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1.0 INTRODUCTION AND SUMMARY

The primary purpose of this study is to determine if the modified

waveguide antenna will provide Category II guidance at Buffalo Runway 23.
This problem can be divided into two portions: first; verification of
the computer model, second; prediction of antenna performance using this

model.

The first step in the verification process is determining an
analytical model of the antenna which calculates antenna patterns, structure
runs and other pertinent data which can be compared to measured data. An
ex isting computer program was modified to accomplish this task.

The antenna characteristics were adjusted so that calculated antenna
patterns matched measured antenna patterns taken at Buffalo in 1967.  Measured
RTT runs were averaged and this average compared to calculated fly-ins.
Agrecment was attained by calculating the effect of a thruway located approxi-
mately 1300 feet from the runway threshold and cutting diagonally across the
aircraft approach path. This verified the computer model of the uncompen-
sated antenna.

Compensated antenna patterns were measured at the Westinghouse
antenna range. These measured patterns were matched by calculated patterns
for 6 dB coning and 9 dB coning.

The modeled compensated antenna was then used to calculate fly-ins
at the original antenna site with 4 dB coning. It was felt that further
improvement could be realized by increased coning and a larger backset from
threshold. At this point,several variables were controlled to optimize ILS
performance. These were:

Antenna position, coning, antenna height, baéktilt and side tilt.
Three antenna positions were investigated along with 6 dB and 9 dB coning.

The remaining variables were judicilously adjusted at each site to give maxi-
mum performance. The best conditions were determined to be:

Backset of 800 feet, offset of 650 feet, 9 dB coninz, antenna height

of 43.1 feet, back tilt of 4.11° and side tilt of .5°.

A trip to Buffalo was made to examine the proposed site in more
detail. The tentative location was found to be unsuitable so six more
locations at less offset were investigated using more reliable terrain. information.
The final position was determined to be:

850 feet backset, 500 feet offset, 42.5 feet height, h.llBo back tilt

and .5° side tilt. |

The effect of power lines in the viecinity of Runway 23 was investigated

and found to be negligible.
1-1
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A. 1.0 DETERMINATION OF MAXIMUM PLATE SIZE FOR TERRAIN MODELING

The method of physical optics involves modeling the non-uniform terrain

as arbitrarily oriented flat plates and calculating the effect at the aircraft by

the equation:A'l‘l

— , PHAs e

E = :_Q_ e ab sv (/A-;Jo) 5m(”t,,,)\,) T(,K j;),[,ﬁx(;‘,xir)]
* DI-D2 / | s @ | Ay} b {

Figure A.l,1 explains the terms used in the above equation. This equa-

tion was derived by assuming the radiation illuminating the plate is a plane wave.
At finite distances from the radiator this is not exactly correct. However, good
accuracy can be achieved by breaking the plate into rectangles small enough that

the incident radiation appears to be a plane wave. The problem is then to deter-
mine the maximum plate size that will still ensure accuracy. In order to solve
this problem empirically, it was necessary to compare the calculated approximation
to a known solution. The simplest problem was to calculate the reflected radiation
due to a point charge of unit magnitude above an infinite flat plane. Figure A.1.2
illustrates the geometry of the problem. There are two variables that must be
determined: the maximum plate size and the minimum area needed to accurately model
an infinite plane. The number of Fresnel zones was decided upon as a measure of
area. The minimum plate size 1s a function of the radiation wavelength and the
distance from the radiator to the reflecting surface. The criteria for determining:
if a receiver is in the far-field of a dipole is also a function of the distance
from the receiver to the dipole, the separation of the radiators constituting the
dipole, and the wavelength. This is expressed by distance = J.Da/)‘ where D

is the separation of the radiators. The plate size is analagous to the radiator

separation and can be expressed by D = /DTN
' 2 This will ensure that the

antenna is in the far-field of the plate but it does not necessarily mean that the
plate size will give accurate modeling information. However, the "2" can be
replaced by a variable "x" and as x increases the plate size will decrease and more
accuracy will result. Figure A.1.2 also shows the results of varying plate size and
modeled area. The plate size was varied while keeping the modeled area constant.
Accuracy did not seem to improve satisfactorily with decreased plate size until

the modeled area encompassed 20 Fresnel zones. The maximum plate size decided upon
was: D= Dl;f')\

in plate size does not appreciably increase accuracy but does incrcase computer time

This give about 5% error and any further decrease

and storage.
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GRAPHICAL DESCRIPTION OF COMPONENTS OF PHYSICAL OPTICS EQUATION
AIRCRAFT

