sufficiently far
from aircraft A so as not to be in conflict. This situation is illustrated in
figure 6-20B.

20A

Figure 6-19. Non-Conflict Situation

6-42

5

10

15

20

25

30

WORD 1 WORD 2

1/320
1/161
1/82

1/4
3

1/2
4 ~

'-"
CI 1
E-<

~ 26 ~
c::
c.. 47 >I

88

16
9

32

S11
1/3212
1/1613

14 1/8

1/4

1/216 ~
'-"

1g17
~ 218 ~
c::
c.. 419 ><

8

1621
3222
S23

NOTBECON 1/024
1/512

1/256,-.. ,-..26
UN

27
 ~C'?

erJl 1/128
........ IJ'j

:;:;N 1/6428 z
'-" erJ
E-<E-< 1/3229 OHCleo
>I....., 1/16

1/831

0 12.5

1 25

2 50

3 100

4 --E-< 200

5
~
'-"
~ 400

6
CI

~ 800

7
H
E-<
...J 1.6K

8
o<t

3.2K

9 6.4K

10 12.8K

11 25.6K

12 S

13 1

14 2

15 -- 4

16
E-<
~ 8

17
0
0
..-i 16

18
'-" c..
c.. 32

19
~
c::
8 64

20
...J
o<t 128

21 256

22 S

?::\ ALTVALID 1/0

2.1 1/0

2~ LATESTAV 12.5

?f. 25

?7 ,-.. 50

?A

c..z
E-<o<t 100

29
E-<
...JE-<

82i5
200

30
o<t~,

S

31

Figure 6-20. Array Track Word Format (Tracking Program Oriented) (Sheet 1 of 4)

6-43

WORD 1 WORD 2

32 ¥DOT S

33 1/512

34 1/256

35
,.....
u 1/128

36
~
r.n 1/64

37
:::;;
z
'-'

1/32

38
E-<

8 1/16

39
><

TFIRMNES

1/8

S

1

2

4

8

1

40

41

42

43

44

45

46

r.n r.n
~
0:::

2

4

8
47

48

49
0
0
"'C 16

50

CONTRLD

32

64

1/0
51

52

53 DROP I/O

54 NOTRADAR I/O

55 MULTCORR I/O

56 SECTIME I/O

57 TURN I/O

58

BUSYSECT f 1/0

59

60

61

62

63 BOXCODE I 1/0

32 SPI- - - 1/0

33
-

1

34 2

35 ,.....
.....l 4

36
"'C
E-<
u 1

37
0
'-'
>< 2

38
E-<
H
E-< 4

39
z
~
0 1

40
H

2

41 4

42 1

43 2

44 4

45 1

46 2

47 r.n 4

48
r.n
~
0::: 8

49
0
0
"'C 16

50 32

51 64

52

53 DROP 1/0

54

55 MULTCORR I/O

56

57

58

59

60

61

62

h~

Figure 6-20. Array Tracking Word Format (Tracking Program Oriented) (Sheet 2 of 4)

6-44

WORD 1 WORD 2

64 DISCREP 1/0
65 STATE37C 1/0

66 EMERGTRK 1/0

67 EMERGREP 1/0

68

69

70

71

72

73

74

75

76

77

78

79

80

81 SBR 1/0
82 MBR 1/0
83 LBR 1/0
84 LEXRESP 1/0
85 EXTRALRG 1/0
86 SOMBR 1/0
87 MULTLGBX I/O
88

BETA *
1

89 I S

90 1/16
91 1/8
92 ~ 1/4

93
~
...J 1/2

94
~

1

95 s

1/16*

1/8

1/4

1/2

DISCREP I/O

65

66

67

64

I/O

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

EMERGREP

1

89 2
co
:;; 490 =:1

~<}1 8
~
0::

Q? 16

Q~ 32

<}4

at;

':. Beta values

Figure 6-20. Array Track Word Format (Tracking Program Oriented) (Sheet 3 of 4)

6-45

WORD 1 WORD 2

96 1/32

97 1/16

98 1/8

99 1/4

100 ,-..
::E 1/2

101
z
'-'
0 I

102
E-l

.0:::
0 2

103
0
w
0::: 4

104
><

8

105 16

106 32

107 S

108 1/32

109 1/16

IlO 1/8

III 1/4

1I2
,-..
::E z 1/2

1I3
'-'
Cl
E-l I

1I4
0:::
0
0 2

lIS
w
0:::
>< 4

1I6 8

1I7 16

1I8 32

1I9 S

120 Bl I/O
121 B2 I/O

122 UPDATBIT I/O

123 BUSY I/O

124

125

126

127

96

97

98

99

100

101

102

103

104

105

106

107

108

109

1I0

III

1I2

1I3

114

lIS

1I6

1I7

ll8

ll9

120

121

122 UPDATBIT I/O

123 BUSY I/O

124

125

126

127

Figure 6-20. Array Track Word Format (Tracking Program Oriented) (Sheet 4 of 4)

6-46

TABLE 6-2 - LIST OF TRACKING MNEMONICS (SHEET 1 OF 3)

0"
I

J::..
-.I

BIT
NOS.

WORD
1 2 MNEMONIC FUNCTION BIT

WEIGHT

0-11 X - YPRDCTD Predicted Y Position 1/32NM

12-23 X - XPREOCTD Predicted X Position 1/32NM

24 X - NOTBECON Track did not correlate with a Beacon Report I/O

25-32 X - YDOT Velocity Component in the Y Direction 1/5l2NM/SEC

33-40 X - XOOT Velocity Component in the X Direction 1/5l2NM/SEC

41-44 X - TFIRMNES Track Firmness 1

45-51 X - ADDRESS Word Address/Track Number 1

52 X - CONTRLD Track is being controlled I/O
53 X - DROP Track has Dropped I/O

54 X - NOTRADAR Track did not Correlate with a Radar Report I/O
55 X - MULTCORR Track did not Correlate Uniquely I/O
56 X - SECTIME Second Time a new Discrete Report is received for a

Track I/O

57 X - TURN Track is Turning I/O

58-61 X - - Miscellaneous Tag Bits -
62-63 X - BOXCODE Box Code I/O

64 X - DISCREP Discrete Report I/O
65 X - STATE37C Tracks in States 3 to 15 I/O
66 X - EMERGTRK Emergency Track I/O
67 X - EMERGREP Emergency Report I/O

68-80 X - - Miscellaneous Tag Bits -
81 ':. X - SBR Temporary Small Box Responder I/O

* = Zero in 2nd Word

TABLE 6-2 - LIST OF TRACKING MNEMONICS (SHEET 2 OF 3)

0'
I

J::..
co

BIT
NOS.

WORD
1 2 MNEMONIC FUNCTION BIT

WEIGHT

82* X - MBR Temporary Medium Box Responder I/O

83* X - LBR Temporary Large Box Responder I/O

84* X - LBXRESP Tracks within Large Box I/O

85* X - EXTRALRG Tracks within Extra Large Box I/O

86* X - SOMBR Small or Medium Box Responders I/O

87'~ X - MULTLGBX Multiple Tracks in Large Box I/O

84-89 X - BETA Velocity Smoothing Parameter 1/16NM

90-95 X - ALPHA Position Smoothing Parameter 1/16NM

96-107 X - YREPORTD Reported Y Position 1/32NM

108-119 X - XREPORTED Reported XPosition 1/32NM

120 X - Bl Track Correlated with Small Box I/O

121 X - B2 Track Correlated with Medium Box I/O

122 X - UPDATBIT Track has Correlated I/O

123 X - BUSY Word is being used as a Track I/O

124-125 X - - Multiply and Divide -
126 X - - Saved RS -
127 X - - Carry Bi t -
0-12 - X ALTITUDE Predicted Altitude 125 Ft.

13-22 - X ALTREPD Reported Altitude 100 Ft.

23-24 - X ALTVALID Altitude Validity 1

25 - X LATESTAV Altitude Validity of Last Scan is 2 or 3 I/O

* = Zero in 2nd Word

TABLE 6-2 - LIST OF TRACKING MNEMONICS (SHEET 3 OF 3)

0
I

~

BIT
NOS.

WORD
1 2 MNEMONIC FUNCTION BIT

WEIGHT

26-31 - X ALTDOTP Altitude Rate 12.5 Ft/Sc8n

32 - X SPI Special Pulse Indicator 1/0

33-34 - X IDENTITY Track Beacon Code Octal

45-51 - X ADDRESS Word Address/Track Number 1

52 - X - Miscellaneous Tag Bit -
53 - X DROP Track has Dropped 1/0

54 - X - Miscellaneous Tag Bit -
55 - X MULTCORR Track did not Correlate Uniquely 1/0

56-63 - X - Miscellaneous Tag Bits -
64 - X DISCRETE Discrete Report 1/0

65-66 - X - Miscellaneous Tag Bits -
67 - X EMERGREP Emergency Report 1/0

68-88 - X - Miscellaneous Tag Bits -
88-93 - X REPNUMB Report Number 1

94-121 - X - Miscellaneous Tag Bits -
122 - X UPDATBIT Track has Correlated Uniquely 1/0

123 - X BUSY Word is being used as a Track 1/0

124-125 - X - Multiply and Divide -
126 - X - Saved RS -
127 - X - Carry Bit -

6.4 (continued)

The situation depicted above is complicated by the fact that a third dimension,
time, must be considered in addition to' the two geographical dimensions. The
analysis can be simplified and time eliminated from direct consideration if a
relative coordinate system is employed. In this coordinate system, one aircraft
is selected as the center of the coordinate system and all motion is transferred
to the other aircraft. The situation of figure 6-20 then becomes that shown
in figure 6-21, with aircraft A selected as the center of the coordinate system.
In subsequent discussions, aircraft A will be called the reference aircraft and
its flight path will be the reference track while aircraft B is the matched
aircraft.

A

Figure 6-21. Non-Conflict Situation in Relative Coordinates

The relative coordinate system is the one used in the conflict prediction
algorithm. Three parameters are then significant in the algorithm:

1) Relative bearing angle.

2) Relative heading angle.

3) Miss distance.

The relative bearing angle is the angle of the line joining the current positions
of the two aircraft. In figure 6-21, the relative bearing angle is 90
degrees, where angles are measured from the positive X relative axis, with the
counter clockwise direction considered positive. The relative heading is the
angle of the relative velocity vector and is negative 45 degrees in figure 6-21.

The miss distance is the difference between the current separation distance of
the involved aircraft and the relative distance which could be traveled during
the look-ahead time. Thus, if H is the miss distance,

6-50

6.4 (continued)

H ST - R,

where:

S =Relative speed.

T = Look-ahead time.

R =Current separation distance.

(Note that H is not necessarily the minimum miss distance.) Since there is
uncertainty in the heading information, a tolerance AS must be added to the
relative heading angle. In addition, a tolerance must be added to the relative
bearing angle to account for the minimum separation requirement. With the
addition of these two tolerances, two conflict criteria can be defined: an
angular criteria and a distance criteria. Both criteria must be met in order
to predict a conflict. That is, the two aircraft must be heading in a direction
which could cause conflict and must be capable of traveling far enough so as to
violate the minimum separation requirement.

The angular conflict criteria is met if the range of relative heading angles
encompasses the relative bearing angles. The distance criteria is met if H is
more positive than the required minimum separation.

In order to compute the relative angles	 precisely. an arc tangent routine would
bearing angle ~~ is given by

be required. F;: :X:::l:; 1:: ~e~~i v:
\XA x;) Tau-\::) .

Actually it is not necessary to compute ~B to a high degree of preCISIon. since
the aircraft heading is not known precisely. An approximate value of ~8 can be
more readily obtained through a series of field-field search comparisons which
the AP can perform rather rapidly. For example, for the case in which
XR =XA - XT and YR = YA - XT are both positive, a less-than fields search
YR < XR/8 will locate all ~p for which tan (YR/XR) is between 0 and 1/8 (~B
between 0 and 7.14 degrees). The manner in which this procedure can be extended
to obtain quantized values for all ~~ is described in the next paragraphs.

Each quadrant is divided into 12 angular regions each about 7.5 degrees wide.
the values of ~p for different values of YR and XR are shown below. The column
marked 0 represents the quantized angular values used in the algorithm and the
value which will be developed in the 0 field of the associative array. The
largest of the two values. \XRI. IYR I is placed in field B, the other in field
A (See adjoining table). The program proceeds by assuming IxRI > \yRI for all
tracks and only values of 0 from 1 through 6 are assigned for all tracks. For
those tracks where \YRI > \xRI. the 0 field is complemented. (0 ~ 13-0).

6-51

6.4 (continued)

A/
B

~B
Degrees D

1/8
1/4
3/8
1/2
3/4

I
I

4/3
2

7.14
14.02
20.6
26.6
36.9
45.0
45.0
53.1
63.4

I
2
3
4
5
6
7
8
9

8/3
4
8

69.4
76.0
82.86

10
II
12

In order to reduce the number of field searches, XR and YR in each word are
converted to absolute value. This makes all relative positions appear as if
they were in the first quadrant. The true quadrant must be marked for later
correction for the actual quadrant position. In addition, a search is made to
determine if YR is greater than XR so that the field searches can be reduced to
the 0-45 degree region only.

The altitude conflict prediction routine follows the conflict prediction
routine in the horizontal (X-Y) plane. The results are "anded" together;
that is, the aircraft must be in conflict in both the X-Y plane and the altitude
plane (assuming both aircraft are reporting altitude) in order to be reported
as a conn ict.

The altitude conflict prediction routine starts by transferring the current
altitude to a temporary field called HTEMp. The altitude (in HTEMP) of the
reference track is checked against all matched tracks to see if the altitude
separation limit is violated. In subsequent iterations, HTEMpis stepped
through the look-ahead intervals of 4 seconds (system parame~er). At each
iteration, the altitude separation is tested.

6.4.1 Flow Chart Description

The following sections provide a description of the conflict prediction flow
chart. The block numbers refer to the numbers in each block of the flow chart
(figure 6-24 at end of this section).

a) Blocks 1-3 - The conflict prediction algorithm is based upon prediction
of aircraft flight paths with an angular uncertainty in
the aircraft headings. The magnitude of this angular
uncertainty is a function of aircraft speed. Blocks 1-3
insert the proper angular tolerance AS in each aircraft

6-52

6.4.1 (continued)

track word. The square of the speed, which is of course
directly related to the speed, is computed in block 1
and the corresponding 68 values inserted in the track
words (block 3). The 66 values are in terms of quantized
angular values as described in the method of determining
angles described in section 6.4.

b) Blocks 4-11 -The relative position coordinates are computed. The XR
and YR values are converted to absolute values to reduce
the number of operations necessary to determine the
angles. That is, at this point all positions are converted
to their first quadrant equivalents. Blocks 8-11 permit
a further reduction by converting all situations to.a
zero to 45 degree range. The larger of XR or YR is
placed in field B while the smaller in field A. This
operation is performed to permit operations for angles
between 45 and 90 degrees to proceed simultaneously
with zero to 45 degree angles. Fields A and Bare
temporary fields set up in each track word to hold the
indicated quantities for the next several operations.

c) Blocks 12-26 - These operations perform the computation of the relative
bearing angle using the method described in section 6.4 The
quantized value of the relative bearing angle is placed
in field D.

d) Blocks 27-32 - These blocks perform the computation of R, the current
separation distance. Block 27 places three times the
smaller of XR or YR into C. Field C is another temporary
field.

Of course R could be found as

R =-V X~ + y~,
but, since the angle which R makes with the XR axis is
known (approximately), it is possible to compute R to
fairly good accuracy in a simpler way. An approximation
for R frequently used in numerical analysis is

R= IIXI +K IYI,

where Ixi > IYI;

a commonly used value of K is 0.32, which results in an
error of less than 10% maximum. A better value can be
obtained by using different values of K depending upon

6-53

6.4.1 (continued)

e} Block 33

f} Block 34

~R, which is measured by the value in D. The computations
are done in blocks 29, 31, and 32.

The following table is used for K.

0 K

1-4 0.25

5 0.3125 = 1/8 + 3/16

6-7 0.375

8 0.3125

9-12 0.25

As an example, suppose that XR = 1.0 and YR =0.8; then
the true value of R is

2 2R = 1 + 0.8 = 1.281.

For this example 0 = 6, K = 0.375, and the approximate
value computed for R is 1.30. This is an error of 1.5%.
The max error computed using the above table for K is ~/o.

- This block calls for a repeat of blocks 4 to 34 which
perform computations with respect to relative headings
and speed in the same way as for relative bearings and
separations. The relations between these two sets of
computations are obvious.

- All positions and velocities have been converted to
absolute values. It is now necessary to correct for the
actual quadrant positions before proceeding with further
computations. Prior to giving the method for performing
this correction, a brief explanation of the strategy -
the way E will be employed to determine conflict or not -
is in order.

So far the relative bearings (in field D) and the relative
headings (field E) have been determined. Now a conflict
condition will occur as far as direction is concerned if
any aircraft flies directly towards the origin in the
relative coordinate system or nearly directly towards
the origin within the miss distance tolerances. Since
it is therefore desired to compare relative bearing with
relative heading to determine the possibility of conflict
on the basis of direction, the value of E should be cor

6-54

t

.........

" " " "

~E Values

""

, XR
o Values

Figure 6-22. Vector Relations With Velocity in Third Quadrant

Now if the velocity vector E happened to have the value
of say 2, then aircraft A would be heading directly toward
the origin (within the limits of the angular width of the
quantization of the angular regions) if 0, the relative
bearing, also had the value 2. Thus for these conditions
(0 in first quadrant and E in third quadrant) the values
of E are correct for direct comparison with 0 with no
further correction needed. Now consider the case when E

6.4.1 (continued)

rected so that a direct comparison of 0 and E is possible.
Consider now for example the case in which relative
position is in the first quadrant (in standard mathe
matical notation) but the relative velocity vector lies
in the 3rd quadrant. This, of course, is the condition
whic~ could lead to conflict. Recall that XR, YR, XR,
and YR have been converted to absolute values so that
all values now appear to be in the first quadrant and
that 0 and E are measured in the counterclockwise direc
tion starting from X axis. The situation is as depicted
in figure 6-22.

6-55

6.4.1 (continued)

is	 in the fourth quadrant as shown in figure 6-23.

E Values

t 1~R 1---.
A~~:==::c=-

T~~=====~-
, XR-.
o Values

Figure 6-23. Vector Relations With Velocity in Fourth Quadrant

Apparently velocity vectors lying in E region 12 are
adjacent to those in region 12 of the previous case (E
in third quadrant). Therefore, region 12 for this case
should have the value 13. The other region values should
transform as shown below:

E
Fourth Quadrant Transform

Value to

12 13

11 14

10 15

9 16

8

1	 24

6-56

, .

6.4.1 (continued)

In general E = 25 - ENEW

For E in the second quadrant the transform is ENEW =
-E + 1.

In the first quadrant all values of E are safe and can
be so marked.

Similar considerations apply for the other positional
quadrants. The required transforms are summarized
below:

o Quadrant

Transform for E in Quadrants

I II III IV

25-E

E

-E + 1

Safe

I

II

III

IV

Safe -E + 1

-E + 1 Safe

E 25-E

25-E E

E

25-E

Safe

-E + 1

g) Blocks 35-41 - These operations determine the proper value of ~e to be
used in the particular conflict investigation. The
basic strategy depends upon the fact that the higher an
aircraft's velocity (and therefore the lower its ~e),

the greater the effect it has upon the relative velocity.
For example, if two aircraft have exactly the same veloc
ity, each aircraft has the same effect on the relative
velocity. For each aircraft, a change in its heading
will provide a change in the relative heading exactly
equal to half that of the individual aircraft. If the
reference track heading changes by 20 degrees, the
relative velocity changes by 10 degrees.

If the reference track, however, has a velocity twice
that of the matched track, it has twice the effect on
the relative velocity. On the other hand, heading
uncertainty is inversely proportional to velocity.
The matched track in this case has twice the heading
uncertainty of the reference track. Therefore both
aircraft have an equal total effect on the relative
heading and the relative heading uncertainty is twice
that of the higher velocity reference track. The factor
of 2 is built into the ~e values inserted in each track
in block 3.

6-57

6.4.1 (continued)

h) Blocks 43-44

i) Blocks 45-52

j) Blocks 53-55

k) Blocks 56-62

1) Blocks 63-65

Blocks 36 to 38 implement the strategy described above.
Blocks 39 to 41 handle turning tracks. The turning
tra~ks are assigned a heading uncertainty twice (system
parameter) that of the straight tracks. Therefore if
only one of the two tracks (reference or matched) is
turning, the tolerances are increased by 50 percent.
The one in block 40 is employed because the division by
2 always involves a round down. If both tracks are
turning, the tolerance is doubled (block 42).

- These two operations serve to add and subtract the
angular heading tolerance from E to form F and a new
E which represent the extremes of the relative heading
angle.

- These operations determine the limits (to be developed
in Field G) which must be placed on the relative bearing
to account for the 3 mile miss distance specified for
Type I conflict. For example~lif R were ten miles, the
relative heading could be tan (3/10) = 17 degrees from
a direct line to the origin and yet indicate a Type I
conflict. The limits are placed upon the relative
bearing in a quantized manner as shown.

- The extremes, E and F,of the relative heading are
compared with the extremes aL and aU of relative bearing.
If E or F lie within aL and BU or encompass them, the
al bit is set. This bit indicates that the angular
cri teria for Type I conflict are met.

- These blocks are similar to blocks 45-55 except that the
1 mile separation criteria are used. If the a2 bit is
set, the angular criteria for Type II or Type III
conflict have been met.

- These operations determine if the distance criteria are
met for 90 second look-ahead and Type I confl ic t. A
value of 4 miles separation is used (block 64) rather
than 3 miles to account for any round-off errors in
R or S. If the Xl bit is set, the distance criteria
for 90 second look-ahead and Type I conflict have been
met. These blocks were put in the program at a time
when a 90 second look-ahead period was considered desir
able. Currently this look-ahead period is not employed
and these blocks are patched out. However, they could
be re-inserted at any time if desired.

6-58

6.4.1 (continueu)

m) Blocks 66-70 - These blocks are similar to blocks 63 - 65 except for
a 60 second look-ahead period. The X2 bit is set if
the distance criteria for 3 mile separation are met
while the X3 bit is set if the distance criteria for
1 mile separation are met.

n) Blocks 71-82 - These operations perform the altitude conflict prediction.
In block 71 a test is made to see if any X-Y plane
conflicts exist with the given reference track. If not,
the altitude conflict prediction routine is skipped
over. The routine is also skipped if the reference
track does not have valid altitude data (block 72).
The rest of the routine performs as described in section
6.4.1.

0) Blocks 83-92 - These blocks perform the logic operations necessary to
compare the 8, X, and ALT conflict bits and determine
the conflict types as indicated.

p) Blocks 93-96 - These operations check to see if there are any more
reference tracks left to process. If there are, the
next reference track is selected and the conflict
prediction program repeats. Otherwise the program exits.

With this information about the various block numbers in mind, one can now
turn to and view Figure 6-24.

6.4.2 Other Operations

Not shown on these flow charts are the SAVE and RESTORE routines which precede
and follow the conflict prediction program as shown. These routines serve to
store and then restore in the AP words data needed by other programs but not
needed by conflict prediction. This operation makes additional bits available
to the conflict prediction program. The data is stored either in the core
memory or in the data registers. The routines for performing these operations
are straightforward for their intended purpose.

The traqk parameters are stored in the associative array. The array format for
the track parameters involving conflict prediction is shown in figure 6-25.
Table 6-3 provides additional information on the mnemonics used in the format.

6.5 CONFLICT RESOLUTION RECHECK SEQUENCE

This section describes the associative processor algorithm used to recheck or
validate conflict resolutions suggested by the Univac 1230 conflict resolution
program.

6-59

.J

r Conflict
\Prediction

NOTE: A thru G are tem
porary Scratch Fields
in each track set
up to hold the in2S =X2 + y ,..-:r1w,1i6.lic"'.li\:; ted quantit i e s .

~---l:~ A

To Sheet 2

Perform Less
Comparand
Search on

S2 Field

Wri te 9 Values
In Responder In
Accordance With
S2 Values:

Determine And Mark
Quadrant Of
XR And YR For
Match Tracks

Convert XR And
YR To Absolute

Values

S2

< 10,000

9

< 40,000
> 40,000

2
3

I

Is
YR>XR No

? >---------,

8

Yes

Read X And Y
Positions (XT,YT) Of

First Track
Argument Register

Subtract
Common

XR = XA - XT
YR = YA - YT

Figure 6-24. Conflict Prediction Sequence (Sheet I of 8)

6-60

Add Fields
B + B2-<;

(C=3B)

Yes

Yes

Yes

Yes

Yes

Write
6 - 0

23

Figure 6-24.

Write
1 0-0

Wri te
2 - 0

Write
3 - 0

Write
4 - 0

Write
5 -00

21

No

Yes

25

26

27

To Sheet 3B

Complement
Field
o -0

Add Common
o 0 + 13

Add Fields
A + 2A - C

(C=3A)

~:

C and 0 are Temporary Scratch
fields in each track set up to
hold the indicated quantities.

Conflict Prediction Sequence (Sheet 2 of 8)

6-61

From Sheet 2

Add Fields
Yes R - B + C/8

29

Add Fields
R-B+'A/8 + C/l6 ~---~

Yes

31
No

Add Fields
Remaining

Words
R B + A/4

Repeat Blocks Correct E
4 to 34 For Quadrant

Substitute
 Of XR. YR In
~-+~ All Tracks
YT - YT

34XA - XA

YA -+ YA

X -+ X
R R
Y -+ YR R Read 68E -+ 0

of Reference
S - R Tracks To

Argument
Register

33 35

To Sheet 4

Figure 6-24. Conflict Prediction Sequence (Sheet 3 of 8)

6-62

From Sheet 3

Yes
Wri te /). e Of

Ref Into
/). e - TEMP Field
Of Matched Tracks

37

Move /). e Into
/). e - TEMP Field

In Matched
Tracks

Yes T MP
>-----4~/). e - TEMP /). e - TEMP + /). e - E + 1_.J---'

2 40

>-'"""-lo<..ol.-~/). e - TEMP A e - TE~1P + 6. e - TEMP

Subtract Fields
F = E - /). e - TE MP

4

Add Fjelds
E = E + /). e TEMP

Figure 6-24. Conflict Prediction Sequence (Sheet 4 of A)

6-63

61

Write
3 - G

Yes

To Sheet 6

Wri te
2 - G

Add Fields
8L=D-G
ElU=D+G

H -

4

48

54

Write
4 - G

Write
6 - G

Write
9-G

Set
Ell Bit

Yes

Yes

Yes

Yes

Add Fields
8L=D-G

8U=D+G

Figure &-24. Conflict Prediction Sequence (Sheet ~ of 8)
6-fJ4

H = 60S - R

To
Sheet
7

To
Sheet
7

Set Xl

Bi t
Yes

From Sheet 5

.J = 0
7

75

74

Tag Tracks
Wi th Valid
Al ti tude

Read HTEMP
for Ref to
Argument
Re is ter

Set Al t
Conflict Tag

In March
Tracks

HR=HTEMPA-HTE~1P T

77

Subtrac t Common

For Tagged Tracks
Move HpRED to

HTEMP Field

No

H From Sheet 7

Figure 6-24. Conflict Prediction Sequence (Sheet 6 of 0)

6-65

From
Sheet

Add Fields
HrEMP=HrEMP+ 4H

8

J - J+l

82

H

From Sheet 6

Yes
Confl ic t

Type I

To Sheet 6
No Yes

Conflict
Type II

87

No

Yes

Output
Conflicts
If Any

2

Conflict
Type III

91

To Sheet 8

From
Sheet 6

Figure 6-24. Conflict Prediction Sequence (Sheet 7 of 8)

85

EXIT

Yes

Select Next
Track for
Reference

94

Read X and Y
Positions (XT, YT)

of Reference
Track to
Argument
Register

95

Go to Block
5 Sheet 1

96

Figure 6-24. Conflict Prediction Sequenc~ (Sheet A of 8)

6-67

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

0
j

I-
0

j j 4

I-

1 I- I-

2

3
~

""""

Q I-

""""
4

5

6

7

Q
~
H
u
I-t
Q
~
0:::
0..
><

I-

I--

I--

,....

j

::c
tiJ
0:::
0..::c

~

""""

""""

I-

8

9
-
-

~ """"

""""
10

I- """"
11

12 I

- •
""""

""""
13 - It

I-

14 - ~ I-

13 - ,....

16

17

18

19

tiJ
H
u
I-t
Q
:.oJ
£t=....
><

-
-
-
-

4

I-

""""

I-

-
20

I- -
21

I-- -
22

I-- I-

23

24 :;:OQ~ u

25

26

27

28

29

H
CD
Q
><

I--

I-

I-

I-

I-

0::: T
H
CD

~

I-

I-

I-

I-

""""
30

31
I-

- •
~

c
o
+-'
t)

"'0
C1.l

tt
+-'
t) ,.....

..... -.:r

......
l,..j C+-i
C 0
o
u
+-'+-'
ell C1.l
E C1.l

""'..s::
orJ'J
~'-'

"'0 "'0

"'" C1.lo+-'
~ C

C1.l
~
t) "'" ell 0

HE"'" ell
>."'"
ell 0'>

"'" 0
<co.."'" "'"

6-68

0 0 0 0 c..,1
W N 0 ..0

4- DELTHET

CJI
CO

-

Cil
-J

T
U
R
N
B
I
T

c.n
0

F
R
S
T
W
R
D
S

c.n
c.n

F
I
R
S
T
W
R
D

c..,'l
A

S
T
H
E
S
I
S

c..,'l
W

S
T
H
I
S
I

c..,1
N

S
V
M
e
D
E
C

c.n c.n
0

.t:o. A .t:o.

..0 CO -I

ADDRESS

A
0

A
c.n

A
A

A

""
A
N

A A
0 "" ..0 "" CO "" "" -J 0

XDeT

"" c.n "" A "" "" "" N

-

1 1 0 1

0'

$
I

0

""
0
N

0..... 0
0 ~ CJI

CO
c.n
-J

c.n
0

c..,'l
c.n

c.n
A

c.n

""
c..,'l
N

c.n c.n
0

A
..0

A
CO

A
-J

A
0

A
c.n

A
A

A

""
II:>.
N

A A
0 "" ..0

W
CO "" -J "" 0 "" c.n "" A "" "" "" N

-
C

TTHETA

I
-I

----1
F
R
S
T
w
R
D
S

F
I
R
S
T
w
D

S
T
H
E
S
1
S

S
T
H
I
S
1

S
V
M
e
D
E
C

ADDRESS

S

0 0 1 0

Figure 6-25. Array Track Word Format Conflict Prediction
Program Oriented (Sheet 2 of 4)

64 I-

65 I-

66
I-

67
I-

68
I-

69
I-

70
I-

71
I-

72
I-

73
I-

74
I-

75
I-

76
I-

77
I-

78
I

79 -
80 -
81

-
82 -
8:)

-
84

-
8S

-
86

r-
87

r-

AA I-

89
I-

90
I-

91
I-

92
I-

9')oJ
I-

94
I-

95

64
j

65

66

67

68

69

70

71

72 E-<
~

73 u

74

75

76

77

78

79 c..

a::l ~
80 E-<

E-<
CD

81 0
tf)

1
8:!

83

84

8;.

86

87

88
E-<89 ><
'"-l
a::l

190

91
E-<

92 '"-l
:I::
E-<

T9~)
c..
~

9,j E-< ..J

~
et

I9;-;

I-

I--

I--

I-

I-

c..
r5
E-<
:I::

I-

I--

I-

I-

~

~

It

I......

-
-
-
I--

I-

I-

I-

c:::
:I::

I-

I-

I--

I-

I-

I-

I--

~

~

I-

~

~

s::
o

.

lJ"l
N

I
--0

Q)

::s
0>
'""

.....
t.:..

6-70

0'
I
-J

I-'
[\j
-J

I-'
N
0'

......
N
C.J1

I-'
[\j
.J;:.

......
[\j

W

I-'
[\j
[\j

I-'
N
I-'

I-'
[\j

0

I-'
I-'
-D

I-'
I-'
CO

I-'
I-'
-J

I-' I-'
I-' I-'
0' CJl

XR

XDOTSQ

SQ

"

I-'
I-'
.J;:.

I-'
I-'
W

I-'
I-'
N

I-'
I-'
I-'

I-'
I-'
0

I-'

~

-

I-'
0
CO

I-'
0
-J

-

I-'
0
0'

-

I-'
0
C.J1

I-'
0
.J;:.

I-' I-' I-'
0 0 0
W N I-'

YR

YDOTSQ

......
0
0

-D
-D

-D
CO

-

-D
-J

-D
0'

i

I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-' I-'
[\j N N N N N [\j [\j I-' I-' I-' 0:: I-' I-' I-' I-'

~ 0 0 0 0 0 0 0 0 8 -D -D -D ~
-J 0' c.n .J;:. w [\j I-' 0 -D co -J C.J1 ,J:::". W [\j I-' 0 co -J 0' CJl ,J:::". W N. I-' -D co -J 0'

Q Q Q Q v v v V T X X X
Y U U U u Q Q Q Q H 3 2 1 ...-AEXT. A
G A A A A D D D D E
X D D o· 0 1 2 3 4 T G illiETAU -B 1 2 3 4 C C C T A
I

A A N N· N H 1 .-THE -T
L L F F F E
C T L L L T
N C C C C A
F F T T T 2
2 1 3 2 1

P P P

0 0 0 0 0

Figure 6-25. Array Track Word Format Conflict Prediction
Program Oriented (Sheet 4 of 4)

TABLE 6-0. LIST OF CONFLICT PREDICTION MNEMONICS (SHEET 1 OF 3)

0
J

--l
N

BIT
NO.

