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FOREWORD
 

This final technical report covers work performed under the third phase of FAA contract DOT
FA7WA-3233, "Collation and Analysis of Aircraft Alerting Systems Data." The study was ini
tiated to establish an alerting philosophy for aircraft cockpit alerting systems. As a supplemen
tary effort the "Human Factors Guidelines for Aircraft Alerting Systems" was compiled by G. P. 
Boucek, Jr. 

The contract sponsor was FAA Systems Research and Development Service (FASSRDS) and 
performed by the Boeing Commercial Airplane Company. Technical guidance for the contract 
was provided by Mr. John Hendrickson, ARD-743, the contract monitor. 

The full study effort covered the period January 1976 through Novemver 1976. The performing 
organization was Systems Technology-Crew Systems, of the Boeing Commercial Airplane Com
pany, Seattle, Washington. W.D. Smith was program manager, J.E. Veitengruber was principal 
investigator, and G.P. Boucek was the signal/response analyst. 

The work contained in the report is an update and extension of the work previously accomplished 
under the same contract number, modification 1, by Dr. A. G. Osgood. 
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SYNOPSIS
 

The objectives of the study were: (1) investigate the types of signals that can be used to transfer 
information in a cockpit environment, (2) determine the factors that affect the detection of these 
signals, (3) determine the factors that affect the time from signal detection to a correct action, and 
(4) formulate guidelines for maximizing the effectiveness of Aircraft Alerting Systems. 

A state-of-the-art literature review was made to determine the impact of human factors considera
tions on signaling systems. A total of 850 references were reviewed with 180 of them being cited 
in the report. 

Guidelines and recommendations were made for alerting systems such that (1) the signals convey 
enough information to maximize the probability of correct response within a time period that is 
commensurate with the priority of the alert, and (2) the characteristics of all signals are consistent 
from one situation to another and minimize interference from previous training. 

Visual, aural (both verbal and nonverbal), and tactile signals are reviewed and recommendations are 
made for each. 
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1.0 INTRODUCTION AND SUMMARY 

1.1 INTRODUCTION 

The continuing advancement of high-performance aircraft has brought with it not only an increasing 
degree of complexity in the physical operating systems but also an ever-increasing demand on the 
capabilities of the pilot. If this trend continues at its present pace, just the task of monitoring and 
interpreting the warning, caution, and advisory signals alone could soon be equal to that of piloting 
the aircraft. Because the variety of lights, bells, sirens, buzzers, chimes, etc., used for signaling is so 
large, the operator, who is already beginning to be saturated, may not be able to distinguish the fine 
differences among the various signals. Considerable effort has been focused on the determination 
and implementation of improved methods for presenting warning, cautionary, and advisory infor
mation to pilots. 

Reviewing various signal inputs and the multiplicity of information conveyed by them is sufficient 
to reveal a fundamental problem-the problem of prioritizing information presentation. There have 
been many schemes for assigning importance and thus attention-getting qualities to signaling devices. 
However, in general these schemes have all been dependent in one way or another on the time in 
which a pilot must act. Therefore, the questions of signal priority and event criticality come down 
to the question of the amount of time a pilot has between when a problem is detected and when 
any further action on the pilot's part can do nothing to alter the outcome dictated by the problem. 
There is a time period that is the shortest interval possible permitting a successful correction of, or 
compensation for, the problem and avoiding damage to the aircraft and/or passengers. If the time 
between detection and outcome is less than this critical time period, then a warning signal serves no 
purpose because the situation cannot be changed. If, on the other hand, the interval is longer than 
the critical time period, a warning device correctly acquired and interpreted can enable the pilot to 
correct the problem. The time between detection of the problem by the aircraft's sensors and the 
critical time can be used to create a priority system. This system may be developed either subjec
tively or objectively. The former would use experienced personnel to defme the signal categories. 
The amount of time _used to develop categories and the placement of signals would be based on a 
consensus of the subjective judgment of these experts. The appeal of this method is greatly aesthetic, 
however, because the reliability and consistency of this type of judgment is highly suspect. 

A more costly and longer procedure would be to quantitize all the time-related parameters, calculate 
the exact amount of time needed for each type of problem, and construct the priority scheme based 
on these calculations. This system would be quite cumbersome and may be too situation-specific to 
be useful in designating signal guidelines. A perfect crew response also is assumed once the signal is 
presented. 

Finally, prioritization could be based on probability models of both the aircraft system and crew 
responses. This scheme would combine the probabilities of such things as system failure; injury 
potential if no corrective action taken within a specified time; crew not detecting the signal within a 
specified time, etc. Using this prioritization method, the combination of these probabilities must be 
less than some predetermined value. Since failure probabilities are relatively fixed, the final overall 
figure may be adjusted by changing the probabilities associated with the signal detection and the 
crew responses. Thus, times and detection probabilities may be associated with different signals and 
responses, and a priority scheme developed. 



Whichever system is employed, it will be found that the priority of a signal is based primarily on a 
time continuum with the highest priority signals requiring the quickest actions and the lowest prior
ity signals requiring no action by the pilot at all. Thus, signal guidelines must also be directed toward 
those properties of a signal that have an affect on the time required to detect and interpret it. 

1.2 SCOPE OF EFFORT 

The specific objectives for this study were to: 

1. Investigate the type of signals that can be used to transfer information in a cockpit environment 

2. Determine the factors that affect the detection of these signals 

3. Determine the factors that affect the time from signal detection to a correct action 

4. Formulate guidelines for maximizing the effectiveness of a signaling system 

To accomplish these objectives, an extensive review of the literature relevant to aircraft caution, 
warning, and advisory systems was conducted. A major portion of the data pertaining to the detec
tion of signals is found in the literature on the human senses. Neither time nor space permits a full 
coverage of human sensory behavior and its relationship to information displays. However, attempts 
have been made to present this type of coverage and the reader, if he wishes, may find these in the 
works of Stevens (1951) and Van Cott et al. (1972). The literature that was reviewed was limited to 
the relevant signal characteristics and related areas of concern. The general topics that were included 
are shown in table 1. 

In these areas a search of the available literature produced abstracts of 850 possible references. This 
list was reviewed and 285 documents were obtained and their relevance determined. Finally, 180 
references were cited in the final report. The data were divided into two major categories with 
respect to relevance. The first category consisted of data collected in a simulated or real aircraft sit
uation. These data are directly relevant to the design of caution and warning systems. The second 
category of data covers directly relevant subject areas, but the material was collected in a manner 
that makes its direct applicability questionable. 

For example, the measure most often used in the latter class of study was simple reaction time (RT). 
This measure is the time it takes an observer to detect a signal and make a simple reaction (press a 
button) to it when that is the only task he is required to do. These time measurements are not con
taminated by other variables (i.e., workload, distraction movement, etc.) and are therefore the 
optimum (shortest possible) responding unit. Response time, on the other hand, as used in the for
mer class of experiments, is a measure of the time to respond to a signal when that is not the only 
thing the observer is doing. In fact, the response is actually a secondary task that is accomplished 
simultaneously with the primary task (flying the aircraft). Reaction time can given an indication as 
to the direction of the results for response time, but it is not necessarily a direct measurement. 

Appendix A presents some of the studies that fall into these two categories, along with their major 
findings. Also presented are the applicable military standards so that the appropriate comparison 
can be made. Appendix B provides the reader with the annotated bibliography that resulted from 
the literature search. 
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Table	 1 Areas of Concern of the Literature Search 

1.	 Visual Signals 

Size Location
 

Brightness Workload
 

Contrast Vigilance
 

Format Pilot Age
 

Color Legend Characteristics
 

2.	 Auditory Signals 

Frequency Number of Signals 

Intensity False Signals 

Location Workload
 

Ambient Noise Vigilance
 

Disruptions Ear Dominance
 

3.	 Bimodal Presentation (Auditory-Visual) 

Interstimulus Interval Workload 

Format Vigilance 

Intensity 

4.	 Tactile Signals 

Detectabi Iity Frequency 

Effectiveness Disruptiveness 

Number of Signals 

Intensity 
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1.3 SUMMARY
 

In the operation of an aircraft the variety and rate of infonnation are at times so great as to saturate 
the pilot's attention. Therefore, every cockpit must employ high attention-getting signals to inform 
the pilot of the aircraft's status. The signals employed must possess sufficient perceptual insistence 
to command the involuntary attention of the pilot. They must ensure a response time that is com
mensurate with the priority of the signal and must convey enough information to maximize the 
probability of the correct response within a reasonable time period. Finally, the characteristics of all 
signals should be consistent from one situation to another to provide for a minimum of interference 
from previous training. For a detailed breakdown of the recommended guidelines see section 5.0. 

1.3.1 VISUAL SIGNALS 

High-priority visual signals should be bright red flashing lights as close as possible to the operator's 
line of sight. They should subtend at least 10 visual angle and should present the operators as much 
lighted surface as possible (lighted background and opaque legends). They should be easily inter
pretive and carry as much information as possible. 

For lower priority signals where response time is longer, the color may be amber, blue, or green and 
the other parameters may be less rigidly adhered to. 

1.3.2 AURAL SIGNALS 

Verbal warning signals should be used in the highest priority situations. They should be preceded by 
an alerting tone, word, or phrase. The structure should be lengthy enough to provide redundant cues 
and the language and phraseology should be familiar to the pilot. Intensity should be at least 15 dB 
above the background, and the warning system should have the ability to attenuate other voice sys
tems while the warning is activated. 

Two types of aural alerting systems are discussed. Aural nonverbal warnings should be intermittent 
tones at least 15 dB louder than the background and containing multiple frequencies in the 250- to 
4000-Hz range. If possible, they should be separated from background interference and presented to 
the "dominant" ear. In reference to intensity, exposure/time constraints must be followed on all 
levels of signal priority. When presented with a visual signal, the auditory signal should come first. 

1.3.3 TACTILE SIGNALS 

Tactile signals are not recommended because of their possible disruptive effect. The exception to this 
recommendation is where this type of signal is currently being used, e.g., stick shaker. If they are to 
be used, however, they should be of such amplitude as to be detected by the part of the body stimu
lated and should be delivered by a vibrating apparatus that will always be in contact with the body. 



2.0 CHOICE OF SIGNALS TO BE USED FOR ALERTING SIGNALS
 

The crews of aircraft could receive system infonnation via any of a number of sense modalities. At 
present, two sense modalities-vision and audition-are relied upon almost exclusively to transmit 
infonnation to aircraft crews. Occasionally, visual and auditory stimuli are used together for alerts 
or warnings. A number of authors have suggested that the sense of touch might also be used for con
veying infonnation. Other sense modalities (e.g., smell, taste, orientation) are generally considered 
to be of negligible value for alert or warning signals because they are expensive to produce effec
tively and have limited practical use. 

The choice of a specific type of signal for any alerting task should depend not only on the nature of 
the signal itself, but also on the function that the signal is to perfonn, the duties of the pilot, and 
other signals in the cockpit. Attention must be paid to such things as the disruptive effect of a false 
signal, the workload being incurred by each of the senses at the time the signal is most likely to 
occur, the frequency of signal activation, and the amount of ambient (background) noise, both vis
ual and auditory, present in the cockpit and conflicting with the signal presentation. Finally, since 
any scheme for the selection of alerting signals must be based on the criticality of the information 
to be presented, the single most important characteristic of any signal is the time required to correctly 
detect, interpret, and respond to it. The total infonnation or signaling system should be designed, 
selecting signals that help the pilot quickly recognize the physical phenomena occurring within the 
complex flight situation, and perfonn the required response in the most expedient fashion. The 
effectiveness of the resulting system can then be defined in tenns of the time from signal onset to 
the completion of the correct response. It must also be remembered that the "correct" response to 
some low-priority signals will simply be recognition and notation of the problem and no further pilot 
action. 

, ,. '''''''''-''-'._"-==='"="..."..."...=.==--'--~~------
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3.0 FACTORS THAT AFFECT SIGNAL DETECTION
 

There are basically two types of factors that have an effect on the detection of a given signal: 

•	 Physical characteristics of the signal to be detected 

•	 Properties of the environment in which the signal is presented 

In practice, it is generally the interaction between these two types of factors that determines the 
attention-getting quality of a signal. These factors will be covered in detail in the following sections, 
with special emphasis on the speed and accuracy of the responses and the relevance of the different 
characteristics to a signal prioritization scheme. 

3.1 STIMULUS CHARACTERISTICS THAT AFFECT THE DETECTION OF 
ALERTING SIGNALS 

The effectiveness of any stimulus used as an alerting signal is dependent upon that stimulus being 
detected by t~e person who is to be alerted. Therefore, a review was made of the properties of visual, 
auditory, and tactile stimuli that affect their detection by humans. It should be noted that the time 
for detection of a stimulus is inferred from empirical measures of the time required for an observer 
to react to the stimulus. 

Van Cott and Kincade (1972) point out that response time to weak or unexpected signals may be 
much longer than times recorded in situations where the reaction to the stimulus is the only task 
being perfonned. When an operator is attending to another task, his response to a warning signal not 
directly associated with that task is extremely variable and frequently long. Therefore, the data 
from simple reaction time studies must be treated with extreme caution because of the wide variety 
of factors that may affect response time in a "real" situation. 

3.1.1 FACTORS THAT AFFECT DETECTION OF VISUAL SIGNALS 

The primary signal characteristics that affect the detection of a visual signal are: 

•	 Location of the signal 

•	 Size of the signal 

•	 Brightness of the signal 

•	 Steady state or intermittent nature of the signal 

•	 Color of the signal 

3.1.1.1 Affect of Location on Detection of Visual Signals 

•	 VISUAL SIGNALS ARE MAXIMALLY DETECTABLE WHEN THEY ARE LOCATED 
DIRECTLY IN THE NORMAL LINE OF SIGHT. 

6 



•	 HIGHEST PRIORITY SIGNALS SHOULD BE LOCATED NO MORE THAN ±lSo FROM 
THE NORMAL LINE OF SIGHT. 

Standard design references and military standards state that primary visual signals should be located 
inside a circle with a radius of 150 from the user's line of sight (fig. 1) and secondary signals 300 

(Van Cott and Kincade, 1972; McCormick, 1970; and MIL-STD4llD). 

Although some confusion exists as to the function of signal location on its detectability, it is fairly 
obvious that a visual signal presented at the place where the observer is looking will be more effective 
than one that appears out of the visual field. However, the definitive of "where the observer is look
ing" seems to be in doubt. 

Rich, Crook, Sulzer, and Hill (1971) presented stationary red targets that subtended 4 minutes 
(0.032 inch at a distance of 28 inches) of visual angle to pilots in a Cessna cockpit flight simulator 
during a simulated flight. When the targets were presented directly in the pilot's line of sight, 83% 
of the targets were detected. As the visual angle between the pilot's line of sight and the target 
increased, the probability of detection decreased. When the targets were 300 and 400 from the 
pilot's line of sight, only about 35% of the targets were detected. 

AREA FOR 
SECONDARY 
SIGNALS 

Figure 1 Preferred Placement of Visual Signals 
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Haines (1975) presented stationary signals to observers positioned in a darkened room such that the 
signals could appear at 100 intervals out to 900 . A simple reaction time task was performed in which 
the observer depressed a button when the signal was detected. To make the reaction times useful, 
the data were plotted as zones of equal reaction time (iso-RT zones). Figures 2 through 6 illustrate 
the iso-RT zone for white, blue, yellow, green and red signals, respectively. The heavy solid line sur
rounding the plots indicates the outer limits of the binocular field of view. 

These times were obtained in an extremely controlled environment where the observer had no dis
tractions and his only task was to detect the signal. The reader must expect that responses to signal 
lights "real time" in an aircraft cockpit will be longer. The reaction time data, therefore, should be 
variability without the warning tone, the approximate doubling of the median response time, and at 
the 96.5 0 location, over 25% of the signals were missed. 

In most practical situations, a pilot is not waiting for a signal. Normally he is attending to other tasks 
and the signal must intrude on his attention. In this context, signal location may have a major effect 
on the detection time. Sharp (1967 and 1968) presented stationary light signals to observers while 
they were performing a moderately difficult tracking task. Two sets of data from two different 
studies are shown in figure 7. The data covering the angles from 00 to 750 represent the response 
time to a combined visual and auditory signal, while those from 57.50 to 96.50 represent the re
sponse time to a visual signal alone. The most important features of these data are: the increase in 
variability without the warning tone, the approximate doubling of the media response time, and at 
the 96.5 0 location, over 25% of the signals were missed. 

More often, it is the "no response" to a signal that is more important than a time delay. The no
response for the Haines experiment (1975) averaged 1% to 5% of the signal presentation, regardless 
of their color, as long as they appeared within 300 of the line of sight. Beyond 300 , the no-response 
for red signals increased rapidly, hitting 100% at the periphery of the field. 

The data from these and other experiments indicate that the military standard requirements and 
design guidelines are reasonable. THEREFORE. HIGHEST PRIORITY SIGNALS SHOULD BE 
LOCATED AS CLOSE TO THE PILOT'S LINE OF SIGHT AS POSSIBLE, BUT NO GREATER 
THAN ISO AWAY. OTHER SIGNALS MAY DEVIATE FROM THE LINE OF SIGHT TO THE 
EXTENT THAT THEIR SPECIFIC REACTION TIME AND CRITICALITY WILL ALLOW. IF 
THE PILOT'S DIRECTION OF GAZE IS LIKELY TO BE IN A DIFFERENT DIRECTION FOR 
EXTENDED PERIODS OF TIME, HIGH PRIORITY SIGNALS SHOULD BE LOCATED WHERE 
HE IS LIKELY TO BE LOOKING. 

