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The following document constitutes the final report for FAA Grant 94-G-013, Analysis of 

Training of Cognitive Skills in a Line-Oriented Flight Training Environment.  The focus of this 

research was on improving the assessment and training of skills and knowledge of airline pilots.  

A major theme of the work attempted to validate the assessment of Crew Resource Management 

(CRM) skills, an area that had previously been identified as relevant to airline accidents and 

incidents.   Our results showed that current methods of assessing CRM skills using observed 

behaviors might not adequately discriminate among performance in these skill categories.  The 

problem may lie with the validity of the skill categories themselves, the adequacy of observed 

behaviors to reflect CRM skills, or the ability of evaluators to discriminate among different 

levels of CRM performance.  Second, our research evaluated the psychometric properties of 

aircrew assessments, and the results indicated several areas where changes to the assessment 

methods could potentially benefit the quality of aircrew assessments.  These areas included 

design of gradesheets, wording of performance indicators, grade scale labels and number of 

levels, and training of the evaluators themselves.   To support this last recommendation, we 

developed of a software package to aid in training and calibrating instructors and evaluators.  

The software has been made available to all major US carriers. 
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The Importance of Quality Data in Evaluating Aircrew Performance 
INTRODUCTION 

In this paper, we discuss the application of basic psychometric principles to the problem 

of assessing aircrew performance.  In particular, we are concerned with evaluating aircrews 

under the Advanced Qualification Program (AQP) in high fidelity, full-flight simulators. A 

major goal of AQP is to provide the carrier with a quality assurance program which ensures that 

aircrew members have the highest possible level of proficiency on all technical and management 

skills relevant to the safe and efficient operation of the aircraft. The implementation of a quality 

assurance program requires a database system that begins with an explicit set of qualification 

standards that are based on job task listings. These qualification standards drive the content of 

the curriculum, which in turn drive an assessment process that explicitly evaluates pilots on these 

qualification standards. The data from the assessment process provides feedback regarding the 

content and delivery of the curriculum. This feedback in turn allows for continuous 

improvements in curriculum design, as well as better directing the allocation of training efforts to 

those knowledges and skills that are weakest. When functioning properly this system will ensure 

that all aircrew members attain and maintain a pre-specified standard of proficiency. Thus, it can 

be seen that quality assurance requires quality assessment.   

A quality assurance program can only be as good as its weakest link. The qualification 

standards must be based on a careful analysis of job task listings. The curriculum and instruction 

must be designed to train to the qualification standards. And finally, the focus of this chapter, the 

assessment tools must provide a reliable and valid evaluation of performance. It is of the utmost 

importance to realize that under AQP we are not simply assessing individuals, we are assessing 

the viability of the curriculum, the instructors, and the evaluators. From this perspective, the 

primary function of assessment is to improve training and thereby provide highly qualified 

aircrews. 

Overview 

The primary goal of this chapter is to describe a set of methods and procedures that will 

enhance the quality of the data used to assess aircrew performance. The two fundamental 

properties of quality data are reliability and validity. This section begins with a formal discussion 

of these two ideas, including a description of the statistics used to estimate reliability.  After 
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giving a formal treatment of reliability and validity we next discuss these concepts in the context 

of aircrew performance assessment. Here our discussion will be concerned with the three 

primary factors that influence the overall quality of the data.  The first is the observer or 

evaluator who must make the judgments or ratings of the observed performance.  The second is 

the measuring instrument (e.g., a Line-Oriented Evaluation [LOE] grade sheet) that is used to 

collect data.  The third factor is the host of parameters that comprise the assessment situation 

(e.g., a calibration session).  As a brief aside it is important to understand that the assessment 

situation is often not the same situation under which assessments are normally conducted. For 

example, in a calibration session the evaluators will observe and judge a video of a crew flying 

an LOE as opposed to judging an LOE simulated flight.  This is necessary because  in order to 

estimate reliability every evaluator must observe the identical crew performance. The video is 

necessary because it would pose some obvious logistical problems to arrange for 20 or more 

evaluators to observe an actual LOE in the simulator. Returning to the central point of this 

discussion, when we refer to the parameters of the assessment situation, it must be understood 

that they are not always the same as the conditions under which these types of observations are 

normally made. 

RELIABILITY 

Reliability is a concern whenever we are engaged in observation or measurement. It is concerned 

with the consistency of our measurements  (Anastasia, 1958). Thus, if we repeatedly weigh the 

same brick and we observe little or no variation in the outcomes, we would conclude that our 
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observation or measurements are reliable.  In this chapter, we want to extend the definition of 

reliability to include the properties of sensitivity and accuracy.  Sensitivity refers specifically to 

the degree to which observations track or covary with changes in the object that is being 

measured. The concept of sensitivity is depicted in Figure 1. Judges’ estimates of the high 

temperature at Atlanta airport over a seven-day period are compared with the actual temperature 

as recorded by the US Weather Bureau. We see judge A’s estimates covary very closely with the 

true temperature, whereas judge B deviates almost randomly from the true temperature. We 

would conclude that judge A is more sensitive to temperature variations than judge B.  In this 

sense it can be said that judge A is more reliable than judge B. 

Accuracy refers to how closely our measurements correspond to the absolute magnitude 

of what is being measured. This idea is illustrated in Figure 1 by judge C, who is extremely 

sensitive to actual variations in temperature (i.e., his estimates covary precisely with the true 

temperature), but who consistently overestimates the temperature by 5 degrees.  In this regard, 

we would conclude that judge C is not highly reliable. In sum, reliable measurements must be 

both sensitive and accurate.  

Quantifying Sensitivity: Correlational Measures 

Although there are a variety of statistics for quantifying the degree of sensitivity in a 

measurement, the Pearson product-moment correlation (indicated by r) is by far the most 

commonly used.  Its popularity with researchers and statisticians is due to several desirable 

properties. First, the Pearson correlation varies on a continuous scale between the values of -1.0 

and +1.0.  The direction of the correlation or relationship is indicated by the plus or minus sign to 

the left of the numerical value. A positive relation occurs when the two variables covary in the 

same direction (e.g., as individuals’ height increases they are also likely to weigh more).  A 

negative correlation depicts an inverse relationship (e.g., as altitude increases the content of 

oxygen in the atmosphere decreases). These two types of relationships are depicted in Figure 2. 
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Second, as the magnitude of the correlation moves from 0.0 to either +1.0 or -1.0, the 

strength of the relationship increases. The idea of strength of relationship can be illustrated with 

a scatter plot.  Figure 3 plots the relationship between height and weight,  

 

where each point represents a single individual’s location on the two axes. As can be seen from 

this scatter plot, for every height there is a range of weights. The variation from a perfect 

relationship can be seen as the deviations from the straight line drawn through the scattering of 

data points. The line represents the best linear (i.e., straight line) fit to these data. The 

relationship between height and weight is obviously imperfect.  
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The Pearson correlation statistic reflects the amount of scatter or variance we see in 

Figure 3. As the variance decreases and scores move closer to the best-fitting straight line, the 

magnitude of the correlation increases. This idea can be seen in Figure 4 which shows the 

relationship between the distance between two points and the time required for a given type of 

aircraft to fly the distance. Here we see far less deviations of the observations (points) from the 

best fitting line.  For a given distance there is relatively little variation in times that are observed. 

The Pearson correlations for the data presented in Figures 3 and 4 are 0.40 and 0.80, 

respectively.   Notice that the slopes of the lines in these two figures are very similar.  The 

difference is in the amount of variability or scatter of the points above and below the lines.   

 

 Another attractive feature of a Pearson correlation is that the square of the correlation 

tells us how much of the variation in one variable is accounted for by knowing the other variable. 

For example, the correlation of 0.40 between height and weight indicates that 16% (0.402) of the 

variance in weight is accounted for by knowing a person's height (or vice versa).  Or said 

differently, the variation in the weight among a group of individuals is reduced by 16% if we 

were to control for differences in height (e.g., if every member of the group was 72 inches tall).  

In Figure 4, where the correlation is  0.80, 64% of the variance in time is accounted for by 

distance. Thus, knowing distance traveled severely constrains the variation in travel time. 
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 7 

Figure 5 illustrates how a scatter plot can be used to depict sensitivity between two 

judges.  Assume that two evaluators are shown a video of a crew flying an LOE and each 

evaluator independently rates the Captain on the same 20 performance indicators using a 4-point 

scale. Along the horizontal axis we have the ratings of Evaluator 1 and along the vertical axis the 

ratings of Evaluator 2. The 20 points on the scatter plot (not all points are visible because of 

redundancy) correspond to the 20 performance indicators. For example, it can be seen that 

Evaluator 1 rated some performance indicators a “2”, whereas Evaluator 2 rated the same 

performance indicators “2”s and “3”s.  In this way we can see how the scatter plot depicts the 
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Figure 5. Two Evlauators' ratings of 20 performance indicators on a 4-point scale.
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degree of agreement between the two evaluators.  Once again, if there were perfect agreement 

between the two raters, all of the points would fall on the best-fitting straight line across the 

graph.  The Pearson correlation for these data is 0.90.   

