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Executive Summary 
 

The Separation Management and Modern Procedures Project is an initiative of the Federal Aviation 

Administration (FAA) under the Next Generation Air Transportation System (NextGen) Program to 

implement improvements in the En Route Automation Modernization (ERAM) system, which supports 

all en route facilities in the United States. The FAA’s Air Traffic Organization En Route Program Office 

(ATO-E) has tasked the FAA’s Modeling and Simulation Branch (ANG-C55) to execute several studies 

investigating the impacts from various proposed prototypes and parameter changes in ERAM’s Conflict 

Probe Tool (CPT). The overall objective is to improve the performance of the ERAM’s CPT subsystem in 

preparation for integration of the CPT alert notification into the flight data block on the radar controller’s 

main display.  

 

This technical note comprises four chapters that each detail an analysis of data related to prototype 

enhancements to the Trajectory Modeler (TM) of ERAM. The first three chapters address the Kinetic 

Vertical Modeling (KVM) prototype enhancement, while the last chapter addresses the Simple Turn 

Modeling (STM) prototype. 

KVM studies 

The KVM prototype enhancement created by Lockheed Martin implements a kinetic (physics-based) 

model that uses aircraft mass and speed profiles for each individual aircraft when building trajectories. To 

implement the kinetic model, the prototype makes use of EUROCONTROL’s Base of Aircraft Data 

(BADA), which supplies aircraft performance information necessary to compute trajectories. This 

approach to trajectory prediction is designed to improve upon the limitations of the legacy kinematic (or 

parametric) model currently used in ERAM. 

The first chapter covers a regression analysis to compare the performance of the current KVM prototype 

against an earlier version using the same data set - a flight scenario from the Air Route Traffic Control 

Center (ARTCC) in Seattle, Washington (ZSE). The objective is to confirm whether the current version 

has similar or improved performance to the earlier KVM prototype.  The second chapter details a study to 

compare the performance of the KVM prototype against that of the current ERAM TM in modeling 

descents. The flight scenario is composed of aircraft performing Optimized Profile Descents (OPD) into 

George Bush Intercontinental Airport (KIAH) in Houston, Texas. The objective is to show the benefits of 

using the KVM prototype with Vertical Navigation (VNAV) modeling. The third chapter also compares 

the performance of the KVM prototype against that of the current ERAM TM when modeling climbs. The 

evaluated flight scenario includes flights performing continuous climbs within the Seattle ARTCC.  

Analysis of data in the first study, which focuses on a select group of flights, indicates improved 

prediction performance of the TM when using the current KVM prototype. Improvements in Top of 

Descent prediction, descent rate, and trajectory accuracy are contrasted against the analysis of a previous 

KVM prototype and it is determined that, on average, the updated KVM prototype trajectory predictions 

are closer to the true track data than the previous KVM prototype. The study detailed in the second 

chapter finds improved trajectory prediction performance when comparing the KVM prototype to the 

legacy ERAM TM. Although the analysis was restricted to 20 flights, some significant average 

improvements are observed in this limited data set. The third study, on climb modeling, had mixed 

results.  Slight improvements are observed in Top of Climb prediction metrics, but in analysis of 

traditional trajectory metrics improvements are only seen in some cases when segregating by trajectory 

maturity. 
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It should be noted that there are several updates and improvements to the KVM prototype included in the 

current version used for the experimental runs in these studies. Some changes are inspired by the findings 

of a previous study documented in [Schnitzer et al., 2015]. General modeling enhancements and updates 

include the use of track data to correct modeling for early descent, better handling of speed restrictions 

during descent, updates for the revised BADA atmospheric model, and implementation of the BADA 

climb speed schedule. In addition, VNAV modeling algorithms have been incorporated to support OPDs. 

These updates are detailed in [Torres, 2015]. 

STM study 

Finally, the fourth chapter describes an experiment to analyze the performance of the Simple Turn 

Modeling prototype. The current ERAM TM turn modeling is simplistic in nature, creating two adjacent 

linear trajectory segments at different headings. The Simple Turn Modeling (STM) prototype 

enhancement to the TM, created by Lockheed Martin, aims to improve the performance of the TM during 

turns by approximating a great circle route using piecewise linear segments. 

The study detailed in Chapter 4 compares the performance, with respect to trajectory accuracy, of the 

STM prototype against that of the current ERAM TM. The approach of this study is to isolate segments of 

track during which a turn occurs, and to evaluate the performance of time-coincident trajectory segments 

for both the legacy and prototype TM. The flight scenario examined includes aircraft in the Seattle 

ARTCC. 

This last study, which concentrates specifically on flights making inside turns within 10 NM of a fix on 

the filed route, finds that cross track error remains unchanged when STM is implemented. The along track 

error and vertical error are slightly degraded. Analysis and discussion indicate that several algorithmic 

issues were present in the version of the prototype scenario being evaluated, which have since been 

identified and corrected. The observed degradation and algorithmic issues suggest that the version of the 

STM prototype evaluated by ANG-C55 is problematic. However, the fact that correction of several 

software issues occurred prior to the evaluation strongly suggests that reevaluation is necessary prior to 

any useful recommendation regarding the suitability of the prototype for implementation into the 

operational ERAM. 
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Chapter 1 - Regression Test of Descent Modeling in Seattle 
Flight Data 

 Introduction 1.1.
The Separation Management and Modern Procedures Project is an initiative of the Federal Aviation 

Administration (FAA) under the Next Generation Air Transportation System (NextGen) Program to 

implement improvements in the En Route Automation Modernization (ERAM) system, which supports 

all en route facilities in the United States. The FAA’s Air Traffic Organization En Route Program Office 

(ATO-E) tasked the FAA’s Modeling and Simulation Branch (ANG-C55) to conduct several studies 

investigating the impacts from various proposed prototypes and parameter changes to the Trajectory 

Modeler (TM) and/or Conflict Probe Tool (CPT) of ERAM. The overall objective is to improve the 

performance of the conflict probe in preparation for integration of the CPT alert notification into the flight 

data block on the radar controller’s main display. Since predicted trajectories are a primary input to the 

CPT, the accuracy and stability of the TM impacts the quality of alerts. 

Currently, the ERAM TM relies on kinematic (or parametric) modeling for descent and climb prediction. 

Referred to here as the legacy model, it uses population-average information from lookup tables to obtain 

speed, descent rate, and other factors for each aircraft type at a given altitude and temperature. The TM 

uses this information to determine Top of Descent (TOD), descent rate, and path. This parametric method 

works well for aircraft following step descents. At present, more flights are beginning to make use of 

advanced technologies to perform Continuous Descent Approaches (CDAs) at either idle-thrust or with a 

constant descent rate. Since the legacy kinematic model uses empirical data based primarily on flights 

making step descents, it is inadequate when modeling idle-thrust descents.  

The Kinetic Vertical Model (KVM) prototype enhancement to the TM created by the ERAM 

development contractor Lockheed Martin aims to improve the prediction of TOD and descent rate for 

aircraft that descend at idle or near-idle thrust. The KVM prototype implements a kinetic (physics-based) 

model that uses aircraft mass and speed profiles (or other enhanced intent information) which are either 

provided or can be inferred for each individual aircraft when building trajectories. To implement the 

kinetic model the prototype also makes use of EUROCONTROL’s Base of Aircraft Data (BADA) [Nuic, 

2014], which supplies aircraft performance information necessary to compute trajectories. The KVM 

model is designed to improve upon the limitations of the legacy kinematic model. Flights following 

Optimized Profile Descents (OPD) and/or Continuous Descent Arrivals (CDA) will benefit from the 

updated modeling approach. 

This specific study is designed to compare the performance, with respect to trajectory accuracy, of the 

current KVM prototype against the results of a previous study documented in [Schnitzer et al., 2015] that 

evaluated an earlier KVM prototype. The objective is to confirm whether the current version has similar 

or improved performance to the earlier prototype. As mentioned in the Overview, there are several 

updates and improvements to the KVM prototype included in the current version used for this study’s 

experimental runs. 
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 Methodology 1.2.
This study is a regression test to evaluate performance of the updated prototype against that of the 

previous version analyzed in [Schnitzer et al., 2015]. 

1.2.1. Data Flow 

For this study, the analysts used ERAM track and clearance messages along with wind data from March 

14, 2014 at the Seattle (ZSE) ARTCC. The data was collected using Lockheed Martin’s Sarbot tool. As 

detailed in [Schnitzer et al., 2015] and [Torres, Dehn, and Little, 2014], flights with continuous descent 

arrivals (CDA) consistent with idle or near-idle thrust profiles were selected as a subset of the original 

data. After analyzing the cruise and descent phases of these flights, the Top of Descent (TOD) was 

determined. For each flight, experimental interim altitude messages were created with altitude set equal to 

the cruise altitude. These messages were then inserted into the scenario with timestamps approximately 

25 minutes prior to TOD. This forced the TM to build trajectories for these flights at approximately the 

same time relative to true TOD. Since trajectory accuracy varies with look ahead time, having all 

trajectories produced at the same time makes a fair comparison possible. Without these experimental 

interim altitude messages, trajectory build times could not be controlled.  

Lockheed’s Virtual Testing Laboratory (VTL), a laboratory version of ERAM, ran this 9-hour 

experimental scenario to produce output scenario data consisting of track and trajectory points. The ANG-

C55 Modeling and Simulation Branch analyzed the output scenario with CpatTools,a customized 

software suite that takes flight traffic input files and creates a linked set of relational database tables. 

These tables include smoothed track, clearance, and route data, as well as trajectory metrics. The analysts 

used this output data for all subsequent trajectory analysis. The data input to VTL for the current study 

(flight plans, controller inputs, target data) is identical to the previous study in [Schnitzer et al., 2015]. 

However the version of ERAM simulated in the lab has been slightly updated since then and as a result, 

scenarios should not be compared directly across the two studies. To guarantee a fair basis for 

comparison, an updated baseline scenario is run in VTL (the impact on trajectories is found to be very 

small). Analysts measured the KVM prototype against this updated baseline, and compared the observed 

effect to the effect found in the previous study which used an identical approach. 

1.2.2. Analysis Methods 

The analysts conduct a regression test on the performance of an updated KVM prototype enhancement to 

the Trajectory Modeler, comparing it to an earlier version. Analysis includes the following scenarios: 

 Baseline – Legacy trajectory prediction using kinematic modeling 

 KVM-All – Trajectory prediction using kinetic modeling in current KVM prototype 

 Data Collection and Reduction 1.2.2.1.

There were 61 flights designated by Lockheed [Torres, Dehn, and Little, 2014] as CDA flights; however, 

the previous study incorporated only 55 flights. For consistency, this study focuses on the same 55 flights. 

The previous study [Schnitzer et al., 2015] elaborated on the exclusion of other flights. The analysts use 

custom Oracle SQL queries to retrieve the necessary scenario information produced through CpatTools. 

