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SECTION 1 

INTRODUCTION 

• 

Several methods of realizing a DPSK receiver use delay lines. Errors in 

the delay cause a phase difference error, ~, between the reference and information 

pulses. The delay can be adjusted at any given temperature but, since the 

delay line is temperature sensitive and the receiver is subject to a range of 

temperatures, phase errors are likely to arise. The effect of these errrors on 

the performance of the receiver is analyzed in this report. 

Represented in Figure 1 is the design of an optimum receiver. The delay 

T is equal to T + E where E is the delay error. The output of the mixer has a 

phase error 6. 

118- 4-15940L 

MATCHED 
FILTER 

DELAY, T 

LOW- PASS 
FILTER 

SAMPLE T 
(sec) 

Figure 1. Realization of DPSK Receiver. 
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t::. (rad) = 27f F E: (1)
C 

or 

t::. (deg) = 360 F E: (2)c 

where F is the carrier frequency of the input to the matched filter. At anc 
IF frequency of 60 tJlHz we get 

t::. (deg) = 21.6 E: (nsec) (3) 

Table 1 presents t::. in degrees vs E. The effect of t::. on Pe/bit is analyzed 

below and limits on the range of t::. are determined. 

Table 1. t::. (degrees) vs. E (nsec) for 60 MHz. 

E: (nsec) 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
3.5 
4.0 

t::. (degrees) 

10.8 
21.6 
32.4 

•43.2 
54.0 
64.8 
75.6 
86.4 
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SECTION 2 

EXACT ERROR EXPRESSION 

The Pe/bit formulas for DPSK given in Project Report ATC-12 [lJ do not 

include the parameter~. It is therefore necessary to generalize the Pe/bit 

expressions and to accomplish this, we take a slightly different approach. 

First, we define the following parameters: 

E/N O is the signal-to-noise ratio. 
2 

Pl is the jamming-to-signal ratio on one of the pulse pairs. 
2 

P2 is the jamming-to-signal ratio on the other of the pulse pairs. 

~ is the phase difference error. 

e is the phase angle between the signal and jamming carriers. 

P2 = Ip21	 if the jamming pulses have the same phase relationship 

over the two baud intervals as do the reference and 

information pulses. 

P2 =-!P2'	 if the jamming pulses in the two baud intervals have 

the opposite phase relationship as do the reference 

and information pulses. 

If we define Pe(E/No' Pl' P2' ~,e) as the bit probability of error for 

a given set of values for E/NO' Pl' P2' ~, and e, then it is shown in Appen

dix A that 

3 



where 

1 

E 
= NO [1 + (P1 + P2) cos 8J (1 - cos 

+ (Pl· PZ) sin e sin ~l 

~) 

22 
P1 - 2P1 P2 cos ~ + P2 

+ 2 

(5) 

and 

= 

1 
E [1 ( ) )J (1NO + P, + P2 cos 8 

• (p] • PZ) sin e sin ~l 

+ cos 
p2

A) +' 
u 

+ 2p 
1 P2 cos2 

~ + 2 
P2 

(6) 

, 
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P2' ~, e)] de • 

(7) 

In order to obtain the Pe/bit, we must sum the two cases 02 = \P2' and 

02 = -lp21 and average over the uniformly distributed variable, e 

Using Eq. (7), we generate Table 2, showing Pe/bit vs. 6 for different E/NO 
and p, where 01 = 1°2 1 = p. In Figure 2, some of these results are plotted. 

We note that for 6 > 10°, the Pe/bit is dependent on p and to a much lesser 

extent on E/NO' This is especially true for very large E/NO ' We can, there

fore, obtain an understanding of the relationship of Pe/bit vs. p by letting 

E/NO go to infinity. The results are presented in the next section. 
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Table 2. Pe/bit ys. ~ for p = O. 0.5. 0.8. and 0.9. 

I
 

E/N ::: 16 dB E/N ::: 25 dB~ (degrees) E/NO = 20 dBP O a 

< 10-12
 < 10-12
< 10-12
a 0 

< 10-12
 < 10-12
< 10-12
10
 

< 10-12
< 10-12
 < 10-12
20
 

< 10-12
< 10-12
 < 10-12
30
 

< 10-12
2.8 x 10-6
 2.5 x 10-12
0.5 0 

5.6 x 10-5
 7.3 x 10-7
7.4 x 10-7
10
 

1.7 x 10-3
 7.3	 x 10-7
 

-4
 
3.1 x 10-5
20
 

1.8 x 10-2
 6.0 x 10-3
 4.3 x 1030
 

-2 -3 -72.1 x 10 2.7	 x 10 
-2 

1.3 x 100.8 0 

5.7 x 10-2
 3.1 x 10-2
 1.2 x 10 10
 

1.4 x 10-1
 1.4 x 10-1
 1.4	 x 10-1
 

-1
 
20
 

1.9x10-1 1.9x10-1 1.9 x 10 30
 

-3-21.0x10-1 3.8 x 10 0.9 0 4.2 x 10 

1.4 x 10-1
1.5 x 10-1
 1.4x10-110
 

2.0 x 10-1
 

-1
 
2.1 x 10-1
 2.0 x 10-1
20
 

2.2 x 10-1
2.3 x 10-1
30
 2.2 x 10 j •
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-3 
10 