3.1.1.2 Affect of Size on Detection of Visual Signals 

•	 HIGH-PRIORITY VISUAL SIGNALS SHOULD SUBTEND AT LEAST 10 VISUAL ANGLE. 

•	 LOWER PRIORITY VISUAL SIGNALS SHOULD SUBTEND AT LEAST 0.50 VISUAL 
ANGLE. 

The detectability of a stimulus is positively related to the size of the stimulus for visual stimuli that 
subtend a visual angle of 10 or less. However, no reliable effect of size has been demonstrated for 
larger visual stimuli. 

Blackwell (1946) attempted to determine the smallest signal that could be detected under different 
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contrasts and background luminance. His findings are presented in figure 8. The formula used for 
contrast was the absolute value of the signal brightness minus the background brightness divided by 
the background brightness times 100, Le., 

BS-BB
Contrast =B x 100 

B 

The thresholds used in the figure are for 99% probability of detection. 

Merriman	 (1969) investigated the effects of size on the attention-intrusion ability of border-lit red 
warning lights. His stimuli consisted of red transilluminated borders around an 0.25 0 high by 1.40 

wide opaque black strip. Six different widths of red borders were used as warning lights (see table I). 
The subjects had to detect and respond to the red warning lights while monitoring another set of 
lights. Even though the data from this study can be presented in a number of ways, the most appro
priate measure to use is the visual angle of the border because this eliminates viewing distance from 
consideration. When talking about the signal size, the two extremes (table 2) are the actual visual 
angle subtended by the border and the total square degrees of visual angle of the entire lighted area 
(a square	 that has sides I degree of visual angle in length has an area of 1 square degree of visual 
angle). The former measurement should give the smallest signal size possible for detection and the 
latter the largest. Practically, the true figure should lie somewhere between. 
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Table 2 Border Measurements for the Meriman Study 1969 

Border Width (inches) 0.031 0.063 0.125 0.188 0.250 0.313 

Border Visual Angle (deg) 0.06 0.13 0.26 0.39 0.51 0.64 

Lighted Area (deg2 j 0.23 0.51 1.15 1.92 3.88 2.74 

Deviation for the six warning lights is shown in figure 9. The areas given for the warning lights are 
the total square degrees of visual angle. As can be seen, the mean response times and the standard 
deviation decreased as the area of the red warning light was increased from 0.28 to 2.74 deg2. An 
additional increase in the size of the warning light from 2.74 to 3.88 deg2 had no observable effect 
on detection time. The increases in mean response times and standard deviations for decreasingly 
small signal lights was largely ascribed to a ,tendency for the smaller signal lights to occasionally go 
undetected for extended periods of time. 

Sheehan (1972) measured the response times to alphanumeric legends presented on a simulator of an 
A-7E head-up display. Subjects had to detect and respond to one of three different visual warnings 
(FIRE, SAM HI, or HYD PRESS) while performing a two-dimensional visual tracking task. The 
visual warnings were projected on the head-up display in one of three different sizes of alphanumeric 
characters. The subjects had to push buttons to indicate which of the three messages had been 
presented. 

The character heights in degrees of visual angle and the respective reaction times were as follows: 
0.5 0 , 1.97 second; 10 , 1.00 second; and 20 , 0.98 second. As shown in figure 10, increasing the 
height of the characters from 0.5 0 to 10 reduced the mean response time by about one-half. 
However, an additional increase in height from 10 to 20 did not have a detectable effect on the 
response time. It should be noted that the response times recorded by Sheehan included the time 
for detection of a message as well as the time to decide which messag~ had been presented and to 
make the correct response. 

In summary, not much is gained when a visual signal is increased in size over 10 visual angle and there 
is some evidence that 0.5 0 is an adequate minimum. THEREFORE, FOR DETECTION, HIGH
PRIORITY SIGNALS AND ALPHANUMERIC LEGENDS SHOULD BE NO SMALLER THAN 10 

VISUAL ANGLE; LESSER SIGNALS SHOULD BE NO SMALLER THAN 0.50 . 

3.1.1.3 Affect of Brightness on Detection of Visual Signals 

•	 HIGHEST PRIORITY SIGNALS SHOULD BE AT LEAST TWICE AS BRIGHT AS OTHER 
DISPLAYS. 

•	 LOWER PRIORITY SIGNALS SHOULD BE AT LEAST 10% BRIGHTER THAN OTHER 
DISPLAYS. 

•	 MILITARY STANDARDS REQUIRE A MINIMUM OF 150 ft-L FOR HIGH-PRIORITY 
SIGNALS AND 15 ft-L FOR LOW. 
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The affect of signal brightness on detection is directly related to the amount of ambient lighting and 
the amount of light reflected by the display panel. The design recommendations and Military Stan
dards give various approaches to the problem. 

Van Cott and Kincade (1972) recommend that visual signals should be bright enought to stand out 
clearly against the panel on which they appear under all expected lighting conditions, but they 
should not be so bright as to blind the operator. In work stations that are darkened at night, provi
sion should be made for dimming the warning lights when other lights are dimmed. 

Similarly, Meister and Sullivan (1969, p. 90), state that the intensity of the high-priority signal 
should be at least twice as bright as the immediate background. The background should be dark in 
contrast to the display and should be in a dull fmish. 

Even though the criticality of the signal must dictate the intensity of any signal, the range of inten
sities must be dictated by the detection threshold on one end and disruption of nonnal activities on 
the other. White and Schneyer (1960) recommend a minimum of 100 ft-L for high-priority and 
master caution signals and 5 to 10 ft-L for all other signal lights. MIL-STD4I ID operationally 
defines this range for practical application with a range of sign~ priorities. THE BRIGHTNESS OF 
ANY REAR-LIGHTED SIGNAL SHALL BE AT LEAST 10% GREATER THAN THE BRIGHT
NESS OF THE AREA AROUND THE SIGNAL. HIGH-PRIORITY SIGNALS REQUIRE A 
RECOMMENDED MINIMUM OF l50ft-L FOR HIGH AMBIENT SITUATIONS AND IS ±3 ft-L IN 
LOW AMBIENT LIGHT. THE RECOMMENDED MINIMUM BRIGHTNESS FOR SECONDARY 
SIGNALS ARE 15 ±3 ft-L. Using any recommendation, care must be taken in choosing the signal 
values. Even though it would take a signal of 105 ft-L to produce actual discomfort, a direct look at 
a signal of as little as 4 ft-L will cause a loss in dark adaptation for a full minute (Stevens, 1951). In 
general, early studies (Davis, 1947; Luckiesk, 1944; Steinman, 1944; and Steinman and Venias, 
1944) agree that as signal intensity increases, simple reaction time will decrease. There is little doubt 
that the relationship is a nonlinear one, and has been described more or less successfully with 
exponential, hyperbolic, and parabolic functions. 

Raab and Fehrer (1962) studied the affect of flash luminance on simple reaction time using circular 
signals that subtended 10 10 minutes of visual angIe and was viewed binocularly in a darkened room. 
Figure 11 shows a reduction in reaction time to a 2-msec flash out to 3000 ft-L. The larger reduc
tions of time occur up to 30 ft-L, after which the reductions may be attributed to startle responses. 
Kohfeld (1971) found that when using a white signal with a 230 visual angIe, the simple reaction 
time of the observers decreased rapidly between 0.0001 and 0.1 ft-L and not as rapidly between 0.1 
and 1000 ft-L (fig. 12). 

Pollack (1968) tested five luminance levels (400, 20, 1, 0.5 and 0.0025 mL) for six different colors 
to determine whether signal intensity had an effect on reaction time. Her results concur with the 
previous studies. Therefore, the findings of these studies support the standards that have been set. 

No data were discovered that provide aircraft-related quantitative data on the optimum ratio of 
signal brightness relative to the background. Nor are there any data collected in an applied cockpit 
situation that indicate how dim a signal can be before detection is impaired or how bright lights can 
be and still not blind the pilot. However, it is recommended that the highest priority signals be twice 
as bright as other displays and that other signals be at least 10% brighter. 
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3.1.1.4 Affect of Whether Visual Signals Are Steady State or Intennittent on Detection 

•	 FLASHING LIGHTS ARE DETECTED QUICKEST WHEN ALL OTHER SIGNALS ARE 
STEADY STATE. 

A visual stimulus can be either steady state (constant brightness) or flashing (alternately on and ofO. 
Numerous experiments have been conducted on the detectability of steady and flashing lights. 
However, the obtained results have been highly dependent on the procedures used by the researchers. 
For example, Gerathewohl (1953) reported that the mean reaction times to flashing lights were 
shorter than to steady lights of the same brightness. Gerathewohl always had one distracting back
ground light on when the target stimuli were presented. The results of this study are presented in 
figure 13. As can be seen from the results, the flashing signals remain more effective than the steady 
signals until the signal intensity less the background intensity is approximately 10 times as great as 
the background intensity. (Contrast =1000 using formula in sec. 3.1.1.2.) 

Crawford (1962 and 1963) found that the effectiveness of steady or flashing signal lights was 
affected by the background conditions. Crawford's 1962 subjects were required to detect and indi
cate the location of signal lights. As shown in figure 14, when the background was blank, either a 
flashing or a steady signal light was detected in approximately 0.8 second. When the background 
was all steady lights, flashing signal lights were detected faster than steady signal lights. The mean 
detection times for signal lights were roughly proportional to the inverse of the log of the number 
of steady background lights. When 21 steady background lights were present, the mean reaction 
times were 2.0 seconds for steady signal lights and 1.3 seconds for flashing signal lights. In contrast, 
the mean reaction times with 21 flashing background lights were 2.1 seconds for steady signal lights 
and 2.6 seconds for flashing signal lights. IT SHOULD BE NOTED THAT MEAN DETECTION 
TIMES FOR EITHER STEADY OR FLASHING SIGNAL LIGHTS WERE LONGER IN THE 
PRESENCE OF FLASHING BACKGROUND LIGHTS THAN STEADY BACKGROUND LIGHTS. 

In his 1963 experiments, Crawford had subjects detect either steady or flashing signal lights against 
a background of 10 distractor lights. The number of background lights that were flashing varied 
from 1 to 10. The results of the 1963 experiment were similar to the results for the 1962 experiment. 

To take the development problem a step further, it would be useful for the designer to have a 
method by which he can determine which type of flashing signal is optimum for a situation. Edwards 
(1971) states that if conspicuity of a flashing signal is defined to be the effectiveness of the signal 
for the purpose of information transfer, it would seem that by making a choice between two flash
ing signals (or signals that differ on any characteristic), a reasonable approximation to a conspicuity 
measure could be obtained. To this end he used paired comparison techniques in which an observer 
had to select the most attention-getting signal from a pair. The most consistent comparisons were 
recorded when the observers were instructed to look midway between the two signals. By using 
probability theory, Edwards was able to construct graphically contours of equal attention-attract
ing power. This technique, although it still has some difficulties with experimental controls, could 
be modified and incorporated into a more realistic situation to give reliable information on the 
conspicuity of visual signals. 
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In summary, THE RELATIVE DETECTABILITY OF FLASHING AND STEADY SIGNAL LIGHTS 
IS DEPENDENT UPON WHETHER BACKGROUND LIGHTS ARE FLASHING OR STEADY. 
HOWEVER, THE FASTEST MEAN DETECTION TIMES ARE OBTAINED FOR FLASHING 
SIGNAL LIGHTS AGAINST A STEADY BACKGROUND. AN IDEAL VISUAL WARNING SYS
TEM WOULD HAVE THE WARNING LIGHT FLASH AND HAVE ALL BACKGROUND LIGHTS 
EITHER BECOME STEADY STATE OR GOOFF UNTIL THE WARNING LIGHT IS DETECTED. 

3.1.1.5 Affect of Color on Detection of Visual Signals 

•	 COLOR HAS LITTLE EFFECT ON RESPONSE TIME FOR SIGNALS OF MODERATE TO 
HIGH INTENSITY WHEN PRESENTED ON DARK BACKGROUNDS. 

•	 STANDARD COLOR CONVENTIONS SHOULD BE FOLLOWED:
 
RED-HIGHEST PRIORITY
 
AMBER-CAUTION
 
GREEN OR BLUE-NORMAL OR SAFE.
 

Numerous studies have been conducted to determine the effect of color on visual detection perfor
mance (Weingarten, 1972; Hill, 1947; Pollack, 1968; Reynolds, White, and Hilgendorf, 1972; Haines, 
1975). In general, these studies have shown color to have little effect, if any, on reaction time to 
visual signals if the intensities of the signals are above 0.002 ft-L (Pollack, 1968). When differences 
were found, the effect attributable to color is confusing. Some studies (Pollack, 1968, Haines, 1974 
and 1975) showed red signals produced the slowest reaction time while others (Coates, 1972; 
Weingarten, 1972) showed it to be the fastest. Weingarten (1972) measured the relative detection 
times of red and green signal lights against achromatic backgrounds. He found that when the back
ground was the same luminance as the signal light, the red lights were detected 20 to 25 msec faster 

. than the green lights. However, when the signal lights differed in luminance from the background, 
no statistically significant differences between the detection times of the red and green lights were 
found. The importance of this conflict to the present study is suspected because the differences that 
are being .discussed are in the order of 0.02 second. Therefore it can be concluded that response 
times to colored signals of moderate to high intensity are equal across colors for dark (essentially 
noncolored) backgrounds. 

Reynolds et al. (1972) measured the speed of detection of red, green, yellow, and white lights 
against copper, tan, blue, and green backgrounds. The results (fig. 15) indicate that the overall order
ing of stimulus colors as measured by the speed of responding was from fastest to slowest: red, 1.8 
seconds; green, 2.0 seconds; yellow, 2.3 seconds; and white, 2.7 seconds. 

Finally, Hill (1947) studied the interaction of the background luminance and color on detection 
thresholds. He found that the thresholds for red, white. yellow, and green signals were nearly equal 
over a range of background luminance from 10-6 to 104 ft-1. 

As it has been previously shown, Haines (1975) studied the reaction time for colored signals in the 
whole visual field (figs. 2 through 6). However, as has been pointed out, it is the no-response or 
missed signals that may be more critical. Figure 16 (from Haines, 1975) shows the percentage of 
no-response to blue, yellow, and green signals. A previous study by Haines (1973) also included red 
signals. The red signals behaved the same as the other colors up to 300 either side of center. Beyond 
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this point, the misses for the red signals increased rapidly, hitting 100% in the periphery of the field. 
Reynolds (1972) analyzed the effect of background on errors in naming the signal color. These data 
appear in figure 17. 

Since the results of the above experiment indicate that red signals are usually detected relatively as 
fast or faster than visual signals of any other color and the current conventions dictate red signals 
for high-priority situations, concurrence with the Federal Airworthiness Regulation 25.1322 and 
continued use of the following color codes for cockpit signal lights are recommended: 

Red Highest priority warnings 
Amber Caution 
Green or blue Normal or safe operation 
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Figure 17	 Interaction Between Signal Colors and Background Color on Color Naming Errors 
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3.1.2 STIMULUS FACTORS THAT AFFECT DETECTION OF AUDITORY SIGNALS 

The detection of auditory signals is affected by properties of the signal stimulus characteristics of 
the individual listener and the listening environment. This section deals mainly with the effect of 
the properties of the signal on detectability. A more complete discussion of the effects of the listen
ing environment is presented in a later section. A substantially more comprehensive review of re
search on auditory perception than can be presented in this paper is Van Cott's and Kincade's 
Human Engineering Guide to Equipment Design (1972). 

The primary properties of an auditory signal stimulus that effect detection are: 

• Frequency of the signal 

• Intensity of the signal 

• Location of the signal 

• Steady state or intermittent nature of the signal 

• Content or message of the signal 

3.1.2.1 Affect of Frequency on Detection of Sound Signals 

• AURAL SIGNALS SHOULD HAVE FREQUENCY BETWEEN 250 AND 4000 Hz. 

• AURAL SIGNALS SHOULD BE COMPOSED OF MORE THAN ONE FREQUENCY. 

Young humans can detect sounds with frequencies ranging from around 20 Hz to about 20 000 Hz. 
As shown in figure 18, maximum sensitivity IS generally in me range of from 2000 to 4000 hz 
(Fletcher and Munson, 1933). MIDFREQUENCY SOUNDS (2000 to 4000 Hz) TEND TO SOUND 
LOUDER THAN EITHER LOWER OR HIGHER FREQUENCY SOUNDS OF THE SAME ENERGY. 
Frequency has a strong effect on perceived loudness at low sound amplitudes. The effect of fre
quency on perceived loudness decreases as sound amplitude increases. Therefore, one of the impor
tant roles of frequency in selecting an auditory signaling device is to permit one signal to be perceived 
louder and overcome more noise in the midrange of frequency and intensity while using a smaller 
amount of energy. 

Another aspect of signal frequency that has an impact on the detection of auditory signal is that 
aging in the male causes a progressive loss of hearing in the higher frequencies (fig. 19). 

