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PREFACE

This final report presents the results of work performed by the

. Lockheed Missiles & Space Company, Inc., Huntsville Research & Engineer-
ing Center, under Contract DOT-TSC-1098 for the Department of Trans-
portation Systems Center, Cambridge, Mass. The objective of the contract
was to modify, calibrate, and deploy a mobile laser Doppler velocimeter
system for the measurement of wake vortices and winds at terminal areas.
The period of performance for this study was from July 1975 through June
1976. Lockheed-Huntsville personnel contributing to this effort were E. W.
Coffey, C.E. Craven, B. B. Edwards, E. W. Feese, E.J. Gorzynski, J. L.
Jetton, A.J. Jordan, M. C. Krause, G. M, Miller and K. R. Shrider. The

Contracting Officer's Representative for this work was Dr. J.N. Hallock.
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1. INTRODUCTION AND SUMMARY

1.1 BACKGROUND

Considerable effort is currently being devoted to the development of
instrumentation to remotely sense atmospheric flow phenomena. Some of
the avenues being pursued are both active and passive acoustic, optical, and
radio methods. A useful survey of such methods is presented in Ref.1. Two
advantages of remote sensors are that flow conditions can be ascertained in
regions of space where it would not be convenient to locate conventional in-
strumentation, and no modification of the flow at the point of interest is intro-
duced by their use. The laser Doppler velocimeter (LDV) is a particularly
attractive device for remote sensing of atmospheric phenomena. In the LDV
system, laser radiation is backscattered from moving particulates in the
atmosphere and is used to establish the velocity of the flow. Since optical
tracking of the laser focal volume is possible, a scanning LDV system can
rapidly determine the velocity field over a large region in space. A CO2
laser Doppler velocimeter system possesses the following advantages
over other remote sensing techniques: (1) the sensing volume can be varied
with ease as only optic pointing and focusing operations are involved; (2) the
ambient aerosol provides an adequate scattering target; and (3) the sensing
mechanism is non-mechanical which results in the potential for a high fre-

quency turbulence sensor.

The feasibility of utilizing a LDV system for the remote sensing of
boundary layer winds and for the detection, tracking and measurement of
aircraft wake vortices has been demonstrated (Refs.2, 3 and 4). However,
the development of an effective LDV system for monitoring wind, wind shear,
and wake vortices at terminal areas required further refinement and appli-

cation of this technology including the following tasks:



Design and fabrication of a compact, mobile, self-supporting LDV
system.

Improvements to the automatic optical scanner, display, and soft~
ware and accommodation of both wind and vortex tracking modes
of operation,

Comprehensive field testing of the LDV system in both wind and
vortex tracking modes to establish the basic operational capabilities,
resolution, and integrity of the system.

This technical report deals with the above tasks and summarizes the efforts
carried out by Lockheed-Huntsville to develop a wind, wind shear, and
wake vortex remote sensor. Tasks 1 and 2 were undertaken by Lockheed-
Huntsville using Company funds. A mobile self-supporting LDV system, the
Lockheed-Huntsville LDV van, with automatic scanning capabilities for wind
and wake vortex measurements was designed, fabricated, and field tested in
1975. Based on the successful demonstration of the LDV system, the Depart-
ment of Transportation, Transportation Systems Center, contracted Lockheed-
Huntsville to make further refinements to the mobile LDV system and to deploy
it at the John F, Kennedy International Airport (JFK) and to evaluate its opera-
tional capabilities. The results of the research and development effort are

the subject of this technical report.

1.2 PROGRAM OBJECTIVES

The research program focused on the evaluation of the Lockheed-
Huntsville LDV for providing wind, wind shear, and wake vortex measure-
ments in support of airport operations. The program encompassed the

following tasks:

Completion of minor modifications to the Lockheed-Huntsville LDV
to enable tracking of vortices over a long period of time

Calibration of the laser system in its various scanning modes
Installation of displays to monitor the operation of the system on-line

Collection of a data base of both wind and wake vortex measurements -
at JFK

Establishment of the overall performance capabilities of the system
for wind, wind shear, and wake vortex measurements based on the
analysis of the above measurements.

1-2



To achieve these program objectives, the LDV system was deployed at two
test sites: at the Huntsville Jetplex in Huntsville, Alabama, and at the John

F. Kennedy (JFK) International Airport in New York. The purpose of the
Huntsville Jetplex tests was to calibrate the system and to obtain sample

wake vortex measurements. Following the successful demonstration of the
system at the Jetplex, the LDV system was transported to JFK. During the
JFK field tests, spanning 30 days, the LDV observed and recorded wake
vortex trajectories during normal landing operations. In addition, wind field
measurements were carried out with the LDV and compared with JFK meteor -
ological tower measurements., The report discusses the check out, calibra-

tion, and operation of the mobile laser Doppler system during the two tests.

1.3 REPORT FORMAT

A discussion of the mobile laser Doppler system is presented in the
following sections. The development of the LDV system is addressed first
in Section 2 followed by a description of the computer software algorithms
in Section 3. The field tests of the LDV are discussed in Section 4 and the
wake vortex measurements are presented in Section 5. Wind and wind shear
measurements are discussed in Section 6. A summary and overview of the

program is given in Section 7.

1-3/1-4



2. LASER DOPPLER SYSTEM DEVELOPMENT

2.1 SYSTEM DESCRIPTION

A remote sensing system has been developed by Lockheed-Huntsville
for tracking wake vortices and for measuring a three-dimensional
wind profile. The basic hardware consists of a laser and associated optical
systems, the scanning system, and the display/processing system as shown
in Fig., 2-1. The apparatus is housed in a mobile van, sketched in the upper
right-hand corner of Fig.2-1. A description of the LDV system includes
discussion of the laser Doppler principle, optical system, scanning system,

signal processing system, and data recording and display system.

2.1.1 Laser Doppler Principle

An LDV wind/vortex sensor involves measurement of the Doppler spec-
trum of laser radiation backscattered by atmospheric aerosols. The instru-
ment must incorporate means to transmit the laser radiation to the region of
interest, collect the radiation backscatter ed from the atmospheric aerosol,
and to photomix on a photodetector the scattered radiation and a portion of
the tranmitted beam. A variable frequency component, at the Doppler shift
frequency, is generated at the photodetector which is translatable into an
along -optic-axis wind velocity component using appropriate electronics. The
magnitude of the Doppler shift, Af, is given by the equation

Af = li"|'cose,

>

where

velocity vector in the region being sensed

> <l
i

= the laser radiation wavelength (10.6 microns for the
CO2 laser), and

8 = the angle subtended by the velocity vector and the
optic system line of sight.

2-1
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Using the CO2 laser, 1 m/sec of line-of-sight velocity component yields a
Doppler shift of 188 kHz. Thus, measurement of the Doppler shift frequency,
Af, yields directly the line-of-sight velocity component l_\}l cosB. Some
advantages of the CO2 laser Doppler method are: (1) the Doppler shift is a di-
rect absolute measure of the velocity (for example, a hot wire yields velocity
via a cooling effect on the wire), (2) the ease with which the sensing volume
can be varied (optics pointing and focusing operations only being involved);

(3) the ambient aerosols provide sufficient scattering, thus enabling opera-
tion in clear air conditions; and (4) the ambient aerosol tracer has a small
inertia and responds quickly to variations in windspeed and could thus be a

good turbulence indicator.

A useful instrument must incorporate means to scan the system's reso-
lution volume in a prescribed manner and to effect the required signal process-
ing, on-line read-out, and permanent recording requirements. The hardware
implementation of the field laser Doppler unit used during the investigation

is discussed in the following subsections,

2.1.2 Optical System

The optical system is of a monostatic design and uses a continuous
wave laser. The system depends on focusing the transmitter telescope at the
location of interest for its spatial resolution property. Details of the optical

arrangement are shown in Fig.2-2.

- A horizontally-polarized, 15-watt, continuous wave CO2 laser beam
(10.6 micron wavelength) emerges from the laser @and is deflected 90
degrees first by a mirror @and then by a 90% reflecting beam splitter @
The approximately 0.23 in. diameter beam then passes through a Brewster
window @ and a CdS quarter waveplate @ which converts the beam to cir-
cular polarization. The beam impinges on the secondary mirror @ and is
expanded and reflected into the primary mirror (1l ft diameter) @ and
then focused out into the atmosphere. A wire stop . eliminates most of

the secondary mirror reflection of the outgoing beam. A small portion of
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the original laser beam is transmitted through the beamsplitter @and is
used as a local oscillator after being rotated to vertical polarization by a
half waveplate @ Energy scattered by aerosols, at the focal volume @

is collected by the primary mirror @, collimated by the secondary @, and
passed through the quarter waveplate @ The quarter waveplate @ changes
the polarization of the aerosol backscattered radiation from circular to vertical
linear polarization. The vertically polarized beam is approximately 78% re-
flected off the Brewster window @ and directed via a mirror @through the
beamsplitter where it is combined with the local oscillator radiation.
After passing through the collecting lens @ the two beams are photomixed
on the detector @ in a heterodyne configuration. The electrical output of
the detector @ is amplified with a 5 MHz bandwidth, 20 dB gain low noise
type preamplifier and fed into a spectrum analyzer @ .

An alternative operating configuration consists of using the portion
of the outgoing beam backscattered into the interferometer by the secondary
mirror @as the local oscillator beam. This mode of operation is less
susceptible to optical misalignment difficulties and was the technique used
during most of this investigation. When incorporated, the optical leg @@@

was deactivated by the beam stop Q and the wire stop removed,

2.1.3 Optical Scanning System

To give the flexibility needed to operate in various modes of operation
(Section 2.3) the antenna arrangement shown in Fig.2-3 is used. The mirror
arrangement AB can be rotated about the vertical axis, thus producing the
Velocity-Azimuth Display (VAD) or conical scan mode of operation. Mirror
A is adjusted to deflect the beam into a plane normal to the plane of the paper

and at a zenith angle corresponding to the required conical scan angle.

A plane or an arc in space can be interrogated by using the system's
elevation scan capability which consists of rotating mirror A about a horizontal
axis. The transfer of this capability from mirror C to mirror A and the in-

crease of the elevation scan angle range from 60 to 180 degrees was one of

nical Center

FAA WJH Tech
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the tasks of this program. This added capability admitted considerable
flexibility in the tracking of wake vortices. The scanning hardware is de-
ployed on the mobile van as shown in Fig.2-4,

The system's focal volume is range scanned by varying the separation
of the telescope secondary mirror, E, and the primary mirror, D (Fig.2-3).
This is done by varying the position of the mirror, E, in a controlled manner
by an electric motor/optical encoder combination. The scanning system is
addressed by a control panel incorporating thumbswitch controls and LED
monitors. The system's scan capabilities are summarized in Table 2-1 and
Fig.2-5.

2.1.4 Signal Processing System

The LDV signal processing system consists of a detector, spectrum
analyser, frequency voltage converter (tracker), input/output coupler, and
peripheral hardware. A block diagram of the basic signal processing system
is shown in Fig.2-6. The heterodyned laser return is converted into an elec-
trical signal by the detector and is amplified. The frequency content of the
signal is determined by the spectrum analyzer. The resulting signal is dis-

Played and its intensity and frequency ultimately recorded in digital form.