~ 
p=O.7 

_~ 25dB =E/N
o 

-- 20dB = E/No 
-- - 16dB = E/No 

1 1.-4-15941L 

t: 
m 
"

a..Q)
 

, 

104 

L-0-----I.--,.L.0------L20------l.30----4QL.....-----l50 

t:. (de;) 

Fig. 2. Plot of Pe/bits vs 6 for Several Values of p and E/N ' O 
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SECTION 3 

Pe/bit FOR E/Na INFINITE 

For E/N a infinite, the Pe/bit will depend only on p and 6. 

represents a worst-case situation for Pe/bit with Pl = P and P2 

case, we have an error only if 6 is larger than 6 e(e,P) where 

Figure 3 

= -po In this 

6 e (8,p) = I - ~(e,p) -If<e<o (8) 

where, in turn, ~(e,p) (See Figure 3) is 

2-1 - pt/J(e,p) = cos (9 ) 
2 22p -4p cos 

that is, Pe/bit is zero if 6 

t/J(e,p) is a maximum and 

< 6e (e,P). 

~e(e,p) is a minimum when e = If - '2 so that 

• 

( If) _ If6M = 6e - -2'P - -
2 

-
2-1(1 - p )cos 

1 + p2 
(10) 
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J1I-4-15"2 L 

A~i::::::::::::::-------t------t----~ 

c 

Fig. 3A. "Largest Value of /)," Which Yields No Error for Infinite 
E/NO and -TI < e < O• 

• 

8 

Fig. 3B. ~ Must Be Greater Than TI/2 To Cause an Error at Infinite 
E/Na with a ~ e ~ TI. 
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6Mis the largest value of 6 for which Pele/bit is zero for all e. In Figure 4, 

6Mvs. p is plotted. An acceptable range for ~ is - 6M~ 6 ~ AM for E/NO 

infinite. For finite E/NO' we would want to narrow the tolerance on 6. 

We can also obtain Pe/bit for infinite E/N for 6 > 6Msinceo 

for -IT < 8 < 0 (11 ) 

The factor of 1/4 comes about from two factors of 1/2. The first is due to 

the fact that the cases P2 = -p and P2 = P are equally likely and only the 

former case leads to an error for 6 < IT/2 and e < O. The second is due to 

the fact that for positive ~ we have an error only for e negative and e is 

equally likely to be positive as negative. Figure 5 shows a plot of 6 (e,P)e
vs.e for p = 0.5 and 0.8. From this plot the E/NO = curves in Figure 6 00 

are derived. 

..
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SECTION 4 

CONCLUSIONS 

We have seen that the DPSK receiver can have large phase shifts and still 

yield negligible Pe/bit in the absence of interference. In interference, the 

situation is complicated and we attempt to summarize the results for E/Na • 
25 dB in Figure 7 and its accompanying table. The table gives combinations 

of 6 and p which bracket Pe/bit of 10-3. The figure plots the percent of 

tolerance error which corresponds to a given 6 vs IF carrier frequency. From 

the table, we can estimate.an acceptable value of 6 and from the figure convert 

6 to %tolerance necessary over the temperature range (nominally -20°C to 70°C) 

for a specific IF carrier frequency . 

• 
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Fig. 7. Percent Tolerance of 250 nsec Delay Line vs IF Carrier Frequency. 
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APPENDIX A 

DERIVATION OF Pe(E/NO ' P1' P2' ~,8) 

Applying the results of Stein [2,3] to our problem, we 

given e 

Pe/e/bit = ~ [1 - Q(ji3,Jc;) + Q(~,Jr3)] 

where 

obtain for a 

(A-l) 

(A-2 ) 

and 

(A-3) 

15
 



~ and 6 are pictured in Figure A-l where ~ is the angle between the resultant 

reference signal and the resultant information signal and 6 is the phase offset. 