In addition to these losses, injuries occasionally produce insensitivities or deafness to particular fre
quencies. For these reasons, IT IS IMPORTANT THAT NO SIGNALING DEVICE USE A SINGLE 
FREQUENCY, BUT RATHER THEY SHOULD BE A COMBINAnON OF SOUNDS. Further, since 
age causes loss in higher frequencies and the perceived loudness is greatest in the 4000-Hz area, 
SOUNDS WITH FREQUENCIES OF 250 TO 4000 Hz WOULD BE MOST LIKELY TO BE 
DETECTED BY MOST PEOPLE. 
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Figure 19 Progressive Loss ofSensitivity at High Frequencies With Increasing Age 

3.1.2.2 Affect of Intensity on Detection of Sound Signals 

• AURAL SIGNALS SHOULD EXCEED MASKED THRESHOI.;D BY AT LEAST 15 dB. 

• OPTIMUM SIGNAL LEVEL IS HALFWAY BETWEEN MASKED THRESHOLD AND 110 dB. 

• PAIN IS EXPERIENCED AT 135 dB FOR UNPROTECTED EARS. 

• CONSIDERAnON MUST BE GIVEN TO THE HUMAN TIME/EXPOSURE LIMITS. 

The distinction between intensity and loudness has not always been observed. The intensity of a 
sound is a physical measure of the energy level of the sound transmitted per unit of time through a 
unit of area. Loudness, on the other hand, is an attribute of the sound as heard and reacted to by a 
listener. It is a subjective response and depends primarily on the sound pressure level (intensity), 
but it also depends on the frequency and spectrum of the sound. The relationship between these 
two dimensions of sound and frequency is shown in figure 20. 

As a general rule, a more intense sound is more likely to be detected than a quieter sound of the 
same frequency. However, the detectability of any particular sound is primarily dependent on back
ground noise. For any given background condition, there is an intensity of a signal sound that will 
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Figure 20 Three-Dimensional Surface Showing Loudness as a Function of Intensity and Frequency 

be detected 50% of the time by a particular individual. This level of intensity is referred to as the 
threshold intensity. An increase of as little as 3 dB in the intensity of the signal above the 50% 
detected level can result in nearly 100% detection by that individual. 

Since auditory alerts will be used in an environment where the background noise is constantly chang
ing not only in amplitude but also in frequency, it is ~" _ortant to determine what aspects of the 
background noise require adjustments in signal intensity. 

Noise mixed with a signal tends to raise the detection threshold above the "threshold in quiet." This 
effect is referred to as masking. For cockpit applications of aural alerting signals, the effects of mask
ing should be evaluated for three types of ambient noise: 

Noise Type Distinguishing Characteristics 

Pure tone Bandwidth =nominal frequency ±O Hz 
Narrow-band noise Bandwidth = nominal frequency ±45 Hz 
Wide-band noise Bandwidth =wide spectrum 

The masking effect of each of these types of ambient noise on aural alerts is discussed in the follow
ing para~raphs. 
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Quantitative relationships between the frequency of the masking tone and the amount of masking 
of auditory signals of various frequencies as applied to pure tones are shown in figure 21 (A, B, and 
C). In figure 2lA, the frequency of the auditory signals (masked tones) are given on the abscissa of 
each graph. The ordinate presents the masking level, Le., the amount above the threshold-in-quiet 
level that the auditory signal must be elevated in the presence of the masking tone. The number on 
each curve represents the intensity of the masking tone, measured as the amount above the thresh
old-in-quiet level. The lowest curve in figure 21 B gives the threshold-in-quiet values. 

For an example application of these curves, assume the ambient noise consists of a 400-Hz pure 
masking tone presented at 95 dB and determine the levels required of 200-,400-, and 800-Hz audi
tory signals to achieve 50% detectability. The threshold-in-quiet levels of these signals are 30, 15 
and 6 dB, respectively (derived from figure 2lB); the 80-dB curve on the B = 400 Hz graph in figure 
2lA must be used to determine the intensity required of these alerting signals (95 dB Tone - 15 dB 
Threshold = 80 dB). Interpolation of these curves provides the following results: 

Auditory DELTA Total* 
signal intensity intensity 

frequency, required, required, 
Hz dB dB 

200 15 45 
400 55 70 
800 62 68 

*Total intensity =DELTA intensity + threshold in quiet 

Note that maximum masking of a pure tone occurs when the background sound is of the same fre
quency range as the signal. Substantial masking also occurs when the auditory signal is composed of 
higher frequencies than the ambient noise. Lower frequency alerting signals are significantly less 
subject to masking. 

The masking effects of narrow-band ambient noise is similar to the effects described above for a 
pure-tone environment. The primary difference occurs in the shape of the curves (fig. 21). For pure
tone ambient noise, small dips occur in these curves where the alerting signal frequency equals the 
ambient noise frequency. These dips are due to beats produced by two pure tones of slightly differ
ent frequencies. For narrow-band ambient noise, these beats do not occur and the masking curves 
smooth out. 

Thus far only the effects of pure-tone and narrow-band ambient noise on auditory signals have been 
discussed. For cockpit applications, wide-band noise effects must also be considered. Morgan et al. 
(1963) state that the masking effects of wide-band ambient noise are considerably different than 
the masking effects of narrow-band and pure-tone ambient noise. The effects of wide-band noise 
extend beyond the spectrum of the noise itself. The masking effect of wide-band noise that has the 
same intensity throughout the spectrum (white noise) is approximately linear with respect to the 
increase in intensity of the noise. This is apparent from the regular spacing of the threshold con
tours in figure 2iC. These are true thresholds-not DELTA thresholds as used in the pure-tone dis
cussion. For wide-band noise that does not have uniform intensity over the frequency spectrum, the 
ear has the ability to filter or reject the part of the noise that is outside ::I certain range around the 
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signal, thus eliminating some of the noise and making the signal more audible. The width (in Hz) of 
this range is called the "critical bandwidth" and varies dependent on the frequency of the signal 
being used (fig. 21 C). Morgan et al. (1963) state that the threshold of a pure-tone aural alerting sig
nal can be predicted if the spectrum of the noise near the frequency of the tone is known. In mak
ing this prediction, it is assumed that the masking is being done by the noise components near the 
frequency of the signal, those that lie in the critical bandwidth. When used to predict masking, the 
critical bandwidth is defmed so that the sound pressure level of the noise in the critical band is equal 
to the sound pressure level of the signal at its masked threshold (the intensity where 50% of the 
signals are detected when noise is present). Morgan presented the following procedure for predicting 
the masked threshold of an aural alert signal at any signal frequency in wide-band ambient noise: 

1.	 Measure the level of the ambient noise at the auditory signal's frequency. 

2.	 Correct this measured level for the wide-band effect by adding the 10-10g value of the critical 
bandwidth (read directly from the left ordinate in fig. 21 C). 

3.	 This corrected value is the masked threshold of the aural alert. 

These methods are directed toward detecting pure-tone signals, which are harder to detect in noise 
than multifrequency signals. Van Cott and Kincade (1972) presented two well-accepted guidelines 
for multifrequency auditory signals: 

1.	 A SOUND SIGNAL SHOULD EXCEED ITS MASKED THRESHOLD BY AT LEAST 15 dB 
FOR GOOD DISCRIMINATION. .. 

2.	 AN OPTIMUM SIGNAL LEVEL IN NOISE IS HALFWAY BETWEEN THE MASKED 
THRESHOLD AND 110 dB. 

Also to be considered when working with any type of aural alerting signal is MIL-STD-1427B, which 
requires that auditory signals have a signal-to-noise ratio of at least 20 dB. 

A word of caution should be given about the above methods of determining signal intensity. The 
signal intensity requirements obtained from the methods directed toward detecting aural alerting 
signals composed of pure tones should be conservative (high) ~nd may, in fact, be too loud. The 
guidelines provided by Van Cott and Kincade and by the Military Standard are rules of thumb and 
may also result in alerting signal intensity requirements that are too loud. Some adjustment may be 
necessary when installed in the actual cockpit environment. If such adjustments are not made, pilot 
aggravation and possibly pilot ear damage may result. Stevens (1951) and Eldred (1955) presented 
guidelines for tailoring these aspects of aural alerting signals. 

Stevens presents a composite of the work relating feeling to sound pressure levels (fig. 22). This 
treatment does not take into consideration the exposure time. Eldred et al. considered this aspect of 
the auditory environment when he produced the limits set in figure 23. AS CAN BE SEEN, THE 
UPPER LIMIT FOR SOUND TOLERANCE IS 135 dB. MORE IMPORTANT, HOWEVER, IS 
THAT THERE IS A TIME/EXPOSURE LIMIT, AFTER WHICH THERE IS A RISK OF DAMAGE 
FOR UNPROTECTED HEARING. 
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NOTE:	 PAIN LIMIT FOR UNPROTECTED EARS IS SHOWN AT 135 dB. WHEN EAR PROTECTORS 
ARE USED. SOUND PRESSURE LEVEL IN SOUND FIELD CAN EXCEED THESE CRITERIA 
BY AMOUNT OF ATTENUATION PROVIDED BY PROTECTORS. BODY-EXPOSURE LIMIT 
AT 150dB IS POINT AT WHICH POTENTIALLY DANGEROUS NON-AUDITORY EFFECTS 
OCCUR. THIS LEVEL SHOULD NOT BE EXCEEDED IN ANY CASE (ELDRED ET AL' 19551, 

Figure 23 Damage Risk Criteria for Vario..us Exposure Times Up to 8 Hr (Eldred, et. al. 1955) 

3.1.2.3	 Affects of Location on Detection of Sound Signals 

• DICHOTIC METHODS OF PRESENTATIONS SHOULD BE USED FOR AURAL ALERTS. 

• IF SINGLE EARPHONE IS USED, IT SHOULD BE WORN ON THE DOMINANT EAR. 

• ALERT SHOULD BE SEPARATED FROM DISTRACTING SIGNALS BY 900 . 

• USE BROAD-BAND SOUND SIGNALS WHEN LOCALIZATION IS NOT POSSIBLE. 

The masking effects of background sounds are affected by the location of the signal sounds relative 
to the background sounds. Sound signals perceived as coming from a different location than the 
background sounds are more likely to be detected from signals that cannot be separated in location 
from background sounds. 

Egan, Carterette, and Thwing (1954) had subjects listen to messages under either normal or dichotic 
conditions. In monaural listening, the message to be received and interfering noise or messages are 
presented by an earphone to one ear. In dichotic listening, the message to be received is presented 
by an earphone to one ear, and interfering noise or messages are presented by another earphone to 
the other ear. Dichotic listening gives location cues that helped discriminate between signals and 
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noise. As can be seen in figure 24, the advantage of dichotic listening is equivalent to an increase of 
up to 30 dB in the intensity of the signal message. However, this amount of increase should not be 
expected in a noisy environment where the pilot will not be using full earphones. 

If the pilot is going to wear a single earphone and the aural signal is going to be presented over the 
system, it is important that the pilot's "dominant" ear be determined. (Most people tend to receive 
messages in noise easier in one ear than in the other ear. The ear that receives messages better is 
referred to as the dominant ear.) Messages presented to the dominant ear are slightly more likely to 
intrude upon attention than messages presented to the other ear. Gopher and Kahneman (1971) 
used earphones to present one series of numbers to the right ear and another series of numbers to 
the left ear of a group of Israeli Air Force cadets and pilots. The subjects were required to repeat 
one series numbers and to ignore the other series. An average of 1.1 %of the numbers that were to 
be ignored intruded and were repeated. Most of the intrusions (74%) occurred when the numbers 
presented to the right ear were to be ignored. The observed higher intrusion rate for messages pre
sented to the right ear is due to the majority of people being right-ear dominant. 

THEREFORE, AUDITORY WARNING SIGNALS THAT ARE PRESENTED MONAURALLY 
SHOULD BE TRANSMITTED TO THE DOMINANT EAR. 

Speech signal malked by 
60 Speech •• • 

Noise 0--....0 
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Figure 24 Comparison of Oichotic and Monaural Masking (Egan, et. al. 1954) 
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To more approximate an open type of situation, Spieth, Curtis, and Webster (1954) asked subjects 
questions about visual displays. The questions were always presented in simultaneous pairs. Each 
question in a pair was preceded by a code name. The subjects were to answer the question in each 
pair that was preceded by their code name and to'ignore the other question. Three loudspeakers 
were used to transmit the messages and could be separated from each other horizontally in either 
100 or 900 increments. Both members of a pair of questions could either be transmitted from the 
same loudspeaker (single-source condition) or from two different loudspeakers. When both members 
of a pair of questions were transmitted from the same loudspeaker, the subjects answered 66% of 
the questions correctly. The amount of correct answers increased 86% for 100 to 200 separation of 
messages and 92% for 900 to 1800 separation of messages (fig. 25), Spieth et al. did not determine 
how much increase in signal message volume would produce the amount of improvement produced 
by the separation conditions. ' 

The ability to localize a signal is affected by the frequency of the sounds, Mills (1958) found that 
localization of the pure tones was optimum for tones between 250 and 1000 Hz and four tones 
between 3000 and 6000 Hz. Localization of sounds was poor for tones of from I000 to 1500 Hz 
and for tones around 8000 Hz. Broad-band signals are generally localized much better than pure 
tones. THUS, WITH BINAURAL LISTENING BROAD-BAND SOUND SIGNALS THAT CAN BE 
LOCALIZED EASILY ARE MORE LIKELY TO BE DETECTED FROM SOUND SIGNALS THAT 
CANNOT BE LOCALIZED. 

Cherry (1953) also addressed the problem of how a critical verbal message is detected when other 
messages are occurring at the same time. Of all the factors that may affect the type of detection, 
the location of the voice seemed the most promising. He presented observers with two speeches, 

100 ~ 

80V 
6O~ 

Detectability• 
percent 

40 -

20

o L. ..I--I 
L 
" ..&.-1 -..L1 1L-

30 60 90 120 150 

Separation of sources of signal and background noise, deg 

Figure 25 Effect ofAural Alerting Signal Source Location 

L---'1 

180 

37 



either mixed to both ears, or one to the left ear and the other to the right ear. The task was to 
separate and repeat one of the messages. It was found that some messages could be separated if they 
were presented in the mixed fashion; others could not. The observers had no trouble separating the 
messages when they were presented to different ears. In fact, after the observer was comfortably 
repeating the messages in one ear, the messages in the other ear were switched to German. No 
observer detected the switch. 

In summary, IF POSSIBLE, AUDITORY ALERTING SIGNALS SHOULD BE PRESENTED DI
CHOTICALLY SEPARATED FROM NOISE. IF DICHOTIC SEPARATION IS NOT POSSIBLE, 
AUDITORY ALERTING SIGNALS SHOULD COME FROM A SOURCE THAT IS SEPARATED 
BY AT LEAST 900 FROM THE SOURCES OF INTERFERING NOISE OR MESSAGES. IN ADDI
TION, IF THE LOCATION OF THE SOURCES OF BOTH WARNING SIGNALS AND INTER
FERING SOUNDS ARE OPTIONAL, THE ALERTING SIGNAL SHOULD BE PRESENTED TO 
THE DOMINANT EAR AND THE INTERFERING SOUNDS SHOULD BE PRESENTED TO THE 
NONDOMINANT EAR. IF LOCALIZATION IS NOT POSSIBLE, BROAD-BAND SIGNALS 
SHOULD BE USED. 

3.1.2.4 Affect of Whether Auditory Signals Are Steady State or Intermittent on Detection 

•	 INTERMITTENT AURAL SIGNALS SHOULD BE USED. 

•	 CYCLE TIME SHOULD BE 0.85 SECOND ON AND 0.15 SECOND OFF. 

The auditory sense adapts extremely rapidly to constant stimulation. Steady-state signals tend to 
become less noticeable after a short period of time. A steady-state sound signal that is not detected 
at its onset is likely to go unnoticed over an extended period of time. The auditory system does not 
adapt as rapidly to intermittent or changing signals as it does to steady-state signals. HENCE, 
INTERMITTENT SOUND SIGNALS ARE MORE LIKELY TO BE DETECTED THAN STEADY
STATE SIGNALS. 

MIL-STD41I D requires that an auditory master warning signal have an G.8S-second ON time and 
an O.1S OFF time, with the cycle continuing until the system is deenergized. 

3.1.2.5 Affect of Message Content on Detection of Auditory Signals 

•	 HIGHER PRIORITY AURAL SIGNALS SHOULD CONSIST OF TWO ELEMENTS-AN 
ALERTING SIGNAL AND AN ACTION SIGNAL. 

•	 THE USER'S NAME IS A HIGHLY EFFECTIVE ALERTING SIGNAL. 

The detection of a sound signal is often affected by the content of the signal. For example, a per
son's own name is usually more attention attracting than any other auditory message of the same 
volume. Howarth and Ellis (1961) found that subjects were more likely to detect their own name 
than other names. Howarth and Ellis recorded the names of 10 subjects. Then they played the 
recordings back and had each subject write down all of the names that he could recognize. The 
volume of the recordings was adjusted so that the subject could recognize approximately 50% of the 
names. The pooled results showed that they could recognize their own names on 77% of the occa
sions when it was presented, but the other nine names were recognized on only 50% of the 
presentations. 
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Moray (1959) had subjects attend to and repeat a continuous message presented to one ear. Other 
messages were simultaneously presented to the other ear. When the messages presented to the unat
tended ear were preceded by the subject's name, 51 % of the messages were heard. In contrasI, only 
11 % of the messages that were not preceded by the subject's name were heard. 

Oswald, Taylor, and Treisman (1960) used an experimental design much the same as Howarth and 
Ellis (1961), with the exception that the observers were deprived of sleep so that they fell asleep 
during the experiment. The observers were instructed to move a hand when they heard their name 
or another specified name. The observers responded 25% of the time to their own name and only 
12% of the time to other names. Table 3 summarizes the results of these three experiments. Statisti
cal techniques were used to detennine the significance of the difference between responding to one's 
own name and responding to something else. The probability that the size of the difference observed 
between the two cases occurred by chance alone is also presented. 