The Doppler content of the photodetector output is extracted through the
use of a sampled spectrum analyzer which provides frequency spectra at a
70 Hz rate. A typical Doppler wind spectrum is shown in Fig.2-7. To yield
a line-of-sight velocity estimate, a voltage is generated which has the same

time behavior as the Doppler shift, £,, as given by the peak of the spectrum.

aQ’
The implementation of this technique is, in essence, a recursive com-

‘ parison method. The spectrum analyzer scan is driven by a sawtooth voltage
derived from a D/A converter, the input to which is counter clocked at a con-
stant rate, hence the digital number output of the counter represents frequency
on a linear scale. At each new count, the spectrum analyzer output is con-

verted to a digital representation by an A/D converter, and the binary number

2-7
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Table 2-1
SCAN CAPABILITY

RANGE

Maximum Limit: 2600 ft
Minimum Limit: 52 ft

Scan Frequency: 0.1 to 6.9 Hz

ELEVATION

Maximum Limit: 90 deg
Minimum Limit: 0 deg

Hard Limit: 3 deg with Override
Scan Frequency: 0.1 to 0.5 Hz

VAD MODE

Measurement Altitude: 33 to 2100 ft
Measurement Time/Altitude: 5 sec
Sample Rate: 1 to 7 Cycles

Number of Altitudes: 8

MULTIMODE

Elevation Coverage: 3 to 90 deg Upwind and
Downwind

Scan Plane Azimuth: 360 deg
Vertical Line Scan: 52 to 2100 ft

Overhead Arc Scan: 90 deg Coverage Maximum

ACCURACY

Range: 1 ft at 98 ft, 98 ft at 984 ft
Elevation: 0.25 deg

2-9
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3.28 ft increment 0.1 Hz increm. 10 to0 90 0to 90 0.1t 0.5 Hz
Also can be stepped between 8 pre- 1 deg. increment 0.1 Hz increm.
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—_ Notes:

® Maximum Sampling Rate:
e Current Technique — 69 Hz
e Advanced Technique — 1 kHz

® Focal Volume Varies with Square
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Fig.2-5 - Scan Capabilities of LDV




I1-2

Laser
Signal

Strip Chart

R

ecorder

Real Time Display
(Vortex)

1

Oscilloscope

Converter

It

1

1/0 | SEL
Coupler

<

Signal Bias

Detector

A

Digital
Scanner
Tape
Parameter X
Unit

> Spect
e pectrum
Amplifier Analyzer
RF
Input
Bias Unit Counter

Calibration
Oscillator

Fig.2-6 - LDV Signal Processing System

—

Line-of-Sight
Velocity as a
Function of
Space and
Time










The raw spectral information (output of the spectrum analyzer) is also
made available to the Systems Engineering Laboratories (SEL) 810A data
logging minicomputer which is programmed to generate its own estimate of

the spectral peak and is discussed later in Section 3.

2.1.5 Data Recording and Display

The primary data gathering function is performed by a SEL 810A general
purpose minicomputer. Data acquired by the Mobile Atmospheric Unit is for-
matted by the computer software and stored on magnetic tape for subsequent
processing. The SEL 7-track tape control and magnetic tape units allow
digital recording of data at 800 bpi at 45 ips. The data logged by the com-

puter includes:

P

All scan volume location parameters

v

""Mode of operation' identifier

0

The instantaneous line-of-sight velocity information
d. The Doppler spectrum peak strength

e. Full spectrum intensity and frequency information
(optical)

f. A data quality identifier.

Properties of the Doppler spectrum, namely the amplitude and frequency
corresponding to the spectral peak, are obtained as a result of on-line com-
puter processing; the frequency is also obtained by the spectral peak locator
(velocity processor) discussed previously. The latter allows some flexibility

for on-line operator displays (see below).

The velocity processor estimate of the instantaneous line-of-sight
velocity, updated at a 70-Hz rate, is available in analog format which can
be recorded directly on a strip chart recorder (an option which is extremely
useful during the VAD mode of operation for monitoring the characteristic
profile). During vortex tracking operations the velocity processor's output
is used to modulate the intensity of a CRT beam which is driven to trace

on the tube face an exact replica of the scan pattern generated by the
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scanning system. The display shows on-line the location of high velocity
regions. For vortex tracking purposes, the display aids the operator in
selecting the optimum scan adjustments so that the trajectory of the wake
vortex can be recorded. The integration of such a vortex display into the
system was a required task in the Scope of Work. The information in this
subsection is supplemented by the discussion in Section 2.4 relating to data

transfer and formatting.

Some overall views of the mobile unit hardware as used during the

program are shown in Figs.2-9 through 2-12.

2.2 SYSTEM SPECIFICATIONS

Specifications for the subsystems and components are as shown in
Table 2-2,

2.3 MODES OF SYSTEM OPERATION
2.3.1 Winds Aloft Sensing

Using the basic system outlined previously it is possible, by scanning
operations, to determine the three-component wind field at any specified
altitude between 50 and 2000 feet. Since the LDV system measures the wind
velocity at a given point in space along the optical system's line of sight, it
is necessary to sample the line-of-sight velocity at different points in space
to compute the full three-dimensional wind field. The scanning method em-
ployed is commonly referred to as the Velocity Azimuth Display* (VAD) tech-
nique which was used by Lhermitte and Atlas in conjunction with a micro-

wave radar (Ref. 5).

The telescope is focused at the altitude of interest, the beam being di-

rected at a zenith angle, a. The beam is then scanned in azimuth, thus tracing

ota
Also known as conical scan technique because of beam scanning configuration.
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Table 2-2
LOCKHEED DETAILED COMPONENT SPECIFICATIONS

Overall Performance Specifications

Range a~ 52 ft to 2600 ft Line of Sight
Velocity Measurement Threshold: ® .7 ft/sec Line of Sight
Measurement Accuracy: Velocity ® +1.64 ft/sec, Direction ~ +3 deg.

Laser

Type: Honeywell Model 9000 with Recharging Capability
Power: 15 W at P(20) (Nominal)

Mode: TEMggyn. (Single Mode)

Stability: Long Term, +2%; Short Term, +0.5%

Beam Diameter: 0.0197 ft

Detector

Type: Rockwell, Pb-Sn-Te Photovoltaic
Quantum Efficiency > 40%
Freq. Response: » 50 z
Element Size: ~.4 x 10~ 2
Dynamic Impedance: >200 {)
Number of Elements: 4

Telescope

Diameter: 12 in. Primary, 0.5 in. Secondary
Spatial Resolution: + 125 ft at 1000 ft range at 50% power point

Interferometer

Type: Mach-Zehnder
Polarization Input: Horizontal
Polarization QOutput: Circular
Polarization Recombined: Vertical
Components: Mirrors (4)
Half Wave Plate (1)
Quarter Wave Plate (1)
Brewster Window (1)
Beamsplitter (2)
Lens (1)
Aperture (1)




Table 2-2 (Continued)

5 | Range/Altitude Scan
Excursion: 52 ft to 2600 ft
Rate (Auto): 0.1 to 6.9 Hz in 0.1 Hz Steps
Rate (Manual): Slew — 0.2 Hz
Step — 6.56 ft Increments
Accuracy: Static — 0.7% at 1148 ft Range
Dynamic — 0.5% at 561 ft Range
Modes: Manual — Slew
Manual - Single Increment
Auto — Range
Auto — Altitude
Altitude Limits: 33 ft to 2100 ft
Altitude Steps: 8 maximum, Any Combination
Incremental Altitudes for 8 Equal Steps
Readout (LED): Range, Altitude, Azimuth Angle, Altitude Increment
6.! VAD Scan
Measurement Time/Alt.: 5 sec
Frame Rate: 40 sec
Cone Angle: 0 to 60 deg, Manually Adjustable
7.| Processing System
Signal Processor: HP Spectrum Analyzer, Velocity Processor (LMSC)
Sample Rate: 70 Hz
Modes: Translate or Non-Translate
Velocity Peak or Velocity Max.
AGC: Auto Threshold
Output: 0 to 5 Vdc
Resolution: 0.328 ft/sec
8. | Minicomputer

SEL 810 Data Logging System
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line of sight by varying the position of the telescope secondary mirror, E,
relative to the primary, D, (Fig.2-3) so as to scan the system's sensing volume
linearly between fixed range limits. The relationship between the separation,
DE, and the range to the sensing volume is given by the lens equation.
This procedure will result in the line-of-sight velocity profile along the chosen
line of sight and between the range limits. The elevation angle can also be
scanned in a controlled manner by scanning the output mirror shown in Fig.2-3.
A coordinated range and elevation scan was the basic mode of operation during
vortex tracking. Fast range and slow elevation scans generate a 'finger scan"
pattern in the plane of interest. Any location of interest could be ''dialed in"
using the scanner controls and that region interrogated continuously. The

scan patterns traced out in the two modes of operation are shown in Fig.2-15.

2.4 ON-LINE DATA MANIPULATION

The data from the LDV system are transferred to the computer along four
digital input channels. It is reformatted and recorded on 7-track magnetic

tape for off-line data processing. Software to locate the peak intensity within
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each spectrum, subject to the constraints of frequency and amplitude thres-
holds and the associated sample count number (velocity), is also incorporated.

Additional details of the latter process are included in Appendix B.

Recorded data consist of four 16-bit words for each spectrum analyzer
sweep. These four words correspond to the four SEL logical input channels
(60, 61, 62 and 63) read for the spectrum analyzer sample count at which the
peak intensity occurred during a given sweep. The logger identifies the peak
intensity condition independent of the '"data acceptable condition*;: four 16-bit
words (identifying sample count location, range or altitude, angle, and appro-

. priate scanning parameters) are saved for each spectrumn analyzer sweep with
:‘ the data acceptable consideration left to the off-line software., After 280 spec-
trum analyzer sweeps an 1120-word buffer is filled (four words/sweep x 280
sweeps) and a block transfer to magnetic tape are accomplished. The logger
ensures that this block transfer is completed before permitting data acquisi-
tion to proceed. Thus, a period of one spectrum analyzer sweep and two
spectrum analyzer flybacks are occupied with the block transfer of data; thus
one spectrum analyzer sweep is lost every 280 sweeps. At the 70-Hz rate,

the 1120-word buffer is filled and written to tape approximately every four
seconds. The format of the 7-track magnetic tape for the peak intensity logger
is given in Fig.2-16. In general, each run (VAD or aircraft fly-by), will gen-
erate a distinct number of 1120-word records (one every four seconds at 70-
Hz rate) with one end-of-file at the end of the run. At the end of the day (or
data taking period) two (2) end-of-files are marked at the end of the last run

on tape,

"<"Data acceptable' condition is an indication as to whether a Doppler burst
above both velocity and amplitude thresholds occurred during a spectrum
analyzer sweep.



MAG. TAPE FORMAT
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End-of-Fil

1120 WORD RECORD DESCRIPTION

Ch. 60 Ch.61 Ch.62 Ch.63
Sweep 1 |(Word 1 Word 2 Word 3 Word 4
Sweep 2 |Word 5 Word 6 Word 7 Word 8
Sweep 280{Word 1117 Word 1118 Word 1119 Word 1120

EOR is standard 3/4 inch
End-of-Record gap

Fig.2-16 - SEL 810A Magnetic Tape Format (Peak Intensity Logger)
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2.5 PERTINENT LDV PERFORMANCE PARAMETERS
2.5.1 Theory

The performance characteristics of an LDV system can be quoted in
terms of the signal-to-noise ratio of the output and the dimensions of the
sensing volume interrogated. Expressions for these parameters are derivable
from an electromagnetic wave treatment of the laser radiation propagation and
interaction with the aerosol medium. For the Cassegrainian optical system of

interest here the field, u, generated by the telescope assuming a TEM0 n laser

0
beam mode shape is given by (Ref, 2)

. . 2
ka /2N (t-z/c \ k
ult,x',y',z') = - lz—,@ exp[1 kz' -wt)]exp(szg,—).
ao/a
1
f J'o (2 Q-aiL X) exp
a./a

1

-[1-ig (1-¢)]) xZ{xdx,

where 12 = x'2 + y'z = radius at range z' from the telescope,k=27/A, A= laser
p g

wavelength, a = exp(-2) radius of the TEM n laser mode at the telescope exit,

00
N = number of photons transmitted per second, a = telescope outer radius,

a, = radius of telescope inner hole, Jo( } = zeroth order Bessel function,

B = xaz/xz, £ = z/f, f = range to focus in the atmosphere, (x', z')are dimensions

in the plane of telescope, c = speed of light, and t = time.

