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FEDERAL AVIATION ADMINISTRATION 
SYSTEMS RESEARCH AND DEVELOPMENT SERVICE 

SPECTRUM MANAGEMENT STAFF 

Statement of Mission 

The mission of the Spectrum Management Staff is to assist the De­
partment of State, Office of Telecommunications Policy, and the 
Federal Communications Commission in assuring the FAA's and the 
nation's aviation interests with sufficient protected electromag­
netic telecommunications resources throughout the world to provide 
for the sQfe conduct of aeronautical flight by fostering effective 
and efficient use of a natural resource--the electromagnetic radio 
frequency spectrum. 

This object is achieved through the following services: 

Planning and defending the acquisition and retention 
of sufficient radio frequency spectrum to support the 
aeronautical interests of the nation, at home and a­
broad, and spectrum standardization for the world's 
aviation community. 

Providing research, analysis, engineering, and evalu­
ation in the development of spectrum related policy, 
planning, standards, criteria, measurement equipment, 
and measurement techniques. 

Conducting electromagnetic compatibility analyses to 
determine intra/inter-system viability and design 
parameters, to assure certification of adequate spec­
trum to support system operational use and projected 
growth patterns, to defend aeronautical services 
spectrum from encroachment by others, and to provide 
for the efficient use of the aeronautical spectrum. 

Developing automated frequency selection computer 
programs/routines to provide frequency planning, fre­
quency assignment, and spectrum analysis capabilities 
in the spectrum supporting the National Airspace Sys­
tem. 

Providing spectrum management consultation, assis­
tance, and guidance to all aviation interests, users, 
and providers of equipment and services, both na­
tional and international. 
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APPLICATIONS GUIDE 

FOR 

PROPAGATION AND INTERFERENCE ANALYSIS 

COMPUTER PROGRAMS (0.1 to 20 GHz) 

M. E. Johnson and G. D. Gierhart 1 

Assignments for aeronautical radio in the radio frequency 

spectrum must be made so as to provide reliable services for an 

increasing air traffic density [30]2. Potential interference be­

tween facilities operating on the same or on adjacent channels 

must be considered in expanding present services to meet future 

demands. Service quality depends on many factors, including the 

desired-to-undesired signal ratio at the receiver. This ratio 

varies with receiver location and time even when other parameters, 

such as antenna gain and radiated powers, are fixed. 

The computer programs cover_ed in this report were developed 

by the Department of Commerce (DOC) with the sponsorship of the 
Federal Aviation Administration (FAA). Although these programs 

were intended for use in predicting the service coverage associ­

ated with ground- or satellite-based VHF/UHF/SHF air navigation 

aids, they can be used for other services in this frequency range. 

The propagation model used with these programs is applicable 

to air/ground, air/air, ground/satellite, and air/satellite paths 

over smooth or irregular terrain. It can also be used for ground/ 

ground paths that are line-of-sight, smooth earth, or have a com­

mon horizon. These computer programs are useful in estimating 

1 

2 

The authors are with the Institute for Telecommunication 
Sciences, Office of Telecommunications, U. S. Department 
of Commerce, Boulder, Colorado 80303. 

References are listed alphabetically by author at the end 
of the report so that reference numbers do not appear se­
quentially in the text. 
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the service coverage of radio systems operating in the frequency 

band from about 0.1 to 20 GHz. They may be used to obtain a wide 

variety of computer-generated microfilm plots such as transmis­

sion loss [43, 44] versus path length, and the desired-to­

undesired signal ratio at a receiving location versus the dis­

tance separating the desired and undesired transmitting facili­

ties. 

This type of information is very similar to that previously 

developed by DOC during the last decade [19, 20, 21, 22, 23, 24, 

26, 27, 32, 38, 39, 49, 55]. The use of such information in spec­

trum engineering has been discussed by Hawthorne and Daugherty 

[28] and Frisbie et al. [18]; other information on spectrum en­
gineering for air navigation, and communications systems is avail­

able [13, 14, 15, 16, 29, 33]. 

The potential user should 

1) read the brief description of the propagation model 

provided in section 2 to see if the model could be 

applicable to his problem, 

2) select the program(s) whose output(s) is most appro­

priate from the information provided in section 3, 

3) determine values for the input parameters discussed 

in section 4, and 

4) utilize the information provided in section 5 to re­

quest program runs. 
Many examples of the graphical output produced by these pro­

grams are provided in section 3.1, and additional examples are 

included in Appendix A (see list of figures). Most abbreviations, 
acronyms, and symbols used in this report are identified in Ap­

pendix B. 

2. PROPAGATION MODEL 

The DOC has been active in radio wave propagation research 

and prediction for several decades, and has provided the FAA with 

many propagation predictions relevant to the coverage of air 

2 



navigation and communications systems [20, 21, 22]. 

During 1960-1973, an air/ground propagation model applicable , 

to irregular terrain was developed by the Institute for Telecom­

munication Sciences (ITS) for the FAA and was documented in de­

tail [24]. This IF-73 (ITS-FAA-1973) propagation model has e­
volved into the IP-77 model which is applicable to air/ground, 

air/air, ground/satellite, and air/satellite paths. It can also 

be used for ground/ground paths that are line-of-sight, smooth 
earth, or have a common horizon. Model applications arc restric­

ted to telecommunication links operating at radio frequencies 

from about 0.1 to 20 GHz with antenna heights greater than 1.5 ft 

(0.5 m). In addition, the elevation of the radio horizon must be 

less than the elevation of the higher antenna. The radio horizon 

for the higher antenna is taken either as a common horizon with 

the lower antenna or as a smooth earth horizon with the same ele­

vation as the lower antenna effective reflecting plane [24, sec. 

A.4.1.]. Ranges for other parameters associated with IF-77 will 

be given later (table 2). 

At 0.1 to 20 GHz, propagation of radio energy is affected by 

the lower nonionized atmosphere (troposphere), specifically by 

variations in the refractive index of the atmosphere [1, 2, 3, 4, ~ 

5, 6, 31, 35, 40, 47, 49, SO, 51, 52]. Atmospheric absorption 

and attenuation or scattering due to rain become important at SHF 

[24, sec. A.4.5.; 35, sec. 8; 49, ch. 3; 51; 54]. The terrain, 

along and in the vicinity of the great-circle path between trans­

mitter and receiver, also plays an important part. In this fre­

quency range, time and space variations of received signal and 

interference ratios lend themselves readily to statistical de­

scription [39; 45; 49, sec. 10]. 
Conceptually, the model is very similar to the Langley-Rice 

[37] propagation model for propagation over irregular terrain, 

particuarly in that attenuation versus distance curves calculated 

for the (a) line-of-sight [24, sec. A.4.2], (b) diffraction [24, 

sec. A.4.3], and (c) scatter [24, sec. A.4.4] regions are blend­
ed together to obtain values in transition regions. In addition, 

3 



the Langley-Rice relationships involving the terrain parameter ~h 

are used to estimate radio horizon parameters when such informa­

tion is not available from facility siting data [24, sec. A.4.1]. 

The model includes allowance for 

a) average ray bending [4, ch. 3; 6; 24, p. 44; 49, 

sec. 4; 56], 

b) horizon effects [24, sec. A.4.1], 

c) long-term fading [24, sec. A.5; 49, sec 10], 

d) facility antenna patterns (figs. 45, 46), 

e) surface reflection multipath [7; 8; 23, sec. 2.3; 

24, sec. A.6; 27, sec. CI-D.7], 

f) tropospheric multipath [2; 11, sec. 3.1; 24, sec. 

A. 7 ; 31 ; 3 6 , pp . 6 0 , 119 , B- 2] , 

g) atmospheric absorption [21, sec. A.3; 24, sec. A.4.5; 

49, sec. 3], 

h) ionospheric scintillations [23, sec. 2.5; 27, sec. 

CVII; 46; 58], and 

i) rain attenuation [10, 51, 52, 54]. 

The model is an extended version of the IF-73 model previ­

ously described in detail by Gierhart and Johnson [24, sec. A]. 

These extensions include provisions for 

a) sea state (table 6), 

b) a divergence factor [25, sec. 3.2], 

c) a ray length factor for situations where the free­

space loss associated with a surface reflected ray 

may be significantly greater than that associated 

with the direct ray [25, sec. 3.3], 

d) an antenna pattern at each terminal (sec. 4.1), 

e) circular polarization [25, sec. 3.5], 

f) frequency and temperature variations of the complex 

dielectric constant of water [25, sec. 3.5], 

g) long-term power fading as a function of radio cli­

matic region (table 8) or time block (table 9), 

h) rain attenuation [25, sec. 4.4], 

4 



i) ionospheric scintillation (fig. 47), 

j) an improved method for calculating the transmission 

loss associated with tropospheric scatter [25, sec. 

5] ' 
k) ray elevation angle adjustment factors to allow for 

ray tracing [25, sec. 10.2], 

1) antenna tracking options (sec. 4.1), 

m) an improved estimate of the distance where horizon 

effects can be neglected [25, sec. 7], 

n) a free-space loss formulation that is applicable to 

very high antennas [25, sec. 8], and 

o) a formulation for facility horizon determinations 

that includes ray tracing [25, sec. 9.2]. 

Detailed documentation covering these extensions is provided in 

another report [25]. 

3. COMPUTER OUTPUTS 

The propagation model described in section 2 has been incor­

porated into ten computer programs. These programs are written 

in FORTRAN for a digital computer (CDC 6600) at the Department 

of Commerce Laboratories, Boulder, Colorado. Since they utilize 

the cathode-ray tube microfilm plotting capability at the Boulder 

facility, substantial modification would have to be made for oper­

ation at any other facility. Average running time for the pro­

grams ranges from a few second, for each graph produced, to a 

minute or so. These programs are extensions of programs previ­

ously developed and described [24; 27, sec. CII]. The extensions 

involve a more comprehensive propagation model (sec. 2) and a 

larger variety of computer generated microfilm outputs. 

A guide to the plotting capabilities of these programs is 

provided in table 3 1. Potential users should use it to select 

the program(s) whose outputs are most appropriate for their prob­

lems. Figure numbers given in table 1 refer to graphs of section 

3 Tables and figures for sections 3 and 3.1 are grouped together 
following the section 3.1 text. 
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3.1. Short discussions for each capability are given in section 

3.2. Simple problem applications involving the graphs of section 

3.1 are provided in section 3.3. Some additional graphs and prob­

lems are given in Appendix A. Input parameters needed to operate 
the various programs and plotting options such as a choice of 

English or metric units (table 4) are discussed in section 4. 

Each program causes the computer to produce (a) listings of 

parameters associated with particular runs and (b) microfilm 

plots. These outputs are provided for each parameter set used as 

input to the computer and are tied to each other by a run code 

consisting of the date and time at which calculations for a par­

ticular parameter set started. 

Parameter sheets for all programs have a similar format and 

provide similar information. In programs associated with inter­

ference analysis, a parameter sheet is produced for both the de­

sired and undesired facility when the input parameters associated 

with them are not identical [24, figs. 8, 9]. 

Computer produced parameter sheets do not have dual English/ 

metric units and are either English or metric depending on the 

unit option selected (sec. 4.3). Sample parameter sheets similar, 

except for dual units, to those produced by the programs are 

shown in figures 3 1 through 5. These parameters were used in de­

veloping the curves provided in section 3.1 to illustrate the 

plotting capabilities of the programs. Systems considered are 

Air Traffic Control communications (ATC, fig. 1), Instrument 

Landing System (ILS, fig. 2), UHF Satellite (fig. 3), Tactical 

Air Navigation (TACAN, fig. 4), and VHF Omni-directional Range 

(VOR, fig. 5). Parameters are given in about the same order as 

they are discussed in section 4.1. The effective area, AI, re­

quired to convert power density, SR, to power available at the 

output of an ideal (loss less) isotropic receiving antenna, PI, 

is given at the bottom of the parameter sheets for power density 

predictions (figs. 1, 2, 4, 5); i.e., 

6 



(1)4. 

3.1 GRAPHS 

Figures 6 through 39 are sample graphs associated with the 

various capabilities summarized in table 1. These graphs are 

meant to illustrate general capability and care should be taken 

in using them for particular problems where the parameters re­

quired may differ from those used to develop the graphs. They 

should be used, rather, as examples to help select the graph 

types that are most appropriate for the particular applications. 

Graphs produced by the computer are very similar to these, but 

do not include all the labeling. In particular, the supplemen­

tary scale is not computer generated and only provides an approx­

imate correspondence with primary units. More accurate readings 

can be obtained by using the primary scale, and then converting to 

the desired units by using an appropriate conversion factor (p.ii). 

This method was used to obtain dual values for readings given in 

the text. 

Options available (sec. 4.3) for units result in the plotting 

of the primary grid and heading data in English (nautical or sta­

tute) miles, or metric units. Except for figures 6 through 15 

where the metric option was used, all figures in this section were 

generated with the nautical mile option. An option to plot a­

gainst central angle (fig. 41) instead of distance was used to 

produce figure 16. 

4 The notation used for the units of these quantities is intended 
to imply that they are decibel-type quantities obtained by 
taking 10 log of a quantity with the units indicated after dB-; 
e.g., A [dB-sq m] = 10 log {A 2 [sq m]/4n)} (where A [m] is 
wavelenkth). Equations used in this report are dimensionally 
consistent. Where difficulties with units could occur, brack­
ets are used to indicate proper units. 
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Table 1. Plotting Capability ~~ide 

Capability Figure(s)* Program 
Lobing** 6 

Reflection coefficient** 7 

Path length difference** 8 

Time lag** 9 

Lobing frcquency-D** 10 

Lobing frcquency-H** 11 

lteflection point*"' 12 

Elevation angle** 13 

Flevation angle difference*"' 14 

Spectral plot** lS 

Power available 16 

!'ower density 17-19 

Transmission loss 20 

Power available curves 21 

Power density curves 22 

Transmission loss curves 23 

!'ower available volume 24 

Power density volume 2S 

Transmission loss vohme 26 

r:r RP contours 27-29 

Power available contours 30 

Power density contours 31 

Transmission loss contours 32 

Signal ratio-S 33 

LOBUI; 

LOBING 

LOBING 

LOBING 

LOBING 

LOBING 

LOBING 

LOBING 

LOBING 

LOBING 

ATOA 

ATOA 

ATOA 

ATLAS 

ATLAS 

ATLAS 

III POD 

III POD 

HI POD 

APODS 

APODS 

APODS 

APODS 

A TAil! 

8 

Transmdssian loss versus path distance. 

Effective specular reflection coefficient versus path 
distance. 

Difference in reflected and direct ray lengths versus 
path distance. 

Same as above with path length difference expressed as 
time delay. 

Normalized distance lobing frequency versus path dis­
tance. 

Normalized heiW1t lobing frequency versus path distance. 

Distance to reflection point versus path distance. 

Direct ray elevation angle versus path distance. 

Angle by which the direct ray exceeds the reflected ray 
versus path distance. 

Amplitude versus frequency response curves for various 
path distances. 

Power available at recetvtng antenna versus path dis­
tance or central angle for time availabilities ·s, SO, 
and 9S percent . 

Similar to above, but with power density ordinate. 

Similar to above, but with transmission loss ordinate. 

Power available curves versus distance are provided 
for several aircraft altitudes with a selected time 
availability, and a fixed lower antenna height. 

Similar to above, but with power density as ordinate. 

Similar to above, but with transmission loss as ordinate. 

Fixed power available contours in the altitude versus 
distance plane for time availabilities of S, SO, and 
9S percent. 

Similar to above, but with fixed power density contours. 

Similar to above, but with fixed transmission loss 
contours. 

Contours for several EIRP levels needed to meet a par­
ticular power density requirement are shown in the al­
titude versus distance plane for a single time availa­
bility. 

Similar to above, but with power available contours fOr 
a single EIRP. 

Similar to above, but with power density contours. 

Similar to above, but with transmission loss contours. 

Desired-to-undesired, D/U, signal ratio versus station 
separation for a fixed desired facility-to-receiver 
distance, and time availabilities of S, SO, and 95 
percent. 



T_able 1. 

Capability 

Signal ratio-DO 

Orientation 

Service volume 

Signal ratio contours 

Plottirlg Ca_pability Guide (cont.) 

Figure(s)* 

34 

35 

36-37 

38-39 

P!Qgram 

OODD 

TWIRL 

SRV!l.M 

OORATA 

Simdlar to above, but abscissa is desired facility-to· 
receiver distance and the station separation is fixed. 

Undesired station antenna orientation with respect to 
the desired to undosired station line versus required 
facility separation curves are plotted for several de­
sired station antenna orientations. 1bese curves show 
the maximum separation required to obtain a specified 
D/U signal ratio value at several aircraft locations 
(i.e., protection points). 

Fixed D/U contours are shown in the altitude versus 
distance plane for a fixed station separation and time 
availabilities of 5, SO, and 95 percent. 

Contours for several DIU values are shown in the alti­
tude versus distance plane for a fixed station separa· 
tion and time availability. 

* Additional discussion, by CS:pability, is provided in the text. · 
** Applicable only to the line-of-sight region for spherical earth geanetry. Variability with time and 

horizon effects are neglected and the COlDlterpoise option is not available. The phase change asso­
ciated with surface reflection in the lobing region is taken as 0 or 180° to avoid missing lobe nulls. 
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PARAMETERS FOR ITS PROPAGATION ,MODEL IF-77 
77/07/18. 17.33.01 RUN 

POWER DENSITY FOR ATC 

~~~~!~!~~!!~~-~g~!~~ 

AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 
FACILITY (OR LOWER) ANTENNA HEIGHT: 

45000. FT (l3716.M) ABOVE MSL 
50.0 FT (l5.2M) ABOVE FSS 

FREQUENCY: 125. MHZ 

SPECIFICATION OPTIONAL 

AIRCRAFT ANTENNA TYPE: ISOTROPIC 
POLARIZATION: HORIZONTAL 

EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 
EQUIVALENT ISOTROPICALLY RADIATED POWER: 14.0 DBW 
FACILITY ANTENNA TYPE: ISOTROPIC 

POLARIZATION: HORIZONTAL 

0. FT (O.M) 

HORIZON OBSTACLE DISTANCE: 8.69 N MI (16.09KM) FROM FACILITY* 
ELEVATION ANGLE: -0/ 6/30 DEG/MIN/SEC ABOVE HORIZONTAL* 
HEIGHT: 0. FT (O.M) ABOVE MSL 

REFRACTIVITY: 
EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)* 
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL 

SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY 
SURFACE TYPE: AVERAGE GROUND 
TERRAIN ELEVATION AT SITE: 0. FT (O.M) ABOVE MSL 
TERRAIN PARAMETER: 0. FT (O.M) 
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED 

POWER DENSITY (DB-W/SQ M) VALUES MAY BE CONVERTED TO POWER 
AVAILABLE AT THE TERMINALS OF A PROPERLY POLARIZED 
ISOTROPIC ANTENNA (DBW) BY ADDING -3.4 DB-SQ M. 

* COMPUTED VALUE 

Notes: 1) Aircraft antenna information is not actually used in power density 
calculations. 

2) Parameter values (or options) not indicated are taken as the as­
sumed values (or options) provided on the general parameter speci­
fication sheet (table 2). 

3) To simulate computer output, only upper case letters are used. 
Dual units are not provided on actual computer output. 

Figure 1. Parameter sheet, ATC (Air Traffic Control). 
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77 
77/07/19. 11.39.28. RUN 

POWER DENSITY FOR ILS 

~~~~!~!~~!!9~-~Q~!~~ 
AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 
FACILITY (OR LOWER) ANTENNA HEIGHT: 
FREQUENCY: 110. MHZ 

SPECIFICATION OPTIONAL 

AIRCRAFT ANTENNA TYPE: ISOTROPIC 
POLARIZATION: HORIZONTAL 

6250. FT (1905.M) ABOVE MSL 
5.5 FT (1.68M) ABOVE FSS 

EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (O.M) 
EQUIVALENT ISOTROPICALLY RADIATED POWER: 24.0 DBW 
FACILITY ANTENNA TYPE: 8-LOOP ARRAY (COSINE VERTICAL PATTERN) 

POLARIZATION: HORIZONTAL 
HORIZON OBSTACLE DISTANCE: 2.88 N MI (5.33KM) FROM FACILITY* 

ELEVATION ANGLE: -0/ 2/09 DEG/MIN/SEC ABOVE HORIZONTAL* 
HEIGHT: 0. FT ABOVE MSL 

REFRACTIVITY: 
EFFECTIVE EARTH RADIUS: 4586. N MI (8493. KM) * 
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL 

SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY 
SURFACE TYPE: AVERAGE GROUND 
TERRAIN ELEVATION AT SITE: 0. FT (O.M) ABOVE MSL 
TERRAIN PARAMETER: 0. FT (O.M) 
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED 

POWER DENSITY (DB-W/SQ M) VALUES MAY BE CONVERTED TO POWER 
AVAILABLE AT THE TERMINALS OF A PROPERLY POLARIZED 
ISOTROPIC ANTENNA (DBW) BY ADDING -2.3 DB-SQ M. 