Since we have 

cos(~ + 6) = cos ljJ cos t:, - sin ~ sin t:, (A-4) 

we must determine cos ~ and sin ~. From Figure A-l we see 

222 
x + y = ~') (A-5)

'

2 2 2
(~l - x) + y = (p, - P2) (A-6) 

Combining (A-5) and (A-6) we obtain 

2 2~2
~l + - (Pl - P2)2 x = (A-7)

2~1 

and 

2 2~2 + Q,2 - (Pl - P2)1cos ljJ = ~ = 
~2 2Q,1 ~2 

16
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222

(t 1- X) + Y =( p1 - P2 )
 

2 2 2
t +.1 -(p-p)
x 1 2 1 2
 

cos 'It =- = 
12 2'1 12
 

Fig. A-l. Normalized (E/NO =1) Phasor Diagram for DPSK Receiver Output 
in Interferences Pl and P2' with Phase Offset, 6. 
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From (A-B) we obtain sin ~ as 

(Pl - P2 ) sin e 
sin ~ = (A-g) 

~ (1 + 2 Pl cos e + p~)( 1 + 2 P2 cos e + p~) 

Substituting (A-8) and (A-g) into (A-4) and using the results in (A-2) 

and (A-3), we obtain Eqs. (5) and (6) respectively. The expressions can be 

simplified when 6 = 0, since 

(A-10) 

and 

(A-ll ) 

When 6 = a and Pl = ±P2~ the error expressions simplify as follows: 

P Ibit = ~l - Q(~, Ja) + Q(Ja, Jb)J (A-12)e 2 

a = 2p 2 E/NO (A-13 ) 

b = 2 E/Na (A-14) 

18
 



and if P2 = Pl = p then 

E 2
1 --(l+p) E 

P /bit =- e NO IO(2p -N) • (A-15) 
e 2 0 

A computer subroutine (Appendix B) has been written by Louise Balboni to 

• evaluate Eq. (4). We can evaluate Pe/bit from Eq. (7) using this program 

or if appropriate (A-12) or (A-15) • 

.. 
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APPENDIX B 

COMPUTER SUBROUTINE 

SUUROJTI~~ CALPTH(PTH,ENO,RH01,RH02,DEL,THETA) 
IMPLICIT REAL*8(A-H,O-Z) 

C CUMPU1~ COMMON TERMS 
CL;EL=0COS(CELI 
T8RM 1= 1.00+ (RH01+RH02) *DCOS (THETA) 
ATLRM2=1.£O-CDfL 
BTEHM2=1.DO+CDEL 
RHO 1S\d=RHlJ1**2 
dHU2SQ=HH02**2 
PRTtRM=2.DO*JH01*~H02*CDEL 

i\ T L ;i 1'1 J = (b d 0 1S ..1  PY T F Ii. j"l ... R Ii0 2 SQ) *. ') D0 
il r c ,~ MJ = (FniU 15 Q+PR'T £: R;'H F ITO 2 ~'1 Q) *. '] D0 
TbI'14= (RH01-[{H02) *DS1N (DEL) *DSIN (THE'fA) 

C LO~PUTt A & b AS A COMBINATION OF THESE 
A=Err () '" (T ELHi 1*A'I t: RM2+II TEE ~1 J +TER'14 ) 
H=EN0 * {T E11 11 1* BTEd f'\ 2 + Ll T J:; R,'1 J - T E R!V] 4 ) 

PREDEFINED TERMS 

...: LiHUh PELHOUT IN CAS~ OF NEGATIV~ VALUE FOR 5C91" FnNCTlm: 
If{A.L~.0.DO.Ort.B.LT.O.DO) 

11'i fU T r: ( 0 , 1 (I 1) f. N') , RHO 1 , HH02 , DEL, T111:: Tll. , CD EL, TE RM1 , AT E? ['[2 , W;' CF;':';, r:-::;( '" ~ 

1, 'lJ.:;i\i14 , A, Jj 

1J1 F01U'J/\T(' j~NI')=',D12.5,' RlJ01=',D12.'),' RH02=',D12.S,' DeL=',:)1).,),' 
1 l' ti.:. l' A=, , r: 12. 5;' C 1) EL =' , D 1 2 • ') " T F: RM1= , , D 12. S,' ATE P'" 2 = , , D1 :I.. c),, il 
2 r C; Ri'1 2 = I , D 1 2 • '],' T ER;J] 3 = , , D 1 2 • 5; , T P. t\ ~14 =' , D 12 • <) " A=, , [l 12. 5 " B=' , 0 1 
j 2. 5) 

C LOM[UT~ ARGUMENTS fOR Q FUNCTION 
S'.!RT A=I;SQRT (A) 
:':>..1L\1'!:l= DSQRT (13) 

C CU~~l:'UIC PIH 
P L' H=• J L 0 * (1 • J.) 0 - .J 1" iJ NC T (S en T tJ , S 0 WI' A) + QF [J NeT (S en T A , S Q1'1 l' r) ) 
~ETURN • 
t: ,h> 
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