For a >> a (laser beam width considerably smaller than the telescope
diameter, i.e., the telescope does not truncate the laser beam) a simple treat-
ment of the total LDV system is possible.; Specifically the following results
apply (see Ref. 2 for details):

The signal-to-noise ratio (S/N) at the output of the monostatic continuous

wave LDV system is given by

S/N = n(no) AP/4hyB,
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where
n = the photodetector quantum efficiency

ng = the scattering cross section of the aerosol at a
wavelength, A (units of inverse length)

P = laser power transmitted
hy = photon energy at the wavelength, A, and

B = bandwidth of the filter being used to monitor the
Doppler frequency.

Note that the above is independent of the range to focus and also of the

optic diameter. The physical reason is that the sensed volurme varies as
(f/R)4 where f is the range to focus and R the optic diameter. The number
of targets is therefore o f4 which cancels the f"4 dependence of the return

from a single target.

Substituting typical parameters in the S/N equation, namely,

n = 0.3
no = 5.03 x 1077 £t~1 (14 mi visibility)
A = 10.6u
P = 15W
B = 30 kHz (i.e., a filter with ~ 0.5 fps resolution)
_ hy = photon energy at 10.64 = 1.78 x 10°23 Btu,

we have an estimate of 45.5 dB for the signal-to-noise ratio. This estimate
should be further adjusted by no more than 5 dB of system optical losses.

Such signal-to-noise ratios are routinely observed from wind returns.

The spatial resolution cell parameters of interest are the length along
the optic line of sight and its diameter. The latter is always small for the

ranges of interest here (~0.4 in) and will not be considered further.



The along -axis resolution is given by 2A f2/1ra2 for the untruncated
theory (where a can be considered to be the telescope diameter). In practice,
achieving the condition a > a is difficult for a given beam diameter, a, be-
cause optic sizes become unwieldly, Studies have shown that the optimum
arrangement for a given optic size is to illuminate the telescope such that
the exp(-2) points of the intensity pattern coincide with the extremity of the
mirror, Under such a condition the LDV sensing volume length, AL, along

the optic axis between the 3 dB antenna pattern points is given by

f2

2
a
o

>

AL = 4.4 (a, =telescope primary radius).

=

This equation represents a degradation of a factor of 2.2 over the untruncated
case. The truncated effects on the signal-to-noise ratio (~3 dB loss) are of

little concern here since in practice under a variety of weather conditions in
various parts of the continental United States the signal-to-noise ratios have

always been ample (> 25 dB).

For the one-foot diameter optic size of interest the sensing volume

length at various ranges are:

Range Sens iIixg Vtcillume
n
(ft) ?ﬁ%
100 +0.975
500 +24 .4
1000 +97.4
2000 +390.0




2.5.2 Summary of Pertinent Performance Data

Spatial Resolution vs Range Results

The antenna pattern of the laser Doppler system was investigated by
interrogating a target of known velocity and position — a rotating disc
at various ranges from the LDV. The procedure involved adjusting the
line of sight to intersect the disc at some radius to yield a convenient Doppler
shift. Range scanning along this line of sight was then initiated. The disc sur-
face consisted of No. 600 grit sandpaper and four ranges between 230 and 800 ft
were carefully measured. The heterodyne output of the Pb-Sn-Te detector
was monitored by the spectrum analyzer adjusted to operate in the fixed fre-
quency receiver mode and tuned to the Doppler frequency. As the secondary
mirror was scanned the receiver response was recorded on a strip chart re-
corder along with the range command voltage, The range increment at which
the Doppler signal deteriorated to the one-half power level was then graphi-
cally obtained from the chart data. A typical strip chart record is shown in
Fig. 2-17 and the resolution data calculated from such profiles are shown in
Fig. 2-18 on which is also plotted the expected theoretical behavior for the
nominal system parameters, i.e., a beam diameter of 12 inches at the telescope

primary (defined at the exp (-2) intensity points).

It is observed that the measured values are some 40% larger than theo-
retical (i.e., above diffraction limit) which is indicative of some system ineffi-
ciences. Among the contributing factors are respectively: aberrations, alignment
difficulties, and beam size and shape deviations from nominal. Experience
has shown that beam shape deformation is probably the chief culprit in that
occasionally, when the laser beam output is observed to be non-gaussian (i.e.,
when it contains multiple intensity peaks), serious degradation of the system
spatial resolution capability occurs. Analysis shows abberation effects to be
small and also that beam size deviations from nominal are not overly important
(a fact not obvious from the theoretical equation for the resolution, i.e., AL =
4.4 f°

T ag

,» since the degree of beam truncation by the telescope primary has been
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factored out). Greater consideration of laser beam quality is merited during

the design of future systems.

Signal-to-Noise Ratio Performance

The signal~to-noise ratio performance of the laser Doppler unit is moni-
tored by interrogating a target of known reflectance, the same rotating disc
as used for the spatial resolution measurement. The reflectance of the No. 600
grit sandpaper surface was determined by comparing LDV system efficiency
while interrogating such a surface with a similar measurement using a specially
prepared 'flowers of sulphur' surface which is well documented to be very nearly
Lambertian and of essentially unit reflectance {(80%) at the 10-micron wavelength,
In this way the sandpaper surface reflectance was determined to be .08. The

surface presented a 45° angle of incidence (a) to the laser beam.

The signal -to-noise ratio for such a scattering configuration is given by

the relation

nPazpcos Qa
SNR = K, K, > )

hvBL

n = detector quantum efficiency = 37% ( including 82% detector
window transmission loss).

= transmitted laser power = 15 watt.
primary radius (6 inches)

= target reflectivity (0.08)

Qv M W
"

= angle of incidence on target = 45°

hv = photon energy at 10u = 1,88 x 10720 joules
B = spectrum analyzer bandwidth (30 kHz)
L = range to target (560 ft in typical set up)

K, = beam truncation loss = 0.5

K, = optical system transmission losses (typically 10%).

Substituting

SNR = K, x 2.2 x 108.

83.5 dB less optical transmission losses.

n
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Two way optical efficiency losses were determined to be 11.2 dB by comparing
power measurement at the focus in the atmosphere to a measurement of the

laser output power,resulting in a 'target' SNR of 72.3 dB.

Observed, and what was considered satisfactory for operational usage
during this investigation, was a SNR of 60 dB at the 560 ft nominal range. The
additional 12 dB or so additional loss is due to such factors as optical mis-

alignment and mismatch of beams on the photodectector.

Inasmuch as the quoted optical system transmission (11,2 dB) and align-
ment (12.3 dB) losses are excessive, these represent areas where the system

could be improbed. Typical of the improvements required are incorporation of:

a. Improved alignment methods
b. Acquisition of improved optical components

c. Updating the interferometer design, especially in the
area of beam interaction with the photodetector.

With the system ''‘peaked up' such that the signal-to-noise ratio obtained while
interrogating the rotating disc was 60 dB, a degree of performance was ob-
tained which was satisfactory for wind shear and vortex detection at both
Huntsville and JFK. Signal-to-noise ratios of wind returns were generally

in the range of 10-20 dB,

2.6 DISCUSSION OF LIMITATIONS OF PRESENT SYSTEM

The system as presently configured has several limitations some of
which were known before the investigation was initiated and some became
more obvious during contract performance. They were not corrected during
the effort due to lack of availability of operational components, time and
budget constraints, lack of the required technology, etc. The technology areas
represented by the limitations should be given prime consideration in the de-

velopment of any future systems. These areas are now considered.



Data Rate

The present system is capable of a 70-Hz acquisition rate of velocity
samples which is marginal, for example, in the vortex tracking mode. Range
scanning at a 5-Hz rate over a 1000 ft range results in range 'smear-
ing' of approximately 150 ft. Typically during the JFK testing the range scan
limits were separated by approximately 500 ft with scanning at a rate of 4 Hz
resulting in a range smearing of approximately 60 ft. There is room for at least
an order of magnitude improvement here which can be partly achieved by in-
creasing the sweep rate in the present processing technique of using a sweeping
spectrum analyzer to interrogate the Doppler spectrum. Increasing this, of
course, would place an additional burden on the data acquisition system —
especially the minicomputer currently in use. The ultimate solution is a parallel
filter system or filter bank with the integration time chosen to be sufficiently
short to allow for the required data rate, say 1 kHz. This device would also in-
crease the duty cycle of the processing system (Doppler tracker) to essentially
unity, an increase of two orders of magnitude over the present system, thus
vielding improved signal-to-noise ratio performance. The increased data rate
would also accommodate an increased rate of conical scanning. The ultimate
improvements suggested here would represent a major addition to the present

hardware.

Doppler Signal Processing

The duty cycle of the present Doppler signal processor (a scanning spec-
trum analyzer) is given by the ratio of the spectral region spanned to the in-
stantaneous filter bandwidth, typically 2 MHz and 30 kHz, respectively. This
approximately 1.5% duty cycle could be improved by the incorporation of

an integrating filter bank as alluded to above.

Rate of VAD Sampling

A VAD scan at a single altitude is accomplished every 5 seconds (0.2 Hz)
in the present hardware, which results in a 40-second time interval for inter-

rogating eight altitudes., For operational usage this is too long since it can,
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for example, yield false estimates of vertical shear because of the time lag

in interrogatiag the various altitudes. An increase in the rate of scanning is
mechanically possible and is consistent with system performance criteria.

A limit to the conical scan rate does exist, however, since the antenna pattern
should not translate considerably in the round-trip radiation time. The limiting
angular rotation rate which ensures that the antenna pattern does not move by

more than half its width during the round trip time is given by

1.22 Ac
w<IRDO ’
where A = laser wavelength (10.6 microns), ¢ = velocity of light, R = range to
focus, D = optic diameter, 8 = conical scan angle. For R = 1154 ft (corre-
sponding to an altitude of 1000 ft), D = 1 ft, and 8 = 0.5 radian, the limit is
w< 18 rad/sec (< 3 Hz). A conical scan capability of up to 3 Hz could there-
for be incorporated in the system. The change would be relatively minor and

would reduce the time of interrogating eight altitudes to less than 10 seconds.

System Range Resolution

The only fundamental limitation of the present system (i.e., monostatic
focused) is its spatial resolution capability at the longer ranges. Without a
radical change in system concept this can only be improved by increasing the
size of the transmitter optics. The spatial resolution at a given range im-

proves as the square of the size of the optics.

Updating the existing system's spatial resolution capability would re-
quire incorporation of techniques to increase the time-bandwidth product of
the outgoing beam by imposition of modulation on the transmitted waveform
such as through pulsed, FM CW, or phase coding methods. This would repre-

sent a ma jor modification.

Wind Direction Ambiguity

The systemn as presently configured yields a value for the wind direction

that contains an ambiguity of #. This is because the system is homodyne and
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not superheterodyne in nature. The solution to the problem is to offset in
frequency the local oscillator so that there is never any folding of the Doppler
spectrum about zero frequency. A device to accomplish this function, an
acousto-optic modulator (Bragg cell), was to be incorporated in the system
prior to the system evaluation tests but its suboptimal performance precluded
this. Based on current research efforts it appears that the problems are

now resolved.