For each flight in the scenario, analysts identified the trajectory build triggered by the experimental 

interim altitude message. Next, the time and altitudes at TOD are calculated for both the track and 

trajectory. The analysts define Bottom of Descent (BOD) for each flight as 15,000 ft. in this scenario. 

This ensures that the descent segment is relatively continuous and not interrupted by altitude restrictions 

or other influences. The analysts confirmed that this altitude was appropriate through visual exploration 

of the data using FliteViz4D, an interactive 4D visualization tool developed by ANG-C55 [Crowell, 

Fabian, and Nelson, 2012].  
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 Metrics 1.2.2.2.

Metrics for this study include a subset of the standard trajectory metrics used in many studies [Paglione 

and Oaks, 2007]. Vertical error is defined as the vertical distance between a track point and its time 

coincident trajectory point, and along track error is defined as the longitudinal distance between a track 

point and its time coincident trajectory point. The analysts briefly examined cross track error - defined as 

the lateral distance between a track point and its time coincident trajectory point - and observed no effect. 

Therefore, this study focuses on vertical error and along track error to assess trajectory accuracy. 

In addition, the analysts apply metrics specific to descent prediction, detailed in [Paglione et al., 2011] 

and [Bronsvoort et al., 2011]. TOD Error is defined as the difference in time between the track-

determined TOD and the trajectory TOD, where negative values indicate that the predicted TOD occurred 

prior to the actual TOD. Descent rate is the mean rate of descent of the aircraft over the region of time 

spanning the TOD to BOD, i.e. change in altitude divided by elapsed time. Descent rate error is the 

difference between the calculated descent rate for the actual path (track) and the predicted path 

(trajectory), where a negative value indicates that the predicted descent rate is steeper than the true 

descent rate. 
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 Analysis 1.3.
This section describes the results of the analyses described in Section 1.2.2. Section 1.3.1 details an 

evaluation of the parameters TOD and descent rate regarding how accurately they predict the track of 

each flight. As previously stated from [Schnitzer et al., 2015], TOD and descent rate can be analogous to 

the intercept and slope of a linear model; therefore, this analysis of descent metrics is an informal 

goodness-of-fit test to evaluate the KVM Trajectory Modeler. Section 1.3.2 presents an analysis of 

general trajectory accuracy for one critical trajectory built prior to TOD. Finally, Section 1.3.3 exhibits 

visual examples demonstrating flight track and trajectory differences for the previous and current KVM 

prototype enhancements to the TM. 

1.3.1. Descent Statistics 
This section presents the results for descent metrics (TOD, descent rate) comparing the predicted 

trajectory to the actual flight data. TOD errors of 0 seconds indicate the TM perfectly predicted the time 

at which TOD actually occurred. Negative TOD errors indicate that the TM predicts an early TOD, while 

positive TOD errors indicate a predicted TOD that is later than the true TOD. Table 1 presents summary 

statistics for TOD. 

Table 1. Statistics for top of descent prediction error 

 
TOD Error: 

Baseline 

TOD Error: 

All 

Mean (seconds) -151.3 47.7 

SD (seconds) 102.1 70.5 

No. flights 55 55 

 

The Baseline scenario predicts TOD about 2.5 minutes (151.3 seconds) earlier than the truth. With 

application of the KVM algorithm, the KVM-All scenario reduces the magnitude of the TOD prediction 

error from 151.3 seconds to 47.7 seconds, an improvement of 68.5%. This reduction in magnitude reflects 

a TOD prediction that is more accurate than that of the Baseline scenario. The change in sign indicates 

that the KVM algorithm, on average, overestimates the true TOD time and the legacy algorithm 

underestimates the time. 

The second descent error metric pertains to the rate of descent, expressing the difference in descent rate 

between the trajectory and the observed track data. A negative error indicates that the predicted descent 

rate is faster (steeper) than the true descent rate, while a positive error indicates that the descent rate is 

slower (shallower). Table 2 presents summary statistics for descent rate error. 
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Table 2. Statistics for descent rate error 

 
Descent Rate Error: 

Baseline 

Descent Rate Error: 

All 

Mean (ft/min) 375.4 -267.1 

SD (ft/min) 282.1 254.1 

No. flights 55 55 

 

In the Baseline scenario, the results indicate a descent rate that is 375.4 ft/min shallower than the true 

descent rate, which the analysts expected as the early TOD prediction allows the flight more time to 

descend. In the KVM-All scenario the descent rate is 267.1 ft/min steeper than the true descent rate. It 

follows that a prediction of later TOD leaves less time for the flight to descend, and produces a negative 

descent rate error. In comparing the magnitude of descent rate error, the KVM-All scenario is more 

accurate, with 28.8% decrease in absolute error from the Baseline scenario. These results reflect an 

improvement in performance of the KVM prototype compared to the previous version (Table 3). 

 

Table 3. Descent error statistics for previous KVM study [Schnitzer et al., 2015] 

 
TOD: 

Baseline 

TOD: 

KVM-All 

  Descent Rate: 

Baseline 

Descent Rate: 

KVM-All 

Mean 

(seconds) 
-149.0 71.2 

 Mean  

(ft/min) 
372.8 -426.5 

SD  

(seconds) 
101.5 82.6 

 SD  

(ft/min) 
279.4 299.4 

No. flights 55 55  No. flights 55 55 

 

In the previous study, TOD absolute error in the KVM-All scenario was 52.2% less than the Baseline 

scenario. Using similar Baseline trajectories in the current study, results indicate a decrease of 68.5%. In 

the previous study, descent rate error in the KVM-All scenario was 14.4% larger than the Baseline 

scenario. However, in the current study descent rate error in the KVM-All scenario is 28.8% smaller than 

the Baseline scenario.  

1.3.2. Trajectory Accuracy 
For the overall trajectory error analysis, differences between the actual track and predicted trajectory are 

calculated using the metrics vertical and along track error, defined in Section 1.2.2. The critical trajectory 

selected for analysis is the one built at 25 minutes prior to TOD. If that trajectory is not available, then the 

earliest trajectory with associated track data is used. As in the previous study, the analysts calculate the 

time until TOD (TimeToTOD) to normalize the data based upon when true TOD occurred. For an accurate 

prediction, a TimeToTOD value of -120 seconds indicates that TOD will occur in 2 minutes.  
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Analysts examined trajectory accuracy at TOD and BOD, where BOD is defined as 15,000 ft. The top of 

Figure 1 displays the mean unsigned vertical error in feet, and the bottom displays mean unsigned along 

track error in nautical miles. The bars on the left of Figure 1 depict error at TOD, while the bars on the 

right depict error at BOD. 

 

Figure 1. Mean unsigned vertical and along track error at TOD and BOD 

The mean unsigned vertical error at TOD decreases from 4,376 ft. in the Baseline scenario to 778 ft. in 

the KVM-All scenario. This is an 82.2% improvement, attributed to the adjustment in TOD modeling, 

with the predicted TOD much closer to the true TOD. Due to the flights converging towards a common 

point as they approach BOD, the analysts expected the vertical error values to be much closer between the 

Baseline and KVM-All scenarios. At BOD, the Baseline has a vertical error of 2,535 ft. and the KVM-All 

has a vertical error of 1,832 ft., which is a 27.7% improvement.  

The mean unsigned along track error at TOD is 2.85 NM for the Baseline scenario. The KVM-All 

scenario has an error of 2.73 NM on average, indicating a 4.2% improvement. The Baseline scenario has 

an average along track error of 5.24 NM at BOD, while the KVM-All scenario has an average error of 

2.51 NM at BOD. This is an improvement of 52.1%. 

The previous study found an improvement in mean unsigned vertical error from the Baseline to the KVM-

All scenarios of 82.5% and 16.0% at TOD and BOD respectively. Comparing to the current study, the 

improvements from Baseline to KVM-All are 82.2% and 27.7% at TOD and BOD. The previous study 

found improvements in mean unsigned along track error from the Baseline to the KVM-All scenarios of 

5.6% and 25.5% at TOD and BOD, respectively. In the current study, improvements from Baseline to 

KVM-All are 4.2% and 52.1% at TOD and BOD, respectively. 
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For a broader view of trajectory accuracy, the analysts examine vertical and along track error throughout 

the entire descent to verify that any trajectory prediction errors are not specific to TOD and BOD. Figure 

2 presents mean overall unsigned vertical error. 

 

Figure 2. Overall mean unsigned vertical error 

The top half of Figure 2 shows the vertical error during descent for both scenarios. At about 6 minutes 

prior to TOD, we see the Baseline scenario begin to accumulate vertical error (blue bars). The largest 

magnitude of vertical error for the Baseline scenario occurs at true TOD, which is consistent with an early 

prediction of TOD. As TimeToTOD approaches 0, the vertical error in the KVM-All scenario (red bars) 

begins to increase until reaching its peak value sometime after true TOD, which is consistent with a TOD 

predicted later. The bottom part of Figure 2 shows the difference in mean unsigned vertical error (green 

bars) over time between the Baseline and KVM-All scenarios. For these green bars, negative values 

represent an improvement, or reduction in trajectory error from the Baseline to KVM scenario. We see 

improvement in the KVM-All predictions up to and just after TOD. This is consistent with an improved 

TOD prediction by the KVM-All algorithm. There is a slight degradation between 3 and 7 minutes after 

TOD, but afterwards the KVM-All predictions continue to improve compared to the Baseline scenario. 

Overall, the KVM-All scenario demonstrates better trajectory accuracy performance than the Baseline 

scenario. 
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Figure 3. Overall mean unsigned along track error 

The mean unsigned along track error is displayed in the top half of Figure 3. Both scenarios have roughly 

2 NM error at 6 minutes before true TOD. Closer to the time of true TOD is the critical point in which the 

KVM-All algorithm outperforms the Baseline scenario. At TOD, the Baseline scenario has an average 

error of 2.85 NM that steadily increases to 5.24 NM at BOD. On the other hand, the KVM-All scenario 

has an error of 2.73 NM at TOD that decreases to 2.51 NM at BOD. The bottom half of Figure 3 shows 

the difference in mean unsigned along track error between the two scenarios. This represents a trajectory 

accuracy improvement in the KVM-All scenario over Baseline of 52.1% at BOD.  

1.3.3. Flight Examples 
The following flight examples demonstrate track and trajectory differences for the previous and current 

KVM prototype enhancements to the TM. Dotted lines depict flight track data and blue wireframes 

represent the Baseline trajectory. The red wireframes represent the trajectory from the current KVM 

prototype, while the green wireframes represent the trajectory from the previous KVM prototype. 

Cylinders of each respective color signify the trajectory predicted aircraft location at the time of true 

TOD. 

 Flight Example 1 1.3.3.1.