WORD
MNE~IONIC FUNCTION

BIT
WEIGHT1 :2

0-11 X - YPREDICTED Y Component of Predicted Position 1/32NM

12-23 X - XPREDICTED X Component of Predicted Position 1/32NM

24 X - - Not used -

25-32 X - YOOT Y Component of Velocity 1/512 NM/SEC

33-'-10 X - XOOT X Component of Velocity 1/512 NM/SEC

45-31 X - ADDRESS Even addresses from 0-12610 0

:- '1 - J_.-~) I X - - Miscellaneous Tag Bits -

51::l-63 A - DELTHET Quantized displacement angle for CW & CCW Velocities Range
1-3

64-91 X - - Not used -
92-106 X - YDOTSQ Y Component of Velocity squared (1/512)2 (NM/SEC)2

98-109 X - YR - -
107-121 X - XDOT9) X Component of Velocity squared (1/512)2 (NM/SEC)2

107-121 X - 9) Sum of YDeTSQ and XOOTSQ (L/512)2 (NM/SEC)2

110-12] X - XR - -
122-127 X - - Not used -

TABLE 6-3. LIST OF CONFLICT PREDICTION MNEMONICS (SHEET 2 OF 3)

!

C'
I
--I
W

BIT WORD
MNEMONIC FUNCTION

BIT
WEIGHTNO. 1 2

0-5 - X 0 Quantized Relative Bearing Angle Range
1-1210

0-13 - X H Minimum Miss Distance 1/32NM

0-12 - X HPPREO Predicted Altitude 12 1/2 Ft.

6-11 - X E Quantized Relative Velocity Angle (CW Vector) Range
1-1210

12-17 - X F Quantized Relative Velocity Angle (CCW Vector) Range
1-1210

18-31 - X R Rela ti ve Range 1/32NM

24 - X MODEe Tag Bit 1/0

26-31 - X HDOT Al ti tude Ra te 12 1/2 Ft/Scan

32-43 - X S -
45-51 - X ADDRESS Odd Addresses from 1-12710 1

52-56 - X - Miscellaneous Tag Bits -

57-70 - X C Temporary Field for Range and Velocity Related
Quantities - Relative Velocity -

58-63 - X TTHETA Turn Corrected value of DELTHET (See bits 58-63,
Word 1)

Range
1-3

62-76 - X HTEMP Duplication HPREDICTED used in Tracking 12 1/2 Ft.

64-84 - X SDOTTEMP Distance Covered in Look-Ahead Time CBased on
Relative Velocity)

1/512NM

TABLE 6-3. LIST Of CONFLICT PREDICTION MNEMONICS (SHEET 3 OF 3)

BIT WORD BIT
NO. lT2 MNHI'IONIC F1JNCTION WEIGHT

71-74

75-86

77-89

87-91

90-95

92-103

93-98
0'
I
-l
.l:>. 99-104

104-1081

105-1101

111-1221

123-1241

125

126-1271

X

X

X

X

X

X

X

X

- 1 X

- 1 X

- 1 X

- 1 X

X

- 1 X

CEXT

B

HR

BEXT

Tb'lPTHET

A

THETAL

THETAU

AEXT

G

YGXBIT

Extension of C (See bits ~7-70, Word 2)

Temporary Field for Range and Velocity Related Quantities

Relative Altitude

Extension of B (See Bits 75-86, Word 2)

Duplicate of TTHETA (See Bits 58-63, Word 1) for

Interim Operations

Temporary Field for Range and Velocity Related Quantities

Quantized lower limit of Relative Heading (Based on

Minimum Miss Distance)

Quantized upper limit of Relative Heading (Based on

Minimum Miss Distance)

Extension of A (Bits 92-103, Word 2)

Quantized Relative Range

Miscellaneous Tag Bits

Not used

Tag Bit

Not used

12 1/2 Ft.

Range

1-3

Range
-6 to +12

Range
-6 to +12

Range

1-9

1/0

6.5.1 General Approach

This program calls upon sections of the conflict prediction program. The

program is entered upon receipt of a "recheck resolution" external function

command from the 1230. An input word is then received which indicates:

1)	 The track number of the aircraft which is to be turned;

2)	 The number of thirty degree increments through which the aircraft is
to be turned;

3)	 The direction of turn.

The maneuvered aircraft becomes the reference track of the conflict prediction
program. This track is checked for conflict at each thirty degree turn
increment. A fifteen degree heading uncertainty is used with this track to
"fill-in" the areas between the thirty degree steps. The heading uncertainty
used with the reference track is thus not really an uncertainty (due to impre
cise knowledge of velocity vector) but is related to the turn increment.

At the conclusion of each thirty degree increment conflict prediction check,
all tracks found to be in conflict with the reference (manuevered) track are
output. The output format is the same as for conflict prediction .

. 6.5.2 Flow Chart Description

The following provides a description of the conflict resolution recheck flow
ch.art. The block numbers refer to the numbers in each block of the flow
chart (figure 6-26).

a) Blocks 1-4 - The first two blocks compute the heading uncertainties,
as performed in blocks 1-3 of the conflict prediction
algorithm, and initialize the array. The recheck data
word is then input from the Univac 1230 (see figure
6-27 for format). A test (block 4) is made to see if
the data word is the last one.

b) Blocks 5-7 - Track data for the reference track is stored. Since
this track is to be turned in the algorithm. the velocity
values will be altered and must be restored later. The
turn bit of the reference track is cleared since this
track is being turned a fixed number of degrees. The
heading uncertainties are then corrected for the speed
of the reference track, essentially in the manner shown
in blocks 35 to 41 of the conflict prediction algorithm.
except that a constant fifteen degree heading uncertainty
is used for the reference track.

6-75

Compute Speeds
And Heading

Uncertainties

Ini tialize
Array

Decrement Number
Of 30 Degree

Increments

Rotate Reference
Track Velocity

30 Degree In
Indicated
Direction

Yes

A

Correct Heading
Uncertainties for
Reference Tracie

Speed

Input
Rec heck Da ta

Word From
Univac 1230

Store Reference
Track Data:
X,Y. Turn Bit

Clear Turn Bit
Of Reference

Track

Exit Perform Remaining
Conflict Prediction

Program
11

Restore Reference
Track Data

Restore Heading
Uncertainty Corrections

For Reference
Track Speed

13

Figure 26. Conflict Resolution Recheck Algorithm

6-76

28 15 1110 876 1 0

t.x.. w
0::::

Eo-<
Cf)

:5

0 0 0 0 0
~300

INCR 0
TRACK
NUMBER

iWT
/

RT

BIT ~O: TURN DIRECTION

o = LEFT, 1 = RIGHT

BITS ~1-6: TRACK NUMJER (ADDRESS) OF REFERENCE TRACK

BIT ~7: 0

BITS ~8-10: NUMJER OF 300 INCREMENTS (ONE OCTAL DIGIT)

NEEDED FOR CONFLICT RESOLUTJON TURN

BITS ~11-15: NOT USED BUT MUST BE ZERO

BITS ~15-27: NOT USED

BIT ~28: LAST WORD INDICATOR

1 = LAST WORD

BIT ~29: NOT USED

Fjgure h-27. Recheck Data Word Format (1230 to AP)

6-77

6.5.2	 (continued)

c) Blocks 8-11 - These blocks check the number of thirty degree increments
required and then call upon the remaining steps of the

conflict prediction program.

The rotation of the reference track velocity (block 10)

is performed using the following equations:

AX =X(cos ~8-1) - Y sin 68

AY = X sin A8 + Y(cos A8-1)•.... (1)

Since A8 in, this case is always thirty degrees, the
equations become:

AX =0.134 X - Y!2 .	 .
AY =X!2 + 0.134X	 (2)

d) Blocks 12-13 - These blocks restore data and prepare for the acceptance
of another input word from Univac 1230.

6-78

SECTION 7

CONFLICT RESOLUTION DESCRIPTION

7.1 GENERAL SYSTEM DESCRIPTION

An automated ground based collision avoidance system must perform several
functions:

1)	 Maintain a track file of all aircraft in the system; this
file will contain position and velocity data on each aircraft,
as well as aircraft identification.

2)	 Select those pairs of aircraft whose current position and
velocity indicates a sufficient degree of risk to justify
evasive maneuvers.

3)	 Calculate a maneuver, or maneuvers, which, if executed by the
pilot, will avoid, or "resolve", the potential hazard in a
manner consistent with other aircraft tracks and system
constraints.

4)	 Communicate and display this information to the controller.

At the McGhee-Tyson airport at Knoxville, Tennessee, an experimental system
~	 was developed to test the feasibility of successfully calculating and displaying

appropriate conflict resolution maneuvers for aircraft (generally, Instrument
Flight Rule OFR) aircraft) which were "associated", that is, those for which
the controller had input an alpha-numeric identification which was associated
with the beacon code in the ARTS II system. The tracking computations (return
correlation, position smoothing and velocity computations) were performed
in an experimental Associative Processor (AP). The AP was also used to perform
an initial filter which identified pairs of aircraft which could be in conflict;
that is, those pairs which could violate a minimum separation criteria which is
considered unsafe. This function is performed once during each 4 second
antenna scan.

The remainder of the calculations were performed in the ARTS II computer, a

UNIVAC 1230. The 1230 algorithm which calculated the evasions maneuvers

is referred to as "conflict resolution". Basically, it will perform the

following functions:

1)	 Evaluate the pairs identified by the conflict prediction logic in
order to determine if a display action is necessary.

2)	 For a Type III conflict (described later), calculate a resolution
maneuver and the most probable conflict course.

3)	 Format display outputs which will transmit the data to the
con tro Her.

4)	 Monitor the conflict to maintain display stability and perform
rewarn and drop functions.

7-1

7.2 ALGORITHM DESIGN

The conflict resolution algorithm was designed to operate in an environment
where all aircraft receiving the CAS service are tracked in two dimensions.
Also, Mode C altitude information is desirable for a large fraction of the
aircraft since altitude separation significantly reduces alarm rates; for
operation in high density terminal environments, there must be a high Mode
C population for ground based CAS.

A major factor which drives the design of CAS logic is errors in the track
data. With position measurement errors on the order of 300-400 ft. (1 a),
the resultant errors in derived heading can become quite large, +20_400 (1 a)
for slow aircraft. Because of heading errors, the projection of the flight
path 60 seconds or more into the future can occupy a large volume of airspace,
thereby creating high alarm rates. Because of the large data errors, the
logic has been designed around a relative risk criteria for evaluating and
resolving mid-air collision potentiRI. During this development, it became
evident that with the conflict prediction algorithm used, such a criterion
was essential in order to develop consistent and acceptable alarms and resolution
maneuvers.

Figure 7-1 presents a schematic diagram of the functions performed in the
experimental Knoxville system. The Data Acquisition Subsystem (DAS) outputs
are used by the 1230 to develop target reports.

Thes~ reports are sent to the AP for correlation and track smoothing using
an alpha beta technique. Next, conflict prediction selects the track pairs
\mich pass a gross filter for collision potential. This results in passing
to the 1230 th0se pairs whose velocity vectors could result in a hazardous
approach within the next 60 seconds.

The resolution logic declares a conflict if two aircraft have a sufficiently
high probability of violating an acceptable miss distance within a specified
lookahead time. In the experimental system, it was assumed that the aircraft
would continue on their present heading for the entire lookahead time (60
seconds). Heading uncertainties, arising from inaccuracies inherent in the
tracking subsystem, were included in the calculation. Three types of conflicts
were defined; all were based on the tracks being projected 60 seconds into
the future:

Type I. Both aircraft associated, and the horizontal predicted miss distance
less than 3 miles. Mode C altitude data is either incomplete or indicate3
a vertical miss distance of less than 500 ft. In this case the warning was
a bUnkll,; bar over the associated aircraft's alpha-numeric data block.

Type II. Only one target associated, and the predicted miss distance is less
than 1 mile. Mode C data is incomplete. The warning consists of a blinking
bar and vectors showing the impar.t courses.

7-2

Associative
1230 Processor

Executive

Correlation
Target Return
Beacon and Radar

and Track
Processing Smoothing

Confl ict
ConflictResolution
Prediction

Data Entry
and Display
Processing

Figure 7-1. Data Processing Functions - Knoxville Experiment

7-3

7.2 (continued)

Type III. Same as Type II except both have Mode C available and it indicates
that there is less than 500 ft. vertical predicted separation. A third line
which is an advisory for a recommended maneuver is added to the Type II display~

Upon first display of this type of conflict, no other data blocks are shown
on the scope until positive action is taken by the controller.

The tasks allocated to conflict resolution consist of conflict evaluation,

maneuver calculation, display stabilization, and formatting of display

information for new conflicts. This is accomplished by four main program

modules:

1)	 RESOLV - This program drives all remaInIng subroutines in the conflict
resolution function. It accepts and processes the conflicts detected
by the prediction algorithm, it maintains the history files created
by the resolution logic for the purpose of stabilizing the display,
and it sends to the display module the necessary information about
the conflicts for the current scan.

Upon entry into the system, a conflict is first checked to see if it
has been previously detected. A file entry must be created for a new
conflict, and a time associated with it so the resolution logic can
tell how long it has been active. All entering pairs not previously
displayed will be evaluated for hazard by the conflict evaluation
subroutine. If an aircraft pair has already been displayed, it must
be processed to determine whether any additional action (such as
rewarning the controller of continuing hazard) is required.

Each scan, the resolution logic decrements all clocks associated with
conflicts pairs in the history files. It then determines whether
it is time to remove the conflict from the history file. If the
conflict is unresolved, this occurs after the conflict has been in the
files for a fixed (SP - system parameter) period of time without
becoming hazardous, as determined by the resolution probability logic.
A resolved conflict will never be dropped until after the hazard is
no longer present.

The final task that RESOLV performs is to send the necessary informa
tion to the display module for those aircraft for which a maneuver
is recommended (the associated aircraft). All other conflicts (Type
I and II) are sent to the display module as they are processed. By
saving the conflicts involving a maneuver until the end of processing,
multiple conflicts can be detected and handled properly.

2)	 DETECT - This routine evaluates the conflict in order to determine
the risk involved. It also determines the most probable headings
which would violate the separation criteria for presentation on the
display. Any aircraft pair that results in a display has first been
processed by DETECT and found to present a hazard.

7-4

7.2 (continued)

3)	 RSLVIT - This module calculates the suggested maneuver for the
associated aircraft in a conflicting pair. It establishes the files
by which multiple conflicts can be processed.

4)	 OISPY - This module packs the information necessary for proper
display of the conflicts. Each conflict is put into a table
(named FENCES) only once (unless it is a rewarn of a previous conflict,
in which case the previous display has been deactivated) and the
table is used to refresh the display by an executive driven function.
There is an auxiliary table, FENCEXY, which positions the displayed
vectors.

The hierarchy of the subroutines within the resolution algorithms
is shown in figure 7-2.

7.3 RESOLV SUBROUTINE

The subroutine RESOLV creates and maintains history files on predicted conflicts.

When a conflict is first predicted, it is entered into the history files. If

it is deemed to be a hazardous situation, an indicator is set to show that

display output has been generated for this conflict pair. Also, an indicator

of the time at which the conflict should be resolved is set, presuming the

suggested maneuver is followed. If there is no suggested maneuver, the clock

is set to a system parameter that represents the expected time for the controller

to have warned an aircraft and the aircraft to have taken action on the warning.

Thereafter, even though conflict prediction may continue flagging the pair as

being in conflict, new displays will not be generated for the pair. Also, if

the pair is in a configuration where the conflict is predicted one scan, but

not the next, this situation does not result in the display vascillating. In

all cases, the display will remain stable. After the specified amount of

time, resolution will again start processing prediction returns on the pair.

If more than a preset number of alarms are found by the prediction routine

after the aircraft should have been safe, the controller is rewarned of the

situation. After a specified time passes with no alarms on the pair, the

aircraft pair is dropped from the files. Cross referenced files are also

maintained so that it can be determined if a contradictory maneuver has been

sent to an aircraft in the recent past. If a different but non-contradictory

maneuver is generated for the aircraft due to a conflict with a different

aircraft, the greater of the two maneuvers is displayed. An aircraft typically

remains in the history files for an average of 2 minutes.

A special code is set when resolution sends a display for unusual reasons.

Such reasons would be: rewarn of an old, but still dangerous conflict;

ambiguous maneuver command generated for the conflict; and any of the internal

tables in the routines being saturated. Since a risk calculation is performed

before any generation of display output, there is always available the most

probable vectors that cause a hazard, type of conflict, IO numbers, and so forth.

The flow of RESOLV is shown in figure 7-3. Upon entry, RESOLV will process all

conflicts that are already contained in its history files. These conflicts

7~

Arts Executive ~ _

iii :
ZEROHR Hc~ULV lH'.. ;:,uLVI I

I :
REFINE UNPVEL UNPCNF IENTRSGETCOMIC UNPCFI DETECT

I I
TUR~FIX GOTOE~ECIUNPAS REFNEARSLVIT

- I I Jr I IISPY hAPFTX G VELPOSREDET
-J II
0'

SCALVEL SETXYFEN

Figure 7-2. Resolution Algorithm Calling Hierarchy

Resolv

Start Processing
Known Conflict

Array By Track
Number

Yes

Any More Conflict
of File With
This Track

Finished

First Conflict
in Li st for
This Track

Move Next
Conflic t to

This Position

Adjust

Lines

Return

Index t.o

File

No

Any Conflicts With
This Track

Figure 7-3. Subroutine RESOLV (Sheet 1 of 6)

Has the Conflict Is It Time toNoBeen Resolved Drop It From
(Accepted for Display) the Files

Yes

Is It Time to Worry
About Rewarning the
Controller or Dropping
Conflict From Fileoff

Yes Have We Already Started
Worrying

No

Set Indicators So the

Number of Alarms Sent

By the CP for This

Pair Can Be Counted

No

No
Is It Time No

~~----~
to Recheck It

Yes

Velocities Different
Enough To Warrant

Check

Yes

Get Veloci ties

Can This Conflict Be
Dropped From Files

No

Yes

Return Resolution Enter ENTRS Conflict

Indices to Files
 In File, Calculate

Resolution If
Appropriate

Detect
Evaluate Hazard

Figure 7-3. Subrou tine RESOLV (Sheet 2 of 6)

7-8

Any More Conflicts

For This Track

Figure 7-3. Subroutine RESOLV (Sheet 3 of 6)

7-9

UNPCFl

Ini tiali ze

Unpack Routine

UNPCNF

Unpack Conflict

Data Sent By the

AP/1230

Has It Been

Accepted As

Hazardous

Yes

Refi ne

Detect

Reset Indicator

No

DISPY

No
Have Enough AP
Alarms Occurred
to Consider This

Further

Reset Clock
to Show Ap

Still Find i ng
This As a Conflict

Yes

Figure 7-3. Subroutine RESOLV (Sheet 4 of 6)

7-10

No REFINE
Get Physical

Data

DETECT
Evaluate
Hazard

REFINE DISPY

Put in Display

Buffer
 No

DETECT

No

Is There Room In
the Files For It

yes

Add to Files

ENTRS
Enter in Resolution

Files, Find
Recommended
Maneuver If

Necessary

Figure 7-3. Subroutine RESOLV (Sheet 5 of 6)

7-11

ZEROHR
(Entry in
Resolv)

l
InitializeStart Processing

ArraysManeuver I~D List

EXIT

I

Initialize
Indices

I

C EXIT

ICN - MNVRID (I)
Get Index of
Maneuvering Aircraft

Compute Time
Maneuver Should be
Completed, Set Sign in
Show Turn Uirection

Compute Recommended
Heading ()

Process all Conflicts
Found for This Air
craft Requiring
Maneuvers This Time
Period

Set Velocities, Posi
tions, 10 Numbers to
be Oi splaye<!.. _

Choose Maximum in
Severity of This
Head i ng and Any Pre
viously Sent. Store
Heading Used.

DISPY

Figure 7-3. Subroutine RESOLV (Sheet 6 of 6)

7-12

7.3 (continued)

are stored by track number (plus one) with strings emanating from any primary
entry that has more than one conflict on file for it. Thus, it loops on track
10 and processes all conflicts in a string for any 10 before continuing to the
next track. If the conflict has not been accepted as hazardous, a clock is
checked to determine whether it is time to consider dropping it from the history
files. Also, it is checked periodically (SP) to determine whether the relative
velocities have changed sufficiently to warrant a re-evaluation of the conflict.
Dropping a conflict consists of adjusting the pointers in the string to
eliminate the index and returning that index to the array of available indices
of the history file. DETECT, the probability-of-collision-calculating routine,
is used to determine whether enough hazard exists to warrant a display. This
is based upon a probability threshold which is a system parameter. If the
conflict is considered hazardous, ENTRS is called to enter the conflict in
the resolution files, and, if appropriate, to call the maneuver calculation
routine RSLVIT. DISPY, the routine which enters a display into the interface
table FENCES will be called as needed from ENTRS. If the conflict had already
been accepted for display, a time is checked and decremented to see whether
it is expected that the conflict should have been over by this scan. If so,
and it is in fact over, the conflict is dropped from the files. All tracks in
the file are checked and any active clocks decremented.

RESOLV then turns to processing the conflict list prepared by the AP and 1230.

UNPCNF obtains the track numbers and type conflict found in the file. If the

conflict sent by the AP is already in the history files and accepted as

hazardous, a clock is reset to show that the AP found the conflict hazardous

this time period. If the conflict should actually be safe by this scan,

another counter is checked to determine the number of times that the AP has

found this as a conflict after the time that it should have been safe. If this

is greater than a threshold (SP), the conflict is re-evaluated for hazard,

the controller is rewarned if a hazard still exists, and the counters are

reset. If the conflict is new, it is added to the history files, velocity and

positional information is obtained for the two aircraft, and the conflict is

evaluated for hazard via DETECT. Again, if hazardous, ENTRS is, called to enter

the conflict in the resolution files and see that it either gets displayed or

a maneuver is generated for it. If the history files are full, the conflict

will be evaluated for hazard and displayed to the controller if hazardous.

In this case, stabilization of the display will occur since it will be

redisplayed every scan until room becomes available in the history files to

accept it. All conflicts sent by the AP are processed.

During the above two stages of processing, a file is built by the calls on
RSLVIT (if any), which contains lists of conflicts and suggested maneuvers for
Type III (SP) conflicts. The recommended heading must be computee from
the incremental x and y directions of the vector. If there is more than one
maneuver for an aircraft, the most severe maneuver is chosen for all conflicts
listed with that aircraft, and the positions, most likely paths, and recommended
maneuver are sent to DISPY.

7-13

7.3 (continued)

Important routines called by RESOLV are:

DETECT - Probability calculation subroutine.

REFINE - Obtains physical data to be used in DETECT calculation.

UNPCNF - Obtains conflict to
the AP/1230.

be processed from the table sent by

ENTRS - Enters information on conflict in the resolution file.
Calls DISPY or RSLVIT depending on the type of conflict.

OISPY - Enters most probable vectors and other information needed
for display into the interface tables, FEM::ES, and FEM::EXY.

The flows of REFINE and ENTRS are shown in figures 7-4 and 7-5.

7.4 DETECT SUBROUTINE

Once a possible conflict has been isolated by the prediction algorithm, it
must be further evaluated to determine its relative collision potential, or
risk. This is performed by the DETECT subroutine.

The measure of risk is the probability of violating a given miss distance
within the warning time provided by the system. This probability is calculated
from the geometric configuration of the aircraft and the uncertainties
inherent in the position and velocity data. The logic does not consider the
conditional probability that the aircraft will turn from its current course,
al though future systems should utilize the "intent" information available
in the system.

From the aircraft's current position, velocity, and acceleration, it is
possible to proje~t an ensemble of possible paths which the aircraft could
follow. The uncertainty associated with the choice of a path from this
ensemble arises from two sources: variances in the current data and uncertainty
about the pilot's intent.

Uncertainty in velocity (in particular, heading) is a major source of spread
in the path ensemble. This uncertainty is approximated by the normal
distribution of straight paths symmetrically projected about the estimated
heading of a non-turning track. Uncertainties in position are accommodated
in the miss distance criteria.

Lack of knowledge of the pilot's intent is another source of uncertainty in
defining the path ensemble. If an aircraft turns within the projected time
period, then the assumption of straight flight can result in a hazard suddenly
appearing with less than 60 seconds to possible impact. If all possible paths
are included in the ensemble, however, the volume of airspace occupied by the
ensemble grows and data must be available to define the probability distributions
of turning paths. The problem of turning aircraft is compounded by the fact

7 -14

Refine

Set mAS, JIDID
Track numbers of

associated,
non-as soc

Store Positions
in XB, YB

Store Velocities
in XOTB, YOTB

No

No

GETVELPOS
Unpack

Velocities &
Posi tions

GETVELPOS
Get Veloci ties

Position

Store Positions,
Veloci ties in

A. YA. XOTA, YOTA

Figure 7-4. Subroutine REFINE

7-15

ENTR

DISPY
Send to

Display File

Get Index,

Enter in

Resolutipn Files

No

RSLVIT

De t ermi ne' a

Maneuver

Recommendation

Figure 7-5. Subroutine ENTRS

7-16

7.4 (continued)

that the tracking logic produces greater variances in current estimated heading,
as well as lags in heading, when a turn is in progress. These considerations
led to the assumption of a uniform distribution of headings in the direction of
turn if a turn was determined to be in progress from the track data. The basis
for the assumption was that if an aircraft were turning in the terminal
environment, it was equally likely that it would stop turning at any point on
the current trajectory, thereby preceding straight along a tangent to the
turn curve. While this assumption is a modest first approximation to a defini
tion of the fall path ensemble, it does nevertheless reflect the broader
distribution resulting from the turn in a realistic manner. Future systems
might incorporate the information on intent from the other ATC functions in
the data processor. Also, the logic might examine the possibility of developing
probability of turn in terminal airspace, perhaps as a function of aircraft
position, wind patterns, or other variables. The risk probability is calculated
by a numerical integration over the ensemble of possible paths of two aircraft.
The area encompassed by the potential paths is divided into a number of equal
size segments, and a representative path selected for each segment. Each
representative path has a probability associated with it. If the two aircraft
paths result in a violation of the miss distance in the lookahead time, then
the joint responsibility is summed into the risk probability. (A more responsive
risk cri teria func tion currently under investigation would addi tionally weigh
each contribution of a conflicting path pair according to the time remaining
to violate the separation criteria.)

Figure 7-6 illustrates these concepts for an aircraft pair. Aircraft A is
determined to be making a right turn, so the distribution of the right side
of the heading uncertainty is different from the left side. The outer-most
vectors represent the one sigma heading bounds as derived from tracking
simulation studies. The calculation will start at the right edge of A's
ensemble of paths, and the left edge of B's. The double vector is the expected
value vector for each aircraft as derived by the alpha beta tracker.

If altitude data is available for both aircraft, then the shortest possible
time to achieve minimum altitude separation is computed. This computation
assumes that each of the aircraft takes the worse of two alternative actions,
i.e., continues its current rate of climb or dive or levels off. No aircraft
is presumed to change from a climb to a dive during the 60 seconds. When the
risk calculation is performed, the time at which the two aircraft will violate
the miss distance is calculated. If this time is greater than the time at
which the aircraft could violate the altitude miss distance, the paths are
considered to be in conflict. If the time to violate the horizontal separation
criteria is smaller than the time to violate the altitude separation criteria,
the distance that the aircraft are apart at this time must be computed. It is
this distance that will be used to determine whether there is a hazard. Thus
if two paths are converging horizontally and in the Z direction, but the paths
are diverging in the horizontal plane before the altitude miss distance is
violated, then the aircraft will not be considered to be in conflict. Next, the
time at which the aircraft will violate the altitude miss distance, if the
associated aircraft is given a level-off command, is computed. The risk
probability, given a level off command, can then be calculated with little
additional effort. If the aircraft is to be given a resolution maneuver, this

7-17

-. .146

j
j
j
j

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

'- P	 jPAl -, B1 :::- P "" B5 . 121 j

P ~ j

A2 PB2 ~ PB4 ""	 j.175

Gaussian
PA3 ~ P j

B3 == .197 j
j

P ~ jA4 .148
j

p :::
AS .148 Uniform	 j

j
j
j
j
j
j

Figure 7-6. Risk Probability CalcUlation	 j

j

j
7-18
j
j
j
j
j
j

7.4 (continued)

probability is checked to determine whether a level-off command is sufficient
to resolve the conflict. If not, then the aircraft must be advised to turn.

The method of numerical integration described above allows the determination
of approximations to several important quantities. Since the heading
uncertainties are needed to determine risk, there may be instances where two
aircraft are considered to be in conflict, but their expected value vectors
would not indicate a hazardous situation. (They may be diverging.) To display
the expected value vectors under such circumstances is clearly inappropriate.
Consequently, the most probable combination of vectors which results in a
hazardous approach is calculated and displayed. Note that if the expected
value vectors do contribute to the risk, they will be displayed. Other
quantities necessary for the calculation of a resolution maneuver are the
combination of vectors that violate the miss distance in the shortest time
and the bounds on the vectors in an aircraft's ensemble of paths which result
in a conflict. The manner in which these quantities are used will be explained
in the section on computation of the resolution maneuver.

The flow of DETECT is shown on figure 7-7. The actual vectors in the probability
space used in the calculation are computed iteratively from the expected value
vectors, and sines and cosines tabled by speed class and probability distribution.

7.5 RSLVIT SUBROUTINE

This subroutine calculates the suggested maneuver for the associated aircraft
of a conflicting pair.

An aircraft configuration is considered hazardous if the risk probability is
greater than a threshold value (SP). If, in addition, one aircraft is
associated and one is not, and Mode C data is available for both aircraft, a
suggested resolution maneuver will be generated for the associated aircraft.
Note that when Mode C is available, the risk probability has been calculated
on the basis of the three-dimensional position and velocity vectors. If a
level-off command will reduce the conflict probability below the threshold
value, the maneuver recommended will be "Level Off". However, if that
probability is greater than the acceptable safety threshold, a turn maneuver
will be calculated. Since most of the aircraft in the system do not have Mode
C transponders, climb and dive maneuvers were not generated. If a lateral
maneuver is required, the associated aircraft will be turned away from the
unassociated aircraft until the distance of closest approach is greater than
the allowable miss distance. The paths used to calculate this turn are select
ed from the ensemble of paths of the aircraft on the basis of shortest time
to conflict.

The direction of turn may be determined by considering the two aircraft as a
physical system and locating the centroid of this system at the time of the
expected turn. The maneuvering aircraft will be turned away from this centroid.
Turning the aircraft towards the centroid may in some cases reduce less severe
maneuvers; however, in a system where position and velocity of the aircraft
are uncertain, and the time at which maneuver will be initiated is uncertain,

7-19

ENTRY

DETECT

Choose the Edge of Each Aircraft's
Probability Space That is Closest to
the Other Aircraft's Path as the
Starting Point of the Vel.Distr.

Choose Appropriate Distribution, and Fill Velo
city Arrays With Sample Vectors
- Use Normal Distribution if Aircraft is Not

Turni ng
- Use Uniform Distribution With Larger Bearing

Uncertainty in the Direction of the Turn For
Turning Aircraft (Normal Distribution For the
Other Hal f)

No Is This a Type 111 Conflict (i.e. Mode C
Available and Resolution Necessary)

Yes

Calculate "Worst Case" Time When Aircraft Will
be Within Altitude Miss Distance of Each
Other. (TALI)

Yes PC - aIs This Time Greater Than Warning Time
IP - aTALT > TW?

No

ICalculate Time When Aircraft Will be Within
Altitude Miss Distance of Each Other if the

EXITAssociated Aircraft Were to Level Off Within Lag
(SP) Time (TLEV).

Figure 7-7. Subroutine Detect (Sheet 1 of 4)

7-20

Calculate Probability of Collision
Starting at Edges of Space Closest ENTRY REDET
to Each Other

Loop on B Aircraft

Loop on A Aircraft

Aircraft Paths Diverging

Compute Time of
Closest Approach (lLA)

Figure 7-7. Subroutine Detect (Sheet 2 of 4)

7-21

TCA < TW (Warning Time) l~A - Max (~A, TALT)

No

Compute RCA, The Square of Distance
Apart at TeA

Is RCA Less Than Allowable Miss
Distance Squared

Add the Probability of These Two
Paths to the Sum

If Appropriate, Calculate Distance
Apart at TLEV,. and if This is Less
Than the Miss Dist.Add it to PCLEV

Is This the Most Probable Combination Save Probability, Indices
of Paths so Far of This Path

Save Time, Indices of PathIs This the Minimum Time so Far

Figure 7-7. Subroutine Detect (Sheet 3 of 4)
7-22

Is it Possible to Stop Processing the
Inner Loop

Yes

Is it Possible to Stop Processing the
Outer Loop

Yes

PC Greater Than Threshold Probability
(PTHRES)

Figure 7-7. Subroutine Uetect (Sheet 4 of 4)

7-23

7.5 (continued)

it is often found that a turn toward the centroid will increase, not decrease,
the risk. The time at which the location of the centroid, and therefore the
advisable direction of turn, changes is different for any "two aircraft paths.
Thus the pathscontain'ed in the ensemble of· paths around each aircraft generate
a spectrum of these critical times. If, within the time span of interest,
different paths have different advisable turn directions, the maneuver becomes
ambiguous. This ambiguity can be discovered by inspecting the edges of the
ensemble of path~. If a maneuver is ambiguous in this sense, the resolution
algorithm indicates this and does not try to recommend a resolution.

To decide how far the aircraft should turn, different degrees of turn, at
the standard rate, are projected.· The distance between the aircraft pair at
the end of each trial turn is determined. This is necessary to insure that the
aircraft do not violate the minimum miss distance while the maneuvering aircraft
is turning. The p,ath tangent to the turn circle is then checked against the
unassociated aircraft's worst case vector (appropriately projected in time),
and the distanc~ of closest approach is calculated. If this distance, the
closest that the two aircraft will ever get to each other if neither deviates
from the given course, is greater than the minimum miss distance, then this is
considered to be a feasible maneuver. The two new vectors then have their
risk probabili ty calculated. This calculation is performed by a call to entry
REDET, which is contained in routine DETECT. If this probability is less than
the threshold, then the maneuver is accepted. If the probability is greater
than the threshold, then the aircraft is turned further and checked again.
This las~ step is repeated until a safe maneuver is found. No turn greater
than 180 is considered.

Tables are maintained to determine if an aircraft gets into multiple conflicts.
If so, consistent maneuver suggestions are calculated. If the multiple
conflict occurs from the same side, then the larger of the heading changes
will be sent as the maneuver. If the conflict is from the opposite side, then
a flag is set to indicate that no unambiguous maneuver was found. For the
purposes of resolution, a multiple conflict is defined as more than one
conflict with the associated aircraft in a given period of time (SP). Thus,
two conflicts with the same aircraft separated by 16 seconds will be treated
as a multiple conflict if the system parameter is set to permit this.
is no limit to the number of aircraft that can be in conflict with an
associated aircraft.