Because of the mandatory nature of having a device in the system to
resolve the direction ambiguity, the device is described here in considerable
detail along with some performance results obtained from its use. Reference

is made to Fig.2-19.

A lithium -niobate transducer is bonded to a germanium crystal (cut along
the axes shown); the acoustic vibrations generated by the transducer are ab-
sorbed by a lead backing plate attached to the opposite side. The transducer
is excited at the desired offset frequency. A laser beam propagating through
the crystal undergoes reflection at the acoustic wavefronts which results in
the reflected beam being upshifted* in frequency relative to the initial laser
beam frequency. For the precise geometry shown, i.e., the angle between the
acoustic wavefronts and the incident laser beam in the crystal is the Bragg
angle, a single definite beam at the upshifted frequency is obtained. It is this
beam that is used as the local oscillator beam as shown in the optical arrange-

ment in Fig, 2-20,

For design purposes it is important to consider the origin of the various
frequency components in the local oscillator and receiver optical paths, respec-

tively. They are as follows:

%
For the geometry shown.
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Local oscillator beam
fo — feedthrough from the input laser beam of amplitude a
fo + fs ~ desired upshifted beam of amplitude b

f - f_ — undesired downshifted beam of amplitude ¢ due to
the acoustic reflection from germanium-lead interface.

Receiver beam
fo —~ backreflection from secondary mirror of amplitude d

fo + fd — desired Doppler component of amplitude e, fd being
the Doppler shift due to moving target.

The spectrum that results at the output of the photodetector is summarized
in Fig. 2-21 which also summarizes considerations regarding the signal level
budget. The relative magnitudes indicated are generally borne out in the
observed spectrum analyzer indications (see Fig. 2-22a). Satisfactory sep-
aration between the peaks at (fs - fd) (desired) and at (fs + fd) is achievable
(see Fig. 2-22b).

The problem encountered with the device involved an insertion loss of
12 dB which precluded the observation of wind signals. This was attributed
initially to transducer bonding deficiencies, a problem that seems to be
solved, Satisfactory wind returns using the device have been observed. The
remaining problem is a saturation of the receiver amplifier due to the strong
feedthrough at fs. A notch filter is currently being designed to alleviate

the problem.
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3. COMPUTER SOFTWARE SYSTEM DEVELOPMENT

Acquisition and processing of the LDV signature is accomplished by
means of a compact data handling system developed specifically for the
Lockheed-Huntsville LPV. The general elements of the LDV data acquisi-
tion and data processing system are shown in Fig.3-1. The digitized LDV
intensity versus frequency signal along with its coordinates in space are fed
into the SEL 810 minicomputer. Reprocessing of the LDV signal is carried
out on the minicomputer utilizing on-line computer programs written in SEL
machine language. Information from the SEL 810 is stored on magnetic tape
and is used as an input to the off-line processing algorithms., Off-line process-
ing of the LDV signal is carried out on a Univac 1108 computer with programs
written in FORTRAN language and using card inputs with information from
the logs to supplement the data. The flow of data from the LDV is sketched
in Fig. 3-2 showing both the on-line and off-line data processing routines,
On-line manipulation of the data is carried out by the SEL Data Logger pro-
gram. The off-line processing is carried out by the VAD and Vortex Track
program. The final output consists of printouts, plots, and vortex track
tapes. A description of the data logger and the VAD and vortex track pro-

gram and their operational characteristics is given in the following sections.

3.1 DESCRIPTION OF LDV SOFTWARE SYSTEM

Data acquisition in the LDV is carried out by the SEL Data Logger
program. The Data Logger program preprocesses and records the LDV
signal. A flow chart of the Data Logger program is given in Fig.3-3. For
each sweep of 10, 20 or 50 millisecond duration, the Data Logger saves the
maximum amplitude LDV signal, I, and its corresponding frequency, Vms,
which is above the amplitude and frequency thresholds. The definition of
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I and Vms and the shape of the characteristic LDV spectrum is shown in
Fig.3-4. It can be seen that Vms is the average velocity associated with

the flow phenomena.

The output from the Data Logger program consisting of Vms as a func-
tion of time and space is shown in Table 3-1. Note that the type of information
provided in channels 3 and 4 depends on the type of mode, VAD or vortex scan,
selected. From the output of the Data Logger, the wake vortex velocity field

or wind field can be reconstructed using off-line processing routines.

Final processing of the LDV measurements is carried out by the VAD
and Vortex Track program is shown in Fig, 3-5. In this off-line program
the array of Vms values which is a function of time and space is processed
to yield the three-dimensional wind field (VAD mode) or the aircraft wake
vortex trajectories (vortex mode). The processing of the VAD measurements
involves the computation of the u,v,w wind components from the character-
istic sinusoidal VAD LDV signature discussed earlier in Section 2 and described’
in more detail in Appendix B. The program is geared to handle both the trans-
lated and nontranslated LDV signal. However, during the course of this research
effort all of the data acquisition and data processing was done in the non-translate
mode using an algorithm which processes the peak signals from the VAD spec-
trum. The final output is a plot (and printout) of the u,v, and w velocity com-
ponents as a function of altitude and time. The peak algorithm was developed
under the contract to process the JFK VAD measurements. Subsequently, the
capability was added to the processing software to consider spectral process-
ing for the winds using the inverted spectrum and also using a sine curve fit.
For the sake of completeness, the details of the full VAD processing

are given in Appendix B and are outlined in this report.
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Table 3-1

OUTPUT FROM DATA LOGGER PROGRAM

CHANNEL 1 (OCTAL 60)

WORD FORMAT: NORMAL AND CONICAL SCAN

BIT
POSITION IDENTIF ICATION DESCRIP TION
15(LSB) N -1-1
la N 22 7-BIT UNIPOLAR BINARY WORD (LSB = 1)
s REPRESENTING SPECTRAL SAMPLE COUNT
13 N,-3-4 ACROSS SPECTRUM SWEEP;
12 N_-4-8 IST SAMPLE, Ng = 1
" N -5-16 LAST SAMPLE, N = 100
10 N -6-32
S
9 N -7-64
S
8 7,1 SETTING OF SWEEP SPEED PER DIV.;(0, 1) = 1 MILLISEC
7 7,2 (1, 0) = 2 MILLISEC, (1, 1) = 5 MILLISEC
6 X NOT USED; ALWAYS OFF OR LOW STATE
5 MODE MODE INDICATOR; = 1 IF NORMAL, = 0 IF CONICAL SCAN
4 ALL ON OR HI IF SWEEP IS THAT IMMEDIATELY
3 AFTER 6 = 0; ALL OFF OR LOW, OTHERWISE
2
1 MAX - 1 IF PEAK POWER LOCATION, = 0 I[F MAX FREQ. LOCATION
0 X NOT USED; ALWAYS OFF
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Table 3-1 - (Continued)

CHANNEL 2 (OCTAL 61)

WORD FORMAT: NORMAL AND CONICAL SCAN

PO?I?I‘TION IDENTIFICATION DESCRIPTION

15(LSB) PS-1-1
14 PS-2-2

13 PS-3-4 12 BIT UNIPOLAR BINARY WORD REPRESENTING
12 PS-4-8 MAGNITUDE OF N' X POWER SPECTRAL SAMPLE
11 PS-5-16 (CHANGES SYNCHRONOUSLY WITH N);
10 PS-6-32 SCALE FACTOR FOR THIS PARAMETER

9 PS-7-64 MUST BE ENTERED VIA TELETYPE KEYBOARD

8 PS-8-128 PRIOR TO BEGINNING OF RUN

7 PS-9-256

6 PS-10-512

5 PS-11-1024

4 PS-12-2048

3 TNT = 1 IF FREQ. TRANSLATOR USED, =0 IF NOT TRANSLATED
2 PMF = 1 IF FREQ. REPRESENTS POSITIVE Fg, = 0 IF NEGATIVE Fy
1 DA = 1 IF SPECT. DATA ACCEPTABLE, = 0 OTHERWISE

0 X = 1IF SPECT. DATA ACCEPTABLE, = 0 OTHERWISE
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Table 3-1 - (Continued)

CHANNEL 3 (OCTAL 62)

WORD FORMAT: NORMAL SCAN

BIT
POSITION

IDENTIFICATION

DESCRIPTION

15(LSB)
14
13
12
11

10

RTH-1
RTH-2
RTH-4
RTH-8
RUN-1
RUN-2
RUN-4
RUN-8
RTN-1
RTN-2
RTN-4
RTN-8
RHU-1
RHU-2
RHU-4
RHU-8

16 BIT, 4 DIGIT (RHU, RTN, RUN, RTH)
BCD (8-4-2-1) REPRESENTATION

OF SCANNER RANGE (in meters)

(NOT SYNCHRONOUS WITH SPECTRAL SAMPLING)




Table 3-1 - (Continued)

CHANNEL 4 (OCTAL 63)

WORD FORMAT: NORMAL SCAN

BIT
POSITION IDENTIFICATION DESCRIP TION
15(LSB) 0,,-1-1
14 0, -2-2
9 BIT UNIPOLAR BINARY WORD
13 0,, -3-4
REPRESENTING SCANNER ELEVA TION
12 ee! -4-8 o
ANGLE MSB = 51.2
11 8,y -5-16
10 0, -6-32
9 0, -7-64
8 0, -8-128
7 By ~9-256
6 Nax1-1 7 BIT UNIPOLAR BINARY WORD REPRESENTING THE
> Nmax2-2 SAMPLE COUNT (SPEC TRUM) LOCATION OF EITHER
4 Nax~3-4 (a) THE PEAK SPEC TRUM POWER, OR (b) HIGHEST
3 Nimax~4-8 LOCATION AT WHICH THE SIGNAL IS ABOVE NOISE
2 Nax~3-16 THRESHOLD (BIT 1 OF CHANNEL 1 IDENTIFIES WHICH)
1 N__-6-32
0 N -7-64
max
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Table 3-1 - (Continued)

CHANNEL 3 (OCTAL 62)

WORD FORMAT: CONICAL SCAN

POQII'I'I“ION IDENTIFICATION DESCRIPTION
15(LSB) H-1-1
14 H-2-2
13 H-3-4
12 H-4-8 10 BIT BINARY REPRESENTATION OF ALTITUDE
11 H-5-16 IN USE BY CONICAL SCAN
10 H-6-32 LSB = 1 METER
9 H-7-64
8 H-8-128
7 H-9-256
6 H-10-512
5 N, -1
4 BIT BINARY WORD REPRESENTING NO. OF
* Nav? AZIMUTH ROTATIONS MADE AT EACH ALTITUDE
’ Na-t SETTING IN THE PROGRAM (COMPLIMENT)
2 N,-8
1 X NOT USED; ALWAYS LOW STATE

X
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CHANNEL 4 (OCTAL 63)

Table 3-1 - (Concluded)

WORD FORMAT: CONICAL SCAN

BIT
POSITION IDENTIFICATION DESCRIPTION
15(LLSB) a-1-1
14 a-2-2
6 BIT BINARY REPRESENTATION OF CONE
13 a-3-4
ANGLE USED IN CONICAL SCAN
12 a-4-8 o
LSB =1
11 a-5-16
10 a-6-32
9 X NOT USED; ALWAYS OFF OR IN LOW STATE
8 X
7 X
6 N -1-1 SAME AS NORMAL MODE.
max
5 Nrna -2-2 7 BIT BINARY WORD REPRESENTING EITHER:
4 Nmax-3-4 (a) LOCATION OF PEAK SPECTRUM POWER, OR
3 Nmax-4-8 (b) HIGHEST LOCATION AT WHICH THE SIGNAL
2 Nmax-5—16 IS ABOVE NOISE THRESHOLD
1 N ~h =22
1 Noax 6-32
0 N -7-64 (BIT 1 OF CHANNEL 1 IDENTIFIES WHICH)
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When the LDV system is operating in the finger scan vortex track mode,
the VAD and Vortex Track program flow-charted in Fig.3-5 calculates the alti-
tude and lateral location of the port and starboard aircraft vortices as a function
of time from the array of V_ values. The vortex location algorithm cal-
culates and sorts the line-of-sight velocity as a function of elevation angle
and time, selects the highest line-of-sight velocities or "hits" observed during
each frame, computes the vortex location from the centroid of the high velocity
""hits,!" and plots the track of the vortex centroid. In addition, scatter plots
and printouts of the individual hits are generated. A detailed description of
the vortex tracker subroutines is given in Appendix B and the basic sorting

criteria involving V__ _ is described in Ref.4.