* COMPUTED VALUE 

Notes: 1) Aircraft antenna information is not actually used in power density 
calculations. 

2) Parameter values (or options) not indicated are taken as the as­
sumed values (or options) provided in the general parameter speci­
fication sheet (table 2). 

3) To simulate computer output, only upper case letters are used. 
Dual units are not provided on actual computer output. 

Figure 2. Parameter sheet3 ILS (Instrument Landing System) 
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77 
77/09/01. 17.43.34. RUN 

POWER AVAILABLE FOR UHF SATELLITE SEA STATE 0 

~~~~!~!~~!!~~-~g~!~~ 
AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 19351. N MI (35838.KM) ABOVE MSL 
FACILITY (OR LOWER) ANTENNA HEIGHT: 30000.0 FT (9144.M) ABOVE FSS 
FREQUENCY: 1550. MHZ 

SPECIFICATION OPTIONAL 

AIRCRAFT ANTENNA TYPE: JTAC 
BEAMWIDTH, HALF-POWER: 10.00 DEGREES 
POLARIZATION: CIRCULAR 
TILT IS -90.0 DEGREES ABOVE HORIZONTAL 

EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (O.M) 
EIRP PLUS RECEIVING ANTENNA MAIN BEAM GAIN: 41.0 DBW 
FACILITY ANTENNA TYPE: JTAC 

BEAMWIDTH, HALF-POWER: 20.00 DEGREES 
POLARIZATION: CIRCULAR 
ANTENNA IS TRACKING 

HORIZON OBSTACLE DISTANCE: 208.85 N MI (385.79KM) FROM FACILITY* 
ELEVATION ANGLE: -2/49/36 DEG/MIN/SEC ABOVE HORIZONTAL* 
HEIGHT: 0. FT (O.M) ABOVE MSL 

IONOSPHERIC SCINTILLATION INDEX GROUP: 0 
REFRACTIVITY: 

EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)* 
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL 

SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY 
SURFACE TYPE: SEA WATER 

STATE: 0 
CALM (GLASSY) 

0.00 FT (O.OOM) RMS WAVE HEIGHT 
TEMPERATURE: 10. DEG CELSIUS 

3.6 PERCENT SALINITY 
TERRAIN ELEVATION AT SITE: 0. FT (O.M) ABOVE MSL 
TERRAIN PARAMETER: 0. FT (O.M) 
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED 

* COMPUTED VALUE 

Notes: 1) Parameter values (or options) not indicated are taken as the as­
sumed values (or options) provided in the general parameter spe­
cification sheet (table 2) . 

2) To simulate computer output, only upper case letters are used. 
Dual units are not provided on actual computer output. 

FigUPe 3. Parameter sheet~ UHF SateZZite. 
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77 
77/07/19. 11.39.31. RUN 

POWER DENSITY FOR TACAN 

~~~~~~~~~!~~~-~Q~~~~ 
AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 40000. FT (l2l92.M) ABOVE MSL 
FACILITY (OR LOWER) ANTENNA HEIGHT: 30.0 FT (9.14M) ABOVE FSS 
FREQUENCY: 1150. MHZ 

SPECIFICATION OPTIONAL 

AIRCRAFT ANTENNA TYPE: ISOTROPIC 
POLARIZATION: VERTICAL 

EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 
EQUIVALENT ISOTROPICALLY RADIATED POWER: 39.0 DBW 
FACILITY ANTENNA TYPE: TACAN (RTA-2) 

POLARIZATION: VERTICAL 

0. FT (O.M) 

HORIZON OBSTACLE DISTANCE 6.73 N MI (l2.46KM) FROM FACILITY* 
ELEVATION ANGLE: -0/ 5/ 2 DEG/MIN/SEC ABOVE HORIZONTAL* 
HEIGHT: 0. FT (O.M) ABOVE MSL 

REFRACTIVITY: 
EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)* 
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL 

SURFACE REFLECTION ~OBING: CONTRIBUTES TO VARIABILITY 
SURFACE TYPE: AVERAGE GROUND 
TERRAIN ELEVATION AT SITE: 0. FT (O.M) ABOVE MSL 
TERRAIN PARAMETER: 0. FT 
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED 

POWER DENSITY (DB-W/SQ M) VALUES MAY BE CONVERTED TO POWER 
AVAILABLE AT THE TERMINALS OF A PROPERLY POLARIZED 
ISOTROPIC ANTENNA (DBW) BY ADDING -22.7 DB-SQ M. 

* COMPUTED VALUE 

Notes: 1) Aircraft antenna information is not actually used in power density 
calculations. 

2) Parameter values (or options) not indicated are taken as the as­
sumed values (or options) provided in the general parameter speci­
fication sheet (table 2). 

3) To simulate computer output, only upper case letters are used. 
Dual units are not provided on actual computer output. 

Figure 4. Parameter sheet~ TACAN (Tactical Air Navigation). 
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77 
77/07/19. 11.39.36. RUN 

POWER DENSITY FOR VOR 

§~~~!~!~~!!2~-~2~!~~ 
AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 
FACILITY (OR LOWER) ANTENNA HEIGHT: 
FREQUENCY: 113. MHZ 

30000. (9144.M) ABOVE MSL 
16.0 FT (4.88M) ABOVE FSS 

SPECIFICATION OPTIONAL 

AIRCRAFT ANTENNA TYPE: ISOTROPIC 
POLARIZATION: HORIZONTAL 

EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (O.M) 
EQUIVALENT ISOTROPICALLY RADIATED POWER: 22.2 DBW 
FACILITY ANTENNA TYPE: 4-LOOP ARRAY (COSINE VERTICAL PATTERN) 

POLARIZATION: HORIZONTAL 
COUNTERPOISE DIAMETER: 52. FT (15.8M) 

HEIGHT: 12. FT (3.66M) ABOVE SITE SURFACE 
SURFACE: METALLIC 

HORIZON OBSTACLE DISTANCE: 4.91 N MI (9.09KM) FROM FACILITY* 
ELEVATION ANGLE: -0/ 3/41 DEG/MIN/SEC ABOVE HORIZONTAL* 
HEIGHT: 0. FT ABOVE MSL 

REFRACTTVITY: 
EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)* 
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL 

SURFACE REFLECTION LOBING: DETERMINES MEDIAN 
SURFACE TYPE: AVERAGE GROUND 
TERRAIN ELEVATION AT SITE: 0. FT (O.M) ABOVE MSL 
TERRAIN PARAMETER: 0. FT (O.M) 
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED 

POWER DENSITY (DB-W/SQ M) VALUES MAY BE CONVERTED TO POWER 
AVAILABLE AT THE TERMINALS OF A PROPERLY POLARIZED 
ISOTROPIC ANTENNA (DBW) BY ADDING -2.5 DB-SQ M. 

* COMPUTED VALUE 

Notes: 1) Aircraft antenna information is not actually used in power density 
calculations. 

2) Parameter values (or options) not indicated are taken as the as­
sumed values (or options) provided in the general parameter speci­
fication sheet (table 2). 

3) To simulate computer output, only upper case letters are used. 
Dual units are not provided on actual computer output. 

Figure 5. Parameter sheet~ VOR (VHF Omni-Directional Range.) 
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Figure 6. Lobing, ATC. Transmission loss for the first ten lobes inside the radiu horizon, limiting 
vatues associated ~ith in and out of phase conditions and free-space toss vs. path dis­
tance are shown. These curves ~ere computed for the parameters of figure 1. 
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Figu~e 7. Reflection coefficient, ATC. Effective ~eflection coefficient 
vs. path distance is shown fo~ the pa~amete~s of figu~e 1. 
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Figure B. Path Length difference~ ATC. Path length difference or the extent by ~hich the length of 
the refLected ray exceeds .that of the direct ray vs. path distance is shown for the para­
meters of figure 1. 
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Figu~e 9. Time lag, ATC. Time [ag of transmission via the surface ref1ection path ~elative 
to the direct path vs. path distance is shown for the parameters of figure 1. 
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the reflected ray exceeds .that of the direct ray vs. path distance is shown for the para­
meters of figure 1. 
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Figure 9. Time lag, ATC. Time Zag of transmission via the surface rej1ection path re[ative 
to the direct path vs. path distance is shown for the parameters of figure 1. 
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NORMALIZED DISTANCE LOBING FREQVENCY 
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Lobinp frequency-D, ATC. Normalized distance lobing frequency, NDLF, 
vs. path Jistance is shown for the pm?ameters of figure 1. 
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vs. ~ath distance is shown for the parameters of figure 1. 
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3.2 CAPABILITIES 

A brief discussion of each capability summarized in table 1 

is given in this section. Each discussion title contains the 

capability name and indicates (in parentheses) the figure and a 
sample problem that are associated with the capability. Applica­

tion examples in the form of sample problems, with solutions, are 
provided in section 3.3. 

LOBING (fig. 6, p. 15; prob. 1, p. 64) Transmission loss is plot­

ted against path distance for (a) lobing (solid curve) caused by 

the phase difference in direct and reflected rays for the first 

10 lobes inside the radio horizon, (b) limiting values associated 

with in phase (low loss, upper curve with small dots) and out of 

phase (high loss, lower curve with small dots) conditions, and 

(c) free space (curve with large dots) [27, sec. CII-C.l]. As 
indicated in a table 1 footnote, this graph and others generated 

via program LOBING are applicable only to the line-of-sight re­

gion for spherical earth geometry, and time variability and hori­

zon effects are neglected. Figure 40 illustrates this geometry, 
shows the two rays involved (r

0 
and r 12 = r 1 + r 2), and defines 

variables that will be used in the discussion of plots produced 

with LOBING. 

Antenna gains are included in transmission loss since it is 

the difference (dB) between power radiated (dBW), and the power 

available (dBW) at the output of an ideal receiving antenna (no 

internal losses), but in the sample run presented here, transmis­

sion loss is the same as basic transmission loss because isotro­

pic antennas were assumed. Spacing between the limiting curves 

decreases as the reflection coefficient decreases. A test is 

built into the program to prevent unrealistic null depths [8, 
p. 393]. It limits the maximum transmission loss to its free 

space value plus 40 dB. 

REFLECTION COEFFICIENT (fig. 7, p. 16; prob. 2, p. 64) The ef­

fective reflection coefficient is plotted against path di~tance 
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(d of fig. 40). Relative antenna gains, surface parameters (di­

electric constant, conductivity and roughness), frequency, and 
grazing angle (¢ of fig. 40) are included in the calculation of 

effective reflection coefficient [27, sees. CI-D, CII-C.2]. The 

drop in reflection coefficient at short distances is associated 

with the ray length reduction factor [27, sec. CI-D.5]. The drop 

in reflection coefficient at the far distances is caused by the 

divergence factor [27, sec. CI-D.l]. 

PATH LENGTH DIFFERENCE (fig. 8, p. 17; prob. 3, p. 65) The ex­

tent c~r) by which the length of the reflected ray (rl2 of fig. 

40) exceeds that of the direct ray (r of fig. 40) is plotted 
0 

against path distance [27, sec. CII-C.3]; i.e., 

(2) 

This equation is not actually used to calculate ~r since it in­

volves the difference of two, large, nearly equal terms. The 

formulation used [24, fig. 16] avoids this precision problem. 

TIME LAG (fig. 9, p. 18; prob. 3, p. 65) The time lag of trans­

mission via the surface reflection path relative to the direct 
path is plotted against path distance [27, sec. CII-C.4]. This 

is the (free space) time (T) required for a radio wave to travel 

the path length difference c~r) of figure 8; i.e., 

T[nsec] = 3.34 [nsec/m] ~r[m]. (3) 

LOBING FREQUENCY-D (fig. 10, p. 19; prob. 4, p. 66) Lobing fre­

quency with distance (fd) for an aircraft traveling directly to­
ward (or away from) the facility may be determined from values of 

normalized distance lobing frequency (NDLF) read from this graph, 

radio frequency (f), and the magnitude of its velocity (Vd); i.e., 

or 

fd[Hz] = NDLF[(Hz/THz)/kts]f[THz]Vd[kts], (4a) 

fd[Hz] = NDLF[(Hz/THz)/s mi/hr)]f[THz]Vd[s mi/hr], (4b) 

fd[Hz] = NDLF[(Hz/THz)/(km/hr)]f[THz]Vd[km/hr]. (4c) 

Note that f is in terahertz (THz) where one terahertz is 1012 Hz 
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or 106 MHz, but that fd is in hertz. 
Received signal level will vary with aircraft location as it 

moves through the lobing structure (fig. 6) associated with the 

phase difference between direct and surface reflected rays. The 
frequency at which this variation occurs is called the lobing 

frequency, lobe modulation frequency, or Doppler beat modulation 

[11, sec. 4; 27, sees. CI-C.4, CII-C.S]. Reed and Russell [47, 
ch. 10] developed formulas using both lobe modulation and Doppler 
beat modulation concepts to show that" ... no fundamental differ­

ence exists between the lobe modulation and the Doppler-beat 

modulation concepts. They differ only in the treatment of the 
independent variable". 

The lobing frequency (ft) encountered by an aircraft can be 

estimated from fd and fh (see eqn. 6); i.e., 

f£ ~ fd + fh. (5) 

Here < is needed since it is possible for an aircraft to follow a 

flight pattern such that the lobing with distance is compensated 

for by lobing with height so that ft ~ 0 even though fd + fh > 0; 

e.g., an aircraft flying the glide slope of a conventional ILS in 
which the lobing structure is used to determine the desired 

flight path. 

LOBING FREQUENCY-H (fig. 11, p. 20; prob. 4, p. 66) Lobing fre­
quency [27, sees. CI-C.4, CII-C.6] with height (fh) for an air­
craft in vertical ascent (or descent) may be determined from 

values of normalized lobing frequency (NHLF), radio frequency (f), 
and the magnitude of the ascent rate (Vh); i.e., 

fh(Hz] = NHLF((Hz/THz)/(ft/min)]f[THz]Vh[ft/min], (6a) 

or 

fh[Hz] = NHLF[(Hz/THz)/(m/min)]f[THz]Vh(m/rnin]. (6b) 

Values of fh can be used in (S) to estimate lobing frequency. 
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REFLECTION POINT (fig. 12, p. 21; prob. 2, ~· 64) Distance (~l 

of fig. 40) from the facility to reflection point is plotted a­

gainst path distance [27, sees. CI-C.2.3, CII-C.7]. 

ELEVATION ANGLE (fig. 13, p. 22; prob. 2, p. 64) The elevation 

angle (ehl of fig. 40) of the direct ray at the facility in de­

grees above horizontal is plotted against path distance [27, sees. 
CI-C.2.3, CII-C.8]. 

ELEVATION ANGLE DIFFERENCE (fig. 14, p. 23; prob. 2, p. 64) The 

amount (ed of fig. 40) by which the elevation angle of the direct 

ray at the facility exceeds that of the reflected ray (elevation 

angle difference) is plotted against path distance [27, sees. CI­
C.2.3, CII-C.9]. 

SPECTRAL PLOT (fig. 15, p. 24; prob. 5, p. 66) Figure 15 shows 

one spectrum corresponding to each path distance point calculated 
for the lobing graph (fig. 6). Each spectrum is of bandwidth 

2fff' where ff is a fraction of the carrier frequency f; i.e., 

bandwidth= (2) (0.0004) (125) = 0.1 MHz = 100 kHz. The scale 

along the diagonal axis is proportional to the distance shown for 
that point on the lobing graph, and the amplitude scale is linear 

in decibels with a maximum range of 43 dB [27, sec. CII-C.lO]. 

POWER AVAILABLE (fig. 16, p. 25; prob. 6, p. 67) Power available 

(see eqn. 1) at the output of an ideal antenna (no internal los­

ses) is plotted against central angle for a particular satellite 

(or higher antenna such as an aircraft) altitude. Available 
power expected to be exceeded for 5, SO, and 95 percent of the 

time (i.e., 5, SO, and 95 percent time availabilities) is plotted 

along with the available power that would be present under free­

space propagation conditions. The term "EIRPG" used in the para­

meter summary at top of the graph is an abbreviation for equiva­

lent isotropically radiated power (EIRP) plus receiving antenna 

main beam gain (see eqn. 12). Options exist to express the 

abscissa (path length) in kilometers, statute miles, nautical 

miles, or degrees of central angle. 

Central angle is the angle subtended by the great-c~rcle 
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oath (e of fig. 41 inset); it is useful when coverage estimates 
~ 0 

for a geostationary satellite are desired since the central angle 
corresponds to latitude along the subsatellite meridian, and lon­

gitude along the equator from the subsatellite point. Loci of 
constant central angle are circles on earth projections normally 
used to show earth coverage [23, 46]. Figure 41 illustrates such 

loci for a g~o.stationary satellite located at 100° W. Great-circle 
path distance (d of fig. 41 inset) is related to central angle by 

or 

d[n mi] = 
d[s mi] = 
d[km] = 
e [ deg] = 

0 
e [de g] = 

0 

60.0[n mi/deg]e [deg], 
0 

69.1 [s mi/deg] e [deg], 
0 

111.2[km/deg]e [deg], 
0 

0.0167[deg/n mi]d(n mi], 

0.0145[deg/s mi]d[s mi], 

e [deg] = 0.00899[deg/km]d[km]. 
0 

(7a) 

(7b) 
(7c) 
(Sa) 

(Sb) 

(Be) 

POWER DENSITY (figs. 17-19, pp. 26-28; prob. 7, p. 67) Sample 

"POWER DENSITY" graphs are provided for ILS (fig. 17), TACAN 
(fig. 18), and VOR (fig. 19). Power density (see eqn. 1) at the 

receiving antenna location (aircraft in this case) is plotted a­
gainst path distance for a particular aircraft (or higher antenna) 

altitude. The curves show the power density expected to be ex­
ceeded for 5, 50, and 95 percent of the time along with the power 
density that would be present under free-space propagation condi­
tions. Options exist to express the abscissa in kilometers, stat­
ut~ miles, nautical miles, or degrees of central angle. Central 

angle is useful when coverage estimates for a geostationary satel­
lite are desired (see POWER AVAILABLE, fig. 16, discussion). 