There

The resolution algori thm also has a "recheck" capabili ty. A table of
to be sent was kept, with the thought that it would be transmitted to

maneuvers
the

conflict prediction routine to check that a suggested maneuver would not cause
new conflicts. The logic of this recheck capability was developed to be
compatible with the Knoxville prediction logic. Two values indexed by a number
calculated in resolution are sufficient to calculate a vector analagous to a
bearing uncertainty but representing the area carved out by a turn. Later
processing by resolution cuts down the area and thereby eliminates false alarms.
If the maneuver itself generates risk, the controller is warned of the conflict
but no maneuver is suggested. The flow of RSLVIT is shown in figure 7-8.
(Abbreviations used in the flow charts are further discussed in section 7.7,

7-24

RSLVIT

Set NDXP to the Index
in the Maneuver Arrays
of Other Conflicts
With This IDAS. If
There Are None, Set
NDXP t 0

Room in Maneuver
Arrays For Another

Maneuver

Will the Level Off
Command Suffice as a
Resolution

No

Is the Aircraft
Configuration

YesPosi tionally
Ambiguous

No

Can the Aircraft
Paths Cross Before
the Maneuver is ND X P = 0
Started

Record Fact That
Unresolvable Conflict
Was Found for IDAS

Figure 7-8. Subroutine RSLVIT (Sheet 1 of 6)

7-25

Obtain Index For
This Maneuver

Has There Already
Been an Unresolvable
Conflict For This
IDAS

Return Index
to File DISPY

EXIT

No

Adjust Links for This
IDAS in Maneuver
Array

Enter Positional
and Velocity Data
in File

COMP

Figure 7-8. Subroutine RSLVIT (Sheet 2 of 6)

7-26

DISPY
Send Conflicts
to Display

Any Maneuvers Already
on File for IDAS EXIT

Record That Unresolvable
Conflict Was Found

Send to Display Other
Active Conflicted With
This WAS

DISPY

Return Index to
the File

Finished
No Yes

Figure 7~8. Subroutine RSLVIT (Sheet 3 of 6)

7-27

Compute Static Para
meters at Expected Time
That Maneuver Will be
Begun.
- Distances, Relative

Velocities, etc.

Compute Direction
of Turn

Is it in the Opposite
Direction of a Previously
Recommended Maneuver

No

IT 1t-

Start Through
Tabled List of
Maneuvers

Compute Velocities,
Positions at End of
Turn

Miss Distance Violate
While Turning

Figure 7-8. Subroutine RSLVIT (Sheet 4 of 6)

7-28

Compute Distance·of
Closest Approach
(RCA)

RCA < Mi S8

Distance?

Yes

IT 1T+l
Try More Severe
Maneuvers

Yes
REDET

Estimate Probability
of Collision Given
the Maneuver

Still Hazardous? Record
Maneuver

Figure 7-8. Subroutine RSLVIT (Sheet 5 of 6)

7-29

Computation of worst case time and worst case, given a level off maneuver
started at time t , that two aircraft can be within v of each other vertically:

e . a

Let zB,zA be the vertical velocities

zB,zk be the respective positions

t - worst case time
A

t - worst case time given a level off maneuver for aircraft B

ev

t - time at which level maneuver would be completed

eg

v - vertical miss distance

a

tw - warning time

t =0 t =0
a 'ev

. . .
I::. Z = zB - zA

t - (zzt - 6z ev

NEVER

No

END

t)/iAeg

the aircraft cannot violate the miss distance within warning time
END - end of computation

Figure 7-8. Subroutine RSLVLT (Sheet 6 of 6)
7-30

Yes NEVER

zzt liz - VAr

NEVER

t - t ev A

7.5 (continued)

File Structures and Variables).

7.6 MINOR ENTRY POINTS

This section describes the minor utility subprograms of the resolution algorithm.
Since each subprogram is so simple in concept, no detailed flow charts are
provided for most of the routines.

7.6.1 ZEROHR

This entry is used to clear various variables used by resolution. It is called
only once, at system startup. It merely clears various memory cells and sets
up pointers for linked lists used later in resolution.

7.6.2 SCALVEL

This routine is used to scale the velocities used by resolution. The result
of the routine is to divide the variables DTBX, YDTB, DTAX, and YDTA by the
variable IFUNC, which is equal to 100 (decimal). The routine consists of
four divisions by IFUNC, one for each of the four velocities. The variable
ESB (equal to negative zero) is used to extend the sign bit for division if
any of the velocities are negative.

1.6.3 UNPCNF

This routine unpacks conflicts from the COMICAL table. The data contained in
this table is unpacked by a series of shifts. Calls are made on routine TURNFIX
to modify the input turn indicator code. Finally, the track numbers are set
so that track number ICN is less than track number JID. At the end of each
calIon UNPCNF, control is returned to the executive through routine GOTOEXEC.
(See figure 7-9).

7.6.4 UNPCFI

This routine merely sets B7 and variable UNPICNT to one.

7.6.5 UNPVEL

This routine unpacks velocity data from the central track store and places it
into the variables for velocity used by resolution. Subroutine GETVELPOS
is used to transfer the velocity and position data from the central store to
the variables POSX, POSY, DOTX, and YDOT (for X position, Y position, X velocity,
and Y velocity respectively). UNPVEL transfers the data from variables DOTX
and YDOT to the resolution velocity variables DTAX, YDTA (velocities for track
number JID) and DTBX and YDTB (velocities for track number ICN). The lower
half of variable IWANTHIS is used to communicate to GETVELPOS the tracks for
which data is needed. The variable KTRACK is set to 1 for all tracks whose
data has already been unpacked by GETVELPOS. Therefore, UNPVEL calls GETVELPOS
only for those tracks whose KTRACK is zero.

7-31

Save B7

UNPCNF

Enter B7.With
Index of Next
Confl ict

Enter Q With
Next Word of

COMICAL

Set End of
Confl icts Flag

Yes

Shift For Reference

Track Turn Indicator
 Inc rement

Index to

Confl ict

TURNFIX

Retrieve Refer
ene(~ Track
Number

Restore 87

RETURN

Retrieve Match
Track Turn
Indicator

TURNFIX

Figure 7-9. Subroutine UNPCNF (Sheet 1 of 2)

7-32

Add Turn Indicators to
Set Conflict Turn
Indicator, NOICT

Retrieve Warning
Time Indicator

Retrieve Con flict
Type

Retrieve Match
Track Number

Does Reference Track
Number Exceed Match
Track Number

Yes

Interchange Track
Numbers and Turn
Indicators

Figure 7-9. Subroutine UNPCNF (Sheet 2 of 2)

7-33

7.6.6 UNPAS

This small routine is used to determine the control status (associated or not)
of a track. Variable rCN is input as the track whose control status is
required. The variable YCOORO in the central track file uses the sign bit as
the control status bit. Therefore, variable rCNAS is set equal to the sign
bit of YCOORO for track rCN.

7.6.7 GOTOEXEC

This entry is used to return control to the executive when the executive is
to return control as soon as possible. This entry stores the values of the A,
Q, and BI-B7 registers in array STOREALL. Then control returns to the executive.
Entry RESOLVI is a companion to this routine.

7.6.8 RESOLVI

This entry is used to return control to the resolution program after control
has been returned to the executive by entry GOTOEXEC. This routine merely
reloads the A, Q, and BI-B7 registers from array STOREALL as they were
saved by GOTOEXEC. Control is then passed to the location following the call
on GOTOEXEC.

7.6.9 GETVELPOS

This routine transfers positions and velocities from the central track file
to the variables:

POSX: X position

YPOS: Y position

ZPOS: altitude

OOTX: X velocity

YOOT: Y velocity

ZOOT: climb-dive rate.

The unpacking from the central file is performed by shifts. The units of the
X and Y variables are the same as in the central file. The Z variables are
converted to altitude in feet and climb-dive rate in feet per second.

Variable NKGOT is set equal to the number of tracks for which the velocity
and position data has been unpacked for this scan. Array KGOT contains the
track numbers of all tracks unpacked this scan. Array KTRACK is used as a
flag for calls on GETVELPOS. KTRACK is set to one for each track unpacked.
This array is checked before calling GETVELPOS to prevent performing the
unpacking more than once. Array KGOT is used to clear the KTRACK array at the
beginning of each scan.

7-34

7.6.10 GETCOMIC

This routine is used to transfer the data in the COMIC table (as output by the
AP) to the COMICAL table. The COMICAL table is used internally be resolution
rather than COMIC so that the COMIC table will be available for use by the AP
during resolution. This routine merely transfers all conflict data words
from COMIC to COMICAL.

After the data transfer, the routine clears the KTRACK array (see entry
GETVELPOS). Array KGOT is used to determine which tracks had data unpacked
during the last scan. The KTRACK array is then initialized to show no data
unpacked for this scan.

7.6.11 TURNFIX

This routine is used to convert the turn indication codes from the code output
by the AP to the code used in resolution. The code change is as follows
(the codes are represented as two bit binary variables):

Turn Condition AP Code Resolution Code

No turn 00 00

Left turn 10 10

Right turn 11 01

7.6.12 GAPFIX

This routine converts the MNVRT array to the format required for AP rechecking.
The MNVRT array at entry to GAPFIX contains a number from one to twelve. The
number represents the number of degrees difference between the current heading
and the desired heading where a value of 1 represents a 30 degree left turn,
2 a 60 degree left turn, 6 a 180 degree left turn, 7 a 30 degree right turn,
8 a 60 degree right turn, etc.

GAPFIX converts this word to a new format for input to the AP. The new format
contains:

1. A left (=0), right (=1) turn indicator bit in bit zero.

2. The track number in bits (6,1).

3. A zero in bit seven.

4. A turn magnitude indicator in bits (10,8),

The track number is obtained from array MNVRID. The turn magnitude indicator
is the number of 30 degree increments used in the maneuver. A value of 1 is
a 30 degree turn, 2 a sixty degree turn, etc.

7-35

7.6.13 SETXYFEN

This routine loads the current aircraft position into the FENCESXY table. The
X position is contained in the least significant 12 bits; the Y position
position in the next most significant 12 bits.

This position is the base of the displayed vector for Type II and III conflicts.

7.7 FILE STRUCTURE AND VARIABLES

The files used in the resolution program may be classified into two broad
groups, those used internally and those created for interface with the 1230
executive. The files used solely by the resolution program may be further
subdivided as the history file, resolution file, and maneuver file. The
three files are organized by linked strings, and their functions are as follows:

7.7.1 History File

The arrays and variables contained in this file form the basis for all
knowledge that the resolution program has on a conflict. Links to the other
files are contained in this file, as appropriate, and various clocks and
counters used in evaluating the continuing hazard of a conflict are located
here. It is through this file that most of the processing of the other files
occurs, and the addition to/deletion from consideration of the program is
controlled.

7.7.2 Resolution File

This file contains information on a conflict that has already been considered
hazardous and sent to the display, at least once.

7.7.3 Maneuver File

The maneuver file contains variables which allow the final computation of a
recommended maneuver at a later time than upon detection. It also holds a
recommended maneuver that has already been sent to display for a particular
aircraft. It is through these files that proper handling of multiple conflicts
is achieved. An aircraft will not be told to turn both right and left, and
if more than one conflict requires the same direction of turn, the most severe
resolution may be sent to display.

Since the computational workload of the resolution hazard evaluation program
DETECT is relatively high, it was decided to use the AP conflict prediction
as much as possible in evaluating the hazard of the conflict. Thus, although
no conflict is sent to display without first being processed by DETECT, when
resolution is considering rewarning the controller of a continuing hazard
or dropping a conflict from the files, it sets up a series of counters based
on the AP prediction of this conflict. It tries to damp out fluctuations of
the AP conflict predictor by counting both total number of appearances of the
conflict in the AP conflict list and the number of scans since last appearance
of the conflict in the list.

7-36

7.7.3 (continued)

The primary index between two aircraft is usually referred to as ICN and
the secondary index as JID. The conflict is filed in the history files under
the smaller of the two track numbers involved in a conflict, i.e., ICN is less
than JID and one is added to all track numbers in the system. The first conflict
placed in the files for any track ICN may be found by direct access. The
aircraft with which ICN is conflicting will be KID(ICN). Further conflicts
with ICN as the primary index are found by following the string defined by
KPT(ICN), KPT(KPT(ICN)), etc., where eventually a value of KPT of zero will be
found, denoting the end of the string. The indices used for the string are
taken from the array NOXCN. The variable NEWCN points to the end of the
array of available indices, NOXCN. Associated with any conflict entered in
the files are the entries KLOCK, KRSLV, KTYPE, and CMPR. CMPR is the relative
velocity of the two aircraft and was meant to be used primarily to flag if the
aircraft started deviating from their expected value paths. KTYPE is the type
of conflict and KRSLV is used primarily as a pointer to the resolution file.
KRSLV and KLOCK are used for various functions depending upon the state of
the conflict. KLOCK is originally set to the number of scans for which a conflict
will be maintained in the files before it is to be dropped if it never becomes
hazardous (note that KRSLV will be zero for this amount of time). When a
conflict has been considered to be hazardous, KLOCK is reset to count down
the number of scans that pass between reappearance in the conflict list sent
by the AP to RESOLV. Also, at the time when the conflict is first determined
to be hazardous by DETECT, the time at which it is expected that it will be
over is entered into the array KTIMSF in the resolution file. KRSLV contains
the index to this array for a particular conflict. KTIMSF is then decremented
each scan. Once KTIMSF has become zero, it is used to count the number of
alarms that has been sent by the AP conflict predictor after the conflict
should have been over. KRSLV is set negative to indicate that this is the
mode the file is operating in. Since KLOCK is now reset whenever an alarm
is called by the AP, it can be used (and is) to determine the number of time
periods that have passed with no alarm, and KTIMSF will be the total number
of alarms found after safety should have been achieved. If this number exceeds
a system parameter, DETECT will be called, and if the conflict is considered
still hazardous, the controller will be rewarned. A conflict will not be
dropped from the files until KLOCK has been decremented to zero without being
reset, indicating that that number of scans has passed without the AP
considering it a conflict. NDXRS contains the available indices in the
resolution arrays, and NEWRS will point to the end of the table. KIDAS is
also found in the resolution file, and contains the track number of the
associated aircraft for this conflict.

IDSPLY(IDAS) will point to the place in the maneuver file - if any - associated
with this aircraft. If the display has not been sent out of the associated
conflict, the 10 of the conflicting aircraft will be stored in KCNFT, and the
x and y entries for the most probable vectors of the associated and non
associated aircraft are stored in XWSTBA, YWSTBA, XWSTAA, and YWSTAA. Similarly,
the positions are stored in XBSA, YBSA, and XASA, YASA. The new vector for
the maneuver is stored in XTRNB, YTRNB; and KCHKPT points to any further
conflicts in the file that should be sent this time period for the associated
aircraft. The array NDXCHK holds the available indices in the maneuver array,

7-37

7.7.3	 (continued)

and the variable NEWCHK points to the end of the array. Once a maneuver has
been sent for IDAS, KCNFT is set to zero, and XWSTAA is used to store the
actual heading recommendation of the maneuver. Subsequent maneuvers in the
same direction may change XWSTAA i~ they represent a more severe maneuver.

7.8 Data Tables

Following	 are the data tables and their formats within the 1230.

TABLE 7-1. COMICAL - CONFLICT INPUT DATA TABLE

c><J IDRT 1__I_C_N_-J[X]__ID_M_T_......._I_SX_T_Y_.....I_J_T_yp_E J_I_D_---I

COMICAL

Conflict Input Data Table

Table Size: 120 Memory Cells

Name Item Word Bit Pos Notes

JID o (5,0) Match track number

JTYPE o (8,6) Conflict type

ISXTY o (9) Set if warning on 90
second time

IDMT o (11,10) Turn indicator for match
track

ICN o (20,15) Reference track number

IDRT o (22,21) Turn indicator for
reference track

Remarks:

1. Zero	 entry signals end of table.

2.	 Turn indicator is 00 for no turn, 10 for left turn,
11 for right turn.

3. The	 COMIC table is identical in format to this table.

7-38

TABLE 7-2. FENCES - RESOLUTION OUTPUT TABLE

27 17 7 5

r: YDOTW

I Cl
XOOTC
C2
C5 F~rl

ID
C4
C7

FENCES

Resolution Output Table

Table Size: 192 Memory Cells

Name Item Word Bit Pos

ID 0 (5,0)

JTYPE 0 (7,6)

XDOTW 0 07,8)

YDOTW 0 (27,18)

Cl 1 (23,18)

C2 1 (17,12)

C3 1 (11,6)

C4 1 (5,0)

C5 2 07,12)

C6 2 01,6)

C7 2 (5,0)

Remarks:

Notes

Track number

Conflict type

Vector X component

Vector Y component

First character of resolution
message

Second character of resolution
message

Third character of resolution
message

Fourth charac ter of resol ution
message

Fifth character of resolution
message

Sixth charac ter of resolution
message

Seventh character of resolu
tion message

Zero entry in item word 0 signals end of table.

7-39

TABLE 7-3. FENCESXY - VECTOR BASE POSITION TABLE

c:><::JL__---..:p~OS::::..;Y=:....._ __.l..___P:...:O::..:S~X~__

FENCESXY

Vector Base Position Table

Table Size: 64 Memory Cells

Name Item Word Bit Pos Notes

POSX 0 01,0) X position of vector base

YPOS 0 (23,12) Y position of vector base

7-40

--

TABLE 7-4. MNVRT - MANEUVER TURN INFORMATION TABLE

I><l~--=I;.;;TU=RN;.;..-__[QJ~__..;;.J.;;;.ID~ ...;L;;,;R;;..-.-,

MNVRT

Maneuver Turn Information Table

Table Size: 20 Memory Cells

Name Item Word Bit Pos Notes

LR 0 (0) Left, right turn indicator

JID 0 (6, I) Track number

0 0 (7) Zero fill bi t

ITURN .0 00,8) Turn magnitude indicator

Remarks:

1.	 LR bit is zero for left turn; one for right.

2.	 ITURN is number of degrees difference (between old and new

headings) divided by 30; i.e., ITURN =1 represents a 30

degree turn; 2 a 60 degree turn, etc.

7-41

7.9 IMPORTANT SYSTEM PARAMETERS

Name

PTHRES

ITHRES

LCYCE

EPSCOM

TLAG

ITIMP

MXALRM

NOALRM

IMXTIM

TW

RMSQAS

RALT

JOSLN

Interpreta tion Value-
Probability threshold (X 106) 50000

Safety threshold (how many scans, conflict free, 5
must go by before conflict is considered safe)

Number of scans to pass between looking at realtive 10
velocities of non-resolved conflict

Fractional difference in relative velocity allowed 1049
without rechecking conflict

System lag time in seconds (when it is expected 20
a maneuver will start)

How often resolution algorithm is called (in cycles) 4

Number of new alarms after a conflict should 5
be safe before a controller is rewarned

Number of consecutive cycles after a conflict 5
should be safe that a conflict must have no
alarms before it is dropped from the files

Maximum number of cycles a conflict will be 11
kept without it ever becoming hazardous enough
for a resolution

Warning time (lookahead time) 60

Lateral miss distance squared for three types 9216,
of conflict (scaled) 1024,

1024

Vertical miss distance HOO

Type conflict that requires a maneuver recommendation 3

7-42

7.10 FORMULAE

Let

(XB'YB'~)' (XA,YA,ZA) be the positions of the two aircraft
.

(XB,YB,ZB) , (XA,YA,ZA) be the velocities of two aircraft

Then
/i.X = XB-XA, ~Y = YB-YA' /i.X = XB-XA, and /i.Y = YB-YA

2 2 2 2
2 =VR	 = /i.X + Lly2 , R /i.X + /i.yo

1) The aircraft are converging if
 . .
R V = /i.X /i. X+ /i.Y /i.Y < 0 o

2) The time of closest approach is

2
tCA	 = -RoV/V R

3)	 The distance of closest approach squared is

V 2 = R 2 _ (R V)2/V 2

CA 0 0 R

=R 2 + (RoV) (tCA)
o

4) The closest that two aircraft can get in time t if they are

converging the entire time is

2 2 2
r = R 2 + (2t) (R V) + V t , where r is the separation of the
o 0 R

two aircraft at time t, assuming their accelerations are zero.
. .

5)	 The velocity vector (X ,Y) representing a bearing only change from a
n n

vector CX,Y) of Ii. e (Speed is constant) may be computed by:

x = X cos (li.e) - Y sin /i.en

Y = xsin Lle + Y cos /i.e
n

7-43

7.10 (continued)

6) To tell whether vectors (Xh,Yh), (Xe,Y), surround a third vector e
(Yp,Y) where the origin of all three vectors is the same, compute:

p

. .
C =X Y - Y X e e p e p

. .
if C C are of opposite signs the vector Xp,Y is enclosed.h, e p

7) Consider,

the aircraft A,B traveling
 . .
on vec tors (XWA ' YWA)'

A (X, Y)
P P . .

(XWS,YWS) respectively, joined by the positional vector (X ,Y)
as shown. The time that aircraft A will cross aircraft p p
B's path is

t A = -(XwsYp - XwsXp)/(XWAYWS - XWSYWA)

A similar formula applies for B.

8) The centroid ot the syste~ at a time.t in the future may be
calculated from vectors (XeB,YeB), (XeA,YeA), (Xp,Yp) by

<X),
eB

,Y
eB

-- X -- } VBt

(Xp ' Yp)

C = (- Xp + (XeA + XeB) t) • YeB - (- Yp + (YeB + YeA) t) • XeB

If C is negative the centroid is to the left of B.

7-44

SECTION 8
CONFLICT DETECTION ALGORITHM ANALYSIS

8.1 INTRODUCTION

A brief summary of the algorithm operation is contained herein, followed by an
evaluation of several features and limitations. Only those features essential
to an understanding of how the algorithm operates are discussed in the nine
self-explanatory Figures 8-1 through 8-9.

8-1

----~

y

e'-___B
_- fll-v:~

Predicted
Closest

Approach

A First Quadrant Encounter

Reference aircraft "AU is considered stationary at an origin.

All motion is transferred to the matched aircraft B.

Angles are measured ~ounter-clockwise from the X-axis for the reference
aircraft and from the minus X-axis for matching aircraft.

e = Relative velocity direction.

~ = Relative bearing of B with respect to A.

Figure 8-1. The Coordinate System

8-2

8 Sectors ~o Units

4 Quadrants

Direction is measured in 7~0 units, 12 units per 90° quadrant,
and 6 units per 450 sector.

Conversions of polar-to-cartesian and cartesian-to-golar
coordinates are based on an approximation over a 45 sector.
A factor is then applied for the appropriate sector or signs.

The technique is a standard, long in use, with table-look-up
methods for coordinate conversion ..

Figure 8-2. Angular Measurements

8-3

f c

A

B

=---......:.-----....:,I~~_1_--------..x

Matched aircraft B's coordinate system is rotated 1800 with
respect to reference aircraft A's coordinate (measured from -x asis).

Then aircraft B's bearing with respect to aircraft A (e.g. 3_7~0
directional units as shown) is the same as A's bearing with respect
to B - and, similarly, for matched aircraft C. Reciprocal bearings
are numerically equal.

Figure 8-3. Reciprocal Bearings

8-4

Predicted Separation at Time T (H)

l H = ST-R

N
y

180 + €I

Predicted
Closest

Approach

--

-l~-:::::o"""'~-----------X

A First Quadrant Encounter

Pertinent features of the algorithm can be shown in the first quadrant

A The "reference" aircraft

B The "matched" aircraft

R The current separation (Vector)

V - The relative velocity (Vector)R

S The relative speed

T The look-ahead time (E.G. 60 second s)