3.2 OPERATION OF LDV SOFTWARE SYSTEM

Operation of the Lockheed-Huntsville LDV involves initialization of the
SEL Data Logger program and the recording of the LDV signature. After the
measurements have been recorded at the proper threshold settings, the VAD
and Vortex Track program is used to process the data into VAD or vortex
track plots. It is useful to examine the data processing operations involved
in determining the wake vortex trajectories and the three-dimensional wind
velocity field from the LDV measurements in terms of on-line preprocessing

and off-line processing.

3.2.1 On-Line Data Processing

The conical scan VAD and finger scan vortex track measurements are
preprocessed and recorded by the SEL computer. The input from the SEL
computer consists of the basic VrnS signal as well as additional test param-
eters which are listed in Table 3-2. The data recorded by the SEL is in a
different format depending on which mode (VAD or vortex track) the system
is operating in. The SEL records the basic LDV signal with the Data Logger

program.



Note:

Table 3-2
INPUT FROM SEL COMPUTER

Each vortex and VAD run are in a separate file., The following data
are provided for each spectrum analyzer sweep.

5.] Flag for Translator

6.] Flag for Positive or Negative Frequency (used only when

8.| Flag for Conical Scan or Normal Scan

.| Flag for Spectrum Analyzer Sweep Speed

.| Flag for Vv

Spectral Sample Count Across Spectrum Analyzer Sweep,

Corresponding to Vms

Amplitude at the Above Point
Data Acceptable Flag

translator is used)

or V
m

peak s

For Conical Scan

9.
10.
1t.

Height above Van
Flag for Azimuth Switch
Cone Angle

For Finger Scan

9.
10.

Range
Elevation Angle




A dump of a sample output tape from the Data Logger program operating

in the vortex track mode is shown in Fig.3-6, each row corresponding to infor-

mation recorded for each spectrum analyzer sweep. The information is sep-

arated into 12 columns in the printout with interpretation of the various columns

as follows:

Column
1 (PEAK / MAX)

2 (8 = 0)
3 (NOR/VAD)

4 (SWEEP SPEED)
5 (DIG TRCK)

6 (DATA ACCEPT)

7 (+/-)

8 (TRANS/NON-
TRANS)

Ne

(SPECTRUM
INTENSITY)

10 (RANGE)
11 (LTRNC TRCK)

12 (ELEVATION

Interpretation

An indication as to whether the peak Doppler fre-
quency, f-peak» or maximum Doppler frequency
above amplitude or frequency thresholds (f_ )
algorithm is utilized (see Fig.3-3). (The f,
algorithm was used at all times during this investi-
gation.)

Inoperative.

An indication as to whether the system is operating
in the normal (vortex track) (1) or VAD (0) mode.

Sweep speed of the spectrum analyzer trace (1
indicates 10 msec/cm).

The computer calculated estimate of f

(percent
of full scale). peak

An indication that there was/was not an output above
frequency amplitude thresholds during a sweep.

An indication as to the sense of the Doppler shiit
(i.e., target moving toward or away from trans-
ceiver). Toward = +, Away = - .

An indication as to whether or not a frequency
translator was incorporated, (During this investi-
gation it was not incorporated.) No = 0, Yes = 1.

Peak amplitude of the Doppler spectrum in region
above a frequency threshold (arbitrary units).

Range to focus of laser Doppler system (ft)

On-line frequency tracker estimate of fheak (should
be identical to column 5 with time lag of one sample
except when data are not acceptable).

Instantaneous scan elevation angle in degrees.
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Word No. 1 Word No. 2 Word No. 3 Word No. 4

ak or./Sweep Digital Data Trans/ Spectrum Electronic glev.
E/IZX./G = OI;I/AD/Speeg grgacker Accept. +/- Non Intensity Range Tracker Range
! 0 I 1 5 o} 1 0 676 17646 35 17.0
| 0 | 1 38 1 1 o 120 157 46 35 17.2
} 0- | } 41 1 0 118 13245 36. 1744
| 0 } ! 5 0 i 0 672 1156 40 -17+6
U 3 o 1 o0 672 06913 40 17.8
} o i 1 6 o 1 s} 662 06749 40 18D
} 0 ) } 1 D } o 768 064,.,0 HC 1844
i ] i : g o i o £7s G924 4G, 1Beb
} 9 l i 5 0 1 0 670 11242 40 1848
| 0 | 1 51 1 ! 0 154 14143 40 - 1940
} 0 ] 1 42 1 1 0 116 157+ 6 49 19.2
} 0 } 1 5 ) 1 0 678 17646 41 194
l 0 l 1 2 1 1 0 1023 18849 41 196
i 0 } 1 78 1 1 0 l28 175.0 41.. 2040
} -0 1 i 1 4] 1. 0. . 7648 147.3 77..20.2
i 0 | ! 49 P 0. 148 138,2 77 .20.4
} 0 } 1 1 0 1 D R96 123,9 48 2044
| 0 l 1 6 0 1 0 456 0993 48 2048
} 0 | 1 ] ) 1 0. . 670 07643 48. .21.0Q
{ v | 1 i | 1. 0. 1014 05847 48.. 214
i 0 ] 1 2 0 1 .. 0. 960 DB8Y44+0 48 _ 2116
! 0 } 1 5 0 1 ) 672 10544 48.. 218
l 0 | 1 93 1 1 0 118 149143 48 2242
l 0 ! 1 39 1 1 0 128 15042 92 22.2
1 .0 | | 51 i 1 0 128 175.0 38 . 2244
i o 1 S o 1 o0 670 183.4 S0 _4Z+B
} 6 ! 1 ) 0 1 0 672 18849 50__..23.0
] a. 1 1 s 0 1 0 678 170,23 50 - 2342
l 0 ! ! g4 ! ! o 112 14S 46 50 23.4
} 0 l 1 73 1 1 0 128 . 120.7 54 23.8
! o i 1 1 o 1 c 1019 109, 72 23.8
} 0 | 1 } 0 i v} 662 V84,0 72..24.0
} 0 l 1 & 0 1 .0 674 0609 72244

Fig. 3- 6 - Dump of Sample Output Tape from Data Logger with System Operating in Vortex Track Mode



A dump of a sample output tape from the Data Logger operating in the

VAD mode is shown in Fig.3-7, each row of data corresponding to informa-

tion recorded for each spectrum analyzer sweep. The information, packed

into four computer words on tape, is separated into 13 columns in the printout

with interpretation of the various columns being as follows:

Column
1 (PEAK/MAX)

2 (8 =0)

w

(NOR /VAD)
4 (SWEEP SPEED)
5 (DIG TRCK)
6 (DATA ACCEPT)

\

7 (+/-)

8 (TRANS/NON -
TRANS)

(e}

(SPECTRUM
INTENSITY)

10 (NBR ROTN)
11 (ALT (M))
12 (LTRNC TRCK)

13 (CONE ANGLE)

Interpretation

An indication as to whether the peak Doppler fre-
quency (f50,5)) or maximum Doppler frequency
above amplitude and frequency thresholds (f )
algorithm is utilized (see Fig.3-3). (The fmr;ls
algorithm was used at all times during this

investigation.)

A conical scan azimuth reference which is nonzero
when the reference switch is activated.

An indication as to whether the system is operating
in the normal (vortex track) (1) or VAD (0) modes.

Sweep speed of the spectrum analyzer trace in
msec/cm,

The computer calculated estimate of fp (percent

of full scale). eak

An indication that there was/was not an output
above frequency and amplitude during a sweep.

An indication as to the sense of the Doppler shift
(i.e., target moving toward or away from trans-
ceiver). Toward = +, Away = - .

An indication as to whether or not a frequency
translator was incorporated. During this investi-
gation it was not incorporated. No = 0, Yes = 1.

Peak amplitude of the Doppler spectrum in region
above a frequency threshold.

Number of successive VAD scans for a particular
altitude.

Altitude of VAD for particular sweep

On-line frequency tracker estimate of fyea) (should
be identical to column 5 with time lag o}f) one sample
except when data is not acceptable),

Half-angle of VAD cone in degrees.
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WERD N& 1 WORL Nt 2 WEBRD N6 3 WERD NO 4
~—r— - ~ M-
T NCR/  SWEEF DiIG “pata TRANS/  SPECTRUM' T ALt “Lirnc cene
T MAX TTTTESOT T TVAD T SPEEDT T TTRCK ACCEPT v/= NN T TRTNSTTY RBIN (M) TRCK ANGLE
i T —C 1¢ I8 1 1 & 232 1 3% 37 3C
1 ¢ ¢ 1C 38 1 1 C 208 1 323 36 3c
T— T T T 3% 1 1 t 150 1 KFR] 37 3C
1 ¢ c 1€ 39 1 1 c 254 1 123 e 3C
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1 c c 1€ . 39 1 1 C 144 1 323 39 3¢
T T T T a1 1 T T 126 T RER] 35 3cC
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Fig.3-7 - Dump of Sample Output Tape from Data Logger with System Operating in VAD Mode



3.2.2 Off-Line Data Processing

Based on the array of line-of-sight velocities recorded by the SEL, the
VAD and Vortex Track program computes the wind field and/or wake vortex
trajectories, A summary of the basic off-line data processing technique is
given in Table 3-3, The data processing steps described in Table 3-2 form
the fundamental framework for the VAD and Vortex Track program. The VAD
and Vortex Track program is a flexible and comprehensive software package

which is the off-line data processing element of the LDV software system.

Table 3-3
SUMMARY OF OF F-LINE DATA PROCESSING TECHNIQUE

DESCRIPTION OF VAD PROCESSING TECHNIQUE

1.|Save line-of-sight velocities for one rotation of scanner,.

2.|If two or more rotations at same altitude, average with first
rotation,

3.|Assign azimuth angle to each point (assuming constant rotation
rate). Plot velocity versus angle.

4. |Edit points,

Apply moving average if wanted.

6.|Plot velocity versus angle.

PEAK ALGORITHM TECHNIQUE

7.1Pick two peak velocity points, VP and VP , that occur a

minimum of 90 deg apart. ! 2
8.|Compute horizontal velocity, Vh
VP + VP
V. = 1 2
h =

2 sin (cone angle)

9.|Compute horizontal angle with help of estimated wind direction.

10.|Compute vertical wind velocity, VV

Vp - Vp

1 2
V. =
v 2 (cone angle)
cos >

11.{Derectify VAD signal if no translator is present,




Table 3-3 (Continued)

FOURIER COEFFICIENT TECHNIQUE

12.| Compute Fourier coefficients (program computes first four coef-

13.

14,

15,

ficients).

a .00
f(x) = 7 E (a. cos——= 1rx +bn sinn}:x)
n=1

t“N

L L
nrm _ 2 nr2m
Z Vin ©© ( L ) n L Z Vi sm( )

m=1 m=1 where L. = number of
points in VAD sweep.