Example 1 displays a Boeing 787-8 (B788) out of Narita International Airport (RJAA) cruising at FL 371 

at about 25 minutes prior to true TOD, corresponding to simulation time 60,410 seconds (Figure 4). The 

flight is entering its descent into Seattle-Tacoma International Airport (KSEA). Figure 5 presents a close-

up view of the trajectories near TOD. The Baseline trajectory (blue) begins descent at 60,460 seconds, 
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which is 50 seconds after true TOD. The current KVM trajectory (red) predicts TOD at 60,478 seconds, 

which is 68 seconds after true TOD. The trajectory generated by the previous KVM prototype (green) 

predicts TOD at 60,634 seconds, which is 224 seconds after true TOD. In this example, the current KVM 

prototype produces a much better TOD prediction than the previous prototype. 

 

Figure 4. Example 1, side view of entire descent 

Figure 5 depicts the three descending trajectories and the track data. The average descent rate in the 

Baseline scenario is 1,927 ft/min, which is steeper than the true descent rate of 1,796 ft/min. The current 

KVM scenario descent rate is closer to the truth at 1,792 ft/min, which is much better than the previous 

KVM scenario descent rate of 2,767 ft/min. 

 

Figure 5. Example 1, close-up at TOD 

 

 Flight Example 2 1.3.3.2.

Example 2 displays a Boeing 737-800 (B738) out of Oakland International Airport (KOAK) cruising at 

FL400 about 25 minutes prior to true TOD, corresponding to simulation time 52,900 seconds (Figure 6). 

The flight is entering its descent into Seattle-Tacoma International Airport (KSEA). Figure 7 presents a 
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close-up view of the trajectories near TOD. The Baseline trajectory (blue) begins descent at 52,638 

seconds, which is 262 seconds (almost 4.5 minutes) before true TOD. The current KVM trajectory (red) 

predicts TOD at 52,923 seconds, which is 23 seconds after true TOD. This is a 239 second improvement 

in magnitude over the Baseline TOD prediction. The trajectory generated by the previous KVM prototype 

(green) predicts TOD at 53,102 seconds, which is 202 seconds after true TOD. In this example, the 

current KVM prototype outperformed both the Baseline and previous KMV prototype. 

 

Figure 6. Example 2, side view of entire descent 

The predicted descent paths are easier to see in Figure 7. The average descent rate in the Baseline 

trajectory is 1,614 ft/min, which is shallower than the true descent rate of 2,111 ft/min. The current KVM 

trajectory has a more accurate descent rate of 2,193 ft/min, which is significantly better than the previous 

KVM prototype descent rate of 3,074 ft/min. 

 

Figure 7. Example 2, close-up at TOD 
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 Flight Example 3 1.3.3.3.

Example 3 displays a Boeing 737-700 (B737) out of Denver International Airport (KDEN) cruising at FL 

380 about 25 minutes prior to true TOD, corresponding to simulation time 60,920 seconds (Figure 8). The 

flight is entering its descent into Seattle-Tacoma International Airport (KSEA). Figure 9 presents a close-

up view of the trajectories near TOD. The Baseline trajectory (blue) begins descent at 60,726 seconds, 

which is 194 seconds (almost 3.5 minutes) before true TOD. The current KVM trajectory (red) predicts 

TOD at 60,857 seconds, which is 63 seconds before true TOD. This is a 131 second improvement in 

magnitude over the Baseline TOD prediction. However, the trajectory generated by the previous KVM 

prototype (green) predicts TOD at 60,924 seconds, which is only 4 seconds after true TOD and closer 

than the current KVM prediction.  

 

Figure 8. Example 3, side view of entire descent 

Figure 9 shows the three descending trajectories and the track data. The average descent rate in the 

Baseline trajectory is 2,004 ft/min, which is shallower than the true descent rate of 2,223 ft/min. The 

current KVM trajectory shows a descent rate of 2,516 ft/min, while the previous study shows the KVM 

trajectory with a descent rate of 2,814 ft/min. This flight example highlights one case where the updated 

KVM prototype predicted the descent rate better (i.e., closer to the true rate) than the previous KVM 

prototype; however, the TOD prediction was worse (i.e., farther from true TOD). The updated KVM 

prototype performed better than the baseline in TOD prediction, but not average descent rate.  
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Figure 9. Example 3, close-up at TOD 



 

 

 Conclusions and Discussion 1.4.
Trajectory prediction provides an essential input to the conflict probe tool of ERAM, which supports air 

traffic controllers by anticipating potential conflicts up to 20 minutes in the future. The currently deployed 

ERAM Trajectory Modeler (TM) uses a kinematic modeling approach, which is sufficient for aircraft 

following traditional step descents. However, it is ill suited to modeling idle-thrust descents, which are 

becoming more prevalent as flights begin to make use of advanced technologies to perform continuous 

descent approaches. [Paglione and Oaks, 2009] showed that inaccurate trajectories can lead to 

degradation of performance in the conflict probe and an increase in alerts that may not be beneficial to the 

controllers. Lockheed Martin developed prototype enhancement to the TM that implements a kinetic 

modeling approach with the goal of improving the prediction of flights with continuous descent profiles at 

idle or near-idle thrust.  

Schnitzer et al. [2015] evaluated a previous version of the BADA-based Kinetic Vertical Model (KVM) 

prototype. The current study evaluates an updated version of the KVM prototype, with modifications to 

improve prediction [Torres, 2015]. The current study compares the performance, with respect to trajectory 

accuracy, of the current KVM prototype against the earlier prototype investigated in [Schnitzer et al., 

2015]. The objective is to confirm whether the current version has similar or improved performance. 

The analysis, which focuses on a select group of flights with CDA-like characteristics, shows an average 

improvement in TOD prediction compared to the earlier KVM prototype. The previous study showed a 

reduction in average TOD prediction error of 52.2% compared to the Baseline scenario, while the current 

prototype showed a 68.5% reduction compared to the corresponding Baseline scenario. The better TOD 

prediction contributed to an improvement in the measured descent rate error; the current study 

demonstrated a 28.8% reduction in average descent rate error compared to Baseline. In the previous study 

the KVM prototype performed worse than the Baseline scenario, with a 14.4% higher descent rate error.  

In assessing trajectory accuracy, the current study found a 27.7% reduction in the vertical error at BOD 

over Baseline, whereas the analogous error reduction in the previous study was only 16%. Along track 

error at BOD also indicated significant improvement: the current KVM prototype demonstrated a 52.1% 

improvement over Baseline, while the previous prototype had a 25.5% improvement. 

Overall, the results of the current study indicate improved prediction performance of the TM when using 

the updated KVM prototype. The improvements in TOD prediction, descent rate, and trajectory accuracy 

are contrasted against the analysis of the previous KVM prototype detailed in [Schnitzer et al., 2015] and 

it is determined that, on average, the updated KVM prototype trajectory predictions are closer to the true 

track data.



 

 

Chapter 2 - Analysis of Flights Following Houston OPD 
Procedure 

 Introduction 2.1.
The Separation Management and Modern Procedures Project is an initiative of the Federal Aviation 

Administration (FAA) under the Next Generation Air Transportation System (NextGen) Program to 

implement improvements in the En Route Automation Modernization (ERAM) system, which supports 

all en route facilities in the United States. The FAA’s Air Traffic Organization En Route Program Office 

(ATO-E) tasked the FAA’s Modeling and Simulation Branch (ANG-C55) to conduct several studies 

investigating the impacts from various proposed prototypes and parameter changes to the Trajectory 

Modeler (TM) and/or Conflict Probe Tool (CPT) of ERAM. The overall objective is to improve the 

performance of the conflict probe in preparation for integration of the CPT alert notification into the flight 

data block on the radar controller’s main display. Since predicted trajectories are a primary input to the 

CPT, the accuracy and stability of the TM impacts the quality of alerts. 

Currently, the ERAM TM relies on kinematic (or parametric) modeling for descent and climb prediction. 

Referred to here as the legacy model, it uses population-average information from lookup tables to obtain 

speed, descent rate, and other factors for each aircraft type at a given altitude and temperature. The TM 

uses this information to determine Top of Descent (TOD), descent rate, and path. This parametric method 

works well for aircraft following step descents. At present, more flights are beginning to make use of 

advanced technologies to perform Continuous Descent Approaches (CDAs). Since the legacy kinematic 

model uses empirical data based primarily on flights making step descents, it is inadequate when 

modeling idle-thrust descents.  

The Kinetic Vertical Model (KVM) prototype enhancement to the TM, created by the ERAM 

development contractor Lockheed Martin, aims to improve the prediction of TOD and descent rate for 

aircraft that descend at idle or near-idle thrust. The KVM prototype implements a kinetic (physics-based) 

model that uses aircraft mass and speed profiles (or other enhanced intent information) which are either 

provided or can be inferred for each individual aircraft when building trajectories. To implement the 

kinetic model the prototype also makes use of EUROCONTROL’s Base of Aircraft Data (BADA) [Nuic, 

2014], which supplies aircraft performance information necessary to compute trajectories. The KVM 

model is designed to improve upon the limitations of the legacy kinematic model. Flights following 

Optimized Profile Descents (OPD) and/or Continuous Descent Arrivals (CDA) will benefit from the 

updated modeling approach. 

This specific study is designed to compare the performance, with respect to trajectory accuracy, of the 

enhanced KVM prototype against that of the current ERAM TM. The approach of this study is similar to 

the one performed in [Schnitzer et al., 2015]. The flight scenario examined includes aircraft performing 

Optimum Profile Descents into George Bush Intercontinental Airport (KIAH) in Houston, Texas. A major 

difference in the current study is higher variation in the timing of experimental interim altitude messages 

than in [Schnitzer et al., 2015]. The objective is to show the benefits of using the KVM prototype with 

Vertical Navigation (VNAV) modeling, an adaptation that includes window restrictions from the Area 

Navigation (RNAV) Standard Terminal Arrival Route (STAR). 



 

 

 Methodology 2.2.
This study evaluates the performance of the enhanced KVM prototype utilizing VNAV procedure 

modeling for flights using the Houston DRLLR4 OPD arrival.   

2.2.1. Data Flow 

In this study, analysts utilized ERAM track and clearance messages in conjunction with wind data 

recorded on February 9, 2015 from the Houston (ZHU) ARTCC. Data was collected using Lockheed 

Martin’s Sarbot tool. As described in [Torres, Dehn, and Little, 2014], only flights that followed the 

DRLLR4 RNAV STAR were considered for this study. Of these flights, there were 46 identified by 

Lockheed Martin as having CDAs. Of these, only 22 flights stayed within lateral conformance and these 

are the flights selected for analysis [S. Torres, personal communication, 12/02/2015].  

Flights in the scenario followed VNAV altitude window restrictions along the STAR. The legacy ERAM 

TM does not incorporate the window restrictions found in the DRLLR4 RNAV STAR in its algorithms; 

however, this information was included in the adaptation and used by the prototype TM to improve 

trajectory prediction. One limitation of this study is that there is no way to separate the benefit due to the 

KVM prototype from the benefit due to the inclusion of altitude window restriction information using the 

experimental scenarios. 