 

 

In a limited sense, the Pearson correlation characterizes the information in the scatter plot 

with a single statistic. As noted earlier, there are several different measures of correlation and 

none share all the properties of the Pearson correlation statistic. Therefore, it is important when 

reading reports containing correlational statistics to know whether it is a Pearson statistic or not.  

Two Correlational Measures of Sensitivity 

 In this section we discuss two methods for assessing the reliability of observations, rater-

referent reliability (RRR) and inter-rater reliability (IRR).  Although both methods can be said 

to measure reliability, we believe RRR is the better measure of sensitivity.  Also, the reader 

should be forewarned that these labels (RRR and IRR) are somewhat misleading in that they 

suggest they are measures of rater reliability, when in fact they also reflect the influence of the 

measuring instrument and various other factors that influence the sensitivity of the observations. 

These factors are discussed in some detail later in the chapter.  

 Rater-Referent Reliability (RRR) 

RRR is a correlation reflecting how closely an evaluator’s ratings agree with some 

standard or referent. This method of assessing sensitivity can be used when there is an external, 

objective basis for defining a referent score.  A simple illustration is a situation where we 

correlate an individual’s subjective estimates of the weights of different objects with their actual 

weights. To the extent that the subjective estimates track or covary with the actual weights, the 

estimates are sensitive and the individual’s RRR will be high. 

RRR can be used to assess evaluators’ sensitivity in assessing aircrew performance as 

long as we have an objective basis for grading performance.  This is the situation at several 

carriers, where there are explicit qualification standards for grading LOE, First Look, and 

Maneuvers Validation performance.  These performance standards are set forth in the fleet 

qualification standards and these standards serve as the basis for curriculum and training.  In 

addition, there are clearly established grading criteria that map degrees of deviation from the 

performance standards onto the grading scale (e.g., was this performance a 4, 3, 2, or 1 on a 4-
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point grading scale?).  With this type of information it is possible for evaluator trainers to script 

videos that capture specific deviations from the qualification standards. These videos can then be 

validated by having a group of evaluator supervisors view and grade the aircrew performance on 

the video. These expert ratings then become the referent values for computing RRR. 

We will make this procedure more concrete by illustrating how RRR can be used to 

assess the sensitivity of evaluators’ ratings of LOE performance. Assume we create a video of a 

crew flying an LOE and develop a grade sheet containing ten performance indicators (sometimes 

referred to as observed behaviors) corresponding to specific behaviors that should have been 

executed according to a task analysis of the phases of flight and the events occurring.   Assume 

further that the video shows the crew deviating from standard operating procedures in a manner 

that relates to specific performance indicators on the grade sheet. A group of I/E supervisors then 

grade all of the items on the grade sheet. Any discrepancies among the supervisors are resolved 

to arrive at a referent value for each of the performance indicators. 

 At this point we would present the video to a group of evaluators who rate the same 

performance indicators.  As an example of the resulting data, Table 1 shows the ratings for five 

evaluators along with the referent scores for ten performance indicators.  The ratings are given 

on a 4-point scale. 

 

It is important to recognize that RRR is a measure of sensitivity because it reflects the 

degree to which the evaluators’ ratings covary with the true performance as defined by the 

referent rating. As will become clear shortly this is not necessarily true of the IRR measure. 

Evaluators Referent
1 2 3 4 5 Score

1 2 2 3 3 2 2
2 1 3 3 3 3 3
3 4 3 3 3 1 3
4 4 3 4 3 3 3
5 3 3 3 3 3 3
6 2 2 2 3 2 2
7 2 3 4 3 3 3
8 1 2 2 1 1 2
9 3 3 3 3 3 3
10 4 3 3 4 3 3Pe

rf
or

m
an

ce
 In

di
ca

to
rs

Table 1. Ratings of 5 Evaluators scoring 10 Performance Indicators
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Inter-Rater Reliability (IRR) 

 IRR is a correlation reflecting the degree to which a group of raters agree with one 

another.  It is the most commonly used method of measuring rater reliability and does not require 

a referent value. We will illustrate how IRR is computed using the data from Table 1. Each of the 

five evaluator’s ratings is correlated with the ratings of each of the  

 

 

remaining other four evaluators (e.g., Evaluator 1 with 2, 1 with 3, etc.) resulting in the matrix of 

correlations shown in Table 2. The bottom row, labeled “IRR” shows the average of these four 

correlations for each evaluator.  The average of these five individual IRRs gives an overall IRR 

for the group of 0.52.  The right-most column of Table 2, labeled “RRR”, shows the correlation 

of each evaluator’s ratings with the referent.  The overall RRR is computed by simply averaging 

these five correlations, which in this case is 0.67. 

Comparison of RRR and IRR  

RRR and IRR are similar in that both are correlational measures reflecting the degree to 

which measurements covary. However, IRR reflects the covariance between evaluators, whereas 

RRR reflects the covariance between evaluators and the true score (i.e., the referent).  As a 

result, RRR is necessarily a measure of sensitivity whereas IRR does not necessarily reflect 

evaluators’ sensitivity.  One can easily imagine a situation where a group of evaluators is in high 

agreement with one another (high IRR), but their ratings do not covary with actual changes in the 

object or event that is being judged (low RRR).  This could occur if judges are uniformly basing 

Evaluators
1 2 3 4 5 RRR

1 1.00 0.55 0.43 0.59 0.18 0.55
2 0.55 1.00 0.69 0.53 0.60 1.00
3 0.43 0.69 1.00 0.45 0.59 0.69
4 0.59 0.53 0.45 1.00 0.61 0.53
5 0.18 0.60 0.59 0.61 1.00 0.60

IRR 0.44 0.59 0.54 0.55 0.50

Ev
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rs

Table 2. Inter-correlation matrix of five evaluators
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their ratings on some irrelevant property of the object being judged. A simple example of this 

would be young children judging the weight of objects on the basis of volume, rather than mass. 

Thus the childrens’ rating might show high IRR, but quite low RRR. 

 In most real-world situations, including the evaluation of aircrew performance, we would 

expect RRR and IRR to be highly correlated with one another.  However, while a high RRR 

implies a high IRR (i.e., if all of the evaluators’ ratings are in close agreement with the referent 

they must also agree with one another), a high IRR does not imply a high RRR. Consider a 

situation where performance is again being judged on a 4-point scale (4 = outstanding and 1 = 

unacceptable), but evaluators only use the intermediate values of the scale (3 = acceptable and 2 

= minimally acceptable). This could result in high IRR, but the evaluators would be insensitive 

to the full range of performances being observed, resulting in relatively low RRR.  

An additional advantage of RRR over IRR is that it defines a clear objective for training 

that is based on the qualification standards. With appropriate training on qualification standards 

and applying grading scale criteria, evaluator’s judgments should begin to show high agreement 

with referent values.  Accomplishing this would seem to be an important objective for an airline. 

For these reasons we shall consider RRR as the primary measure of sensitivity.  IRR can 

be used as a means of diagnosing RRR values that are lower than expected. For example, if it 

were found that IRR was higher than RRR and that most of the evaluators disagreed with the 

referent on a particular performance item or subset of the items, then we would certainly want to 

resolve the disagreement. 

In concluding our discussion of RRR there are three additional points that need to be 

made.  First, although qualification standards contribute significantly to objectifying grading 

LOE and maneuvers-validation performance, there will always remain a subjective component to 

the grading process.  Even among the most experienced evaluators we may find some degree of 

disagreement in the assignment of grades (e.g., on a 4-point scale some disagreements between 

ratings of 2 and 3 are to be expected). However, with training on identifying qualification 

standards and applying grading scale criteria, deviations of 2 points or greater on a 4-point scale 

should be virtually eliminated.  Later we discuss how calibration sessions can be used to fine-

tune an evaluator’s application of his knowledge of qualification standards to the grading 

process. 
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Second, one reservation regarding RRR is the possibility that a group of evaluators would 

deviate from the referent for valid reasons.  This situation might occur, if for no other reason, 

because of a clerical error in defining the referent.  Computing only RRR would fail to reveal the 

error.   Therefore, we recommend always checking the deviation between the referent ratings and 

the group’s averaged ratings.   Significant deviations in ratings of either performance indicators 

or event sets would signify potential problems to be further investigated. 

Finally, a discussion of RRR could easily have occurred in the context of the validity 

section later in this chapter.  Validity concerns the question of whether a measuring instrument 

truly measures what it is intended to measure and sensitivity obviously relates to this issue.  

However, in terms of the application of these measures to real situations, we believe that RRR is 

more closely related to reliability than it is to validity. 