ST - Predicted distance closed between A and B during Time T

H Predicted separation at Time T

Figure 8-4. Predicted Separation Distance

8-5

Relative Bearing	 Tolerance, + ~ ~~
-1

~~~=Tan <O/R) 

f 
N
 

Y
 

Predicted 
Closest 

Approach 
~~===J:....:=---

---
X 

A 

A First Quadrant Encounter 

Relative bearing of B with Respect to A 

Tolerance on relative bearing to account 
for the minimum separation requirement 

Q The minimum separation requirement 

Figure 8-5. Relative Bearing Tolerance 

8-6
 



y 

-
x 

Predicted 
Closest 

Approach 

Uncertainty in Velocity Vector 

Di rec tion, 2:L\8 

No Turning 

A 

A First Quadrant Encounter 

VR = Relative velocity vector of B with respect to A 

V
R 

= (V
R

, 0) 

I l-- Relative Heading 

~Relative Speed (Scalar) 

e - Relative velocity direction 

L\6 - Uncertainty in velocity vector direction 
(an input parameter) 

(Twice as much uncertainty is used if the 
aircraft is turning) 

Figure 8-6. Velocity Vector Directional Uncertainty 

8-7 



Angular Conflict Criteria
 
Is Positive (See Next Figure)
 ,	 No Turning 

Predicted 
Closest 

Approach 

y 

x 

A First Quadrant Encounter 

There are two criteria. both of which must be met 
before a conflict is declared. 

(1)	 An angular criteria - the aircraft must be 
traveling in a direction such that a conflict 
will occur. 

(2)	 A distance criteria - the pair must be capable 
of traveling toward each other far enough to 
violate the minimum separation requirement. 

Figure 8-7. Angular Conflict Criteria 

8-8 



Angular Conflict Criteria Is Positive 

Predicted 
Closest 

Approac 

(Relative Heading Angles Encompasses 
Relative Bearing Angles) 

y 

~~----f-"""--""--------_X 

A First Quadrant Encounter 

From the previous figure, it is not apparent that 
the relative velocity angles will overlap the 
relative bearing angles. 

Since the bearing of A with respect to B (in 
B's coordinate system) is the same as the bearing 
of B with respect to A (in A's coordinate system), 
it is possible to relocate 0B at B and the minimum 
separation circle at A. 

The overlap of the angle (0B~ 60B) with (6 ~ 6S) is 
then determined. 

Figure 8-8. Positive Angular Conflict Criteria 

8-9
 



ST (Speed X Look-Ahead) 

\ S--

--.:I~-""""~----r------------- X 

Pred icted 
Closest 

Approach 

Distance Conflict Criteria 
Is Negative 

H=ST -R;?:Q
 

y 

t:::J

A First Quadrant Encounter 

If during the look-ahead time T, it is possible 
for the aircraft to close a distance ST such 
that the minimum separation distance is violated, 
then the distance criteria is positive. 

Figure 8-9. Distance Conflict Criteria 

8-10 



f
 
y 

-...J:::::::.....----l..--.......L--I--------,' x 

Figure 8-10. Relative Velocity Vector 

8-11 



tAO 
Aircraft Turn Opposite 
Directions 

_ Full 
Vector 

Relative Velocity 
Versus Time 

Two aircraft A and B are flying directly toward each other at the same 
speed. At an instant of time, both aircraft start standard 30 per second 
rate of turns, A to the left and B to the right. 

The relative velocity is initially a maximum with the aircraft converging. 
At the end of 30 seconds, the aircraft are flying parallel in the same 
direction; the relative velocity is zero. The aircraft then start to 
diverge with the relative velocity increasing to a maximum at time equal 
60 seconds. 

The direction of the velocity vector e is constant, excepting at an 
instant of time equal to 30 seconds, it changes by 1800 

. 

Figure 8-11. Relative Velocity Vector with Aircraft Turning in 

Opposite Directions. 

8-12 



--
Aircraft Turn in 
Same Direction 

Identical to the previous example except that both aircraft turn in the 
same direction. 

The scalar relative velocity V remains cons.tant for the period; theRrelative velocity direction e rotates in the direction of the turn at 
3o per second. 

Turning uncertainties do not correlate simply with the relative velocity 
vector direction. 

Figure 8-12. Relative Velocity Vector with Aircraft Turning in 

Same Direction 

8-13 



8.2 COMMENTS ON THE RELATIVE VELOCITY VECTOR UNCERTAINTY 

First the behavior of the relative velocity vector VR is reviewed. It is 
then shown that the method used to determine a value for the relative velocity 
directional error, ~eR' does not lead to a very accurate approximation. How
ever, it is also true that results are only weakly dependent on ~6R and that 
it can, in fact be, eliminated. 

8.2.1 Relative Velocity Vector 

The relative velocity vector V is the difference between the matched air 
craft velocity vector VB and tfie reference aircraft velocity vector VA' figure 
8-10. Figure 8-11 shows how the relative velocity vector varies with two 
aircraft flying at the same velocity and turning in opposite directions. 
Figure 8-12 shows the same situation, excepting that the aircraft are turning 
in the same direction. A sequence of relations is also shown leading to the 
upper and lower bounds, eu and Bl' for the relative velocity vector. The 
method for determing 6BR IS discussed later. 

The following list of relations pertains to the relative velocity vector VR; 
see figure 8-10. 

=VR VB VA 

where
 
VA = (vA' eA)
 

2 2 
vA xA + YA= ~ 

-1 eA = tan (Yt/~A ) 

~ 2 2=vR *R + YR 

= tan -1 (YR
/ *R)~ 

= xB xA*R 

= Y - YAYR B 

or 

VR = ~ (xB - x )2 + (YBA - • )2
Y A 

and 

~ = -1tan (YB - Y'A)/(xB - xA) 

9u = ~+ 6e 

~ = ~ - t:.e 

8-14 



8.2.2 An Assumption 

The conflict detection algorithm is based on the assumption that measured 
position errors are relatively independent of the aircraft velocity. There
fore, the derived velocity error is proportionally less for the faster air 
craft, figure 8-13. 

This assumption is believed to be valid, but an inaccuracy arises with the 
following quotation from the description of the algorithm. 

"If the reference track, however, has a velocity twice that of the matched 
track, it has twice the effect on the relative velocity." 

The statement is ambiguous for it fails to distinguish between the velocity 
vector direction and magnitude. Figure 8-14 shows the effects of varying 
the direction of the matched aircraft through 1800 while reference aircraft 
A maintains its course. In this example, the reference aircraft is traveling 
3/4 as fast as the matched aircraft. It would not be meaningful to say that 
aircraft B has 4/3 the effect on the relative velocity VR as does aircraft A. 

Figure 8-15 shows the effects of varying the direction of the reference 
aircraft through 1800 while the matched aircraft B maintains its course, and 
figure 8-16 shows the effects of two aircraft flying at the same speed. 

It is noted from figure 8-10 that if VA' eA, VB' or eo is changed, then, in 
general, both VR and ~ are changed. This same depenMence among all the 
variables applies as well to determining the resultant error vector 6VR = 
(6VR, 6~). This is discussed further in the next section. 

8-15
 



Figure 8-14. The Faster Aircraft B Turns 

1800 Counterclockwise 

8-17 



::: 

Figure 8-15. The Slower Aircraft A Turos 
o 

180 Clockwise 



1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
I 



8.2.3 Determination	 of the Relative Velocity Vector Directional Uncertainty 

The	 observed velocity vector of the reference aircraft A, figure 8-17, is 

= (VA' SA) 

L~velocity:vector
 direction 

scalar velocity 

The true velocity vector is 

= 

where.6VA is a vector velo~ity ~rror with corresponding errors 6VA (scalar 
velocIty error) and 68 (dIrectIonal error).A 

To retain the Goodyear notation, let the errors be expressed in terms of stan
dard deviations, i.e. 

etc ... 

Also, it is assumed that the derived velocity errors are random. Then, since 
VA is independent of VB' 

8... 20
 



VA actual 

A ~VA 

Figure 8-17, Velocity and Velocity Error Vectors 

8-21 



8.2.3 (continued) 

The scalar relative velocity error ~VR (standard deviation) will always be 
greater than either ~VA or ~VB' figure 8-18. 

The relative velocity directional error ~8R is also shown for the particular 
error vector ~VR. It is noted that as the scalar relative velocity VRapproaches a small value, then ~9R will approach 900 

• 

The value of ~60 is very sensitive to velocity errors; it will fluctuate widely 
for small valueg of VR, i.e., when VR ~ ~VR. 

ror the algorithm, the directional error ~eR is taken to be either ~eA or 
~~' whichever is greater. This value is tnen increased 50% for each aircraft 
of the pair which is indicated to be turning. The initial heading uncertainty 
~eA (or ~es) is determined as follows: 

VA ~eA 

(knots) (Directional (Degrees) 
Units) Without Turning With Both Turning 

>200 1 7~0 150 

200>VA>100 2 150 300 

1,00>VA 3 22~0 450 

The values of ~~ determined by the algorithm is not a good approximation to 
the actual value since it does not take VR into account. 

8-22
 



6_9a=========~'L- VB __®
 

Figure 8-18. Root-Mean-Square Addition of Error Vectors. 

8-23
 



8.2.4 The Parameter 6eR versus R 

The relative velocity vector directional error 6€R is much less predictable 
than the separate aircraft velocity directional errors, 6eA and 6eo. which 
are known to be very inaccurate. Primary reliance for a mInimum w~rning time 
is on the minimum spearation requirement Q. The net effect of placing a 
tolerance on the relative velocity vector is equivalent to providing an addi
tional separation distance laterally, e.g., a Q' - Q = 6Q ~ R tan- l 6~, 
figure 8-19. 

A further disadvantage of 6~ is that it provides less lateral separation as 
the separation distance R decreases. A worse case occurs when the two air 
craft are approaching on a slightly curved path and achieve parallel courses 
just outside the minimum separation requirement, figure 8-20. 

8-24
 



A larger mInImum separation requirement can substitute for the unreliable 
relative velocity vector directional tolerance 6e. 

A larger value for the minimum separation requirement (e.g., Q' instead of Q) 
reliably serves the intended purpose and is not dependent on prediction; i.e., 
it is velocity independent. 

A 68 of 7Vz° - 150 is reasonable for an initial uncertainty unless VR is small; 
however, this is equivalent to only 2.5 to 5.0 seconds of standard rate turn
ing activity by both aircraft in opposite directions. 

Figure 8-19~ Minimum Separation Requirement 

8-25 



Worst Case - Minimum Warning Time and Minimum Separation at Detection 

Null Vector VA 0R:1 

V = S = ST ~ 0B ~ 

eIs Undefined 

Aircraft A and B are flying at approximately 240 knots in the same direction 
displaced laterally by a distance R slightly greater than the minimum separa
tion requirement Q = 3 nautical miles. 

The relative velocity vector is approximately zero; its direction e is ill
defined. 

By turning directly toward each other to a collision course, the aircraft are 
capable of colliding in t R:1 33.5 seconds. 

w 

The relative velocity vector directional tolerance + 68 is ineffectivel 

Figure 8-20. Worst Case 

8-26 



8.3 CONFLICT DETECTION SYSTEMS GROWTH POTENTIAL 

For the Knoxville requirement, a gross filtering of aircraft pairs to eliminate 
most of those which obviously are incapable of conflict does not require a pre
cise initial separation vector, bearing 0B, and distance R. This same conclusion 
cannot with confidence be extended to the final determination of whether a poten
tial conflict requires the immediate attention of the controller. 

Predicted position uncertainty is a combination of the initial position un
certainty and the time dependent uncertainty which accrues from inaccuracies 
in the predicted velocity vector. For prediction periods of the order of one 
minute, the uncertainty attributable to inaccuracy in vector velocity can far 
outweigh the initial position uncertainties. This is especially so if the sole 
source of velocity data accessible to the computer is the velocity derived from 
the time-differences of several successive beacon position updates as in today's 
ARTS systems. 

But this limitation is very tentative. For example, the implementation of meter
ing and spacing in the ARTS system results in an invaluable extension of the 
computer data base. There is a time-position schedule established and maintained 
for each aircraft under metering and spacing control which reflects the latest 
intentions for that particular aircraft in the total traffic complex from now 
until touchdown. There is a track-schedule which the controller-pilot team 
attempt to maintain within certain tolerances, there are scheduled times-to
descent, times-to-turn, and a time-to-land. 

The metering and spacing status can provide additional information for a final 
determination of whether a potential conflict involving an aircraft under meter
ing and spacing control requires the immediate attention of the controller. 

Other terminal ATC improvements impacting conflict detection are the data link 
and IPC subsystems, or the discrete address beacon subsystems. In general, any 
improvement program which reduces the time that it takes for the aircraft to 
respond to air traffic control directions or which provides the ground based 
system access to air derived data (e.g., altitude, heading and turning informa
tion) or which establishes in the computer traffic control rules, procedures, 
and intent information will implicate conflict detection and vice versa. 

It can be expected that the automated conflict detection aid to the controller 
will now evolve quite rapidly. The major roadblock to serious consideration 
of such an aid has long been the problem of efficiently eliminating the large 
numbers of aircraft pairs which cannot possibly conflict. With this problem 
apparently solved in any of several ways, attention will next be directed to 
improving the final filtering - to making it much more discriminating. Coin
cident with the development of the final filtering is the selection of that 
conflict detection and/or resolution information to be displayed and the best 
way of displaying it. 

8-27
 



8.3 (continued) 

It is a safe assumption that the position measuring accuracies of the surveil 
lance system will be fully exploited for the conflict detection aid within a 
short time. The method developed for conflict detection, reporting, and re
solution should be capable of adapting to and benefitting from ARTS system im
provements. In particular, accuracy limitations of the conflict detection im
plementation should be commensurate with the total system of which it is a part. 

The AP conflict detection algorithm described herein should perform the gross 
filtering function efficiently, Le., it is capable of eliminating from further 
immediate concern, the predominant portion of aircraft-pairs which obviously 
are incapable of conflicting during the look-ahead pe~iod. The potential of 
the algorithm to adapt to varying and evolving requirements and to meet the need 
for greater accuracy and discrimination is suspect. 

8.4 SUMMARY 

The conclusions to be drawn from the data presented in this section can be 
summarily stated: 

1)	 The conflict detection algorithm used with the associative processor 
at the Knoxville site will, without change, perform a conflict detection 
function. 

2)	 The procedure for determining a proper angular tolerance ~8 is not very 
accurate. However, the results are only weakly dependent on 68. If 
~8 is zero, detection will occur at some distance outside of the 4 nm 
minimum separation requirement, and if 68 is significant, the distance 
at which a potential conflict is detected may be increased. 

3)	 While relatively crude approximations suffice for the immediate state 
of conflict detection development, it is already apparent that greater 
accuracy is required and is feasible for the final filtering function. 
The methods selected must be readily alterable to take advantage of 
terminal ATC improvements. 

8-20
 



SECTION 9
 
FUNCTIONAL INTERFACE
 

9.1 GENERAL DESCRIPTION 

The Goodyear AP is a unique stored-program array processor that has been 
interfaced with the Univac 1230, which is a general purpose stored program 
processor. Since both machines have their own stored program, they operate 
simultaneously. Each machine has its own assigned tasks. The AP operational 
programs have been described previously. The AP requires one standard (fast) 
I/O channel of the Univac 1230. The system executive program resides in the 
Univac 1230 and will direct the execution of AP tasks as well as 1230 tasks. 
Both processors have a set of input/output instructions which provide for 
inter-communication of data and control signals. In general, the initializa
tion of the AP is initiated by the 1230 issuing forced external functions. 
AP operational tasks are initiated by the 1230 issuing normal buffered external 
functions. AP task completion will be indicated by the AP issuing external 
interrupts. 

The items below describe the detailed methods of, and specific formats for, 
the interchange of data and control between the two processors. 

9.2 FORCED EXTERNAL FUNCTIONS (1230 TO AP) 

The following six 1230 I/O instructions are of the forced external function 
type. Since both forced and buffered external functions are used in this 
system, the most significant bit of the function code is used to identify the 
type of external function under consideration (See figure 9-1). 

9.2.1 Force 

The force instruction is used to start the AP. This instruction initializes 
AP control and then forces the translator of a block of AP instructions from 
the program memory within the I/O unit into the control memory of the AP. 
Upon completion of this transfer, the AP maybe given the necessary signals to 
start execution of the program just loaded. 

The program memory address of the first AP instruction and the number of program 
memory words required for the program to be transferred are contained within 
the instruction. 

9.2.2 Initial Load 

The initial load instruction is used to load a block of AP instructions from 
the 1230 into the program memory. Because each AP instruction requires 64 
bits and the program memory ~s a 32-bit memory, each instruction is represented 
as two half-words of 32-bits each when stored in the program memory. The 1230 
being a 30-bit/word machine requires that each half-word be sent from 1230 
as two quarter-words or 16-bit bytes. These will be received by the I/O unit 
as data with only the low-order 16 bits considered. The I/O unit will pack 

9-1
 



~ ..... 
to 
C Bi t 29 27 26 

0 

1 

1 

0 

24 23 
I I I I I I I I I 

Program Memory Address
 

Program Memory Address
 

ot 
i 

o[ 
, 

i" 

o[ 
• 

.i 
1 [ 

I I I I I I 

13 12 o 
I I I I I I I I I I I I I I 

14~ Count 

14~ Count
 

Not Used
 

Not Used
 

Not Used
 

Not Used
 
I I I I I I I I I I I• 

, 

13~ 

13~ 

• 

J 
J 
J 
J 

ro'""
-D 
I ..... 

I 

o 
~ 

(')'""('l) 

0

rr, 
>< 
.-T 
ro 
::s-DO) '""

I ..... 
N 
~ 
C 
::s 
(') 
.-T ..... 
o 
::s 
CIl 

..... 
N 
W o ...
 

Force 1 1 

0 

Initial Load 1 1 

Clear AP 1 0 

Clear Interface 1 0 0 

Master Clear 1 0 0 

Resume AP 1 0 0 

I I 

1 [ 

o[ 
, 

1 

0 

1 

0 

!-- 1  Denotes Forced External Function 
o 
;po 

'" 

Fiqure 9-1. Forced External Functions (1230 to AP) 



9.2.2 (continued) 

two consecutive 16-bit bytes to form one 32-bit half-word which will be stored 
in the program memory. 

This instruction will initiate the word-by-word transfer of 16-bit bytes from 
the 1230 to program memory over the buffered output data channel. The prograM 
memory address for storage of the first half-word, and the number of half-word 
transfers (one-half the number of 1230 words) required to complete the block 
transfer, are contained within the instruction. 

9.2.3 Clear AP 

The clear AP instruction is used to clear the AP. The I/O unit decodes this 
instruction and generates the required signals to reset the AP control and 
pertinent registers. 

9.2.4 Clear Interface 

The clear I/F instruction clears the interface unit control and registers. 

9.2.5 Master Clear 

The master clear instruction resets the interface unit and the AP. 

9.2.6 Resume 

The resume instruction is used to start the AP after a programmed AP halt. 
This instruction generates all required signals to start the AP. 

9.3 BUFFERED EXTERNAL FUNCTION COMMANDS (1230 TO AP) 

The normal buffered 1230 to AP external function feature of the 1230 output 
channel has been reserved for transferring command words to the AP. The 
command words are used to initiate specific sequences that the AP is required 
to perform. The command word contains a program memory address, the contents 
of which specifies the routine to be transferred from program memory to control 
memory. In general, the routine will be initiated as soon as it has been 
retrieved. The field of the command word containing the program memory is 
defined by the general format of figure 9-2. 

Six specific command words are defined in figure 9-2. If additional routines 
are required, command words must be defined conforming to the general command 
word format of this figure. 

9.4 AP I/O INSTRUCTIONS 

The format for the AP I/O instructions is presented in figure 9-3. There are 
a sufficient number of instructions to allow convenient communication with all 
equipments interfacing with the AP. In general, the AP will halt on an I/O 
instruction until the required interchange of data and control signals is 
complete. 

9-3
 



- - -- -- -- - - -

General 
Format 

--.----r 
N I o Yu I 

I I 
[ Program Memory Address - 14b ][ Not Used --] 

_. 1229 24 21 15 9 627 18 3 o-, 

-.c 
I 

J;:., 

-~ 

Start Tracking 
Sequence 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Start Control 
Sequence 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Start Confl i c t 
Prediction Sequence 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

Start Program Memory 
Dump Sequence 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Start Array Initilize 
Sequence 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Start Array Dump 
Sequence 

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

L 0 - Denotes Buffered External Function 

Figure 9-2.	 Normal Buffered External Function 
Commands (1230 to AP) 



• • • 
Write C M o I

-. 
Interrupt 0 ,

Clear Interface 0 
I

Load Output Register o • 

Load Address Register 0

Load and Store o . 

Store-Output Register 0 ,

0 
I 

Output-Output Register 
-.

Load and Output 0

Input - Command 0

0

0

0

Input - Data

Ret rieve - Block

Retrieve - Single Word 

63 •• 

0 0 0 0, , 

0 1 0 0 , •
I 

0 1 1 1 
• •• , 

• 0 
1 1 o , 

I • 
0 1 0 1 

•• •
, 1 1 1 1 • 
I I 

1 1 0 0 
· • I 

1 1 0 0 
• ,
• •

1 1 0 1,
I I 

1 0 1 1
••

1 0 1 0
• 
I 

1 0 0 1

1 0 0 0 , , 

47,46,45,44. ,371 ,31,30,29 16, 15 8.7 o-...., -- .- -
1 [ Not Used J 
~ 

1 Interrupt Code - 30b ]
I N/U [ 

• ~ r 

1 ,[ Not Used J 
~ •• 

Data - 32b ]1 .[ 
~• 

1 N/U ~GM MEM ADR - 14bI Not Used ]· I--f·• t Data - 32b ]1 
~ 

1 N/U ~GM MEM ADR - 14bJ[ Not Used ] 
-0 · I--fI • 
Ul 1 [ Not Used J 

I--f 
1 N'u [ Data - 30b ], I• • I--f• 
1 ,t Not Used ICM ADR - 8bI N/U ], 
~ 

1 Not Used 101 ADR - 8~ N/U ] 
•
,E 

~ 

1 
I H ,~ ~GM \1EM ADR - 14b rCM ADR - 8bICount- - 8bJ

• I--f • • 
1 1 E- Not Used ICM ADR - 8JI N/U ]

L.....J I 

L--~---~-L---L----L---AP I/O Instruction OP Code 

...0 Figure 9-3. AP I/O Instructions 
I 
Ul 



9.4.1 Write CM 

The write CM instruction is used to load paper tape into the control memory. 

9.4.2 Interrupt 

The inte~rupt instruction causes the interrupt code contained within the 
instruction to be placed upon the data lines to the 1230; then the interrupt 
line to the 1230 is raised. The AP halts in this instruction until the 1230 
acknowledges the interrupt. The specific interrupt codes presently planned 
for this system are shown in figure 9-4. 

9.4.3 Clear Interface 

The clear interface instruction resets all I/O unit control logic and registers. 
The AP halts in this instruction for a few hundred nanoseconds; then the I/O 
causes the AP to resume. 

9.4.4 Load Output Register 

The load output register instruction transfers the data field C32-bits} from 
the instruction into the I/O unit output register. The AP operation is resumed 
after the transfer is complete. 

9.4.5 Load Address Register 

The load address register instruction transfers the address field C14-bits) 
from the instruction into the I/O unti address register. The AP operation 
is resumed after the transfer is complete. 

9.4.6 Load and Store 

The load and store instruction transfers the data field C32-bits) from the 
instruction into the output register; then it ini tiates the wri te cycle of 
the program memory. The data is stored in the program memory at the address 
specified by the address register. The address register is then incremented 
by one and AP operation is resumed. 

9.4.7 Store Output Register 

The store output register instruction initiates the write cycle of the program 
memory. The data contained in the output register is stored in the program 
memory at the address specified within the instruction. The AP operation is 
resumed at the completion of the write cycle. 

9.4.8 Output-Output Register 

The output-output register instruction pldces the contents of the output 
register on the data lines to the 1230. The 1230 input data request is raised 
and the AP is halted until the 1230 accepts the data and returns an acknowledge 
signal. 

9-6 



29 27 24 21 lH 15 12 9 6 3 o 

,0 
1 
-I 

Tr~cking Sequence 
Complete 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

Cont ro 1 Spquence 
Complet.e 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Conflict Prediction 
Sequence Complet.e 0 0 0 0 () 0 () 0 () 0 0 () 0 () () 0 () 0 0 0 0 0 0 0 0 0 0 1 1 0 

Program Dump 
Scqu<~nce l{f~ady 

() 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 

Progr~m Dump 
Sequence Complete I () I 0 I 0 1 0 1 0 I 0 1 () 1 () 1 0 1 0 1 0 1 0 1 0 1 0 1 0 

Arrny [nitializp 
Comp Ie t.f~ 

0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

ArrrtY Dump Complete 0 () () 0 0 0 0 0 0 0 0 0 () () 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 

Arrny (Ive rflow 
(Beacon) 0 0 0 0 0 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0 () 0 0 0 0 0 0 0 0 1 

Array Ovt'rflow 
(Hadar) 0 0 0 0 0 0 0 0 () 0 0 0 () 0 () 0 0 () 0 0 0 0 0 0 0 0 0 0 1 1 

Te s t I': rro r 0 0 0 () 0 0 0 0 0 0 0 0 0 0 0 () 0 0 0 0 0 0 () 0 0 0 1 0 0 0 

Figure 9-4. Interrupt Codes (AP to 1230) 



9.4.9 Load and Output 

The load and output instruction transfers the data field (30-bits) from the 
instruction into the output register. The contents of the output register 
are placed on the data lines to the 1230. The 1230 input data request is 
raised and the AP is in a halt state until the 1230 accepts the data and 
returns an acknowledge signal. 

The input-command instruction requests a buffered external function by raIsIng 
the 1230 external function request line. When the 1230 acknowle~ges the 
request, the program memory address on the 1230 output lines (see general 
format.figure 9-3) is transferred via the input register to the I/O unit 
address register. This causes a 32-bit word to be transferred from program 
memory to control memory. The location in program memory is specified by 
the contents of the I/O unit address register. The location in control memory 
is specified by the address in the input-command instruction being executed. 
The detailed format for AP command words is shown in figure 9-2. 

9.4.11 Input-Data 

The input-data instruction initiates a 1230-to-AP data transfer by raising 
the 1230 output data request line. When the 1230 acknowledges the request, 
the data on the 1230 output lines is transferred via the input register to the 
data field (30-bits) of the AP control memory word specified by the instruction. 
AP operation is resumed at the completion of transfer. 

9.4.12 Retrieve-Block 

The retrieve-block instruction initiates a block transfer from the program 
memory to the control memory, 32-bits per transfer. The number of 64-bit words 
to be transferred within the block is contained in the instruction. The 
word-count field contains the number of 64-bit words while H is used to denote 
that only one-half of a lVord (the data field) is to be transferred. The 
program memory address of the first half-word and the control memory address 
for the first transfer are also contained within the instruction. 

The I/O unit address register is loaded from the program memory address field. 
The register used to address the control memory is loaded from the control 
memory address field. The word counter is loaded from the count field. A 
transfer is then initiated using the address registers. Upon completion of 
the transfer, the address registers are incremented by one and the word counter 
is decremented. Another tr~nsfer is then started if the word counter is not 
zero. When the word counter goes to zero, AP operation is resumed. 

9-8
 



9.4.13 Retrieve-Single Word 

The retrieve-single word instruction initiates a single word transfer from the 
program memory to the data field of the control memory (32-bits). The program 
memory address is specified by the current contents of its address register. 
The control memory address is specified within the instruction. The I/O unit 
address register is then incremented by one and AP operation is resumed. 

9.5 DATA TRANSFER SEQUENCE AND FORMAT 

In order for the AP to perform its assigned tasks, data must be exchanged with 
the Univac 1230 computer. In general, raw data is transferred from the 1230 
to the AP. The AP processes this data and the resulting information must be 
transferred to the 1230. The items below describe the data transfer sequence 
and format for each of the functions or sequences performed by the AP. 

9.5.1 Program Memory Load Interface 

The AP program memory must be loaded with its required instructions before 
system operation can begin. There are two ways this can be accomplished. 
(1) Program memory can be loaded locally in the AP from paper tape via the 
AP paper tape reader. This requires no data transfer between the AP and the 
1230. (2) If the AP programs have been placed on magnetic tape, the AP 
instructions can be treated as data and transferred to the AP via the 1230. 
Therefore, an output buffer is required in the 1230, from Mlich the instruc
tions are transferred to the AP. Figure 9-5 shows the format of this output 
buffer as well as the sequence of transfer to the AP. 

9.5.2 Radar-Reinforced Beacon Tracking Interface 

This tracking sequence is eight times per 4-second antenna scan, i.e., once 
in each of the eight 450 sectors of the scan. In order to perform the tracking 
process, the AP requires both beacon and radar reports from the 1230. Two 
beacon/radar report buffers are provided in the 1230 to accumulate and transfer 
reports to the AP (See figure 9-6). When A is being used by the AP to process 
reports from the sector just passed, buffer B will be filled by the 1230 with 
reports detected from the current sector. During the following sector, the 
roles of the buffers will be reversed. Three buffer words are needed for each 
beacon report. The specific beacon report word formats are shown in figure 9-7. 
The third word of the last beacon report in a sector must have the "last si t" 
set to indicate that it is the last beacon report in the sector. Two buffer 
words are required for each radar report. The specific radar report word 
formats are shown in figure 9-8. The second word of the last radar report in 
a sector must have the "last bi t" set. In a case where only beacon reports 
are to be transferred, a single "dummy" radar report must be included. In the 
"dummy" report, all bi ts must 'be rest (logical zero) except the "last bi t" which 
must be set (logical one). Conversely, when only radar reports are to be 
transferred, a single "dummy" beacon report must be included. In a case where 
there are no beacon or radar reports in a given sector, one "dummy" beacon 
report and one "dummy" radar report is transferred to the AP. 

9-9 



AP Program Output Buffer 

AP Instruction ttl (MSB) 

AP Instruction ttl 

AP Instruction ttl 

AP Instruction ttl (LSB) 

AP Instruction ttn (MSB)
 

AP Instruction ttn
 

AP Instruction ttn
 

AP Instruction ttn (LSB)
 

Word 1 

Word 2 

Word 3 

Word 4 

Word 1 

Word 2 

Word 3 

Word 4 

NOTES: 1. AP Instructions Require 64 Bits 

2.	 Each Univac Word Contains 1/4 of 
an AP Instruction (i.e., One 16
Bit Byte) 

3.	 MSB = Most Significant Byte 

4.	 LSB = Least Significant Byte 

Figure 9-5. Univac Buffer Format 
for	 Program Memory Load 

9-10
 



Buffer A Buffer B 

Beacon Report ttl 

Beacon Report ttl 

Beacon Report ttl 

Beacon Report tt2 

Beacon Report tt2 

Beacon Report tt2 

Last Beacon Report in Sector 

Last Beacon Reoort in Sector 

Last Beacon Report in Sector~' 

Radar Report ttl 

Radar Reoort 1fl 

Radar Report tt2 

Radar Report tt2 

Last Radar Report in Sector
 

Last Radar Report in Sector';'
 

Sector Address
 

Trac k W d I or nput Bfferu 

Track Report ttl 

Track Report ttl 

Track Report ttl 

Track Report ttl 

Track Report tt2 

Track Report tt2 

Track Report tt2 

Track Report tt2 

Last Track in Sector 

Last Track in Sector 

Last Track in Sector 

Word 1 

Word 2 

Word 3 

Word 1 

Word 2 

Word 3 

Word 1 

Word 2 

Word 3 

Word 1 

Word 2 

Word 1 

Word 2 

Word 1 

Word 2 

Word 1 

Word 1 

Word 3 

Word 4 

Word 1 

Word 2 

Word 3 

Word 4 

Word 1 

Word 2 

Word 3 

Beacon Report ttl 

Beacon Report ttl 

Beacon Report ttl 

Deacon Report tt2 

Beacon Report tt2 

Beacon Report tt2 

Last Beacon Report in Sector 

Last Beacon Reoort in Sector 

Last Beacon Report in Sector':' 

Radar Report ttl
 

Radar Reoort ttl
 

Radar Report tt2
 

Radar Report tt2
 

Last Radar Report in Sector
 

Last Radar Report in Sector':'
 

Sector Address
 

Control Status Output Buffer 

Control Status 

~:: "La st-Report -i n-Sect or" Bi t 
Set only in this Word. 

Word 1 

Word 2 

Word 3 

Word 1 

Word 2 

Word 3 

Word 1 

Word 2 

Word 3 

Word 1 

Word 2 

Word 1 

Word 2 

Word 1 

Word 2 

Single
 
Word
 

Buffer
 

Last Track in Sector Word 4 

Figure 9-6 .. Univac Buffer Format for Tracking Sequence 
and Control Sequence 

9-11 



Y Reported X Reported ReportWord 1 
Number (NM )(NM ) 

1 
32 

o 

DLTALRG DLTAMED DLTASMAL--D Word 2 I
I (NM ) ( Nl\il ) (NM)...... I I Always> 0Always > 0 Always > 0"" 

. • • , 

, , , , , , , , , , , , , , , I , , , , , , , , . . . . 
1 

,32 

(1) >. 
>. "O~ 

::s ....+-' 
(1) .... +-'''0Word 3 -",", .I""'l"0"0 
0· ... +-' ...... 

...... C'C 1B=iI H 

29 28 

+-',.. 
0 C 

I I~ S o 

/ 
t) 

0:: ro 
(1) 

W~' ~ u-;+-,(f) ~> 
en ;:;. 
roC
-J.... 

Track Alt i tude Beacon Code + SPI(100Ft.) 

*Strong/Weak 

Figure 9-7. Beacon Report Word Format (1230 to AP) 



a 

Report X Reported Y Reported Word 1 
( NM) (NM ) Number 

1
 
32
 

-0 
I 

...... 
W 

29 

Word 2 

!fa 

DLTALRG 
(NM ) 

Always > a 

DLTAMED 
( NM) 

Always > a 

DLTASMAL 
( NM) 

Always > a 

1 
:T2 

Figure 9-8. Radar Report Word Format (1230 to AP) 
(Radar-Reinforced Beacon Tracking) 



9.5.2 (continued) 

The last word of the beacon/radar report output buffers is the sector address 
word. There are eight (8) 45 sectors in the total scan. These are labeled 
in the 1230 as sector #0 through sector #7. The AP, however, requires a 
unique octal "jump" address for each sector. This requires an eight (8) 
word table be stored in the 1230 (See Figure 9-9). Sector address words are 
taken out of the 1230 table as required and placed in the last word of the 1230 
beacon/radar report output buffer. Even if no reports exist in a sector, a 
single "dummy" beacon report and radar report are placed in the beacon/radar 
report output buffer followed by the proper sector address word. The specific 
format for the sector address word is shown in figure 9-10. 

Word number two of each target report contains three box size numbers. The 
three numbers are the small, medium and large box sizes for a given report. 
Since position error is related to range, each set of box sizes is stored in the 
1230 within the box size table as a function of range (See figure 9-9 for 
general format for box size tables). As each report is stored within the 
beacon/radar report output buffer, the appropriate box sizes 3re also stored. 
One set of box sizes is specified for each two mile range increment. As a 
result, thirty words are needed for each box size table. Two box size tables 
are required, one for beacon reports and one for radar reports. The specific 
box size values (as a function of range) for beacon and radar reports are 
shown in tables 9-1 and 9-2 respectively. 

After the AP has completed its tracking functions for a particular sector, 
it outputs track data to the track word input buffer (figure 9-6). Four words 
are required for each track report and the word formats are shown in figure 9-11. 

9.5.3 Altitude Tracking and Turn Detection Interface 

This sequence is performed once per scan. Since it operates on data already 
contained in the AP track file, there is no requirement for data to be trans
ferred from the 1230 to the AP. This sequence is performed only for the purpose 
of improving the conflict prediction process, which also is performed in the 
AP. Therefore, an output from the altitude tracking and turn detection 
sequence is not required by the 1230. 
the 1230, but only to aid in system de
word is shown in figure 9-12. 

However, 
bugging. 

an 
The 

output is 
format fo

transferred 
r this outp

to 
ut 

9.5.4 Control Sequence Interface 

This sequence is only performed when the proper manual entry is made from the 