Lockheed Martin analyzed cruise and descent phases of flight to determine TOD and cleared cruise 

altitude for each flight. To force the TM to build a trajectory within a relevant time period, experimental 

interim altitude messages were created with altitudes equal to the cruise altitude. These messages were 

inserted in both the Baseline and KVM scenario runs. An important distinction in the current study is that 

the timing of experimental interim altitude messages is distributed between 5 and 20 minutes prior to 

TOD due to the layout of the airspace, whereas in [Schnitzer et al., 2015] the messages were all inserted 

approximately 25 minutes prior to TOD. It was not possible to produce trajectory build times at the same 

relative time for each flight in this scenario because flights descending by means of the DRLLR4 arrival 

cross an ARTCC boundary close to the approach, and portions of the flight outside of the ZHU ARTCC 

are not part of the experimental scenario.  

This 9-hour experimental traffic scenario was entered into Lockheed’s Virtual Testing Laboratory (VTL), 

a laboratory version of ERAM, to create an output scenario containing track and trajectory points. The 

output scenarios were used as input in the ANG-C55 Modeling and Simulation Branch’s CpatTools, a 

customized suite of software tools that takes flight traffic input files and creates a linked set of relational 

database tables. Tables include smoothed track, clearance, and route data, along with trajectory metrics. 

The analysts used this output data during the ensuing trajectory analysis. 

2.2.2. Analysis Methods 

Analysts evaluated the enhanced KVM prototype for the Trajectory Modeler which includes VNAV 

procedure modeling, comparing it to the operational version. Analysis includes the following scenarios. 

 Baseline – Legacy trajectory prediction using kinematic modeling 

 KVM – Trajectory prediction using kinetic modeling with enhanced KVM prototype and 

adaptation for RNAV STAR window restrictions 

 Data Collection and Reduction 2.2.2.1.

Lockheed Martin [Torres, 2015] originally identified 22 flights as CDA; however, two flights failed to 

produce trajectories beyond initial trajectory builds. As a result, only 20 flights remained for analysis. The 



 

 

analysts used custom Oracle SQL queries to extract pertinent scenario information from CpatTools output 

database tables, and performed the analysis using JMP
®1

 software. Analysts identified and retrieved the 

trajectories produced as a result of the experimental altitude messages. For each flight, analysts calculated 

time and altitude at TOD for both the track and trajectories. Analysts defined Bottom of Descent (BOD) 

as 15,000 feet in this study since below that altitude, level trajectory segments often occurred as a result 

of altitude restrictions, STARs, and other influences that were not reflective of controller intent. The 

analysts confirmed that this altitude was suitable and above the highest constraining restriction through 

visual exploration of the data using FliteViz4D [Crowell, Fabian, and Nelson, 2012], a data visualization 

tool created by ANG-C55. 

  Metrics 2.2.2.2.

Metrics for this study include a subset of the standard trajectory metrics used in many studies [Paglione 

and Oaks, 2007]. Vertical error is defined as the vertical distance between a track point and its time 

coincident trajectory point, and along track error is defined as the longitudinal distance between a track 

point and its time coincident trajectory point. The analysts briefly examined cross track error, defined as 

the lateral distance between a track point and its time coincident trajectory point, and observed no effect. 

Therefore, this study focuses on vertical error and along track error to assess trajectory accuracy. 

In addition, the analysts introduce metrics specific to examining TOD. TOD error is defined as the 

difference in time between the track-determined TOD and the trajectory TOD, where negative values 

indicate that the predicted TOD occurred prior to the actual TOD. Descent rate is the mean rate of descent 

of the aircraft over the region of time spanning the TOD to BOD, i.e. change in altitude divided by 

elapsed time. Descent rate error is the difference between the calculated descent rate for the actual path 

(track) and the predicted path (trajectory), where a negative value indicates that the predicted descent rate 

is steeper than the true descent rate. 

                                                      
1
 JMP®  is statistical discovery software from SAS®. See www.jmp.com 



 

 

 Analysis 2.3.
This section describes the results of the analyses defined in Section 2.2.2. Section 2.3.1 presents an 

assessment of the descent metrics TOD prediction and descent rate and evaluates the accuracy of track 

prediction for each flight. As previously acknowledged in [Schnitzer et al., 2015], TOD and descent rate 

can be analogous to the intercept and slope of a linear model; therefore, this analysis of descent metrics is 

an informal goodness-of-fit test to evaluate the KVM Trajectory Modeler. Section 2.3.2 details the 

analysis of general trajectory accuracy for one critical trajectory built prior to TOD. Lastly, Section 2.3.3 

displays visual flight examples revealing track and trajectory differences between the legacy TM and 

KVM prototype predictions. 

2.3.1. Descent Statistics 

This section presents the results for descent metrics (viz., TOD prediction and descent rate) that compare 

the predicted trajectories to the actual flight data. Perfect TOD predictions by the TM will have an error 

of 0.0 seconds. A negative TOD error indicates an early TOD prediction by the TM, while a positive 

TOD error indicates a predicted TOD that is later than the true TOD. Table 4 displays the summary 

statistics for TOD. 

Table 4. Statistics for TOD prediction error 

 TOD: Baseline TOD: KVM 

Mean (seconds) -207.9 53.5 

SD (seconds) 106.4 106.2 

N (CDA flights) 20 20 

 

In the Baseline scenario, TOD prediction is 207.9 seconds (about 3.5 minutes) earlier than true TOD. 

After application of the KVM algorithm with VNAV procedure modeling, the KVM scenario reduces the 

magnitude of the TOD prediction error to 53.5 seconds, an improvement of 74.3%. The reduction in 

magnitude reflects a TOD prediction that is more accurate than the Baseline scenario. The change in sign 

indicates that the legacy algorithm tends to substantially underestimate the TOD, while the KVM 

algorithm tends to overestimate the TOD. 

The second descent metric is rate of descent. A negative error indicates a descent rate that is faster 

(steeper) than the actual descent rate, while a positive error indicates a descent rate that is slower 

(shallower) than the true descent rate. Table 5 displays the summary statistics for descent rate error. 

Table 5. Difference between trajectory and observed path descent rates 

 Rate of Descent Error: Baseline Rate of Descent Error: KVM 

Mean (ft/min) 200.5 -333.0 

SD (ft/min) 304.0 489.3 

N (CDA flights) 20 20 

 



 

 

In the Baseline scenario, the results indicate an average descent rate that is 200.5 ft/min shallower than 

the true descent rate. This is to be expected with early TOD predictions, which give flights more time to 

descend. In the KVM scenario, the average descent rate is 333.0 ft/min steeper than the true rate of 

descent. A delayed TOD prediction leaves less time for flights to descend, and typically result in a 

negative descent rate error. In assessing the magnitude of descent rate error, the KVM scenario is less 

accurate than the Baseline scenario, with an increase in magnitude of 66.1%. 

2.3.2. Trajectory Accuracy 

As defined in Section 2.2.2, the metrics vertical and along track error are considered for the overall 

trajectory analysis in order to calculate differences between the actual track and predicted trajectory. As 

stated in Section 2.2.1, it is not possible to utilize trajectories built at a fixed time relative to TOD. The 

build times vary from 5-20 minutes prior to TOD. The critical trajectory selected for analysis is the one 

built within 12 seconds of the experimental interim altitude injection time. As with other analyses, the 

time until TOD (TimeToTOD) was calculated and used to normalize data. For an accurate prediction, a 

TimeToTOD value of -120 seconds denotes that TOD will occur in 2 minutes. 

Figure 10 depicts trajectory accuracy at TOD and BOD, where BOD is artificially capped at 15,000 feet 

in order to avoid the influence of altitude restrictions on the trajectories. The top bars of Figure 10 display 

the mean unsigned vertical error in feet, and the bottom bars show mean unsigned along track error in 

nautical miles. The bars on the left of Figure 10 show error at TOD while the bars on the right display 

error at BOD. 

 

Figure 10. Mean unsigned vertical and along track error at TOD and BOD 

Mean unsigned vertical error at TOD decreases from 5,858 feet in the Baseline scenario to 832 feet in the 

KVM scenario. This is an 85.8% improvement, attributable to the improved TOD prediction by the KVM 

algorithm. As flights converge towards a common point near BOD, the analysts expect to see a reduction 

in vertical errors for the two scenarios due to constraints on trajectory builds. Specifically, the trajectories 



 

 

are typically built using the same arrival fixes. At BOD, the Baseline scenario has a vertical error of 3,098 

feet and the KVM scenario has a vertical error of 1,295 feet. This is a 58.2% improvement, and is smaller 

than the difference at TOD as predicted. 

The mean unsigned along track error at TOD is 4.70 NM for the Baseline scenario. The KVM scenario 

has an average error of 4.25 NM, which is a 9.6% improvement. The Baseline scenario has an average 

along track error of 6.20 at BOD, while the KVM scenario has an average error of 4.57 NM at BOD. This 

is an improvement of 26.3%. 

Additionally, for a more general view of trajectory accuracy, an examination of vertical and along track 

error during the entire descent helps to verify that any trajectory prediction errors are not specific to the 

time and location of TOD and BOD. Figure 11 displays the overall mean unsigned vertical error. 

 

Figure 11. Overall mean unsigned vertical error 

The top half of Figure 11 displays the mean unsigned vertical error during descent for both scenarios. At 

approximately 6.5 minutes (390 sec) prior to TOD, it is evident that the Baseline scenario (blue bars) 

begins to exhibit an increasing vertical error. The largest magnitude of vertical error in the Baseline 

scenario peaks around true TOD, which is consistent with an early prediction in TOD. At true TOD the 

Baseline trajectory has already begun its descent, leading to increased vertical error. As TimeToTOD 

approaches 0.0, vertical error in the KVM scenario (red bars) begins to accrue until peaking at about 2.5 

minutes (150 sec) after true TOD, which is consistent with a late prediction of TOD. At true TOD the 

KVM trajectory has not yet begun its descent, and it will initially remain at cruise while the track begins 

its descent. The bottom half of Figure 11 depicts the difference in mean unsigned vertical error between 

the Baseline and KVM scenarios. For these green bars, negative values indicate an improvement 

(reduction) in trajectory error from the Baseline to the KVM scenario. There is an immediate 



 

 

improvement in KVM predictions beginning about 6.5 minutes prior to true TOD, and continuing for the 

duration of the descent. This demonstrates an improvement in trajectory accuracy by the KVM scenario 

over the Baseline scenario. 