Compute correction to fundamental harmonic due to frequency
cutoff (Ref. 6).

Correction = ls1n7rZ where Z = No.Zeros/No.Points
l1-2 +——

Correction Value = (Correction) * (Calculated Fundamental)

Compute vertical wind correction. (Ref.6)

Correction = -2
Compute horizontal velocity.
a.? + bf
v

. _cone angle
sin( 5 )
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Table 3-3 (Continued)

16.| Compute horizontal angle.

17.

Angle, = Atan(b 1/a, N

Compute vertical wind velocity

~-a
A\ = o
v cone angle
2 cos{ > )

SINE [CURVE FIT TECHNIQUE
19.]| Find least squares curve fit for a sine wave to the data
L
Minimam = 3 (¥, - C - A cosd, - B sing,)°
i=1
where
Yi is line-of-sight velocity at point
9, is azimuth at point
C, A and B are coefficients to be solved for.
20.|{Compute horizontal velocity.,
v = Va? 4+ B2
h sin (conezangle)
21.|Compute horizontal angle.
Angleh = Atan(B/A)
22, |Compute vertical wind velocity

-C
Vv =
v cQs(conezangle)'
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Table 3-3 (Continued)

AFTER THE VELOCITIES HAVE BEEN COMPUTED FOR ALL ALTITUDES:

1.| Compute a least squares fit for the horizontal speed to a power
law curve

- P
V = V_ (H/H))

2.{Compute a least squares fit for the horizontal directions to a
polynomial,

3.|Plot horizontal speed versus height,
4,.|Plot horizontal direction versus height.

5.| Plot crosswind velocity versus height,

DESCRIPTION OF VORTEX TRACKING ALGORITHM

1.| Frequency, intensity, range, elevation angle, and time are saved
for each point in a frame.

2.|The x,y position is computed with adjustment for the wind.

3.[The line-of-sight airspeed is computed. If the translator is used,
the crosswind speed is removed.

4.|The points are sorted with respect to velocity and also sorted with
respect to intensity.

5.|Depending on algorithm chosen, the highest velocity point or the
highest intensity point is picked.

6.]A correlation circle is drawn around the above point. Only points
within this circle will be considered for determining the vortex.

7.|The number of points within the correlation circle are counted
and compared with NPSUF. If insufficient, throw out the
chosen point and return to item 5.

8.| The fraction of points, with a velocity or intensity greater than
APERCT of the maximum point, is computed. If this fraction is
less than BPERCT, throw out the chosen point and return to item 5.

9.|The velocity at each point is multiplied by its intensity, to be used
as a weighting factor in determining the centroid of the points.
This centroid is declared to be the vortex location. The relative
weighting of intensity versus velocity for computing the centroid
may be modified by the use of NOISEF (the noise floor) and ADJI
(intensity adjustment or fraction of noise floor added to total
intensity).
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Table 3-3 (Concluded)

10.

11.

12.

13.

14,

15.

16.

17.

18.

An excluding circle, with a radius of EPERCT multiplied by the
correlation radius, is drawn around the above vortex.

The highest velocity point or the highest intensity point outside
the excluding circle is chosen. (In the case of the velocity algo-
rithm, no point with less than half the velocity of the highest
velocity of vortex 1 will be considered.)

A correlation circle is drawn around the above point and only points
within this circle and outside of a correlation circle around vortex 1
will be considered for determining vortex 2,

The number of points within the area described above is counted and
compared with NPSUF and CPERCT multiplied by (number of points
used in determining vortex 1). If insufficient, throw out the chosen
point and return to item 11,

The fraction of points with a velocity or intensity greater than
APERCT of the maximum point is computed. If this fraction is
less than BPERCT throw out the chosen point and return to item 11.

The velocity at each point is multiplied by its intensity to be used
as a weighting factor in determining the centroid of the points.
This is declared to be the vortex 2 location.

The vortex with a greater Y position is declared to be the star-
board vortex with the other vortex being port. If only one vortex
is found it is declared unknown.

A scatter plot showing the magnitude and location of each velocity
point is made for each frame on the printer.

SC 4020 plots and printer plots are made of the following
a. Vortex height versus horizontal position
b. Vortex height versus time

c. Vortex horizontal position versus time.

VAD and Vortex Track program is used to reconstruct the ambient wind field

From the type of information shown earlier in Figs.3-6 and 3-7, the

or the aircraft wake vortex trajectories. To describe the operation of the

software, it is useful to present sample runs and to analyze the results.

are provided in Fig.,3-8.

program showing the resulting printout and plots is given in Figs.3-9 and

3-10,

respectively,

The
list of input parameters to the off-line analysis program and their definitions
A sample VAD run from the VAD and Vortex Track



TITLE CARD

33 COLUMNS OF COMMENT

OFFLINE DATA REDUCTION PROGRAM FOR LMSC LASER VAN

HANDLES VAD WIND SCAN AND NORMAL VORTEX ARC ScaN

PROGRAM INPUT

NAMELIST (DATA)

[GROUP
ISFILE(2,10)
NRUN

ZLASER
ZLASCN
INTVEL

NPSUF
APERCT
BPERCT
CPERCT

RPERCT

EPERCT

NO1SEF
ADJI

ANGSW
" WANGLE

WINDHP

LFLIP

NUMBER OF GROUPS of DATA 70 BE SKIPPED
SKIP FILES ISFILE(1,k) THROUGH ISFILE(2Z,K)

'NUMBER OF FLYBYS AND VAD RUNS TO PROCESS

(INCLUBES skIPPED FILES BUT NOT SKIPPED GROUPS)
(IF NRUN=Q PROGRAM IS TERMINATED)

"HEIGHT ABOVE GROUND OF LASER M MIRROR FOR VORTEX SCa

HEIGHT ABOVE GRUUND OF CONICAL SCAN MIRROR

" FLAG

INTVEL = | VELOCITY ORIENTED VORTEX DETERMINAT]ON

TTINTVEL 2 INTENSITY ORIENTED VORTEX DETERMINATION

SUFFICIENT NUMBER OF POINTS TO DEngnINE VORTEX POSITION

'FRACTION OF THE MAXIMUM PEAX @

FRACTION OF POINTS UF WHICH THE Q IS AT LEAST

"APERCT FRACTION OF THE MAXIMUM Q

(Q ]S VELOCITY QR INTENSITY AS OETERMINED BY INTVEL

“FRACTION OF POINTS USED IN VORTEX ONE REQUIRED FOR

VORTEX TWO S o
FRACTION OF AIRCRAFT WwING SPAN USED FOR
CORRELATION RADIYS

T"REPRESENTED ATRCRAFT ARE 8707, B727, B737, B747,

pce, DC9, DC1os L1011y CS5A, CVBBQ

"FRACTION OF CORRELATION RADIUS FROM VORTEX ONE FOR

EXCLUDING INITIAL POINT OF VORTEX Two

NOISE FLOOR S ‘

INTENSITY ADJUSTMENT ) -
{FRACTION OF NDISE FLOOR ADDED TO TOTAL INTENSITY)
AZMUTH OF MIRROR wHEN SWITCH IS ACTIVATED

"ESTIMATE OF wIND ANGLE

(DIRECTION WIND 1S FROM)
(USED WHEN NO TRANSLATOR 1S USED)

WIND HEIGHT TO Bg PLOTTED
" (1F ZERO WIND WILL Bg -PLOTTED TO HEIGHT OF CONICAL

"FLAG (APPLYS ONLY FOR NONTRANSLATE MODE)
_LFLIP ® € USES PEAKS, DOES NOT FLIP DATA

Fig. 3-8 - Input Parameters to VAD and Vortex Track Program

3-25



ISINE

EIDT
MOVAVE

YLIM(2)
Limn(2)
ISCALE

YR

YL

1
TMAX
VMAX
NSPLT
JPKOF

IMULT

10F1

lopP2

10P3

IoP4

LFLIP = 1 FLIP SIGN OF HALF VAD DATA
(FLIP POINTS MUsST BE INPUTED FOR EACH VAD ALT)
LFLIP ®= 2 SAME AS LFLIP = | EXCEPT
FLIP POINTS ARE COMPUTED
WITH THE USE OF THE PEAK ALGORISM
LFLIP = 3 SAME AS LFLIP = 2 EXCEPT
ONLY ONE PEAK IS FOUND
FLAG (APPLYS ONLY FOR TRANSLAT OR WHEN LFLIP «GTe C)
ISINE = 0 FOQURIER COEFFICIENTS
ISINE = 1| SINE WAVE FIT
ISINE ®= 2 B0TH FOURIER AND SINE
EDIT CRITERIA IN FRACTION OF VELOCITY FOR POINT
NUMBER OF POINTS USEp IN MOVING AVERAGE OF VELOCITY
ALONG AZIMUTH FOR VAD {(MOVAVE MUST BE ODD)
MINIMUM BOUNDARIES IN Y DIRECTION OF SCATTER PIL.OTS
MINIMyUM BOUNDARIES IN Z DIRECTION OF SCATTER PLOTS
FLAG
ISCALE = 0 ALL VORTEX PLOTS COMPUTE OwN SCALE
FACTORS
ISCALE = 1 INPUTED SCALE FACTORS FOR VORTEX PLOTS
RIGHT EXTREME OF Yy PoSITIoN
LEFT EXTREMEOF y PoSITION
ToP EXTREME 0F HEIGHT
MAXIMUM TIME FOR pLOT
MAXIMUM VELOCITY FOR EACH FRAME
NUMBER OF VApD SWEgPS FOR EACH VAD PLOT
FLAG
JPROF = 0 NO WIND PROFILE COMPUTED
JPROF = | wIND pROFILE COMPUTED
FLAG FOR VORTEX TRACK PLOTS
IMULT = ¢ SINGLE FRAME FOR EACH FLYBY
IMULT = | MULTIPLE FRAMES FOR EACH FLYBY
PRINTING OPT]ON
{OP) s ¢ NO PRINT
JOPL = | MINIMuUM PRINT
IOP) = 2 MAXIMUM PKINT
PRINTER PLOT QPTIQN
JUP2 = g NO PRINTER PLOT
JOP2 = | MINIMUM PRINTER PLOT
JOP2 = 2 MAXIMUM PRINTER PLOT
Sc4%2¢ PLOT OPTION
{OP3 = & NO SC4920 PLOT
JOP3 = 1 MINIMuM 5c40620 PLOT
JOP3 = 2 MAXIMUM SC402Q PLOT
TRACK ON UNIT 21 oPTION
IOP4 = ¢ NO TRACK WRITTEN
IOP4 = | TRACK WRITTEN

Fig.3-8 (Continued)
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PRESET VALUES FOR

I1GROUP
ISFILE(2,13)
NRKUN
ZLASER
ZLASCN
INTVEL
NPSUF
APERCT
BPERCT
CPERCT
RPERCT
EPERCT
NOLSEF
ApJl
ANGSWH
wANGLE
WINDHP
LFLIP
ISINE
ElLT
MUVAVE
YLIM(Z)
vimnt2)
I15CALE
YK

YL

ral
THAX
VMAX
NSPLT
JFPKOF
I1MULT
10P1
10P2
10P3
10P4

NAMEL ST

>

2pv gl
1L

7¢

2e

]

3

«75

)

5
e3141592654
1eb

-e
Ce
Se

- PR
2

2

2

5
Deslde
el

Ll
=450
20U
12y
8L e

-NNN e

Fig.3-8 (Concluded)

(DATA)
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-

$DATA
IGROUP =
ISFILE =

NRUN
ZLASER
ZLASCH
INTVEL
NPgUF
APERCT
BPERCY
CPERCY
RPERCY
EPERCY
NQ)SEF
AD g1
ANGSH
GANGLE
#INLHP
LFLIP
ISINE
ED T
MOVAVE
YLIM
ZL M
ISCALE
YR

YL

27
TMaAX
VMAX
NSpLT
JPROF
IMyLTY
I0p1
10p2
10p3
I10p4

SEnD

BOULDER BoD42 RUNg)

+L

+152¢8

+120¢C

+13C¢

+1300

+1050¢

+}
e705000G6CE+T
«000000B0E+GC
+1]

+3
¢7%3CLTUCCE+CD
e SDAVLELHE+LS
eS0OGLSLOE+LY
ed14159272E+853
o 1SACCACRESL )
*G
«SO20CETRESCS
o 7400LICDEL2
0 27020GI0CE+D2)
«0203CGUDE+QD
+3

+2
«2000CU8CE+Q0
+5
w000CC282E+22
«J00OGOCIE+CS
+}

e 4LIQLOCIE+ZI
s 4NUCLOQLE+D]
¢ 20J0LC23E+(GI
e 12000000E+L3
«803003CJE+D2
+9

+3

+0

+}

+2

+2

+{

BOULDER BODH42 RuUNng!