data entry keyboard at one of the controller positions. For this reason, it 
will be performed at a very low rate, seldom more than once per scan. This 
process allows the controller to either initiate or drop control of any given 
aircraft track. Since the data entry keyboard interfaces only with the 1230 
in this system, a data word must be transferred from the 1230 to the AP to 
provide the necessary information for it to change the control status of the 
given track. The format for this single word transfer is shown in figure 9-13. 
The transfer of data from the AP to the 1230 is not required. 

9-14
 



BOX SIZE TABLE (2 REQUIRED: 1 FOR BEACON, AND 1 FOR RADAR)
 

0< Range ~ 2 SMIIll , Medium, Large Box Sizes 

2< Range s 4 Small , Medium, Large Box Sizes 

4< Range ~ 6 Small , Medium, Large Box Sizes 

58< Range ~ s60 1L..-__s_m_a_l_l..;.,_M_ed_l_·u_m~,~L_a_r..:::g_e_BO_x_S_i_z_e_

SECTOR ADDRESS TABLE 

Sector o Address (268 ) 

Sector 1 Address (328) 

Sec tor 2 Address (368) 

Sector 3 Address (448 ) 

Sector 4 Address (528) 

Sector 5 Address (578 ) 

Sector 6 Address ( 648) 

Sector 7 Address (728 ) 

Figure 9-9. Univac Table Storage 

9-1;) 

Word 1 

Word 2 

Word 3 

1 Word 30 

Word 1 

t'Jord :2 

\'lord 3 

Word 4 

Word 5 

Word 6 

Word 7 

Word 8 



11 1/40 

326 1/40 
56 1/40 

-C 
I 

...... 

.::J' 

281 1/40 101 1/40 

146 1/40 

AP Sector Routine 
Jump Address 

191 1/40
 

Figure 9-10. Sector Address Word Format (1230 to AP)
 



TABLE 9-1. BEACON BOX SIZES (Sheet 1 of 2) 

RANGE 
INTERVAL 

(NM)* LARGE 
(FEET-DECIMAL) 

MEDIUM SMALL LARGE 
(FEET-OCTAL) 

MEDIUM SMALL 

0-2 12160 4370 950 0100 027 005 

2-4 12160 4370 950 0100 027 005 

4-6 12160 4370 950 0100 027 005 

6-8 12160 4370 950 0100 027 005 
8-10 12160 4370 950 0100 027 005 

10-12 12350 4560 1140 0101 030 006 
12-14 12350 4750 1140 0101 031 006 
14-16 12540 4750 1330 0102 031 007 
16-18 12540 4940 1330 0102 032 007 
18-20 12730 5130 1330 0103 033 007 

20-22 12730 5320 1520 0103 034 010 

22-24 12920 5510 1520 0104 035 010 
24-26 12920 5700 1710 0104 036 011 

26-28 13110 5890 1710 0105 037 011 

28-30 13110 6080 1900 0105 040 012 

30-32 13300 6270 1900 0106 041 012 

32-34 13300 6460 2090 0106 042 013 

34-36 13490 6650 2090 0107 043 013 

36-38 13680 6840 2280 0110 044 014 

38-40 13680 7030 2280 0110 045 014 

40-42 13870 7220 2470 0111 046 015 

42-44 13870 7410 2470 0111 047 015 

44-46 14060 7600 2660 0112 050 016 
46-48 14060 7790 2660 01l~ 051 016 
48·-50 H~50 7980 2850 0113 052 017 
*NM = NautIcal Miles 

9-17
 



TABLE 9-1. BEACON BOX SIZES (Sheet 2 of 2) 

RANGE 
INTERVAL 
(NM)'~ LARGE 

(FEET-DECIMAL) 
MEDIUM SMALL LARGE 

(FEET-OCTAL) 
MEDIUM SMALL 

50-52 14440 8170 2850 0114 053 017 

52-54 14440 8360 3040 0114 054 020 

54-56 14630 8550 3040 0115 055 020 

56-58 15820 8740 3230 0116 056 021 

58-60 15820 8930 3230 0116 057 021 

':' NM = Na uti ca 1 Mil es 

9-18
 



TABLE 9-2. RADAR BOX SIZES
 

RANGE 
INTERVAL 

(NM)* LARGE 
(FEET) 
MEDIUM SMALL 

(FEET-OCTAL) 
LARGE MEDIUM SMALL 

0-2 5890 2280 950 0037 014 005 
2-4 5890 2280 950 0037 014 005 
4-6 5890 2280 950 0037 014 005 
6-8 5890 2280 950 0037 014 005 
8-10 5890 2470 950 0037 015 005 

10-12 5890 2470 950 0037 015 005 
12-14 5890 2470 950 0037 015 005 
14-16 5890 2470 950 0037 015 005 
16-18 5890 2470 1140 0037 015 006 
18-20 6080 2470 1140 0040 015 006 
20-22 6080 2660 1140 0040 016 006 
22-24 6080 2660 1140 0040 016 006 
24-26 6270 2660 1140 0041 016 006 
26-28 6270 2850 1140 0041 017 006 
28-30 6460 2850 1330 0042 017 007 
30-32 6460 2850 1130 0042 017 007 
32-34 6460 3040 1330 0042 020 007 
34-36 6650 3040 1330 0043 020 007 
36-38 6650 3230 1330 0043 021 007 
38-40 6650 3230 1520 0043 021 010 
40-42 6840 3420 1520 0044 022 010 
42-44 6840 3420 1520 0044 022 010 
44-46 7030 3610 1520 0045 023 010 
46-48 7030 3610 1520 0045 023 010 
48-50 7220 3800 1710 0046 024 011 
50-52 7220 3800. 1710 0046 024 011 
52-54 7410 3990 1710 0047 025 011 
54-56 7600 3990 1710 0050 025 011 
56-58 7790 4180 1900 0051 026 012 
58-60 7980 4180 1900 0052 026 012 

*NM = Nautical Miles 

9-19
 



c 
o X Predict.edWord 1 Y Predicted<J 
co (NW (NM)<lJa: 

.... ... ... ." 
o (,) ~ 

Track Track X Velocity Y Ve loc i t y u ~eWord 2 
... Eo-< 0 Number Fi rmness (NM/Sec. ) (NM/Sf>c. ) co ... 
." "'- '-' 
co 0 C 
a: ... 0 

Q U 

1/01/0 10 

Word 3 

291 28127126125 24123 2212d20119hal17116115h4 h:1 1211111019 la 171615141:11211 0 

<lJ >. 
"Q'-':::s .~ 

'-'." 
.00'l • ..-I 

'-' ...... 
...... co 
.",;:" 

Altitude
(100 ft. ) 

Beacon Code ...... 
c. 
<Jl 

1 I I I 2 11 S 12::01128164 1321161 8141 211 III I 1 I 1 1 III 

ReportWord 4 
Number 

Figure 9-11. Track Word Format (AP to 1230) 

9-20 



-.0 
I 

(\j.... 

w ...... w 
0 

(\j 
-.0 

(\j 

CO 
(\j 
-J 

(\j 

~ 
(\j 
~ 

p,", 
~ 

(\j 

W 
(\j 
(\j 

(\j 
...... N 

0 
...... 
-.0 

...... 
Q:l 

...... 
-J 

...... 
~ 

...... 
c.n 

...... .... ...... 
w 

...... 
N 

...... 

...... 
...... 
0 -.0 CO -J ~I~I~ W N ...... 0 

o 0 000 
Track 
Number -

R 
E 
T 
U 
R 
N 

T 
U 
R 
N 

ALTDeT Predicted 
Altitude 

Figure 9-12. Attitude - Turn Detection Word Format (AP to 1230) 



0 

"0 

....-l 

....-l 

il) 
Track 

0 Number 
l-< .... 
s:::: 
0 

U 
I I 

-.0 
I 

r.= 
[\; I f I I I 1 I I 1 I I I I f 1 1 I I I I I I 1 1701~2116181 41211 

Figure 9-13. Control Status Word Format (1230 to AP) 



9.5.5 Conflict Prediction Interface 

The AP requires no data from the 1230 in order to perform conflict prediction. 
This sequence uses data already available in the AP track file in order to 
perform its function. Conflict prediction is performed once per scan. After 
completion of the conflict prediction sequence, the AP transfers the potential 
conflicts to the conflict report input buffer in the 1230 (see figure 9-14). 
Each potential conflict has one reference word and one or more match words 
corresponding to the number of aircraft in conflict with the reference words. 
The specific format for the conflict report words is shown in figure 9-15. 

9-23
 



Conflict Type Output Buffer 

Conflict Type Data	 Single Word Buffer 

Conflict Report Input Buffer 

Reference Word A 

Match Word Al 

Match Word A2 

Match Word An
 

Reference Word B
 

Match Word BI
 

Match Word B2
 

Match Word BJ
 

Match Word Bn 

Reference Word N (Last) 

Match Word N1 

Match Word N2 

Match Word Nn (Last) 

Figure 9-14.	 Univac Buffer Format for 
Conflict Prediction Sequence 

9-24 



29 28 0 

...... 

II Reference 
til 

Track 
:s: 

Word N I ~ 
...... Number<-
1 

-.0 
I 
N 
Ul 

i I I I I I I I I I I I I r I I I I I I I r 
8 7 6 I 5 

0 T T T 
1\ yl MatchY Y 

I ~ ppWord N+l ell Track 
:s: e e 
r-i ~ I Number< 3 2 1 

Figure 9-15. Conflict Report Word Format (AP to 1230) 



SECTION 10
 
HARDWARE AND UTILITY SOFTWARE
 

10.1 INTRODUCTION 

The STARAN IV Associative Processor installed at the Knoxville airport is made 
up of three subsystems: 1) the interface unit, 2) the control subsystem and 
3) the associative subsystem. 

10.2 INTERFACE UNIT 

This interface unit has a dual purpose: 1) it connects the associative and 
control subsystems to the Univac 1230, and 2) it provides a program memory 
for basic storage of programs. The interface unit must provide the following 
data paths: 

1)	 from the Univac 1230 to the program memory. This is required to 
provide the capability to load AP programs, from magnetic tape via 
the Univac 1230. 

2)	 from the program memory to the control subsystem, to be stored in 
the stored memory (AP programmed instructions are executed only from 
the control memory). 

3)	 from the 1230 to the AP control subsystem for further transfer to 
the associative subsystem for storage in the associative array or for 
use as an argument operation. 

4)	 from the control or associative subsystems to the 1230 to transfer 
the results of a given AP processing routine. 

5)	 from the AP to the program memory for storage of data or for modi
fication of stored data. 

6)	 to the program memory from the I/O control panel for minor program 
modification and system maintenance. 

The elements required to perform the tasks required of the interface unit are 
shown in the AP/1230 interface unit block diagram, figure 10-1, and are 
described in the following paragraphs. 

10-1
 



--
• •• 

--

.
~.. H 

-• 
To 1230 I/O Channel .

4. • 0_,r 

..cD-1~3U/AP 

'1 rans 13 tors .. 
-

...... 
o 
I 

r..; 

•• +" 

I npLi t Heg i Sip r -....

, 
Interface 

~ Control 
~ 

., ~ 

~ 

Output Regis ter --

...  ..... 
...Address Register ..- Word Counter 

- -... 

= Control
 
::: Data
 

I/O Control 
Panel 

~ 

Program ~iemory 
... 
-Translators ... 
... 

• H 

•• ., ., 

Program ~':emory 

8K X 32 HMI 

Figure 10-1. AP/1230 Interface Unit 



10.2.1 1230 Translator 

The 1230 Translator performs the task of converting the signal levels for 
compatibility between the Goodyear equipment and the Univac equipment. Special 
circuits are required in this area to provide the required signal levels and 
drive capabilities for use by the 1230. Termination of the 1230 signals also 
requires the use of special circuits which are contained within the element. 

10.2.2 Input Register 

The input register is required for a temporary storage of data during transfers. 
The input register is a 32-bit register with two strobed input ports and two 
gated output ports. Data is received by the input register from two sources, 
the 1230 translator and the program memory translator. The input register 
provides data to several points. One of the output ports is connected to the 
control subsystem for entering into the control memory. The other port is 
distributed to the following blocks: 

Interface Control bit 0 and bits 24 thru 29 

Word Counter bits 1 thru 12 

Address Register bits 13 thru 26 

Output Register bits 0 thru 15 

10.2.3 Output Register 

The output register is required for temporary storage of data to be transferred 
to the 1230 or to the program memory. The output register is a 32-bit shift 
register with two strobed input ports and two gated output ports. Data is 
received by the output register from three sources, the control subsystem (32
bits), the input register (16-bits), and the associative subsystem (1 line, 
serial input). The input from the input register is constructed with a split 
strobe with the two halves of the input port connected in parallel, allowing 
the packing of two 16-bit bytes from consecutive input words into one 32-bit 
word. The serial input from the associative subsystem provides a path for data 
from the associative array. The two output ports of the output register are 
connected to the 1230 translators and to the program memory translators. 

10.2.4 Address Register 

The address register is required for storage and modification of the program 
memory address. The address register is a 14-bit counter with two strobed 
input ports and one gated output port. The address is received by the address 
register from two sources, the control subsystem and the input register. The 
output is connected to the program memory translators. The address register 
is incremented by one after each transfer involving the program memory, allowing 
block transfers to be performed. 

10-3 



10.2.5 Word Counter 

The word counter is required to control the number of transfers within a block 
transfer that involves the program memory. The word counter is a 12-bit counter 
with two strobed input ports and a single output signal (counter equal zero). 
The word count is loaded from one of two sources, the input register or the 
control subsystem. The word counter is decremented during a block transfer to, 
or from, the program memory with the interface control monitoring the "counter 
equal zero" output, which indicates completion of the block. 

10.2.6 Program Memory Translators 

The program memory translators are required to level-convert the signals 
between the interface unit logic and that of the program memory system. The 
program memory translator converts the MSCL levels of the interface logic to 
the TTL levels used within the program memory system. The translator also pro
vides a path from the I/O control panel to the program memory. 

10.2.7 Program Memory 

The program memory is required to store AP programs in a large quantity. The 
program memory consists of a 900ns random ac~ess core memory (16K words x 32 
bits) and all required power supplies. In addition, a memory tester is included 
for verification of the memory system. Communication with the program memory 
is initiated by the interface control. The 64-bit AP instructions stored in 
this memory must be stored in two consecutive 32-bit words; therefore, 8K AP 
instructions may be stored in the program memory. The memory may be expanded 
if necessary to 32K x 32 bits for the storage of 8K AP instructions. 

10.2.8 I/O Control Panel 

The I/O control panel allows for operator control of the interface functions 
for purposes of checkout and maintenance. The functions of the control panel 
are allowed only in the test mode operation. The mode is selected from the I/O 
control panel. The control panel functions are as follows: 

1)	 Read a specified location of the program memory (using address switches). 

2)	 Write any 32-bit word (using data switches) into a specified location 
of program memory. 

3)	 Inhibit any transfer invloving the program memory, and single-step 
from panel until any block transfer is complete. 

4)	 Inhibit any transfer involving the 1230 and release the inhibit. 

10-4
 



10.2.9 Interface Control 

The interface control, as its name implies, controls all transfers involving 
the interface unit. The interface control is tied closely to the AP control 
subsystem, the program memory control lines, and the 1230 control lines. 
Decode logic for both forced external functions from 1230 and the AP I/O 
instructions is included within the control, as are several small hardware 
routines required to communicate with the program memory, the 1230, and the 
AP control subsystem. Strobes are supplied by control for register loading, 
incrementing, etc., throughout the interface unit. The interface control logic 
is completely asynchronous and handles one transfer at anyone time. 

10.3 CONTROL SUBSYSTEM 

Figure 10-2 is a diagrammatic representation of the control subsystem. 

10.3.1 Subsystem Control Logic 

This block represents the heart of the control subsystem. As instructions are 
received from the interface unit, they are stored into appropriate locations 
within the control memory. The control memory can be loaded from punched paper 
tape and the maintenance and test control, both located in the associative 
subsystem. All non-associative functions such as program instruction sequencing, 
manipulation of the common data registers, and input/output of single operands 
are controlled by the subsystem control logic working in conjunction with the 
associative control logic. 

A number of registers are used in the control subsystem; included are: 

1) Memory buffer register - a buffer between control memory and 
instruction register. 

the 

2) Instruction register - decodes and distributes control 
to proper registers in the AP. 

information 

3) Counter registers - keeps track of program location in control 
memory. 

4) Address logic - controls read and write of data from/to 
control memory. 

10.3.2 Control Memory 

The plated-wire control memory contains 256 locations (64 bits each) in which 
are stored, normally by transfer from program memory, instructions necessary 
to perform both the associative and non-associative operations. The control 
memory can be loaded from the paper tape reader and from the maintenance and 
test control panel which are located in the associative subsystem, as well as 
from the program memory which is located in the interface unit. 

10-5 



'"'" ::s ..... 
(D..., 
...... 
Q:I 
("') 
(D 

C 
::s ..... 

...... 
o 
I 
0' 

~ ~
 
-F .. -; '1' 

..- ..- B 
:J;>Address - P Counter 
CIl 

Select -~ and.. -- --. J 0 
CIl 

o Counter ("') ..... 

t 4~ ~ 
("+ .....

M < 
(!) 

-. E 
(Jl... s:: 
0
CIl 

'< 
CIl! ... A 
("+ 

(!) 

3~Word Select Subsystem
& Control CWord Drivers Logic 

r-- ..... D 
-I
 

" .i 

K ..- ~ 

Memory-
,~ • 

Control ~iemory
 

Array 8i t I- r-
Ori vers 

and 

Buffer 
Register 

1 Ir 

128 X 128 

..... Sense 
Amplifiers I""l'" 

Instruction 
Register 

= Control =Data 

Figure 10-2. Control Subsystem 



10.4 ASSOCIATIVE SUBSYSTEM 

The associative functions of the AP are performed in the associative subsystem 
(see figure 10-3), which contains a high speed plated-wire associative memory. 
Each associative microprogram (e.g., exact match search, between limits search, 
add fields, etc.) is made up of a number of micro-instructions. The associative 
subsystem receives micro-instructions and data from the control subsystem and 
outputs the resulting responses to the control subsystem. The associative 
subsystem includes the following subunits. 

10.4.1 Associative Control Logic 

This control logic works hand-in-hand with the control subsystem control logic 
in performing all associative and non-associative AP functions. As the controi 
subsystem reads each control memory micro-instruction, the associative sub
system control logic takes appropriate action in the initialization and 
execution of search operations, various logical operations, or any of several 
arithmetic operations as dictated by the decoded instructions. 

10.4.2 Registers 

A number of registers are included in the associative subsystem, they are: 

a) Argument - used in inputting data to or manipulating d~ta 

within the associative array. 

b) Address select - selects associative array bit address. 

c) Response store - used to store temporary results of an operation, 
to perform an operation, or to output data. 

d) Counter registers - for executing micro-instructions in proper order. 

e) Data registers - interim storage of data or intermediate instruction 
steps. 

10.4.3 Input Control 

This unit controls the transfer of instructions from the tape reader to the 
control memory. A bootstrap program may be loaded via this path. When the 
bootstrap program is executed, instructions and/or data may be transferred from 
the tape reader to the program memory in the interface unit. 

10-7
 



I Tape Reader ~ 
J 

Mainlenance and ControlI "isp'ay'nil I~ Test Control Panel 

InVul Conlrol 

I I
j 

I 

~ 
» 

'", 
"' 

c 
c-
o. ~ ...... "" o :'\I 

CO 

i~ 

Ori vers and 
Response Store IJ Sense Ampli fiers 

I 

J 
I 

•"---
Cuntrol Logic 

'

!tt 
I I I 

: 32 Data Registers r-
I 

I 
~ ~ 

[ Field Pninters r Bi t ,elect and I ~Argumen l 
~ I ALJdress Select 1. 2, 3. andRegislf'r Blt Urivers IField Length Counter 

f I I 
~ 

fAssociative Array I L........-.ei Word 

Figure 10-3. AP Associative Subsystem 



10.4.4 Maintenance and Test Panel and Control 

The maintenance and test panel provides for the manual entry of data into the 
control memory. Also, it allows for single-stepping of AP instructions, or the 
observing of several key registers within the associative processor proper. 
The address of the current control memory instruction as well as the instruction 
itself may be displayed. These functions are made available through the use 
of the maintenance and test control logic. 

10.4.5 Display Unit 

The display unit is a storage cathode ray tube which is used primarily for 
displaying the contents of associative memory. A switch is available on the 
maintenance and test panel which allows either a direct "contents of memory" 
display or an X-Y coordinate display of data present in the associative array. 

10.5 ELECTRICAL INTERFACE 

The electrical interface diagram, figure 10-4, shows that the interface unit 
must communicate with the 1230 computer, the AP program memory, and the AP 
proper (i.e., control subsystem and demonstrator). The interface adaptors 
contain the level shifters, receivers, and drivers necessary for this communi
cation. The interface data and control block contains the remainder of the 
register and control logic for these interfaces. Each of the three interfaces 
as they communicate with the interface unit itself are described below. 

10.5.1 1230 Computer 

The associative processor and its interface unit are electrically compatible 
with the 1230. Signals to/from the 1230 pass through the interface adaptor 
block which, for the 1230 , consists of Univac receiver and transmitter boards. 
On each board is also located a translator to/from Motorola's Emitter Coupled 
Logic (MECL), the basic logic family within the AP. 

a)	 Identification of interface signals. Figure 10-4 shows all the signals 
which are used to interface with the 1230. 

b)	 Signal levels. These signals conform to the requirements of "Minus 3 
volt interface" section para. 3.5.2 of Univac Specification 054772, 
which are nominally 0 volts and -3 volts to represent binary one and 
binary zero, respectively. 

c)	 Signal timing. Input/Output signals for data, external functions, 
interrupts and their associated control will conform to the timing 
diagrams of figures 8 through 11 of 054772. 

10 9 



--
--

--

--

--

r--- -----,
Interface Uni t
 

Output Data (30 Lines) I .
t---... ? I1230 In terfClce AssociativeInpu t Da ta (30 Lines)- ICompu te~ IAdaptors ProcessorI -_ Uu tpu t Da La Reques t
 

Output Data Acknowledge I _
 f 
I ..- Input Data Request IUni vac 

Input Uata Acknowledge 
I 

:> Levels·  - II 
- I .. _ ExternCll Function Request 

~IECLExternal Function Acknowledge I _ I
LevelsI • 

ExternCll Interrupt Request- · I 
External Interrupt Enable I ,.., II .

........
I I ..... r • 
o 
I :> TTL..... Io LevelsI 

I _ I,.., '-

-
-

--. 
In terface

Data 
- And

Control-
-

---.
-

-

-

.. 
~

~ 

- ....I 

II 
I 

· 
T~ 
I _ 
.--
I

I

I 
Control (6 Lines) IAddress 04 Lines)
 

Input Data (32 Lines)
 AP Program Memory I 
Ou tpu t Da ta (32 Lines) I 

L _ __ ...J 
Figure 10-4. Electrical Interface Diagram 



10.5.2 AP Program Memory 

Although a program memory may be included in the broad sense of the term 
"associative processor," this particular program memory communicates with the 
AP proper via the interface unit and is physically a part of the interface 
unit. Signals to/from the program memory pass through the interface adaptor 
block which, for this memory, consists of TTL-MECL/MECL-TTL translator boards. 

a)	 Identification of interface signals. Figure B-1 shows the data, 
address, and the six control lines required to interface with the 
program memory. 

b)	 Signal Levels. High level: +2.5v to +5.5v max; Low level: O.Ov to 
+O.6v max. 

c)	 Signal Timing. Input/output signals for the program memory are 
timed to take full advantage of the cycle times and repetition rates 
it offers. 

10.5.3 Associative Processor 

The	 signals between the Ap proper and the interface unit (data and control 
portion) are all MECL signals and there is a close functional tie between 
these two blocks. 

10.6 DESCRIPTION OF UTILITY PROGRAMS 

The following sections describe various utility programs of the associative 
processor. 

10.6.1 Program Memory Load 

All Associative Processor (AP) instructions are executed from the plated wire 
control memory in the control SUbsystem. The control memory in this particular 
model of STARAN has the capacity for storage of only 256 AP instructions (64 
bits each). Since this was not sufficient capacity to store all the required 
programs, a program memory (Ampex core memory, 16K words X 32 bits) was included 
as part of the interface unit design. All required programs are stored in 
program memory. During operation, AP instructions are paged from program 
memory to control memory for execution. 

Newly assembled or reassembled AP programs or program segments are initially 
available only on paper tape. The AP has a hard-wired capability to read the 
contents of the paper tape directly into control memory, by means of the 
Goodyear paper tape reader. However, if a short bootstrap program is first 
read to control memory. it, in turn, controls the transfer from the paper tape 
reader to program memory. 

10-11
 



10.6.1 (continued) 

Univac has provided the utility programs to allow the Univac 1230 to read 
Goodyear paper tape from the Univac paper tape reader, and store the contents 
in 1230 core. Additional 1230 utility programs, then, provide the capability 
to transfer the contents of 1230 core to the AP program memory via the interface. 
This path is hardware-controlled from the AP standpoint. The path just 
described is less direct than that of reading directly from the Goodyear paper 
tape reader in program memory, and therefore is seldom used. 

Univac has also provided the utility software necessary to transfer the contents 
of magnetic tape to the AP program memory via 1230 core and the interface. 
Again, this path is hardware controlled from the standpoint of the AP. This is 
the fastest way to load AP program memory, but it requires that Univac magnetic 
tape be initially loaded with the proper AP programs. Since AP programs are 
initially available only on paper tape, this method requires the following 
steps: 

a)	 Read paper tape on the Goodyear paper tape reader and store in Al 
program memory. 

b)	 Dump contents of program memory to 1230 core (this requires compatible 
AP/1230 utility software - see section 10.6.4, (item b) below). 

c)	 Write the corresponding contents of 1230 core on Univac magnetic tape 
(requires Univac utility software only). 

d)	 Read contents of Univac magnetic tape to 1230 core, then to Al 
program memory via the interface (requires Univac utility software, 
but is hardware controlled from the AP standpoint). 

This has become the standard method for loading the AP program memory. With 
this method, the AP program image on Univac magnetic tape may be kept current 
and can be transferred at high speed to the AP program memory via the interface. 

10.6.2 paper Tape Format 

The paper tape format of AP programs (or AP programs segments) is shown in 
figure 10-5. The paper tape has eight bit positions across its width. The 
frame breakdown of the paper tape format for an AP program segment follows: 

a)	 A non-blank dummy frame. If the value of the least significant bit 
(LSB) position of this frame is one, then no trailing check sum frames 
will appear at the end of the program segment. 

b)	 Immediately following the non-blank dummy frame are two frames constit 
uting a 16-bit program-memory starting address. This address is the 
beginning location in program memory where the succeeding AP instruc
tions on the paper tape will be stored. 

10-12 



16 Bi t Macro Memory [ 1 
Starting Address 

1st AP Instruction 
(Could be Last) 

Last AP 
Instruction 

Notes 

2 

1 

2 

3 

4 

5 

6 

7 

8 

•
 
•
 

•
 
•
 
1 

2 

3 

4 

5 

6 

7 

8 

1 

2 

MSB	 = Most Significant Bi t 

LSB	 = Lease Significant Bit 

= Punched Hole • ::;; (No Hole) 

@ = If this Hole is Punched 
then Check Sum will not 
be Present 

- k,--'Sproc et 

-
.MSB LSB. 

1 2

•0 
MS. 

3 

0 
4 

0 
5 

0 
If 

0 

0 

6 

0 
7 

0 
8 

® 
1 - I  - 1

0 LS. 

0 

MS. 0 
t  - I  - -

0 
I  I-  1

0 
1 - I-  - c-

O 
t  -

0 
1- 

0 
I- t- -  -

0 
-
 I- I- - 

0 LS. 

0 
I- 

0 

Holes 

~on-blank 1st Dummy Frame 

~ount of 64 Bit Instructions 

that Follow (0 256) 

~ 

,..til

.... 
t... 

C 
0-0 

.... cc 
~ Q) 
00:: 

:21 
Q) 

Q) e 
Q.CC 
cc ,..
 
E-<t...
 

>. 
e e
:s 
o 

~6 Bit Check Sum of all 
~ut Non-blank Dummy Frame 

... 
Succeeding AP Program Segments Always 
Begin with a Non-blank Dummy Frame 
May Follow the Two Check Sum Frames 
either Immediately. or after Any 
Number of Intervening Blank Frames. 

I-- 
0 

>-- - 1I- 
0 

0MS. - I I-  -
0 - 1I  -
0 

1- 
0 

- - ---
0 

- 1- -
0 - 1- --
0 

0 LS. 

MS. 

LS. 

Figure 10-5. Paper Tape Format 
10-13 

0 



10.6.2 (continued) 

c)	 Immediately following the program-memory starting address frames is 
one frame whose value represents the number of succeeding 64-bit AP 
instructions. If this frame is blank (a value of zero), then the 
maximum of 256 AP instructions will be read and stored. 

d)	 Immediately following the AP instruction count frame are the 64-bit 
AP instructions. Each AP instruction requires eight frames of paper 
tape beginning with the most significant bits (MSB) of an AP instruction 
first, as shown. 

e)	 If the LSB of the dummy frame (see item (a) above) was zero, then 
immediately following the last AP instruction are two frames consti 
tuting a 16-bit check sum value of all preceding frames of the current 
AP program except the non-blank dummy frame. 

As shown, a succeeding AP program may follow immediately after the two check 
sum frames of the previous AP program. In every case, it will begin with a 
non-blank dummy frame. 

10.6.3 AP Program Load (via 1230) 

A file is maintained on Univac magnetic tape that contains a copy of the contents 
of the AP program memory. Although an AP instruction requires 64 bits, the 16K
word AP program memory contains only 32 bits per word (half-instructions). Since 
the Univac 1230 has the capacity of only 30 bits per word, it stores 16 bits of 
an Ap instruction (quarter-instructions) in each of its words. In order to 
handle the total capacity of the AP program memory, a" Univac 32K-word output 
buffer would be required. Since a buffer of this size is impractical, a 16K
word buffer has been utilized. In this case, a "paging" process from Univac 
magnetic tape storage is employed. 

The loading process begins by transferring the AP program magnetic tape image 
to the 16K AP program memory output buffer of the 1230. The 16K output buffer 
may now be loaded into the program memory of the AP. The foregoing process 
must be performed twice to completely load the AP program memory. This loading 
process is shown in flowchart form in figure 10-6. 

An updated magnetic tape can be made by utilizing the 1230/AP program memory 
dump software to transfer the updated contents of AP program memory to a 1230 
core buffer (see section 10.6.4 below). This is followed by writing the 
contents of the 1230 buffer on Univac magnetic tape. 

10.6.4 Interface Test Program Memory Dump 

Programs have been provided which perform a confidence test of the 1230/AP 
interface. Again, since both processors have their own stored programs, the 
test requires both 1230 and AP programs. 

10-14 



Interna 1 
Interrupt 

r -;a:s;:r~p-;rog;;: l Notes:I from Mag Tape to
 
I 16K Word AP Program I
 1.	 Assumes Maximum Size AP Program 

Requiring 32K Transfer from Univac 1230.L_ ...Q u.,lllu t I~!!.fll.r_ -J
 r- T~r;ili~of"
 2.	 Assumes 16K Word AP Program Outputr---L ---, I AP Program Output I Buffer Available in Univac 1230 that
I Send Forced External I I Buffer Transfers I is Page Loaded Twice from Magnetic Tape. 

Function, "Master I Control Here ..J
I	 L 3. Based on These Assumptions, Two PassesClear" to AP* ---1-- must be made through the Loading Routine. 

r -Acti;;te Lart H;if-'L-=.-=.-=L -= =---1 I (8K Words) of AP I * "Master Clear" EXF Code = 46000000008r Activate First Half' I Program Output BufferlI (8K Wo rd s ) 0 f AP I	 ** "Initialize Load" EXF CodeL_ ~i~ Mon~0..:.2_...JI Program Output I 
1st Pass through Routine: 60000100008L ~~~ wi th...!<>n2!0!lJ r--- I ----,.....	 2nd Pass through Routine: 6400010000 8 

o	 I Send Forced External Ir---[---,I .....	 
I Function, "Initialize I:.n	 ::'::'* "Initialize Load" EXF CodeI Send Forced External I Load" to AP*** 

I Function, "Ini tialize I L 
Load" to AP**L	 ...J 

AP Requests, 
Accepts and 

Stores the 8K 
Words in its 

Program Memory 

-1	 1st Pass through Routine: 62000100008 

2nd	 Pass through Routine: 66000100008 

AP Requests, 
Accepts and 

Stores the 8K r--'
Words in its I I Univac 1230 Operations

L__ -'Program Memory 

D Goodyear AP Operations 

Figure 10-6. AP Program Load 



10.6.4 (continued) 

The	 Goodyear portion of the interface test is based upon two AP utility programs: 

a)	 Program memory load (AP hardware controlled requiring compatible 
Univac 1230 software - see section 10.6.1, item a). 

b)	 Program memory dump (requires compatible AP/1230 software). 

The program memory dump program provides the basic capability to transfer the 
contents of AP program memory to 1230 core, when it is executed in conjunction 
with a compatible 1230 program. Once in 1230 core, any of several additional 
1230 programs can be used to provide additional utility functions. For example: 

c)	 Transfer from 1230 core to Univac magnetic tape. 

d)	 Transfer from 1230 core to Univac line printer. 

However, the AP program memory dump program has been specifically designed to 
exercise all I/O functions, when used in conjunction with the AP program load 
program and the Univac interface test routines. 

e)	 The approach to the interface test is basically simple. In includes the 
following major steps: 

1)	 The 1230 reads AP program from paper tape via Univac paper tape 
reader and stores in an output buffer. 

2)	 The AP program is transferred to AP progr~m memory. (The informa
tion transferred must at least include the AP program memory dump 
program. The balance of the information transferred can be either 
other AP programs or data in any configuration). 

3)	 AP program memory dump program is transferred from AP program 
memory to AP control memory for execution. 

4)	 AP executes the program memory dump program. 

5)	 AP program memory is dumped back to a 1230 input buffer. 

6)	 The 1230 compares the AP program received from the AP with the AP 
program originally sent to AP. 

7)	 If there are no mismatches in this comparison, the test is success
ful. 

The actual program design builds upon the basic approach (described above) and 
results in: 

a)	 Thorough test of the interface - all control lines, data lines and data 
paths planned to be used in the operational system are exercised in this 
test. 

10-16 



10.6.4 (continued) 

b) Thorough test of the AP program memory. 

c) Partial test of the AP control subsystem - not all AP control memory 
locations are exercised. 

d) Minimum test of the AP associative subsystem - one associative array 
location will be exercised. 

e) A valuable interface debugging aid. 

Since, in this system, the 1230 processor has executive control over the AP, the 
preliminary design for the interface test program can best be explained with 
reference to the 1230 processor. 

The design for the interface test is shown in flow chart form in figure 10-7. 
This flow chart describes the Univac 1230 portion of the program as initially 
suggested by Goodyear. The flow chart has been organized such that all the 
paths leading to a successful test are located on sheet No.1. A successful 
test will follow each vertical path starting at the left of sheet No.1 and will 
progress path by path to the right until the 1230 stops, with the A register 
containing the quantity 8. The program has been planned to partition the test 
into logical steps. At the end of each logical step a 1230 STOP is programmed. 
All STOPS, except the STOP on success, are programmed just prior to a planned 
internal or external interrupt. The internal interrupts indicate the termination 
of a 1230 input or output buffer, which indicates proper data exchange with the 
AP. The external interrupt indicates that the AP has properly programmed and 
executed an interrupt instruction. Therefore, under proper operation, the 
programmed STOP will not be honored. Instead, the program will continue through 
an internal or external interrupt entrance. 

The program has been organized in such a manner that, if a STOP does occur, the 
quantity in the A register of the 1230 will indicate the particular path that 
failed. Other registers are used to provide ancillary information helpful in 
further pinpointing the source of the failure. While the final Univac portion 
of the interface test has changed with respect to some details of the program, 
the general approach is still accurate. 

The flow chart for the AP portion of the interface test is shown in figure 10-8. 

10.6.5 Associative Array Dump 

This program is useful as an AP debugging aid. It provides the capability to 
dump the entire contents of the associative array to the Univac 1230 for print
out on the Univac line printer. Compatible Univac 1230 utilities are required to 
accomplish the transfer across the interface and the printout. The program is 
initiated in the same manner as the operational program sequences, by a normal 
buffered external function command from the Univac 1230. An "Array Dump 
Complete" interrupt, sent to the 1230, indicates completion of the program. The 

10-17
 



tilDe-out 
lntprrupt 

~ 

o 
I 
~ F.nter Bl wi thCO Address of 

Corresponding 
Word -i D PROME,\! 

OUTlIUF 

~ 

PRONEM _ AP Prograll Melllory 
EXF • External Funetion 
OUTBUF. Output Buffer 
INWF • Input Buffer 
POBA • PROJlEM 0U'mUF' Base Address 
A • A Register 
AL • Lower HaU of a Register 
AU • Upper Half of a Regi ster 
At.. 14 • Lower 14 Hi 15 oC a Register 
AUl6 • Upper 16 Bits of a Register 

Figure 10-7. Interface Test Flowchart (Univac 1230 Reference) (Sheet 1 of 2) 



Tnt ('rna 1 External 
I nl .'rru!,1 InlPrrupt 

...... 
o 
I 

...... 
-D 

1tHf. LOWf'r l~ 81ts of a Hegistt"r [ I) 4bOOOOOOOOa Test Succe~sful 

rpl~r lb Bits of '" Register [" bOOOOl()()()()e 
PRO~EM OlLBl:F Bast' -\ddrt'H (3) 620001()()()()e

Ptl)!lt1::1II At' Progralll "ifOllIIHY 
nF F:xtf"rnaL F'unrt ion 

-\ Rt'gistf'r (4) 7000400020allliBliF Hutput Bu(feor
 
1~I'FF lttput f\l.lf(t>r
 Lowpr Half of a Rf'9istf't' l :)) 000 l000000e 

l"ppE"r Half of a Rf'gistf'r { 0) 4100000000a 