TRANSMISSION LOSS (fig. 20, p. 29; prob. 1, p. 64) Transmission 
loss (see LOBING, fig. 6, discussion) is plotted against path 

distance for a particular aircraft altitude. The curves show 
transmission loss values that are unexceeded for at least 5, SO, 
and 95 percent of the time along with the transmission loss that 

would be present under free-space propagation conditions. The 
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term "GAIN" used in the parameter summary at the top of the graph 

is an abbreviation for the sum of the transmitting and receiving 

antennas' main beam gains. Since GAIN= 0 in this case, trans­

mission loss is really basic transmission loss. Options exist 

to express the abscissa in kilometers, statute miles, nautical 

miles, or degrees of central angle. Central angle is useful when 

coverage estimates for a geostationary satellite are desired (see 
POWER AVAILABLE, fig. 16, discussion). 

Values obtained from figure 20 may differ somewhat from those 

obtained from figure 6 since the calculations for figure 20 in­

cluded lobing as part of the time variability along with horizon 

effects, while those for figure 6 did not. 

The increase in variability for distances somewhat less than 

150 n mi (278 km) occurs because of the specular surface reflec­
tion multipath contribution to variability that occurs somewhat 

inside the horizon. Lower short-term variability near the hori­

zon has been observed in propagation data [1]. 

POWER AVAILABLE CURVES (fig. 21, p. 30; prob. 8, p. 67) Curves 

of power available (see eqn. 1) at the outnut of the receiving 

antenna are plotted against distance for several aircraft alti­

tudes, a single facility antenna height, and a time availability 

of 95 percent. Options exist to express the abscissa in kilo­

meters, statute miles, or nautical miles, and to use other time 

availabilities. 

POWER DENSITY CURVES (fig. 22, p. 31; prob. 9, p. 68) Curves of 

power density (see eqn. 1) at the receiving antenna location 

(aircraft in this case) are plotted against distance for several 

aircraft altitudes, a single facility antenna height, and a time 

availability of 95 percent. Options exist to express the ab­

scissa in kilometers, statute miles, or nautical miles, and to 

use other time availabilities. 

TRANSMISSION LOSS CURVES (fig. 23, p. 32; prob. 1, p. 64) Curves 

of transmission loss (see LOBING, fig. 6, discussion) are plotted 
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against distance for several aircraft altitudes, a single facility 

antenna height, and a time availability of 95 percent. Options 

exist to express the abscissa in kilometers, statute miles, or 

nautical miles, and to use other time availabilities. 

POWER AVAILABLE VOLUME (fig. 24, p. 33; prob. 10, p. 68) Contours 
for a single available power (see eqn. 1) are plotted in the alti­

tude versus distance plane for time availabilities of 5, 50, and 

95 percent. When symmetry about the ordinate axis can be assumed 

(e.g., omnidirectional antenna), the volume formed by rotating 
a contour about the ordinate axis defines the air space in which 

the time availability will almost always equal or exceed that 

associated with the contour used to form it. This volume might 

include some air space with inadequate time availability, since 

it may not describe conditions directly above the desired facility 

perfectly. Noise and interference levels are not considered in 

this display. Options exist to express the abscissa in kilome­

ters, statute miles, or nautical miles, and to express the ordi­

nate in feet or meters. 

POWER DENSITY VOLUME (fig. 25, p. 34; prob. 11, p. 68) Contours 

for a single power density value are plotted in the altitude 

versus distance plane for time availabilities of 5, 50, and 95 

percent. When symmetry about the ordinate axis can be assumed 

(e.g., omnidirectional antenna), the volume formed by rotating. 

a contour about the ordinate axis defines the air space in which 

the time availability will almost always equal or exceed that 
associated with the contour used to form it. This volume might 

include some air space with inadequate time availability, since 

it may not describe conditions directly above the desired facility 
perfectly. Noise and interference levels are not considered in 

this display. Options exist to express the abscissa in kilo­

meters, statute miles or nautical miles, and to express the or­

dinate in feet or meters. 

TRANSMISSION LOSS VOLUME (fig. 26, p. 35; prob. 12, p. 69) Con­

tours for a single transmission loss (see LOBING, fig. 6, 
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discussion) value are plotted in the altitude versus distance 

plane for time availabilities of 5, SO, and 95 percent. When 

symmetry about the ordinate axis can be assumed (e.g., omnidirec­

tional antenna), the volume formed by rotating a contour about 

the ordinate axis defines the air space in which the time avail­

ability will almost always equal or exceed that associated with 

the contour used to form it. This volume might include some air 

space with inadequate time availability, since it may not de­

scribe conditions directly above the desired facility perfectly. 

Noise and interference levels are not considered in this display. 

Options exist to express the abscissa in kilometers, statute 

miles, or nautical miles, and the ordinate in feet or meters. 

EIRP CONTOURS (figs. 27-29, pp. 36-38; prob. 13, p. 69) Sample 

"EIRP CONTOURS" graphs are provided for ILS (fig. 27), TACAN 

(fig. 28), and VOR (fig. 29). Several (up to eight) contours 

of EIRP (see eqn. 11) levels needed to meet a single power den­

sity requirement are plotted in the altitude versus distance 

plane. The contours pass through points where the power density 

requirement can be met by using the EIRP associated with the con­

tour. A single time availability is applicable to all contours. 

Options exist to express the abscissa in kilometers, statute 

miles, or nautical miles, and the ordinate in feet or meters. 

POWER AVAILABLE CONTOURS (fig. 30, p. 39; prob. 14, p. 69) Sev­

eral (up to eight) contours of available power (dBW, see eqn. 1) 

are plotted in the altitude versus distance plane. Identical 

values (one each) of time availability and EIRP (see eqn. 11) are 

used for all contours. Options exist to express the abscissa in 

kilometers, statute miles, or nautical miles, and the ordinate 

in feet or meters. 

POWER DENSITY CONTOURS (fig. 31, p. 40; prob. 15, p. 70) Several 

(up to eight) contours of power density (dB-W/sq m, see eqn. 1) 

are plotted in the altitude versus distance plane. Identical 

values (one each) of time availability and EIRP (see eqn. 11) are 
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used for all contours. Options exist to express the abscissa in 

kilometers, statute miles, or nautical miles, and to express the 

ordinate in feet or meters. 

TRANSMISSION LOSS CONTOURS (fig. 32, p. 41; prob. 16, p. 70) 

Several (up to eight) contours of transmission loss (see fig. 6 

discussion) are plotted in the altitude versus distance plane for 

a single time availability value. Options exist to express the 

abscissa in kilometers, statute miles, or nautical miles, and the 

ordinate in feet or meters. 

SIGNAL RATIO-S (fig. 33, p. 42; prob. 17, p. io) Desired-to­

undesired (D/U [dB]) signal ratio available at the output of the 

receiving antenna (aircraft in this case) is plotted against sta­

tion separation. The curves show D/U ratios for time availabil­
ities of S, SO, and 9S percent along with the D/U values that 

would be obtained under free-space propagation conditions. Figure 

42 shows the interference configuration. Aircraft-to-desired 

facility great-circle distance (dD) and aircraft-to-undesired 
great-circle facility distance (du) are used to determine station 

separation (S) from 

(9) 

where dD and du do not have to be part of the great-circle con­

necting the facilities. Aircraft location relative to the de­

sired facility (~ltitude and dD) is fixed for each graph. An 

option exists to express the abscissa in kilometers, statute 

miles, or nautical miles. 

SIGNAL RATIO-DD (fig. 34, p. 43; prob. 18, p. 70) The D/U [dB] 

signal ratio available at the output of the receiving antenna 

(aircraft in this case) is plotted against the desired facility 

to aircraft distance (DD or dD of fig. 42). The curves show D/U 

ratios for time availabilities of S, SO, and 9S percent along 
with D/U values that would be obtained under free-space propaga­

tion conditions. Aircraft altitude and station separation (see 

SIGNAL RATIO-S, fig. 33, discussion) are fixed for each graph. 
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An option exists to express the abscissa in kilometers, statute 
miles, or nautical miles. 

ORIENTATION (fig. 35, p. 44; prob. 19, p. 71) Curves showing the 

relative azimuthal orientation of the undesired facility course 

line C~u) with respect to the great circle-path connecting the 

desired and undesired facilities are plotted versus the facility 

separation required to achieve a specified D/U ratio or better at 

each of five specified protection points. Each curve represents 

a different relative azimuthal orientation of the desired facility 

course line (~D) with respect to the path connecting facilities. 

Orientation geometry for the protection points is illustrated in 

figure 43. These protection points are located relative to the 

desired facility by a distance from the desired (DA B c D E) 
' ' ' ' facility and relative azimuth angle from the desired facility 

course line (aA BCD E). In the calculations for figure 35, (a) 
' ' ' ' the protection points were at 

Distance Angle 

DA = 10 n mi (18.5 km) a A = 325° 

DB = 18 n mi (33.3 km) aB = 350° 

De = 18 n mi (33.3 km) ac = oo 

DD = 18 n mi (33.3 km) aD = 10° 

DE = 10 n mi (18. 5 km) aE = 35° 

(b) ~D was varied in 30° increments from 0 to 180° (see line code 

in upper right of fig. 35), (c) ~U was varied in 10° increments 

from 0 to 360°, and (d) azimuth (horizontal) patterns for the 

8-loop localizer were used for both facilities. 

Protection point C on figure 43 is used to illustrate the 

difference between facility separation (Sf) calculated via pro­

gram TWIRL and station separation (S) used elsewhere (see SIGNAL 

RATIO-~, fig. 33, discussion). In particular, Sf~ S since S 
need not be measured along the great-circle path connecting the 

facilities. Note that (a) the dU to point C changes as.~D 
changes, even if Sf remains fixed, and (b) the angle from the 
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undesired facility to point C changes with both ~D and ~U even if 

Sf remains fixed, so that the applicable gain for the undesired 

facility varies in accordance with its horizontal pattern. 

The geometrical consequences of these complications are 
handled as part of the calculations performed by program TWIRL. ,, 
These calctilations would be very tediou~ to perform by hand even 

if appropriate signal ratio graphs (fig. 33) were available. A 

graph similar to figure 35 is constructed for each protection 

point and the maximum Sf for each combination of ~D and ~U is 
selected for the final graph. These intermediate graphs have a 

format identical to figure 35 and are available as computer out­

put even though no samples are provided here. 

Options exist to express the abscissa in kilometers, statute 
miles, or nautical miles. 

SERVICE VOLUME (figs. 36-37, p. 45-46; prob. 20, p. 71) Sample 
"SERVICE VOLUME" graphs are provided for TACAN (fig. 36) and 

VOR (fig. 37). Fixed D/U contours are plotted in the altitude 

versus distance plane for free space conditions and for time 

availabilities of 5, 50, and 95 percent. A fixed station separa­

tion (see SIGNAL RATIO-S, fig. 33, discussion) is used for each 

graph. When symmetry about the ordinate axis can be assumed 

(e.g., omnidirectional antenna), the volume formed by rotating 

a contour about the ordinate axis defines the air space in which 

the time availability will almost always equal or exceed that 

associated with the contour used to form it. This volume might 

include some air space with inadequate time availability, since 

it may not describe conditions directly above the desired facil­

ity perfectly. Service limitations associated with noise level 

are not considered in this display. Options exist to express the 

abscissa in kilometers, statute miles, or nautical miles, and the 

ordinate in feet or meters. 

SIGNAL RATIO CONTOURS (figs. 38-39, pp. 47-48; prob. 21, p. 71) 

Sample "SIGNAL RATIO CONTOURS" graphs are provided for ILS (fig. 

38) and VOR (fig. 39). Several (up to eight) D/U signal ratio 
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contours are plotted in the altitude versus distance plane (cf., 

figs. 36, 37). Single values of time availability and station 
separation are used for each graph. Options exist to express the 

abscissa in kilometers, statute miles, or nautical miles, and the 
ordinate in feet or meters. 

3.3 APPLICATIONS 
Graphs like those provided in section 3.1 and discussed in 

section 3.2 can be used to solve a wide variety of problems where 
system reliability is dependent upon radio-wave propagation. The 
application of each plotting capability is illustrated by a prob­
lem and solution in the remainder of this section. These prob­
lems are ordered by the capability applied in accordance with the 
table 1 listing. 

LOBING GRAPH (fig. 1, p. 10; fig. 6, p. 15; fig. 20, p. 29; fig. 
23, p. 32). 
Problem 1: Estimate the extent of smooth earth coverage for a 
system with the parameters of figure 1 and an allowable transmis­

sion loss of 135 dB. 

Solution: Figure 6 indicates potential coverage gaps from 
75 to 87 n mi (139 to 161 km) and no coverage beyond 232 n mi 
(430 km). Figure 20 indicates coverage to 259, 233, and 220 n mi 
(480, 432, and 407 km) for time availabilities of 5, SO, and 95 
percent. Figure 20 has the effects of surface reflection multi­
path included statistically in the signal level variability so 
that nulls, while not _shown, are accounted for in the time avail­
ability estimate. Figure 20 also provides a better estimate of 

transmission loss near the horizon. Figure 23 could have been 
used instead of figure 20 to obtain coverage for a 95 percent 
time availability. 

REFLECTION COEFFICIENT (fig. 6, p. 15; fig. 7, p. 16; fig. 12, p. 

21; fig. 13, p. 22; fig. 14, p. 23). 
Problem 2: Determine the reflection coefficient, reflection 
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point location, elevation angle, and elevation angle difference 

associated with the null inside the horizon for the conditions of 

problem 1. These parameters are useful in evaluating potential 

methods of reducing the null depth by effective reflection coef­

ficient reduction. For example, terrain near the reflecting point 

could be altered to reduce surface reflectivity or an antenna pat­
tern could be used that has low gain toward the reflecting sur­
face. 

Solution: The required parameters are obtained from graphs 
produced by program LOBING; i.e., 

and 

distance to null (fig. 6) is 79 n mi (147 km), 

effective reflection coefficient (fig. 7) for 79 n mi 

(147 km) is 0.96, 

distance to reflection point (fig. 12) for 79 n mi 

(147 km) is 0.15 n mi (0.28 km), 

elevation angle (fig. 13) for 79 n mi (147 km) is 4.5°, 

difference in direct and reflected ray elevation angle 

(fig. 14) for 79 n mi (147 km) is 9°. 

PATH LENGTH DIFFERENCE (fig. 8, p. 17; fig. 9, p. 18) 

Problem 3: For the conditions of problem 1, find the maximum 

time by which a pulse traveling the reflected ray route will lag 

the pulse traveling the direct ray route. Pulse distortion asso­

ciated with smooth earth multipath can be avoided if the pulse 

duration is much larger than the time lag. 

Solution: The maximum path length difference (fig. 8) oc­

curs at 0 n mi (0 km) and is 30.4 m. This path difference, ~r, 

is converted to time lag via (3); i.e., 

T = 3.34 [nsec/m] ~r [m] = (3.34)(30.4) = 102 nsec. 
Note that values for T can be obtained directly from figure 9 

where the time lag is given as slightly larger than 100 nsec. 

TIME LAG This capability was used in the solution to problem 3. 

LOBING FREQUENCY-D (fig. 1, p. 10; fig. 10, p. 19; fig. 11, p. 20). 

Problem 4: For the conditions of problem 1, determine the lobing 
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frequency via (5) for an aircraft at 4.8 n mi (8.9 km) with a 
radial velocity of 250 kts (463 km/hr) and an ascent rate of 10 3 

ft/min (305m/min). 
Solution: First, required parameters are obtained from out­

put of program LOBING; i.e., 

and 

Then, 

and 

f (fig. 1) is 125 MHz = 1.25 x l0- 4 THz, 
NDLF (fig. 10) is 1.52 (Hz/THz)/kts or 0.819 (Hz/THz)/ 

(km/hr) at 4.8 n mi (8.9 km), 

NHLF (fig. 11) is lo- 2 (Hz/THz)/(ft/min) or 0.035 
(Hz/THz)/(m/min) at 4.8 n mi (8.9 km). 

fd[Hz] = NDLF[(Hz/THz)/kts]f[THz]Vd[kts] from (4a), 
fd = (1.52)(1.25xlo- 4 )(250) = 4.75xl0-2Hz, 

fh[Hz] = NHLF[(Hz/THz)/(ft/min)]f[THz]Vh[ft/min] from (6a), 
fh = (lo- 2) (1.25xl0- 4 ) (10 3 ) = 0.125xl0- 2 Hz, 

f£ < fd + fh from (5), 

f£ < (4.75 + 0.125)10- 2Hz = 4.9 x 10-2 Hz. 

Therefore the maximum value of f£ at 4.8 n mi (8.9 km) is 4.9 x 
lo- 2 Hz. 

LOBING FREQUENCY-H This capability was used in the solution to 
problem 4. 

REFLECTION POINT 
problem 2. 

This capability was used in the solution to 

ELEVATION ANGLE 
problem 2. 

This capability was used in the solution to 

ELEVATION ANGLE DIFFERENCE 

tion to problem 2. 
This capability was used in the solu-

SPECTRAL PLOT (fig. 6, p. 15; fig. 15, p. 24). 

Problem 5: For the conditions of problem 1, would spectra associ­
ated with lobing within + SO kHz of 125 MHz be flat for distances 
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from 27 n mi (SO m) to the radio horizon? Frequency selective 

fading (i.e., when all frequencies within a receiver bandpass do 

not fade together) can distort a modulated signal so that intel­

ligibility is lowered. It does not occur when spectra are flat. 
Solution: Figure 6 indicates that the top of the lobe 4 oc­

curs at a distance somewhat less than 27 n mi (50 km). Therefore, 

the spectra shown in figure 15 are applicable to this problem, 

and these spectra are flat, so the answer is yes. 

POWER AVAILABLE, UHF SATELLITE (fig. 3, p. 12; fig. 16, p. 25). 

Problem 6: Determine how far north coverage from a geostationary 

UHF satellite extends when the parameters of figure 3 are appli­

cable, and a time availability of 95 percent and a power available 

of -160 dBW are required. 

Solution: Figure 16 is applicable to this problem, and it 
indicates that coverage out to an angular distance of 80° can be 

obtained for the required time availability. Therefore, coverage 

to 80°N is possible along the subsatellite meridian. The great­

circle distance for this arc can be obtained using (7c); i.e., 

d[km] 

(111. 2) (80) 

= 111.2 [km/deg] 8 [deg], 
0 

= 8,900 km (4,800 n mi). 

POWER DENSITY (fig. 5, p. 14; fig. 19, p. 28) 

Problem 7: For the VOR parameters of figure 5, determine the in­

terference range of a VOR at 30,000 ft (9,144 m) when a time a­

vailability of 5 percent and a power density of -134 dB-W/sq m 

or more are used to define the interference range. 
Solution: Figure 19 is applicable to this problem, and it 

indicates an interference range of 236 n mi (437 km). 

TRANSMISSION LOSS 

problem 1. 

This capability was used in the solution to 

POWER AVAILABLE CURVES (fig. 1, p. 10; fig. 21, p. 30) 

Problem 8: For the ATC parameters of figure 1 where the aircraft 

is at 45,000 ft (13,716 m), determine the service range when a 
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time availability of 95 percent and a power available of -130 dBW 

are used to define service range. 
Solution: Figure 21 is applicable to this problem, and it 

indicates a service range of 239 n mi (443 km). 

POWER DENSITY CURVES (fig. 1, p. 10; fig. 21, p. 30; fig. 22, p. 

31). 
Problem 9: Solve problem 8 using the power density graph of 

figure 22. 
Solution: First, convert the power available requirements 

of problem 8 to power density using (1) and the conversion factor 

provided in figure 1; i.e., 

and 

PI(dBW] = SR[dB-W/sq m] + AI[dB-sq m], 

SR =PI -AI= PI - (-3.4), 

SR = -130-(-3.4) = -126.6 dB-W/sq m. 

Then, using this power density, read the 95 percent time avail­

ability curve of figure 22. This gives 241 n mi (446 km), which 

is less than 1 percent larger than the answer obtained previously 

for problem 8 using figure 21. 