The content of nonverbal auditory signals also has an affect on their detectability. Keuss (1972) 
used two signals in close succession. The first signal (essentially a ready signal) was presented for 25 
msec and then the response signal was presented. The intensities of both signals were varied using 
values of 45-, 68-, 85-, and 11 O-dB sound pressure levels. The observers were required to push a key 
when the second signal came on. Figure 26 illustrates the results of this study. Generally, reaction 
time varied inversely with the intensity of both signals. Probably due to startle, the reaction time 
tended to lengthen when the second signal was 110 dB. When both signals were 110 dB, the startle 
effect on reaction time seemed most evident. 

Siegel and Crain (1960) ran an experiment under night conditions. Observers were required to per
fonn a tracking task and respond to a warning signal when it appeared. The warning signal was either 
a light, a single tone, or a double tone. The two-tone auditory signal resulted in significantly shorter 
(by over a full second) response times than any of the other signals. MIL-STD-1472B states that 
AURAL WARNING SIGNALS SHOULD NORMALLY CONSIST OF TWO ELEMENTS-AN 
ALERTING SIGNAL AND AN ACTION SIGNAL. With a two~lement signal, the alerting signal 
should last no more than 0.5 second and all essential infonnation shall be transmitted by the action 
signal in less than 2 seconds. 

In summary, HAVING A PERSON'S NAME OR OTHER PREPROGRAMMED WORD PRECEDE 
AN AUDITORY MESSAGE APPEARS TO HAVE ABOUT THE SAME EFFECT ON DETECTION 
AS INCREASING THE LOUDNESS OF THE MESSAGE BY ABOUT 3 dB. WHEN NONVERBAL 
SIGNALS ARE TO BE USED,A TWO-TONE SIGNAL WILL BE SUPERIOR TO A SINGLE TONE. 

Table 3 Data From Three Different Experiments 

HOWARTH, et. at. MORAY OSWALD, et. at. 

RESPONSE TO OWN NAME 77% (77/100) 51% (20/39) 25% (33/131) 

RESPONSE TO OTHER MESSAGE 50.5% (455/900) 11 % (4/36) 12% (15/124) 

PROBABILITY OF CHANCE ~1%· 1% 1% 
DIFFERENCE 

*	 A probability of 0.1 % means that if samples of people with the same response variability were 
tested repeatedly and there was no real difference between responding to one's name and res
ponding to other messages, then a difference as large as observed by Howarth would occur 
only one time in 1000 tests. 
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3.1.3 SIGNAL-RELATED FACTORS THAT AFFECT THE DETECTION OF TACTILE SIGNALS 

The detection of tactile signals is affected by: 

1. STEADY STATE OR INTERMITTENT NATURE OF SIGNAL 

2. PART OF THE BODY SIMULATED 

3. INTENSITY OF THE SIGNAL 

3.1.3.1 Effect of Whether Tactile Signals Are Steady State or Intermittent on Detection 

• TACTILE SIGNALS MUST BE INTERMITTENT FOR DETECTION. 

• FREQUENCY OF THE SIGNAL SHOULD BE BETWEEN 200 AND 300 Hz. 

The sensation of pressure or touch is due to a continuing deformation of the skin (Nate and Wagoner, 
1941). As soon as the shape of the skin reaches a steady state, the sensation of touch stops. Nate 
and Wagoner placed weights of from 8.75 to 70.0 grams on the subject's skin and took precise 
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measurements of how long the weights continued to sink into the skin. They also asked the subject 
to give continuous reports of whether he could feel the weight or not. As long as the weight contin
ued to sink into the skin, the subject reported that he could feel the weight. As soon as the move
ment of the weight stopped, the subject reported that he could no longer feel the weight. 

Nate's and Wagoner's findings indicate that for a pressure or touch-type stimulus to produce a con
tinuous sensation, THE STIMULUS MUST PRODUCE CONTINUOUS MOVEMENT OF THE SKIN. 
CONTINUOUS MOVEMENT CAN BEST BE PRODUCED BY AN INTERMITTENT OR VIBRAT
ING STIMULUS. The rate at which the skin is deformed is important in determining thresholds. 
For example, the absolute threshold for touch is lower as the stimulator is pressed against the skin 
more rapidly than if the pressure is applied slowly. In fact, if the stimulator is applied slowly enough, 
the person will be unaware of the pressure. The skin is maximally sensitive to signals that vibrate 
at between 200 and 300 Hz (Woodworth and Schlosberg, 1964; Van Cott and Kincade, 1972). 
THUS, IT IS RECOMMENDED THAT IF A TACTILE SIGNAL IS USED FOR INFORMATION 
TRANSFER IN THE COCKPIT, IT SHOULD VIBRATE AT 250 Hz. 

3.1.3.2 Effect of the Area of the Body That Is Stimulated by Tactile Signals 

•	 AMPLITUDE OF TACTILE SIGNALS SHOULD CORRESPOND TO THE SENSITIVITY OF 
PLACEMENT AREA. 

•	 SIGNALS SHOULD BE PLACED ON AREAS NOT INVOLVED IN MOTION. 

The sensitivity to touch varies widely from one section of the body to another. Wilski (1954) 
measured the threshold for vibration sensitivity in different regiOlis of the body surface. He reported 
that the fingers were most sensitive to vibration and the buttocks were least sensitive. 

The amplitude of any vibratory stimulus used as an alerting signal must be calibrated to produce a 
sensation on the part of the body that is stimulated. Hill (1968) states that tactile signals are cor
rectly interpreted more often when placed on body locations not involved with motion. 

3.1.3.3 Effect of Signal Intensity on the Detection of Tactile Signals 

•	 PRACTICAL RANGE OF INTENSITIES IS 50 TO 400 MICRONS. 

Again, as with the other signaling methods, one would expect the probability and speed of detect
ing the signal to be related to the signal intensity. Gescheides, Wright, Weber, Kirchner, and Milligan 
(1969) applied a 60-cps signal to the left index fmgertip of their observer. A white light served as a 
ready signal and was followed 1 to 2 seconds later by the tactile action signal. The observer's task 
was to judge the presence of the action signal as quickly as possible. Not only was the signal inten
sity varied, but the probability of occurrence was also varied. The results from this study can be 
seen in figure 27, where the signal intensities are given in decibels with a reference level of 1.75 
microns. A DECIBEL IS DEFINED AS 10 TIMES THE LOG TO THE BASE 10 OF A SPECIFIED 
INTENSITY (PI) DIVIDED BY THE REFERENCE INTENSITY (PO)' I.E., 

P1DECIBEL = 10 LOG10
Po 
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and 0.75 Plotted as a Function of Signal Intensity (Heber, et. al. 1969) 

The two lines in the figure represent the two probabilities of signal occurrence. As can be seen at 8 
dB (II microns), the decrease in reaction time has not leveled out. This is reasonable, since Geldard 
(1957) reports that the lowest useful intensity of vibration that can be detected 100% of the time is 
about 50 microns. 

THE PRACTICAL RANGE OF SIGNALING INTENSITIES IS FROM 50 MICRONS AS A MINI
MUM TO 400 MICRONS. 

3.1.4	 EFFECT OF PRESENTING BOTH VISUAL AND AUDITORY SIGNALS ON DETECTION 
PERFORMANCE 

•	 PRECEDING VISUAL SIGNALS WITH AUDITORY SIGNALS PRODUCES FASTER 
RESPONSE. 

•	 INTERVALS BETWEEN SIGNALS SHOULD BE BETWEEN 0.1 and 0.3 SECOND. 

•	 BOTH SIGNALS SHOULD COME FROM THE SAME SIDE OF THE OBSERVER. 
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All the signaling systems covered so far have used a single signaling device. One major drawback to 
this type of system is the dependence on the single human sensor having sufficient channel capacity 
to handle the signal when it occurs. Also, it is not surprising that auditory signals are generally 
superior to visual signals for those situations in which attention is not constantly focused on the 
visual signals (Siegel, 1960). The question arises as to whether there would be any further gain from 
combining auditory and visual signaling devices to produce a bimodal signal. The first impulse would 
be to say that detection probability and sensitivity would increase, but the reaction time would 
remain the same as that of the auditory signal. 

Klemmer (1958) used red, green, and orange lights and 100-, 700-, and 5000-cps tones as the action 
signals. The observer's task was to press one of three buttons, depending on which light or tone 
came on. For the bimodal test, a tone and light combination (Le., 100-cps tone and red light) indi
cated which button to push. The signal-button combinations were the same as in the single-channel 
case. Klemmer found that he could improve performance from an 84% correct detection and 
response in the single-channel case to 95% correct in the bimodal presentation. Fidell (1969) used 
an auditory signal and the same signal on an oscilloscope as the visual signal. There was an improve
ment in detection sensitivity as a function of bimodal signal presentation. This improvement was as 
great as 3 dB. Klingberg (1962) required each of his observers to respond to a 1.50 visual angle signal 
(corresponds to 0.75 inch times 0.75 inch aircraft warning light) combined with an 80O-Cps auditory 
signal. The auditory and visual signal strength were equated in a preliminary bimodal matching study. 
The primary response measure was the number of signals missed during each half hour. The proba
bility of signal detection for the bimodal signals was significantly higher than for the same signals 
presented individually. 

The same parameters that affect reaction time to a single-channel signal also affect bimodal presen
tations. Another factor, the time separation between the two signals, also has a real effect on the 
detection time. Studies (Carroll, 1973; Bate, 1969; Bertelson, 1968) have shown that a simultaneous 
presentation of auditory and visual signals produces a faster reaction time than either of the signals 
individually. Bertelson (1968) goes further and demonstrates that by preceding the visual signal 
with the auditory signal an increase in reaction time can be obtained. He postulates that the warning 
signal is used by the observer to start preparatory adjustments required to respond to the action 
signal. He presented his observers a clock that served as the warning signal and a light that appeared 
at specified intervals after the click. The results from this study are presented in figure 28. 

These data show a decrease in reaction time, with an increase in the time between the presentation 
of the two stimuli. Minimum reaction time seems to be reached at an interval between 100 and 300 
msec long. Geblewiczowa (1963) used larger intervals (0.5, 1.5, and 2.5 seconds) and found that an 
OS-second interval produced the shortest reaction time. The study demonstrates that the interval 
length, if it gets too large, loses its effectiveness. IF THE AUDITORY AND VISUAL SIGNALS 
ARE TO BE SEPARATED TO INCREASE THE SPEED OF RESPONDING, THE INTERVAL 
BETWEEN THE TWO SIGNALS SHOULD BE BETWEEN 100 AND 300 MSEC LONG. The same 
time interval was found by Keuss (1972) when using two auditory stimuli. He recorded the obser
vers' reaction times to a tone (S2)' which was preceded by another alerting tone (S 1 ). The inten
sities of the two tones and the interstimulus intervals (lSI) were varied during the testing. The 
results are presented in figure 29. As can be seen, the reaction time is inversely related to the inter
stimulus interval until the interval reaches 200-250 msec. 
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Finally, the location of the signals with respect to each other is also a factor affecting the time to 
react to the signal. Pemment (1969) required his observers to respond to a light and sound signal by 
depressing two of the four buttons located on a response panel to identify the direction (left or 
right) of each signal. The two signals could be presented either both on the same side or on opposite 
sides. It was found that the reaction times were relatively the same for the conditions where both 
the signals came from the same side, whether it was from the right or left. The same was true for 
the two conditions where the signals were on opposite sides. Therefore, the data were pooled in two 
sets called unilateral presentation (same side) and bilateral presentation (opposite side). The separa
tion of the buttons was also varied, being either 6, 12, or 24 inches apart. The results of the experi
ment may be seen in figure 29. Not only does the unilateral condition produce lower reaction time, 
but it is also more stable over the control separations. 

In summary, FOR HIGHER PROBABILITY OF DETECTION AND FASTER REACTION TIMES, 
A BIMODAL PRESENTATION SHOULD BE MADE. THE AUDITORY SIGNAL SHOULD BE 
THE ALERT AND THE VISUAL THE ACTION SIGNAL. THE TIME BETWEEN THE TWO 
SIGNALS SHOULD BE BETWEEN 0.1 AND 0.3 SECOND AND BOTH SIGNALS SHOULD 
APPEAR TO COME FROM THE SAME SIDE OF THE OBSERVER. 

3.2 EFFECT OFENVIRONMENTAL FACTORS ON DETECTION OF SIGNALS 

The previous discussion has considered mainly the effects of different stimulus variables on the 
detection of signal stimuli, with only minimum regard to conditions present when the stimuli were 
presented. There is a vast amount of evidence that an individual's ability to detect a particular stim
ulus is strongly affected by: 

1. Other stimuli or distractors that are presented at or about the same time 

2. Cognitive workload imposed on the individual 

3. Vigilant state of the individual 

A short discussion of the infonnation-processing characteristics of human beings will help clarify 
the role of distractors, workload, and vigilance on the detectability of signal stimuli. There apparently 
is a limited range of rate at which human beings process infonnation most effectively (Poulton, 
1960). When infonnation is presented at rates slower than the optimum rate, an individual will tend 
to not monitor the infonnation sources and misses a substantial proportion of the infonnation that 
is presented. Infonnation rates above the optimum range produce cognitive overload. Individuals 
under cognitive overload will miss part of the information that is presented and process some of the 
infonnation incorrectly. At extremely high rates of infonnation presentation, an individual's perfor
mance will deteriorate and the total amount of infonnation that he processes will be less than when 
infonnation is presented at an optimum rate. 

The difficulty of any cognitive tasks affects the amount of externally presented infonnation that an 
individual can process. An increase in the cognitive workload will result in a decrease in the amount 
of signal stimuli that an individual can process effectively. Usually, the signal stimuli that a person 
must process are presented along with numerous other irrelevant or distracting stimuli. The person 
must discriminate between signal and distracting stimuli before he can fully process the signal stimuli. 
The separation of the relevant from the irrelevant stimuli takes up part of the person's infonnation



processing ability and reduces the amount of signal stimuli that he can process. Thus, both distract
ing stimuli and cognitive workload reduce the amount of signal stimuli that a person can effectively 
process. 

3.2.1 EFFECT OF DISTRACTOR SIGNALS ON DETECTION OF SIGNALS 

•	 THE CLOSER THE TARGET IS TO DlSTRACTORS IN TIME AND SPACE, THE SLOWER 
THE RESPONSE. 

•	 TACTILE DISTRACTORS ARE MOST DISRUPTIVE TO VISUAL SIGNALS. 

•	 BIMODAL PRESENTATION OF SIGNALS IS SUPERIOR WHEN DISTRACTION IS 
PRESENT. 

•	 SIGNALS MUST BE PRIORITIZED SO THAT LOWER PRIORITY SIGNALS MAY BE 
ATTENUATED. 

Distracting visual, auditory, and tactile stimuli may all have an adverse effect on the detection of 
visual, auditory, and tactile signal stimuli. Table 4 is a 3 by 3 matrix of the nine possible combina-

Table 4 Combinations of Distractor and Signal Modalities that Could be Investigated 
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tions of distractor and signal stimuli that could be investigated and the studies relating to each com
bination. The literature search conducted for this paper did not reveal any single study covering all 
nine cells of the matrix. Therefore, a number of experiments, each of which covered only part of 
the cells, will be discussed. General conclusions based on these experiments will then be presented. 

As stated earlier, the presence of either flashing or steady distractor lights adversely affects the 
detection of signal lights (Crawford, 1962 and 1963). These results were based on stimuli that were 
separated by more than 10 of visual angle. More recently, Eriksen and Hoffman (1972) investigated 
the effects of visual distractors that were placed as close as 0.50 of visual angle from letters used as 
visual signals. Either other letters or block discs were used as distractors. The distracting signal 
always occurred either simultaneously with or following the target signal. The time between the tar
get and distractor varied between 0 and 300 msec. Figure 30 shows the results of the study. 

As can be seen, THE MORE SIMILAR THE DISTRACTOR (LETTERS) TO THE TARGET, THE 
LONGER IT TAKES TO REACT. ALSO, THE CLOSER THE DISTRACTOR IS TO THE TARGET 
IN BOTH TIME AND SPACE, THE HARDER IT IS TO SEE THE TARGET. The longer the interval 
between the onset of the target and the onset of the distractor, the less effect any of the qualities of 
the distractor have on reaction time. At approximately 150-msec separation all the curves merge. 
Colegate, Hoffman, and Eriksen (1973) found a similar increase in reaction time to visual signals 
when more distracting letters were added to the display. 

Adams and Chambers (1962) had subjects perform visual or auditory tracking tasks. The addition of 
irrelevant auditory distractors produced a detriment in performance on the visual tracking task. 
Likewise, irrelevant visual distractors degraded the performance on the auditory tracking task. 

Schori (1973) compared the performance of visual, auditory, and tactile tracking tasks on a simul
taneous secondary warning light monitoring task. The tracking tasks required the subjects to use a 
steering wheel in an automobile cockpit mockup to compensate for changes in a track produced by 
an irregularly shaped cam. The subject received a signal from the left side when he was too far left 
and a signal from the right side when he was too far right. The signals were either lights, white noise, 
or painless shock. The visual task-monitoring a warning light-employed small red lights on either 
side of the cockpit. The subject had to press a button each time a light on either side came on. Per
formance on the tracking task was equally good with all three types of displays. However, perfor
mance on the warning light monitoring task was poorer for the tactile tracking condition than for 
either the visual or auditory tracking conditions. There was no statistically significant difference 
between the visual and auditory tracking conditions on the warning light task. It was concluded that 
the detection of visual signal stimuli was more adversely affected by tactile distracting stimuli than 
either visual or auditory distracting stimuli. 