~1.l4 
Ano 
r..:'8~ 

~ 

,\t 

~r 

Figure 10-7. Interface Test Flowchart (Univac 1230 Reference) (Sheet 2 of 2) 



Buffered EXF 

( Start) 

r--- l ----,
I "Ma ster Clear" AP I 
I upon Fo rced EXF I 
L~o~~d fr~ E3.£. ..J 

r--  I ---.,
I Recei ve Forced I
 
I EXF "Initialize I
 

Load" from 1230
L---1--- .J 

r ~npu-;:-Dat:-f::m- I,
l 1st ~Ialf of 1230 
I PROMEM OUTBUF a nd I 
L_P~c.:.. in ~O~~ -.J 

r---I---,

I Receive Forced I 

EXF" I nit i aIi ze I
I Load" from 1230L_--1--_...J
 
r -Inpu-;- Dat~f::m- II 
I 2nd Half of 1230 
, PROMEM OUTBUF and I 
L_P2:~ in ~OMEM_ .J 

r--  1----,
I Receive Forced EXF I' 
I "Force" from 1230L_--1--_.J
 
r--- ---...., 
I Transfer Initiate I 
I Routine from PROMEM I 

to Control Memorv...JL ---1--6
\Exit"'7.o wa0 for?
 

\ Buffe rl'd EXF /
 
\ Command /
 

from
 
\ 12:~0 / NOTE 

Entry 

Receive •Buffered 
EXF "Start PROMEM 

Dump Sequence" 
from 1230 

~
 
Transfer Instructions 

for PROMEM Dump 
Sequence from PROMEM 

to Control Memory 

~
 
Send External 

Interrupt "PROMEM 
Dump Sequence Ready" 
(25252525258) to 1230 

~
 
Halt and Wait for 
"Resume" Command 

from 1230 

!
 
Receive Forced EXF 
"Re sume" from 1230 

~
 
Input PROMEM Dump
 
Address Limits and
 
Transfer to Data
 

Memory via FPR
 

~
 
Load PROMEM Address 
Register with PROMEM 

Dump Lower Address 
Lim] t 

eb
 
\ / See Sheet 2 for definitions 

\ / 
V Figure 10-8.	 Interface Test Flowchart 

(AP Referenced) (Sheet 1 of 2) 

10-20 



--

Load AR with the
 

PROMEM Dump
 
Address Limi ts
 

Write Lower and 
Upper PROMEM 

Dump Limits into 
Scratch Area of the 

2nd Word of the 
Assoc. Array 

Read 32-Bit Word 
from PROMEM and 
Transfer to Data 
Memor via FPR 

Load AR with PROMEM
 
Word Contents
 

Write PROMEM Word 
Contents into Scratch 
Area of the 2nd Word 
of the Assoc. Arra 

Clear OR 

Transfer 1st 16 Bits 
of PROMEM Word 

Contents from Assoc. 
Array to AR and OR 

NOTES:,.-., 
I I == Hardwi red Program OperationL._-' 

c==J == Stored Program Operation 

AR == Argument Register 

EXTF == External Function 

FPR == Field Pointer Register 

OR == Output Register 

OUTBUF == Output Buffer 

PROMEM - AP Program Memory 

Send Externa 1 
Interrupt "PROMEM Dump 

Sequence Complete" 
(52S25252528 ) to 1230 

Increment PROMEM
 
Dump Lower Address
 

Limit in Assoc. Array
 

Transfer Contents
 
of OR to 1230
 

Transfer 2nd 16 Bits 
of PROMEM Word 

Contents from Assoc. 
Array to AR and OR 

Clear OR 

Transfer Contents 
of OR to 1230 

Figure 10-8.	 Interface Test Flowchart 
(AP Referenced (Sheet 2 of 2) 

10-21 



lO.6.5 (continued) 

program is relatively simple. Sixteen (16) bits of the 8ssociative array are 
sent to the Univac 1230 in each data word transfer. Since there are eight 16
bit fields in each array location and 128 array locations, 1024 data word trans
fers to the Univac 1230 are required to dump the entire contents of the array. 

10.6.6 Off-Line Diagnostic Program 

The diagnostic program checks all feasible hardware and logic paths in the 
associative processor, with the exception of the interface unit. The interface 
unit is checked by means of the interface test program described in section 10.6.4. 
above. 

The diagnostic program is operated completely off-line from the Univac 1230 
computer. Therefore, no compatible Univac utility programs are required. The 
diagnostic consists of 16 routines punched on 3 reels of paper tape. The paper 
tape is read directly into the control memory. Each successive test routine 
is initiated by pressing the AP ACTIVE pushbutton. If an error is detected in 
any routine, the argument register (AR) will contain a code which indicates the 
nature of the error. (NOTE: During operation of the diagnostic, the REGISTER 
SELECTION SWITCH on the control panel should be set to the ARGUMENT REGISTER 
position. Under this condition, the contents of the argument register will be 
displayed on the register display lights found, and also on the control panel). 
Successful completion of each diagnostic test routine is indicated by all zeros 
in the AP and the octal number of the test routine appearing in the counter dis
play. A list of the diagnostic test routines is found in table 10-1. The items 
to follow provide a brief description of each diagnostic test routine. 

Description of test routines: 

1)	 Test No.1: Main Program Counter (P) Check. This test determines the 
ability of the main program counter to access control memory. The 
vehicle used to check this is to repeat the decrement counter instruc
tion to decrement field pointer number one. The decrement counter 
program is written in 241 locations of the control memory to accomplish 
this; therefore, the test also serves as a control memory test. At 
the completion of the test, an error is indicated if the argument 
register display contains any thing other than zero. A successful test 
is indicated by a zero in the argument register and a counter display 
readout of 1. 

2)	 Test No.2: Sub-routine Program Counter (D) Check. This test is 
identical to that shown in test No. I; however, the sub-routine counter 
(D) is used to access control memory rather than P. The conditions for 
success or failure of the test are identical with those of Test No. I. 

10-22
 



TABLE 10-1 - DIAGNOSTIC TEST ROUTINES 

TEST NO. TEST ROUTINE 

1 Main Program Counter Check 

2 Subroutine Program Counter Check 

3 Exercise Jump Commands 

4 Check Field Pointers 

5 Exercise Argument Register 

6 Response Store Test (Unconditional) 

7 Response Store Test (Conditional on Argument 
Register True) 

8 Response Store Test (Conditional on Argument 
Register Not True) 

9 Exercise Data Registers 

10 Separate Data Register Test 

11 Simple Associative Array Exercise 

12 Array Pattern Test (Alternating Columns of Ones 
and Zeros) 

13 Array Pattern Test (Alternating Rows of Ones 
and Zeros - Write Once, Read once) 

14 Array Pattern Test (Checkerboard pattern of 
Ones and Zeros - Write 256, Read 32) 

15 Array Pattern Test (Checkerboard pattern of 
Ones and Zeros - Write once, Read once) 

16 Array Pattern Test (Checkerboard pattern of 
Ones and Zeros - Write 256, Read 32) 

10-23
 



10.6.6 (continued) 

3)	 Test No.3: Exercise Jump Commands. This test determines the ability 
of a program jump to take place based on the contents of field pointers 
1, 2, 3, and 4, as well as on the contents of the response store. 
Successful completion of this test is indicated by: 

a)	 Argument Register (AR) = O. 

b)	 Counter Display = 3. 

If the AR contains any value other than zero, an error is indicated. The 
possible error conditions are listed below. 

ERROR CODE 
OPERATION IN AR EXPLANATION 

1 ~ FPl, FP2, FP3, FP4 

Jump if FPl = 0 3 Jump occurred when it shouldn't 

Jump if FP2 = 0 5 " " " " " 

Jump if FP3 = 0 7 " " " " " 

Jump if FP4 = 0 lIS " " 
,. 

" " 

o ~ FPL, FP2, FP3, FP4 

Jump if FPl =0 4 Jump didn't occur when it should 

Jump if FP2 = 0 6 " " " " " 

Jump if FP3 = 0 ,.
lOS	 " " " " 

.. .. .. ..
Jump if FP!J = 0	 12 " S 

1 ~ All Response Stores 

Jump on No Responders Jump occurred when it shouldn't 

o ~ All Response Stores 

Jump on No Responders Jump didn't occur when it should 

4)	 Test No.4: Check Field Pointers (Counters). This test shows the 
capability of field pointers (counters) I, 2, 3, and 4 to be incremented 
and decremented separately and in parallel. The test increments/ 
decrements the counters through all 256 combinations of data that can 

10-24 



10.6.6 (continued) 

be stored in them. The test is structured such that it will detect 
intermittent failures as well as solid failures to increment or decre
ment N times out of 256, as well as the case where it never increments 
or decrements. If a failure occurs during the test, the AP will halt, 
and the argument register display will indicate one of 24 possible 
error codes. Table 10-2 lists the error codes and the failures which 
they indicate. In some cases, the error code alone cannot isolate the 
failure to a single counter. When this is the case, the current con
tents of all four counters can be transferred to the argument register 
for display, simply by pushing the AP ACTIVE button on the control 
console. In most cases this data, together with error code, will pro
vide sufficient information isolating a failure to a single counter. 

Successful completion of the test is indicated by: 

1)	 Argument Register (AR) = O. 

2)	 Counter Display = 4. 

5)	 Test No.5: Exercise Argument Register. This test determines the 
ability to perform the following operations upon the argument register: 
Set, Reset, Shift 0 into, Shift 1 into and End-around Shift. The 
argument register contains 32 bits. The set operation simultaneously 
sets all 32 bi ts to "1". The reset operation resets all 32 bi ts to a 
"0" simultaneously. For the shift-in-"O" operation, the argument 
register is first initialized to a 1 in all bits. Zeros are then 
shifted into the most significant end of the register. Zeros are 
shifted in 32 times, after which all bits of the argument register 
should contain a zero. For the Shift-in-"l" operation, the argument 
register is first initialized to a zero in all bits. Ones are then 
shifted into the most significant end of the register. Ones are shifted 
in 32 times, after which all bits of the argument register should 
contain a one. For the End-around shift operation, the argument reg
ister is initialized in a state such that the most significant bit is a 
zero, while all the rest of the bits are ones. The argument register 
is then end-around shifted to the right 256 times. 

The first two subtests described above are paralled set and reset 
operation. Each of these tests includes an individual check of each of 
the 32 argument register bits. The remaining subtests all involve 
shift operations of the argument register. After each single shift 
operation, all bits of the argument register are individually checked 
for proper state. 

Successful completion of Test No. 5 is indicated by: 

1)	 Argument Register (AR) = C. 

2)	 Counter Display = 5. 

10-25
 



10.6.6 (continued) 

TABLE 10-2. TEST PROCEDURE SUMMARY 

COUNTER{S) FAILING ON 
1ST AFTER 1ST 

TYPE OF TEST ERROR CODE (AR) INCREMENT/DECREMENT INCREMENT/DECREMENT 

Check Separate 178 
FP2 FPl 

Incrementing of 
the Four Field 208 FP3 FPl & 2 
Pointers 

218 FP4 FPl, 2 & 3 

228 FPl FP2 

238 FPl & 2 FP3 

248 FPl, 2, & 3 FP4 

Check Separate 268 FP2 FPl 
Decrementing of 
the Four Field 278 FP3 FPl & 2 
Pointers 

308 FP4 FPl, 2 & 3 

318 FPl FP2 

328 FPl & 2 FP3 

33 FPl, 2, & 3 FP4
8 

Check Simultaneous 34 FP2 FPl8Increments of the 
Four Field Pointers 35 FP3 FPl & 28 

36 FP4 FPl, 2 & 38 

37 FPl FP28 

40 FPl & 2 FP38 

41 FPl, 2 & 3 FP48 

10-26
 



10.6.6	 (continued) 

TABLE 10-2 (CONTINUED) 

COUNTER(S) FAILING ON 
1ST AFTER 1ST 

TYPE OF TEST ERROR CODE (AR) INCREMENT/DECREMENT INCREMENT/DECREMENT 

Check Simultaneous	 42 FP2 FPl8Decrement 
43 FP3 FPl & 28 

44 FP4 FP1, 2 & 38 

45 FPl FP28 

46 FPl & 2 FP38 

47 FPl, 2 & 3 FP48 

If the test was not successful, the Ap will halt and the contents of the argument
 
register at the time the error occurred will be displayed.
 

If the AP ACTIVE button on the control panel is pressed one time, the 32-bit
 
AR (and the AR display lights) will contain the following parameters in four
 
8-bit fields:
 

1) Field #1 (MSF) - Field Pointer (FP)4 
Program indexes 

2) Field #2 - FP3 

3) Field #3 - FP2 (1st mos t significant bi t posi tion of AR 
that failed) 

4) Field #4(SLF) - Error Code 

The specific error codes and their meanings are listed below: 

AR SUBTEST 
TYPE ERROR CODE ERROR DESCRIPTION 

Parallel Reset (0 - AR) 3 At least oneARbit did not reset. 

Parallel Set (1 - AR) A At least one AR bi t did not set.16 

Shift "O's" into AR 13 At least one AR bit that should contain16 a zero, does not. 

10-27
 



10.6.6 (continued) 

AR SUBTEST 
TYPE ERROR CODE ERROR DESCRIPTION 

At least one AR bit that should contain 
a one, does not. 

Shift "l's" into AR At least one AR bit that should contain 
a one, does not. 

At least one 
a zero, does 

AR bit that should contain 
not. 

Shift a single Zero 
end-around in AR 

The single AR bit that should be 
is not. 

zero, 

The bits in AR that lead the zero ref. 
bit and should be all ones, are not 
all ones. 

The bits in AP that trail the zero ref. 
and should be all ones, are not all 
ones. 

6)	 Response Store Test. This test determines the ability to accomplish 
the following operations on the Sand Q flip-flop of the response 
store: Set S, Set Q, Reset Q, Reset S, Reset S if Q =0, Shift S 
end-around. Toggle S, Toggle Q and Toggle Sand Q. The test also 
accomplished a write of l's in a diagonal of the associative array, 
followed by a search to determine that this write was accomplished 
properly. When the test is complete, the Ap halts. A successful test 
is indicated by: 

1)	 Argument Register (AR) =0 

2)	 Counter Display = 6. 

If an error occurred, one of several errQr codes are displayed in the 
argument register. The codes and their meaning are described on the 
following page. 

10-28
 



10.6.6 (continued)
 

SUBTEST ERROR CODE ERROR DESCRIPTION
 

All FFs in S or 0 or both failed to set OR 
of Sand Q one or more FF's in a Q failed to reset. 

1001 One or more FFs is S failed to reset. 

Set and Reset 

8 

10028 One or more FFs in Q failed to reset. 

Diagonal Array Write 1004 Failure in diagonal write or sense.8 

Shift Send-around 1005 Shift Failure.8 

Toggle Q 10068 One or more FFs in Q failed to toggle. 

Toggle S 1007 All FFs in S failed to toggle.8 

Toggle Sand Q 1010 One or more corresponding FFs in Sand8 Q failed toggle. 

OR 

One or more FFs in Q toggled when they 
shouldn't. 

OR 

All FFs in Q failed to toggle. 

7 & 8)	 Tests No.7 and 8: Response Store Tests. These tests exercis~ the 
ability to set and reset the Sand Q flip-flops individually and 
collectively, based on the conditions of argument register bit C. In 
Test No.7, the argument register bit 0 is set to the TRUE state. 
For Test No.8, the argument register is reset to the FALSE state. 
Before beginning Test No.7, Test Tapes No.1 and No.2 must be loaded 
via the AP paper tape reader. The indications for successful tests are: 

INDICATION 

INDICATOR TEST #7 TEST tt8 

Argument Register o	 o 

Counter	 Display 7 

10-29
 



10.6.6 (continued) 

If an error occurs in either test, one of several error codes is dis
played in the argument register. The codes and their meaning are 
described below: 

ERROR CODE 
TEST #7 TEST #8 ERROR DESCRIPTION 

10178 
All FFs in S or Q or both failed to set. 

OR 

One or more FFs in Q failed to reset. 

10278 
12008 One or more FFs in S failed to reset. 

10378 
13008 All FFs in Q failed to reset. 

10478 
14008 One or more FFs in S failed to reset. 

OR 

One or more corresponding FFs in Sand Q 
failed to reset. 

OR 

One or more FFs in Q failed to reset •. 

All FFs in S or Q or both failed to set. 

9)	 Test No.9: Exercise Data Registers. This test shows the ability of 
the AP to load the read out its 64 word x 64 bit data register stack. 
When the test is complete, the AP will halt. 

A successful test is indicated by: 

1)	 Argument Register (AR) = O. 

2)	 Counter Display = 118 

If the fault occurred during the test, the argument register will 
contain the value 500g_ If the AP ACTIVE button is pressed once, the 
following data will be loaded into the 32-bit argument register in 
four 8-bit fields: 

1)	 Field #l (MSF) - Field Pointer (FP)4* 

2)	 Field #2 - FP3 (Address of defective data register) 

10-30 



10.6.6 (continued) 

3) Field tr2. - FP2* 

4) Field #4 (LSF) - Not applicable 

If the AP ACTIVE button is pressed once more, the data from the defec
tive	 data register will be loaded into the argument register. 

10)	 Test No. 10: Separate Data Register Test. This tests the ability to 
to store zeros in all 64 data regis"ter words in 8-bit byte increments, 
with byte locations determined by field pointers 1-4. The AP will halt 
when the test is complete. A successful test is indicated by: 

1) Argument Register (AR) = 0 

2) Counter Display = 128 , 

If the argument register contains the value 501B, an error has occurred. 
If the AP ACTIVE button is pressed once, the adaress of the defective 
data register is loaded into the argument register. If the AP ACTIVE 
button is pressed once more, the argument register will contain the 
data from the defective data register. 

11)	 Test No. 11: Simple Associative Array Exercise. This test performs a 
simple exercise of the write, search and read capabilities of the Al 
associative array. All ones and all zero patterns are used. At the 
completion of the test, the AP halts. A successful test is indicated 
by: 

1) Argument Register (AR) = 0 

2) Counter Display = 138 , 

If a fault occurred during the test, the argument register will contain 
one of the error codes described below: 

ERROR CODE	 DESCRIPTION 

Error in column by column write/read of ones
 
into/from Array.
 

Error in Search for ones in Array.
 

Error in column by column Write/read of zeros
 
into/from Array.
 

Error in Search for zeros in Array.
 

Error in 16-bit parallel write or column by
 
read of Array.
 

*FP2 and FP4 (8-bits each) describe the data pattern that should be 
contained in the defective data register. 

10-31 



10.6.6 (continued) 

If the AP Active button is pressed, the contents of the four 8-bit 
Field Pointer registers (FPl through FP4) will be loaded in order, into 
the four available 8-bit fields of the argument register (FPl into the 
least significant field of the AR, etc.). FPl indicates the address 
(0-12810) of the defective bit-column for error codes 1018 and 1028 
(see listing above). FP2 indicates the address of the defective bit 
column for error code 1008' The contents of FP3 and FP4 are not 
applicable. 

12)	 Test No. 12: Array Pattern Test. Alternating Columns of l's 
and 0'5.* *(Note: before beginning Test No. 12, test tape 
reel no. 3 must be loaded via the AP paper tape reader.) 
Columns are parallel to array straps (bit lines in the associative 
array). 

The following operations are performed on the array using the columns 
of l's and O's pattern: 

SUBTEST 1 

a) Write alII's and establish pattern by writing O's once. 

b) Read pattern once (Read l's only individually). 

sUBTEsT 2 

a) Write alII's and establish complment of pattern by writing O's 
once. 

b) Read complment of pattern once. (Read l's only, individually). 

sUBTEsT 3 

a) Write alII's and establish pattern by writing O's 256 times. 

b) Read all bits of all words 32 times. 

sUBTEsT 4 

Repeat subtest 3 with complement pattern.
 

The four subtests are repeated as long as the sense switch on cabinet
 
#3 is set to "ON". When the test is complete, the AP halts.
 

A successful test is indicated by:
 

1) Argument Register (AR) =0
 

2) Counter Display = 14
8 , 

10-32 



10.6.6 (continued) 

There are two sets of conditions for indicating and isolating errors. 
The first set of conditions applies when a fault occurs while reading 
bits that should be in the "1" state. In this case, the contents of the 
four 8-bit Field Pointer (FP) registers (FPI through FP4) will be 
loaded in order, into the four available 8-bit fields of the argument 
register (FPI into the least significant field of the AR, etc.). 

The contents of the FPI field indicate the bit-column address containing 
the faulty bit. If the contents of the FP3 field is subtracted from 
200g, the result will be the address of the array word that contains 
the faulty bit. The contents of the FP2 and FP4 fields can be disre
garded. At this point, if the AP ACTIVE button on the control panel 
is pressed once, the least significant 8-bit field of the argument 
register will indicate an error code which corresponds to the subtest 
being executed when the fault occurred: 

SUBTEST NO.	 ERROR CODE 

1	 Al6 

2	 1416 

3	 IE l6 

4	 2816 

A second set of conditions applies when a fault occurs while reading 
bits that should be in the "0" state. In this case, the least signifi 
cant 8-bit field of the argument register will indicate an error code 
of 7716. Also, the counter display will indicate a value which, when 
added to the constant, 2, will result in the address of the bit column 
that contains the faulty bit. 

13)	 Test No. 13: Array Pattern Test. Alternating Rows of Ones and Zeros 
(Write once, Read once). Rows are parallel to the array plated wires 
(word lines in the associative array). The following operations are 
performed by Test No. 13 using the alternating rows of l's and O's 
pat tern: 

SUBTEST 1 

a) Write alII's and establish pattern by writing O's once. 

b) Read all bits of all words. 

10-33
 



10.6.6 (continued) 

SUBTEST 2 

a)	 Write alII's and establish complement of pattern by writing O's 
once. 

b)	 Read all bits of all words. 

When the test is complete, the AP halts. A successful test is indicated 
by: 

1)	 Argument Register (AR) = 0 

2)	 Counter Display ~ 158 . 

There are two sets of conditions for indicating and isolating errors. 
The first set of conditions applies when a fault occurs while reading 
bits that should be in the "I" state. In this case, the contents of 
the four 8-bit Field Pointer (FP) registers (FPI through FP4) will be 
loaded in order into the four available 8-bit fields of the argument 
register (FPI into the least significant field of the AR, etc.). The 
contents of the FPI field indicate the bit-column address containing 
the faulty bit. The address of the array word containing the faulty 
bit can be determined in one of the following two ways, depending on 
which of the two subtests were being executed when the fault occurred: 

SUBTEST NO.	 ARRAY WORD ADDRESS COMPUTATION 

1 ( FP3)+1 

(FP3)2 

The contents of the FP2 and FP4 fields can be disregarded. At this 
point, if the AP ACTIVE button on the control panel is pressed once, 
the least significant 8-bit field of the argument register will 
indicate an error code which corresponds to the subtest being executed 
when the fault occurred: 

SUBTEST NO.	 ERROR CODE 

1 

2 

A second set of conditions applies when a fault occurs while reading 
bits that should be in the "0" state. In this case, the least signifi 
cant 8-bit field of the argument register will indicate an error code 
of FFI6. Also, the counter display will indicate the address of the bit 
column that contains the faulty bit. 

10-34
 



10.6.6 (continued) 

14)	 Test No. 14: Alternating Rows of Ones and Zeros (Write 256, Read 32). 
The following operations are performed by Test No. 14 in exercising 
the alternating rows of l's and O's pattern: 

SUBTEST 1 

a) Write alII's and establish pattern by writing zeros 256 times. 

b) Read all bits of all words 32 times. 

SUBTEST 2 

Repeat subtest 1 using the complement pattern. 

The two subtests are repeated for as long as the sense switch on 
cabinet #3 is set to "ON". 

When the test is complete, the AP halts. A successful test is indica
ted by: 

1) Argument Register (AR) = 0 

2) Counter Display = 168 . 

There are two sets of conditions for indicating and isolating errors. 
The first set of conditions applies when a fault occurs while reading 
bit s that should be in the "1" state. In thi s case, the contents of 
the four 8-bit Field Pointer (FP) registers (FPl through FP4) will be 
loaded in order, into the four available 8-bit fields of the argument 
register (FPI into the least significant field of the AR, etc.). The 
contents of the FPI field indicate the bit-column address containing 
the faulty bit. The address of the array word containing the faulty bit 
can be determined in either of the following two ways, depending on 
which of the two subtests was being executed when the fault occurred: 

SUBTEST NO.	 ARRAY WORD ADDRESS COMPUTATION 

2 ( FP3)+1 1 

2 (FP3)2 

The contents of the FP2 and FP4 fields can be disregarded. At this 
point, if the AP ACTIVE button on the control panel is pressed once, 
the least significant 8-bit field of the argument register will indicate 
an error code which corresponds to the subtest being executed when the 

10-35
 



10.6.6 (continued) 

fault	 occurred: 

SUBTEST NO. ERROR CODE 

1
 

2
 

A second set of conditions applies when a fault occurs while reading bits 
that should be in the "0" state. In this case, the least significant 
S-bit field of the argument register will indicate the error code of 
FF16. Also, the counter display will indicate the address of the bit 
column that contains the faulty bit. 

15)	 Test No. 15: Array Pattern Test. Checkerboard Pattern of Ones and 
Zeros (Write once, Read once). The following operations are performed 
by Test No. 15 using the checkerboard pattern: 

SUBTEST 1 

a) Write	 all ones in array. 

b) Write	 necessary zeros into array to establish checkerboard pattern. 

c) Read bits in array containing ones. 

SUBTEST 2 

RepeatSubtest 1 using the complement of the checkerboard pattern. 

When	 the test is complete, the AP halts. A successful test is indica
ted by: 

1) Argument Register (AR) = 0 

2) Counter Display = 17S" 

If a fault occurs during the test, the contents of the four S-bit Field 
Pointers (FP) registers (FPl through FP4) will be loaded in order into 
the four available S-bit fields of the argument register (FPl into the 
least significant field of the AR, etc.). The contents of the FPl field 
indicate the bit-column address containing the faulty bit. The address 
of the array word containing the faulty bit can be determined in one of 
the following two ways, depending on which of the two subtests was being 
executed when the fault occurred: 

SUBTEST NO.	 ARRAY WORD ADDRESS COMPUTATION 

1	 200S 2 (FP3)+1 

2	 200S 2 (FP3) 

10-36
 



10.6.6 (continued) 

The contents of the FP2 and FP4 fields can be disregarded. At this 
point, if the AP ACTIVE button on the control panel is pressed once, the 
least significant 8-bit field of the argument register will indicate 
an error code which corresponds to the subtest being executed when the 
fault occurred: 

SUBTEST NO. ERROR CODE 

1
 

2
 

16)	 Test No. 16: Array Pattern Test. Checkerboard Pattern of Ones per
formed by Test No. 16 to establish and exercise the checkerboard 
pattern: 

SUBTEST 1 

a)	 Write all ones in array. 

b)	 Write necessary zeros into array to establish checkerboard pattern 
(256 times ) . 

c)	 Read bits in array containing ones 32 times. 

SUBTEST 2 

Perform subtest 1 using the complement of the checkerboard pattern. 

The	 two subtests are repeated for as long as the sense switch on 
cabinet #3 is set to "ON". 

When	 the test is complete, the AP halts. A successful test is indica
ted	 by: 

1)	 Argument Register (AR) =0 

2)	 Counter Display = 008 . 

If a fault occurs during the test, the contents of the four 8-bit Field 
Pointer (FP) registers (FPl through FP4) will be loaded in order, into 
the four available 8-bit fields of the argument register (FPl into the 
least significant field of the AR, etc.). The contents of the FPl field 
indicate the bit-column address containing the faulty bit. The address 
of the array word containing the faulty bit can be determined in one of 
following two ways, depending on which of the two subtests was being 

10-37 



10.6.6 (continued) 

executed when the fault occurred: 

SUBTEST NO. ARRAY WORD ADDRESS COMPUTATION 

1 2008 - 2 (FP3)+1 

2 2008 2' (FP3) 

The contents of the FP2 and FP4 fields can be disregarded. At this 
point, if the AP ACTIVE button on the control panel is pressed once, 
the least significant 8-bit field of the argument register will indicate 
an error code which corresponds to the subtest being executed when the 
fault occurred. 

SUBTEST NO. ERROR CODE 

1 

2 

10.7 ASSEMBLY PROGRAM 

The assembler for STARAN PW-60 described in this report takes advantage of the 
macro-expansion capability of the Sigma 5 Macro-Symbol assembler. This capability 
allows a programmer to define his own instructions including mnemonic and 
generated object code. Therefore, when an Associative Processor (AP) program is 
assembled on the Sigma 5 Macro-Symbol assembler, the macro definition of each Ap 
instruction must be supplied along with the source statements of the AP program. 

The instructions in CM executed by the AP are essentially micro-instructions. 
Very little decoding by the hardware is required to execute an instruction 
because each instruction consists of 64 bits and, to a large extent, each bit 
represents a unique operation. Some associative instructions require a combina
tion of many micro-instructions to perform their intended function. These 
instructions are set up in the form of micro-programmed subroutines to eliminate 
duplicate segments of instructions when the same AP function is used several 
times. These subroutines are not supplied automatically by the assembler, as 
a SIN or COS subroutine would be supplied by a FORTRAN compiler. The programmer 
must append to his source deck the source cords for each micro-programmed sub
routine used by his program. 

Another property of this assembler is the one-to-many translation from mnemonics 
to machine language or micro-instructions. Most of the Ap mnemonics will 
produce more than one machine language instruction. Ususally an assembly level 
language will generate only one machine instruction per mnemonic. Table 10-3 
provides a complete list of AP instruction mnemonics. Table 10-4 lists those 
instructions that require micro-programmed subroutines. 

10-38 



10.7.1 Language Elements And Syntax 

10.7.1.1 Language Elements 

Inputs to the assembler consist of a sequence of characters combined by a 
lexical analyzer to form the syntactic components of the language. These 
components (which include symbols, mnemonics, and constants) make up the program 
statements that comprise a source program as noted in the following items. 

1)	 Characters. 

ALPHABETIC: A through Z, and *, +, - $, @, #, 

and 

NUMERIC: 0 through 9 

2)	 Symbols. Symbol are formed from combinations of characters. Symbols 
provide programmers with a convenient means of identifying program 
elements so they can be referred to by other elements. Symbols must 
conform to the following rules: 

a)	 Symbols may consist of from 1 to 8 alpha numeric characters. 

b)	 At least one of the characters in a symbol must be alphabetic. 

c)	 No special characters or blanks can appear in a symbol. 

A symbol is "defined" by its appearance in the label field of any AP 
instruction or the EQU directive. Often the programmer may want to 
assign values to symbols rather than have the assembler do it. This 
may be accomplished through the use of the EQU directive. A symbol 
used in the label field of this directive is assigned the value speci
fied in the argument field. This symbol is considered to be an address 
or absolute term, depending on the value to which it is equated. 

3)	 Constants. A constant is a self-defining language element, whose 
value is explicit. Self-defining terms are useful in specifying values 
within a program via the EQU directive (as opposed to entering them 
through an input device) and for use in constructs that require a value 
rather than the address of the location where that value is stored. 

There are three types of constants used in associative instructions. 
These are octal, hexadecimal, and decimal constants. 

An octal constant consists of an unsigned octal number enclosed by 
single quotation marks and preceded by the letter e: 

e'7314526 ' 

10-39
 



10.7.1.1	 (continued) 

The maximum value is limited to octal values consisting of no more than 
32 binary bit positions for load argument register instructions, or 8 
binary bit positions for load field definition register instructions. 
By implication, the size of an octal constant in binary digits is 3 
times the number of octal digits specified, and the constant is right
justified in its field. For example, 

Constant Binary Value Hexadecimal Value 

a' 1234' 001 010 011 100 0010 1001 1100 (296) 

The octal digits	 and their binary equivalents are as follows: 

0- 000 4- 100 

1- 001 5- 101 

2- 010 6- 110 

3- 011 7- III 

A hexademical constant consists of an unsigned hexadecimal number
 
enclosed by single quotation marks and preceded by the letter X:
 

X'9001F'
 

The assembler generates four binary bits of storage for each hexadecimal
 
digit. The hexadecimal digits and their binary equivalents are as 
follows: 

0 0000 8 1000 

1 0001 9 1001 

2 0010 A 1010 

3 0011 B 1011 

4 0100 C 1100 

5 0101 D 1101 

6 0110 E 1110 

7 0111 F 1111 

10-40
 



10.7.1.1 (continued) 

A decimal constant consists of an integer (no decimal point) which may 
be signed. For example: 

100 

or 

-5000 

When a decimal value is assembled into an instruction, it is first 
converted to its binary equivalent. 

10.7.1.2 Sytax 

A sentence is a member of a particular language if it is grammatically correct, 
including spelling and punctuation. Similarly, a statement or instruction will 
be processed by the assembler if its form is syntactically correct. 

A statement is the basic component of an assembly language source program; it is 
also called a source statement, a program statement, or a symbolic line. Source 
statements are written on a standard coding form. 

The body of the coding form is divided into form fields: label, command, argu
ment, and comments. The coding form is also divided into 80 individual columns. 
Columns 1 through 72 constitute the active line; columns 73 through 80 are 
ignored by the assembler except for listing purposes and may be used for identi 
fication or sequence numbers. 

The columns on the coding form correspond to those on a standard 8O-column card; 
one line of coding on the form can be punched into one card. 

The assembler provides for free-form statements; that is, it does not require 
that each field in a statement begin in a specified column. The rules for writing 
free-form symbolic lines are as follows: 

1)	 The assembler interprets the fields from left to right: label, command, 
argument, comments. 

2)	 A blank column terminates any field except the comments field, which 
is terminated at column 72 on card input. 

3)	 One or more blanks at the beginning of a line indicates there is no 
label field entry. 

4)	 The label field entry, when present, must begin in column 1. 

5)	 The command field begins with the first non-blank column following the 
label field or in the first non-blank column following column 1, if the 
label field is omitted. 

10-41 



10.7.1.2 (continued) 

6) The argument field begins with the first non-blank column following 
the command field. An argument field is designated as blank in either 
of two ways: 

a) Sixteen or more blank columns follow the command field. 

b) The end of the active line (column 72) is encountered. 

7) The comments field begins in the first non-blank column following the 
argument field or after at least 16 blank columns following the command 
field, when the argument field is empty. 

A source statement may consist of one to four entries written on a coding sheet 
in the appropriate fields: a label field entry, a command field entry, and 
argument field entry, and a comments field entry. 

A label entry is a symbol that identifies the statement in which it appears. 
The label enables a programmer to refer to a specific statement from other 
statements within the program. The label of a statement may have the same con
figuration as an instruction mnemonic without conflict, since the assembler is 
able to distinguish through context which usage is intended. For example, the 
mnemonic code for the load argument command is LAR; LAR may also appear in the 
label field of a statement without conflicting the command LAR in the command 
field. There are certain labels, however, that are used by the assembler. These 
should not be used by the programmer and are as follows: 

ABSFLD, ADDC, ADDF, ADOlF, AP8BJECT, DELAY, DISPLAY, DIVF, DIVO, DIV1, 
DIV2, DIV3, DIV4, EMCS, EMFS, FIELD, GRCS, LSCS, L6C, Leol, L6C2, L9C3, 
MAXM, MINM, MMFS, MeeVIT, MSMS, MULF, MULF1, MULF2, MULF3, MULF4, 
READM, RSVDRS, START, STSEQ1, SUBC, SUBF, SUB1F, SUMSRR, TCFS, TRACK, 
WAGSUB, 

Example 1. Label Field Entry. 

COMMAND ARGUMENTLABEL 

I 2 3 4 5 678910 II 12 13 14 15 16 17 18 I' 20 21 22 25 24 25 26 27 28 2. 50 31 52 55 54 55 56 

',2,3,8, I I I , 

JeE , , I I , , , , I I I I I I I I I II I 

X
 

ALT I T.U,O,E
 , I I , , I I , I I , , I I I I I I I 

V,O e,T , I , I I , I , , • I I , I I I I I I II I I 

, , I , , I , I I I I I I , I 

I 

10-42
 



10.7.1.2 (continued) 

The command entry is a mnemonic code representing an associative instruction. 
A command entry is required in every active statement. Thus, if a statement is 
entirely blank following the label field, the assembler declares the statement 
in error, 
statement 
is not an 

generates a word of all zeroes in the object program, and 
in the assembly listing. The same thing happens if the co
acceptable mnemonic. 

flags 
mmand 

the 
entry 

Example 2. Command Field Entry (TeGQ: compliment Q) 

LABEL COMMAND ARGUMENT 

I 2 3 4 5 6 7 8 9 10 II 12 13 14 IS 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 

TaGQ 
, I I , , , I I , , , , ,I I I I 

TaGQ , , , I , , I , , , I , 

GQ ,T a ,I I , I , I 

TaGQI , , , I , , I I 

ALPHA T,a,G,Q, I , I , , , I I , , , , I , I I I , I I 

A,J,A,X, ,T,a,G Q I , I , I I , , I , , I I , I I , , , I I , I , 

B I T8GQ 
I I I , , 

An argument entry consists of one or more symbols or constants separated by 
commas. The argument entries for associative instructions usually represent 
such things as AM field definition values, label of a statement referenced by a 