TRANSMISSION LOSS CURVES 

tion to problem 1. 

This capability was used in the solu-

POWER AVAILABLE VOLUME (fig. 24, p. 33) 

Problem 10: For the VOR parameters of figure 5, a time availa­

bility of 95 percent, and an available power of -114 dBW, deter­

mine the minimum altitude at which the service range extends to 

150 n mi (278 km). 

Solution: Figure 24 is applicable to this problem, and it 

indicates a minimum altitude of 30,000 ft (9,144 m) for the 150 

n mi (278 km) service range. 

POWER DENSITY VOLUME (fig. 5, p. 14; fig. 25, p. 34) 

Problem 11: For the VOR parameters of figure 5, a time availabil­

ity of 95 percent, a power density of -111 dB-W/sq m, and 
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altitudes up to 100,000 ft (30,480 m), determine aircraft altitudes 

for which service is not available at 1SO n mi (278 km). 

Solution: Figure 2S is applicable to this problem, and it 
indicates that service is not available at lSO n mi (278 km) for 

altitudes below 31,000 ft (9,449 m). 

TRANSMISSION LOSS VOLUME (fig. S, p. 14; fig. 26, p. 3S) 

Problem 12: For the VOR parameters of figure S, a time availa­

bility of SO percent, and altitudes up to 100,000 ft (30,480 m), 

determine the altitudes for which a basic transmission loss of 

134 dB is exceeded at a distance of 17S n mi (324 km). 

Solution: Figure 26 is applicable, and it indicates that 

the 134 dB transmission loss level is exceeded SO percent of the 

time at a distance of 17S n mi (324 km) for altitudes below 
40,000 ft (12,192 m). 

EIRP CONTOURS (fig. 4, p. 13; fig. 28, p. 37) 

Problem 13: For the TACAN parameters of figure 4, determine the 

minimum EIRP of transmitted pulses necessary to maintain a pulse 

power density greater than -86 dB-W/sq m for 9S percent of the 

time at an altitude of 30,000 ft (9,144 m) and a distance of 

12S n mi (232 km). 

Solution: Figure 28 is applicable to this problem, and it 

indicates that an EIRP of 42 dBW would be sufficient. 

POWER AVAILABLE CONTOURS (fig. 4, p. 13; fig. 30, p. 39) 
Problem 14: For the TACAN parameters of figure 4, a service range 

defined by a time availability of 9S percent, and a power density 
of -86 dB-W.sq m, determine the service range available at 30,000 

ft (9,144 m) by using figure 30. 

Solution: First convert the power density requirement to 

power available using (1) and the conversion factor provided in 

figure 4; i.e. , 

and 

P1 [dBW] = Sa[dB-W/sq m] + AI[dB-sq m], 

PI = -86+(-22.7) = -108.7 dBW. 

Then, using this power available, read the 95 percent time 
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availability curve of figure 30. This gives 111 n mi (206 km). 

POWER DENSITY CONTOURS (fig. 4, p. 13; fig. 30, p. 39; fig. 31, 

p. 40). 

Problem 15: Solve problem 14 using figure 31. 

Solution: Figure 31 indicates that the service range at 

30,000 ft (9,144 m) is 111 n mi (206 km), which is the same an­

swer obtained previously for problem 14 usinr, figure 30. 

TRANSMISSION LOSS CONTOURS (fig. 4, p. 13; fig. 32, p. 41) 

Problem 16: For the TACAN parameters of figure 4 and a time a­

vailability of 95 percent, determine the minimum altitude for 

which a basic transmission loss of 150 dB is not exceeded at a 
distance of 100 n mi (185 km). 

Solution: Figure 32 is applicable since it was developed 

with antenna gains set to zero so that basic transmission loss 

is obtained. It indicates that 150 dB of basic transmission loss 

is not exceeded for 95 percent of the time at 100 n mi (185 km) 

for altitudes above 18,000 ft (5,486 m). 

SIGNAL RATIO-S (fig. 5, p. 14; fig. 33, p. 42; fig. 42, p. 60) 

Problem 17: For the VOR parameters of figure 5, a time availa­

bility of 95 percent, and a desired facility to aircraft distance, 

d0 , of 100 n mi (185 km), determine the station separation (fig. 

42) necessary to obtain a desired-to-undesired signal ratio, D/U, 

of 23 dB at an altitude of 30,000 ft (9,144 m). 

Solution: Figure 33 is applicable to this problem, and it 

indicates that a station separation of 320 n mi (593 km) is ade­

quate to obtain D/U (95%) = 23 dB with d
0 

= 100 n mi (185 km). 

However, this signal ratio is not available beyond 100 n mi 

(185 km) for altitudes less than 30,000 ft (9,144 m). 

SIGNAL RATIO-DD (fig. 5, p. 14; fig. 34, p. 43) 

Problem 18: For the VOR parameters of figure 5, a time availa­

bility of 95 percent, and a D/U of 23 dB or more, determine the 

maximum d0 available for a station separation of 250 n mi (463 

km). 
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Solution: Figure 34 is applicable to this problem and it 

indicates that a maximum dD of 59 n mi (109 km) is available. 

ORIENTATION (fig. 2, p. 11; fig. 35, p. 44; fig. 43, p. 62) 
Problem 19: For the ILS localizer parameters of figure 2, but 

with altitude of 4500 ft (1,372 m), the protection point loca­

tions associated with figure 43 (see ORIENTATION, fig. 35, dis­

cussion in sec. 3.2), a time availability of 05 nercent, and a 

D/U of 23 dB determine the facility separation required when the 

undesired course line angle C~u in fig. 43) is 150° and the de­

sired course line angle (~D of fig. 43) is 60°. 
Solution: Figure 35 is applicable to this problem, and it 

indicates that a facility separation of 88 n mi (163 km) is suf­

ficient. 

SERVICE VOLUME (fig. 5, p. 14; fig. 37, p. 46) 

Problem 20: For the VOR parameters of figure 5, a time availa­

bility of 95 percent, and a station separation of 400 n mi (741 

km), determine the maximum dD for which D/U = 23 dB is available 
at an altitude of 40,000 ft (12,192 m). 

Solution: Figure 37 is applicable to this problem, and it 

indicates that a dD of 144 n mi (267 km) is available at 40,000 

ft (12, 19 2 m) • 

SIGNAL RATIO CONTOURS (fig. 2, p. 11; fig. 38, p. 47) 

Problem 21: For the ILS localizer parameters of figure 2, a time 

availability of 95 percent, and a station separation of 95 n mi 

(176 km), determine the maximum dD available at 1,000 ft (305m) 

for which D/U ~ 23 dB. 
Solution: Figure 38 is applicable to this problem, and it 

indicates that a dD of 30 n mi (56 km) is available at 1,000 ft 

(305m). 

4. INPUT PARAMETERS 

Parameters that may be specified as input to the programs 

are summarized in tables 2, 3, and 4. Blank spaces are provided 
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in these tables so that copies of them can be used to specify in­

put requirements for program runs. These tables cover input para­

meters for 10 programs which have 28 plotting capabilities (table 

1) so that only information for a small fraction of the parameters 

listed need be provided for any one capability. 

Table 2 covers general parameters that are usually a~plicable 

to many programs, and multiple entries or two copies of this table 

may be used if the desired and undesired facilities have different 

parameter values. Note that, although about 40 items can he spe­

cified, specification of only 3 is required. These "primary pa­

rameters" consist of antenna heights and frequency. Values for 

"secondary parameters" will be computed or assumed if not speci­

fied. A more detailed discussion of table 2 is provided in sec­

tion 4.1. 

Table 3 covers special parameters required for particular 

capabilities. Some of these parameters are required by more than 

one capability, and 13 (i.e., first 13 of table 1) of the capa­

bilities do not require parameters from table 3. Additional dis­

cussion of table 3 is provided in section 4.2. 

Table 4 covers parameters associated with graph formats. In 

many cases, an adequate selection of these parameters can be made 

by the program operator so that complete specification via table 

4 is not often required. Options associated with ordinate (feet 

or meters) and/or abscissa (kilometers, statute miles, or nau­

tical miles) units are available. These options are selected via 

table 4. A more detailed discussion of table 4 is provided in 

section 4.3. 

4.1 GENERAL PARAMETERS (Table 2, p. 73) 

General parameters that are usually applicable to many pro­

grams may be specified by using copies of table 2. Multiple en­

tries or two copies of this table may be used if the desired and 

undesired facilities have different parameter values associated 

with them. In the absence of such information, it will be as­

sumed that the two facilities have identical parameters. All 
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Table 2. Parameter Specification, General 

PRIMARY PARAMETERS, SPECIFICATION REQUIRED 

Parameter Range 

Aircraft (or higher) antenna height above mean sea level (msl) ~ Facility horizon height 

Facility (or lower) antenna height above facility site 
surface (fss) 

Frequency 

> 1.5 ft (0.5 m) above fss 

0.1 to 20 GHz 

SECONDARY PARAMETERS, SPECIFICATION OPTION 
Specified, Computed, or Assumed 

Aircraft antenna type options 

Beam width, half-power 

Polarization options 

Tilt, main beam above horizontal 

Tracking options 

Effective reflection surface elevation above msl 

Equivalent isotropically radiated power 

Facility antenna type options 

Beam width, half-power 

Counterpoise diameter 

Height above fss 

Surface options 

Polarization options 

Tilt, .. in beaa abo- horizontal 

Trackin<J 

Isotropic*, or as specified 

0.1 to 45° 

None, identical with facility 

-90° to 90° 

Directional* or tracking 

At fss*-or specified value above msl 

0.0 dBW* or specified 

Isotropic* or as specified 

0.1 to 45° 

0* to 500 ft (152 m) 

0* to 500 ft (152 m) 
Below facility antenna by at least l ft 
(1 m) but no more than 2000 ft (610 a) 

Poor, average, or good ground, or fresh 
or sea water, concrete, or aetal* 

Horizontal,* vertical, or circular 

-90° to 90° 

Directional* or tracking 

Value 

------------ ft, m, km, 
n mi, s mi, 

ft, m 

_____ MHZ 

deg 

deg 

ft, • 

____ dJRI 

deg 

ft, • 

ft,. 

____ deg 
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Table 2. 

Frequency fraction (half-bandwidth) 

Gain, receiving antenna (main beam) 

Transmitting antenna (main beam) 

Transmitting antenna location 

Horizon obstacle distance from facility 

Parameter Specification, General (cont.) 

Range 

0 to 0.2 {0.1)* 

0* to 60 dBi 

O* to 60 dBi 

Aircraft or facility* 

From 0.1 to 3 times smooth earth horizon 
distance (calculated)* 

Elevation angle above horizontal at facility <12 deg (calculated)* 

Height above 1151 

Ionospheric scintillation options 

Frequency scaling factor 

Index group 

Rain attenuation options 

Attenuation/laa 

Stora size 

Zone 

Mfractivity 

Effective earth's radius 

or ainiaa .:mthly mean, N
0 

Surface ~flection lobing options 

0* to 15,000 ft-asl(4572 m-msl) and ~ aircraft altitude 

No scintillation* or specified 

Not used* or (136/frequency in 11Hz)
0 

with l<n<2 

0* to 5, 6 fur variable 

None* or ca.puted with dB/km or zone 

0 dB/Icm and 1.1P 

5, 10,• 20 ka 

lto6 

4010 to 6070 n ai (7427 to 11,242 ka) 

200 to 400 N-uni~s (301 •-unital* 

Contributes to variability• or detenaines 
aedian leftl 

Value 

___ __::ciBi 

____ ciB.i 

~61n ai, 
----" 
__ __,deq 

ft, • ----

----"~ 

ll-61· 111. -----' 
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Table 2. Parameter Specification, General (cont.) 

Surface type options 

Sea state 

or rms wave height, oh 

Temperature 

Terrain elevation above msl at fatility 

Parameter, 6h 

Type options 

Time availability options 

Climates 

or time blocks 
------------

Range 

Poor, average* or good ground, fresh or 
sea water, concrete, metal 

Value 

o~glassy,* 1-rippled, 2-smooth, 3-slight, 4-moderate, 
5-rough, 6-very rough, 7-high, 8-very high, 9-phenomenal 

0 to 50 m (164 ft) 

0, 10, * or 20°C 

0* to 15,000 ft-msl (4572 m-.sl) 

0* or greater 

Smooth* or irregular 

For instantaneous levels exceeded* or for 
hourly median levels exceeded 

0*-Continental all year, !-Equatorial, 
2-Qontinental subtropical, 3-Maritime sub­
tropical, 4-Desert, 6-Qontinental Temperate, 
?a-Maritime Temperate overland, 7b-Maritima 
Temperate Overseas 

1, through 8, summer, winter 

ft, m ------

ft, II ----
ft, II ----

(a) Copies of this table may be used to provide data for computer runs by utilizing the blanks provided in the value column and circling 
desired options. These parameters are common to most programs, However, additional inforaation is needed for various prograas and 
it may be supplied via tables 3 and 4. If desired and undesired facility parameters are not identical, two table 2 parameter specifi­
cations, or appropriate notes on a single copy are required. 

(b) Parameters are listed in about the same order as on parameter sheets produced by the various programs (figs. 1 through 5). Paraaeter 
sheets produced by the various programs are similar, but not identical since only those parameters relevant to a particular prograa 
and run will be listed. For example, if the counterpoise diameter is input as zero, the counterpoise will not be considered and none 
of the parameters associated with it will be listed on the parameter sheet (c.f., fig. 1 with fig. 5). 

* Values or options that will be assumed when specific designations are not made are flagged by asterisks. 
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Table 3. 

Ca2~ility --~~~ram 

Power available curves 

Power density curves 

Transmission loss curves 

Power available volume 

Power density volume 

Transmission loss volume 

EIRP contours 

Power available contours 

Power density contours 

Transmission loss contours 

Service volume 

Signal ratio contours 

Power available curves 

Power density curves 

Transmission loss curves 

El:RP contours 

Power available contours 

Power density contours 

Transmission loss contours 

Orientation 

Signal ratio contours 

J 
J 

l 
J 

l 

ATLAS l 

HI POD 

APODS 

SRVLUM 

DURATA 

ATLAS 

APODS 

TWIRL 

DURATA 

Parameter Specifica~ion, Special 

Parameter and Value(s)* 

Aircraft altitudes, up to 25, may be specified to cover airspace required: 

ft-..1, 

--------------------------------------------------------------------------~or a-.sl. 

Time availability: percent. Acceptable values ran~ froa 0.01 to 
99.99 percent. A value of 95 percent will be used if a value is not specified. 
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Table 3. Parameter Specification, Special (cont.) 

caeabilit:a;: PrO<} ram 

Power available volume HI POD 

Power density volume HI POD J EIRP contours APODS 

Transmission loss volume HI POD 

I!IRP contours APOOS 

Power available contours APODS 

Power density contours APODS 

Tranaission loss contours APODS 

Siqnal ratio-DO 0000 

Service volume SRVLUM 

Siqnal ratio contours OORATA 

Siqnal ratio-S ATADU 

Orientation 
TWIRL } 

Service vol-..e SRVLUM 

Orientation 'lWIRL 

NOTE: Azt.uth is relative to desired station 
course line with positive values taken 
as clockwise, and distance is the desired 
facility-to-aircraft qreat circle distance 

*Par-ur values required for particular capabilities 
that are not specified in table 2 may be specified by 
1111in9 the blanks provided bare. Circle desired units 
wbere ~tiple units are given. 

Parameter and Value(s)• 

Power available: dBW. 

Power density: dB-W/sq m 

Transmission loss: dB. 

EIRP'S, up to 8: dBW. 

Powers available, up to 8: dBW. 

Power densities, up to 8: dB-W/sq • 

Transmission loss,_ up to 8: dB 

Station separation: ka, n mi, or s mi. 

Desired facility-to-aircraft distance: ka, n •i, or s .t. 

Desired-to-undesired signal ratio: dB. 

Protection point location, up to 6: 

Azimuth Distance 

deg ____ km, n mi, or s mi 
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Table 4. Parameter Specification, Graph Formats 

Ordinate Abscicsa 

Capability (a) _____ ~;~-~-r- Upper Increment Units (b) Left Side Right Side Increment 

Lobing LOBING 

Reflection coefficient LOBING 

Path length difference LOBING 

Time delay LOBING 

Lobing frequency -0 LOBING 

Lobing frequency -H LOBING 

Reflection point LOBING 

Elevation angle LOBING 

Elevation angle difference LOBING 

Spectral plot LOB lNG 

Power available ATOA 

Power density ATOA 

Transmission loss ATOA 

Power available curves ATLAS 

Power density curves ATLAS 

Transaission loss curves ATLAS 

Powr available curves HI POD 

Power density volu.e HI POD 

Tran.aiaaion loss volume HIPOD 

EIRP contours APOilS 

PoWitr available contours APOD6 

---
Plot lobe 

dB 

m 

nsec 

(Hz/THz)/(km/hr) 
(Hz/THz)/kts 

-----'(~H~z/THz) I (s mi/h_r_J ---

(Hz/THz)/(m/min) 
(Hz/THz)/(ft/min) ------- -------

km, n mi, or 
s mi 

deg 

deg 

____ .J;hru • counting from the Horizon (cl 

dBW 

dB-W/Sq II 

dB 

dBW 

dB-W,...q II 

dB 

ft or • 

ft or • 

ft or • 

ft or • 

ft or • 

Units(b) 

~min mi, or 

~min mi, or 

~d.in mi, or 

~d.in mi, or 

Jr-,i n mi , or 

~6in mi, or 

~'in mi, or 

Jr-,1 n •i, or 

f-,1n 111, or 

gr, H• n 111, 
gr, II• n 111, 
~·.n..Ji, 

~·.n..Ji, 

~·.n.fi, 

'fll• .n.,r, 
~ •• n.,r, 
l§J-.n.,r, 
~,8n..J1r 

~, 8D.flr 

D•aD..Jlr 
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Table 4. Parameter Spe~ification, Graph Formats (cont.) 

Ordinate Abscissa 

Capabili t~) ____ P_ro~_~we~-- __ Up~_ Incre~~~_er>_t__{Jrl_i_t~;_ (bl_~t:t Side Right Side Increment 

Power density contours APODS ft or m 

Transmission loss contours APODS ft or m 

Signal ratio -s ATTADU dB 

Signal ratio -DO DUDD dB 

Orientation TWIRL deg 

Service volume SERVLUM ft or m 

Signal ratio contours DURATA ft or m 

Units (b) 

~'sn_p, 

~,.n_p, 

~'sn.._ti, 

~'sn_p, 

deg 

~,sn.J:i, 

ft•an.J:i, 

(a) In many cases appropriate graph limit can be adequately selected by the progrlllll operator so that values need not always be provided 
here. However, in such cases the capabilities desired should be indicated (circled), and where r~ired (a,b) units should be 
specified. A plotting capability guide is provided in table 1. 

(b) Circle desired units when multiple units are given. Selections for a particular capability must be consistent; i.e., all English or 
all metric units. 

(c) Any 5 consecutive lobes within 10 lobes of the radio horizon may be specified. 



capabilities that involve the use of desired to undesired (D/U) 

signal ratios involve two facilities. This includes the last 5 

capabilities listed in table 1. 

Although about 40 items can be specified with table 2, re­

quired specification involves only 3. These "primary parameters" 

consist of antenna heights and frequency. Values for "secondary 

parameters" will he computed or assumed if not specified. Para­

meter values (or options) that will he assumed in lieu of speci­

fication are indicated in the table along with the acceptable 

value range (or options available). 