 

Figure 12. Mean unsigned along track error over entire descent 

The top half of Figure 12 depicts the mean unsigned along track error. At 6.5 minutes prior to true TOD 

the trajectories in both scenarios have roughly 2 NM in along track error. Errors in both scenarios are 

similar until approximately 5 minutes after true TOD. At this time, the critical point in which the KVM 

algorithm outperforms the Baseline scenario. At TOD, the Baseline scenario has an average error of 4.70 

NM that steadily increases to 6.20 NM at BOD. In contrast, the KVM scenario has an error of 4.20 NM at 

TOD that slightly increases to 4.57 NM at BOD. The bottom half of Figure 12 shows the difference in 

mean unsigned along track error between the Baseline and KVM scenarios. This indicates that the KVM 

scenario has an improvement in trajectory accuracy of 26.3% at BOD as compared to the Baseline 

scenario.  

In addition to the standard trajectory analysis the analysts performed a matched pairs analysis, or paired t-

test, similar to that detailed in [Crowell et al., 2011]. An evaluation can be performed on a flight by flight 

basis since the two scenarios share the same set of flights. Data is segregated by flight and look-ahead 

time, resulting in a sample size of 969 points. Figure 13 shows the Tukey mean-difference plot comparing 

vertical error between the Baseline and KVM scenarios, with the difference between the two errors on the 

vertical axis plotted against the mean of the two on the horizontal axis. The mean difference is 2,657 ft. 

with a standard error of 86 ft., generating a t-Ratio greater than 30 and a negligible p-value. The null 

hypothesis of the paired t-test, that the mean errors between the two scenarios are the same, is therefore 

rejected. There is clearly a significant difference in average vertical error between the two scenarios, with 

the average error in the baseline greater than in the KVM scenario. 



 

 

 

Figure 13. Matched pairs analysis for vertical error 

The red horizontal line in Figure 13 denotes the mean of the differences, while dotted lines above and 

below represent the 95% confidence interval. The fact that the confidence region does not include zero is 

a visual representation of the finding of significant difference by the paired t-test. The overall trend of 

greater error in the Baseline scenario than the KVM scenario is observable in that most of the data points 

have positive values for difference, along the vertical axis. 

2.3.3. Flight Examples 

The following sections present flight examples for the Baseline and KVM prototype enhancements to the 

TM. Dotted lines represent the flight track data. Blue wireframes signify the Baseline trajectory, while red 

wireframes signify the KVM trajectory. Cylinders of each respective color characterize the aircraft 

location predicted by the trajectory at the time of the true TOD. 

 Flight Example 1 – Improvement using KVM 2.3.3.1.

Flight Example 1 displays a Boeing 737-800 (B738) out of Calgary International Airport (CYYC) 

cruising at FL370. The flight is nearing its descent into George Bush Intercontinental Airport (KIAH) in 

Houston, Texas. The aircraft is shown at about 7.5 minutes prior to true TOD, corresponding to 

simulation time 62,290 seconds. Figure 14 displays the two descending trajectories and the track data. 

The Baseline trajectory (blue wireframe) begins descent at 61,923 seconds, which is 367 seconds (about 6 

minutes) prior to true TOD. The KVM trajectory predicts a TOD at 62,264 seconds, which is 26 seconds 



 

 

before true TOD. In this example, the KVM prototype produces a considerably better TOD prediction 

than the legacy algorithm. The average descent rate in the Baseline scenario is 1,667 ft/min. The KVM 

scenario has an average descent rate of 2,264 ft/min, which is closer in accuracy to the true descent rate of 

2,398 ft/min. 

 

Figure 14. Flight Example 1, side view of entire descent 

 Flight Example 2 – Improvement using KVM 2.3.3.2.

Flight Example 2 displays an Embraer ERJ 145 (E145) out of Rick Husband Amarillo International 

Airport (KAMA) in Amarillo, Texas cruising at FL330. The flight is nearing its descent into George Bush 

Intercontinental Airport (KIAH) in Houston, Texas. The aircraft is shown at about 14 minutes prior to 

true TOD, corresponding to simulation time 52,230 seconds. Figure 15 shows the differences in descent 

paths. The Baseline trajectory (blue) begins descent at 51,840 seconds, which is 390 seconds (6.5 

minutes) before true TOD. The KVM trajectory (red) predicts a TOD at 52,302 seconds, which is 72 

seconds after true TOD. This is a 318 second improvement in magnitude over the Baseline TOD 

prediction. The track descent rate is 2,403 ft/min. The average descent rate in the Baseline scenario is 

1,735 ft/min, which is about 668 ft/min too shallow. The KVM scenario has a descent rate of 2,938 

ft/min, which is about 535 ft/min too steep, yet is more accurate than the Baseline scenario. 



 

 

 

Figure 15. Flight Example 2, side view of entire descent 

 Flight Example 3 – Degradation using KVM 2.3.3.3.

Flight Example 3 displays a Gulfstream G200 (GALX) out of Centennial Airport (KAPA) in Denver, 

Colorado cruising at FL370. The flight is nearing its descent into George Bush Intercontinental Airport 

(KIAH) in Houston, Texas. The aircraft is shown at about 10 minutes prior to true TOD at simulation 

time 55,820 seconds. Figure 16 shows the two descending trajectories and track data near TOD. The 

Baseline trajectory (blue) begins descent at 55,777 seconds, which is 43 seconds before true TOD. The 

KVM trajectory (red) predicts a TOD at 56,082 seconds, which is 262 seconds (about 4.25 minutes) after 

true TOD. The KVM trajectory is 219 seconds (more than 3.5 minutes) less accurate than the TOD 

prediction in the Baseline scenario. The true descent rate is about 2,001 ft/min. The Baseline scenario has 

an average descent rate of 2,068 ft/min, which is very slightly steeper than the true descent rate with a 

difference of 67 ft. The average descent rate in the KVM scenario is 3,077 ft/min, about 1,076 ft/min 

steeper than the track. This flight example illustrates one case in which the Baseline scenario performed 

better than the KVM prototype in both TOD prediction and rate of descent.  All of the KVM scenarios 

predicted a later TOD prediction than the corresponding Baseline scenario, and in this instance the KVM 

prediction is significantly late, leading to significant degradation in the accuracy of the trajectory 

prediction. 

 

Figure 16. Flight Example 3, side view of entire descent 



 

 

 Conclusions and Discussion 2.4.
ERAM’s conflict probe tool supports air traffic controllers in anticipating conflicts by providing aircraft 

trajectory predictions upwards of 20 minutes into the future. The operating version of ERAM’s TM uses a 

kinematic modeling approach, which works well for aircraft following traditional step descents. However, 

more aircraft are using idle-thrust descents as newer technologies are allowing for the performance of 

continuous descent approaches, and the legacy TM is insufficient for this purpose. [Paglione and Oaks, 

2009] showed that inaccurate trajectories can lead to degradation of performance in the conflict probe and 

an increase in alerts that may not be beneficial to controllers. A prototype enhancement to the TM by 

Lockheed Martin aims to utilize a kinetic modeling approach with the goal of improving trajectory 

prediction for flights with continuous descent profiles at idle or near-idle thrust. 

This study evaluates a BADA-based KVM prototype that utilizes RNAV STAR window restrictions 

following the DRLLR4 arrival route into Houston. This enhancement to the TM intends to improve the 

accuracy of TOD prediction and trajectory predictions of flights that are following an idle-thrust descent 

from TOD down to the highest constraining restriction before switching to a geometric approach [Torres, 

2015]. This study compares the performance, with respect to the prediction of TOD and trajectory 

accuracy, of the KVM prototype to the legacy model. The objective is to confirm the benefits of using the 

KVM prototype with window restrictions over the legacy ERAM model. 

The analysis, which concentrates specifically on flights following the DRLLR4 arrival route with CDA-

like characteristics, shows an average improvement of 74.3% in TOD prediction by the KVM prototype 

over the legacy ERAM TM model. The TOD prediction using the KVM prototype is, on average, later 

than the true TOD, and as a result the descent rate is steeper than the observed path. However, the error in 

rate of descent when using KVM decreases by 39.8% compared to the Baseline scenario.  

In evaluating trajectory accuracy, this study found vertical error at TOD and BOD improved with the 

application of the KVM by 85.8% and 58.2% respectively. Additionally, along track error improved at 

TOD and BOD by 9.6% and 26.3% respectively. Overall, the results of this study indicate improved 

trajectory prediction performance when employing the enhanced KVM prototype over the legacy ERAM 

TM.



 

 

Chapter 3 – Analysis of Climb Modeling in Seattle Flight Data 

 Introduction 3.1.

The Separation Management and Modern Procedures Project is an initiative of the Federal Aviation 

Administration (FAA) under the Next Generation Air Transportation System (NextGen) Program to 

implement improvements in the En Route Automation Modernization (ERAM) system, which supports 

all en route facilities in the United States. The FAA’s Air Traffic Organization Operational Concepts, 

Validation & Requirements Directorate (AJV-7) tasked the FAA’s Modeling and Simulation Branch 

(ANG-C55) to conduct several studies investigating the impacts from various proposed prototypes and 

parameter changes to the Trajectory Modeler (TM) and/or Conflict Probe Tool (CPT) of ERAM. The 

overall objective is to improve the performance of the conflict probe in preparation for integration of the 

CPT alert notification into the flight data block on the radar controller’s main display. Since predicted 

trajectories are a primary input to the CPT, the accuracy and stability of the TM impacts the quality of 

alerts. 

Currently, the ERAM TM relies on kinematic (parametric) modeling for descent and climb prediction. 

Referred to here as the legacy model, it uses population-average information from lookup tables to obtain 

speed, climb rate, and other factors for each aircraft type at a given altitude and temperature. When 

predicting departure profiles, the TM uses this information to determine Top of Climb (TOC), climb rate, 

and path. This parametric method works well for aircraft following step climbs. At present, more flights 

are beginning to make use of advanced technologies to perform continuous climbs on departure. The 

legacy kinematic model uses empirical data based primarily on flights making step climbs, and is less 

suited to modeling continuous climbs.  

The Kinetic Vertical Model (KVM) prototype enhancement to the TM, created by the ERAM 

development contractor Lockheed Martin, aims to improve the prediction of TOC and climb rate for 

aircraft performing continuous climbs on departure. The KVM prototype implements a kinetic (physics-

based) model that uses aircraft mass and speed profiles (or other enhanced intent information) which are 

either provided or can be inferred for each individual aircraft when building trajectories. To implement 

the kinetic model the prototype also makes use of EUROCONTROL’s Base of Aircraft Data (BADA) 

[Nuic, 2014], which supplies aircraft performance information necessary to compute trajectories. The 

KVM enhancement is designed to improve upon the limitations of the legacy kinematic model.  

This specific study is designed to answer whether KVM can be effectively applied to predicting the 

trajectory of climbing aircraft. The objective is to compare the performance, with respect to trajectory 

accuracy, of the enhanced KVM prototype against that of the legacy ERAM TM. The evaluated flight 

scenario includes flights performing continuous climbs observed within the Seattle (ZSE) Air Route 

Traffic Control Center (ARTCC). 