/%

PHASE -
- _ j sin {{knq, | 2) in ]k b -
EA"( D ] iel ab Jiay | M ’;}Zx{’tzx[%x@]x%a}

01402 A Thgy [ [ay [ &
z
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—P>y D2
BACK SET HGT
Kq (UNIT VECTOR)
= ¢
z
OFFSET .
J m
RUNWAY / 01‘ . b
B . a ,.
¥ : ; >y
X .
. - a4 ’
x k= 5 &, -%p
PLATE

X = WAVELENGTH OF RADIATION o
PHASE = PHASE AT AIRCRAFT 45 = UNIT NORMAL TO PLATE (27)
’ K3, = X-COMPONENT OF K4 IN PLATE CO-ORDINATE SYSTEM (PRIMED)
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' E, = FIELD AT AIRCRAFT ‘
' Ep = FIELD INCIOENT TO PLATE
$74-0934-VA'S

FIGURE A.1l.1 DESCRIPTION OF COMPONENTS OF PHYSICAL OPTICS EQUATION
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A.2.0 POWERLINE MODELING

In order to accurately model the powerlines, the mathematical model must
be as close as possible to the situation occurring in nature. However, to reduce
the complexity of the problem it is necessary to make a few simplifying assumptions.
The powerline can be thought of as an infinitely long, perfectly conducting cylinder
immersed in free space. In this particular problem, the incident radiation can be
assumed to be a plane wave since the distance from the antenna to either set of
powerlines is very large compared to the radii of typical powerlines. The power-—
lines are assumed to be perpendicular to the direction of propagation and are parallel
to the E field since the waveguide antenna radiates horizontally polarized waves.
This is illustrated in Figure A.2.1.

The geometry of the problem suggests using cylindrical coordinates. A+2.1

\;71E§ + k,-f: is the wave equation in free space ( k = am/n ).
The general solution to this equation in cylindrical coordinates is

Etrno)=SA_ 2. (k)ed "

tions of Bessel funciions.

where Zm are Bessel functions or combina-

In order to solve the boundary value problem, it will be necessary to
represent the incident plane wave in the form of Bessel functions. A plane wave

traveling in the X- directi3n in free space can be represgnted by: £)
r = j(kx-wt) T A= TF i (hkrcosa-w
E.(17?}lz);9):: L el = E(r,8¢% ) l;o e/

This function of r and € is periodic in e and can be expanded in a

Fourier series whose coefficienls are functions of r alone.

Finey= fut)e”""

’ tl4 “cAME
WHERE 7[’.»[") = 1 f(r,e) e ” do

T,
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IDEALIZED REPRESENTATION OF A POWERLINE ILLUMINATED BY A PLANE WAVE .

P <

INFINITELY LONG, PERFECTLY

. CONDUCTING CYLINDER LYING
IN THE x-z PLANE AND
PARALLEL TO THE 2-AXIS

PLANE WAVE TRAVELING IN x DIRECTION
{HORIZONTALLY POLARIZED E-FIELD)

E(x,y,l,t) = EU ei (kx - M) /Z\ . .

§74-0934-VA-§

FIGURE A.2.1 IDEALIZED REPRESENTATION OF A POWERLINE ILLUMINATED BY A PLANE VAVE



In this problem, ay ,.‘,(kr- Cos 9) —4m@
e

e de

M):—TE?_;_L

This integral must be evaluated in order to get F (y) 9)

An identity exists that has a form very similar to the above integral.
This identity is an integral representation of the Bessel function of the first

kind.
194 .
, =™ *iUP o038 4+ A MmO

J;(p):f; e de

o

where m is an integer

r) can now be written as:
fmlr) ritte:

. .é.-m[ e,{.erase -aAme ]
E, 4 [Tf?_ o< 0 : 19

r 6= "'¢
ke . —m 'f¢=‘an‘ A kr Las(-d-") + Am ¢

ruen fm(m) = E, Lm[%T e (“‘M’)]

S ¢=o

The integral from O to -2 is the negative of the integral from O to al7
Also, cos (- @) = cos g

" i em (T ikncosg 4 imd
f.n=E, 4 [f;.r,;f e 44’]

for)y=£E, .7 J. (k)
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This is a plane wave expressed as an infinite sum of Bessel functions of
the first kind.

The radiation in the powerline problem can be divided into incident radiation
and reflected radiation.

Incident radiation:
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reflected radiation:
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where Hm is a Hankel function and A, is a constant to be determined.
The boundary conditions are:

0

B normal = 0

E tangential

The E field inside a perfect conductor is zero, so at r = R,
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In order to evaluate A ) g(r, @) is multiplied by e and integrated over &
from O to 2 ’
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reflected radiation:
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