DATE 2/ 7/76
LOCATION TABL

AIRCRAFT HEAULING
X pOSITION OF LASER
Y PUSITION OF LASER

Fig.3-9 - Sample of VAD and Vortex Track Program Operating in VAD Mode

+1J30¢
+10CGy
+109U)
+10gi
+10%50

«ICAILICIES2C
e IN0VLILLE+TU

BRoze® 27 9/76

E MT,
02702C000+3 DEGREES
NI v BV FEET
«+50GRo00E2 FEET
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‘ATRCRAFT TYPE }
STARTING FREQUENCY +40000000+06 HZ

ENp FREQUENCY ~ — 29000000407 nz roTTmm o mmmme T rm o T
CORRELATION RADIVUS VAD ,456181452+02 FEET _
T VELOTITY STEP PER 0IVISION ©34776906+00 FT/SEC PER DIVISion T T Tt -
INCREMENT CORRESPONOING TO ZERo VELOCITY =20 e
"TTIME 1S 15340% O )
. e VAD 2/ 7776 HD270,
CONTCAL ScaN
TRANSLATOR NOT ON o ) e
TTTIWE BETWEEN SPECTRUM ANALYZER SWEEPS S~ «149%00-01 SEc.
CONE ANGLE IS 30 OEGREES e
RUN NOo 1 TIME 1S 1S5¢t402 5 e
RUN NO 1 TIME IS 15:40: 8
ALT NUMBER I ALTITUDE 2. FT wiIND SPEED 59«4 FT/SEC WIND DIRECTION 31043 DEGREES
“"WIND SPEED ONE ™~ ~5¥¢é6 FY/SET ~ WIND DIRECTVION ONE 336,V DEGREES ~ WIND DIRECYION ONE REVERSED  154.1 DEG
WIND SPEED TWO S%el FT/SEC ~ WIND DIRECTION TWO 104.5 DEGREES WIND DIRECTION TWO REVERSED  284,5 DEg
T RVERAGE WIND DIRETTIUN ~ "3j0.3 OEGREES ~ AVERAGE WIND DIRECTION REVERSED  130.3 DEGREES ~ ~ —— ~——— —
VERTICAL WIND VELOCITY [S 2+677-pD1
bt LOWER ANGLE = 123.72 UPPER ANGLE & J3OJ. 72 — —— — T - - -
N —_— e Ce—
N S
TRUNNO. T TTUYYWE TS YSEe€0Y 8 0 T T R R —
TKCY NUMBER T~ KUTITUDE V&, FT WIND SPEED ~ 43,3 FT/SEC — WIRDU DIRECTIUN 284y DEGREES —
VERTICAL WIND SPEED =140 FT/SEC, :
TPERCENT UF ZND HARARUNTC™ — 8,3~ PHASE ANGLE OF Z0 HARNONIC 12,5 DEGREES T T
PERCENT OF 3RD HARMONIC 25,8 PHASE ANGLE OF 3D HARMONIC 74,6 DEGREES
TZERU FACTOR™™ ") ¢S188 T T33] POINTS WITH 299 ZEROS T T T T T T
RAw VERTICAL DATA =1s0 FT/SECs e o
ALT NUMBER ALTITUDE 92, FT WIND SPEED 52.6 FT/SEC WINO DIRECTION  28%47 DEGREES
TVERVITAL WIND SPEED” "~ T.1 FY/SEE, Tt T
STANDARD DEVIATION ABOUT THE SINE wAVE IS «316725+01 i
‘NUMBER OF POINTS & 33T 7 " NyUMBER OF ZEROS = 209 -

Fig.3-9 - (Concluded)



ALTITUDE 15 91.8 FEEV RUN NO. [}
TIRE 15 15°40°%6 VAD P76 H02710.

A OOr MG ~SBH=P WO MR-

(F1/5%)

WORIZONTAL ANGLE IN DEGMEES

Fig.3-10 - Sample of VAD and Vortex Track Program Operating
in VAD Mode

a. Basic Signal
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Fig. 3-10 (Continued)
b. Twenty-One Point Average of Basic Signal
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ALTITUDE IS 91.8 FEET
TINE 1S 15°40°4¢6

RUN NO.
VAD

1
YNt

D270,

CHAMOO M TR NO MEB~r

(FT/5EC)

COMPUTED FLIP

10

» sws sms e

W ey syne by -

(]
-
(-2

=20

=30

=40

200 M0 180

L] ] 120 160
MORIZONTAL ANGLE IN DEGREES

Fig. 3-10 (Concluded)
c. Computed Flip of Basic Signal
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The plots corresponding to the sample printout shown in Fig. 3-9 are
presented in Fig. 3-10. The plots include the observed line-of-sight velocity
as a function of azimuth angle, the signature filtered by a 21-point moving aver-
age, and the signal derectified. For the latter two cases, the signal is edited.
The edit criterion is applied to all of the points whose magnitude is above the
specified velocity threshold. The edit program compares successive points
in the velocity versus horizontal scan angle distribution and deletes those
points where the magnitude of the velocity differs by more than a specified
fraction (20% for the JFK tests) from the adjacent values. The purposes of
this edit criteria is to filter out high frequency turbulence and to isolate the

fundamental mean flow components.

The printout from the off-line program, illustrated in Fig.3-9, con-
sists of the list of input parameters, test parameters, and VAD measurements.
The VAD measurements show the wind speed and wind direction as a function
of altitude and time. In the sample output the wind speed and direction at
each altitude (and time interval) is computed three different ways according

to: (1) the peak algorithm, (2) the spectral analysis, and (3) the sine curve fit.

The winds are computed with the peak algorithm for the two highest
line-of-sight velocities observed in the VAD (resulting in wind speed and
direction 1 and 2, respectively, in Fig. 3-9). The average of wind speed
and direction 1 and 2 is also given by the peak a.lgorithxn' and is assumed to
be more representative of the actual phenomenon. In the printout the re-
versed wind direction is also given since a 180 degree ambiguity is present
in the non-translated LDV mode which is resolved by specifying the wind
quadrant as an input. The lower and upper angle refer to the angle over

which the VAD signal is flipped or derectified (see Fig.3-10).

The spectral analysis program computes the wind speed and direction
based on the first harmonic of the VAD signal as shown in the results in Fig.
2-10. In addition, the second and third harmonic contributions are computed

and printed out. The number of points observed in the VAD scan (the number
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of hits) and the number of zeros are tabulated and printed out. The zero factor
is a scale correction factor to adjust the wind speed of the fundamental biased
by the frequency threshold. As shown in Fig.3-10, when the VAD signal is
derectified gaps occur at the crossover regions due to the frequency (velocity)
threshold. The zero factor is computed to adjust the wind speed based on the
number of zeros in the VAD scan (i.e., in Fig. 3-9 the wind speed computed
from the first harmonic was multiplied by 1.5148 to derive the actual wind
speed). The RAW VERTICAL DATA refers to the measured vertical velocity
without the frequency cutoff correction, and the VERTICAL WIND SPEED in

refers to the corrected value as shown in Fig. 3-9.

The sine curve fit algorithm computes the wind speed and direction
making a least square fit to the VAD signature with a sine wave and the re-
sults are shown in Fig. 3-9. The standard deviation of the line-of-sight

velocity about the sine wave is also computed and given.

Data processing of the finger scan LDV measurements is carried out
by the vortex track routines in the VAD and Vortex Track program. The
operation of the vortex tracking software was summarized earlier in Table
3-1, and is illustrated by the sample output shown in Fig.3-11l, Typical
printout from the program includes the number of saved hits (IP) and the
observed signal frequency (IFREQ = Vms) which is tabulated as a function
of time, range, and elevation angle for each scan. The line-of-sight velocity
(SPEED in ft/sec) and lateral and vertical coordinates (YP and ZP in feet)
are computed from the above parameters. The points are sorted according
to their intensity, selected by the tracking algorithmn for the determination
of the centroid of the port, starboard, or undefined vortex (YC, ZC). For
each elevation sweep a scatter plot of the intensity of all of the hits is given
labeled A through O and a list of points used in determining the centroids is
given. In the scatter plots the Z's represent the points about which the corre-
lation circle are drawn and the P's and S's are the centroids of the correlation
circles and denote the location of the port and starboard vortices, respectively.

The line -of -sight velocity is processed and displayed in this manner for each
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successive sweep until the end of the data is reached. At this point, the list

of vortex centroids as a function of time is printed out and plotted. The wake
vortex trajectories are also plotted on a SC 4020 plotter. The wake vortex
plots generated from the JFK tests are discussed in Section 5 and the measure-

ments are presented in Appendix A.

The manner in which the wake vortex measurements were processed
can be summarized as follows. The frequencies and amplitudes associated
with the laser Doppler signal were sémpled at fixed intervals. The spectrum
was recorded if it was above the frequency and amplitude threshold settings
(Fig.3-4). The amplitude and frequency threshold settings for the JFK tests
are given in the log sheets in Appendix C. From the array of recorded fre-
quency and intensity points, the line-of-sight velocity field was computed and
the vortex parameters including location and velocity distribution were deter-

mined.

To compute the wake vortex transport and decay characteristics from
the low-speed data line-of-sight velocity distributions, the JFK measurements
were analyzed using the VAD and Vortex Track Program described earlier.
Based on previous experience with the program, the following parameters

were selected for the analysis of the JFK data:

INTVEL=2.0  Flag
INTVEL = 1 Velocity oriented vortex determination
INTVEL = 2 Intensity oriented vortex determination

NPSUF = 4.0 Sufficient number of points to determine vortex
position

APERCT = 0.1 Fraction of the maximum peak velocity or intensity
points

BPERCT = 0.1 Fraction of points within the correlation circle

where Q is at least APERCT fraction of the
maximum Q (Q is velocity or intensity as deter-
mined by INTVEL)

CPERCT = 0.5 Fraction of number of points in correlation circle
used for determining vortex 1 required for deter-
mination of vortex 2

RPERCT = 0.314 Fraction of aircraft wing span used for correlation
radius
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EPERCT = 1.5 Fraction of correlation radius from vortex 1 for
excluding initial point of vortex 2

NOISEF = 0.0 Noise floor

ADJI = 0.0 Intensity adjustment (Fraction of noise floor
added to total intensity)
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4. FIELD TESTS OF LDV SYSTEM

To evaluate the capability of the Lockheed-Huntsville LDV to measure
the wind, wind shear, and wake vortex phenomena in terminal areas; the sys-
tem was deployed at the Huntsville Jetplex, Huntsville, Alabama, and at

Kennedy International Airport, Jamaica, New York.