 

 

 Methodology 3.2.

This study evaluates the performance of the enhanced KVM prototype in modeling flights performing 

continuous climbs on departure. 

3.2.1. Data Flow 

For this study, the analysts used ERAM track and clearance messages along with wind data from March 

14, 2014 at the Seattle ARTCC. The flight scenario data was collected using Lockheed Martin’s Sarbot 

tool. Unlike the experiments described in Chapters 1 and 2 there were no forced trajectory builds in this 

study, and the trajectory build times were not controlled. Trajectory accuracy varies with look ahead time, 

so the variation in trajectory build times makes comparison between scenarios complicated. To capture 

this source of variance, the relative build time of each trajectory is defined as a factor of interest and is 

included in the analysis.  

Lockheed Martin’s Virtual Testing Laboratory (VTL), a laboratory version of ERAM, ran this 9-hour 

experimental scenario to produce output scenario data consisting of track and trajectory points. The ANG-

C55 team analyzed the output scenario with CpatTools, a customized software suite that takes flight 

traffic input files and creates a linked set of relational database tables. These tables include smoothed 

track, clearance, and route data, as well as trajectory metrics. The analysts used this output data for all 

subsequent trajectory analysis. Flights with continuous climb paths were selected as a subset of the 

original data. After analyzing the climb and cruise phases of these flights, the Top of Climb (TOC) was 

determined for each. Further analysis of track data and trajectory builds established that a total of 150 

flights had appropriate data to be included in this analysis. 

3.2.2. Analysis Methods 

The analysts evaluated the performance of the KVM prototype enhancement to the Trajectory Modeler, 

comparing it to the operational version. Analysis includes the following scenarios: 

 Baseline – Legacy trajectory prediction using kinematic modeling 

 KVM – Trajectory prediction using kinetic modeling in enhanced KVM prototype 

 Data Collection and Reduction 3.2.2.1.

The analysts use custom Oracle SQL queries to retrieve the necessary scenario information produced 

through CpatTools. Examining the selected subset of flights with continuous climb paths, the analysts 

define TOC as the time in which an aircraft reaches its cruise altitude. Analysts then filtered the flights in 

order to remove any flights in which the cruise altitude does not equal its cleared altitude. This ensures 

that the track data and predicted trajectories accurately reflect the intent of the aircraft. In addition, flights 

are removed from analysis if all trajectory builds before TOC contain a level segment below TOC (i.e., do 

not model a continuous climb).  

In the absence of artificially injected interim altitude messages, analysts define two trajectory collections 

of interest: one contains the earliest trajectory build that does not model a level segment below TOC, and 

another group comprises this trajectory and all subsequent trajectories generated until 300 seconds prior 



 

 

to TOC. For a given trajectory (and associated track data), Bottom of Climb (BOC) is defined as the 

interpolated trajectory and track points closest to (but not before) the trajectory build time. Times and 

altitudes for BOC and TOC are identified and confirmed through visual exploration of the data using 

FliteViz4D, an interactive 4D visualization tool developed by ANG-C55 [Crowell, Fabian, and Nelson, 

2012]. 

 Metrics 3.2.2.2.

Metrics for this study include a subset of the standard trajectory metrics used in many studies [Paglione 

and Oaks, 2007]. Vertical error is defined as the vertical distance between a track point and its time 

coincident trajectory point, and along track error is defined as the longitudinal distance between a track 

point and its time coincident trajectory point. This study focuses on vertical error and along track error to 

assess trajectory accuracy. 

In addition, the analysts apply metrics specific to climb prediction accuracy. These metrics are analogous 

to metrics for descent prediction detailed in [Paglione et al., 2011] and [Bronsvoort et al., 2011]. TOC 

Error is defined as the difference in time between the track-determined TOC and the trajectory TOC, 

where negative values indicate that the predicted TOC occurred prior to the actual TOC. Climb rate is the 

mean rate of ascent of the aircraft over the region of time spanning the BOC to TOC, i.e. change in 

altitude divided by elapsed time. Climb rate error is the difference between the calculated climb rate for 

the actual path (track) and the predicted path (trajectory), where a negative value indicates that the 

predicted climb rate is less steep than the true climb rate. 



 

 

 Analysis 3.3.

This section describes the results of the analyses outlined in Section 3.2.2. Section 3.3.1 examines the 

error metrics for TOC prediction and climb rate error, considering one trajectory for each flight (the 

earliest trajectory build of interest, as defined in Section 3.2.2.1). Similar to metrics for descent analysis 

in [Schnitzer et al., 2015], TOC and climb rate are analogous to the intercept and slope of a linear model; 

therefore, this analysis of climb metrics is an informal goodness-of-fit test to evaluate the KVM 

Trajectory Modeler. Section 3.3.2 presents an analysis of general trajectory accuracy for the larger, more 

inclusive collection of trajectories described in 3.2.2.1. Finally, Section 3.3.3 exhibits visual examples 

demonstrating flight track and trajectory differences between the legacy TM and KVM prototype 

predictions. 

3.3.1. Climb Statistics 

This sub-section presents the results for climb metrics (TOC prediction and climb rate errors) comparing 

the predicted trajectory to the actual flight data. A TOC error of 0 seconds indicates the TM perfectly 

predicted the time at which TOC actually occurred. Negative TOC error indicates that the TM predicts an 

early TOC, while a positive TOC error indicates the predicted TOC is later than the true TOC. Table 6 

presents summary statistics for TOC error. 

Table 6. Statistics for top of climb prediction error 

 
TOC Error: 

Baseline 

TOC Error: 

KVM 

Average Error (seconds) -43.2 -6.1 

Standard Deviation (seconds) 157.3 157.5 

Number of Flights 150 150 

Average Absolute Error (seconds) 120.1 112.1 

 

The Baseline scenario, on average, predicts TOC at 43.2 seconds earlier than actually occurred. With 

application of the KVM algorithm the TOC is still predicted early, but the magnitude of the TOC 

prediction error is reduced from 43.2 seconds to 6.1 seconds, an average improvement of 37.1 seconds in 

this case. The reduction in magnitude indicates the TOC prediction by the KVM algorithm is more 

accurate on average than the Baseline scenario, although it still tends to predict TOC too early. However, 

the calculated standard deviation indicates high variance in the results for both scenarios; i.e., the 

observed error values are widely distributed. It should be noted that the mean effect size relative to the 

standard deviation is less than in the previous studies on descent metrics (see Chapter 1 and 2). Although 

the distribution of error values seems to have shifted to the right, the high variance means that the 

absolute error in predictions is not, on average, close to zero. The average magnitude of time errors (or 

average absolute error) is presented in the last row of Table 6. The decrease of 8 seconds points to a very 

slight improvement in the precision of TOC prediction. 



 

 

The second climb error metric relates to the rate of climb, comparing the difference in climb rate between 

the trajectory and the observed track data. A negative error indicates that the predicted climb rate is 

slower (shallower) than the true climb rate, while a positive error indicates that the predicted climb rate is 

faster (steeper). Table 7 presents summary statistics for climb rate error. 

Table 7. Statistics for climb rate error 

 
Climb Rate Error: 

Baseline 

Climb Rate Error: 

KVM 

Average Error (ft/min) 104.8 17.9 

Standard Deviation (ft/min) 287.4 330.4 

Number of Flights 150 150 

Average Absolute Error (ft/min) 233.0 216.8 

 

In the Baseline scenario, the results indicate an average climb rate that is 104.8 ft/min steeper than the 

true average climb rate. This was expected due to the early TOC prediction leaving the flight less time to 

climb to cruising altitude. In the KVM scenario the climb rate is only 17.9 ft/min steeper on average than 

the true climb rate. It follows that a later prediction of TOC causes the KVM scenario trajectories to have 

a reduced climb rate error. In comparing the magnitude of climb rate error, the KVM scenario is more 

accurate and demonstrates an 82.9% decrease in average absolute error from the Baseline scenario. 

3.3.2. Trajectory Accuracy 

For the overall trajectory error analysis, differences between the actual track and predicted trajectory are 

calculated using the vertical and along track error metrics as defined in Section 3.2.2. In this analysis the 

larger, more inclusive collection of trajectories for each flight is collected. As described in Section 

3.2.2.1, this group comprises the earliest trajectory of interest and all subsequent trajectories generated 

until 300 seconds prior to TOC. Similar to the previous study involving descents, the analysts calculate 

the time until TOC (TimeToTOC) to normalize the data based upon when true TOC occurred. For an 

accurate prediction, a TimeToTOC value of -120 seconds indicates that TOC will occur in 2 minutes. 

Additionally, the analysts calculate the interval between the time a trajectory is built and the TOC 

(TrajBuildToTOC), and use this relative build time to group data with similar trajectory ‘ages’. 

Trajectory accuracy at TOC is examined (the prediction errors at BOC are very close to zero and do not 

merit examination). TimeToTOC is not relevant in this particular analysis because the analysis point is 

fixed at TOC; however, the TrajBuildToTOC is used to group the data into bins of similar trajectory age. 

The top of Figure 17 displays the mean unsigned vertical error in feet, and the bottom displays mean 

unsigned along track error in nautical miles. Data on the x-axis are grouped in TrajBuildToTOC time 

bins. 



 

 

 

Figure 17. Mean unsigned vertical (ft.) and along track error (NM) at TOC, binned by 

TrajBuildToTOC (sec) 

Starting at the top right of Figure 17, the mean unsigned vertical error for the earliest trajectories at TOC 

has virtually identical magnitudes of 346 ft and 348 ft for Baseline and KVM, respectively. The next four 

bins from earliest to latest (right to left) reflect the improvement in performance by the KVM scenario 

over the Baseline scenario of 72, 53, -202, and -311 ft, respectively. As seen in the graph and the last two 

negative values, for trajectory build times approaching the true TOC the Baseline scenario outperforms 

the KVM scenario. 

The mean unsigned along track errors at TOC in the earliest trajectories have magnitudes of 5.29 NM and 

4.73 NM for the Baseline and KVM scenarios, indicating a 10.6% accuracy improvement for the KVM 

prototype. The next four bins from earliest to latest reflect an improvement in performance by KVM over 

the Baseline scenario of 1.99, 1.44, 1.08, and 0.04 NM, respectively, which translates to improvements of 

32.5%, 30.4%, 31.7%, and 1.9% over the average Baseline error. For along track error, the KVM scenario 

outperforms the Baseline scenario across all five bins of the TrajBuildToTOC factor. 

For a broader view of trajectory accuracy, the analysts also examine vertical and along track error 

throughout the entire descent. Figure 18 presents mean overall vertical error plotted against TimeToTOC 

in seconds. 