Quantifying Accuracy: Mean Absolute Difference 

Mean absolute deviation (MAD) is an extremely simple and direct method for estimating 

the accuracy of observations.  It is computed by simply averaging the absolute deviations 

between the observer’s rating and the referent rating as shown in Table 3 for six evaluators’ 

ratings on three LOE event sets.  Here it can be seen that a separate MAD was computed across 

the six evaluators for each of the three event sets. The value of MAD may range from a 

minimum of 0.0 (all evaluators gave the same rating) to a maximum value that is equal to the 

difference between the highest and lowest scale value (e.g., on a 4-point scale the maximum 

MAD would be (4 - 1) = 3).  This property of MAD makes it difficult to compare MAD values 

across different scales of measurement (e.g., 3- versus 4-point ratings).  However, the problem is 

easily rectified by standardizing MAD in term of the number of values on the measurement scale 

(i.e., MAD divided by the maximum deviation) and then subtracting this value from 1.0. This 

standardized MAD, referred to as SMAD (See Table 3), ranges between 0.0 and 1.0, with 1.0 

indicating perfect agreement. Thus, SMAD allows meaningful comparisons across different 

scales of measurement and is scaled similar to a correlational measure . For the purposes of the 

present chapter we will simply use MAD to refer to the generic measure.  

Comparing MAD with Sensitivity Measures (RRR and IRR).   
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In one sense it can be said that MAD is a more fundamental measure than RRR or IRR 

because if we observe a small MAD we not only know that we have accuracy, but we also have 

sensitivity. Quite simply, when MAD is equal to 0.00, then both RRR and IRR would necessarily 

be equal to +1.0.  As MAD becomes larger we might generally expect RRR and IRR to approach 

0.0, but this is not necessarily the case.  As was illustrated in Figure 1, it is possible for 

correlational measures such as RRR or IRR to be +1.0 when MAD is arbitrarily large. For this 

reason it is necessary to compute both MAD and RRR to assess both the accuracy and sensitivity 

of our observations.  

 

Table 3: Calculation of MAD for six Evaluators and three Event Sets  

  Evaluators    

  1 2 3 4 5 6 Referent MAD SMAD 

1 3(0) 3(0) 3(0) 4(1) 3(0) 2(1) 3 .33 .11 

2 3(1) 4(0) 3(1) 3(1) 4(0) 2(2) 4 .83 .28 

Ev
en

t S
et

s 

3 1(1) 4(2) 4(2) 1(1) 3(1) 4(2) 2 1.50 .50 

Note. Under evaluators the digit to the left is the rating given and the digit in parentheses is the 
absolute difference between the evaluator's and referent rating. MAD = sum of differences 
divided by number of evaluators (6). SMAD = the MAD value divided by 3.0 (the maximum 
deviation on a 4-point scale) and subtracted from1.0.  

 

Another potential difference between MAD and correlational measures, such as RRR and 

IRR, is illustrated in Table 3 where a separate MAD is computed for each of the three events 

sets. The reliability of the MAD statistic as it is computed here depends on the number of 

evaluators. This may be contrasted with the RRR and IRR correlational statisitics as they were 

computed from Table 2. Notice that in Table 2 reliability is computed  between a pair of raters 

(or a rater-referent pair) across the items in the test. The reliability of this statistic is therefore 

dependent on the number of items rather than the number of raters. This difference between 

MAD and RRR or IRR may be important when we are attempting to estimate the reliability of 

instruments containing only a small number of items. For example, if we were assessing an LOE 

that only contained a few event sets it would not be highly informative to compute RRR or IRR 

across three or four event sets. However, if we had ratings from a large number of evaluators on 
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each of these event sets we could compute a reliable MAD value for each of the event sets. It 

must be recognized that when MAD is used in this manner, it is estimating the accuracy of 

judgments made on a single item. The inference we are making is to the population of evaluators. 

This stands in contrast to RRR or IRR which is sampling items and making an inference to some 

population of items. The point that we are making here is that they are different measures and as 

a consequence MAD may be used in situations that do not easily lend themselves to a 

correlational analysis.  

Congruency 

Before concluding our discussion of accuracy there is one additional measure that can 

often enhance our understanding of rating data. Congruency is a measure of the degree to which 

individual raters are distributing their ratings in a manner that is congruent with the referent. 

Figure 6 shows the frequency with which an individual evaluator used each of the scale values 

on a 4-point rating scale, compared to the referent. Here we can see that this evaluator rated 

performance more in the middle of the scale (i.e., 2 and 3 ratings) and fewer extreme ratings (1 

and 4 ratings) than the referent. 

 

 

 The congruency measure can not be truly classified as a sensitivity or accuracy type of 

measure. High congruency neither ensures high sensitivity nor high accuracy for the simply 

reason that congruency is only concerned with the frequency in which various ratings are used, 

not if a specific rating is appropriately high or low. On the other hand, if MAD is near 0.0, 

congruency would necessarily be very high so there would be little need to look at congruency. 

Evaluator/Referent Congruency
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Figure 6. Congruency Between Evaluator and Referent
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In summary, congruency can be viewed as a useful diagnostic when MAD and RRR are lower 

than what is desired.  

Validity 

Definition 

Validity is concerned with the question of whether an instrument measures what it is 

assumed to measure. In the case of many physical properties (e.g., weight, color, etc.) there is 

little concern that our scale is truly measuring weight or that our tape measure is truly measuring 

length. However, in the case of many behavioral or performance measures there is often a great 

deal of concern regarding validity. A classic example of this is the concern regarding intelligence 

tests and whether they are truly measuring intelligence. Albeit to a lesser degree, the same 

concern can be expressed regarding various measures of pilot performance. For example, line 

check performance is assumed to measure how a crew operates an aircraft under actual flying 

conditions. However, it might be found that aircrews are on their best behavior during a line 

check evaluation and the moment they are no longer being monitored their technical and 

management performance deteriorates.  If this were to happen, the line check data would not be a 

valid measure of how the crew flies the aircraft under normal every day conditions.  

Clearly, if our measures are not measuring what they were designed to measure, we do 

not have quality data. In addition, validity requires reliable and accurate measurement.  If a 

measuring instrument is insensitive or inaccurate it is severely limited in its ability to measure 

any property of the world. In this regard, validity is the final challenge to achieving quality data. 

As will soon become apparent, demonstrating validity in our performance measures is an 

extremely complex and nontrivial problem. To begin, our measures must first be reliable and 

actuate.  Low reliability or accuracy implies poor validity, but high reliability and accuracy does 

not imply high validity.  

 There are three basic types of validity; content validity, predictive validity, and construct 

validity and while it would be desirable to demonstrate that our measures had all three types of 

validity, the case for validity can be made by demonstrating any one of the three types. Before 

proceeding with our discussion of the three types of validity the reader must be forewarned that 

our discussion of validity will take a far less definitive tone than was taken with the sections on 

reliability and accuracy. In the case of validity we unfortunately do not have a prescribed set of 

methods that will ensure validity. Rather we will suggest some strategies that will possibly 
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improve the validity of our air crew performance measures. In sum, validity is an ongoing 

process; a goal that we move towards, but never establish in a clearly definitive manner. 

Content Validity 

Content validity refers to the extent to which the contents of the measuring instrument or 

test corresponds to what you are attempting to measure. Let us assume for the moment that in the 

case of crew performance we are attempting to measure how safely and efficiently a pilot 

operates his/her aircraft on a regular basis. This being the case, we could argue that LOEs, 

maneuver validations, or line check performance measures are valid to the degree that their 

content is similar to the content of flying the aircraft on a daily basis. Or we might want to make 

the case that our ultimate goal is to reduce the incidence of various types of incidents for which 

there are well documented records. Thus, if we design event sets and LOEs to simulate these 

incidents we may again argue that our performance measure has content validity.  

From our discussion of content validity it can be seen that the measurement of content 

validity is often quite subjective, although in some instances it may be possible to conduct a 

detailed content analysis and quantitatively estimate the proportion of relevant content that is 

sampled by the measuring instrument.  

Predictive Validity 

Predictive validity is simply the correlation between the measuring instrument and some 

external criterion that represents what you are attempting to measure. For example, assume we 

had a test that was purported to measure stockbroker’s skill at picking stocks. The predictive 

validity of this test would be established by simply correlating each brokers test score with how 

well his stocks performed over some time interval. If we find that there is a high correlation 

between test scores and stock performance, then the test has demonstrated high predictive 

validity. Here it can be clearly seen that if our test were unreliable or inaccurate it would limit 

the magnitude of its correlation with the external criterion and thereby set limits on predictive 

validity. 

There is a lot to be said for predictive validity. It is relatively simple, direct, and 

quantifiable. However, it does require the identification of an external criterion and that is the 

rub in using predictive validity in the context of crew performance. Again, assume that our 

ultimate concern is the safe and efficient operation of the aircraft. What does this suggest as an 

external criterion?  The most obvious external criterion would be line- check data, which might 
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be assumed to reflect the everyday level of performance of a crew. Unfortunately, there are at 

least two potential problems in using line-check data. First, the presence of the evaluator in the 

flight cabin may affect crew performance and invalidate it as representative of everyday 

performance. 

Second, it could not be used as an external criterion for LOE performance, because LOE 

performance is more concerned with abnormal flight conditions, whereas the vast majority of 

line-check rides will only sample performance under normal flight conditions. There is no 

assurance that a pilot’s performance in an LOE would necessarily correlate that highly with her 

performance under normal conditions.  