The nomenclature used to distinguish between the two anten­

nas of a particular path may be misleading to the uninitiated but 

is used for convenience. The lower of the two antennas is called 

the "facility" even though it may be an aircraft. The other an­

tenna must be equal to or higher in altitude than the "facility 

or lower" antenna and is designated as the "aircraft" even though 

it may be a ground-based antenna or a satellite. 

For convenience, the parameters in table 2 are listed alpha­

betically within categories. A short discussion of each parameter 

is provided in the remainder of this section, and these discus­

sions are ordered in accordance with the order of appearance of 

the parameter in table 2. 

AIRCRAFT (OR HIGHER) ANTENNA HEIGHT As shown in figure 44, this 

altitude is measured above mean sea level (msl). The propagation 

model is not valid for antennas located below the surface, and 

radio horizons may not be treated correctly if the aircraft alti­

tude is less than the facility antenna horizon elevation above 

msl. Use of such aircraft altitudes will result in an aborted 

run after an appropriate note has been printed on the comnuter­

generated parameter sheet (e.g., fig. 1). Notes are printed, 

but the run is not aborted if the altitude is (a) less than 1.5 

ft (0.5 m) where surface wave contributions that are not included 

in the model could become important, or (b) less than the effec­

tive reflecting surface elevation plus 500 ft (152 m) where the 
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model may fail to give proper consideration to the aircraft radio 

horizon. 

FACILITY (OR LOWER) ANTENNA HEIGHT As shown in figure 44, this 

height is measured above the facility site surface (fss). The 

propagation model is not valid for antennas below the surface, 

and such a facility antenna height will result in an aborted run, 

after an appropriate note has been printed on the computer-gener­

ated parameter sheet (e.g., fig. 1). A note is printed, but the 

run is not aborted if the height is less than 1.5 ft (0.5 m), 

for which surface wave contributions not included in the model 

could become important. 

AIRCRAFT ALTITUDE ABOVE msl------------------~-

FACILITY ANTENNA HEIGHT ABOVE fss ------------.---

FACILITY SITE SURFACE (fss) ELEVATION ABOVE msl --------t--

EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE msl--~-

MEAN SEA LEVEL (ms 1) ______________ _.__ ___ ...__ __ ____.__ 

Figure 44. Antenna heights and surface elevations. Note that the 
aircraft altitude is elevation above msl while the facility 
antenna height is measured with respect to fss. 
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FREQUENCY Notes are printed if the frequency is (a) less than 

100 MHz, when neglected ionospheric effects may become important; 

(b) greater than 5 GHz, when neglected scattering from hydrornete­

ors (rain, etc.) may become important; and (c) greater than 
17 GHz, when the estimates made for atmospheric absorption may be 

inaccurate. For frequencies less than 20 MHz or greater than 

100 GHz, the run is aborted. 

AIRCRAFT ANTENNA TYPE OPTIONS These options involve the antenna 

gain pattern of the aircraft antenna in the vertical plane. Op­

tions currently built into the program include isotropic, cosine 

(voltage), and JTAC (see eqn. 10) patterns (fig. 45). Program 

modifications can easily be made to accommondate other patterns 

that are specified in terms of gain versus elevation angle. Hori­

zontal (or azimuth) patterns for the aircraft antenna are not 

used in any program. 

Antenna pattern data are used to provide information on gain 

relative to the main beam only. The extent to which the main beam 

antenna gain exceeds that of an isotropic antenna is listed in 

table 2 as a separate item (i.e., under GAIN) and is included in 

the specification of EIRPG (see eqn. 12). 

AIRCRAFT ANTENNA BEAM WIDTH This parameter is currently used 

only in connection with the JTAC [33, p. 51] antenna pattern 

where relative (voltage) gain (g) is a function of the half-power 

beam width (eHP), beam tilt above horizontal (et), and the ray 

elevation angle (e) for which g is desired [24, (67)]; i.e., e 

g[V/V] = [1 + C2lee-etl/eHP)2.5] -o.s (10) 

where ee' et' and eHP must all be expressed in the same units of 
angular measure, such as degrees or radians. 

AIRCRAFT ANTENNA POLARIZATION OPTIONS Polarization of the air-

craft is not optional. It is always taken as being identical 

with that of the facility antenna, which may be specified as cir­

cular, horizontal, or vertical. Therefore, losses associated 
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with polarization sense mismatch are not included in the programs. 

However, provisions do exist to allow antenna gain patterns for 

horizontally and vertically polarization components to be individ­

ually specified for calculations involving circular polarization. 

AIRCRAFT ANTENNA TILT The aircraft antenna main beam tilt above 

horizontal is currently used only with the JTAC antenna pattern 

formulation of (10). 

AIRCRAFT ANTENNA TRACKING OPTION If this tracking option is 

used, the main beam of the aircraft antenna will always point at 

the desired facility antenna. 

EFFECTIVE REFLECTION SURFACE ELEVATION As shown in figure 44, 

this elevation is measured above msl. If not specified, it will 

be taken as the terrain elevation above msl of the facility site 

surface (fss). This factor is used when the terrain from which 

reflection is expected is not at the same elevation as the fa­

cility site; e.g., a facility located on a hilltop or cliff edge. 

When the elevation of the facility antenna or horizon obstacle 

is below the effective reflection surface level, a note will be 

printed and the run aborted. This elevation is also used as the 

elevation of average terrain for terrain other than the facility 

site and horizon obstacle. 

The following guidelines are useful in estimating effective 

reflecting surface elevations: 

1) Do not specify a value for this elevation (then a value equal 

to the facility site elevation will be assumed) if (a) terrain in­

formation is too difficult to obtain, or (b) the path profile 
[49, sec. 6.2] is such that a reasonable estimate is difficult. 

For example, do not specify a value when the facility-to-horizon 

reflection would be expected to occur from a tilted plane and the 

facility horizon obstacle elevation is greater than the facility 

site elevation. 

2) Take this elevation as the facility horizon obstacle eleva­

tion if the path profile is such that the facility-to-horizon re­

flection would be expected to occur from a tilted plane and the 
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horizon obstacle elevation is less than the facility site eleva­

tion; e.g., when the terrain slopes downward from the facility 

site to its horizon so that none or very little of the terrain be­

tween the two has an elevation less than that of the horizon 

obstacle. 

3) This elevation should, in most cases, be taken as an estimate 

of average terrain elevation in the vicinity of the surface along 

the great-circle path that is expected to support reflection be­

tween the facility antenna and the facility horizon obstacle. In 

a plane tangent to the reflecting point, the angle of incidence 

should equal the angle of reflection; i.e., grazing angles (w of 

fig. 40) are equal at the reflecting point [8, sec. ll.A; 27, sec. 

CI-C.2]. 

The effort required to determine appropriate terrain input 

parameters for IF-77 when the first two guidelines are not appli­

cable can be very difficult for inexperienced personnel without 

adequate tools. Experienced personnel and computer programs use­

ful in processing terrain data are available at DOC and should be 

utilized for difficult problems. 

EQUIVALENT ISOTROPICALLY RADIATED POWER Equivalent isotropically 

radiated power (EIRP) is the power radiated from the transmitting 

antenna increased by the antenna's main lobe gain; i.e., 

EIRP[dBW] = PTR[dBW] + GT[dBi] (11) 

where PTR is the total power radiated from the transmitting an­

tenna and GT is the main beam gain of the transmitting antenna. 

The term EIRPG is sometimes used (e.g., fig. 16) to indicate EIRP 

increased by the receiving antenna main beam gain (GR); i.e., 

EIRPG(dBW] = EIRP[dBW] + GR[dBi]. ( 12) 

In the calculation of transmission loss (e.g., fig. 23) only the 

sum of the antenna gains is involved, and the term GAIN is used 
where 

GAIN[dBi] = GT[dBi] + GR[dBi]. (13) 
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For example, a radiated power of 10 dBW, a transmitting antenna 

gain of 10 dBi, and a receiving antenna gain of 6 dBi would result 

in 20 dBW EIRP, a 26 DBW EIRPG, and a 16 dBi GAIN. Effective ra­

diated power (ERP) is similar to EIRP but is calculated with an 

antenna gain specified relative to a half-wave dipole; therefore, 

an EIRP value is 2.15 dB higher than an equivalent ERP value when 

the same radiated power is involved. 

FACILITY ANTENNA TYPE OPTIONS These options involve the antenna 

gain pattern of the facility antenna. Some of the vertical plane 

patterns currently available include those illustrated in figures 

45 and 46 where antenna gain, normalized to the maximum gain, is 

plotted against elevation angle (measured above the horizontal). 

Figure 45 shows vertical patterns for the cosine, isotropic, 

TACAN RTA-2 [12], and Tull. The "cosine" (voltage) pattern [24, 

(67)] is used for a vertically polarized electric dipole or a 

horizontally polarized magnetic dipole such as the antenna associ­

ated with VOR. Heasured gain data on the RTA-2 and modified RTA-

2 antennas, supplied to DOC by FAA, were used in obtaining the 

patterns for these TACAN antenna types. The Tull pattern is the 

vertical radiation pattern associated with the localizer nortion 

of the Tull Microwave Instrument Landing System and is a piece­

wise linear fit to data provided via the FAA. 

Figure 46 shows vertical patterns for different Distance Mea­

suring Equipment (DME) antennas. These patterns are all piece­

wise linear fits to information provided by the FAA. Dashed lines 

are used where the curves are extended beyond the data provided. 

The pattern labeled "DME-Specification" was developed from a FAA 

specification [17, sec. 3.5.7] by using minimum acceptable gain 

values. 

One pattern is currently available that allows beam width 

and tilt to determine the pattern. This pattern is the JTAC pat­

tern previously discussed under "Aircraft antenna beam width" 

where (10) defines the relative gain in terms of beam width and 

tilt. Program modifications can easily be made to accommodate 
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other patterns that are specified in terms of gain versus eleva­

tion angle. 

Program TWIRL is the only program which involves the use of 

horizontal plane (azimuth) antenna patterns (see ORIENTATION, fig. 
35, discussion in sec. 3.2). An example of such a pattern is the 

localizer portion of an ILS S-loop array antenna [22, fig. 1]. 
This pattern and preliminary patterns for other ILS localizer 

antennas are currently available, but program modifications can 

easily be made to accommondate other patterns that are specified 

in terms of gain versus azimuth angle. 

Antenna pattern data are used to provide information on gain 

relative to main beam only'. The extent to which the main beam 

antenna gain exceeds that of an isotropic antenna is listed in 

table 2 as a separate item (i.e., under GAIN) and is used in the 

specification of EIRP as per (11) when the antenna is transmit­

ting. 

FACILITY ANTENNA BEAM WIDTH This parameter is currently used 

only in connection with the JTAC antenna pattern given by (10). 

FACILITY ANTENNA COUNTERPOISE DIAMETER The counterpoise was in­

corporated into the model for the VOR. It will not be included 

in the calculations if its diameter is specified as zero, and the 

parameters associated with it will not be printed. A diameter 

greater than 500 ft (152 m) will cause a warning note to be 

printed, but will not abort the run. 

FACILITY ANTENNA COUNTERPOISE HEIGHT If the counterpoise height 

above the facility site surface (fss) is less than zero, it will 

be set equal to zero. An appropriate note will be printed and 

the run aborted if the height is (a) greater than 500 ft (152 m), 

or (b) greater than the facility antenna height. The facility 

antenna should be above the counterpoise by at least one-third 

of a wavelength, which is 3 ft (1 m) at 100 MHz, and by not more 

than 2,000 ft (610 m). 
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FACILITY ANTENNA COUNTERPOISE SURFACE OPTIONS Counterpoise sur­

face options fix the conductivity and dielectric constant associ­

ated with the counterpoise surface. Values associated with each 
option are given in table 5. 

FACILITY ANTENNA POLARIZATION OPTIONS These options include 
circular , horizontal, and vertical polarization [47, ch. 8]. 
Polarization for the aircraft antenna is always taken as being 

identical with that of the facility antenna. Therefore, losses 
associated with polarization sense mismatch are not included in 

the programs. However, provisions do exist to allow antenna gain 
patterns for horizontally and vertically polarized components to 

be individually specified for calculations involving circular 
polarization. 

FACILITY ANTENNA TILT The facility antenna main beam tilt above 

horizontal is currently used only with the JTAC antenna pattern 

formulation of (10). However, it can also be used to adjust the 
tilt of other patterns. 

FACILITY ANTENNA TRACKING OPTION If this tracking option is 

used, the main beam of the facility antenna will always point at 
the aircraft. 

Table 5. Surface Types and Constants 

[25, table 6] 

Type 

Poor ground 

Average ground 

Good ground 

Sea water 

Fresh water 
Concrete 

Metal 

Conductivity 
(mhos/m) 

0.001 

0.005 

0.02 

5* 

0.01* 

0.01 

10 7 

Dielectric 
Constant 

4 

15 

25 

81* 

81* 

5 

10 

*More appropriate values are calculated if surface sea tempera­

ture is specified. 
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FREQUENCY FRACTION This is the fraction of the carrier frequency 

that corresponds to half the bandwidth used for the spectral plot 

·capability (fig. 15). For example, a carrier frequency of 125 MHz 

and a fraction of 0.0004 would result in a bandwidth of 

( 2 ) ( 0 . 0 0 0 4 ) (12 5 ) = 0 . 1 MH z = 1 0 0 kHz . 

GAIN, RECEIVING ANTENNA This item is the main beam gain [dBi] 

of the receiving antenna. A 0 dBi value will be assumed if no 
gain is specified. 

GAIN, TRANSMITTING ANTENNA This item is the main beam gain 

[dBi] of the transmitting antenna. A 0 dBi value will be assumed 
if no gain is specified. 

TRANSMITTING ANTENNA LOCATION This item is included to provide 

a more complete specification of problem parameters and to allow 

the program operator to check for potential incorrect power den­

sity or D/U estimates. Other predictions hqve transmitter/re­

ceiver reciprocity. Power density and D/U calculations assume 

that the transmitting antenna is located at the facility. 

HORIZON OBSTACLE DISTANCE FROM FACILITY If not specified, this 

distance will be calculated from horizon parameters that are spec­

ified and/or by using the terrain narameter ~h. Nhen the dis­

tance is not within 0.1 to 3 times the smooth earth horizon dis­

tance, a warning note will be printed, but the run will not be 
aborted. 

HORIZON OBSTACLE ELEVATION ANGLE ABOVE HORIZONTAL AT FACILITY 

If not specified, the horizon obstacle elevation angle at the 

facility will be calculated from horizon parameters that are spec­

ified and/or by using the terrain parameter ~h. When the angle 

exceeds 12°, a warning note will be printed, but the run will not 
be aborted. 

HORIZON OBSTACLE HEIGHT If not specified, this height will be 

calculated from horizon parameters that are specified and/or by 

using the terrain parameter ~h. When the height is not within 
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the 0 to 15,000 ft-msl (4572 m) range, a warning note will be 

printed, but the run will not be aborted. 

IONOSPHERIC SCINTILLATION FREQUENCY SCALING FACTOR The use of 

this Simple scaling factor is optional. It should only he used 

.when estimates of the variability associated with ionospheric 

scintillation at a particular frequency (f in MI!z) must he based 

on data collected at 136 MHz [55, sec. 3.4]. Use of this factor 

results in scaling by (136/f)n where n varies from 1 to 2 as a 

function of facility latitude [55, (27)]. 

IONOSPHERIC SCINTILLATION INDEX GROUP Variability associated 

with ionospheric scintillation for paths that pass through the 

ionosphere (e.g., earth station/satellite path) is considered via 

the distributions shown in figure 47. Input requirements involve 

the specification of the particular scintillation index groun 

(fig. 47) of interest. Scintillation index is the ratio of peak 

excursion from mean power to mean power [46, (2); 58]. Provi­

sions exist (table 2, index group= 6) to allow the signal level 

variability associated with ionospheric scintillation to change 

with earth facility latitude. Figure 48 shows the distributions 

currently used when this option is selected. These distributions 

were developed by mixing distributions for particular scintilla­

tion index groups in accordance with the estimated time for which 

they would be present at a frequency of 136 MHz [55, sec. 3.4] so 

that the frequency scaling factor discussed above should be used 

with these distributions. However, only minor program modifica­

tions would be necessary to incorporate other distributions that 

might be of interest. 

RAIN ATTENUATION OPTIONS An allowance for rain attenuation may 

be made by using a fixed attenuation rate (dB/km) or by using 

rain attenuation statistics for a particular rain zone and storm 

size. Rain attenuation via the rain zone model is present for 

less than 2 percent of the time so that only time availabilities 

greater than 98 percent will be affected. 
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RAIN ATTENUATION/KM With this option, rain attenuation is cal­
culated as the product of the attenuation rate and the length of 

the most direct ray path between the terminals that is within the 

storm. 

RAIN STORM SIZE This is the length (or diameter) of the storm 

over the great-circle path connecting the terminals. It is as­

sumed that this length is made up by a single storm that extends 

to an altitude above average terrain that is equal to the storm 

size and contains as much of the most direct ray nath as possihle. 

For the models used here the greatest length of path subjected to 

rain attenuation is limited to the rain storm length and the smal­

lest is zero since the direct ray could be entirely above the 

storm for an air-to-air propagation path. 

RAIN ZONE If the option involving 

is desired, a rain zone number from 

tinental United States or figure 50 

is selected [51, 52, 53,-54, 57]. 

statistical attenuation rates 

either figure 49 for the con­

for other parts of the world 

Rain attenuation 

tion is present for less than 2 percent of the time 

time availabilities greater than 98 percent will be 

via this op­

so that only 

affected. 

REFRACTIVITY Values for the minimum monthly mean surface refrac­

tivity referred to mean sea level (N ) may be estimated from ei-
o 

ther figure 51 for the continental United States or figure 52 for 

other parts of the world. Other information [3, 4, 5, SO, 51, 52] 
which may be more appropriate for the particular conditions (e.g., 

time of year and location) involved can be used to estimate N 
0 

or a minimum monthly mean value for effective earth radius. Spec-

ification of N outside the 200-to-400 N-unit range will result 
0 

in N being set to 301. If 
0 

the surface refractivity (N ) calcu­s 
lated [49, (4.3)] from N 

0 
is less than 200 N-units, N will be 

s 
set to 200 N-units and an appropriate note printed. An N of 301 s 
N-units corresponds to an effective earth radius factor of 4/3 

[49, fig. 4.2], If desired, a value for effective earth radius 

can be specified directly. 
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SURFACE REFLECTION LOBING OPTIONS Lobing associated with the 

phase difference between direct and reflected rays in the line-of· 

sight region contributes to the short-term variability (within the 

hour fading) or is used to define the median level in the line­

of-sight region. These options can result in predictions that 

are very different. The variability option provides a more reli­

able estimate of propagation statistics in most cases. Ilowever, 

the lohing pattern option is useful when selecting antenna heights 

to avoid low signal levels (nulls) in particular portions of air 

space. With the variability option, lobing is treated as part of 

the short-term (within-the-hour) variability when the reflected 

ray path length exceeds the direct ray path length by more than 

half a wavelength (inside horizon lobe) so that the lobing pat­

tern is not plotted. The other option allows the median level to 

be determined by such lobing for the first ten lobes inside the 

radio horizon so that the lobing pattern will be plotted. Regard­

less of the option selected, lobing caused by reflection from the 

counterpoise (if present) is used in median level determination 

and does not con~ribute to the short-term fading; i.e., if pre­

sent, counternoise lobing is plotted with either option. 

SURFACE TYPE OPTIONS These options fix the conductivity and di­

electric constants associated with the effective reflecting sur­

face. Values associated with each option are given in table 5. 

If the surface is water, the constants of table 5 may be used or 

surface constants may be calculated using surface sea temperature. 