 

 

  

Figure 18. Overall mean unsigned vertical error 

Figure 18 shows the mean unsigned vertical error during descent for both scenarios grouped by similar 

TrajBuildToTOC on the y-axis. In this figure, it is evident that during the four earliest time bins (shown 

towards the bottom of the graph) there is an interval between 2 and 4 minutes (120-240 sec) prior to TOC 

in which the KVM scenario noticably outperforms the Baseline scenario in vertical errror. In the top 

section (encompassing trajectories built closer to TOC) the KVM performs worse in predicting positions 

within 2 minutes of TOC. 



 

 

  

Figure 19. Overall mean unsigned along track error 

The mean unsigned along track error is presented in Figure 19. The KVM scenario slightly outperforms 

the Baseline scenario for all TrajBuildToTOC bins. The most noticeable improvement occurs in 

trajectories built around 12 minutes prior to TOC (mid-range bin of 686 to 815 seconds).  

3.3.3. Flight Examples 

The following sections present flight examples for the Baseline and KVM prototype enhancement to the 

TM. Dotted lines represent the flight track data. Blue wireframes represent the Baseline trajectory, while 

red wireframes signify the KVM trajectory. Cylinders of each respective color characterize the aircraft 

location predicted by the trajectory at the time of true TOC. 

 Flight Example 1 – Improvement using KVM 3.3.3.1.

Example 1 displays an Airbus 320 (A320) departing Vancouver International Airport (CYVR) climbing 

to FL 350 en route to Phoenix Sky Harbor International Airport (KPHX). Figure 20 displays the aircraft, 

two predicted trajectories, and the track data. Both the Baseline and KVM trajectories are generated at 

simulation time 56,406 seconds. This is roughly 16 minutes prior to true TOC, which occurs at simulation 

time 57,360 seconds.  The Baseline trajectory (blue wireframe) predicts a TOC at 57,136 seconds, which 

is 224 seconds (about 4 minutes) prior to true TOC. The KVM trajectory (red wireframe) predicts a TOC 



 

 

at 57,333 seconds, which is 27 seconds before true TOC. Hence, the KVM prototype produces a 

noticeably better TOC prediction than the legacy algorithm.  

The true climb rate for Example 1 calculated from track data is 1,293 ft/min. The average climb rate in 

the Baseline scenario is 1,727 ft/min, which is 434 ft/min too steep. The average climb rate in the KVM 

scenario is 1,368 ft/min, which is 75 ft/min too steep. In this example, the KVM scenario produces a 

better TOC prediction and a more accurate climb rate (an improvement of 359 ft/min) than the Baseline 

scenario. 

  

Figure 20. Example 1, side view of entire climb 

 Flight Example 2 – Degradation using KVM 3.3.3.2.

Flight Example 2 displays an Airbus 319 (A319) departing Portland International Airport (KPDX) 

climbing to FL350 en route to Phoenix Sky Harbor International Airport (KPHX). Figure 21 illustrates 

the differences in trajectory climb predictions. Both the Baseline and KVM trajectories are generated at 

simulation time 66,853 seconds. This is roughly 12.5 minutes prior to true TOC, which occurs at 

simulation time 67,600 seconds. The Baseline trajectory (blue) predicts a TOC at 67,642 seconds, which 

is 42 seconds after the true TOC. The KVM trajectory (red) predicts a TOC at 67,899 seconds, which is 

299 seconds (about 5 minutes) after the true TOC. In this example the KVM produces a considerably less 

accurate (by 257 seconds) TOC prediction than the legacy algorithm.  

The true climb rate for Example 2 calculated from track data is 1,549 ft/min. The average climb rate in 

the Baseline scenario is 1,484 ft/min, which is 65 ft/min too shallow. The KVM scenario has an average 

climb rate of 1,119 ft/min, which is 430 ft/min too shallow. In this example, the Baseline scenario better 

predicts both TOC and climb rate (an improvement of 365 ft/min) as compared to the KVM scenario.  



 

 

  

Figure 21. Example 2, side view of entire climb 



 

 

 Conclusions and Discussion 3.4.

Trajectory prediction provides an essential input to the conflict probe tool of ERAM, which supports air 

traffic controllers by anticipating potential conflicts up to 20 minutes into the future. The currently 

deployed ERAM Trajectory Modeler (TM) uses a kinematic modeling approach, which is sufficient for 

aircraft following traditional step climbs. However, it is less suited to modeling continuous climbs, which 

are becoming more prevalent in departures as flights begin to make use of advanced technologies to 

perform these operations. Paglione and Oaks [2009] showed that inaccurate trajectories can lead to 

degradation of performance in the conflict probe and an increase in alerts that may not be beneficial to the 

controllers. Lockheed Martin developed a prototype enhancement to the TM that implements a kinetic 

modeling approach, with the goal of improving the prediction of flights with continuous climb profiles on 

departures. 

Schnitzer et al. [2015] evaluated prototypes of the BADA-based Kinetic Vertical Model (KVM) in 

previous studies. The previous studies focus on Continuous Descent Approaches (CDA), whereas this 

chapter focuses on continuous climbs on departures. In addition, previous studies used artificially injected 

interim altitude messages to force trajectory build times at a common point before Top of Descent (TOD). 

In the absence of these injected messages, this study has a collection of initial trajectory build times that 

are spread out from 4 to 25 minutes prior to Top of Climb (TOC). This study analyzes the initial 

trajectory builds and also successive trajectories to compare the KVM prototype against the legacy TM. 

The analysis reveals a slight improvement in average TOC prediction error with the KVM prototype of 

37.1 seconds compared to the Baseline scenario (albeit with relatively high variance in the data). 

However, the average absolute error improved by only 8 seconds. The shifted TOC predictions 

contributed to a decrease in climb rate error in the KVM scenario of 86.9 ft/min, which represents an 

82.9% improvement from the Baseline scenario. 

In assessing the trajectory accuracy, a TrajBuildToTOC parameter was defined to group data by trajectory 

age (relative to TOC). Analysts observed mixed results in mean unsigned vertical error at TOC, and 

improvement in mean unsigned along track error. When considering the entire climb sequence, a time 

period between 2 and 4 minutes prior to TOC showed improvements in the KVM scenario over the 

Baseline scenario in all but one category of TrajBuildToTOC times. In inspecting the mean unsigned 

along track error at TOC, the KVM scenario outperformed the Baseline scenario in all trajectory build 

time groups. The most noticeable improvement in Figure 19 is within the mid-range trajectories (built 

around 12 minutes prior to TOC), where the average along track error is considerably lower in the KVM 

scenario. 



 

 

Chapter 4 - Analysis of Simple Turn Modeling in Seattle Flight 
Data 

 Introduction 4.1.

The Separation Management and Modern Procedures Project is an initiative of the Federal Aviation 

Administration (FAA) under the Next Generation Air Transportation System (NextGen) Program to 

implement improvements in the En Route Automation Modernization (ERAM) system, which supports 

all en route facilities in the United States. The FAA’s Air Traffic Organization Operational Concepts, 

Validation & Requirements (AJV-7) tasked the FAA’s Modeling and Simulation Branch (ANG-C55) to 

conduct several studies investigating the impacts from various proposed prototypes and parameter 

changes to the Trajectory Modeler (TM) and/or Conflict Probe Tool (CPT) of ERAM. The overall 

objective is to improve the performance of the conflict probe in preparation for integration of the CPT 

alert notification into the flight data block on the radar controller’s main display. Since predicted 

trajectories are a primary input to the CPT, the accuracy and stability of the TM impacts the quality of 

alerts. 

Currently, the ERAM TM turn modeling is simplistic in nature. Referred to here as legacy turn modeling, 

the current TM incorporates turns into trajectories by creation of two adjacent linear trajectory segments 

at different headings. The Simple Turn Modeling (STM) prototype enhancement to the TM, created by 

the ERAM development contractor Lockheed Martin, aims to improve the performance of the TM during 

turns by modeling turns by approximating a great circle route using piecewise linear segments. 

This specific study compares the performance, with respect to trajectory accuracy, of the STM prototype 

against that of the current ERAM TM. The approach of this study is to isolate segments of track during 

which a turn occurs, and to evaluate the performance of time-coincident trajectory segments for both the 

legacy and prototype TM. The flight scenario examined includes aircraft in the Seattle (ZSE) Air Route 

Traffic Control Center (ARTCC). 



 

 

 Methodology 4.2.
This study evaluates the performance of the Simple Turn Modeling prototype utilizing flights in the 

Seattle ARTCC. 

4.2.1. Data Flow 

In this study, analysts utilized ERAM track and clearance messages in conjunction with wind data 

recorded on March 14, 2014 from the Seattle ARTCC. Data was collected using Lockheed Martin’s 

Sarbot tool. This 9-hour experimental traffic scenario was entered into Lockheed’s Virtual Testing 

Laboratory (VTL), a laboratory version of ERAM, to create an output scenario containing track and 

trajectory points. The output scenarios were used as input in the ANG-C55 Modeling and Simulation 

Branch’s CpatTools, a customized suite of software tools that takes flight traffic input files and creates a 

linked set of relational database tables. Tables include smoothed track, clearance, and route data, along 

with trajectory metrics. The analysts used this output data during the ensuing trajectory analysis. 

4.2.2. Analysis Methods 

Analysts evaluated the Simple Turn Modeling (STM) prototype for the Trajectory Modeler, comparing it 

to the operational version. Analysis includes the following scenarios. 

 Baseline – Legacy trajectory prediction  

 STM – Trajectory prediction using the Simple Turn Modeling prototype enhancement to the TM 

 Data Collection and Reduction 4.2.2.1.

The scenario in the CpatTools relational database contains 1,212 flights. For this study, analysts 

considered only flights whose track included a turn. To be considered a turn, the track must reflect a 

heading change over a minimum span of 30 seconds. In addition, the heading change of the first and last 

track point in the span must be at least 1 degree, and the heading change of all interior segments must be 

at least 2 degrees. In examining the track data, analysts identified 2,921 distinct turns. However, these 

may include turns that occur in the track but are not reflected in the route or are otherwise unavailable to 

the automation, such as verbally cleared path stretches. Since these turns overly complicate the data set, 

analysis is done to identify this type of turn segment via a custom application (TurnAdherenceCalculator) 

and exclude the associated data from analysis. This application calculated the distance of a turn segment’s 

midpoint from the nearest fix on the route.  

Analysts filtered out turns occurring more than 10 NM from a route fix. Filtering was also performed to 

exclude: 26 flights for which the TM stopped building trajectories in the STM scenario, 48 flights which 

had extremely high or extremely low trajectory build rates, and 6 other flights which were either not 

following their route or engaged in holding activities. In addition, analysts filtered out 46 military flights 

from the scenario, since military flights frequently deviate from their filed routes. The combined filters 

reduced the data set to 1,775 track-defined turn segments from 669 flights.  