    In summary, while both LOE and line-check performance may be valid measures, they 

would not necessarily be expected to correlate very highly with one another. For this reason, 

line-check performance may not serve as a good external criterion for LOE performance. More 

generally, it is quite possible that there is no single external criterion that may be used to validate 

LOE performance. It is with this possibility in mind that we propose what may be referred to as a 

multi-pronged assessment of LOE validity. The logic of this approach is that while there is no 

single external criterion by which to validate LOE performance, there are a variety of criteria that 

may be moderately correlated with LOE performance. We suggest that a pattern of moderate 

positive correlations may function to establish the construct validate LOE performance.  

 
Construct Validity: A Multi-pronged Assessment of LOE Validity 
 

As was suggested earlier, in complex and diverse domains such as aircrew performance, 

there is no explicit set of methods that ensure the validity of our measures. Rather, there are 

some strategies that are likely to improve their validity. This becomes apparent in our discussion 

of construct validity as an approach to improving validity. The overall strategy suggested by a 

construct validity approach is to find a pattern of relationships that is consistent with our general 

theory of what underlies the safe, competent and skillful operation of the aircraft. 

 For example, we might hypothesize the following four general factors as underlying the 

skillful operation of the aircraft: 1) Social interpersonal skills; 2) Cognitive skills; 3) Technical 

declarative types of knowledge; and 4) Technical psychomotor and perceptual types of 

procedural skills.  We could then proceed to look to different types of measuring instruments that 

assess these various skills and knowledge. LOE performance might be hypothesized to depend 
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most heavily on social-interpersonal and cognitive skills, whereas first-look maneuvers may 

depend more heavily on technical knowledge and psychomotor skills.  Within LOE assessment 

we could further analyze performance on the basis of event sets that are more dependent on 

social-interpersonal versus those that appear to be more dependent on cognitive skills.  Similarly, 

critical maneuvers could be further analyzed using systematic task analyses and judgments of 

subject matter experts into those that are more dependent on technical knowledge versus 

psychomotor skills. 

At this point we could begin to look at pilots’ performance on these various tasks to 

determine if the patterns of correlations are consistent with our hypothesized model. For 

example, we should expect to find that performance on event sets measuring social-interpersonal 

should be more highly intercorrelated with one another, than they are with event sets that were 

judged to be more related to cognitive skills (e.g., decision making).  At the same time, 

performance on these two types of event sets should be more highly correlated with one another 

than they are with performance on critical maneuvers. Within critical maneuvers performance we 

should expect to see those maneuvers that are more knowledge dependent correlate more with 

event sets that are cognitively based than the more social-interpersonal based event sets. 

 Similar types of analyses can be conducted that look at the relationship between training 

and performance. For example, if LOE performance reveals a deficit in situational awareness we 

would then want to strengthen training in this area. If we later see an improvement in 

performance in the context of LOE evaluations we have validated a relationship between the 

assessment and training of situational awareness. The content of the curriculum on situational 

awareness, in effect, tells us in part what is being measured by those specific event sets. 

 Finally, there is a relatively new source of data, Flight Operations Quality Assurance 

Program (FOQA) that has the potential of contributing significantly to the construct validity of 

our current performance measures. FOQA involves a technology that allows for the continuous 

recording of many physical parameters related to flight information. Using various algorithms it 

is possible to extract composites of flight data that meaningfully reflect technical skills that are 

related to qualification standards. When these data are de-identified, it would remain possible to 

related the incidence of various exceedances to fleet aggregated LOE, Maneuvers, and Line 

Check data. Part of the validity of LOE assessments of management skills rests on the 

assumption that poor CRM is eventually manifested in diminished technical skills. If this 
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assumption is valid, it should be empirically supported by a relationship between fleet 

aggregated FOQA and LOE data.    

 In summary, when taking a construct validity approach no single correlation is critical. 

Rather, it is the general pattern of correlations and the degree to which they are consistent with 

our model of what our measures are assessing. The viability of this approach rests on our ability 

to analyze and classify data from each of many different sources (e.g., LOE, maneuvers 

validation, first-look, check-rides, FOQA, etc.). The model for doing this is contained in the links 

between the Audit Proficiency Database and the Performance Proficiency Database. This 

structure makes explicit the kinds of interrelationships we should expect to find in our 

correlational analyses. 

 

Quality Aircrew Performance Data 

 Now that we have a better understanding of what quality data entails, we can shift our 

attention to the process of implementing quality data in the assessment of aircrew performance. 

We begin with a discussion of why it is so important for a carrier to have quality data. Next, we 

turn our attention to the various factors that can influence reliability and validity when assessing 

aircrew performance and what can be done to improve the quality of the assessment process. 

Importance of Quality Data 

Having discussed the formal properties of quality data it is important to understand why it 

is so important for an airline to have a reliable, accurate and valid means of assessing pilot 

performance. Every airline requires quality data for three basic reasons; detecting what is 

changing; detecting when it is changing; and detecting who is changing. 

What is Changing. Perhaps the most basic reason for requiring quality data stems from 

the close relationship between assessment and training. Quite simply, the quality of training can 

be no better than the quality of the data used to assess the training. This relationship between 

training and assessment is the fundamental core of AQP. Under AQP it not sufficient to simply 

train. It must be demonstrated that the training ensures proficiency and this can only be 

accomplished with quality assessments that tell us precisely what aspects of the curriculum and 

training are working and what components are not working.  Only then can training be focused 

where it is most needed. 



 20

When there is Change. With the development of quality measures of crew performance 

it is possible for carriers to do a better job of tracking changes in performance over time.  

Assume that a fleet is tracking the mean LOE performance of its  

crews over an extended period of time. Figure 6 presents two plots of how these data might look 

for reliable and unreliable measures of performance. Although the trends in these two panels are 

actually identical, it is far more difficult to detect the downward trend with the higher variability 

plot.  This is a simple illustration of how reliability influences variability, which, in turn degrades 

the precision of decision making. More reliable performance measures allow a carrier to more 

quickly and accurately detect trends and take corrective action. 

 

 

Who is Changing. Finally, while the primary goal of assessment it to improve training, 

quality data also serves as the basis for sound and rational personnel decisions. In any 

organization employing a large number of individuals, personnel decisions must be made. Given 

these decisions are made, it is best if they are made on the basis of quality data. To maintain a 

highly competent and dedicated group of employees it is essential that the employees recognize 

that management appreciates their efforts to excel at their job. For this to happen, management 

must be able to distinguish who is performing at a superior level and who is performing at a less 

than acceptable level. This requires that management be able to assess knowledge and 

performance in a reliable, accurate and valid manner. If the measures are unreliable, inaccurate 
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and invalid there is no fair basis for advancement and morale problems will soon develop.   

  

Three Elements of Assessing Evaluator Performance 

The assessment of aircrew performance typically involves an evaluator, a measuring 

instrument (e.g., an LOE grade sheet), and a specific set of conditions under which the evaluator 

and the measuring instrument are themselves evaluated (e.g., an evaluator calibration session). In 

this section we consider how each of these factors can influence the reliability and validity of the 

performance data and what can be done to improve the quality of these data.  

Evaluator Reliability: Sensitivity and Accuracy 

The evaluator plays a central role in the quality of LOE, First Look, Maneuvers 

Validation, and Line Check data. Therefore, it is of the utmost importance that we are able to 

assess the reliability of every evaluator’s judgments. When an evaluator’s performance is below 

standards, the assessment should tell us where training needs to be focused.  

There are only two types of errors an evaluator can make. An evaluator can be insensitive 

or inaccurate. Sensitivity is measured by RRR and accuracy is measured by MAD. Given that 

each of these two types of problems may either be present or not, there are four possible 

diagnostic categories (See Table 4). Each of the four categories in this diagnostic matrix has 

clear implications for training. If both RRR and MAD are good (high RRR and small MAD), no 

additional training is required at this time. If RRR is bad and MAD is good, the evaluator has a 

sensitivity problem and needs training on discriminating different levels of performance. As 

noted earlier, it is logically impossible for RRR to be extremely low if MAD is extremely small. 

If RRR is good and MAD is bad the evaluator has an accuracy problem and it suggests that 

training should be focused on the use of the grading scale. Examination of the evaluator’s 

distribution of grades compared to the referent will indicate if the grading is too generous or too 

harsh. This kind of feedback, which is provided as part of the calibration session, may be 

sufficient to correct a simple accuracy problem. 

Finally, if an evaluator is weak on both RRR and MAD, a look at the evaluator’s mean 

rating compared to the mean for the referent will reveal if the large MAD is caused by the low 

RRR. If the mean rating is fairly close to the referent mean, it suggests that the large MAD is 

driven by the rater’s insensitivity (e.g., an RRR of –1.0 would necessarily result in a large 

MAD). However, if the evaluator’s mean rating is substantially above or below the mean for the 
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referent it suggests that the evaluator truly has both a sensitivity problem and an accuracy 

problem. 

 

Table 4. Evaluator Diagnostic Matrix. 