The LDV was deployed and tested at the Huntsville Jetplex in October
1975 to check out the basic operation of the system. The location of the LDV at
the Jetplex was as shown in Fig.4-1. On 15 October 1975 wake vortex measure-
ments were made behind an 1.-1011 aircraft and the following day, measure-
ments were made behind a FAA CV-880 aircraft conducting touch and go
landings and approaches. The wake measurements at the Huntsville Jetplex
were intended primarily to test the operation of the system. The ability of
the LDV system to identify and track wake vortices was demonstrated at the
Jetplex tests. A sample wake vortex trajectory measured by the LDV at the
Jetplex is shown in Fig.4-2. The vortex track in Fig.4-2 shows the lateral
motion of the L.-1011 wake vortices, Similar wake measurements were ob-
tained at Huntsville for the CV-880 aircraft. The ability of the LDV system
to monitor wake vortices at an airport for extended periods of time under

various weather conditions was demonstrated during the JFK tests.

Wake vortex and wind profile measurements were taken with the

Lockheed-Huntsville LDV at Kennedy International Airport (JFK) in two

test sequences from 30 October 1975 to 19 November 1975 and from 13
January to 31 January 1976. (Between these tests, the LDV was transported
to Rosamond, California, to participate in the DOT/NASA B-747 wake vortex
decay studies.) In the 14 days of operation at JFK in November 1975, 13
tapes of vortex, VAD, and range scan data were generated. During the
second test series in January 1975 another 13 tapes of VAD and wake vortex
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Mmeasurements were obtained. A total of 479 landing operations on Runway
31R involving B-747, B-727, B-707, DC-10, DC-9, DC-8 and 1L.-1011 aircraft
were monitored by the LDV system at JFK. The results of the JFK tests
are discussed in Section 5 and the measurements and data logs are given in
Appendixes A and C, respectively. The location and orientation of the LDV
with respect to the runway at JFK is sketched in Fig.4-3.
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5. RESULTS OF WAKE VORTEX MEASUREMENTS

To demonstrate the operational capability of the LDV for monitoring
wake vortices at airports, wake vortex measurements were carried out with
the LDV system for 479 landing operations on runway 31R at Kennedy Inter-
national Airport (JFK). From the logged data, 460 flybys have been processed
and the presence of the wake vortex was clearly detected with the system for
379 flybys (i.e., one or more vortex centroids were computed) which includes
82% of the processed data. For the remaining 18% of the data (81 cases) no
clear identification of the wake vortex pair was made. The lack of vortex
identification is attributed to: (1) light aircraft types (such as DC-9 and others)
where the vortex strength is too small for the LDV to detect them; (2) operator
error in initializing the start of the scan or in setting the frequency and ampli-
tude thresholds; and (3) windy and/or gusty conditions where the wake vortex
is rapidly dispersed or transported out of the field of view. A summary of the
wake vortex measurements is listed in Table 5-1 including the date, the number
of flybys logged, the number of flybys processed, the number of observed wake
trajectories, and pertinent comments. The individual wake vortex trajectories
are given in Appendix A for those flybys out of the total of 379 where the
vortex tracks were within the field of view of the LDV system (i.e., six or

more vortex centroids were located). The general trends are described below.

Sample wake vortex trajectories recorded with the I.DV at JFK are pre-
sented in Figs. 5-1 through 5-10. These flybys have been selected since they

illustrate the wake vortex measuring capability of the systems in terms of:

a. Discriminating the port and starboard vortices from the overall
flowfield,

b. Tracking the lateral and vertical location of the vortex wake,



Table 5-1

SUMMARY OF WAKE VORTEX MEASUREMENTS CONDUCTED
AT KENNEDY INTERNATIONAL AIRPORT WITH
LOCKHEED-HUNTSVILLE 1DV

No. of No. of No. of
JFK Flybys | Flybys Wake
Tape Date Logged | Processed | Trajectories Comments
2 10/30/75 18 18 7
3 10/31/75 45 45 38
6 11/4/75 21 16 15
9 11/7/75 7 7 6
13 11/18/75 9 9 7 Run stopped
14 11/18/75 51 51 38 Good runs
21 1/14/76 60 58 55 Short vortex life
22 1/15/76 99 99 70 Good runs
27 1/27/76 34 34 26 Few hits
28 1/28/76 70 68 63
30 1/30/76 56 55 54 Good runs
31A 1/31/76 9 0 0 Not processed
Totals 479 460 379
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c. Indicating transport of the vortex pair, and

d. Indicating decay of the vortex peak velocity.

The port and starboard vortices are labeled by the letters P and S respec-
tively while the symbol (*) refers to a single vortex whose origin is undefined.
In Figs.5-1 through 5-10 the LDV system consistently locates the port and
starboard vortices., At late times, when lateral drift of one vortex out of the
LDV field of view can occur, discrimination of the port and starboard vortices

is limited.

The lateral trajectory of the wake vortices is indicated by the height
versus y position and vortex age versus y position plots. For the sample
runs shown in Figs,5-1 through 5-10 the wake vortex remains in the region
+150 ft about the runway centerline for 20 to 60 sec. Some scatter can be
seen in the lateral trajectories attributed to: (1) the actual vortex wandering;
(2) the range resolution of the LDV system; and (3) the resolution of the vortex
track algorithm. Filtering the data or a least squares fit to the vortex tra-
jectory could eliminate some of the scatter. However, the existence of the

wake vortices in the vicinity of the runway can be clearly determined from

the measurements.

In addition to the scatter in the vortex track measurements attributed
to ambient conditions and to computer processing techniques, some of the
scatter resulted from constraints in the LDV system hardware. Two possible
sources of error in the LDV system included: (l) error in vortex track loca-
tion due to actual versus commanded focus position, and (2) failure to record
vortex signal during periods when the onboard computer was dumping the filled
up buffer. Since the location of the LDV focal volume was determined from the
commanded rather than the observed mirror orientation and since a small lag
occurred between the commanded and observed mirror position, the measured
vortex location could be in error by +20 ft for the typical finger scan rates
selected at JFK. Hardware problems with the computer interrupt dictated a

single buffer data collection mode on the onboard computer which resulted in



data being rejected whenever the computer was in the process of dumping
the filled up buffer. As a result, intermittent skips in the recorded vortex
tracks lasting a fraction of a second could be observed during the measure-
ments. However, it is noted that the above hardware problems did not
seriously hamper the capability of the LDV to identify and to monitor wake
vortices in the vicinity of the runway. Appropriate modifications can be

made to the LDV system to circumvent the cited hardware limitations.

The vertical trajectory of the wake vortices is indicated by the vortex
age versus height and height versus y-position plots. For the sample runs
shown in Figs. 5-1 through 5-10 the vortex pair descends at approximately
constant velocity until it is within 50 to 100 ft of the ground. The scatter in
the vortex altitude measurements appears to be larger than in the vortex
lateral position measurements. This is attributed to: (1) the wake vortices
can become asymmetric during the descent process, and (2) the uncertainty
in the altitude is related to the product of the uncertainty in the elevation

angle and range.

Decay of the wake vortex peak velocity is illustrated by the vortex age
versus peak line-of-sight velocity plots in Figs.5-1 through 5-10. The peak
line -of -sight velocity is a measure of the maximum rotational velocity of each
vortex. In general, no significant decrease of the vortex rotational velocity
occurs initially in the vortex wake, i.e., 0 to 40 sec after aircraft passage,
while at later times the peak velocity decreases markedly. Some scatter
can be noted in the peak velocity time histories which is attributed to: (1) the
different velocity decay rates for the port and starboard vortices, (2) unsteadi-
ness in the vortex flow and the lack of axial symmetry, and (3) the uncertainty
in determining the exact vortex centroids due to spatial resolution and lack of
sample points. However, the velocity decay trends shown in Figs. 5-1 through
5-10 are in agreement with the plateau and the 1/t or I/VT type of vortec decay

characteristics observed in wind tunnel and water tank studies by others (Ref. 7).

The wake vortex trajectories measured with the LDV system at JFK: are
given in Appendix A and show the same trends as the sample plots discussed

above. 5_14



6. RESULTS OF WIND MEASUREMENTS

The three-dimensional wind field was monitored as a function of altitude
near the middle marker position of runway 31R at Kennedy International Air-
port several times daily during the LDV field tests. The objective of the wind
data collection was to: (1) demonstrate the capability of the Lockheed-Huntsville
LDV for measuring ambient atmospheric wind fields; (2) compare the LDV
measurements with wind measurements obtained by conventional anemometers
at the test site; and (3) from the above data, establish the operational capa-
bilities, resolution, and integrity of the 1DV for wind monitoring at terminal

areas.

During the JFK field tests, a considerable amount of wind data was
collected with the LDV as shown in the data logs in Appendix A. However,
a detailed comparison of the LDV wind measurements with on-site wind meas-
urements from the DOT -TSC meteorological towers was hampered by lack
of data from the meteorological towers. In subsequent tests, summarized
in a separate report, LDV u,v,w measurements were carefully correlated
with instrumented tower measurements; the results showed that the LDV is

a highly sensitive wind monitoring device (Ref.6).

Wind profile measurements were carried out at JFK with the LDV sys-
tem operating in the VAD mode. The processed wind speed, direction, and
crosswind and downwind profile are shown in Figs.6-1 and 6-2 for sample
cases. For comparison, the hourly 20-foot level NOAA groundwind meas-
urements at JFK are also plotted for each of the wind profiles as obtained
from the surface weather charts. Good correlation is noted between the
Lockheed-Huntsville LDV measurements fitted by a least squares curve fit
and the ground wind observations in Figs.6-1 and 6-2. A power law wind

speed profile and a linear wind direction profile were fitted to the LDV VAD
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measurements at different altitudes so as to minimize the sum of the squares

of the derivations of the given points from the curve. The LDV measurements
have also been compared with observations from the DOT-TSC instrumented
meteorological tower at JFK. The LDV system was located 3,700 and 850 ft,
from the DOT 135 and 40 ft towers, respectively. The NOAA tower was located
approximately 2 miles from the LDV system. The results in Figs.6-3 and 6-4
show the wind speed measurements obtained from the LDV VAD scans and the .
meteorological towers. The measurements in Fig.6-5 show the line-of-sight
velocity obtained with the LDV system focused at the location of the anemometer
on the 40' tower. The wind measurements from the 40' DOT tower and the

20' NOAA tower, resolved about the LDV line-of-sight, are shown in Fig.6-5
for comparison. Again, good agreement is noted between the LDV and meteoro-

logical tower measurements.
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7. CONCLUSIONS

The operational capability of the Lockheed-Huntsville mobile laser
Doppler veiocimeter system for the measurement of winds and wake vortices
at terminal areas has been demonstrated. Wake vortex measurements have
been obtained under a range of operating conditions and the existence of wake
vortices in the approach corridor was monitored successfully during the field

tests. A useful data base of wake vortex trajectories were collected.

Analysis of the performance of the LDV suggested that the following.
modifications could further improve the remote sensing capabilities of the
system:

l. Incorporate actual rather than commanded elevation angle signal

into the scanner and double buffer the onboard computer to elimi-
nate anomalies in the data acquisition.

2. Increase the data acquisition rate and resolution of the system by
integrating a filter bank into the signal processor.

3. Explore different scan configurations and different vortex dis-
crimination concepts to improve the definition of the vortex tracks.

The results of the research program obtained a valuable data of wake
vortex trajectories, demonstrated the basic reliability of the LDV system,
and suggested techniques for refining the capability of the LDV remote

sensing system.
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