jump instruction, the number of one of the 32 data registers, or the control 
memory address of where to store incoming data. Arguments for associative 
instruotions provide the information required to perform the designated operation. 

In nearly every instruction, the argument field terms may be either constants 
and/or symbols. If the argument field terms are symbols, then they must have 
been previously defined by appearing in the label field of an EQU statement, 
unless the symbol represents the destination of a jump instruction. If the 
latter is the case, then the symbol must occur in the label field of the instruc
tion receiving control via the jump statement. 

A comments entry may consist of any information the user wishes to record. It is 
read by the assembler and outputs as part of the source image on the assembly 
listing. Comments have no effect on the assembly. 

An entire line may be used as a comment by writing an asterisk in Column 1. Any 
EBCDIC character may be used in comments. Extensive comments may be written by 
using a series of lines, each with an asterisk in Column 1. 

10-43 



• • 

10.7.1.2 (continued) 

Example 3. Argument Field Entry 

TI COMMAND []	 ARGUMENT 

9 10	 II 12 15 14 IS II 17 II 19 20 21 22 23 24 25 21 27 21 29 50 51 

Naap BLANK ARGUMENT , I	 , 

LAR X I • °°° I 

a I • 77 1SFTM I I I 

I 2 7 IW F RM, , , , I I	 I 

AR SO	 
I ,, ,	 L I I	 I 

A,D,F A • B • C • , II I	 I 

L F P • • • 2 ',0,.,2,0, ,	 I I I 

10.7.2 Description of Assembly Listings 

The output of the assembler is a program listing and an optional object program 
on punched paper tape. The program listing contains eight (8) columns of infor
mation necessary for the user. They are described below in left-to-right order: 

a)	 The far left hand column contains all error codes, if any occur. 

b)	 The next column to the right contains the decimal number of the source 
instruction. 

c)	 This column contains the hexaddress of the assembled line. Note that 
two lines are necessary to make up one 64 bit AP instruction. Note 
also that the address assembled is a relative location in control 
memory and that to determine the address in program memory the "MACADR" 
equated in the table immediately preceding the program body must' be 
added to it. For example, let us say that we are interested in in
specting a source instruction numbered 39 with a hexaddress of OOOIC. 
The "MACADR" is equal to X'2000', therefore the location of this instruc
tion in program memory would be X'0201C'. 

d) This column contains the hex micro-code of the instruction. 

e) This column contains the label of the instruction if assigned. 

f) This column contains the command nmemonic of the instruction. 

10-44 



10.7.2 (continued) 

g) This column contains the argument for the command 
constant or label reference. 

and is usually a 

h) This column is the comments column and any alpha numeric character or 
group of characters can be here to describe the instruction or process 
taking place. 

The AP program listing is normally broken into three parts. (1) The equate 
statement table, (2) the main program (followed by subroutines), and (3) 
the symbol table. These are separated and easily identified in the listing 
furnished along with this report. 

10-45
 



TABLE 10-3 _ LIST OF AP INSTRUCTION MNEMONICS (SHEET 1 OF 6) 

MNEMONIC 
BRANCH FUNCTION 

JP Unconditional Jump 

MPJ Mark Place and Jump 

JNR Jump if No Response 

JSS Jump if Sense Switch Set 

JCZ Jump if Counter Equals Zero 

LOAD/STORE 

LAR Load Argument Register 

LeR Load Output Register 

LFP Load Field Pointer{s) 

LFPX Load Field Pointer{s) with Data Register 

GETX Load Next Instruction with Data Register 

SFPX Store Field Pointer{s) into a Data Register 

INCR Increment Field Pointer{s) 

DECR Decrement Field Pointer{s) 

RESPONSE STORE SETUP
 

LDS Load the S Flip-Flop
 

LDQ Load the Q Flip-Flop
 

TeGS Complement S Flip-Flop
 

TeGQ Complement Q Flip-Flops
 

SZIFQ Reset S if Q is Reset
 

SFR Set First S Flip-Flop
 

SRS Shift S Down
 

10-46 



TABLE 10-3 - LIST OF AP INSTRUCTION MNEMONICS (SHEET 2 OF 6)
 

MNEMONIC 
RESPONSE STORE SETUP FUNCTION 

SSEA Shift S Down End, Around 

SHDNl Shift Q Down 

SHDNP Shift Q Down (propagate) 

SFTM Search Flag True ( Memory) 

SFTP Search Flag True (Field Pointer) 

SFTX Search Flag True (Data Register) 

SFeM Search Flag OR (Memory) 

SFep Search Flag OR (Field Pointer) 

SFeX Search Flag OR (Data Register) 

SFAM Search Flag AND (Memory) 

SFAP Search Flag AND (Field Pointer) 

SFAX Search Flag AND (Data Register) 

SFXM Search Flag Exclusive OR ( Memory) 

SFXP Search Flag Exclusive OR (Field Poi nted 

SFXX Search Flag Exclusive OR (Data Register) 

SFCM Search Flag Complement (Memory) 

SFCP Search Flag Complement (Fi e Id Poi nted 

SFCX Search Flag Complement ( Da t a Reg i s t er) 

SFCAM Search Flag Complement AND (Memory) 

SFCAP Search Flag Complement AND (Field Pointer) 

SFCAX Search Flag Complement AND (Data Register) 

10-47
 



TABLE 10-3 - LIST OF AP INSTRUCTION MNEMONICS (SHEET 3 OF 6)
 

MNEMONIC FUNCTION 

ARGUMENT REGISTER COMPARISON SEARCHES 

GTC Greater Than Comparand 

GEC Greater Than or Equal Comparand 

LTC Less Than Comparand 

LEC Less Than or Equal Comparand 

EMC Exact Match Comparand 

MSC Mismatch Comparand 

ASSOCIATIVE MEMORY FIELD COMPARISON SEARCHES 

GTF Greater Than Fields 

GEF Greater Than or Equal Fields 

LTF Less Than Fields 

LEF Less Than or Equal Fields 

EMF Exact Match Fields 

MMF Mismatch Fields 

MAX Maximum Fields 

MIN Minimum Fields 

ASSOCIATIVE MEMORY LOGIC FIELD OPERATIONS 

eRF Logical OR Fields 

XRF Logical Exclusive OR Fields 

CPF Logical Complement Fields 

TCF Logical Two Complement Fields 

ABSFIELD Logical Absolute Value Fields 

10-48
 



TABLE 10-3 - LIST OF AP INSTRUCTION MNEMONICS (SHEET 4 OF 6) 

MNEMONIC FUNCTION
 

RESPONSE STORE TO ASSOCIATIVE MEMORY WRITE
 

WFRM AM Equal RS (Bit Position) 

WFRP AM Equal RS (Field Pointer) 

WFRX AM Equal RS (Data Register) 

WFeM Set AM if RS Equals One (Bit Position) 

WFep Set AM if RS Equals One (Field Pointer) 

WFeX Set AM if RS Equals One (Data Register) 

WZRM· Reset AM if RS Equals One (Bit Position) 

WZRP Reset AM if RS Equals One (Field Pointer) 

WZRX Reset AM if RS Equals One (Data Register) 

ARGUMENT REGISTER TO ASSOCIATIVE MEMORY WRITE 

WAG Bit Serial AR Write 

WAGM Bit Parallel, AR Write 

ATElQ Single Bit From AR to Q RS 

ASSOCIATIVE MEMORY FIXED POINT ARITHMETIC 

ADDI Increment Field 

SUBI Decrement Field 

ADC Add AR To Field 

SBC Subtract AR from Field 

ADF Add Field to Field 

SBF Subtract Field from Field 

MPF Multiply Field by Field 

DVF Divide Field by Field 

10-49 



TABLE 10-3 - LIST OF AP INSTRUCTION MNEMONICS (SHEET 5 OF 6)
 

MNEMONIC 

ASSOCIATIVE MEMORY OUTPUT 

READ 

seRTA 

SUMeR 

INPUT/OUTPUT 

INBLOK 

INBLOKJP 

INDATA 

INCOM 

LASUV 

SORUV 

SORMM 

LASSM 

LADR 

CLEARIF 

INTERUPT 

INPTAPEP (A) 

MMTOCM 

MISCELLANEOUS INSTRUCTIONS 

EQU 

MPJ 

TRACKS 

PAUSE 

FUNCTION 

Field to AR 

Sum-OR to AR 

Field to eR 

Retrieve Block and Continue 

Retrieve Block and Branch to Specified Location 

Input Data 

Input Command 

Load Output Register and send to Univac 1230 

Send Output Register Contents to Univac 1230 

Store Output Register in Program Memory 

Load and Store CM to MM 

Load Address Register 

Clear Interface 

Send External Interrupt to Univac 1230 

Input Paper Tape to Pointers (ARG) 

Retrieve a Single Word 

Define a Symbol 

Display Associative Memory 

Display Tracks 

Loop for N Seconds 

10-50 



TABLE 10-3 - LIST OF AP INSTRUCTION MNEMONICS (SHEET 6 OF 6)
 

MNEMONIC FUNCTION 

MISCELLANEOUS INSTRUCTIONS 

STep Halt Execution 

LABEL Label Instruction 

Neep No Operation 

M9VE Move Field 

10-51
 



TABLE 10-4 - AP INSTRUCTIONS REQUIRING MICRO-PROGRAMMED 
SUBROUTINES (SHEET 1 OF 2) 

The following is a list of all AP instructions that require the programmer to 
append their respective micro-programmed subroutine source statements to his 
source deck. Some subroutines use one of two 
also noted. 

common exit routines. This is 

Mnemonic Subroutine Label Name 
Common Exit Routine 

Label Name 

GTC GRCS 

GEC GRCS 

LTC LSCS 

LEC LSCS 

EMC EMCS 

MSC MSMS 

GTF FIELD 

GEF FIELD 

LTF . FIELD 

LEF FIELD 

EMF EMFS STSEQI 

MMF MMFS STSEQI 

MAX . MAXM 

MIN MINM 

TCF TCFe RSVDRS 

ABSFIELD ABSFLD RSVDRS 

ADOI ADOlF RSVDRS 

SUBI SUBIF RSVDRS 

AOC AOOC RSVDRS 

SBC SUBC RSVDRS 

10-52
 



TABLE 10-4 - AP INSTRUCTION REQUIRING MICRO-PROGRAMMED 
SUBROUTINES (SHEET 2 OF 2) 

Common Exit Routine 
Mnemonic Subroutine Label Name Label Name 

ADF ADDF RSVDRS 

SBF SUBF RSVDRS 

MPF MULF RSVDRS 

DVF DIVF RSVDRS 

READ READM RSVDRS 

"MPJ" DISPLAY RSVDRS 

TRACKS TRACK STSEQI 

PAUSE DELAY STSEQI 

MeVE MeeIT RSVDRS 

WAG WAGSUB 

SUMeR SUM eRR RSVDRS 

10-53
 



SECTION 11
 
AP PROCESSING CONSIDERATIONS AND ANALYSIS
 

11.1 CODING CONSIDERATIONS 

Assembler code is the normal media of program coding for the associative 
processor. The assembler runs on a conventional processor and converts the 
assembler code to micro-codes suitable for AP execution. 

The micro-codes are stored in a large, relatively slow program memory, and 
groups of these micro-codes are loaded from there into a small, fast control 
memory. These instructions are executed from the control memory, including 
the instructions to load control memory. Thus, the program must be carefully 
segmented into "load groups". This segmentation is a function of the size 
of the control memory and the size and execution frequency of program loops 
and subroutines. 

The tracking program is written primarily in assembler code with some micro
code interspersed. For example, the conflict detection program began with a 
high ratio of assembler code to micro-code; however, this ratio decreased 
considerably during program development. The effect of micro-coding became 
evident when the conflict detection function execution time decreased from 300 
plus milliseconds to less than 200 milliseconds for 20 conflict-free tracks 
after micro-codes were deployed in this program. 

Proper micro-codipg provides the most efficient throughput but does so usually 
at the expense of additional coding and debugging effort, unless the programmers 
are highly experienced in microprogramming. Micro-coding for all programmers 
in a large group may not be a realistic requirement and would impact development 
and deployment of a large program for the AP. 

11.2 DEBUGGING CONSIDERATIONS 

The last few program bugs are the hardest to uncover and require the greatest 
number of tools to assist the programmer in his debugging task. The debugging 
efforts for the AP programs were constrained considerably due to the lack of 
these tools. For example, an occasional "system timeout" or erratic behavior 
of the tracking or conflict prediction function was experienced during the 
debugging phase. Invariably, these errors were blamed on receipt of "bad data" 
or "bad external function" by the AP. Program patches were inserted into the 
1230 to monitor data sent to the AP; however, its image check appeared impossible 
to program in the AP. Hence, the "bad external function" conjecture was 
maintained and the real sources of the problems were not investigated in timely 
fashion. 

The AP functions programmed for Knoxville are relatively straight-forward and 
of small size; thus, elegant debugging tools were not essential. However, a 
program trap or a "snap dump" capability was painfully absent. 

11-1 



11.3 TIMING ANALYSIS 

AP processing time was monitored by means of a timing analysis program in the 
1230. This program provided minimum, maximum, and average AP execution time 
for each AP sequence. The sequence execution time is the time interval from 
when the 1230 triggers the particular sequence to when the AP interrupts the 
1230 with a sequence complete message. The sequence time includes I/O data 
transfers; however, since the amount of data transferred is small, I/O time 
relative to sequence time is only a few percent of the total sequence time. 

Sequence time is composed of AP program load time and AP execution time, with 
program load time the predominant contributor. The 1230 monitor output was 
used to determine total sequence time and the Goodyear-supplied timing analysis 
was used to determine the ratio of program load to execution time. The 
following formula was empirically derived. 

Total Sequence Time 
(in	 milliseconds) = 0.5 + 1.5t + 2.5t + 7.5t (t =~ of tracks) 

I l--Conflict, program load 

~conflict, AP execution 

~-------------R/BTracking, Prog. load 

~--------------------R/BTracking, AP Execution 

This formula must be qualified by the following: 

1)	 Formula is very crude. 

2)	 The maximum sequence times for the 20, 30, and 40 track case were 
used to derive the formula. 

3)	 Extrapolation beyond 40 tracks using this formula assumes that the 
timing increase is linear. Forward extrapolation will underestimate 
total timing. This error could be seriously dependent upon the non
linearity of the timing rise. 

4)	 Estimates assume that all tracking is done in one sequence/scan 
(timing data for 40 tracks was from 1 octant) and conflict prediction 
in one other sequence per scan. Further segmentation will result 
in a time increase. 

Unless control memory is increased in size or speed, the combined tracking 
and conflict prediction capacity of the AP appears to be 325 tracks, 

11-2
 



11.3 (continued) 

independent of array size. The size and speed of the control memory will 
significantly increase track capacity and, since the control memory is so 
intimately related to the function to be performed, the relationship between 
control memory and track capacity is outside the scope of this report. 

Item (4) can present serious problems in the conflict prediction function. 
The 40-track case consumes approximately 400 milliseconds. Since tracking is 
done every 500 milliseconds, it is easy to see that the conflict function will 
interfere with the real time execution of the tracking function as track capacity 
is increased. This means that the target reports must be queued with the 1230 
and catch-up tracking control provided. The 1230 program at Knoxville is so 
structured. However, report queing will not solve the update "staleness" 
requirements if the conflict sequence time grows considerably. In this case, 
the conflict function must be segmented into smaller "time slices", involving 
a major redesign effort. 

11.4 PROGRAMMING COMPLEXITY 

For several reasons, complexity of programming the AP versus programming a 
conventional processor is not accurately determinable from the Knoxville 
equipment. First, programs of equal capability were not performed on both 
machines at Knoxville. Secondly, a count of AP assembly language instructions 
is not an accurate measure of software complexity, or efficiency, since these 
assembly instructions typically cause two or more microinstructions to be 
generated; the equivalence of this instruction mix is difficult to compare in 
numbers with a program written in "one-for-one" machine code. Also, accounting 
procedures make it very difficult to extract actual system/software activity 
for tracking from an effort such as Knoxville, which included many other soft
ware activities. 

Because of the above problems, the following comparisons are offered as the 
closest approximation to the relative ease of programming. 

The Knoxville contract started in January of 1971, and radar reinforced beacon 
tracking was demonstrated in September 1971. A conservative estimate of total 
system/progranuning level of effort manpower during these nine months to 
accomplish radar reinforced beacon tracking on the AP is two men. Therefore, 
18 man months were required to implement this capability on the AP. 

As a comparison, the Atlanta radar/beacon tracker on a conventional processor 
took about 9 man months to implement and document. These efforts provide a 
reasonable comparison in that the algorithm was approximately the same and 
the coding was started from scratch in both efforts. 

From the above, it appears that programming the AP is more difficult than 
programming a conventional processor. It is difficult to speculate if this 
comes about due to the difficulty of fitting a given algorithm to the AP 
instruction set, or to the complexity/efficiency of the assembly language, or 
the use of directly-microcoded instructions in a mix with assembly instructions. 
or to difficul ty in debugging. 

11-3 



11.4 (continued) 

In terms of instruction count, the AP tracking program required approximately 
1400 assembly-level instructions (probably resulting in 2 to 3 times that 
many microinstructions). The Atlanta tracker on a conventional processor 
requires 1700 machine instructions. 

Ease of debugging is a matter not easily measured by any of the above numbers. 
However, because the tracking capability was not satisfactory until three 
months after the original demonstration attempt, and because the basic algorithm 
was a proven af~ concept, it is presumed that the AP is more difficult to debug 
than a conventional processor, where one month is typical from program 
installation to operational acceptance. 

11-4
 



SECTION 12 
STATUS AND RELIABILITY 

12.1 HISTORY OF EQUIPMENT STATUS 

The AP was delivered to the Knoxville Tower on 11 May 1971. The delivered 
equipment consisted of six (6) separate cabinets. On the same day, the 
cabinets were physically installed in the AP equipment room on the second 
floor of the terminal building. During the period from 11 May 1971 to 30 
June 1971, the following general tasks were carried out: 

1) Re-connection of inter-cabinet wiring. 

2) Connection to power source. 

3) Hardware debugging based on autonomous operation of the AP. 

4) Debugging of the off-line diagnostic program. 

5) Integration with the Univac 1230 computer (this involved debugging of 
both AP and 1230 interface test software). 

6) Initial debugging of tracking program. 

During this period, most of the hardware problems involved the interface 
c~~cuitry and the program memory (a purchased Ampex core memory). The AP 
equipment was officially accepted by Univac on 30 June 1971. At that time 
it passed the acceptance test without fault. The acceptance test consisted 
of a comprehensive interface test and an off-line diagnostic consisting of 
sixteen test routines. At the time of equipment acceptance the Running Time 
Meter (RTM) indicated 3004 hours. Provided below is an item by item description 
of all known hardware problems that occurred from the time of equipment 
acceptance on 30 June 1971 to the end of the contract period. The problems 
described do not include those of the Univac 1230 computer. They are 
associated only with the AP and fall into one of the following general categories: 

1) Hard component failure. 

2) Intermittent failure. 

3) Modification for system improvement. 

4) Marginal design. 

5) Auxiliary facility equipment failure. 

6) Human error. 

The following paragraphs provide the item by item description of known hardware 
problems promised above. 

12-1 



12.1 (continued) 

Item No.1 - On 20 August 1971, logic and a manual switch were added to the 
AP interface unit to inhibit inadvertent writing into AP program memory in the 
event of an interface fault during normal operation of the system program. 
The logic card, A7lA20, was modified to accomplish this. This modification 
was checked and found to perform properly. 

Item No.2 - Also on 20 August 1971, the AP off-line diagnostics were run 
and many of the tests failed. The problem was traced to two inoperative 
control memory locations, 1308 and 1318• The cause was traced to a hybrid 
strap driver (serial u022) (no output on pins 2 and 4). The defective hybrid 
strap driver was replaced with a spare (serial u033) on 21 August 1971. 

Item No.3 - On 6 September 1971 a fault in the AP was detected. The problem 
was traced to an inoperative word in the associative array (word 208 ). The 
source of the problem was traced to an open array connector at P2l-IO. The 
open connector was repaired on 7 September 1971. 

Item No.4 - On 4 November 1971 a fault in the AP was detected. The fault 
was detected in the process of trying to run a paper tape utility program to 
debug the conflict program in an off-line mode. The utility program would not 
execute. Diagnostic test ul was tried and would not run, although it was 
found that it would execute properly when operated in the single-step mode. 
The source of the problem was found to be a faulty hybrid strap driver in the 
control memory array, which put out a pulse twice as wide as was required. 
This causes two instructions to be accessed simultaneously. The faulty driver 
was replaced on 5 November 1971. 

Item No.5 - On several occasions, beginning 17 November 1971, the AP hung up 
in trying to execute an output instruction. The source of this problem was 
traced to a marginal timing situation with respect to are-synchronizing 
signal in the control section of the AP. This was not a hardware failure, but 
a design shortcoming. Minor re-design of a logic path was required. The 
problem was corrected on 2 December 1971. 

Item No.6 - On 22 November 1971, a GAC representative was notified by telephone 
that the AP had failed and that it couldn't be restarted. The GAC representative 
arrived at the terminal within a half-hour and found that the room air 
condi tioner control was in the "off" posi tion. The thermometer was pegged 
on the high side beyond scale, and the temperature reading was extrapolated to 
be 100 degrees F or more. The temperature sensor audible horn in the AP was 
buzzing. The AP was turned off to let it cool, and the room air conditioner 
was turned on. After the room and the AP reached a reasonable temperature, 
it was powered-up and with some difficulty was finally cleared to the proper 
initial state. The AP program memory was reloaded with the operational programs 
and system operation was resumed. 

12-2
 



12.1 (continued) 

Item No.7 - On 23 November 1971, the AP hung up completely and would not run. 
The problem was traced to a short circuit on the back panel of the control 
panel. It was corrected the same day. It is possible that the extremely high 
temperatures, resulting from the loss of the room air conditioner the previous 
day, contributed to this problem. 

Item No.8 - On 30 November 1971, an intermittent bit-dropout situation was 
noticed which affected data and interrupt codes output from the AP. The fail
ure was traced to a point somewhere between the AP output register and the 
input to the Univac 1230. The cable subsequently was checked and verified 
to have the proper continuity. The AP output transmitter card, associated 
with the questionable bit, was interchanged with another output transmitter. 
The failure did not follow the card. This indicated that the transmitter card 
itself was not at fault. At this point, the failure disappeared. It is 
conjectured that the source of the problem might be with the connector pins 
of the transmitter card receptacle. Although the failure was not observed 
again, on 7 January 1972 the suspected connector pins were adjusted. The 
failure was not observed since this adjustment. 

12.2 RELIABILITY SUMMARY 
. 

The hardware status descriptions presented in 1 through 8 above are summarized in 
table 12-1. Note that only items 2, 3, 4, 7 and 8 constitute actual hardware 
failures. These failures occurred during the period beginning with equipment 
acceptance on 30 June 1971, and ending on 20 December 1971, the end date of 
the basic contract. The AP has a built-in running time meter (RTM) which 
indicated 3004 hours at the beginning of the period and 4694 hours at the end of 
the period. Therefore, the total running time of the AP during this period 
amounted to 1690 hours. With five (5) failures during the period, the MTBF 
becomes 1690 hours/5 failures = 338 hours. 

With reference to table 12, two of the five failures (item No.2 and No.4) 
were hybrid strap driver failures. These components were checked in an attempt 
to determine cause of failure. The first faulty hybrid was destroyed in the 
checking process. Using a magnification of 1000, the other hybrid showed a 
possible crack in a wire near a bond. At the time these hybrids were built, 
the aluminum ultrasonic bonding process was used. Since that time, the 
literature has indicated some question about the reliability of this bonding 
process. In late 1970, a switch was made to the gold thermal compression 
bonding process. 

The shorted backpanel connection occurred just the day after the room air 
conditioner fault. The loss of the air conditioner resulted in extremely 
high temperatures within the AP equipment cabinets. It is possible that this 
contributed to the cause of the backpanel short. 

The MTBF of 338 hours is considered reasonably high, especially in light of the 
fact that this AP was originally built only as a lab model exerciser for a 
planted wire array. 

12-3 



..... 
N 
I 

.0::. 

ITEM NO. 

1 

2~:~ 

3~' 

1':' 

5 

6 

7';' 

8':' 

':'Ha rdwa re Fa i 1ure 

TABLE 12-1. AP HARDWARE STATUS SUMMARY
 

DESCRIPTION I CATEGORY 

Addi tion of Normal/Load I Mod for System Improvement 
Swi t.e h 

Hybrid Strap Driver I Hard Component Failure 
Failure 

Open Array Connector I Hard Connection Failure 

Hybrid Strap Driver Failurel Hard Component Failure 

Intermittent Hang-up on Marginal Design 
Output Instruction 

Equipment Room Air Human Error 
Conditioner Failure 

Shorted backpanel Hard Connection Failure 
Connec tion 

Possible Open Connector Intermittent Connection 
Failure 

NOTICED 

20 Aug. '71 

6 Sept. '71 

4 Nov. '71 

17 Nov. '71 

22 Nov. '71 

23 Nov. '71 

30 Nov. '71 

DATE 
CORRECTED 

OR MODIFIED 

20 Aug. '71 

21 Aug. '71 

7 Sept. '71 

5 Nov. '71 

2 Dec. '71 

22 Nov. '71 

23 Nov. '71 

7 Jan. '72 



SECTION 13 
AP ARCHITECTURE CONSIDERATIONS 

13.1 INTRODUCTION 

Some comments about AP architecture characteristics which are apparent from 
Knoxville, related experience, and prior knowledge, follow. These comments 
are directed specifically at the AP at Knoxville, or any equivalent successor 
i.e., any processor which has a search (associative) memory as the basis of 
the computational element as opposed to other forms of parallel processors 
which typically have parallel arrays of storage, each with its separate 
standard arithmetic unit. 

13.2 BIT SERIAL SEARCH 

A plated wire associative array is constrained to a bit serial search. The 
determination of equality must be accomplished external to the array (in the 
response store for the Knoxville AP). The array performs like a conventional 
plated wire array, the difference being that the plated wires are now the word 
lines and the Its traps" are the digi t lines - the reverse of a conventional 
plated wire array organization. Therefore, selecting a strap results in the 
same bit from all words being read out of the array. This bit from all words 
must be compared using external circuitry with the equivalent bit in the 
argument register to determine equality. A search operation, then, amounts 
to a "standard" read followed by an external compare. 

Standard (off-the-shelf) semiconductor chips are now available which have 
"Exclusive OR" circui try associated with each bi t on the array; wi th this 
configuration, external comparison is not required. Additionally, the 
semi-conductor element allows bit parallel searches. Use of either of these 
technologies requires that all arithmetic operations be accomplished with a 
search as the basic operator. To incorporate extensive arithmetic logic for 
each word (plated wire) or bit (semiconductor) is usually prohibitively 
expensive and inflexible. The following discussion relates to APs with a 
search operation as the basic operator, of which the Goodyear associative 
processor at Knoxville is an example. 

13.3 ARITHMETIC CAPABILITIES 

Arithmetic computations are performed by compounding basic operations. Field
to-field adds, for example (addition of two fields within a word on all words 
simultaneously), are performed by combining the basic operations of search 
(read and external compare) and multiwrite (write one bit of all words respond
ing to the single-bit search to a predetermined value). The following list 
is a truth table for the sum of two fields, A and B, and a third, carry (c) 
field. The carry field can be a 1 bit field and, consequently, a tag bit. 
Fields A and B are multi-bit fields. The sum of A, B, and carry is performed 
bit serially with the sum placed back in B and the carry stored in C. The 
rightmost Band C in the table represent the sum and carry bits formed by the 
addition of A + B + C. 

13-1 



13.2 (continued) 

ABC B C 

00000 
00110 
01010 
01101 
10010 
1 0 1 0 1 
1 1 0 0 1 
I I I 1 1 

Assume that, in the bit serial add being performed, the least significant
 
bit of fields A and B are being added along with the carry tag bit. The
 
technique used is to search, consecutively, for each of the ABC combinations
 
shown in the truth table. The LSB of the words in memory which contain those ABC
 
combinations are written with the predetermined answer (the rightmost Band C
 
in the truth table). When the search for all of the ABC combinations is
 
completed, the sum of the least significant bits of fields A and B has been
 
performed; then the search, write sequence must be repeated, bit serially, for
 
each of the remaining bits in the field, up to the most significant.
 

The previous description is a somewhat simplified version (search logic
 
external treatment, register clearing, and "don't care" logic are not explained)
 
of the method by which an AP forms the sum of two fields. Of importance is
 
the fact that searches and writes are word parallel; therefore these operations
 
are only slightly dependent upon the number of words (tracks) in the system.
 
There is some dependence involved, however, because wire length (plated wire)
 
and element loading (semiconductors) associated with increasing the size of
 
an array place cycle time constraints on that array.
 

Of more significance to this discussion is the application of APs to arithmetic.
 
The simple field-to-field add described previously is a natural operation for
 
performance in an AP. Multiplication and addition, on the other had, are not
 
natural operations for AP architecture. These operations require saving
 
partial products/remainders and the many iterations involved in obtaining the
 
product/quotient are time consuming. Because of this fact, steps are often
 
taken to circumvent using these operators. As an example, the approximation
 
used in conflict detection to determine the relative bearing angle is performed
 
to avoid using the division operations required by the arctan function
 

-1 = tan 

As cited in the conflict detection algorithm discussions, this approximation 
activity causes the AP algorithm to perform acceptably as a gross filter but 
may cause it to be inadequate for final conflict detection filtering. 
Implementing a fine filter requiring more precise computations would eliminate 
any small time advantage an AP would have in performing the conflict detection 
function. 

13-2
 



13.2 (continued) 

Admittedly, special purpose arrays (as opposed to custom, off-the-shelf 
devices) could be designed to offset some of this arithmetic disadvantage. 
Unfortunately, this proves more costly, and the resultant array is much less 
flexible for incorporating additional capability than one that is based on 
simple search capability, such as the AP at Knoxville. Since the air traffic 
control environment is expected to require evolutionary additions, a device 
which is "frozen" by design is not acceptable for future ATe implementation. 

It is apparent that the parallel arithmetic capability of an AP is provided 
only where arithmetic is performed within a word, such as adding ~X to X 
and ~y to Y for the track update portion of the tracking function. "Search" 
is also an operator that can affect all words in the array at once. However, 
if arithmetic between tracks is required, such as determining altitude 
separation between tracks, it must be done in serial fashion. When performing 
such track-to-track operations, an AP will be slower than a conventional 
processor. Therefore, the AP tasks must be selected carefully. 

It is also important to consider the implications of the "logic in memory" 
philosophy from the capability of expansion standpoint. Any arithmetic 
capability that must be added to' an associative processor will require the 
use of additional bits in a word. For example, during the Knoxville tracking 
activity, it was determined that in order to prevent improper auto-acquisition 
from the tab list, a code should be received at least twice before it would be 
acquired from tab into the system as an identifier for a newly-introduced 
aircraft. This action was determined necessary to prevent improper acquisition 
of a code in the tab while the pilot is changing his transponder to the proper 
code. The counter was implemented in the AP by using a "spare" bit in the 
array. The same counter, if implemented in the 1230, would have required words 
in core. The important difference in the handling of this function in the two 
processors is that core memory in a conventional processor can be added, as 
required, to the limit of the addressing capability, which is usually in the 
neighborhood of 256K words of core. Then, the instructions added which require 
the additional core can count and compare using the existing arithmetic unit. 
Core memory can usu811y be added, as required, in increments of 8K words at 
a moderate cost of about 8 cents for each bit. Within the AP, however, any 
expansion possibilities must be considered at the outset of the design, and 
extra or spare bits may be provided in each word to satisfy all future require
ments; otherwise, significant execution time additions would be experienced. 
Thus, to be flexible, the AP must be larger than required initially, and at 
20 cents to 50 cents per bit, the AP cost effectiveness is greatly diminished. 
The addition of more array modules does not increase the arithmetic capability 
of an AP. Parallel modules can be added to handle more aircraft tracks. 
However, normally the arithmetic performed within all modules is identical. 

13-3
 



13.4 INTERFACE CONSIDERATIONS 

The concept of connecting an AP to a conventional processor on a memory bus 
was not explored at Knoxville. The AP was connected to the 1230 via normal 
I/O channels. The amount of data exchanged between the two computers was not 
significant; however, each processor did require some overhead to prepare and 
accept intercomputer data. It does appear possible, however, that a direct 
memory bus interface can be developed. For example, since conventional 
processing systems typically can address up to 256K of core, a system configura
tion probably could be developed where the amount of core addressable can be 
reduced by an amount required to address an AP (1 additional bit) and can 
provide encoded commands (4-5 extra bits). Therefore, if a conventional 
processor can ordinarily address 256K of core, this same processor can address 
an AP of about the complexity of the Knoxville AP (1 bit for addressing and 
4 bits of encode 13 external functions) at the expense of only being able to 
access 8K of core. It may also be possible that once a single bit is assigned 
to define an AP request, all the low-order bits in the word could be used to 
encode the functions. Thus, the core memory addressability would only be 
reduced from 256K to l28K in the example described herein. Connected in this 
manner, the AP would appear to a processor as a conventional memory module. 
This does not appear to be an efficient usage, because many words, rather than 
1 word, are normally transmitted by the AP at the end of a sequence, and such 
chains are best handled in the I/O mode. 

Another possibility worth exploring is to communicate commands to the AP via 
the I/O loop, while at the same time allowing direct memory access for data 
interchange between the AP and conventional processor. This appears fairly 
clean, but would require processor overhead to handle "word by word" transfer. 

The overhead required is not large for an interface with the AP on an I/O basis. 
If the AP is expected to be tied to the memory bus, overhead could become a 
problem. Simulation of the possible configurations is required before overhead 
speculation can occur. There are several configurations that must be considered, 
depending upon the structure of the proposed AP element (Is it a stand-alone 
processor? Does it share program memory with lOPs? etc.). 

During the Knoxville activity, it became apparent that the volume of data 
transferred between the AP and a conventional computer would not require AP 
connection to the processor other than via the I/O channel. If other functions 
which require a large data flow are addressed by an AP (e.g. target report 
processing), an undersirable situation would be created if the conventional 
computer accepts the data and buffers it for transmittal to the AP. Rather, 
the AP should have a direct interface wi th the data source (be a special 
purpose box on the radar digitizer, for example) for such functions. 

If an AP is used in an operational environment, the function it performs would 
likely cause its classification as a critical peripheral. The present 