 

Evaluator Validity 

 Our concern here is that the evaluators’ judgments are based on the appropriate 

qualification standards when grading aircrew performance. When grading LOE, First Look, 

Maneuvers Validation, or Line Check performance, an evaluator must know what qualification 

standards are relevant for each phase of flight and each situation (e.g., event set) within a phase 

of flight. Without this knowledge an evaluator cannot validly grade performance. To the extent 

that the standards for management skills are any less explicit than the standards for technical 

skills, we might be more likely to encounter a validity problem in evaluators’ judgments of 

management skills. Knowledge of qualification standards may be assessed directly with a paper 

and pencil type of test.  Ensuring that evaluators are grading on the basis of qualification 

standards will have the most direct positive effect on content validity. However, as the content 

validity of the evaluators’ judgments improves, we should also expect to see an improvement in 

predictive and construct validity. 

Earlier in this chapter we discussed how poor reliability lowers validity. Here is a 

situation where poor validity could lower reliability. If evaluators have a poor understanding of 

qualification standards, not only are they more likely to be grading on the wrong basis, they are 

also less likely to be in high agreement with one another, resulting in a lower RRR. 

RRR

Good Bad

Good No training necessary Performance Sensitivity
Training

MAD

Bad
           Scale Accuracy Training

Performance Sensitivity
Then Scale Accuracy
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Instrument Reliability: Sensitivity and Accuracy 

 Here we are concerned with the influence of the measuring instrument on the reliability 

of our measurements of aircrew performance. For example, a poorly designed LOE grade sheet 

can adversely affect both sensitivity and accuracy.  It has been shown that any vagueness in the 

phrasing of the performance indicators on the grade sheet dramatically lowers RRR and IRR.  

Below we discuss how relatively minor changes to clarify the wording of a performance 

indicator can greatly increased evaluator agreement.   

 Turning to accuracy, the grade sheet should provide evaluators with clear instructions on 

the appropriate use of the grading scale. These instructions should appear on the grade sheet and 

in addition it is recommended that evaluators be given more elaborate instructions on the use of 

the grading scale before beginning a calibration. If, for example, a 4-point grading scale is being 

used, it is helpful if the evaluators are provided with several examples of what constitutes a 1, 2, 

3, or 4 level of performance. 

Instrument Validity 

Just as our concern with evaluator validity was in ensuring that evaluators were grading 

on the basis of qualification standards, the same holds true for instrument validity. The items 

comprising the measuring instrument should be as closely related to the qualification standards 

as possible to ensure content validity. For example, in the case of assessing LOE performance, it 

should be possible to relate every performance indicator to a knowledge or skill in the 

qualification standards. Once again, as content validity improves we would expect to see a 

corresponding improvement in predictive and construct validity. 

Despite the difficulties in assessing predictive and construct validity, it should be possible 

to determine how changes in a performance measure affect correlations with various constructs. 

Continual improvements in content validity should eventually result in gradual improvements in 

a measuring instrument’s construct validity.   

Situation Reliability 

 Before proceeding with our discussion of situation reliability the reader should be 

reminded that we are referring to the conditions under which we calibrate an evaluator and the 

measuring instrument (i.e., the calibration session). Once again, while we are ultimately 

interested in the quality of actual LOE, Maneuvers Validation and Line Check data, it is often 
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impossible to obtain reliability estimates in these situations (e.g., it is necessary to have every 

evaluator view the exact same performance to compute RRR or IRR). Thus, we resort to videos 

and calibration sessions to provide reliability estimates. There are a number of factors 

surrounding a calibration session that could lower reliability. Here we consider three types of 

situational factors; viewing conditions; video quality; and instructions. 

Viewing Conditions.  The influence of the viewing conditions on reliability can be easily 

illustrated in the context of an LOE calibration session where a large number of evaluators are in 

a single room viewing an LOE video. Under these conditions numerous potential error sources 

are introduced. The viewing and listening conditions in the room will vary depending where an 

evaluator is seated relative to the screen and the speaker. If evaluators are talking to one another 

during the showing of the LOE video this will introduce another source of error that is likely to 

lower reliability.  

There are some fairly obvious precautions that can reduce most of these sources of error, 

however, it is important to keep in mind that we are attempting to estimate reliability as it occurs 

in the operational situation. For example, with an LOE calibration session we are attempting to 

estimate evaluator reliability as it occurs in a full flight simulator. The viewing conditions in a 

calibration session differ in many ways from what happens in the simulator. The level of 

workload in the simulator is likely to be far greater than is present in a calibration session. Thus, 

if high workload functions to lower reliability it is possible that we are overestimating evaluator 

reliability in our calibration sessions. On the other hand, it is possible that some of the technical 

information relevant to arriving at a judgment is more available in the simulator than on a video 

of a crew flying the aircraft.  The point is that whenever possible we should strive to make the 

viewing conditions in the calibration session as similar as possible to what the evaluator 

encounters in a full flight simulator. 

Video Quality. Of all the factors that we consider, the video itself, both in terms of its 

content and the quality of the audio and visual signal, may have the single greatest impact on 

reliability. 

All the information necessary to grade each item on a grade sheet must be clearly 

presented in the video. Often this may include conversations among crewmembers, or it may 

involve technical information requiring a clear view of the relevant instrument readings. 
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Evaluators should not be expected to grade the omission of some action or decision, unless there 

is an explicit context indicating where the event should have occurred.  

Once the video is developed in concert with the grade sheet they must be examined as a 

unit by a group of experienced evaluators. This involves having the group of experts view and 

grade the video, ensuring that there is an objective basis for grading each item. In every instance 

the experts must agree as to the key information in the video, how the behavior was consistent or 

inconsistent with qualification standards, and what the referent grade should be on each item. If 

there is a lack of strong consensus, either the video or the grade sheet needs to be modified to 

ensure there is high consensus among experts. 

Finally, when we are using a video to simulate some performance situation (e.g., a crew 

flying an LOE), the evaluator’s familiarity with flight scenario shown in the video should be 

comparable to his or her familiarity with LOEs occurring in the simulator. Under most 

conditions evalutors will be highly familiar with the LOE they are running in the simulator. If 

this is the case, then care should be taken that evaluators are also highly familiar with the LOE 

shown in the video. It is suggested that approximately one week before the calibration session is 

scheduled to take place, the evaluators be given a copy of the grade sheet to allow them to 

become familiar with the event sets, the performance indicators, how and where ratings are 

entered, etc.   

Instructions.  Here, we refer to instructions in the most general sense of preparing the 

evaluators for the calibration session. Setting the context for the task and what the evaluators are 

expected to do is essential to obtaining quality data. It is also essential that the evaluators 

appreciate why they are participating in this process and why it is so important to the mission of 

the carrier. This is part of the process of facilitating evaluator buy-in with respect to calibration 

sessions and collecting quality data. As much as possible, evaluators and their supervisors should 

be brought into the development of all phases of the calibration sessions (i.e., the grade sheet and 

video). 

Situation Validity 

Many of the same situational factors that were discussed above as influencing reliability 

also may be expected to affect validity. Our central concern with respect to validity is that the 

evaluators behave as closely as possible to how they would behave in the situation that we want 

to generalize to. Thus, the situation validity of a calibration session depends on how closely it 
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approximates the situation that exists in the simulator. Much of this may depend on evaluator 

motivation and “buy-in”. If the evaluator perceives the situation as realistic and is motivated to 

do his or her best job, we are a long way toward achieving situation validity. Again, the same 

types of factors that influenced situation reliability are relevant here. If the viewing conditions 

more resemble a party atmosphere than a serious evaluation, we know we have a validity 

problem. If the video is unrealistic in any regard it will likely diminish motivation and buy-in. 

Finally, it is of the utmost importance that the supervisor running the calibration session sets the 

appropriate tone when delivering the instructions. The evaluators have to be made aware of the 

importance of quality data and the role of the calibration session in achieving quality data. Only 

then can we expect to get the level of motivation and buy-in that is necessary to ensure valid 

data.     

LOE Calibration 

In this section we discuss the three phases of conducting an LOE calibration session with 

a group of evaluators. The three phases are data collection, data analysis, and feedback. In our 

discussion of these three phases it is assumed that they are completed on a group of evaluators 

within a single day.  The data collection phase is usually completed in the morning, allowing two 

to three hours to analyze the data and generate reports, and then concludes with the feedback 

phase in the early afternoon. 

Data Collection Phase 

 In this phase the evaluators are asked to evaluate a video of a crew flying an LOE. To 

facilitate buy-in an evaluator supervisor who they know and respect should conduct this phase of 

the calibration session. The session begins with the supervisor giving a general overview of the 

sequence of events in the calibration session. The grade sheets are then distributed and the 

supervisor walks the evaluators through all aspects of the grade sheet. It is at this time that any 

potential ambiguities in the phrasing of an item are clarified. In addition, any uncertainty 

regarding the grading scale for event sets and the performance indicators is clarified with 

concrete examples. Despite the fact that all of the evaluators should be experienced with the 

grading scale, it is necessary to re-affirm the proper use of the scales for grading event sets and 

performance indicators. 