SURFACE SEA STATE If fresh or sea water is chosen, an allowance 

may be made for water roughness by specifying sea state or the 

root-mean-square deviation of surface excursions within the lim­

its of the first Fresnel zone in the dominant reflecting plane 

(ah). Table 6 shows the relationship used to relate sea state to 

ah. 
Values for a oh provided in table 6 were estimated using 

significant wave height (11 113) estimates from Sheets and Boat­

wright [53, table 1] with a formulation given hy Moskowitz 
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Table 6. Estimates of oh for Sea States [27, p. CI-81]. 

S 
(a) 

ea 
State 
Code 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

Descriptive Terms(a} 

Calm (glassy) 

Calm (rippled) 

Smooth (wavelets) 

Slight 

Moderate 

Rough 

Very rough 

High 

Very high 

Phenomenal 

Average Wave 
Height Range 
Meters (feet) 

0 
(0) 

0 - 0.1 
(0 - 0.33) 

0.1 - 0.5 
(0.33 - 1.6) 

0.5 - 1.25 
(1.6 - 4.0) 

1.25- 2.5 
(4 - 8) 

2.5 - 4 
(8 - 13) 

4 - 6 
(13 .,.. 20) 

6 - 9 
(20 - 30) 

9 - 14 
(30 - 46) 

>14 
(>46) 

H 
113 

(b) 

Meters (feet) 

0 
( 0) 

0.09 
(0.3) 

0.43 
(1.4) 

1 
(3.3) 

1.9 
(6 .1) 

3 
(10) 

4.6 
(15) 

7.9 
(26) 

12 
(40) 

>14 
(>45) 

(c) 
oh 

Meters (feet) 

0 
(0) 

0.00 
(0.08) 

0.11 
(0.35) 

0.25 
(0.82) 

0.46 
(1. 5) 

0.76 
(2. 5) 

1.2 
(3.8) 

2 
(6.5) 

3 
(10) 

>3.5 
(>11) 

(a) Based on international meteorological code [42, code 3700]. 

(b) Estimates significant wave heights, average of highest one-third, 
HI [53, table 1]. 

1 3 

(c) Estimated using a formulation provided by Moskowitz [41, (1)] with 
H I estimates. 

1 3 

100 

I, 

t·.·. 



[41, (1)]. However, ah may also he specified directly. 

SURFACE SEA TEMPERATURE The dielectric constants and the condtic-
tivity of water vary with frequency, salinity, and temperature 

[27, sec. CI-D.8]. The programs allow water surface constants to 

be calculated for either fresh water or average sea water (3.6% 

salt) and three water temperatures (0°, 10°, or 20°C). 

TERRAIN ELEVATION This is the elevation of the facility site 

above msl (fig. 44). Values less than zero are set to zero, and 

a note will be printed if the 15,000 ft-msl (4572 m-msl) limit is 
exceeded, but the run will not abort. 

TERRAIN PARAMETER The terrain parameter (~h) is used to charac­

terize irregular terrain. Values for it may be calculated from 

path profile data [37, annex 2] or estimated using table 7. When 
the aircraft is much higher (~ 10 times) than the facility, the 

terrain used to determine ~h should be that terrain between the 
facility and its radio horizon. Estimates can also be made using 

figure 53 when profile data or terrain type information is not 
conveniently available. 

Table 7. Estimates of ~h [37, table 1] 

Type of Terrain 

Water or very smooth plains 

Smooth plains 

Slightly rolling plains 
Rolling plains 

Hills 

Mountains 

Rugged Mountains 

j!xtremcly rugged mountains 

101 

~h 
(feet) 

0 - 20 

20 - 70 
70 -130 

130 -260 

260 -490 

490 -980 

980 -2000 

>2,000 

~h 
(meters) 

0 - 5 

5 - 20 
20 - 40 
40 - 80 

80 -150 

150 -300 

300 -700 

>700 
-- > 
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Figure 53. Contours of the terrain factor ~h in meters (informal communication, 
G. A. Hufford, DOC). The computations assumed random paths and ho­
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TERRAIN TYPE OPTIONS If the smooth earth option is selected, 

all calculations will be based on smooth earth parameters even 

though parameters specified elsewhere imply irregular terrain. 

For example, smooth earth specification would cause specified hor­

izon parameters to be neglected and smooth earth values used in 

their place. 

TIME AVAILABILITY OPTIONS If the first option is selected, 

short-term (within-the-hour) fading will contribute to the vari­

ability, and time availability is applicable to instantaneous lev­

els that are available for specific percentages of the time. With 

the second option, only long-term (hourly median) variations are 

included in the variability, and time availability is applicable 

to the hourly median levels that are available for a specific per­

centage of hours. 

TIME AVAILABILITY CLIMATES OR TIME BLOCKS If no option is sele~­

ted under climates, the programs will use the long-term (hourly 

median) variability as described in Gierhart and Johnson [24, 

sec. A.S]; i.e., continental all year climate. Climates similar 

to those defined by the CCIR [9] and described in table 8 are 

available. Variability functions for these climates were devel­

oped at the DOC (informal communication, A. G. Longley and G. A. 

Hufford). The factor used in the propagation model to avoid ex­

cessive variability for paths with a very high antenna (satellite) 

was developed for the continental all year climate [23, fig. 2], 

and the use of other climates for satellite paths may result in 

excessive variability. Time blocks for the continental temperate 

climate also are options. The time block periods are defined in 

table 9. 

4.2 SPECIAL PARAMETERS (Table 3, p. 76) 

Special parameters required for particular capabilities are 

covered in table 3. Some of these parameters are required for 

more than one capability, and the 13 capabilities associated with 

programs LOBING and ATOA (table 1) do not require parameters from 
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Table 8. Climate Types and Characteristics 

CCIR 
Climate 

3 

4 

5 

Radio­
Climate 

I:X>signator 

Equatorial 

Approxi­
mate 

Latitude 
Range 

Seasonal 
Tempera­
ture (°F) 
Variation 

10°N-10°S Small 

Absolute 
Hunidity 
(Surface) 

Annual 
Precipitation 

Seasonal 
\"ariation in 
Precipitation I1l~%~s 

High all 40-100 
seasons (1 02-2 54) 

~mxima near equi­
noxes (Mar. 21 -
Sept. 23); no 
completely dry 
season. 

Continental 10°-20° Moderate 
sub-tropical 

Winter: 10-100 Drv winter, 
mderate to ( 2 5-2 54) ra-iny SUlllller. 

high; 
SUillller: high 

Maritime 10°-20° Moderate High 
sub-tropical 

Desert 

Mediter­
ranean 

20°-30° Very large Very low 

30°-40° Moderate 
(mild 
winters and 
hot SUillllerS) 

~lode rate 
to high 

10-100 Drv winter, 
( 2 5-2 54) ra-iny summer. 

<10 
<(25) 

15- 35 
(38- 891 

Dry all seasons , 
large year-to-year 
variations. 

Very dry SUHV!ler; 
most rain in 
winter. 

Wind 

Prevailing 
easterlies; 
frequent 
calms. 

Monsoonal 
shift in 
direction. 

Typical ~lean 
Annual \ 

:'-lear sea -le,·e l 
/\-units 

360 

320 

Monsoonal shift 
in direction. 

370 

280 

Variable 320 

6 Continental 
temperate 

30°-60° Very large Varies 15- 45 Spring & summer Variable 320 

7a Maritime 
temperate, 
Overland 

"'b Maritime 
temperate, 
Oversea 

8 Polar 

30°-60° Moderate 

30°-60° ~loderate 

greatly wi th(38 -114) 
air mass 
changes; high-
est in SUI!Iller. 

Moderate to 25-100 
high (varies(64- 254) 
with wind 
direction & 
air mass 
changes) 

High 25- 60 
(64-152) 

60°-90° Very large LeA; 5- 15 
( 13- 38) 

thunder-showers, 
winter snow. Pre-
vailing winds off-
shore (land to sea); 
shielded by mountains 
from on-shore moist 
winds. 

Driest season 
tends to be spring 
or sUillller; high 
rain-fall coastal 
mountains. 

Prevailing winds 320 

ll'inter snow very 
dn·; most prec ipi­
tation in sUIIIIlCr 
showers. 

off sea & unobstruc­
ted by mountains; 
flow off land mass 
brings lowest humi­
dity. May be signi­
ficant land- sea 
breeze effects. 

320 

300 

Annual Range 
of 

\lonthly \lean 
\ Remarks s 

0- ';0 Shower type rain predomi­
nates; any anomalous propaga­
tion occurs in stable 
periods between showers. 

60-100 \\'here land is dry, ducts mav 
form at times most of year. 

30- 60 Usually lowlands near sea. 

20- 80 Scatter propagation poor, 
especially in summer. 

10- 30 

20- 40 

20- 30 

These regions close to the 
sea; many are subject to eleo 
vated ducting in dry season. 

Affected by moving storms, 
fronts, and pressure systems. 
Sheltered from sea or large 
lake influences, ~ in 

s 
plateau areas may be 250- 280. 

Typical areas are west coast 
of continents or large island 
in latitudes of westerlies 
(United Kingdom, west Europe 
west coast N. America), .Japm 
more nearly climate 6. 

20- 30 Applies to coastal & over­
sea areas where both hori­
zons of path are on sea. 
Ducts may occur frequently. 
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Table 9. Time Block Ranges [47, ~· III-45] 

No. Months Hours 

1 November - April 0600 - 1300 

2 November - April 1300 - 1800 

3 November - April 1800 - 2400 

4 May - October 0600 - 1300 

5 May - October 1300 - 1800 

6 May - October 1800 - 2400 

7 May - October 0000 - 0600 

8 November April 0000 0600 

Summer May - October all-hours 

Winter November - Ap_ril all-hours -------

table 3. Short discussion for each of the ~arameters given in 

table 3 are provided in this section. These discussions are or­

dered by order of appearance in table 3. Information as to how 

these parameters are related to particular capabilities can be 

obtained from the capability discussions nrovided in section 3.2 

and table 1. 

AIRCRAFT ALTITUDES These represent the altitudes (a) for which 

specific curves of power available (fig. 21), power density, (fig. 

22) or transmission loss (fig. 23) curves will be developed, or 

(b) that are used to cover the altitude versus distance airspace 

for which volume (e.g., power available volume, fig. 24) or con­

tour (e.g., EIRP contours, fig. 27) type gra~hs are desired. Es­

timates of the altitudes required for the latter can be made by 

the program operator from the graph format specifications of 

table 4 so that the specification altitudes in table 3 are not 

always required. Altitude is measured with respect to mean sea 

level (msl) and provision for the vse of units of feet (ft-msl) 

or meters (m-msl) are made in table 3. The appropriate units 

should be circled or explicitly stated, if different from the 

choices provided. 
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TIME AVAILABILITY The specification of time availability (see 
sec. 4.1, TIME AVAILABILITY ... discussions) is required for those 

capabilities where a single time availability is used. It may 
range from 0.01 to 99.99 percent. Statistical rain attenuation 
effects will only be present for time availabilities greater than 

98 percent (see sec. 4.1, RAIN ZONE discussion). A time availa­

bility of 95 percent will be used when another value is not speci­
fied. 

POWER AVAILABLE, POWER DENSITY, TRANSMISSION LOSS AND/OR EIRP 
Single and/or multiple values of power available, power density, 

transmission loss, and/or EIRP are needed for several capabili­

ties. 

STATION SEPARATION The specification of station separation (fig. 

42) is required for those capabilities where a single station 

separation is used. The appropriate units should be circled or 

explicitly stated, if different from the choices provided. 

DESIRED FACILITY-TO-AIRCRAFT DISTANCE This distance is re-

quired for the Signal Ratio-S (fig. 33) capability where the 

location of the aircraft is fixed (altitude and distance) rela­

tive to the desired facility. The appropriate units should be 

circled or explicitly stated, if different from the choices 
provided. 

DESIRED-TO-UNDESIRED SIGNAL RATIO Specification of desired­

to-undesired signal ratio (D/U) is required for those capabili­

ties where a single D/U ratio is used. 

PROTECTION POINT LOCATIONS Protection point locations must be 

specified for the orientation capability. These points are 

located relative to the desired facility as illustrated in fi­

gure 43 with angles relative to the desired facility course 

line, and desired facility to protection point distance. Pro­

tection point locations will be taken as those associated with 

figure 43 when they are required, but not specified. The ap­

propriate units should he circled or explicitly stated, if 
different from the choices provided. 

106 



4.3 GRAPH FOR~~T PARAMETERS (Table 4, p. 78) 

Parameters associated with graph formats are covered in ta­

ble 4. In many, if not most, cases, an adequate selection of 

these parameters can be made by the program onerator so that 

complete specification via table 4 is not often required. 
Some graphs have options associated witl1 the ordinate (feet 

or meters) and/or abscissa (degrees, kilometers, nautical miles, 

or statute miles) units. These options are selected via tahlc 4 

by circling the choice desired. The degrees option involves the 

use of central angle instead of path distance (fig. 41). This 

option is useful when coverage estimates for a geostationary 

satellite are required. 

Except for the spectral plot capability, the parameters re­

quired for table 4 are associated with the ordinate (lower-to­

upper) and abscissa (left-to-right) scales. End points, incre­

ment between grid lines, and units are specified. The interval 

between end points should correspond to an integer number of in­

crements. Except when transmission loss is plotted, the upper 

value should exceed the lower value. In all cases, the right 

value should exceed the left value and values less than zero 

should not be used. 

Spectrum plots may be made with the spectral plot capability 

for any 5 consecutive lobes within 10 lobes of the radio-horizon 

where the first lobe is taken as the first lobe inside the radio 

horizon (see SPECTRAL PLOT, fig. 15, discussion in sec. 3.2). 

For example, specification to "plot lobe 3 through 7" would re­

sult in plots for lobes 3, 4, 5, 6, and 7. 

5. SUMMARY AND SUBMISSION INFORMATION 

The ten computer programs covered by this report are useful 

in estimating the service coverage of radio systems operating in 

the frequency band from 0.1 to 20 GHz. These programs and the 

propagation models (sec. 2) used in them are extensions of work 

previously reported [24; 25, sec. CII]. They may be used to 
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obtain a wide variety of computer generated microfilm plots. 

Plotting capabilities are summarized in table 1 and discussed in 

section 3.2. Sample graphs are provided in section 3.1 and sam­

ple problem applications are given in section 3.3. Concise in­

formation on input parameter requirements is provided in tables 2 

through 4 (sec. 4) 
A potential user should 

1) read the hrief description of the propagation model 

provided in section 2 to see if the model is annli­

cable to his problem, 

2) select the orogram(s) whose output(s) are most apnro­

nriate from the information given in section 3 (ta­

ble 1), 

3) determine values for the input parameters discussed 

in section 4 (table 2 through 4), 
4) request a cost estimate for appropriate computer 

runs, and 

5) submit the formal request and/or ,purchase order that 

may be required. 

FAA requests should be addressed to: 

Federal Aviation Administration 
Spectrum Management Staff, ARD-60 
Systems Research and Development Service 
2100 Second Street, S.W. 
Washington, D. C. 20591 

Attention: Navigation Specialist 

Telephone contact is strongly encouraged, and Mr. Robert Smith, 

Navigation Specialist, can be reached at 426-3600 if the Federal 

Telecommunications System (FTS) is used, or (202)426-3600 if com­

mercial telephone is used. 

Other requests should be addressed to: 

Department of Commerce 
Spectrum Utilization Division, OT/ITS-1 
325 Broadway 
Boulder, CO 80303 

Attention: Mary Ellen Johnson 
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Telephone contact is strongly encouraged and Mrs. Mary Ellen John­

son can be reached at 323-3587 if FTS is used or (303)499-1000 

x 3587 if commercial telephone is used. If extension 3587 can't 

be reached, try extension 4162, which is the Spectrum Utilization 

Division office. 
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APPENDIX A. ADDITIONAL PROBLEM APPLICATIONS 

This appendix provides additional problem applications simi­

lar to those of section 3.3. These problems were included to il­

lustrate the effects of varying particular parameters on system 
performance. The subject of each problem is summarized in table 

Al, and these subjects have been used ns headings in the text as 
an aid to the reader. 

Table Al Additional Problem Applications 

Problem System Predicted Variable 
Parameter Parameter 

Al ATC Range Polarization 

A2 ATC Range Terrain Parameter 

A3 TACAN Range Beam Tilt 

A4 Satellite Range Scintillation Index 
1\5 Satellite Margin Sea State 

A6 ILS Separation Site Elevation 

A7 ILS Separation Surface Constants 

A8 ILS Separation Terrain Parameter 

A9 ILS Separatjon Terrain Profile 

ATC, Range, Polarization 

Problem Al: Estimate the gapless service range for the geometry 

illustrated in figure Al and the ATC system with parameters of 

figure A2 for vertical, horizontal, and circular polarization by 

using both the lobing and variability options of the transmission 

loss capability. Use a time availability of 95 percent, and ba­

sic transmission loss, Lb (95%), value of 125 dB to determine ser­

vice range. Here, gapless implies that satisfactory service, 

Lb(95%) 2 125 dB, is available at all distances within the ser­
vice range; i.e., no gaps. 
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Solution: Key parameters associated with this problem are 

illustrated in figure Al. Figures A3 through A8 were developed 

in response to this problem and the values of maximum gapless 

range tabulated below were taken from them. 

Polarization Figures Gapless Service Range [n mi (km)] 

Lobing Option Variability Option 

Vertical 

Horizontal 

Circular 

A3, A4 

AS, A6 

A7, A8 

179 (332) 

28 (52) 

75 (139) 

82 

56 

67 

(15 2) 

(104) 

(124) 

Note that (a) the use of vertical polarization results in the 

greatest range in all cases since it has the lowest reflection co­

efficient associated with it, (b) the variability option results 

in the lower range in two cases since it is usually more pessi­

mistic when low (< about 0.5) reflection coefficients are in­

volved, and (c) the lobing option results in the lowest range for 

horizontal polarization since it tends to be more pessimistic for 

high (> about 0.5) reflection coefficients. 
----

-- -- --Horizontal polarization is perpendicular to both'::---...... 

the facility-to-aircraft ray (FAR) and the :::::::-.....,-Aircraft altitude= 
qreat-circle path plane {GCPP). ~ 45 000 f (13 716 ) 

Vertical polarization is perpendicular to the FAR 
and in the GCPP. 

Circular polarization has both horizontal and' 
vertical polarization components. 

Facility antenna height= 
50 ft (15.2 m) 

Jo= De-. ired f ac iIi ty- to-aircraft 
qreot-circle di>tance. 

'-. • t , m 

' ..... 