One recurring finding in research on the detectability of signal stimuli in the presence of distracting 
stimuli is that BIMODAL PRESENTATION OF SIGNALS IS EQUAL TO OR BETTER THAN 
SINGLE-MODAL PRESENTATION OF SIGNALS (Adams and Chambers, 1962; Klemmer, 1958). 

Buckner and McGrath (1961) had subjects perform a vigilance task in which each subject was pre
sented 24 signals during a 60-minute session. For anyone session, all of the signals were either (I) 
visual, (2) auditory, or (3) combined visual and auditory. The detection rate for all three types of 
signals was close to 100% at the beginning of the sessions and decreased over time. However, the 
minimum detection rate was higher for the bimodal signals (89%) than either type of unimodal sig
nals (visual 72%, auditory 84%). 
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A series of experiments was conducted by Siegel and Crain (1960) on the detection times of differ
ent cautionary signals in a flight task simulator. Under conditions where the visual and auditory 
inputs and tasks were comparable to flight conditions, the mean reaction times to auditory signals 
were faster than to visual signals (2.2 versus 2.70 seconds). 

In summary, any kind of distracting signal will have a detrimental effect on the detection of any 
kind of warning signal. In the presence of visual and/or auditory distractors, the rank order of 
EFFECTIVENESS OF TYPES OF WARNING SIGNALS FROM BEST TO POOREST ARE: (1) 
TACTILE, (2) AUDITORY, AND (3) VISUAL. HOWEVER, TACTILE SIGNALS MAY HAVE A 



MORE DISRUPTIVE EFFECT THAN VISUAL OR AUDITORY SIGNALS ON OTHER ACTI~ 

VITIES. Thus, it is quite likely that a signal's ability to penetrate distracting stimuli is directly related 
to its disruptive effect on other activities. Signals must be prioritized so that important signals 
temporarily attenuate other signals that could serve as distractors. 

3.2.2 EFFECT OF WORKLOAD ON DETECTION OF SIGNALS 

•	 OCCURRENCE OF A WARNING SIGNAL SHOULD SUFFICIENTLY CHANGE THE SEN
SORY ENVIRONMENT TO OVERCOME EXISTING WORKLOAD LEVEL. 

Workload refers to tasks a person is performing when a signal is presented. The workload on an indi
vidual is dependent on the number of tasks that he has to perform in a given time period and the 
difficulty of these tasks. However, the most difficult aspect of this area is the measurement of work
load. Rolfe and Lindsay (1973) wrote a paper to examine some ofthe techniques being used to study 
the demands of the work situation on the individual. Their emphasis was on aircrew workload. They 
felt that the measurement of workload. -was necessaIy -because, to a large extent, the reliability of 
the man is a function of the load that is placed upon him. Inherent in this statement is the important 
point that the operator can be underloaded as well as overloaded. Workload is difficult to measure 
because of the wide range of physical and psychological factors, which imparts the loading of an 
operator. Conclusions that were made include: (1) performance measures should be supplemented 
by the addition of measures that can give an indication of the nature of the demands that the task 
imposes and the effort expended to meet the demand; (2) research indicates that no single supple
mentary measure can adequately provide information that satisfies both above requirements, and 
therefore a combination should be used; and (3) of the measures assessed, observation, subjective 
assessment, and physiological response are the most suitable techniques for use in the flight 
environment. 

An example of workload measurement is presented by Rolfe and Chappelow (1973) where they 
had a four~man crew (pilot, copilot, navigator, and engineer) use a questionnaire to assess the work
load incurred on a flight from Gander to Lyneham. The results of the assessment may be seen in 
figure 31. 

Conrad (1951 and 1954) performed a series of experiments in which subjects had to detect and 
respond to visual signals on four clocks. The rate of signal presentation could vary from 40 to 160 
signals per minute. The responses consisted of turning a knob under the clock where the signal 
occurred. As the number of signals and clocks to be monitored increased, the percentage of signals 
that were not detected increased (fig. 32). 

The probability that a subject would miss a signal was increased more than twofold while subjects 
were responding to another signal. Under conditions of high task loads, some subjects attended to 
only part of the clocks and missed all the signals on the other clocks for up to 30 seconds. Also, 
some subjects would block and miss all signals under high task loads for up to 3 seconds. 

In a later experiment, Conrad (1955) varied the number of clocks that had to be monitored from 4 
to 16. Regardless of the number of clocks to be monitored, 25 signals were presented per minute. 
In this experiment, the amount of time between stimulus onset and response was recorded. Increas
ing the number of clocks to be monitored from 4 to 12 produced a twofold increase from 0.6 to 1.2 
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seconds in the mean time from stimulus onset to response, even though the signal rate was held con
stant at 25 signals per minute. 

Senders (1952) reported that an effective method to reduce the workload and, hence, the detection 
time for dial signal stimuli, was to have all pointers in the same orientation for no signal (or normal 
situations). Senders had subjects search for a dial pointer indicating a signal in arrays of dials. When 
the pointers that indicated no signal were aligned, each additional dial added approximately 0.01 
second to the detection time. When the pointers indicating no signal were not aligned, there was an 
average increase of 0.18 second for each additional dial. The mean detection time for a pointer indi
cating a signal was 0.25 second for aligned no-signal pointers and 2.88 seconds for unaligned no
signal pointers. 

In summary, THE HIGHER THE WORKLOAD IMPOSED ON A PILOT, THE MORE LIKELY 
THAT A SIGNAL (ESPECIALLY VISUAL) WILL GO UNNOTICED. WHEN POSSIBLE, THE 
OCCURRENCE OF A WARNING SIGNAL SHOULD SUFFICIENTLY CHANGE THE SENSORY 
ENVIRONMENT TO OVERCOME THE AMOUNT OF WORKLOAD IMPOSED AT THE TIME OF 
THE SIGNAL. Measurements of workload should be made and the effect of additional tasks and 
information should be determined. 

3.3 EFFECT OF VIGILANT STATE OF OBSERVER ON DETECTION OF SIGNALS 

•	 IF SIGNALS ARE WELL ABOVE THRESHOLD IN ALL PARAMETERS, THE VIGILANT 
STATE OF THE USER HAS LITTLE EFFECT ON SIGNAL DETECTION. 

The probability that an observer will detect a particular signal will fluctuate considerably over time, 
even when signal and environmental conditions are constant. Changes in an observer's efficiency in 
detecting signals are usually ascribed to changes in the observer's state of vigilance. Vigilance tasks 
usually require subjects to detect brief, near-threshold signals. There are copious quantities of data 
indicating that low signal presentation rates have a detrimental effect on the detection of signal 
stimuli (Adams, Humes, and Stenson, 1962; and Adams, Humes and Sieveking, 1963). 

Adams had subjects monitor a 22-inch screen on which either 6 (Adams et aI., 1962) or 36 (Adams 
et al., 1963) aircraft symbols moved at constant speeds. Each aircraft symbol was identified by a 
letter and three numbers. The signal stimulus to be detected was a change in the identifying letter of 
one of the aircraft symbols from a G to an F. There were a total of 135 such signals presented dur
ing each 3-hour session. Each critical signal (the F) remained on for 20 seconds. The subjects indi
cated detection of a signal by moving their right hand (from a rest button) and pressing a button on 
a panel. The time from onset of the stimulus until the subject removed his hand from the rest button 
was called the detection time. The percentage of signal stimuli detected was high. The lowest per
centage detection was for the condition with 36 aircraft symbols. Even in this condition the mean 
detection rate was 98.2% and the lowest rate for anyone session was 97%. The mean detection time 
was dependent upon the number of signal sources (aircraft symbols) that had to be monitored. 

When only six signal sources were monitored, the mean detection times were in the range of 1 to 2 
seconds. The mean detection times for the 36-signal-source condition were in the range of 3 to 6 
seconds. 

Sl 



Bowen (1964) used a simulated "noisy" radar scope on which a target signal, slightly brighter and 
larger than the noise spots, would appear. Each observer was to maintain a watch for the target sig
nal and depress a button when he detected it. The observers experienced three different signal fre
quencies: 1, 10, and 20 per hour. The signals varied by having two different flash rates-a difficult 
signal with a duty cycle of 0.5 second on and 1.5 seconds off, and an easier signal with a duty cycle 
of 0.5 second on and 0.75 second off. The results of the study can be seen in figure 33. The only 
real drop in detection performance occurs with the most impoverished condition-a slow flash rate 
signal, which is difficult to detect, occurring after a considerable blank period. As the situation 
becomes richer in information, the detection performance is level over time and may possibly 
improve. Davenport (1968) showed the same effect by increasing the duration and intensity of audi
tory signals. It shall be noted that in these experiments the subject's sole duty was to detect the 
target stimuli that were all presented within a restricted area or time. In addition, visual and auditory 
distracting stimuli were kept to a minimum. Any additional tasks or the presence of distracting 
stimuli would be expected to produce a detriment in performance on the signal monitoring task. 
However, AS LONG AS A SIGNAL IS WELL ABOVE THRESHOLD IN ITS PHYSICAL PROPER
TIES, THE DATA SEEM TO INDICATE THAT THE LENGTH OF THE TIME PERIOD IN WHICH 
THE SIGNAL MAY OCCUR (WITHIN NORMAL BOUNDS) WILL HAVE RELATIVELY LITTLE 
EFFECT ON ITS DETECTION. 
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4.0 FACTORS THAT AFFECT TIME FROM DETECTION TO RESPONSE
 

The above discussion has dealt mainly with the detection of signals. However, if a signal is to be 
effective, the person needing the infonnation must both detect the signal and make the appropriate 
response. Therefore, the signal must convey infonnation about the nature of the problem and/or 
tell the operator how to respond. There will always be a finite interval of time between the detec
tion of the signal and the completion of the response. The length of this interval is dependent upon: 

1. Signal-dependent factors 

2. Environmental factors 

3. Previous experience 

4.1	 SIGNAL-DEPENDENT FACTORS THAT AFFECT THE TL'\1E FROM DETECTION TO 
RESPONSE 

The major factors that affect the time from detection to response are: 

1. Number of steps in the data collection 

2. Length of the signal 

A tabulation of response times obtained in the literature reviewed and the conditions under which 
these times were obtained was made for the purpose of detecting trends and unique characteristics 
of combinations of stimuli. These data are presented in table 5. From an overview of these data, it 
is obvious that tactile stimuli and a combination of visual/auditory stimuli produce the fastest 
response. However, the tactile stimuli are not recommended for alerting stimuli because of their 
possible disruptive effects (sec. 3.2.1). Of the combination visual/auditory stimuli, the visual/voice 
combination appears to be more effective than the visual /tone combination for complex informa
tion transfer. The data also indicate that voice stimuli consistently produce a faster response than 
visual stirnuli. 

4.1.1	 EFFECT OF NUMBER OF STEPS IN DATA COLLECTION ON TIME FROM DETECTION 
TO RESPONSE 

An operator cannot make a correct response to a signal until he knows what the proper response 
should be. If the initial signal contains adequate information, the operator may initiate action at 
once. However, if the initial warning does not give adequate in.fonnation of the nature of the problem, 
then the operator must obtain more information before he can take correct action. Thus, the extra 
steps in the data acquisition will increase the time to the correct response. It should be noted that 
any time saved in gathering infonnation about a problem and responding to it reduces the effective 
workload on the pilot, and increases the amount of time that can be allocated to other tasks. 

4.1.1.1 Examples of How the Number of Steps in Data Collection Affects Identification Time 

• VOICE MESSAGES MOST EFFICIENTLY TRANSFER HIGH-PRIORITY INFORMATION. 



TABLE 5 TYPICAL STIMULI RESPONSE TIMES
 

NATURE OF STIMULI 
RESPONSE 
TIME, SEC TEST COI\IDITIONS 

VISUAL 
VISUAL AND BUZZER 
VISUAL AND VOICE 

12.12 
4.02 
2.40 

TRACKING TASK; NO IMPACT ON 
CONCURRENT TRACKING TASK 
PERFORMANCE 

VISUAL AND BUZZER 
VISUAL AND VOICE 

4.57 
1.94 

TRACKING TASK; BETTER TRACKING 
WITH VOICE WARNING 

VISUAL AND TONE 
VISUAL AND VOICE 

9.35 
7.89 

VISUAL AND BUZZER 
VISUAL AND VOICE 

2.63 
1.62 

VISUAL 
VOICE 

128.27 
3.03 

HIGH-SPEED LOW-LEVEL MILITARY 
FLIGHT TESTS 

VISUAL 
VOICE 

44.05 
2.93 

VISUAL CONSISTED OF ANALOG 
INSTRUMENTS AND LIGHTS IN 
AN F-100 AIRCRAFT 

VISUAL (STEADY) 
VISUAL (FLASHING) 

2.0 
1.3 

HUMAN FACTORS TEST IN A STERILE 
LABORATORY ENVIRONMENT 

AUDITORY 
VISUAL 

VOICE 
BUZZER 

2.2 
2.7 

1.94 
2.57 

SIMULATION OF A TYPICAL COCKPIT 
ENVIRONMENT 

TONE 
VOICE 

9.35 
7.89 

F-111 SIMULATOR; EACH ALERT CON
SISTED OF A MASTER CAUTION 
LIGHT, AN ALERT IDENTIFICATION 
LIGHT, AND AN AURAL ANNUNCIA
TION OF THE TYPE DESCRIBED TO 
THE LEFT 

VISUAL 
AUDITORY 
TACTILE 

0.494 
0.453 
0.381 

NO LOADING 

VISUAL 
AUDITORY 
TACTILE 

SLOWEST 

FASTEST 

NO LOADING EXCEPT VISUAL AND 
AUDITORY DISTRACTORS 
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The effect of the number of steps in the data collection was shown in a series of experiments by 
Pollack and Tecce (1958). The subjects in these tasks were required to detect and identify warning 
signals while performing a complex tracking task that involved watching a changing pattern of lights 
and making discrete changes in a joystick and rudder controls. The warning signals were presented 
on 24 visual displays (RCSGES "Magic Eye" tubes) that were arranged in 2 banks, 12 on each side 
of the tracking display. The signals for the monitoring task were enlargements in the opening of any 
one of the magic eye tubes. 

When a warning signal was activated, the subjects had to first push a master button on the joystick 
and then press a button under the activated warning signal. The scores for the tracking task were the 
number of correct movements per minute (tracking score). The warning signal task was scored for 
time to press the button under the correct warning signal (identification time). 

There were three different warning conditions: 

1. Visual-only display 

2. Buzzer and visual display 

3. Voice and visual display 

In the buzzer condition, a buzzer coincided with the onset of any visual warning signal. In the voice 
condition, the onset of a visual signal was accompanied with a specific vocal message telling which 
visual warning signal was on. The results of this experiment are presented in table 6. The differences 
between the mean response times for the visual-only condition and for the other two conditions 
were statistically significant. The difference between the response times for the buzzer and the voice 
conditions and the differences between the tracking scores for the three conditions were not statis
tically significant. 

In a second experiment, the subjects were required to reproduce spoken messages as well as perform 
the tracking and warning signal monitoring tasks. In this experiment, the voice condition was supe
rior to the buzzer condition on both detection and identification time (1.94 and 4.57 seconds, 
respectively). Pollack and Tecce ascribed the faster mean identification times in the voice conditions 
to the subjects getting enough information from the voice warning so that they did not have to scan 
the visual display before identifying the source of the warning. 

Table 6 Mean Performance Scores for the Three Signaling Systems 

IDENTI· TOTAL 
TRACKING DETECTION FICATION RESPONSE 

WARNING SYSTEM MATCHES/MIN TIME/SEC TIME/SEC TIME 

VOICE + VISUAL 8.44 1.44 2.40 3.84 

BUZZER + VISUAL 7.87 1.26 4.02 5.28 

VISUAL ONLY 7.30 11.16 12.12 23.28 
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Bate (1969) and Bate and Bates (1968) also researched the same signaling systems. Their findings 
differed somewhat in that the visual/tone system was more effective than either the visual or the 
voice/visual system. The possible reason for this finding was that the response task required the 
observer to look at a single annunciator panel to locate the signal. Therefore, the extra length of the 
voice signal did not give the observer any additional information over the tone. This finding supports 
the contention that voice systems should be used only when a complex response situation exists, 
and then only when speed and accuracy are essential. 

Kemmerling, Geiselhart, Thorburn, and Cronberg (1969) had 12 Air Force pilots fly a IOO-nautical
mile simulated flight in an F-ill simulator. Equipment failure warnings were given the pilots at 
three points in the mission. Each failure was signaled to the pilots by a master caution light, a light 
on the annunciator panel, and an auditory signal. For one group of pilots, the auditory signal was a 
tone. For the second group of pilots, the auditory signals were voice recordings of the nature of the 
failure (voice annunciator). The mean response time to the three failures were 9.35 seconds for the 
tone warning group and 7.89 seconds for the voice annunciator group. The faster mean response 
times for the voice group were attributed to the pilots being able to respond immediately to the 
warning without scanning the annunciator panel for more information. 