When the evaluators are ready to proceed with the grading of the video the supervisor 

sets the context of the flight scenario that is contained in the video, concluding with a heads-up 
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on what will be occurring in the first event set they will view and grade. Evaluators are instructed 

that they may either grade the items as they occur in the video or wait until the end of the event 

set to enter their grades. If they wait, they are reminded to make notes during the video. Finally, 

they are instructed to focus their attention on the video, to make their ratings independently and 

to not engage in conversation with their neighbor. 

At the end of each event set they are given time to complete entering their grades and the 

supervisor then sets the context for the next event set. After viewing and grading all of the event 

sets, they are reminded to be certain their PIN is clearly written in the appropriate location on the 

grade sheet and the grade sheets are collected.   

Data Analysis Phase 

 In this phase of calibration the LOE data are transcribed to a computer file for statistical 

analysis and report generation. To facilitate the speed and accuracy of this process, we have 

developed a PC ACCESS based software calibration package that expedites the data entry and 

automatically analyzes the data to generate the necessary individual and group statistics. 

Evaluators’ ratings are entered directly on the computer screen which displays a form 

closely resembling the gradesheet. Once these data are entered for all of the evaluators 

participating in the calibration session, the group and individual statistics are automatically 

computed. Table 5 is an example of individual report that is generated for each evaluator, 

showing how he/she performed relative to the referent on each performance indicator. At the 

bottom of this report the evaluator’s average rating, MAD, RRR and IRR performance is 

summarized. 
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Table 5. Individual Summary Information

Thursday, January 22, 1998
Page 1 of6

Name: obs1 PCA/APD: PCA
ID: 1 Fleet: 767

Type ItemText

My Score Qualification
Standard

(DM) Complies with Standard Policy for Takeoff and Go/No Go Decision

(SA) Commands a maneuvering airspeed consistent with aircraft
configuration
(CC) Keeps PNF informed of intentions.

Maintains effective aircraft control throughout the takeoff event.

Accomplishes After Takeoff checklists IAW the POM.

Accomplishes Hydraulic Abnormal checklists IAW the POM

(CC) Completes Approach briefings (NATS)

(CC) Coordinates use of  Autopilot  Flight Director System

(PL) Proactively plans to remain ahead of aircraft/situation

(WM) Distributes workload effectively

Complies with Standard  Policy for checklists.

Performs non-precision approach IAW POM, Maneuvers section

Performs missed approach procedures IAW POM, Maneuvers section

(CM) Communicates intentions with ATC after engine failure.

(WM) Prioritizes tasks of flying the departure and completing the abnormal.

(CC) Calls for appropriate checklists.

Maintains effective aircraft control throughout the takeoff event.

Accomplishes after takeoff checklists IAW the POW.

Accomplishes engine failure after V1 procedures and maneuvers IAW the
POM

Average Scores Mean Absolute Difference from Referent
Individual: 1.89 Management: 1.00

Referent: 2.16 Technical: 0.56
All Participants: 1.85 Overall: 0.79

MyScores  Correlated with My Scores Correlated with Other
Qualification Standard Evaluators

Management: 0.509 Management: 0.075
Technical: 0.795 Technical: 0.404

Overall: 0.305 Overall: 0.435
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Table 6.  Rank Order of Items by Mean Absolute Difference
Event Set Type Number ItemText

MAD

2 3 (PL) Proactively plans to remain ahead of aircraft/situation 0.00

1 3 Accomplishes Hydraulic Abnormal checklists IAW the POM 0.00

2 2 ( CC) Coordinates use of  Autopilot  Flight Director System 0.20

2 4 (WM) Distributes workload effectively 0.20

3 2 Accomplishes after takeoff checklists IAW the POW. 0.40

2 1 Complies with Standard Policy for checklists. 0.40

3 2 (WM) Prioritizes tasks of  flying the departure and completing the abnormal. 0.60

2 2 Performs non-precision approach IAW POM, Maneuvers section 0.60

1 2 Accomplishes After Takeoff checklists IAW the POM. 0.60

1 1 Maintains effective aircraft control throughout the takeoff event 0.60

3 3 Accomplishes engine failure after V1 procedures and maneuvers IAW the POM 0.80

2 3 Performs missed approach procedures IAW POM, Maneuvers section 1.00

1 1 (DM) Complies with Standard Policy for Takeoff and Go/No Go Decision 1.00

1 2 (SA) Com mands  a maneuvering airspeed consistent with aircraft configuration 1.00

3 1 Maintains effective aircraft control throughout the takeoff event. 1.20

1 3 (CC) Keeps PNF informed of intentions. 1.20

3 3 (CC) Calls for appropriate checklists. 1.40

3 1 (CM ) Communicates intentions with ATC after engine failure. 1.60

2 1 (CC) Completes Approach briefings (NATS) 1.80

Thursday, January 22, 1998
Page 1 of 1
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Name: obs1 PCA/APD ID: PCA
ID: 1
Event Set  My Score Qualification Std Group Avg.

1 3 3 3.200

2 2 1 3.000

3 3 1 2.600

My Average Event Set Score: 2.67
Qualification Standard Average Event Set 1.67

MAD between My Scores and Qualification Std: 1.00
 MAD Across all Individuals: 1.27

Table 7.  Individual Summary, EventSet
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_________________________________________________________________ 

 

 

Table 6 shows an example of a report that rank-orders the items from lowest to highest 

MAD score.  The report shown in Table 7 summarizes event set ratings for the group and the 

individual. Finally, Table 8 is an example of the reported generated on group  RRR, IRR, and 

MAD statistics. Broken out in terms of management and technical performance indicators. With 

this software the data entry and analysis can usually be completed for 50 to 60 grade sheets 

within two hours.  

 

 

Table 8.  Performance Indicator Summary

Average of Correlations with Qualification Std
Management: 0.80
Technical: 0.83
Overall: 0.81

Average Correlations with Other Evaluators

Management: 0.76
Technical: 0.79
Overall: 0.78

Mean Absolute Difference with Referent
Management 0.12
Technical 0.10
Overall 0.11

Thursday, January 22, 1998 Page 1 of 1
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Feedback Phase 
 

Conducting the feedback phase of the calibration session may require a two-person team, 

comprised of an individual who is familiar with all of the statistical procedures used to analyze 

the data and an evaluator trainer who is expert in the qualification standards and the grading 

scale. Because this is where the most of the important training occurs it important to allow 

sufficient time to explain all of the results and address the evaluators’ numerous questions and 

comments.  

 The feedback phase begins with the distribution of the group and individual data 

summary sheets to the evaluators. The individualized reports allow each evaluator to see his or 

her performance on all of the measures relative to the group average and the referent. In addition, 

each evaluator can see how his ratings compared to the group and referent on each event set and 

performance indicator on the grade sheet. After the group and individual reports have been 

returned to the evaluators the discussion leader first provides a brief overview of what 

information is contained in each of the tables and reminds them that the primary purpose of the 

calibration is training and fine tuning of the instruments.  

While there is no particular order that needs to be followed in discussing the results with 

the evaluators, it may help to relax the group by beginning with a discussion of performance on 

the highest agreement items in the LOE grade sheet (see Table 6). To the right of each 

performance indicator is the MAD for that item. The items have been rank-ordered with those 

having the highest agreement at the top of the table. From Table 6 it can be seen that MAD is 

equal to 0.00 for the highest agreement items, indicating that all of the evaluators gave that item 

the same rating.  In addition to praising the evaluators for their performance on these items, these 

results also clearly establish that it is, indeed, possible to attain perfect agreement.   

The discussion next turns to those items for which there was the highest disagreement 

(see Table 6). When turning to the low agreement items it is important to emphasize that the goal 

here is to “fix the bad items”. For these items it is important to make every effort to determine 

the source of this variation. Toward this end the discussion leader should encourage the 

evaluators to communicate the basis for their ratings on each of these high disagreement items. 

The goal of the discussion leader is to discover what produced the high levels of disagreement on 

each of these items. This requires the active participation of the evaluators and the discussion 

leader’s explanation of why they graded the item so much lower or higher than the referent and 
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most of the other evaluators. Some evaluators may find this is a threatening situation. The 

discussion leader can reduce some of this tension by creating an atmosphere where the evaluators 

are working as a team to improve the quality of the work sheet and the video. Once the sources 

of disagreement on a particular item are understood it is often a relatively simple matter of 

rewording or elaborating the description of the performance indicator. For example, in a previous 

calibration session there was found to be high disagreement on the performance indicator 

"Engine-out missed approach procedures". Rewording this item to "Performs engine-out 

precision approach procedures and maneuvers IAW POM" reduced the disagreement by 63% on 

a second calibration session. Information on how best to word an item can often be obtained 

from evaluators comments elicited during a calibration session. 

 It is also important to look for patterns in the analysis of item performance.  If, for 

example, it is discovered that there are a disproportionate number of high disagreement items 

related to decision making, the discussion leader can focus his or her questions on this area 

during the feedback phase. As part of this discussion it may be discovered that when evaluators 

are asked to rate "crew exercises good decision making", they are uncertain whether to rate the 

item on the appropriateness of the crew's final decision or on the basis of the process by which 

the decision was made. This suggests that the problem is not specific to particular items, but is 

more generic and therefore may not require rewording all the items related to decision making. 