Figure Al. Problem Al~ geometry sketch (not drawn to scale). 
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77 
77/07/13. 22.15.49. RUN 

BASIC TRANSMISSION LOSS FOR ATC 

~~~~!~!~~!!2~-~Q~!~~ 
AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 
FACILITY (OR LOWER ANTENNA HEIGHT: 

45000. FT (l3716.M) ABOVE MSL 
50.0 FT (l5.2M) ABOVE FSS 

FREQUENCY: 125. MHZ 

SPECIFICATION OPTIONAL 

AIRCRAFT ANTENNA TYPE: ISOTROPIC 
POLARIZATION: HORIZONTAL 

EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 
GAIN SUM OF MAIN BEAMS: 0.0 OBI 
FACILITY ANTENNA TYPE: ISOTROPIC 

POLARIZATION: HORIZONTAL 

0. FT (O.M) 

HORIZON OBSTACLE DISTANCE: 8.69 N MI (16.09KM) FROM FACILITY* 
ELEVATION ANGLE: -0/ 6/30 DEG/MIN/SEC ABOVE HORIZONTAL* 
HEIGHT: 0. FT (O.M) ABOVE MSL 

REFRACTIVITY: 
EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)* 
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL 

SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY 
SURFACE TYPE: AVERAGE GROUND 
TERRAIN ELEVATION AT SITE: 0. FT (O.M) ABOVE MSL 
TERRAIN PARAMETER: 0. FT (O.M) 
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED 

* COMPUTED VALUE 

Notes: l) Polarization, surface reflection lobing option and terrain para­
meter used for figures A3 through AS and AlO and All vary as indi­
cated in the figure captions. 

2) Parameter values (or options) not indicated are taken as the as­
sumed values (or options) provided on the general parameter speci­
fication sheet (table 2). 

3) To simulate computer output, only upper case letters are used. 
Dual units are not provided on actual computer output. 

Figure A2. FrobZems Al and A2, parameter sheet, ATC. 
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ATC, Range, Terrain Parameter 

Problem A2: Estimate the maximum gapless service range for an 

ATC system with the geometry illustrated by figur~ A9 and the 

parameters of figure A2 with vertical polarization for smooth 

earth, rolling hills, and mountains by using the transmission 

loss capability with the variability option. Use a time availa­

bility of 95 percent and basic transmission losses of 130 and 

150 dB. 

Solution: Pigures A4, AlO and All are applicable to this 

problem and the values of gapless range tabulated hclow were ta­

ken from them. The increase in service range with terrain irreg­

ularity for Lb (95%) = 130 dB is caused by a decrease in the specu­

lar reflection coefficient as surface roughness increases, while 

the decrease for Lb(95%) = 150 dB is caused by a decrease in radio 

horizon distance. Except for the last case (mountains, 150 dB) 

increasing irregularity tends to increase the service range be­

cause of a corresponding decrease in reflection coefficient. In 

the last case the decrease of service range occurs because of a 

decrease in radio horizon distance. 
-------

Facility antenna 
50ft (15.2m) 

--------

----

Surface roughness computed from 6h 
is used in the calculation of 
reflection coefficients. 

do= Desired facility-to-aircraft 
great-circle distance. 

-(

Aircraft altitude= 
45.000 ft 113,716 m) 

..... _ -...... 
....... 

........ 
....... 

........ 
........ 

........ 
........ 

........ 

' -- ---~ ------:,. ', 
/ I 

/ I 
/ I 

/ I 
\ I I 
\ I I .._, I 

Facility horizon 
parameters are computed 
using the terrain 
parameter,6h. Beyond 
this horizon the earth 
is considered smooth. 

Figure A9. Problem A2, geom<..'L,J'U ._:!<.etch (not drawn to scale). 
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Terrain Figure Gap less Service Range [n mi (km)] 

1
1 

( 9 5 ~) = 13 0 dB ~h (95~) :: 150 dB 
-) 

Smooth earth A4 118 (219) 254 (470) 

Rolling plains AlO 165 (306) 254 (470) 

:-.1ountains All 175 (324) 244 ( 4 52) 

TACAN, Range, Beam Tilt 

Problem A3: Estimate the maximum service range for the geometry 

illustrated in figure Al2 and the TACAN parameters given in fig­

ure Al3 for three antenna main beam tilts, (a) normal, (h) 0°, 

and (c) adjusted to track the aircraft. Use -86 dB-W/sq m of 

power density and a time availability of 95 percent to define 

maximum service range. 

---- rAircraft altitude= 
- - -- 40,000 f t ( 1 2, 192 m) ---

(b) 

~ (c) 

Facility antenna do 
30ft (9.1 m) 

do= Desired faci 1 ity-to-aircr~ft 
great-circle distance. 

................ , 
' ' ........... 

(a) Tracking, mainbeam always 

points at aircraft 

(b) Normal, mainbeam elevation 
angle fixed at 7~. 

(c) Mainbeam elevation angle 

f i xed at 0'' . 

Figure A12. Problem A3~ geometry sketch (not drawn to scale). 
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77 
77/04/12. 16.48.40. RUN 

POWER DENSITY FOR TACAN 

~~~~!~!~~!!2~-~Q~!~Q 
AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 
FACILITY (OR LOWER) ANTENNA HEIGHT: 
FREQUENCY: 1150. MHZ 

SPECIFICATION OPTIONAL 

AIRCRAFT ANTENNA TYPE: ISOTROPIC 
POLARIZATION: VERTICAL 

40000. FT (l2192.M) ABOVE MSL 
30.0 FT (9.14M) ABOVE FSS 

EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (O.M) 
EQUIVALENT ISOTROPICALLY RADIATED POWER: 39.0 DBW 
FACILITY ANTENNA TYPE: TACAN (RTA-2) 

POLARIZATION: VERTICAL 
HORIZON OBSTACLE DISTANCE: 6.73 N MI (12.46KM) FROM FACILITY* 

ELEVATION ANGLE: -0/ 5/02 DEG/MIN/SEC ABOVE HORIZONTAL* 
HEIGHT: 0. FT (O.M) ABOVE MSL 

REFRACTIVITY: 
EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)* 
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL 

SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY 
SURFACE TYPE: AVERAGE GROUND 
TERRAIN ELEVATION AT SITE: 0. FT (O.M) ABOVE MSL 
TERRAIN PARAMETER: 0. FT (O.M) 
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED 

POWER DENSITY (DB-W/SQ M) VALUES MAY BE CONVERTED TO POWER 
AVAILABLE AT THE TERMINALS OF A PROPERLY POLARIZED 
ISOTROPIC ANTENNA (DBW) BY ADDING -22.7 DB-SQ M. 

* COMPUTED VALUE 

Notes: 1) Aircraft antenna information is not actually used in power density 
calculations. 

2) Parameter values (or options) not indicated are taken as the as­
sumed values (or options) provided in the general parameter speci­
fication sheet (table 2). 

3) To simulate computer output, only upper case letters are used. 
Dual units are not provided on actual computer output. 

Figure Al3. Problem A3~ parameter sheet~ TACAN. 
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Solution: Figures Al4 through Al6 were developed for this 

problem and the values tabulated below were taken from them. The 

larger range for the normal tilt angle 1s caused by better surface 

reflection discrimination associated with the antenna pattern 

tilt. 

Beam Tilt figure (;a_rlcss Service Range [n mi (km)] 

Normal i\14 125 (232) 
oo Al5 100 (185) 

Tracking Al6 108 (200) 

Satellite, Range, Scintillation Index 

Problem A4: Estimate the maximum north latitude for which satis­

factory service is available for a VHF geostationary satellite 

with the geometry illustrated in figure Al7 and the parameters of 

figure Al8. Let the ionospheric scintillation index group be 

fixed at 0 or 5. Also, use the variable scintillation option 

(table 2, scintillation index group code of 6) with the frequency 

scaling factor option (table 2). Use a power available at the 

receiving antenna terminal of -140 dBW and a time availability of 

95 nercent to define satisfactory service. 

Solution: Figures Al9 through 21 are applicable to this 

problem, and the values tabulated below were taken from them. 

The maximum north latitude occurs along the subsatellite meridian. 

Scintillation Index Figure Maximum North 
Group Latituae 

0 Al9 79° 
5 A20 68° 

Variable A21 79° 

During worst case conditions (group S), the power available 95 

percent of the time never exceeds -137 dBW so that a 3 dB increase 

of the received power requirements would result in unsatisfactory 

service for all angles. However, the same increase in received 

power requirement would not decrease coverage to a maximum north 

latitude significantly for the other two conditions examined. 
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/"'Geostationary satellite altitude=. 
I 19,351 n mi (35,838 km) 

----- ..... --- Aircraft altitude= 
30,000 ft (9,144 m) 

surface 

Central angle,80 , is latitude along 
the subsatel 1 ite meridian. 

f-'7~;!/Arf! Ill/. /'r•,)l>1rmR 11·1 ond !l.'i, :JP<H'"lr'tr'!f skcteh (not droaum to scale). 
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77 
77/09/01. 17.42.47. RUN 

POWER AVAILABLE FOR VHF SATELLITE SEA STATE 0 

~~~~!~!~~~!9~-~Q~!~~ 
AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 19351. N MI (35838.KM) ABOVE MSL 
FACILITY (OR LOWER) ANTENNA HEIGHT: 30000.0 FT (9144.M) ABOVE FSS 
FREQUENCY: 125. MHZ 

SPECIFICATION OPTIONAL 

AIRCRAFT ANTENNA TYPE: JTAC 
BEAMWIDTH, HALF-POWER: 10.00 DEGREES 
POLARIZATION: CIRCULAR 
TILT IS -90.0 DEGREES ABOVE HORIZONTAL 

EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (O.M) 
EIRP PLUS RECEIVING ANTENNA MAIN BEAM GAIN: 35.0 DBW 
FACILITY ANTENNA TYPE: JTAC 

BEAMWIDTH, HALF-POWER: 20.00 DEGREES 
POLARIZATION: CIRCULAR 
ANTENNA IS TRACKING 

HORIZON OBSTACLE DISTANCE: 208.85 N MI (385.79KM) FROM FACILITY* 
ELEVATION ANGLE: -2/49/36 DEG/MIN/SEC ABOVE HORIZONTAL* 
HEIGHT: 0. FT (O.KM) ABOVE MSL 

IONOSPHERIC SCINTILLATION INDEX GROUP: 0 
REFRACTIVITY: 

EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)* 
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL 

SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY 
SURFACE TYPE: SEA WATER 

STATE: 0 
CALM (GLASSY) 
0.00 FT (O.OOM) RMS WAVE HEIGHT 

TEMPERATURE: 10. DEG CELSIUS 
3.6 PERCENT SALINITY 

TERRAIN AT ELEVATION SITE: 0. FT (O.M) ABOVE MSL 
TERRAIN PARAMETERS: 0. FT (O.M) 
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED 

* COMPUTED VALUE 

Notes: 1) Parameter values (or options) not included are taken as the as­
sumed values (or options) provided in the general parameter speci­
fication sheet (table 2). 

2) To simulate computer output, only upper case letters are used. 
Dual units are not provided on actual computer output. 

Figure AlB. Problems A4 and AS, parameter sheet, VHF satellite. 
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Satellite, Margin, Sea State 

Problem AS: Estimate the fade margin required for the VHF and 

UHF satellite systems with the para~eters of figures Al8 and A22 

at a central angle (fig. Al7) of 70° when the sea state is 0 or 6 

and ionosphere scintillation is neglected. Take the required 

fade margin as the difference hetween power available curves for 

a time availability of SO and 9S percent. 

Solution: Figures Al9, A23, A24, and A25 are applicahle, and 

the values tabulated he low '"ere obtained from them. 

Satellite Sea State Figure Fade Margin [dB] 

VHF 0 Al9 1 

VHF 6 A23 o.s 
UHF 0 A24 1 

UHF 6 AZS <0.5 
·------ ---------- ------~--~--

Fade margins required for smooth sea (sea state 0) are greater 

than those required for very rough sea (sea state 6, table 6) be­

cause the roughness of the reflecting surface lowers the magni­

tude of the specular reflection coefficient so that the short 

term variability associated with surface reflection multipath is 

reduced for higher sea states. The factor used to reduce the 

specular reflection coefficient [24, (66)] provides more reduc­

tion at higher frequencies (i.e., roughness expressed in wave­

length increases with frequency), but is unity for a smooth sur­

face regardless of frequency. 
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PARAMETERS FOR ITS PROPAGATION MODEL IF-77 
77/09/0l. 17.43.34. RUN 

POWER AVAILABLE FOR UHF SATELLITE SEA STATE 0 

§~~~!~!~~~!2~-~Q~!~~ 
AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 19351. N MI (35838.KM) ABOVE MSL 
FACILITY (OR LOWER) ANTENNA HEIGHT: 30000.0 FT (9144.M) ABOVE FSS 
FREQUENCY: 1550. MHZ 

SPECIFICATION OPTIONAL 

AIRCRAFT ANTENNA TYPE: JTAC 
BEAMWIDTH, HALF-POWER: 10.00 DEGREES 
POLARIZATION: CIRCULAR 
TILT IS -90.0 DEGREES ABOVE HORIZONTAL 

EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 0. FT (O.M) 
EIRP PLUS RECEIVING ANTENNA MAIN BEAM GAIN: 41.0 DBW 
FACILITY ANTENNA TYPE: JTAC 

BEAMWIDTH, HALF-POWER: 20.00 DEGREES 
POLARIZATION: CIRCULAR 
ANTENNA IS TRACKING 

HORIZON OBSTACLE DISTANCE: 208.85 N MI (385.79KM) FROM FACILITY* 
ELEVATION ANGLE: -2/49/36 DEG/MIN/SEC ABOVE HORIZONTAL* 
HEIGHT: 0. FT (O.M) ABOVE MSL 

IONOSPHERIC SCINTILLATION INDEX GROUP: 0 
REFRACTIVITY: 

EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)* 
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL 

SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY 
SURFACE TYPE: SEA WATER 

STATE: 0 
CALM (GLASSY) 

0.00 FT (O.OOM) RMS WAVE HEIGHT 
TEMPERATURE: 10. DEG CELSIUS 

3.6 PERCENT SALINITY 
TERRAIN ELEVATION AT SITE: 0. FT (O.M) ABOVE MSL 
TERRAIN PARAMETER: 0. FT (O.M) 
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED 

* COMPUTED VALUE 

notes: 1) Parameter values (or options) not indicated are taken as the as­
~umed values (or options) provided in the general parameter speci­
fication sheet (table 2). 

2) To simulate computer output, only upper case letters are used. 
Dual units are not provided on actual computer output. 

Figure A22. Problem A5~ parameter sheet~ UHF Satellite 
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ILS, Separation, Site Elevation 

Problem A6: For the geometry illustrated in figure A26 and the 

desired ILS localizer facility parameters of figure A27, determine 

the station separation required to obtain a 23 dB desired-to­

undesired localizer signal ratio at the aircraft with a time a­

vailability of 95 percent when the parameters for the undesired 

locali:cr are identical to those of tl1c desired localizer except 

that its site elevation 1s (a) 1,000 ft l305 m) higher, (h) 0 ft 

higher, and (c) 1,000 ft (305 m) lower. 
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1,000 ft 
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(elevation fixed) 

------ 7,250 ft (2,210 m) - msl 

--
~-

___.,..-----------+_-:---- --
............ .,... :-----------­

..-"' ~-
---- 0~ --------~------," /' ---- -...... _ 

/ / ......... .,... -------...__ -- .......... ,""' / ..,..-" ............ 
::,....' .,.... -"""'- ........... 

v /,"' s = d0 + du -, ', 
/ . ' 

// ' 
/ ' 

/ 
/ 

/ 

//~msl · ', 
/ ~ ~ 

138 

Undesired faci I ity 
(elevation variable) 



PARAMETERS FOR ITS PROPAGATION MODEL IF-77 
77/07/13. 22.16.15. RUN 

DESIRED STATION IS LOCALIZER 

~~~~!~!~~!!2~-~2~!~~ 
AIRCRAFT (OR HIGHER) ANTENNA ALTITUDE: 
FACILITY (OR LOWER) ANTENNA HEIGHT: 
FREQUENCY: 110. MHZ 

7250. FT (2210.M) ABOVE MSL 
5.5 FT (1.68M) ABOVE FSS 

SPECIFICATION OPTIONAL 

AIRCRAFT ANTENNA TYPE: ISOTROPIC 
POLARIZATION: HORIZONTAL 

EFFECTIVE REFLECTION SURFACE ELEVATION ABOVE MSL: 1000. FT (305.M) 
EQUIVALENT ISOTROPICALLY RADIATED POWER: 24.0 DBW 
FACILITY ANTENNA TYPE: 8-LOOP ARRAY (COSINE VERTICAL PATTERN) 

POLARIZATION: HORIZONTAL 
HORIZON OBSTACLE DISTANCE: 2.88 N MI (5.33 KM) FROM FACILITY* 

ELEVATION ANGLE: -0/ 2/09 DEG/MIN/SEC ABOVE HORIZONTAL* 
HEIGHT: 0. FT (O.M) ABOVE MSL 

REFRACTIVITY: 
EFFECTIVE EARTH RADIUS: 4586. N MI (8493.KM)* 
MINIMUM MONTHLY MEAN: 301. N-UNITS AT SEA LEVEL 

SURFACE REFLECTION LOBING: CONTRIBUTES TO VARIABILITY 
SURFACE TYPE: AVERAGE GROUND 
TERRAIN ELEVATION AT SITE: 1000. FT (305.M) ABOVE MSL 
TERRAIN PARAMETER: 0. FT (O.M) 
TIME AVAILABILITY: FOR INSTANTANEOUS LEVELS EXCEEDED 

* COMPUTED VALUE 

Notes: 1) The aircraft is 25 n mi (46.3 km) from desired facility, on the 
desired facility course line, and on an extension of the undesired 
facility course line, i.e., the course lines are directed toward 
each other. 

2) These parameters, except as specifically modified in problem state­
ments, also apply to the undesired facility. 

3) Although the configuration assumed here may be taken as worst case 
in that a station separation sufficient to provide protection at 
the critical point considered (i.e., point C of fig. 43 with 
~ =0 and ¢ =180°) would probably provide sufficient protection at 
o~her crit~cal points, difference in terrain and/or facility anten­
na gains associated with these points could make a more extensive 
analysis necessary (see sec. 3.2 ORIENTATION discussion, fig. 35). 

4) Parameter values (or options) not indicated are taken as the as­
sumed values (or options) provided in the general parameter speci­
fication sheet (table 2). 

5) To simulate computer output, only upper case letters are used. 
Dual units are not provided on actual computer output. 

Figure A2?. Problems A6 through A9~ parameter sheet~ ILS. 
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Solution: Examination of figure A26 shows that the aircraft 

is at a constant elevation with respect to both mean-sea level 

(msl) and the desired ILS site surface for all three parts of the 

problem, but that aircraft elevation with respect to the undesired 

ILS site surface changes for each part of the problem. Lower air­

craft altitude with resnect to the undesired facility means that 

the undesired signal level at the aircraft is expected to he 

lower for a particular undesired facility-to-aircraft distance 

which will translate in the context of this prohlem to a decrease 

in the station senaration requirement. Conversely, a higher air­

craft altitude with respect to the undesired facility would be 

expected to result in a larger station separation requirement. 

Site surface elevations for various parts of the problem are 

drawn as dashed lines in figure A26 and are extended from facility­

to-facility to show that use of different site elevations is not 

compatable with the use of a smooth earth for all of the terrain 

between the facilities since different elevations result in dif­

ferent earth radii. Desired and undesired signal levels are 

computed independently for the parameters applicable to each 

facility so that this difficulty is not recognized by the pro­

grams, but must be considered in using the computer output. One 

way to do this is to assume that each site elevation is valid at 

least to the smooth earth horizon distance for its facility an­

tenna and that the computed results are invalid when terrain at 

the higher site elevation is visible to the other antenna. These 

conditions are illustrated in figure A28 and result in a minimum 

station separation (S . ) for which predictions are valid. Values m1n 
for S . can be estimated from m1n 

where 
S . = V 2aHD +V2aHA +~ 2aHU mln ue 

a= effective earth radius, 

HD U =height of desired or undesired 
' facility antenna above its site 

surface elevation 
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and H 
t-.e 

= Magnitude of the difference in site eleva­
tions. 

Each term of (AI) is a smooth earth horizon type distance as il­
lustrated in figure A28. 

Figures A29 through A31 were developed for this problem and 

the station separation requirements resulting from them are tabu­

lated helow along with S . values obtained from (Al): m1n 

Site Elevation 
Above msl Figure 

[ft (m)] 
Desired Undesired ----

1,000(305) 2,000(610) A29 

1,000(305) 1,000(305) A30 

1,000(305) 0 A31 

Required Station s min Separation 

[n mi (km)] [n mi (km)] 

100 (185) 45 ( 83) 

107 (19 8) Not Applicable 

113 (209) 45 ( 83) 

-H 
f..e 

(~ 
u 

S • = ffalf:"""
0 

+ 12a H + ffaH 
m1n f..e u 

Figure A28. Geometry for Smi~-~no!_ drawn to scale.) 