In collecting predicted trajectories, the analysts considered all trajectories built from the beginning of a 

flight up to 10 seconds after the end of the track-defined turn segment, resulting in 3,263 usable 

trajectories. Analysts then extracted trajectory metrics and other pertinent scenario information from 



 

 

CpatTools output database tables using custom designed Oracle SQL queries. All analyses utilized JMP
®
 

statistical software.  

  Metrics 4.2.2.2.

Metrics for this study include standard trajectory metrics used in many studies [Paglione and Oaks, 2007]. 

Cross track error is the lateral distance between a track point and its time coincident trajectory point. 

Along track error is the longitudinal distance between a track point and its time coincident trajectory 

point. Vertical error is the vertical distance between a track point and its time coincident trajectory point. 

 



 

 

 Analysis 4.3.
This section describes the results of the analyses defined in Section 4.2.2. Section 4.3.1 evaluates the 

track-trajectory errors for each flight. Section 4.3.2 displays visual flight examples revealing track and 

trajectory differences between the legacy TM and STM prototype predictions. 

4.3.1. Trajectory Accuracy 

As defined in Section 4.2.2, the metrics cross track, vertical and along track error are utilized in order to 

calculate differences between the actual track and predicted trajectory. For each track-defined turn 

segment, data consisted of trajectories and trajectory samples that meet the following conditions: 

 Trajectory build time occurred at least 40 seconds from start of track for a given flight 

 Trajectory build time occurred no later than 10 seconds after the end of a track-defined turn 

segment 

 Trajectory sample time occurred in the temporal range of 10 seconds prior to the start of the 

track-defined turn segment and 10 seconds after the end of the track-defined turn segment 

For each track-defined turn, the cross track, along track, and vertical errors from all of the usable data 

were aggregated. Figure 22 and Figure 23 depict distributions of the unsigned trajectory error as well as 

relevant statistics in the Baseline and STM scenarios, respectively. N is the number of track-defined turn 

segments considered in the aggregate analysis. Mean cross track error is 1.22 NM in the Baseline scenario 

and 1.26 NM in the STM scenario; mean along track error is 1.76 NM in the Baseline and 2.12 NM in the 

STM; and vertical error is 1,142 ft. in the Baseline and 1,226 ft. in the STM. 



 

 

 

Figure 22. Distribution of unsigned trajectory errors near track-defined turn segments in Baseline 

scenario 



 

 

 

Figure 23. Distribution of unsigned trajectory errors near track-defined turn segments in STM 

scenario 

Table 8 presents the results of a matched pairs statistical analysis (one-sided t-test) comparing the 

trajectory accuracy for track-defined turn segments in the Baseline scenario to the trajectory accuracy for 

the same segment in the STM scenario. Positive values indicate that the trajectory error is greater in the 

STM scenario than it is in the Baseline scenario. Using a significance threshold of p=0.01, along track 

error and vertical error are observed to be greater in the STM scenario than they are in the Baseline 

scenario by an average of 0.243 NM and 75 ft., respectively. From a practical standpoint, the observed 

increase in along track error is marginally significant while the increase in vertical error is relatively 

minor. 



 

 

Table 8. Matched pairs analysis of Baseline and STM scenarios 

 Difference Standard Error N Turns p-value 

Cross Track Error (NM) 0.036 0.018 1357 0.02 

Along Track Error (NM) 0.243 0.042 1357 <0.0001 

Vertical Error (ft.) 75 24.8 1357 <0.01 

 

4.3.2. Flight Examples 

The following sections present flight examples for the legacy TM and prototype enhancements. Dotted 

lines represent the flight track data, with track sampled at 10 second intervals. Blue wireframes signify the 

Baseline trajectory while red wireframes signify the STM trajectory. Solid lines represent the filed route. 

The circle represents the spatial location of the aircraft at the time indicated. 

 Flight Example 1 – Trajectory improvement in STM 4.3.2.1.

Flight Example 1 depicts a Boeing 737-900 departing Seattle Tacoma International Airport (KSEA). The 

flight rejoins its filed route via a turn near the fix NORMY. The turn begins at approximately 55,840 sec 

and ends at approximately 55,880 sec. Figure 24 displays the aircraft at 55,640 seconds. The Baseline 

trajectory is 4 seconds old (build time 55,636 sec) and the STM trajectory is 22 seconds old. Trajectory 

rebuilds follow the initial turn out of KSEA and represent the automation’s attempt to rejoin the filed 

route. The STM trajectory builds to the turn fix (NORMY) while the Baseline trajectory rejoins the route 

at a greater along route distance from the current position of the aircraft. The displayed STM trajectory 

better matches the path actually taken by the aircraft (dotted blue lines), with an average cross track error 

of 0.03 NM vs. 2.91 NM for the displayed Baseline trajectory. Note that the Baseline trajectory consists 

of two distinct linear segments with a single joint, whereas the STM trajectory consists of two large linear 

segments joined by several small linear segments that approximate a circular turn. 

 

Figure 24. Flight example 1 after departing KSEA, at 55,640 sec 



 

 

 

Figure 25 depicts flight example 1 at 55,742 seconds, capturing a trajectory reconformance that occurs in 

the Baseline scenario. In this scenario the legacy TM persists in modeling a rejoin to the filed route 

beyond the NORMY fix. The STM trajectory is still accurate, with an age of 124 seconds since last 

rebuild. 

 

Figure 25. Flight example 1, Baseline trajectory reconformance at 55,742 sec 

Figure 26 presents the next Baseline trajectory rebuild for flight example 1. This trajectory, generated at 

55,815 sec, rejoins the route near the fix NORMY and is virtually indistinguishable from the STM 

trajectory in terms of accuracy from this point forward. However, the age of the STM trajectory is 197 sec 

at this point, and no rebuilds were needed throughout the turn. 

 

Figure 26. Flight example 1, Baseline trajectory reconformance at 55,815 sec 

  Flight Example 2 – Trajectory degradation in STM 4.3.2.2.

Flight example 2 involves a Boeing 737-900 departing KSEA. The flight leaves the airport in a southerly 

direction and then heads west to rejoin its filed route, seen in Figure 27 and Figure 28. The turn under 



 

 

consideration occurs at the fix ERAVE; it begins at about 53,770 sec and ends at about 53,870 sec. At the 

time shown (53,300 sec), the Baseline trajectory is 23 seconds old and the STM trajectory build just 

occurred. The along track error for the Baseline trajectory at the start of the turn (53,770 sec) lags 1.85 

NM  behind the track and the along track error for the STM trajectory is 3.75 NM ahead of the track. The 

difference in unsigned error (magnitude) yields a degradation of 1.9 NM. While the Baseline trajectory 

predicts a slower speed than indicated by the track data, the STM trajectory predicts a significantly faster 

speed than actually occurred. 

 

Figure 27. Flight example 2 at time 53,300 sec, top-down view 



 

 

 

 

Figure 28. Flight example 2 at time 53,300 sec, side view 

Figure 29 depicts flight example 2 at 53,630 sec, 5.5 minutes later. The Baseline along track error at this 

point is only 0.01 NM while the STM along track error is 2.89 NM. The difference in unsigned error has 

increased to 2.88 NM at this point, even though the trajectory predictions are closer together than in 

Figure 27. This peculiarity is due to the fact that the difference in signed error has decreased (from 5.6 to 

2.88 NM) while the unsigned difference increased, from 1.9 to 2.88 NM. Signed error difference is less 

relevant to accuracy metrics, where the magnitude of deviation from truth is often the more important 

consideration.  



 

 

 

Figure 29. Flight example 2 at 53,630 sec 

 Flight Example 3 – Issue with Readherence Logic 4.3.2.3.

Example 3 demonstrates an issue with readherence logic in the STM prototype. The flight, a Boeing 777-

300ER out of Incheon International Airport in South Korea (RKSI) is not following its filed route, so it 

was not included in the trajectory analysis described in 4.3.1. However, observing this situation is 

valuable when attempting to evaluate how the turn modeling prototype performs when route rejoin logic 

is used. Figure 30, depicting the flight at 43,893 sec, reveals that Baseline and STM trajectories rejoin the 

route at the fix MWH. However, at time 44,047 sec (seen in Figure 31) the Baseline trajectory rejoins the 

route shortly after the next fix (ODESS) while the STM trajectory rejoins the route at BLUIT, which 

involves a predicted turn almost completely orthogonal to the current flight path. This suggests that there 

is some problem with the rejoin logic in the STM prototype. This issue affects the In Lateral Route 

Adherence logic, as identified through personal correspondence with the development contractor 

[E.McKay, personal communication, March 21-22, 2016], and has already been remedied at the time of 

this report. 

 



 

 

 

Figure 30. Flight example 3 at time 43,893 sec 

 

Figure 31. Flight example 3 at time 44,047 sec 

 



 

 

 Conclusions and Discussion 4.4.
ERAM’s conflict probe tool supports air traffic controllers in anticipating conflicts by providing aircraft 

trajectory predictions upwards of 20 minutes into the future. Inaccurate trajectories can lead to 

degradation of performance in the conflict probe and an increase in alerts that may not be beneficial to 

controllers. The operating version of the ERAM TM uses a simple turn modeling approach, utilizing two 

linear segments of different headings to represent a turn. However, turns can be represented by using a 

sequence of linear segments to approximate inside turns [Nagl, 2011] without significantly increasing the 

load on, or decreasing the accuracy of, the trajectory modeler. A prototype enhancement to the TM by 

Lockheed Martin aims to utilize this approach with the goal of improving trajectory prediction for flights 

predicted to make inside turns. 

This study evaluates a TM prototype that upgrades the legacy turn modeling by using linear segments as 

great circle arc approximations. This enhancement to the TM intends to improve the accuracy of 

trajectory prediction for flights during inside turns. This study compares the performance of the Simple 

Turn Modeling (STM) prototype as compared to the legacy TM. The objective is to evaluate the benefits 

of using the STM prototype over the legacy ERAM model. 

The analysis, which concentrates specifically on flights which make inside turns within 10 NM of a fix on 

the file route, shows that the cross track error remains unchanged when the STM is implemented, while 

the along track error and vertical error are slightly degraded by 0.243 NM  and 75 ft., respectively.  

Analysis revealed anecdotal evidence of outliers in the various distributions of trajectory errors, even with 

the filtering described in Section 4.2.2.1. Discussion with the ERAM development contractor led to the 

realization that several algorithmic issues were present in the version of the prototype scenario provided 

to ANG-C55 for evaluation. Identification and correction of these issues had occurred as of the time of 

this analysis. However, an updated version of the STM scenario updated could not be obtained for this 

evaluation due to time constraints. 

The observed degradation and algorithmic issues suggest that the version of the STM prototype evaluated 

by ANG-C55 is problematic. However, the fact that correction of several software issues occurred prior to 

this evaluation strongly suggests that reevaluation is necessary prior to any useful recommendation 

regarding the suitability of the prototype for implementation into the operational ERAM. 
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