4.1.1.2	 How Number of Variable Dimensions of Signal Stimuli Affects Number of Steps in Data 
Collection 

•	 FOR A SIGNAL THAT VARIES ON ONLY ONE DIMENSION, DO NOT EXCEED NINE 
DIFFERENT SIGNALS. 

•	 VERBAL LABELS INCREASE THE NUMBER OF DIFFERENT SIGNALS THAT CAN BE 
IDENTIFIED. 

•	 TACTILE SIGNALS ARE POOR FOR CONVEYING LARGE QUANTITIES OF INFORMA
TION. 

The major factor in the number of steps in the information-gathering process is the amount of infor
mation in anyone step. The major limitations on information transmission by signal stimuli are due 
to properties of human observers. Even though humans can make precise judgments about minute 
differences between stimuli, they are extremely limited in their ability to make absolute judgments 
about stimuli (Miller, 1956). In other words, when presented with two signals, a person can tell quite- . 
accurately whether they are different. For example, Shower and Biddulph (1931) reported that 
under ideal conditions listeners could detect frequency differences between tones as small as 2 or 3 
Hz. However, when presented with single auditory signals that varied in only one dimension, he could 
identify the signals (by name or response) only as long as the number did not exc~ed 7 ±2 signals. 

Miller (1956) supports this position by citing a number of experimental results (fig. 34). The data 
on information transfer in these experiments are given in "bits" of information. THE GENERAL 
RULE FOR THE DEFINITION OF A BIT IS THAT EVERY TIME THE NUMBER OF ALTERNA
TIVES INCREASES BY A FACTOR OF TWO, ONE BIT OF INFORMATION IS ADDED (e.g., 
two signals are one bit, four signals are two bits, eight signals are three bits, etc.). 
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Figure 34 Three Experiments on the Identification of Unidimensional Signals 

Pollack (1952) found that listeners were much poorer at correctly identifying which one of a series 
of frequencies had been presented. Pollack also analyzed his data in terms of the number of bits of 
infonnation conveyed by a particular set of tones. As the amount of infonnation is increased by 
going from 2 to 14 different pitches to be judged, the amount of transmitted infonnation approaches 
as its upper limit a channel capacity of about 2.5 bits per judgment, or 6 different pitches (fig. 35). 

Fortunately, as Miller reports, there are some data on what happens when we attempt to identify 
signals that differ from one another in several dimensions. (A dimension is defined as any systema
tic difference between signal parameters, e.g., frequency l brightness, intensity, location, etc.) 
Klemmer and Frick (1953) tested the capability of humans to identify the location of a dot in a 
square. Their results are presented in figure 36. The 4.6 bits of infonnation are 24 different posi
tions that can be identified by name. Although this is an increase over a unidimensionally changing 
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signal, it is not as large as the expected 5.6 bits (2.8 bits or 7 locations from each dimension) or 
49 different signal locations from a two-dimensional signal. It is, however, almost within the lower 
bounds of the range of 4.64 bits or 25 locations. The more dimensions the signal processes, the 
less efficient (relative to a perfect system) the identification process becomes. 

Pollack and Ficks (1954) also found that increasing the number of dimensions on which sounds 
varied increased the total amount of information transmitted. However, THE AMOUNT OF INFOR
MATION CONVEYED BY ANY ONE DIMENSION DECREASED AS MORE DIMENSIONS 
WERE USED. With a six-dimensional auditory display, two-thirds of the listeners could receive 5.3 
bits of information when each dimension was divided into two (binary) levels. The information 
conveyed was increased to 7.2 bits when five levels of each dimension were used. However, the error 
rate increased from an average of 2.9% per dimension for the binary display to 35.6% for the quinary 
display. 

The disparity between the accuracy of making discriminations and making absolute judgments with 
auditory signals has also been found to hold for all other sensory changes (vision, touch, etc.) as 
well. However, the number of levels of signals that can be absolutely identified depends upon the 
channel and dimension tested. The highest information-earrying dimensions are the visual dimen
sions of linear position (3.2 bits; Hake and Garner, 1951) and hue (3.1 bits; Eriksen, 1952). One 
of the poorer dimensions is the tactile dimension of pressure (1.7 bits; Hawkes, 1961). 

The tactile sense, because of its lack of dimensions that can carry information and the small number 
of absolutely identifiable levels of each dimension, is a poor channel for conveying large quantities 
of information. Vision and audition both have a number of dimensions that can convey information 
and therefore are often used to convey large amounts of information. Numerous visual and auditory 
coding systems have been devised and tested. Some coding systems involve unidimensional signals 
such as the sets of colors developed by Conover and Kraft (1958). Other coding systems have used 
combinations of dimensions. One of the most elaborate, and probably one of the most efficient, 
coding systems is the language used in daily communication. 

In summary, the amount of information conveyed by anyone stimulus dimension is extremely 
small. AS THE NUMBER OF VARIABLE STIMULUS DIMENSIONS INCREASED, THE AMOUNT 
OF INFORMATION THAT COULD BE CARRIED BY A SIGNAL WAS ALSO INCREASED. It 
was noticed by Pollack and Ficks that the high level of performance on the binary display was 
accomplished by the attachment of verbal labels to different signals. THE LISTENER'S PERFOR
MANCE SEEMED TO IMPROVE WHEN HE COULD IDENTIFY EACH SIGNAL IN TERMS OF A 
VERBAL LABEL. Visual and auditory channels can both accept a number of signal dimensions, 
permitting them to convey large quantities of information. The touch channel, on the other hand, 
does not possess this characteristic. 

4.1.1.3 Voice Warning Systems 

•	 VERBAL SIGNALS PRODUCE SIGNIFICANT IMPROVEMENT IN RESPONSE TIME, 
ESPECIALLY DURING PERIODS OF STRESS OR HEAVY WORKLOAD. 

•	 WORDS IN SENTENCES ARE SUPERIOR TO THE SAME WORDS ALONE. 

•	 USER MUST BE FAMILIAR WITH THE MESSAGES. 
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Under high-stress conditions, the audio-visual load on the pilot may reach saturation levels, causing 
a potential decline in efficiency and performance. Therefore, a system that can transmit warning 
information under these loads without degrading performance is essential. One way to accomplish 
this type of warning is to provide more information per message and allow the transmission of only 
absolutely essential messages. A warning system using voice messages to inform the pilot of aircraft 
status and incorporating a priority attenuation system meets these criteria. As it has been shown 
previously (Pollack et aI., 1958; and Kemmerling et aI., 1969), VERBAL WARNINGS PRODUCE

- - - - - -- . 

SIGNIFICANT IMPROVEMENT IN RESPONSE TIME, ESPECIALLY DURING PERIODS OF 
HEAVY WORKLOADS OR STRESS. Even though this is an important aspect of a warning system, 
another one of the more important advantages is often overlooked. THE VOICE WARNING SYS
TEM ALLOWS THE PILOT TO EVALUATE THE CRITICALITY OF THE SITUATION WITH
OUT BRINGING HIS EYE SCAN BACK INTO THE COCKPIT. As in other real-time environments, 
the verbal warning should only be used in the highest priority situations, since overuse could detract 
from this impact. 

There are two basic types of voice systems. The first uses prerecorded presentations of actual speech 
and requires a recorded message for each warning it is to present. It has the advantage that messages 
are close to everyday speech, and thus relatively easy to understand. On the other hand, it is diffi
cult to centralize these voice recordings, and a technique for reliably and rapidly accessing a central 
unit has not, to the author's knowledge, been developed in a size that can be adapted to an aircraft 
cockpit. 

Another system would use the onboard computer to control a voice synthesizer or digitizer to gener
ate prestored warnings and recovery procedures. Since the computeI' is used, rapid access and a 
wider range of messages is possible. The major drawback with this system is that synthesized voice 
does not sound the same as "real world" speech. Much of the intonation is missing and some of the 
sounds are difficult for a computer to reproduce. 

Simpson (1975) hypothesized that pilot experience with aircraft terminology and events that are 
likely to occur would tend to overcome this drawback. To test this hypothesis, she presented pilots 
and nonpilots (policemen familiar with radio communications) with 16-sentence-length messages, 
either synthesized or human speech. The messages were either in common or aircraft terminology 
and were matched for similar meaning. The observers were to repeat the messages after they were 
presented. (The correctness of their repetition was their articulation score.) Figure 37 shows results 
of the first presentation of the messages in this study. Although both groups of observers did less 
well on the synthesized speech with the common phraseology, they had equal articulation scores 
between them on each of the voice tapes (synthesized and human). This was not the case when air
craft phraseology was used. The pilots did better under this condition. In fact, the articulation score 
for the pilots using the synthesized voice system was equivalent to that of the nonpilot using the 
human voice system. 

Another parameter of voice systems that must be considered when assessing and developing system 
effectiveness is the context of the messages. Simpson (1976) points out that WORDS IN 
SENTENCES ARE MORE INTELLIGIBLE THAN THE SAME WORDS PRESENTED ALONE. 
The reason is that real world context provides redundancy, which permits a person to miss a word 
and still make a relatively good guess as to what it was. This phenomenon can be seen in the pre
vious study where pilots were able to perform better on a degraded system because they were famil
iar with the types of phraseology and context being used. Simpson poses the question: If familiarity 
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Figure 37 Articulation Performance on Two Types of Voice Warning Systems (Simpson 1975) 
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with the context of messages allows the operator to use a degraded system, can the messages be 
shortened to decrease response time and preserve adequate recognition performance? To answer this 
question, she presented voice-synthesized keyword and sentence-length messages to airline pilots in 
several signal-to-noise ratios under two conditions: 

1. No familiarization with the actual message set before testing 

2. Prior familiarization with all messages 

For testing, the pilots were divided into two groups so that each pilot would receive each keyword 
message only once. One group would receive the words alone and the other would receive them in 
sentences. Each message was presented twice in succession. The pilots' task again was to key a 
microphone (the "understand" response used for response times) and repeat the message (articula
tion score). Simpson found that warning messages consisting of monosyllabic keywords were 
repeated more accurately over a wider range of signal-to-noise ratios when the words were in sen
tences than when they were presented alone (fig. 38). Polysyllabic words, on the other hand, did 
not show this tendency; the articulation scores for both sentences and isolated words were relatively 
the same (fig. 39). This seems to indicate the THE OPERATORS NEEDS SOME "WARMUP" OR 
ALERT TO THE VERBAL MESSAGE. The short, monosyllabic keywords did not give him enough 
time to prepare himself to receive the message. The response time results are presented by group in 
figure 40. As can be seen, these data closely follow the articulation scores. 

In summary, VOICE WARNING SYSTEMS SHOULD BE USED TO REDUCE WORKLOAD 
UNDER HIGH-STRESS SITVATIONS. THEY SHOULD CONVEY HIGH-PRIORITY MESSAGES 
AND HAVE THE ABILITY TO ATTENUATE MESSAGES OF LOWER PRIORITY. THEY 
SHOULD CONTINUE UNTIL THE SITVATION INITIATING THEM IS CORRECTED OR SOME 
MULTISTEP PROCESS HAS BEEN USED TO CANCEL THEM. SINCE THEY DO INDICATE 
THE HIGHEST PRIORITY WARNINGS, FALSE SIGNALS ARE EXTREMELY UNDESIRABLE. 

MESSAGES SHOULD BE CONSTRUCTED OF SHORT SENTENCES OF POLYSYLLABIC 
WORDS TO ALLOW THE PILOT TO MAKE USE OF THE CONTEXTUAL REDUNDANCY AND 
ALERTING NATURE OF THE LONGER MESSAGE. THE CONTENT AND TERMINOLOGY 
SHOULD BE FAMILIAR TO THE PILOT. 

4.1.2 HOW LENGTH OF SIGNAL AFFECTS TIME FROM DETECTION TO RESPONSE 

The time from detection to response is also affected by the time required for each step in the data 
collection. At each step in the data collection the observer must detect and locate a signal and then 
process the information in that signal. The time for each step is dependent upon (l) the time to pro
cess the information in the present step, and (2) the time to change from one signal source to the 
next one. 

4.1.2.1 Factors That Affect Time To Process Information in a Step 

• THE PRESENCE OF A MASTER WARNING DECREASES RESPONSE TIME. 

• DARK LETTERING O~ A LIGHTED BACKGROUND PRODUCES FASTEST RESPONSE 
TIME. 
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Figure 39 Polysyllabic Words: In Isolation and in Sentence Context 
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•	 HIGH PRIORITY LEGENDS SHOULD BE 0.125 TO 0.25 INCH HIGH WITH A HEIGHT-TO
WIDTH RATIO OF 5:3 AND A STROKE WIDTH 0.125 TO 0.166 OF THE HEIGHT. 

THE HEIGHT OF A MASTER WARNING DECREASED THE RESPONSE TIME AS DOES A 
POSITIVE LEGEND DISPLAY. The 0.25-inch legend height appears satisfactory for displays con
sisting of black letters on an illuminated background (fig. 41). If time is not limited (i.e., advisory 
signals) 0.375-inch illuminated legends on a dark background may be used. The data for missed sig
nals also follow this pattern (fig. 42). The percentages of misses for the negative display times 
master on-off were not included in this figure. For negative displays, 5.8% of the signals were 
missed with the master on as compared to 56.3% misses with it off. Positive displays incurred 3.3% 
misses with the master on and 20.4% with it off. What is interesting here is that WITH A MASTER 
SIGNAL, THERE IS VERY LITTLE DIFFERENCE IN THE RESPONSE ACCURACY BETWEEN 
POSITIVE AND NEGATIVE DISPLAYS. 

MIL-STD411D requires that warning legends be opaque with a translucent background. The legends 
will be from 0.125- to 0.25-inch high. Caution and advisory legends will be translucent on an opaque 
background and the same height. MIL-SPEC-180 12B delineates the height-to-width ratio as 5:3 and 
the stroke width as 0.125 to 0.166 of the height. 

4.1.2.2 Factors That Affect Time to Change From One Signal to the Next One 

•	 FOR HIGHEST PRIORITY SIGNALS, THE PRELIMINARY SIGNAL (ALERT) SHOULD 
GIVE SOME INDICATION WHERE TO LOOK FOR THE ACTION SIGNAL. 

•	 RAPID ALTERNATION BETWEEN SENSORY CHANNELS SHOULD NOT OCCUR, 
ESPECIALLY IN HIGH-STRESS SITUATIONS. 

THE LONGEST TIME FOR SHIFTING FROM ONE SIGNAL TO ANOTHER OCCURS WHEN 
THE SECOND SIGNAL IS A VISUAL SIGNAL AND THE FIRST SIGNAL DOES NOT GIVE 
THE PRECISE LOCATION OF THE SECOND SIGNAL. For example, in the experiments by 
Pollack and Tecce (1958) discussed previously, subjects would receive either a buzzer warning or a 
voice warning of the existence of a warning light. In the buzzer warning condition, the subjects had 
to scan two visual displays for the warning light. The voice warning condition eliminated the need 
for the visual scan. The total mean reaction time was faster for the voice than for the buzzer condi
tion by 1.62 seconds in one experiment and 2.63 seconds in a second experiment. The 1.62- to 
2.63-second longer reaction times for the buzzer condition were a measure of the search time, or 
the time to shift from one signal to the next. 

Klemmer (1956) gave observers tests in which they attempted to follow flashing lights and brief 
tones by pressing appropriate buttons. Only one channel was activated at a time and the rate of 
alternation between channels was varied systematically between tests. The rate of stimulus presenta
tion in the active channel was either two or three per second in separate tests. Results indicate that 
forcing the observer to alternate regularly between visual and auditory tests more rapidly than once 
every 2 seconds lowers his overall performance on both tasks sharply (fig. 43). Therefore, GREAT 
CARE SHOULD BE TAKEN IN SELECTING SIGNALING SYSTEMS SO THAT A CONTINUOUS 
AND RAPID ALTERNATION BETWEEN SENSES IS NOT LIKELY TO OCCUR IN HIGH-8TRESS 
SITUATIONS. 
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Figure 43	 Percentage Correct (Average for Three Subjects) During Alternation Between 
Auditory and Visual Channels as a Function of Time Between Alternations 
(Klemmer 1956) 

4.2 EFFECT OF ENVIRONMENTAL FACTORS ON TIME FROM SIGNAL DETECTION TO 
RESPONSE 

IN GENERAL, ANY ENVIRONMENTAL FACTOR THAT INCREASES THE DEMANDS ON 
THE OBSERVER WILL INCREASE THE TIME FROM SIGNAL DETECTION TO RESPONSE. 
An example of how the response to one signal can affect the reaction time to a second stimuli was 
demonstrated by Smith (1969). Smith presented two stimuli (Sl and S2) as numbers that subtended 
9.50 of visual angle in adjacent windows directly in front of the subjects. The subjects had to push 
one of eight buttons in .response to one stimulus and verbalize a name in response to the other 
stimulus. The response to either stimulus was dependent upon the number of possible responses to 
that stimulus as well as the number of possible responses to the other stimulus. As is shown in table 
7, increasing the number of possible responses to S1 increased the reaction time to both S1 and S2' 
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Table 7 Time for Responses to Two Stimuli 

S1 ALWAYS PRECEDED S2 BY 50 msec 

NUMBER POSSIBLE TIME TO RESPOND, SEC 
RESPONSES TO S1 RESPONSE TO S1 RESPONSE TO S2 

2	 0.48 0.62 

4	 0.59 0.72 

8	 0.67 0.78 

4.3 EFFECT OF PREVIOUS EXPERIENCE ON RESPONSE TO SIGNALS 

•	 ALL SIGNALS SHOULD BE STANDARD BETWEEN AIRCRAFT. 