 The final topics of discussion are the group and individual statistics. Much of the 

discussion here will be directed towards explaining what the RRR, IRR, and MAD statistics are 

measuring. Again, the focus of the discussion should be in terms of implications for training. 

Noting that a low RRR calls for sensitivity training and a high MAD calls for training on the 

grading scale. It may be useful at this juncture to present Table 4, which shows the different 

combinations of good and poor performance on RRR and MAD. The evaluators could then be 

walked through the four matrices of Table 4, explaining what each of the cells indicates.  

  Because each evaluator has the data summary sheet showing his/her performance in 

comparison to the referent and group performance statistics it is unnecessary to discuss any 

individual’s performance. Each evaluator will be able to clearly see how he/she did relative to 

the referent and other evaluators. It is only necessary to discuss patterns of errors and what they 

may indicate (e.g., commenting that the mean rating on this item was a 3.2, whereas the referent 

rating was a 2, suggesting that many of their ratings on this item was too high). Some general 
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bench marks may also be helpful in letting an evaluator know when he is being too unreliable or 

inaccurate (e.g., if your rating was higher than the referents on 16 or more of the 20 items you 

very well may be grading too leniently). 

Evaluating Calibration Training 

 To assess whether calibration training is improving the quality of assessment data it is 

necessary to generate control charts on evaluators’ RRR and MAD for each fleet over extended 

periods of time. Figure 7 shows a control chart plotting RRR performance over one-month 

intervals.  A certain degree of variability in these measures will occur simply from sampling 

error (i.e., the sample of evaluators will change across calibration sessions). However with the 

appropriate statistical methods it is possible to set upper and lower confidence intervals that will 

distinguish real changes from random sampling variations (See Figure 7). If the variation 

exceeds either the upper or lower boundary it indicates that a real change was observed.  

 In Figure 7 it can be seen that within the month to month variation there is a gradual trend 

towards lower RRR values. Again, with the appropriate statistical analysis (e.g., a Regression 

analysis) it is possible to determine whether this trend is statistically significant or not.  If the 

calibration training is truly having a positive effect the control charts should eventually begin to 

show improvements in RRR, and MAD.  

Two major questions regarding the effects of calibration training are its longevity and 

generality. We would certainly like to believe that training has relatively long lasting effects and 

that training on one set of event sets would generalize to new event sets. Of course, this is an 

empirical question that can only be answered with the appropriate data. Unfortunately, at this 
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time there are no reliable data on either the longevity or the generality of evaluator calibration 

training. This problem can be addressed by establishing an  Evaluator Performance Proficiency 

Database. As we begin to collect data from repeated calibration sessions it will be possible to 

generate control charts that plot evaluators’ performance across months. If these control charts 

fail to show any improvement in RRR or MAD after several months of calibration training it 

would be necessary to conduct a more detailed analysis of these data. First we would want to 

determine whether there is any improvements when evaluators are retested on the same event 

sets they were previously trained on. Ideally, we would initially want to look at these effects over 

relatively short intervals (e.g., one-month intervals) and gradually extend them to estimate the 

duration of calibration training effects. If there are no benefits after a one-month interval it would 

probably be necessary to re-evaluate the nature of the calibration training sessions. 

Once it has been shown that the training has reasonable longevity, we can begin to look 

for transfer effects (i.e., does training on event set A facilitate performance on evaluating event 

set B). The central question here concerns how diverse the training must be (i.e., how many 

different event sets are calibrated), before we begin to see beneficial transfer effects to new event 

sets. To address this question requires that the Evaluator Performance Proficiency Database be 

structured to allow the assessment of transfer effects as a function of the number of previously 

calibrated event sets. 

EXTENDING QUALITY DATA METHODS TO ALL PERFORMANCE MEASURES 

Although the methods for achieving quality data that are discussed in this chapter are 

intended to apply to all pilot performance measures, the examples have most often used LOE 

performance indicator ratings. In this section we discuss specific issues that arise in the 

application of these general principles to LOE event set ratings and maneuver validation ratings. 
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Event Set Ratings.  

. Two specific issues arise in regard to assigning a global rating to an event set. First, 

because there are many fewer event sets than performance indicators that are rated in an LOE, 

there arises a potential sample size problem (e.g., there may be too few event sets to obtain an 

accurate estimate of reliability).  A second potential problem arises from the fact that event set 

ratings are more global and subjective than performance indicator ratings and as a consequence it 

may be more difficult to identify specific sources of disagreement in calibration training 

Sample Size Problem. Earlier, we discussed how the stability or meaningfulness of RRR 

statistics is dependent on the number of items they are computed on and how this could present a 

problem with some calibration videos. While it is somewhat arbitrary to set an absolute 

minimum number of event sets for computing RRR, it would be conservative to say that as the 

number of events sets goes below eight there would be little practical value in computing 

correlational statistics. It would be desirable to have 20 or more event sets to have sufficient 

power to detect real differences among evaluators. Given that it is unlikely that more than eight 

event set ratings will be collected from an evaluator on a single calibration it is recommend that 

evaluators be presented only the descriptive statistics shown in Table 7.  

The reader should be reminded that the reliability of the group MAD statistic is 

dependent on the number of evaluators, not the number of event sets. Therefore, if there are a 

reasonable number of evaluators (e.g., in the range of 20 or more) we can proceed to compute a 

MAD for each event set. This tells us in an absolute manner, the level of disagreement we are 

seeing in the rating of event sets and which event sets are producing the highest level of 

disagreement. 

Subjectivity Problem. Whereas ratings on performance indicators refer to relatively 

specific well defined behaviors, event set ratings refer to a rather extensive and diverse set of 

actions occurring over several minutes. The rating of an event set is, therefore, a more subjective 

judgment and this raises the possibility that it may be more difficult to calibrate.  However, the 

subjectivity of  grading an event set is somewhat lessened if observed behaviors for that event set 

are also rated. The rating of the performance indicators significantly constrains the rating of the 

event set.. If a crew fails to perform most or all of the performance indicators listed on the work 

sheet for an event set it would be difficult to justify an overall rating of "acceptable" or better on 

that event set.  
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For the most part we would expect the ratings of events sets and performance indicators 

to covary. However, because the set of performance indicators listed under an event set is not an 

exhaustive listing of all the possible important behaviors that could occur in this situation, there 

is obviously room for disagreements to occur. It is quite possible that a pilot/crew performs all of 

the performance indicators satisfactorily, but makes a critical mistake that is not covered by a 

performance indicator. This is one of the reasons that the global rating of the event set is so 

important and why they will not always agree with the ratings on the specific performance 

indicators. However, the point to be made here is that when there are disagreements between 

global and specific ratings, it should be possible to make the basis for this disagreement explicit 

as part of the discussion with evaluators during the feedback phase of a calibration session. 

 
Maneuver Validations.  
 

The final area of application we discuss concerns the assessment of maneuver 

validations.  Carriers may identified a set of critical maneuvers (e.g., 10) that are used in full-

flight simulators to assess pilots’ technical skills. In First Look evaluation each pilot is evaluated 

without any prebriefing on some number of these critical maneuvers. To assess the quality of 

First Look data it is necessary to develop a video of a crew flying the different maneuvers. 

Ideally, we would want to have a video of each critical maneuver and then at least two levels of 

performance for each maneuver. However, it is not necessary to have this entire library of videos 

before a carrier begins a calibration program. As was the case with the LOE videos it is 

necessary to have a group of experts validate the videos and arrive at a referent grade for each 

one. 

The Maneuvers calibration session would proceed in a similar manner as an LOE 

calibration session. A group of evaluators would be shown a video of a crew executing a set of 

maneuvers. At the end of each maneuver, each evaluator would independently grade the 

performance on a 4-point scale.  Once the ratings had been collected on all maneuvers, RRR and 

MAD can be computed in the same manner as previously described for performance indicators. 

The same concerns regarding the reliability of our statistical estimate of RRR that arose with a 

decreasing number of event sets in an LOE would apply with first look maneuvers. If the number 

of maneuvers decreased below nine the reliability of our estimation of evaluators’ RRR would 

diminish rapidly. 
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Conclusions 

 This concludes our discussion of what it means to collect quality data, why it is important 

to the well being of the carrier, and what can be done to insure the collection of quality data in all 

aspects of training and assessment.  In reading this document it becomes apparent that the 

collection of quality data is a multi-step process and the final product is only as good as the 

weakest link in the chain. The development of measuring instruments, the conditions under 

which they are administered, etc., are all important. However, none is more important than the 

evaluator. Quality data can only be attained with the involvement of a dedicated and highly 

skilled staff of professional and highly trained and calibrated evaluators. 
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Assessing and Improving Evaluation of Aircrew Performance 

Proper evaluation of human performance in the workplace is important to the success of 

both the individual worker and the employer. Historically, psychologists have devoted much 

attention to this topic by offering tools for assessing the quality of evaluations and improving the 

evaluation process (see Arvey & Murphy, 1998, for a recent review). Although the specific 

issues of performance evaluation may change over time, the general goal of these evaluations 

remains constant: to seek fair and accurate evaluations of an individual's work performance.  