141 



f-' 
+:> 
N 

Desired dis!once 25. n rni(46.3krn) Run Codt 17101113. 22.16.05 

Desired focilit~ Or. desired f ac il i r~ 
-

LOCALIZER I LOCAll ZEP 2 ···· · ····· · ~~•• uoct 

HI 1015.5 r,(306.5rn)ms1 HI 2005.5 -lt(611. 3rn)rns1 , .. ,, .. , 57. 

H2 7250. I-t (2210.rn)rns1 H2 7251. lt(2210.rn)rns1 (•iddle) 517. 
f'reque11q lrt. ""' 

(lower) 957. 

Station separation in krn 

so 

40 

IX) 30 
"0 

c: 
21 

0 -- 10 
0 ... 
- 0 
c:r 
c: 
en 

-10 .,. 
:::> 
....... -20 
0 

-50 

-40 

25 50 75 100 125 150 175 200 225 . 
/ ~ 

.J" v::::: v / 
~ 

...... _./ I 

~ ~ I ........- I 

~ ~ ~ . ····· ....... ········· ... 

~ v '• • • .o'. '. • • 
... ····· 

.. .. •' . 

A 
.-··· 

, ... · .. 2 ~ 
/'/' 
~ 
, 

~ 
I 

10 zo 30 40 so u 10 eo 91 100 r •• 121 130 -5.0 

Station separation inn mi 

Figure A29. Signal ratio-S~ ILS~ higher undesired facility elevation. Parameters are as given &n 
figure A27 except that the undesired facility site elevation is 2~ 000 ft (610 m). 



I-' 
~ 
tN 

CXl 
~ 

c: 

0 -
~ 
a 
L. 

a 
c: 
~ 

-
"' 

::> 
........ 
C) 

50 

40 

30 

20 

10 

Desired distance 25. n mi(46.3km) P. .. n. Code 17107113. 22. I&. 08. 

Oesired facility 
LCCALIZER I 
HI 1005.5 ft (306.5m)ms1 
H2 7250. ft (2210.m)ms1 
F'requency 110. t1Hz 

Vnduired facility 
LOCALIZER 2 ··········· ·· F'ru space 
HI 1005.5 ft(306.5m)ms1 lultPtr) 57. 
H2 7250. ft(2210.m)ms1 l•iddltJ 507. 

(Jowerl 957. 

Station separation in km 
25 50 75 100 125 150 175 200 225 

I ' ...L 

/ 

~ 

~I ... J... .•....•. t ..•..•...••• 
~. c .. ) .......... . 

.... · ······•······ .····•·· ............ . 

0 

-I D 

-20 llld11llllllll 
-30 F1 r; 
·lO 

-so 
0 10 20 30 lO 50 GO 70 80 90 100 110 120 130 

Statio"' separatiol'\ il'\ 1'\ twli 

Figure A30. Signal ratio-S~ ILS~ equal site elevations. Parameters are as given in figure A2?. 



I-' 
-1=:> 
-1=:> 

50 

40 

Q:) 3D 
-,;, 

c 
20 

0 -- 10 
0 
L. 

- • 0 
c 
0'\ - ·I 0 .,. 

::> 
...... -zo 
0 

-30 

-40 

-so 

Ouiuc distollct 25. n mi(46.3km) R .. 11 Coot 77107/)3. 22.1&. II. 

Desired locilit~ 
LOCAL JIER I 
HI 1005.5 '' 1306.5m)ms1 
H2 7250. '' (2210.m)msl 
F'ft~ .. ~~~c~ 110. MHz 

V11ctsi•td locilil~ 
LOCALIZER 2 
HI 5.5 td1.68m)ms1 

.......... ~ftt ,oct 
(-.Htf) 57. 
(aiddhl 501. 
Cluer) 957. 

li2 nso. l:(2210.m)ms1---

Station separation in km 

25 50 75 100 125 150 175 200 225 
I I 

~ 
~ 
~ 

.... ···· .. 
.•... ·· ~l 

.J ....... .. 

.......................... 

I \ I Jit 
~;r 

r7 

0 10 20 30 40 St U 70 80 !0 1 00 110 120 131 
Station separation inn 111i 

Figure A31. Signal ratio-S, ILS, lower undesired facility elevation. Parameters are as given in 
figure A27 except that the undesired facility site elevation is 0 ft (0 m). 



ILS, Separations, Surface Constants 

Problem A7: For the geometry illustrated by the equal site ele­

vation portion of figure A26 and the ILS localizer parameters of 

figure A27, determine the station separation required to ohtain 

a 23 dB desired-to-undesired localizer signal ratio at the air­

craft with a time availability of 95 percent when the surface con­

stants (table 5) are taken as those associated with (a) poor 

ground, (b) average ground, (c) good ground, (d) fresh water, or 

(e) sea water 

Solution: Figures A32 through A36 were developed for this 

problem, and the station separation requirements listed below 

were taken from them. 

Surface Type 

Poor ground 

Average ground 

Good ground 

Sea water 

Fresh water 

Hence, for this problem, 

Figure 

A32 

A33 

A34 

A35 

A36 

surface type is 

Station Separation 
[n mi (km)] 

107 (198) 

107 (19 8) 

107 (198) 

107 (198) 

107 (198) . 

not an important para-

meter. Other situations where vertical or circular polarization 

and large (> 1°) grazing angles (~ of fig. 40) are involved would 

be expected to show greater dependence on surface type [49, figs. 

III.l through III.8]. Even then the dependence may be masked by 

surface roughness (probs. AS and AS), which makes the specular 

reflection coefficients smaller as roughness increases. 
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ILS, Separation, Terrain Parameter 

Problem AS: For the geometry illustrated by the equal site ele­

vation portion of figure A26 and the ILS localizer parameters of 

figure A27, determine the station separation required to obtain 

a 23 dB desired-to-undesired localizer signal ratio at the air­

craft with a time availability of 95 percent when the terrain 

parameter is selected as (a) smooth, (b) smooth plains, (c) rol­

ling plains, (d) hills, (e) mountains, and (f) extremely rugged 

mountains. 

Solution: Figures A33 and A37 through A41 are applicable to 

this problem, and the station separation requirements taken from 

them are listed below along with the terrain parameter (~h) value 

used for each terrain type (see table 7) : 

Terrain Parameter Station Separation 
Terrain Tz'J~e Figure [ft (m) ] [n mi (km)] 

Smooth A33 0 (O) 107 (198) 

Smooth plains A37 40 (12) 108 (200) 

Rolling plains A38 195 (59) 106 (196) 

Hills A39 375 (114) 93 (172) 

Mountains A40 740 (226) 70 (130) 

Extremely rugged A41 2625 (800) >125 (>232). 
mountains 

The following comments concerning these results are appropriate: 

(a) the station separation increase for the smooth to 

smooth plains case is caused by a decrease in the reflection co­

efficient associated with the undesired facility which increases 

the undesired signal level, 

(b) the station separation decrease that occurs from smooth 

plains through mountains is caused by a decrease in the line-of­

sight range associated with the undesired facility which decreases 

the undesired signal level, 

(c) the large station separation increase for the moun­

tains to extremely rugged mountains case is caused by a decrease 

in the line-of-sight range associated with the desired facility 
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which decreases the desired signal level, and 

(d) the exclusive use of 6h to describe terrain could easilv 

result in station separations that are not appropriate for speci­

fic paths. Actual horizon information should he used whenever it 

is available. 

ILS, Separation, Terrain Profile 

Problem A9: For geometry similar to the equal site elevation por­

tion of figure A26 and the equipment parameters of figure A27, 

determine the station separation required to obtain a 23 dB de­

sired-to-undesired localizer signal ratio at the aircraft with u 

time availability of 95 percent when terrain parameters are de­

termined using (a) topographic mans and (b) the Electromagnetic 

Compatibility Analysis Center (ECAC) terrain file. Sites should 

be selected to have equal elevations as shown by topographic maps, 

and the terrain between them should he "severe". 

Solution: Locations at Seattle (47°15'00"N, 122°22'47"W) 

and Portland (45°33'22"N, 122°30'25"W) were selected for the de­

sired and undesired facilities, respectively. These locations 

were selected based on the problem requirements for equal site 

elevations and severe terrain from paths for which topographic 

profile data are available on computer cards [39, fig. 2.22]. It 

is unlikely that these particular locations would ever actually 

be selected as localizer sites. 

In calculating the desired signal level at the aircraft, only 

terrain characteristics associated with the desired facility are 

used, and beyond the facility horizon obstacle the terrain is ta­

ken as smooth with an elevation equal to the effective reflecting 

surface elevation for the desired facility. Similar considera­

tions are involved in the calculations of the undesired signal 

level. Hence, actual terrain between the facility horizon ob­

stacles is not involved in station separation calculations since 

only terrain between each facility and its horizon obstacle is 

utilized to deter~ine key terrain characteristics. 
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Figures A42 and A43 were developed for this problem, and the 

required station separations obtained from them are given below 

along with site and horizon parameters for the two sets of terrain 
data used: 

Terrain Data From 

Topographic 
Maps Parameters* 

Required station separation 
[n mi (km)] 72 (133) 

A42 

Desired Facility (Seattle) 

Figure 

Effective reflection 

surface elevation [ft (m)] 19.7 (6) 

Horizon distance [n mi (km)] 2.6 (4.9) 
Horizon height [ft (m)] 325 (99) 
Site elevation [ft (m)] 19.7 (6) 
Terrain parameter [ft (m)] 394 (120) 

Undesired Facility (Portland) 

Effective reflection 

surface elevation [ft (m)] 19.7 (6) 
Horizon distance [n mi (km)] 34.6 (64.0) 
Horizon height [ft (m)] 4,268 (1,301) 
Site elevation [ft (m)] 19.7 (6) 
Terrain parameter [ft (m)] 1,654 (504) 

ECAC Terrain 
File 

75 (139) 
A43 

98.4 (30) 
31.56 (58.44) 

3,199 (9 7 5) 
98.4 (30) 

692 (211) 

200 (61) 
34.67 (64.21) 
3,930 (1,198) 

200 (61) 
1,470 ( 448) 

*A surface refractivity-referred to mean sea level value of 

279 N-units was used (see fig. 51). Equipment related parameters 

are as given in figure A27. 
The larger required station separation for the ECAC terrain 

case is caused by the greater site elevation and lower horizon 

height associated with the undesired facility which increases the 

undesired signal level. Both required separations are at least 

25~ less than the actual great-circle site separation of 101.7 n mi 
(188.4 km). 
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APPENDIX B. 

LIST OF SYMBOLS 

This list includes most of the abbreviations, acronyms, and 

symbols used in this report. Many are similar to those previously 

used in other reports [24, 27, 37, 49]. The units given for sym­

bols in this list are those required by or resulting from equa­

tions as given in this report. Except where otherwise indicated, 
equations are dimensionally consistant so that appropriate units 

can be selected by the user. 

In the following list, the English alphabet precedes the 

Greek alphabet, letters precede numbers, and lower-case letters 

precede upper-case letters. Miscellaneous symbols and notations 

are given after the alphabetical items. 

a 

a 
a 

APODS 

ARD 

ATADU 

ATC 

ATLAS 

ATOA 

em 

CCIR 

CDC 6600 

Effective earth radius used in (Al). 

An adjusted effective earth radius shown in 
figure 40 [24, (44)]. 

Earth radius (fig. 41). 

A program name (table 1). 

Aviation Research and Development. 

A program name (table 1). 

Air Traffic Control. 

A program name (table 1). 

A program name (table 1). 

Effective receiving area [dB-sq m] of an 
isotropic antenna used in (1). 

Centimeters (10- 2 m). 

International Radio Consultative Committee. 

Control Data Corporation's 6600 digital 
computer. 
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CRPL 

d 

dB 

dBi 

dBW 

dB-sq m 

dB-W/sq m 

deg 

dD 

du 

dl 

d2 

DD 

Delta R 

DME 

DOC 

DOT 

DUDD 

DURATA 

fentral ~adio fropagation ~aboratory. 

Great-circle distance between facility and 
aircraft. For line-of-sight paths, it is 
calculated as indicated in figure 40. It is 
related to central angle by (7) and (8). 

Decibels, 10 log (dimensionless ratio of 
powers). 

Antenna gain in decibels greater than iso­
tropic. 

Power in decibels greater than 1 watt. 

Effective area in decibels. 

Power density in decibels greater than 1 watt 
per square meter. 

Degrees. 

Desired facility-to-aircraft distance shown 
in figure 42. 

Undesired facility-to-aircraft distance shown 
in figure 42. 

Facility to reflection point distance shown 
in figure 40 and plotted in figure 15. 

Reflection point to aircraft distance shown 
in figure 40. 

Used for dD (table 1). 

Path length difference (~r) or extent by 
which the length of the reflected ray exceeds 
that of the direct ray (fig. 40) and calcu­
lated using (2). 

Distance Measuring Equipment. 

United States Department of Commerce. 

United States Q_epartment of I.ransportation. 

A program name (table 1). 

A program name (table 1) . 
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D A,B,C,D,E 

D/U 

eqn. 

ECAC 

EIRP 

EIRPG 

ERP 

ESSA 

f 

fss 

ft 

FAR 

FORTRAN 

FTS 

g 

GAIN 

Desired facility-to-aircraft distances shown 
in figure 43. 

Desired-to-undesired signal ratio [dB] avail­
able at the output of an ideal (loss less) 
receiving antenna. 

Equation. 

Electromagnetic Compatibility ~nalysis 
Center. 

Equivalent isotropically radiated power 
[dBW] as defined by (11).- -

EIRP [dBW] increased by the main beam gain 
TdBI] of the receiving antenna as in (12). 

Effective radiated power [dBW] as defined in 
the section 4.1 discussion on EIRP. 

Environmental Science Services Administra­
tion. 

Frequency. 

Facility site surface (table 2). 

Feet. 

Lobing frequency [Hz] with distance from (4). 

Frequency fraction for half-bandwidth (fig. 
15) . 

Lobing frequency [Hz] with height from (6). 

Lobing frequency [Hz] from (5). 

Federal Aviation Administration. 

£acility-to-aircraft ray. 

FORmula TRANslating system, a family of pro­
gramming languages. 

Federal Telephone System. 

Normalized voltage antenna gain from (10). 

Sum [dBi] of transmitting and receiving an­
tenna main beam gains. 
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GCPP 

GIIz 

GOES 

GPO 

hr 

HI POD 

Hz 

Hl 

in 

IEEE 

IF-73 

IF-77 

ILS 

ITS 

IRE 

JTAC 

Qreat-£ircle £ath £lane. 

Gigahertz (109 Hz). 

Geostationary Operational Environmental 
Satellite. -

Government ~rinting Office. 

Gain [dBi] of the receiving antenna main 
beam for (12) or (13). 

Gain [dBi] of the transmitting antenna main 
beam for (11) or (13). 

llour. 

A program name (table 1) . 

Hertz. 

Facility antenna height above fss or msl. 

Aircraft altitude above msl. 

Height of d~sired or undesired facility an­
tenna above its site surface. Used in (Al). 

Antenna elevations above the reflecting 
surface shown in figure 40. 

Significant wave height of table 6. 

Magnitude of the difference in site eleva­
tions. Used in (Al). 

Inches. 

Institute of Electrical and Electronic En­
gineers. 

ITS-FAA-1973 propagation model. 

ITS-FAA-1977 propagation model. 

lnstrument ~anding ~stem. 

Institute far Telecommunication ~ciepces. 

Institute of Radio ~ngineers. 

Joint Technical ~dvisory ~ommittee. 
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kHz 

km 

kts 

log 

LOBING 

m 

mhos 

min 

mm 

msl 

MHz 

n 

n mi 

nsec 

NBS 

NDLF 

NHLF 

NOAA 

NTIS 

N 
0 

Kilohertz (10 3 Hz). 

Kilometer (103m). 

Knots [n mi/hr]. 

Common (base 10) logarithm. 

A computer program (table 1). 

Basic transmission loss [dB] level not ex­
ceeded for 95% of the time. 

Meters. 

Unit of conductance or siemens. 

Minutes. 

Millimeters (lo-3 m). 

Mean sea level. 

Megahertz (106Hz). 

A power used in the ionospheric scintilla­
tion frequency scaling factor discussion of 
se.ction 4 .1. 

Nautical miles. 

Nanoseconds (lo-9 sec). 

National Bureau of Standards. 

Normalized distance lobing frequency used 
in ( 4) . 

Normalized height lobing frequency used in 
( 6) . 

National Oceanic and Atmospheric Administra­
tion. 

National Technical Information Service. 

Minimum monthly mean surface refractivity 
(N-units) referred to mean sea level from 
figure 51 or 52. 
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N 
s 

N-units 

Prob. 

rms 

RTA-2 

sec 

sq m 

s mi 

s 

SHF 

SRVLUM 

sf 

s . mln 

r.tinimum monthly surface refractivity 
[N-units] (sec. 4.1, refractivity discus­
sion). 

Units of refractivity [4, sec. 1.3] corres­
ponding to (refractive index -1) x 10 5 • 

Problem. 

Power available [dBW] at the output of an 
ideal (loss less) isotropic receiving antenna 
from (1) . 

Total radiated power [dBW] used in (11). 

Radians. 

Root mean square. 

Direct ray length shown in figure 40. 

Segments of reflected ray path shown in 
figure 40 and components of r 12 . 

Reflected ray path length as shown in fip,ure 
40. 

A TACAN facility antenna type. 

Seconds. 

Square meters. 

Statute miles. 

Station separation shown in figures 42 and 
43, and calculated from (9). 

~uper-High Irequency (3 to 30 GHz). 

A program name (table 1). 

Facility separation shown in figures 42 and 
4 3. 

Minimum valid station separation calculated 
from (Al). 

Power density at receiving antenna [dB-W/sq m] 
used in (1). 
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TACAN 

THz 

TWIRL 

UHF 

VHF 

VOR 

aA,B,D,D,E 

t.h 

t.r 

8 e 

8 
t 

8 
0 

TACtical Air Navigation, an air navigation 
aid used to provide aircraft with distance 
and bearing information. 

Terahertz (10 12 Hz or 106 MHz). 

A program name (table 1). 

~ltra-~igh ~requency (300 to 3000 ~fi1z). 

y_ery !i_igh ~requency (30 to 300 ~1Hz). 

VHF Omni-Directional Range, an air navigation 
aid used to provide aircraft with bearing 
information. 

Volts per volt. 

Magnitude of aircraft radial velocity for 
( 4) . 

Magnitude of aircraft vertical ascent rate 
for (6). 

Angles identified in figure 43. 

Terrain parameter used to charcterize ter­
rain, from table 7 or figure 53. 

Path length difference for rays shown in fig­
ure 40 and calculated using (2). 

Angle between direct ray and reflected ray 
at the facility as shown in figure 40. 

Ray elevation angle used in (10). 

Direct ray elevation angle shown in figure 
40. 

Half power beam-width of facility with JTAC 
antenna pattern, used in (10). 

Beam tilt above horizontal of facility an­
tenna, used in (10). 

Central angle shown in figure 41 and used in 
( 7) and ( 8) . 

Root-mean-square deviation of surface excur­
sions within the limits of the first Fresnel 
zone in the dominant reflecting plane from 
table 6. 

167 



T 

~D U 
' 

Wavelength. 

Time lag [nsec] of reflected rav with re­
spect to the direct ray, from (3). 

Angles defined in figure 43. 

Grazing angle shown in figure 40. 

Degrees, e.g. 12°. 

Degrees celsius. 
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