•	 CONFUSING SIGNALS SHOULD BE CHANGED. 

Airplane pilot perfonnance is strongly affected by skills learned previously in other situations. The 
effect of a previously learned skill on perfonnance in a new situation is called transfer of training. 
There are two types of transfer of training-positive transfer and negative transfer. Positive transfer 
is any improvement in perfonnance due to previous experience and usually occurs when the responses 
to be made in a new situation are similar to the responses made in a previous situation. Negative 
transfer is any detriment in perfonnance due to previous experience and often occurs when the 
responses to be made in a new situation are different than the responses made in a previous situation. 

Fitts and Jones (1961) made a classic study of the often disastrous effects of negative transfer on 
aircraft crew perfonnance and found that the stimulus-response relationships were often not the 
same in different aircraft. For example, three types of aircraft (B-25, C-47, and C-82) each had the 
three controls of the throttle quadrant (throttle, fuel mixture, and propeller pitch) arranged dif
ferently. Pilots who usually flew one of these three types of aircraft would occasionally fly one of 
the other types. The pilot would sometimes make an incorrect response in the unfamiliar aircraft. 
Occasionally the pilot would operate the propeller pitch control when he wanted to increase the 
throttle. The resultant loss of airspeed was often fatal. 

At present there are several different types of signals for a variety of conditions in aircraft. The use 
of signals is not rigidly standardized between aircraft. Thus, the steward's call in one type of com
mercial jet might be similar to the altitude warning in another type of commercial jet. A failure to 
respond to an altitude warning because it was identified as a steward's call could be disastrous. 

To prevent misidentification of warning signals: 

].	 THE ALERTING SIGNALS IN ALL AIRCRAFT SHOULD BE STANDARDIZED. 

2.	 OTHER SIGNALS THAT MAY BE CONFUSED WITH WARNING SIGNALS SHOULD BE 
PROHIBITED. 
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5.0 GUIDELINES FOR SELECTING ALERTING SIGNALS
 

The experimental results reviewed in this paper were used as guidelines on using time to detection 
and time for detection to an effective response as criteria for signal selection. As pointed out pre
viously, the priority of a signal is based solely on the time a pilot has to respond before the point 
where his response will not change the outcome of the situation. Therefore, in the following guide
lines the methods for minimizing detection and response times will be presen ted. These methods 
will pertain to high-priority signals, and for lower priority signals a less rigid criteria can be used. 

5.1 GUIDELINES FOR MINIMIZING TIME FOR DETECTION OF ALERTS 

•	 Present high priority alerting signals both visually and aurally (sees. 3.2.1 and 4.1.1). 

1.	 Maximize the probability of detection of each mode of the warning signal. 

•	 The detectability of high-priority visual alerting signals should be maximized as follows: 

1.	 Present visual alerting signals as close to the operator's line of sight as possible. Maximum 
deviationof 150 for high priority alerts and 300 for lower priority (sec. 3.1 .1 .1). 

2.	 Visual alerting signals should subtend at least 10 of visual angle (sec. 3.1.1.2). 

3.	 Visual alerting signals should be twice as bright as other visual displays on the instrument 
panel (sec. 3.1.1.3). 

4.	 A visual alerting signal should be flashing against a steady-state background (sec. 3.1.1.4). 

5.	 High-priority visual alerting signals should be colored red, cautionary signals, amber, and 
advisory signals green or blue (sec. 3.1.1 .5). 

6.	 Legends on high-priority signals should be opaque with an illuminated background. On 
lower priority signals the legend should be illuminated with an opaque background 
(sec. 4.1.2.1). 

7.	 Legend height should be at least 0.25 inch with a height-to-width ratio of 3:5 and a 
stroke width of at least 0.125 of the height (sec. 4.1.2.1). 

8.	 If visual signals are to be located in the peripheral visual field, a master signal should be 
used (sees. 3.1.1.2 and 4.1.2.1). 

9.	 False signals should be minimized and a method of canceling the signal should exist 
(sec. 3.2.1). 

•	 The detectability of auditory alerting signals should be maximized as follows: 

1.	 Auditory alerts should be multiple frequency with more than one frequency in the range 
of 250 to 4000 Hz (sec. 3.1.2.1). 

2.	 The amplitude of an auditory alerting signal should be at least 15 dB above the amplitude 
of the masked threshold (sec. 3.1.2.2). 

71 



3.	 An auditory alerting signal should be intermittent or changing over time (sec. 3.1.2.4). 

4.	 Auditory alerting signals should be dichotically separated from auditory distractors and 
noise. If dichotic separation is not possible, warning signals should come from a location 
that is separated by at least 900 from the sources of interfering noise or signals. In addi
tion, if the location of both the'source of the warning signal and the source of the inter
fering sounds are optional, the warning signal should be presented to the dominant ear 
and other sounds should be presented to the nondominant ear (sec. 3.1.2.3). 

5.	 An attention-intruding signal (e.g., the person's name) should be given at the beginning 
of an alerting signal (sec. 3.1.2.5). 

6.	 Exposure/time constraint must be followed on all levels of signal priority (sec. 3.1.2.2). 

•	 The use of tactile alerts is not recommended due to the possible disruptive effects of tactile 
stimuli (sec. 3.2.1). However, if tactile alerting signals are used, then detectability may be 
maximized as follows: 

1.	 Tactile warning signals should be delivered by a vibratory apparatus that will always be in 
contact with the body (sec. 3.1.3.1). 

2.	 The amplitude of the vibration should be detectable by the region of the body that is 
stimulated (sec. 3.1.3.2). 

•	 Other general guidelines are: 

1.	 A warning signal should be presented until the crew responds (sec. 3.3). 

2.	 Distracting stimuli and the workload should be minimi2.ed while warning signals are being 
presented (sec. 3.2.1). 

5.2 GUIDELINES FOR MINIMIZING TIME FROM DETECTION TO EFFECTIVE RESPONSE 

•	 The number of steps in the data collection should be minimized (sec. 4.1.1). 

•	 Voice signals should be used along with visual signals (sec. 4.1.1.3). 

•	 The effectiveness of voice signals may be maximized as follows: 

1.	 The language and phraseology should be familiar to the pilot (sec. 4.1.1.3). 

2.	 The message should be preceded by an alerting tone, word, or phrase (sec. 4.1.1.3). 

3.	 Synthesized voice systems may be used if every effort is made to simplify the communi
cation task (sec. 4.1.1.3). 

4.	 The warning system should have capability of attenuating other voice systems while the 
warning is activated (sec. 3.1.2.3). 

•	 A warning signal should not be confusable with any other signal (sec. 4.1.1.2). 
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APPENDIX A
 

This appendix contains a categorization of abstracted works pertaining to caution and warning 
systems. It also contains related military standards. 
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Area of 
concern 

V"ual signals-
size 

Author 

Elliott 
1968 

Freoberg 
1907 

N0'laircrah related test dilta findings 

For a simple reacllon time' IRTI task, the RT tor a 10 

visual angle light was 110 different Ihan for a 30 light 

·Simple reaction tll1le IS the lime to react to a stimulus 
when that IS the only task 10 be accomplIShed 

Simple RT decreased as the size Increased leveling otf 
at 20 Visual angle 

Author 

MerT/mall 
1969 

Sller.han 
1972 

Aircrah related test data find ings 

Reaction tllne to Grimes warning lights 11/8" x 7110" 
legend with border illumination) decreased as the 
width of the border Increased leveling off at 75 sec 
for a width 01 114" 

Response tunes to alphanumeric legends decreased as 
size Increased leveling off at 1 sec for to visual ongle 

Mil std/ Military standard/design guideline
guide no. 

MIL S10 • A 3/16 lIldl !JOrder shall surrollnd If'qfl1rJs 
4110 

I 

Visual sign,'s

brightness and 
contrast 

Visual signal5
locatIOn 

Pabb 
1962 

Rains 
1962 

Kohfeld 
1971 

Hoyland 
1936 

Matteson 
1971 

Teichner 
1954 

Gerathewohl 
1953 

Coates 
1972 

Simple RT decreased as brightness increased leveling off 
at 180 msec for 30·ft·L. Signal size was 10 10 min of 
visual angle. Lighted sigual was presented in a dark room. 

Found that a 1.59 mL signal wl'h a 4 minute visual angle 
and a .023 sec flash was the detection threshold for a 
white signal in a simple RT task. Lighted signal was 
presented in a dark room. 

Simple RT decreased as intensity increased leveling off 
at 220 msec between 1 and 100 mL for white light. Signal 
was presented In a dark room. 

Found that for moderate brightness levels the" was no 
relationship between hrightness and RT except for com· 
pletely dark adapted subject who reacted to a 250 ft·C 
signal faster. 

A low level of brightness of the area surrounding the 
signal caused a small decrease in RT (25 msecl over no 
surrounding Ii:lht. There was no further effect of sur· 
round on RT until the surround became brighter than 
the signal. 

Simple RT decreased as intensity Increased leveling off 
at 25 ftC for larger obJects (3-5.2 m,nutes Visual angle) 
and 45 ft·C for smaller objects 11-2 minutesl 

Flashing signals produced faster RT 12 secl than steady 
signals when contrast levels were less than one. For 
levels greater than one there was no significant difference 
between the signal~ fJr the lowest contrast 
(Signal Lumlrlance - Bar:kground Luminance) 

Background Luminance 

Level \.15) The average number of misses tor the stead'.' 
signal was 50":' 3nd for the fra~,",lng slg'lal W;'l~ 5%. 

For monocular viewing simple AT was fastest at the 
Inlddle position +4° for the gazing scan pattern and at 
+24 0 for the scanning pattern 

RICh 
1971 

USing very small (4 minutes Visual angle) stationary 
targets 83°0 were d~tected when the target was on the 
line of siglTt and 35% wlien It was 30 0 to 400 left or 
right. 

MILSTO 
4110 

MIL ·STO 
1472B 

MILC 
81774A 

MILSTO 
4110 

• The legend on a signal wilen energlzrd shall be read 
able under direct sunlight 110,000 II·LI WI"n no: 
energized the legend should not be readahle and sho': 
not appear energized in dIrect sunlight 

• Brrghtness sl,all be no less than 150 tt L Warnlny 
lights shouid be dimmed to 15+3 ftL when tlTe prlol, 
primary instrument light contraIlS "on" AdVisory 
lights should be dimmed to 1+5 It L. when the 
primary light control IS at max. IntenSity 

• Brightn,ss 01 rear lighted displays shall be at least 
10° greater than the ;'"ghtness of the area around 
the dISplay. A dimming control Should be proVided 

• Contrast between lighted and unlighted portions ot a 
display, under h,gh am brent ,llummatlon '10,000 It CI 
shall be a minImum of 3 when calculated as 

E1 B2 BI BrHJhtness of illuminated POltlUIl 
C '--- .. ---

B2 
B2 Brlghtnes~ Jf unlighted IJOnIOI' 

• NOllllnal epv(!lolJ~ (Jf VISIOl1 fnr 1)0tlllJilu! dnd COlJilOl 
IS i:l 30 0 cont.! sYlllllletrlcal about a Illle troln I'VP. POSI 
11011 to lllP. top I)f the Il15trUlllf':1! pan!!1 



~ 

Area of 
concern Author Nonaircraft related test data findings Author Aircraft related test data findings Mil std/ 

guide no. 

Visual slgnals
location 
IcOlli I 

Rains 
1962 

Simple RT for the right eye was fastest at 00 and 
increased as the hori!ontal angle increased. It had not 
leveled out at 30° Signals to the left produced faster 
RT's than to the right and signals above hori!ontal pro· 
duced faster RT's than those below. 

Siegel 
1960 

Found that response to signals located at 00 horizon· 
tal displacement from pilot's centerllne of vision was 
faster than to signals located at either 33 0 or 95° 
Mean response time for signals at 95 0 was 1.2 
seconds slower than for signals at 0° 

Sharp 
1967 

Using a sound as a cue for a visual signal found no dif· 
ference in visual RT as the hori!ontal displacement of 
the signal increased from 00 to 750 

Sharp 
1968 

For visual RT with no auditory cue there was an increase 
in the RT variability as the hori!ontal displacement of 
the signal increased from 57 0 to 83° However, the mean 
RT did not change over this range. The RT increased 
sharply at displacements greater than 830 and, 96 0 , 25 
percent of the signals were missed entirely. 

MIL·STD 
14728 

Haines 
1975 

Described !ones of equal RT for different colored signals. 
The lowest RT lone 1330 msecl for red lights covered a 
signal displacement of 30 0 left, 350 right, 20 0 up and 25 0 

down. The lowest RT lone 1270 msec) tor white 
lights was from 45 0 left to 500 right and 200 up to 25 0 

down. 

Teichner Simple RT to a white light increased from .004 sec at 30 

1954 horllontal displacement from the centerline of Vision to 
.024 sec at 45° 

Visual5lgoal5 Crawford Used white signals with red and green dIStractors. Foond Noble Alternaling and flashing lights produced superior. MIL·STD 
format 1962 no difference in a Simple RT task between steady and 1958 detection (not qualtitied) In both day and night 4110 

flashing signals with no dlstractors. Flashing signals with conditions. If a steady light was missed it was more 
steady distractor produced fastest RT. I;kely to remain missed. 

Gerathewohl Flashing signals produced a faster response time (by 2 
1953 sec) when contrast levels were less than one. For levels 

greater than one, there was /lot a significant difference 
In response time to flas:ling and steady signals. 

Edwards BUilt a relable sti:tlstlcal model (utillllllg ~alred corn 
1971 ~arison techniques) to classify flashlllg lights of various 

charactenstlcs III order uf their attention·attracting 
value. 

Visual slgnals- Coates Red lights were detected Significantly faster than green MILSTD 
color 1972 III a vigilance task. However, the dIfference was only 4110 

17 Ill"C 

Jones 
1960 

Color coding is not SUited for Situations that demand 
rapid and precise Identdication but It 1$ valuable In 
tasks that reqUtrp. a "Iol:ate" process. 

MIL·C 
25050A 

Welllgarten Simple RT to a red light was Significantly faster thall to 
1972 a green Olle. However, the difference was only 25 Illsec. 

Haines 
1974 
1975 

In a simple AT task, the RT to a red light was 16 0 slower 
than to green or yellow lights. AT was significantly 
slower lup to 28 0 1 In the peripheral field Red signals 
were affected more by dis~lacelllent than the others III 
both RT and mISses. The fastest RT 1288 msecl was lor 
yellow Signals. 150 RT maps are provided for eacll 
color tor the full vlSlial field. 

Military standard/design guideline 

• Light signals shall not he located Within the pilots or 
copilots basic flight instrument group when warnrng 
lights have to be located outs"le the 30 0 cone of vision 
a master signal must be provided within the cone. 

• Except where specifically authorl!ed advisory lights 
shall not be located on the main instrument panel. 

• Viewing distance from eye reference to diaplay shall 
not be less than 13 inches preferrably not less than 
20 inches or greater than 28 inches 

• Flashing light presentation si,all have flash rates of 
3 to 5 per second. The "on" time shall be appro x 
Imately equal to the "off" time 

•	 Warnlllg signals will have red background With o~aque 

letters. Caution signals will have yellow letters With 
o~aque background. AdVisory Signals will Ilave green, 
blue or white letters 011 an o~aQue backgruund, 

• Red lights shall not be yellower nor less saturated than 
the liglll translllitted by an N8S 3215 triter IrOIll a 
2854 0 K source. Other colors are given as coordillates 
of the O.I.E. chromaticity diagralll. 
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Area of 
concern Author Nonaircraft related test data findings Author Aircraft related test data findings Mil std/ 

guide no. 
Military standard/design guideline 

Visual signals-
color Icont! 

Pollack 
1968 

The effect of color on RT decreased as brightness 
increased and there is relatively little effect due to color 
above .0023 ft·L. for brightnesses where there was an 
RT difference due to color AT's increased as the spectrum 
went from blue to red 

Bartlett 
1968 

Simple RT to red signals was signlL~antly faster at the 
'me of sight than at a displacement uf 120 horizontally. 

Warm In a simple RT task during vigilance the RT to signal off· 
1967 set was faster than to onset There was no difference 

in RT between red and green signals. 

Reynolds 
1972 

Performed simple response time task varying signal color, 
background color, and ambient light level. A red signal on 
blue background with dim ambient resulted In the fastest 
response time 11 seel. Response time for red was the fast· 
est 12.019 sec). The other colors were as follows: green 
2.341 sec, yellow 2.992 sec and white 3.93 sec. Results 
mdicate that red signals attract the greatest amount of 
attentiofl. 

Hill Detection thresholds for red, white, yellow and green 
1947 lights were nearly e~ual over a range of background 

lummance from 10' to 10 4 ftC. 

Visual signals 
workload, fatigue, 
and vigilance 

Singleton 
1953 

Response time In a 4 choice task increased significantly 
from the hrst to the second half of the trails dUling a 
1 hour test period. 

Adams 
1961 

Contrary to experiments With only a slIlgle stImulus 
source there was no decrement in percent correct over 
a 3 hr period for more complex tasks 16 or 36 stimuli! 
Response latency declmed Significantly for the single 
stimulus task and not at all for the complex tasks. 

McCormack Simple RT increased significantly throughout a 30 
1960 minute task. 