philosophy of handling critical peripherals is to have a redundant unit with 
duplexed SWitching to two lOPs for recovery from lOP or peripheral failure. 
If the current philosophy prevails, two APs would be required. 

13-4 



13.4 (continued) 

It has been suggested that an AP has built-in redundancy and, therefore, does 
not require a back-up. It appears that it would be easier to recover from a 
memory cell failure with an AP than with a conventional processor because 
memory access is, or could be, controlled by a "busy" bit in the word. If 
set, the bit indicates that a write operation cannot occur in the memory 
location. Also, it is conceivable that this bit could be considered in any 
search operation for memory access. Admittedly, this type of accessing is 
easier to control than a random access type system where it is virtually 
impossible to create dynamic programs to circumvent a faulty memory location. 
Despite the fact that it appears to be inherently easier to circumvent a 
faulty location, the possibility exists that the means of access could fail 
(a busy bit could fail cleared, for example) thus destroying the accessing 
scheme. Parallel, duplicate arrays could be added to replace a failing array, 
but with memory hierarchies as exist in the AP (program memory, control memory, 
and associative array), the problem of redundant hardware is not solved by 
supplying duplicate arrays alone. 

13.5 CONTROL MEMORY/HARDWIRED CONTROL 

The fact that a control memory was implemented in the AP at Knoxville deserves 
comment. Because this method of flexible control was implemented, conflict 
detection was changed by microcoding the sequence, and the detection sequence 
time was kept within time constraints which might not have been possible had 
the AP been designed for hard-wired control with the assembly level instruction 
repertoire existing for the Knoxville AP. This also indicates that AP 
repertoires, which are quite "high level" when compared to conventional 
computer machine instructions, may not be efficient in addressing a broad range 
of applications. 

13-5
 



SECTION 14
 
TIMING ANALYSIS
 

14.1 GENERAL 

Timing data for the various tracking and report correlation operations are 
given in table 14-1. In these tables, total system time refers to total 
time from receipt of the EXF command from the 1230 to completion of the program 
and is the sum of the other entries in the table. The program load time is 
the time required to load instructions from the core memory into the plated
wire control memory. This time results from the small inefficient control 
memory used in this lab model AP and is negligible in later STARAN models. 
Current STARAN models contain three control memories. Each one provides 
effectively twice the storage capacity of the Knoxville AP control memory. One 
of the three is used exclusively to store the microprogram library. The other 
two are used in ping-pong fashion - instructions being executed from one while 
the other is being loaded. The column marked AP/1230 I/O represents the time 
for transfer of sensor reports from the 1230 to the AP in the case of beacon 
and radar correlation, and time for transfer of data from the AP to the 1230 
in other cases. 

14.2 TRACKING PROGRAMS 

A detailed analysis of the data presented in table 14-1 reveals that 8.06 
milliseconds AP execution time per scan are required for track updating, 
independent of the number of tracks (7.99 milliseconds for X-Y and 0.07 
milliseconds for altitude track updating). The table below gives the AP time 
for operations for which the time is proportional to the number of tracks. 

AP EXECUTION TIME FOR DETAILED TRACKING TASKS 

OPERATION TIME/TRACK/SCAN (MICROSECONDS) 

Beacon Correlation 179 

1230 to AP-Beacon Reports 24 

Radar Correlation 127 

1230 to AP-Radar Reports 17 

X-Y Tracking and AP to 1230 

Transfer for X-Y and Altitude Data 78 

Altitude Tracking and Turn Detection 160 

14-1
 



14.2 (continued) 

The data given above can be combined into the following equation for time 
per scan: 

Tracking =0.2038 + 0.144R + 0.238N + 8.06 

where B = Number of beacon reports 

R = Number of radar reports 

N = Number of tracks 

For example, for a 1000 aircraft environment with 700 beacon reports per 
scan and 10 percent radar noise, the time would be 475 milliseconds per scan, 
or 11.9 percent of available time. 

The tota\ I/O time is 124 microseconds per track, or 124 milliseconds for 1000 
tracks, equivalent to 3.1 percent of available time. 

The time for control status update (controlled or uncontrolled tracks) is 35.7 
microseconds, of which 14.2 microseconds are I/O time. This event occurs only 
occasionally, so the percent time is negligible. 

All of the above timing analysis ignores program load time. This should not 
be ignored completely but is dependent upon machine architecture. 

14.3 APPLICATION TO OTHER AP MODELS 

Using the results given in the preceding item, some predictions can be made 
relative to the results which would have been obtained with later STARAN models. 
In general, the tracking programs were not particularly designed to optimize 
execution time, but were rather written with the view of demonstrating AP 
application to the operational problem. Therefore, any re-prograrnming should 
produce a reduction in execution time. In addition, the AP model used at 
Knoxville is unable to perform between-limit searches efficiently. Therefore, 
this instruction was not used in report correlation and the equivalent operation 
was performed through subtraction and less-than searches. However, these 
operations are slower than the between-limit instruction now available. 
Approximately 50 microseconds per correlation can be saved using the between
limits search. Additional inefficiencies exist in the AP at Knoxville with 
respect to transfer of data between words, arithmetic operations, and write 
operations. It is estimated that if these inefficiencies were removed, as 
would be possible through the use of a later STARAN model, the time for beacon 
report correlation would be reduced to less than 100 microseconds per report 
and the time for radar report correlation would be reduced to less than 70 
microseconds per report. More emphasis on programming for minimum execution 
time would, of course, reduce these numbers even further. 

The I/O operations are particularly inefficient in the AP used at Knoxville. 
However, since the total I/O time is so low, the improvements, although they 
would be appreciable in a later model AP, would not be large as a percent of 
total time. 

14-2 



14.4 CONFLICT PREDICTION PROGRAM 

The data given in table 14-2 is for the conflict prediction program with no 
conflicts being detected. The presence of conflicts reduces both total system 
time and the execution time. Therefore, the values given represent worst case 
conditions. The execution time for the no track condition represents set-up 
time which is done in all cases. The data given in table 14-2 indicate the 
following equation for time per scan: 

TConflict Prediction = 1.95 N + 0.36 (milliseconds) 

where 

N = the number of tracks. 

14.5 APPLICATION TO OTHER AP MODELS 

Many of the comments given in section 14.3 above apply to conflict prediction. The 
conflict prediction program uses somewhat more complex routines than the track
ing programs. Therefore, the conflict prediction program timing is even more 
sensitive to inefficiencies in the AP at Knoxville than the tracking programs. 

In order to obtain a quantitative measure of the inefficiencies, the following 
procedure was carried out. One control memory load of the program was analyzed 
in detail. Timing data for the load was determined on the basis of the 
program steps on the flow chart and the standard execution time per step. For 
example, the time for an add-fields step was determined as 1.1 microsecond per 
bit in the fields plus 0.4 microsecond set-up time. The results of this 
computation were compared with the measured time. For load No.5, deemed to be 
a relatively average condition, the measured result was 153 microseconds compared 
with a computed value of 74 microseconds (48.2 percent of measured). A 
comparison of the conditions of load No.5 with the other loads indicates that 
for some loads the difference between computed and measured values may not be as 
high, but that at least 500 microseconds per track should be saved with a later 
STARAN model. Additional reductions of 200 microseconds per track through a 
faster write cycle in the machine and 300 microseconds through more efficient 
programming are also felt to be readily achievable. 

Accepting the values given above, the conflict prediction time using basically 
the same algorithm as being used at Knoxville would be about one millisecond 
per track. Therefore a 2000 aircraft terminal area would require about 50 
percent of available time. Considering the other tasks which must be performed, 
this value of 2,000 aircraft Probably represents the maximum value of tracks 
which can be handled with this algorithm. However, it is possible to introduce 
more parallelism into the algorithm which will substantially reduce the 
exception time. Therefore areas with 4,000 - 5,000 aircraft can readily be 
handled. 

14-3
 



TABLE 14-1. TRACKING PROGRAM TIMING DATA (MEASURED)
 

...... 
J::.. 
I 

J::.. 

TOTAL SYSTEM TBIE AP EXECUTION TIME AP/1230 I/O TIME PROGRAM LOAD TIME 
NO. OF TRACKS 

(Millisecond Per Scan) 
NO. OF TRACKS 

(Millisecond Per Scan) 
NO. OF TRACKS 

(Millisecond Per Scan) 
NO. OF TRACKS 

(Millisecond Per Scan) 

8 20 40 

77.998 

8 20 40 8 20 40 8 20 40 

BEACON 
CORRELATION 23.365 42.392 1.-170 3.450 7.26 0.195 0.492 0.958 21.70 38.45 69.78 

RADAR 
CORRELATION 3.418 5.106 8.055 1.070 2.190 5.37 0.198 0.336 0.645 2.04 2.04 2.04 

TRACKING 
UPDATE (X-Y) 
& OUTPUT 21.065 21.400 23.150 8.30 8.75 9.51 0.464 0.753 1.230 12.42 12.42 12.42 

ALTITUDE 
TRACKING 
& TURN 
DETECTION 2.935 4.929 ~~ 1.35 3.27 .',

'.' 0.0556 0.129 :::~ 1.53 1.53 :::: 

TOTALS 50.783 73.827 

~.~ ..,~ .......... 

109.203 12.19 17.66 

Lt................ 

22.14 0.913 1.710 2.833 37.69 54.44 84.24 

*Not available - a maximum of 20 test targets with altitude are available. 

**Total time, not including time for Altitude Tracking and Turn Detection. 



TABLE 1~-2. CONFLICT PREDICTION TIMING DATA (MEASURED) 

NO. OF THACKS TOTAL SYSTEM TIME 
(Milliseconds Per Scan) 

PROGRAM LOAD TIME 
(Milliseconds Per Scan) 

AP EXECUTION TIME 
(Milliseconds P/Scan) 

0 1. 91 1.55 0.36 

1 10.34 8.12 2.22 

3 27.34 21.28 5.95 

8 69.65 54.16 15.49 

20 172.60 133.10 39.50 

J::.
 
I
 

U1
 



SECTION 15 
FAA TRACKING TESTS 

15.1 INITIAL TRACKING TEST - STARAN IV - KNOXVILLE, TENNESSEE 

As part of the program of the FAA's Systems Research and Development Service 
to evaluate associative processing at the terminal radar control facility at 
Knoxville, Tennessee, the initial tracking test was conducted on 21 July 1971. 
This test was accomplished utilizing secondary radar (beacon) only, since 
the work concerned with interfacing the radar video converter was an on-going 
effort. 

In order to assure the basic operational ability of the system, as well as 
the preparedness of the data extraction and reduction subprograms, the system 
was exercised for approximately two hours on the evening of 20 July, while 
the FAA aircraft were arriving at Knoxville. During that period of time the 
tracker performed quite well in following the aircraft which were flying 
randomly in the terminal area. Resolution is very good, and target turns 
were tracked without any difficulty. The data which was extracted was then 
reduced and found to be in correct formats. 

At 9:00 AM 21 July, following the pilots' briefing, the two FAA aircraft began 
the overtake patterns identified as pattern 1 in the test plan. The results 
of the morning activities as recorded by test monitors by observation are as 
follows: 

1) With both aircraft on the same non-discrete code and with mode 
C off, the overtake was flown three times, resulting in a total of 
four track drops (see note), two target swaps, and two garbled codes. 

2) With both aircraft on the same non-discrete code and with mode Con, 
the overtake was flown three times, resulting in a total of three 
track drops, three target swaps, and two garbled codes. In addition, 
an erratic airspeed was displayed which fluctuated considerably. 

3) With aircraft on 
the overtake was 
track drops, one 

different non-discrete codes and with mode Con, 
flown two times, resulting in a total of three 
target swap, and one garbled code. 

4) With aircraft on discrete/non-discrete codes and with mode Con, 
the overtake was flown three times, resulting in a total of four 
track drops and one target swap. One overtake was completed success
fully. 

15-1
 



15.1 (continued) 

During the lunch break in testing, program modifications were performed to 
correct a bug found in the coding of the STARAN IV. Flight testing was then 
resumed with the following results: 

1) With the aircraft on different non-discrete codes and with mode C 
off, the overtake was flown two times resulting in three track drops. 
One of the runs was completely successfully. 

2) With aircarft on discrete/non-discrete codes and with mode Con, 
the overtake was flown twice with a resultant total of five track 
drops and two garbled codes. 

3) With the aircraft on the same non-discrete code and with mode C off, 
the aircraft flew the first part of pattern IV, the 10 degree cross
over. This pattern was flown twice, resulting in five track drops 
and one target swap. 

4) With aircraft on discrete/non-discrete codes and with mode Con, 
the 10 degree crossover was flown once, resulting in five track drops. 

NOTE:	 A track drop is the disassociation of flight data from the target which 
causes coasting of the data until it is deleted from the system. The 
number of coasts is not included in this count because it was excessive. 

The flight testing was concluded at this point because sufficient data had 
been obtained for further refinement of the tracker. Additionally, mods 
are required in the display of data. The major areas of work to be performed 
include: 

1)	 Univac will complete interface of the RVC and associated radar data 
processing software. 

2)	 Univac will modify programs to provide: 

a)	 Right-justify tab line ID in data block of suspended target 
when offset is to the west; 

b)	 No altitude readout in tab list of suspended target unless 
the assigned code is discrete; 

c)	 Display assigned code on suspended targets; 

d)	 Retention of flight data in tabular list when a suspended 
target is dropped by the tracker. In this case, the "5" 
will be deleted from the data line and the flight data will 
remain. 

15-2
 



15.1 (continued) 

3) The tracker will be modified so 
will be sifnificantly improved: 

that the following problem areas 

a) Drop of data in coast while targets are still merged; 

b) The coast-hit-coast situation which results 
velocity and a certain data drop occurence; 

in zero 

c) The lack of weight given to velocity data while tracking; 

d) The number of coasts generally, when targets are separated. 

4) The BRITE II will be interfaced and debugged with the system. 

In addition to the above, a minor modification will be made so that the coast 
indication will not be displayed to the controller until two consecutive 
misses occur. 

The first flight test utilizing live aircraft was successful in identifying 
these major areas requiring additional modifications, and in providing the 
data needed to accomplish the work needed. The data which was extracted 
during the flight tests was made available to the Goodyear programmers to 
assist in the further debugging of the tracking system. 

15.2 SECOND TRACKING TEST - STARAN IV - KNOXVILLE, TENNESSEE 

Software modifications were completed to correct the major problem areas 
identified by the initial tracking test conducted on 21 July 1971. In order 
to determine the operational suitability of the system, and to further refine 
the tracking algorithm, the second flight test was conducted 9 and 10 August. 

This tracking test consisted of two phases. The system operated in a beacon
tracking mode on 9 August to assure that the previously identified problems 
had indeed been resolved. Then, on 10 August, primary radar data was utilized 
for the first test of radar-reinforced beacon tracking. 

Several unforeseen and unexpected failures occurred on the morning of 9 August 
which are recorded here inasmuch as they could have had an effect on the test 
itself. 

A failure of city electrical power occurred at 11:30 a.m., which lasted for 
approximately 20 minutes. When power was resumed, the air conditioner which 
cools the equipment room remained out of service for approximately another 
hour. This caused the ambient ~emperature in that room to exceed 980 F (the 
exhaust of the 1230 reached 106 F). This, in turn, was the probably cause 
of a failure in the beacon data acquisition subsystem, which began declaring 
false targets throughout the area. The problem was repaired by the UNIVAC 
technician. During this time, the auxiliary air conditioner which was installed 
with the STARAN IV kept the AP temperature down within the safe limits. 

15-3
 



15.2 (continued) 

Following lunch and the briefing for the pilots, the aircraft took off at 
2:00 p.m. All four patterns of the flight test were flown, concluding at 
4:00 p.m. A summary of the results as recorded by the observation of the 
test monitors is attached. Significant occurrences of operational importance 
are: 

1) Tracking performed very well during the overtake patterns. 
No track swaps nor data drops occurred during three patterns. 

2) Tracking performed reasonably well during the cross8ver 
patterns. Although a 
of the targets on the 

track swap occurred at the 10 crossover 
same non-discrete code, the 150 crossover 

was performed with tracking continuity. A major occurrence was 
the track swap which occurred when the aircraft were in an opposite 
direction turning position. 

3) The deviated course pattern was flown with very good results. 
The coasts which occurred appeared to be the result of antenna 
shielding, and did not degrade the tracker. 

4) Tracking over the radar origin pointed out the need for an 
extended data holding capability in the system. 

5) Another track swap occurred when the aircraft were being vectored 
for landing. Once again it occurred when both targets were in 
turn in opposite direction of flight. 

6) Throughout the test, rapid and substantial fluctuations were 
observed in the displayed ground speed. 

On 10 August, the patterns were again flown while the system incorporated 
primary radar correlation for the first time. The morning flight lasted from 
9:00 - 11:00 a.m. and the afternoon test encompassed the time from 1:15 - 3:30 
p.m. The summary of results as observed by the test monitors is attached. 
Operationally significant occurrences are: 

1)	 The tracker performed very well in the first two overtakes. 
This was followed by a system stoppage due to unknown causes. 
The program was reloaded and the tests continued. 

2)	 Two more overtakes were successfully completed followed by two 
target swaps. 

3)	 The aircraft transponders were turned off after firm tracking was 
established, and both code and last reported altitude continued to 
be displayed. During the overtake one tag was dropped; the other 
acquired a target replying 0100 which was approximately 15 NM south. 

4)	 The following overtake resulted in a track drop on one aircraft. 

15-4
 



15.2 (continued) 

5) Two 100 crossovers were completed with transponders on. 
third pattern resulted in the ARTS II tag being dropped 
swapped. 

The 
and ARTS I 

6) Another crossover was completed but a swap occurred in the turn again. 

7) Two more crossovers were completed satisfactorily; then the 
transponders were turned off and the tags were dropped after 
tracking a short distance. 

8) At this point in the testing, some difficulty was experienced in 
identifying the beacon reply of ARTS I, the DC-6. It was necessary 
to recycle the transponder several times before the reply was received. 

9) The radar origin pattern results were as expected from the previous 
day's run. Significant, though, was the track jump and association 
with a target replying code 1100 which was seven miles away. 

10) Deviated course tracking performed as expected. 

In debriefing, the basic excellent qualities of the tracker were noted, 
especially in utilizing the primary radar data for radar reinforced beacon 
tracking. This is an indication of the intense work performed by the software 
people in a short period of time. Prior to operational usage, however, several 
software fixes remain to be made which were identified and discussed. These 
are: 

1)	 Swaps in opposite direction turns. Preliminary data indicates 
this fix may degrade the tracker in other areas. This tradeoff 
will be investigated. 

2)	 Display of code and/or altitude when no reply is received. This 
will be eliminated, and display will reflect just the data received. 

3)	 Velocity variations - Secondary smoothing will be performed for 
display purposes. 

4)	 Retention of coast data - Coasted data will return to the tabular 
list for eight scans prior to being dropped. 

5)	 Utilization of discrete code - Judged to be the most important fix, 
discrete code will be used whenever received for identification 
purposes. Position will be secondary. 

System usage was then turned over to the contractors on a full-time basis 
to reduce the data collected, in order to prepdre the system for operational 
usage at the earliest possible date. 

15-5
 



15.3	 TRACKING TESTS (BEACON ONLY), 9 AUGUST 1971 

1) Overtake Situations - Pattern I 

2 runs - same nondiscrete code with Mode C. 

Ai rcraft - A Aircraft - B 

a) Number of times coast displayed 8 8 

b) Automatic Reacquisi tion 8 8 

c) Repositions 0 0 

d) Garbled Altitudes 2 0 

NOTE:	 Erroneous altitude readout on Aircraft B (N-377) 23 times. 
Possibly an erratic transducer. 

2) Overtake Si tuations - Pattern I 

One run. Aircraft A discrete code wi th Mode C. 
Aircraft B discrete code without Mode C. 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 1 1 

b) Automatic Reacquisition 1 1 

c) Reposi tions 0 0 

d) Garbled Altitudes 0 0 

3) Cross Over Courses - Pattern IV-A (10 degrees) 

Two runs. Aircraft.A. discrete code without Mode C. 
Aircraft B discrete code with Mode C. 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 5 o 

b) Automatic Reacquisition 5 o 

c) Reposi tion o o 

d) Garbled Altitudes o o 

NOTE: Erroneous altitude readouts on Aircraft B (N-377) 
18 times. 

15-6 



13.3	 (continued) 

4) Cross Over Courses - Pattern IV-A (10 degrees) 

One	 run. Same nondiscrete code. Aircraft A with Mode C. 
Aircraft B without Mode C. 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 1 2 

b) Automiltic Reacquisition I 2 

c) Reposi tions 0 0 

d) Garbled Altitudes 0 0 

NOTE: Targets swapped twice - once at outbound and in 
crossover turn and once at VOR. 

5) Cross Over Courses - Pattern IV-B (15 degrees) 

One Run. Same nondiscrete code. Aircraft A with Mode C. 
Aircraft B without Mode C. 

Aircraft - A Aircraft - B 

a) Number of times coast displayed I 3 

b) Automatic Reacquisition I 3 

c) Reposi tions 0 0 

d) Garbled Altitudes 0 0 

6) Deviated Course - Pattern III 

One run. Aircraft N-377 (Gulfstream) Discrete code with Mode C. 

Aircraft - A 

a) Number of times coast displayed 6 

b) Automatic Reacquisition 6 

c) Repos i ti ons o 

d) Garbled Altitudes o 

NOTE: Erroneous altitude readouts - II times. 

15-7
 



-~-~""-----------------------

15.3 (continued) 

7) Radar Origin Tracking - Pattern II 

One run. Aircraft N-114 (DC-6) Discrete code with Mode C. 

Aircraft - A 

a) Number of times coast displayed 3 (Data dropped) 

b) Manual track reinitiation 3 

c) Reposi tions o 

d) Garbled Altitudes o 

NOTE: One instance track swap in cross over situation. 
Aircraft B was released in tower. Data format dropped 
on N-114. Track was reinitiated manually. 

15.4 TRACKING TESTS (BEACON AND RADAR REINFORCEMENT) 10 AUGUST 1971 

1) Overtake Situations - Pattern I 

2 runs. Same nondiscrete code without Mode C. 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 4 5 

b) Automatic Reacquisition 4 5 

c) Repositions 0 o 

d) Garbled Altitudes 0 o 

2) Overtake Si tuations - Pattern I 

2 runs. Discrete codes. ARTS 
ARTS 

I Mode C. 
II wi thou t Mode C. 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 2 5 

b) Automatic Reacquisition 2 5 

c) Reposi tions o o 

d) Garbled Altitudes o o 

NOTE: AP failed for 19 minutes. 
manual reposition. 

One case of target swap and 

15-8
 



15.4 (continued) 

3)	 Overtake Situations - Pattern I 

2 runs. Discrete codes both aircraft with Mode C. 

a) Number of times coast displayed 5 5 

b) Automatic Reacquisition 3 3 

c) Repositions 2 o 

d) Garbled Altitudes o o 

NOTE: Two manual reinitiates on Aircraft A. Two manual 
reinitiates on Aircraft B. 

4) Overtake Situations - Pattern I. Beacon track initiate and then radar 
tracking only. 

Two runs. 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 5 2 

b) Automatic Reacquisition 4 1 

c) Repositions 0 0 

d) Garbled Altitudes 0 0 

NOTE:	 One drop track on Aircraft ~ and no reinitiate. One drop 
track on Aircraft B and no reinitiate. Last known altitude 
remained in da ta block wi th transponder on "Standby". Also. 
beacon code could be readout. 

5)	 Cross Over Courses - Pattern IV-A (10 degrees) 

2 runs. Same nondiscrete code without Mode C. 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 3 4 

b) Automatic Reacquisition 3 4 

c) Repositions o o 

d) Garbled Altitudes o o 

15-9 



15.4 (continued) 

6) Cross Over Courses - Pattern IV-A (10 degrees)
 

2 runs. Discrete codes. ARTS I with Mode C.
 
ARTS II without Mode C.
 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 2 2 

b) Automatic Reacquisition 2 1 

c) Repos i tions o o 

d) Garbled Altitudes o o 

NOTE:	 One manual reinitiate on aircraft B. One track drop and 
manual reinitiate on aircraft A. Two format swaps and 
data drops. 

7)	 Cross Over - Pattern IV-A (10 degrees)
 

2 runs. Discrete codes with Mode C.
 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 1 2 

b) Automatic Reacquisi tion 1 2 

c) Repositions 0 0 

d) Garbled Altitudes 0 0 

NOTE: Track on aircraft A jumped to a 0400 code aircraft.
 

8) Cross Over Courses - Pattern IV-A (10 degrees)
 

2 runs. Beacon track initiate and then radar tracking only.
 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 4 

b) Automatic Reacquisi tion 3 5 

c) Repositions 0 0 

d) Garbled Altitudes 0 0 

NOTE:	 Two track drops on aircraft A followed by a track swap to 
a 0100 code. Three track drops on aircraft B. 

15-10 

8 



15.4 (continued) 

9)	 Radar Origin - Pattern II
 

1 run. Aircraft N-114 (DC-6) discrete code with Mode C.
 

Aircraft - A 

a) Number of times coast displayed 6 

b) Automatic Reacquisition 1 

c) Repositions o 

d) Garbled Altitudes o 

NOTE: 5 track drops. 4 manual reinitiates. 1 traok jump to a 
code 1100 target seven miles away. 

10) Deviated Course - Pattern III 

1 run. Aircraft N-377 (Gulfstream). Discrete code. 

Aircraft - A 

a) Number of times coast displayed 0 

b) Manual track reinitiation 0 

c) Repositions 0 

d) Garbled Altitudes 0 

11) Deviated Course - Pattern III 

1 run. Aircraft N-377 (Gulfstream) Radar tracking only. 

Tracking would not hold in 900 turns or in 3600 turns. 

15.5 TRACKING DEMONSTRATION - STARAN IV - KNOXVILLE, TENNESSEE 

The major work identified by the tracking test of 9 and 10 August was completed 
by the contractors, and the tracking demonstration was performed on 7, 8, 9, 
and 14 September. 

On 7 September, the aircraft departed at 2:30 p.m. to begin the demonstration. 
The first pattern consisted of the overtakes identified in the test plan as 
pattern I while the system tracked utilized both primary and secondary radar. 
During this pattern, in which six overtakes were performed, the system displayed 
excellent tracking characteristics by successfully completing: 

15-11
 



15.5 (continued) 

a)	 Two overtakes on the same non-discrete code (0200) without
 
altitude data (Mode C off);
 

b)	 Two overtakes on the same non-discrete code (0200) with altitude 
data; 

c)	 Two overtakes on discrete codes (0201 and 0202). 

On the morning of 8 September, single-aircraft patterns 2 and 3 were flown.
 
Both the deviated course and radar origin patterns were completed successfully.
 
In order to test primary radar tracking capability, the deviated course was
 
flown with the transponder off, and excellent results were again obtained. Up
 
to this point in the testing, the only apparent problem was the displayed
 
velocity, which fluctuated too much for operational use.
 

Pattern IV, the crossovers, was begun on the afternoon of 8 September.
 
Numerous errors were observed during this phase of the demonstration, the major
 
occurrences being as follows:
 

1)	 100 crossover - both on code 0200. 

a)	 Two cases in which both data tags identified one target. 

b)	 One complete target swap. 

c)	 One case in which an uncontrolled track (+) was initiated 
on a controlled target. 

d)	 One data jump to a target 18 N.M. south of the controlled 
target. 

2)	 100 crossover - discrete codes. Completed successfully. 

3)	 2_150 crossovers - both on code 0200. 

a)	 One case in which both tags identified one target. 

b)	 Two complete swaps. 

4)	 200 crossovers - both on code 0200 - One complete swap 

5)	 200 crossover - discrete and non-discrete. One case in which 
the non-discrete tag followed to discrete target (along with the 
correct data tag). 

The crossover patterns were continued on the morning of 9 September with similar 
results which are not itemized here inasmuch as two major errors in software 
were subsequently discovered which invalidated the data obtained by the 
crossover tests. These errors were: 

15-12 



15.5 (continued) 

1) The wrong beta values were used throughout that testing,
 
which produced a far coarser tracking than was intended.
 

2) The primary radar processing was declaring multiple
 
reports (primary splits). 

This combination of errors rendered the data unusable for identifying further 
work areas and necessitated another flight test as soon as possible. 

On 14 September, the tests began by demonstrating the 100 crossover, utilizing 
beacon-only tracking with the aircraft squawking discrete/non-discrete codes. 
This was the only test remaining before the beacon tracker would be operationally 
ready. The pattern was flown twice and performed very well; the displayed 
velocity was also within a usable range of variation. 

Primary radar data was then turned on to test radar reinforced tracking in 
the crossover patterns, with the following results: 

10o crossover - both on code 0200 

Total swap occurred. 

2) 10o crossover - both on code 0200 

Completed successfully. 

3) 150 crossover - both on code 0200 

Two track swaps 

24) 200 crossover - both on code 0 00 

Total swap occurred. 

5) 200 crossover - both on code 0200 

1) Both tracks associated with one target. 

2) Total track swap. 

6) 200 crossover - codes 0200/0300
 

An uncontrolled track was initiated on one of the targets
 
but the crossover was completed successfully.
 

o
7) 20 crossover - codes 0200/0300 

Uncontrolled tracks initiated on both targets but the 
crossover was completed successfully. 

15-13 



15.5 (continued) 

8) 200 crossover - codes 0200/0300 

Completed successfully. 

9) 200 crossover - codes 0200/0300 

Completed successfully. 

10) 150 crossover - beacon only tracking codes 0200/0300 

Completed successfully. 

RESULTS - The tracker was demonstrated to be suitable for operational usage in 
the beacon-only mode. When operating with secondary radar, the tracking
 
continuity was good and the displayed velocity was generally usable.
 

Additional refinement is required to provide the primary radar reinforcement.
 
Although intended to improve the accuracy and continuity of the tracking ability,
 
the addition of the primary data degrades the tracker. In order to progress
 
in this area, a meeting will be held to identify the problem causes and
 
determine corrective action. For this purpose, a printout of the reduced data
 
is being provided to Goodyear, UNIVAC, and the FAA.
 

Although the tracker is now acceptable in the beacon-only mode, several other
 
modifications remain to be made prior to full system usage. These have been
 
identified as:
 

1)	 The ability to assign flight data to a different position 
when entered on the alphanumeric keyboard. 

2)	 The display of tabular data assigned code 05XX both on the 
BRITE and on the TRACON VCD. Departures should be shown in 
the tab list for the local controller in the tower as well as 
in the tab list of the departure controller. 

3)	 On the west display, eliminating the data blocks of active 
targets under control of the east position which are in 
handoff to the tower. 

4)	 Reduction of the data erase parameter from 5 NM to 3 NM 
on arrival aircraft (code 04XX) from the TRACON display. 

Of these major items, numbers 3 and 4 have been done already; however, numbers 
1 and 2 will take approximately two weeks. For this reason, 1 October is now 
the target date for operational change over. 

15-14
 



15.5 (continued) 

An additional software modification being made at the request of facility 
personnel is the addition of an assigned altitude capability. The display 
of assigned altitude is a part of the ARTS II system presently in use, and 
is considered to be a requirement at that facility. The estimate to complete 
this modification is one month. 

15.6	 TRACKING TESTS (BEACON AND RADAR REINFORCEMENT) 

1) Overtake Situation - Pattern I 

Same nondiscrete code without Mode C. 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 3 3 

b) Automatic Reacquisition 3 3 

c) Repositions o o 

d) Garbled Altitudes o o 

2)	 Overtake Situations - Pattern I 

Same nondiscrete code with Mode C 

a) Number of times coast displayed 1 o 

b) Automatic Reacquisition 1 o 

c) Repositions o o 

d) Garbled Altitudes o o 

3)	 Overtake Situations - Pattern I 

Discrete Codes with Mode C 

a) Number of times coast displayed o o 

b) Automatic Reacquisition o o 

c) Repositions o o 

d) Garbled Altitudes o o 

15-15
 



15.6 (continued) 

4)	 Deviated Course - Pattern III
 

Nondiscrete Code with Mode C (Aircraft N-234, T-29)
 

Aircraft - A 

a) Number of times coast displayed 2 

b) Automatic Reacquisition 2 

c) Reposi tions 0 

d) Garbled Altitudes 0 

5)	 Radar Origin - Pattern II
 

Discrete Code wi th Mode C (Aircraft N-234, T-29)
 

a) Number of times coast displayed 6
 

b) Automatic Reacquisition 4
 

c) Reposi tions 0
 

d) Garbled Altitudes 0
 

Data dropped during one CST and no manual reinitiate done. Data 
went into CST in one case, pilot was asked to squawk STANDBY, and 
data went to TAB list. No reini tate. 

6)	 Cross Over Courses - Pattern IV-A (10 degrees)
 

Same nondiscrete code without Mode C
 

Aircraft - A Aircraft - B 

a) Number of times cOnst displayed 11 8 

b) Automatic Reacquisition 11 7 

c) Reposi tions 1 0 

d) Garbled Altitudes 0 0 

Data dropped after one CST on aircraft - B and no manual reinitate 
of track. 

15-16
 



15.6 (continued) 

7) Cross Over Courses - Pattern IV-A (10 degrees) 

Discrete code with Mode C 

Ai rcraft - A AircrC!ft -Jl 

a) Number of times coast displayed 4 a 

b) Automatic Reacquisi tion 4 a 

c) Reposi tions a a 

d) Garbled Altitudes 3 4 

8) Cross Over Courses - Pattern IV-B (IS degrees) 

Nondiscrete codes without Mode C 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 0 1 

b) Automatic Reacquisition a a 

c) Repositions 2 1 

d) Garbled Altitudes a a 

One manual reinitiate of track on aircraft - B. 

9) Cross Over Courses - Pattern IV-C (20 degrees) 

Nondiscrete Codes with Mode C. 

Aircraft - A Aircraft - B 

a) Number of times coast displayed I 2 

b) Automatic Reacquisition 1 2 

c) Repositions 1 I 

d) Garbled Altitudes a a 

15-17
 



15.7 TRACKING TESTS (BEACON ONLY) 9 SEPTEMBER 1971 

Cross Over - Discrete Code - Mode C (Pattern 4A - 100 ) 

Aircraft - A Aircraft - B 

a) Number of times coast displayed 0 1 

b) Automatic reacquisition 0 1 

c) Repositions 0 0 

d) Garbled altitudes 0 0 

Same nondi screte code without Mode C ( 100) 

a) Number of times coast displayed 0 1 

b) Automatic Reacquisition 0 0 

c) Repositions 1 1 

d) Garbled Altitudes 4 0 

(TAGS Swapped) 

Same nondiscrete code without Mode C (Pattern 4B - 150) 

a) Number of times coast displayed 3 1 

b) Automatic Reacquisition 

c) Reposi tions 0 0 

d) Garbled Altitudes 0 0 

Cross Over - Discrete Code - Mode C (Pattern 4C-200) 

a) Number of times coast displayed 1 3 

b) Automatic Reacquisition 1 3 

c) Repositions 0 0 

d) Garbled Al ti tudes 3 0 

(TAGS Swapped) 

15-18
 



15.8 RADAR - REINFORCED BEACON 

Cross Over - Nondiscrete - Mode C - (2 Runs) 

Pattern 4C _200 Aircraft - A Aircraft - B 

a) Number of times coast displayed o I 

b) Automatic Reacquisition o I 

c) Reposi tions o o 

d) Garbled Altitudes o o 

(Aircraft B followed Maverick Target N.W.) 

Same - (Aircraft A - discrete code) - (Aircraft B - Nondiscrete) 

Mode ~ C (Pattern 4C - 200 
) 

a) Number of times coast displayed 0 0 

b) Automatic Reacquisi tion 0 0 

c) Repositions I I 

d) Garbled Al ti tude 2 0 

(Tags Swapped) 

15-19
 