Simple RT showed an Immed'ate Increase With phvslCalMalomsokl 
1970 exercise. 

found that Simple RT doubles when going from 0 to 10Crawford 
1962 dlstractors (.8 to 15 sec! and lreble' when yu illy tu £1 

Telchner loss of detection performance on displays requiring no 
1974 eye movement was relat!vely small over the 3 hour 

vigilance period. 

Detection performance dUring Vigilance will be better IfPoulton 
1966 the pilot Sflenses Clre kept (lctlve ur It he IS a mer:~her ul ~ 

team 

Simple RT to a given Signal increased as the informatronHyman 
1952 I n the Signal increased A linear funcllOll was deSCribed 

for the relationship between RT and SIgnal information 
(0 to 3 bits) 

for a hiyh probability evenl120/h,) the RT (7 sec) wa' 
less affected by the tlllle on Ihe task than the RT 114 
secl for low probability events 11/hrl. 

Bowell 
1964 

Ware Detection decreased from 85 10 65 percent when gOIng 

1964 from I to 4 signal sources and a 5-10 perr.enl decrease 
was observed over a 3 hr period for a!l conditions. 
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Area of 
concern Author Nonaircraft related test data findings Author Aircraft related test data findings Mil std/ 

guide no. 
Military standard/design guideline 

Visual signals-
pilot age 

Tolin 
1968 

Older sublects \66-87 years) exhibited a 30% slower AT 
and a 76% slower movement time. Increasing the task 
complexity did not have a ditterential ettect tor AT but 
the older sub/eClS did show increasingly 'lower movement 
times. 

Szafran 
1969 

Visual accommodation drops from 6 diopters in vouoger 
pilots (30) 10 4 diopters in older pilots (451. Flash rate 
fusion treQuency reaches a mimmum at age 35 and in 
creases with age_ There is no eVidence at change in dark 
adaptation. Intormation processing, ettective auditory 
threshold or auditory detection. 

Talland Percent correct detections decreased signiticantly (l0 
1966 to 15%1 with age tor a range at Signal durations tram 

.5 to 3 'econd'_ 

• For warning signals use a red ~ackground with opaque 
letters, lor caution signals use yellow letters on an 
opaque background and for advisory ,ignals use g""n. 
blue or white letters on an opaque background. 

• legends shall be 1/8 to 1/4 inch high. A 3/16 border 
should surround the legend. 

• Width of letters shall be 3/5 of the height except for 
"I" which shall be one stroke ,n Width and the "M" 
and "W" which shall be 4/5 the height. Stroke width 
of the characters shall be 117 at the heiQht. 

• With a 28 inch viewing distance legend height shall 
be between .15 and .30 inches except critical mark 
ings which shall be no Ie" than .2 inches. Width shall 
be 3/5 the height except "4" whICh shall be one 
stroke wider and "1" and "I" which shall be one 

Teichner 
1954 

Simple AT decreases to age 30 then increases. However, 
at age 60 it was still taster than at age 10_ 

Aabbit 
1967 

Subjects over the age of 60 do not get as much advantage 
out at redundant intormation as the 17-28 year aids. 

Visual signals-
legend characteristics 

Van laer 
1961 

Visual acuity is satislactory at brightness levels at _1 
to .01 rnL III a dark room. 

Siegel 
1960 

Dark legend on luminated background was superior in 
both AT and accuracy to luminated legend on dark 
background_ For dark legends with a height-width ratio 
at 5:31/4 in_ height was superior 10 1/8 in_ but the same 
as 3/8 in_ tor a 28 in. viewing distance. 

Mil-STD 
4110 

Taylor 
1961 

Near threshold legends must be within 1° of direct line
of-sight. legends must be twice threshold size when the 
displacement angle gets to 4"-

Bendix 
1959 

For dark legend on luminated background a bold 
character with a stroke width ot 115 at the height should 
be used. For lighted legends a medium to light character 
style with stroke widths ot 1/8·1/10 of the height should 
be used. 

Peters 
1959 

Developed a height tormula for legends where H = 
_00220 + K1 + K2' 

H =Height in inches 
0 =Viewing di.itance 
K1 :: Correctitlil factor tor illumination & viewing 

conditions 
K2 '= Correction for Importance 

Brown 
1953 

The optimum height-width ratio tor transluminated 
legends is 1: 1 for unitorm stroke block le"ers_ The width 
should be no less than 2/3 the height use 9/64 in. height 
tor the bulk at legends and 11/64 lor emphasis tor 28 in_ 
vieWing distance. 

Mll·C 
81774A 

White 
1960 

At 28 in. viewing distance tor critical markings legends 
height should be from _15 to.3 in. in low brightness 
Idown to .031t-1i 4.1 in. to 2 In. in high brightness 
Idown to 1.0 It·ll and tor non-critical markings it should 
be from .05 in. to .2 in. in any brightness. 

Mll-M 
18012B 

stroke wide. 

Atkinson NAMEl style at leyend produced fewer reading errors Mll-M • Stroke width shall be from I/B to 1/6 of the height 
1952 than either the Berger ur the AN 0 styles 18012B and shall be uniform. 

There shall be one stroke width between letters Ii' a 
word and one letter width between word~. 

Van Colt When legend IS used to report statu, the legend 
1972 should be lighted and the background dark. 

Memory tor signals King 
1963 

Foun~ ,n 3 experiments that subjects could reproduce 
brightness. flash rate and duration up to 28 days after 
seell1g the standard with little difference tram a reproduc· 
tion made 2 min. alter seeing the standard Signal. How 
ever, only brightness was not significantlv different from 
the standard. 
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Area of 
concern Author Nonaircrah related test data findings Author Aircraft related test data findings Mil std/ 

guide no. 
Military standard/design guideline 

Auditory slgnals
forrnat 

Howarth 
1961 

A person has a lower recognition threshold to his own 
name than to other names. 

Pollack 
1958 

VOIce warning was superior to a buzzer In tllne to Identify 
a malfunctIOn. VOice warning was superior even when 
extraneous messages were presented 

MILSTD 
411 D 

• A non·verbal audiO master weHlllng Signal :llluuld, 

111 sweep tram 700 cps to 1700 cps "' .85 sec, 121 
have mtervatlon Interval of 12 sec. (3) repeat 
until unIt 1$ de·energi,ed. Actual Signal specs. are 
given in the standard for speCifIC p.v~nts, 

Moray 
1959 

When attenl1!llg to one p.af, a person can pick up messages 
In tile other ear If the message IS preceeded by hiS name. 

Siegel 
1960 

A two tOne master Signal was superior to a single tone. • Voice messages shall be used only for "hazardous 
or Immment catastrophic conditions requinny 1r111ne
diate actIOn." They 'shall only be used In conrunctlon 
With red warnrng Signals. They shall always start at 
the beginning of the message 

• Audio warning Signals should normally conSiSt of 2 
elements, an alerting signal and an action signal. 
With a two element signal a ,5 sec alertlllg tone 
shall be provided. If speed IS essential all Informa· 
tlOn should be transmItted In the first 2 seconds, for 
a single element thiS time should be .5 sec 

• Tone frequency shall be between 200 and 5000 cps 
and shall be different from electric, I power sounds 
In the system 

• Verbal Signals shaH conSist of an mitial alerting Signal 
and a brief standardized speech message. 

Keuss 
1972 

By varyIng the Intensity and interstimu!us Intervals of 
two auditory signals, found that Simple AT to the second 
Signal decreased leve'lng off at ,n 85 dB Intensity and a 
200 msec 'nterval 

Simpson 
1975 

Familiarity with phraseology contributes to mtelllgl· 
bility. Pilots scon~d 96.4% correct on a synthesized 
speech system 

MILSTD 
14728 

GeblewH,lOWa 
1963 

Auditory signals that are judged pleasant always give a 
slower AT than those Judged unpleasant There IS an 
inverse relationship between AT alld the number of 
ready signals (prealert Signals) 

Thorburn 
1971 

Expe"enced 358 pilOts felt that a vOice warning system 
cont"butes to flight safely, tt reduces pilot workload. 

Kemmerling 
1969 

VOice warning system allowed the pilaf to analyze the 
situatIOn Without bringing hiS Visual attentIon into 
rhe cockpit. 

• For verbal systems a message priority system shall 
be established and more critical messages shall over 

Auditory slgna!s
workload, fatlQue, 

Hohmulh 
1970 

When an auditory and visual Vigilance task are performed 
Simultaneously the performance on the primary visual 

MILSTD 
14728 

and vlgllano~ task is not affected by the secondary auditory task. How· ride less critical ones. 
ever, performance on a primary auditory task is affected 
by, secondary visual task. 

Zwislocki Deterioration of the auditory threshold is linear with 
1958 regard to the square of the Lime on the task. 

McGrath Signal detections Irecognltion of change in signal state) 
1965 decreased over a 90 min. period for both easy and hard 

auditory signals. 

Davenport By increasing either signal duration or intensity the 
1968 detection performance could be improved over an 80 

min. test General detection performance degraded with 
time. 

Alluisi Even with high multiple (5) task activity auditory vigi· 
1963 lance performance declined (number of missed signals 

increased) over a 4 hour period. 

Pope Found no correlation between subjects visual and 
1962 auditory vigilance performance. 
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concern Author Nonain:raft related test data findings Author Aircraft related test data findings Mil std/ 

guide no. 
Military standard/design guideline 

Auditory s.gnals

loudness and ambIent 
nOIse 

Egan 
1950 

Gives curves that show the masking effect of a 400 cps 
tone and a 90 cps band of nOise at different levels of 
Intensitv 

Webster 
1964 

When either the speaker (microphone! or the listener 
learphones! are In quiet, satisfactory intelligibility has 
been obtained to 125 dB Jet noise. Good intelligibility 
has been obtained In nOIse by uSing a wIde speech band
width 13 octaves! centered between 1000 cps and 1800 
cps, usmg minimum or no sidetones, conforming AVe 
CIrcuit to preferred lIstening levels, peak cllppmg of 
12 dB at maxImum power, having a flat response and 
minimum distortIOn in audiO circuitry 

MILSTO 
1472B 

• A signal to noise ratoo of at ieast 20 dB shall be 
provided. 

• Verbal alarms for critIcal functions shall be at least 
20 dB above the speech interference level. 

Fletcher 
1933 

Presents a definrtion of loudness and techniques for mea· 
suring it. Gives equal loudness contours tor different 
frequenCies. Demonstrates how to calculate the loud 
ness of a complex tone. 

• Volume shall be designed to be controlled by the 
operator 

Hirsh 
1950 

When speech and noise ale presented sImultaneously, 
the lowest threshold to the speech occurs when the 
speech is presented directly fo an ear and the noise is 
separated by at least 900 

Van Cott 
1972 

A sound signal should exceed its masked detection 
threshold by at least 15 dB and the optimum sound 
level In noise is halfway between the masked thres
hold and 110 dB. 

Kohfeld Simple AT rs inversely related to the IntenSity of a 
1969 ready Signal. 

• Audio Signals should not be of such Intensity as to 
cause discomfort or "ringing" in the ears as an alter 
effect. 

• When audio signals delivered to a headset might mask 
other essential audio mformatlon separate channels 
may be provided. 

• When earphones are worn a dichotic presentation 
should be used when feasible, alternating the Signal 
from ear to ear 

Auditory signals-

disruptive effects 

Harcum 
1973 

Targel detection del"iorated signifreantly rn a 60·85 dB 
noise. A sorting task was not affected. When difficulty 
was rated both tasks were rated more diffreul t wrth 
noise. 

KemmerlIng 
1969 

Pilots presented a tone warning scanned the annunciator 
panel to determllle the seventy of the problem where 
those with a voice system did not have to. 

MILSTO 
1472B 

Glass 
1972 

Performance is less disrupted when the nOise is seen as 
necessary. 

Auditory Signals -

one vs two ears 

Cherry 
1953 

Selective attention can be exhibited with very high 
accuracy when different Information is presented to 
each ear. SubJects did no! detect a language change In 
the rejected ear but they did delect a change from male 
to female and from speech to a tone They had no 
trouble swilchlOg attention from ear to ear. 

MIL· 
STD 
1472B 

Egan When presenting a message and a dlstractor the message 
1954 can be 30 dB less intense when each rs presented to a 

differenl ear than when they are both presented to the 
same ear. 

Gopher During selective attention there are significantly more 
1971 intrUSIOns from the interfering ear when it is the right 

ear than when it is the left. There is no difference in 
omIssions. 

Poulton When a message and dlstractor are presented simul· 
1953 taneous the predominant mistake is ml.!l heaflng. 

• When several different audio signals are to be usedAuditory signals - Miller For a signal that varied only in one dimenslO':l (frequency. 
1956 intensity. duration, etc.) only 7 t 2 signals could be drscriminal differences in intensity, pitch, etc shall 

signal number and identified accurately. be provided. If absolute discrimination is reqUIred 
memory effects the l1umber of signals shall not exceed 4 

Pollack A trained listener can identify 4060 sounds presented 
1952 individually. However, subjects could only identify 5 

tones which differed only in frequency. 

Schulman When looking at the slope 1m) of the line formed by 
1970 relating the probability of false alarms to the probability 

of signal detection it was found that m increases with 
the increase in the probability of signal occurrence. 



Area of 
concern Author Nonain:raft related test data findings Author Aircraft related test data find ings Mil std/ 
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Auditory signals- King Found in 3 experiments that sUbjects could reproduce 
signal number and 1963 loudness, frequency and duration up to 28 days after 
memory effects hearing the standard sound with little difference from a 
(cond reproduction produced 2 min. after hearing the standard 

sound. However, all reproductions were significantly 
different from the standard. 

Auditory signals- ASA One of the more reliable Signs of aging in males is a 

effec ts of pilot age 
1954 progressive loss of hearing in higher frequencies. 

Bimodal presentation 

visual and auditory 

Klemmer 
1958 

Found no difference in the accuracy of response to 
three tones or 3 colored lights. When tone and light 
were presented simultaneously accuracy increased from 
84% to 95%. Performance declined if senses were 
alternated faster than once every 2 seconds. 

Bate 
1969 

Median response time was fastest to a tone-visual warning 
signal 11.7 seel and slowest to a visual si9na114.5 sec). 

• When used with a visual display audio signals shall 
be supplementary or supportive in nature. 

Morrell 
1967 

Simple RT to a visual signal decreased when the time 
between the Visual signal and a following auditory signal 
decreased from 120·20 msec, 

Siegel 
1960 

The fewest number of warning signals were missed when 
visual and auditory signals were presented together. For 
the individual signals auditory was superior to visual. 

Morrell 
1968 

Simple RT was faster over a wider range of interstimulus 
intervals when the sequence was visual·auditory than 
when it was the reverse. 

Bate 
1967 

Response time to a tone-visual V'larning signal was faster 
/6.7 sed than to a visual signal 17.8 sec). However, 
missed targets in the primary task were much less for 
the voice (74) or tone visual (83) systems than for the 
straight visual (111). 

Perriment In Bimodal presentations simple RT was 1aster when the 
1969 two signals came from the same side. 

Doumas Simple RT to a visual signal was fastest with a preceeding 
1969 tone of 400 msec length. RT was also inversely related to 

the intensity of the auditory signal. 

Fidell Simultaneous presentation of visual and auditory signals 
1969 improved detection sensitivity as much as 3 dB. 

GeblewiclC1wa Simple RT is directly related to the interval between 
1963 visual and auditory sign,is. A.5 sec interval produced 

the fastest RT when the auditory signal preceeds the 
visual. 

Klingberg 
1962 

The probability of signal detection was significantly 
higher with a bimodal presentation. Oetectlon was 
superior for auditory signals. Bimodal detection was the 
only task that did not deteriorate over the 1 hour test 
period. 

Buckner Simultaneous presentation of visual and auditory signals 
1963 improved detection probability during prolonged vigilance 

Carroli 
1973 

Simple visual RT decreased from .49 sec to .27 sec 
with the introduction of a 60 dB tone. 

Bertelson 
1968 

Simple RT to a visual 'ignal decreased when preceeded 
by a click (RT =270 rnsec with a 20 msec interval and 
RT; 240 msec with a 150 msec interval). Simultaneous 
presentation produced a faster 120 msec) RT than no 
click. 

Tactil. signals
detectabilit, 

Geldard 
1957 

The lowest vibration detected 100% of the time was 
50 mierometers. In a range from 50 400 micrometers 
3 levels can be identified. 



Area of 
concern Author Nonaircraft related test data findings Author Aircraft related test data findings Mil std/ 
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Tactile signals - Geschneider The intensity of vibrotactile signal is directly related 
detectability !cont) to probability of detection anti Inversely related to RT. 

Hill Tactile displays were corrently interpreted more often 
196B when their location was on a body part not involved 

in motion. 

Shiffi,n Performance was not reduced when 3 senses are used 
1974 sImultaneously for signals as compared to using senses 

individually. 

Swets d' for a vibrotactile signal is linearly related to signal 
1969 intensity. 

Tactile signals-
effectiveness 

johnston 
1972 

Simple RT was fastest to tactile signal under all work· 
load conditions. 

Davenport 
1969 

Bimodal presentation of auditory and tactile signals 
was superior to either individually. Auditory was 
superior to tactile. 

Loeb 
1962 

Auditory signals were superior to tactile in both number 
of misses and RT. Tactile signals were more affected 
by vigilance. 

Tactile signals- Diespecker Subjects were able to learn a 9 element (3 intensities 
1969 and 3 durationsl code and perform over a range of 

signal number durations. 

CllI-
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