Few employees are scrutinized as closely as airline pilots. There exist well-defined 

evaluation cycles, specific skills and knowledge to be tested, objective criteria on which to judge 

performance, tight restrictions on evaluator qualifications, and well-specified criteria of realism 

for creating an evaluation context. This highly regulated context affords certain advantages for 

investigating the evaluation process. Further, the quality of aircrew evaluations may exceed that 

of most other occupations.  

Although extensive efforts have occurred at developing and validating assessment 

instruments for pilots, the bulk of this work has been aimed at selecting pilots rather than on 

assessing ongoing work performance (Burke, Hobson, & Linksy, 1997; Damos, 1996; Hoermann 

& Maschke, 1996; Jensen, 1989). Further, selection tests have emphasized personality variables 

or basic level cognitive and perceptual-motor abilities, neither of which is likely to account for 

much variance in job performance of highly skilled pilots. Extensive work on aircrew assessment 

has occurred in the military (e.g., Dwyer, Oser, Salas, & Fowlkes, 1999; Hubbard, Rockway, & 

Waag, 1989), but these studies appropriately focus on the accomplishment of general mission 

goals rather than on individual pilot performance. There is also an extensive body of literature on 

the evaluation of team performance (Baker & Salas, 1996; Salas, Prince, Baker & Shrestha, 

1995), which is relevant to pilots performing together as a crew. Our interest, however, is on the 

evaluation of individual pilots, the primary concern of the commercial aviation community. We 

use the generic term aircrew to refer both to individual pilots and the flight crew. 

  Historically, pilots have been expected to demonstrate proficiency on a relatively small 

set of critical flying maneuvers and knowledge of aircraft systems. Assessing proficiency on 

these skills and knowledge was viewed as a relatively straightforward task, with pilots assumed 

to either have or not have proficiency in these areas. Thus, an experienced evaluator would be 
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able to easily discriminate between the skilled and unskilled. In reality, it is a challenge to obtain 

reliable judgments of pilot proficiency on even objective technical tasks. 

Under newer training and evaluation guidelines, such as those of the Advanced Quality 

Program (AQP; FAA, 1991), airlines now assess aircrew performance in more complex and ill-

defined environments. Pilots are routinely assessed with line oriented evaluations (LOEs), where 

aircrews fly realistic city-pair scenarios that encompass all phases of flight. Further, these 

assessments include evaluations of both technical and crew resource management (CRM) skills. 

Such complex evaluations place new demands on evaluators, who, under AQP, must be trained 

and assessed in their role as evaluators.  

In this paper, we apply some psychometric principles to the evaluation of aircrew 

performance. A second goal is to offer guidelines for assessing and improving the evaluation of 

pilot performance, suggestions aimed specifically at designing and implementing training and 

calibration sessions for evaluators. 

Pilot Evaluation Data: Purposes and Sources 

We begin by discussing why pilots are evaluated. We distinguish among three primary 

reasons for evaluating pilots. The first is to decide whether an individual pilot is proficient to fly 

the line in his current position or is qualified to transition to a new seat position or new aircraft. 

Second, instructors need to assess their trainees’ knowledge and skill in order to offer 

appropriate feedback and remediation. Although this type of assessment may not occur in the 

context of a formal evaluation, the quality of pilot training depends on evaluators being capable 

of making accurate judgments of performance. 

Third, aircrew evaluations (should) guide the development and modification of training 

programs. Under AQP, airlines maintain a pilot proficiency database that houses detailed data on 

aircrew performance. These data reflect pilot performance on the various skills and knowledge 

that have been previously defined by job task analyses. These aggregated performance data 

speak to the strengths and weaknesses of a training program. Under a proficiency-based program 

such as AQP, a training manager has the flexibility to modify the nature and extent of training 

when such changes are warranted by empirical performance data. The vast majority of these data 

are human judgments of pilot performance. Their usefulness to training is directly related to their 

reliability and validity. It is paramount that training decisions be based on the highest quality 

evaluation data.  
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There appear to be two major sources of data from which we can assess the quality of 

evaluators' ratings of aircrew performance. The first is the pilot proficiency database mentioned 

above. Later we describe in detail how these data can be used to assess evaluators. A second 

source of evaluation data, which has arisen primarily as a result of airlines transitioning to AQP, 

are special evaluator training and calibration sessions. In these sessions, evaluators are asked to 

observe and grade samples of aircrew performance, typically shown on a videotape or computer 

screen. Evaluators observe and independently grade the same performance samples. Later we 

discuss how to develop and implement calibration sessions including what type of statistical 

feedback to give. 

Psychometrics of Aircrew Evaluation 

Various statistical procedures that can be used to assess the quality of evaluations. The 

evaluation of human judgments has a long history in the fields of psychometrics and testing 

theory (Anastasi, 1988; Nunnally & Bernstein, 1994). Some of our recommendations are based 

on standard psychometric approaches, and other statistics that we describe were designed 

specifically for assessing the goodness of evaluations of aircrew performance. Our discussion is 

divided into two sources of evaluation data discussed above: aircrew performance data and 

evaluator calibration sessions. 

Aircrew Performance Data 

We assume that the distribution of task grades given by all evaluators reflects overall 

fleet performance, along with the airline’s established grading policies. If so, then these grades 

can be viewed as a population. We would expect that basic descriptive statistics associated with 

this population of grades, such as grade frequencies, mean, and standard deviation, to be 

relatively stable across time (see Hays, 1988, for a discussion of descriptive statistics). If we can 

also assume that a single evaluator has graded a relatively large and representative sample of the 

pilots in a particular fleet, not uncommon for large carriers, then an individual evaluator’s grade 

distribution should resemble the statistical characteristics of the corresponding population of 

evaluators. Given a sufficiently large sample of observations (see Cohen, 1988, for details on 

sample size), deviations from the population distribution indicate that the evaluator is judging 

pilot performance differently from his peers. 
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There are two types of evaluator errors that can be identified from grade distributions of 

aircrew performance. First, an evaluator can grade either too strictly or too leniently. This type of 

error would be revealed when an evaluator's mean grade deviated significantly from the 

population mean grade. Second, an evaluator may fail to use the full range of the grade scale. 

Occasionally an evaluator will assign the grade "standard" for virtually all of his observations. 

This error can be readily identified when the evaluator's standard deviation of grades is 

significantly below that of the population standard deviation. Both types of error, abnormal mean 

and standard deviation, are examples of failing to appropriately apply the grade scale. 

Fortunately, grade scale use is under the direct control of the evaluator, and so simply bringing 

these discrepancies to the evaluator’s attention should lead to improvement. 

The mean and standard deviation do not provide a complete picture of an evaluator's 

grade distribution. Occasionally, the total frequency distributions of the evaluator and population 

should be compared. Because the number of distinct grade scale values is typically small (e.g., ≤ 

5) for aircrew evaluations, it is easy to simply visually inspect distributional discrepancies. If 

needed, a measure of distributional congruency can be obtained by computing the mean absolute 

difference between frequencies (i.e., proportions) from an individual evaluator's distribution and 

a comparison distribution (Holt, Johnson, & Goldsmith, 1997; Williams, Holt, & Boehm-Davis, 

1997). The comparison distribution may be derived empirically, such as the population 

distribution of grades for a fleet, or it may be specified on theoretical grounds, such as an 

expected proportion of grades. 

A second major type of analysis of pilot performance data is a correlational analysis. The 

correlational structure of a set of performance items indicates which items vary together, 

presumably because the different items measure a common underlying skill. Nunnally and 

Bernstein (1994) describe the logic of the analysis; Martinussen and Torjussen  (1997) give an 

example of the method applied to pilot selection. Our use of correlational structure to assess 

evaluators' performance is a variant of this application. 

The logic behind the correlational analysis rests upon the fact that covariation in grades 

reflects observational skills of the evaluator. Two performance items will likely covary because 

they measure some common underlying piloting skill (e.g., use of flight automation). Only 

evaluators who recognize and discriminate among levels of aircrew performance will be able to 

generate the appropriate pattern of covariation. Some pairs of performance items may covary for 
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superficial reasons, such as they occur in the same context (e.g., phase of flight), and so even a 

less skilled evaluator might produce this type of covariation. But by examining the pattern of 

covariation over a large set of performance items taken from a large sample of observations, one 

could obtain an accurate prediction of an evaluator's grading pattern. 

The first step in a structural analysis of grades is to compute a population correlation 

matrix. This matrix is the set of correlations between all pairs of items in the performance 

database computed across all pilots who have been graded on both items. Next, the same type of 

correlation matrix is derived for a single evaluator, where each correlation is based on grades 

given by that evaluator only. The similarity of the correlational matrices (population and 

individual) reflects the degree to which the individual’s grading structure matches the population 

structure. This similarity can be quantified by computing the absolute difference between 

corresponding correlations, one from the population and the other from the individual evaluator. 

A statistically significant difference between these two sets of correlations suggests that 

the evaluator is grading performance items differently from the norm1. Unlike grading errors 

uncovered with the mean or standard deviation, the meaning of a deviant correlational structure 

cannot be easily communicated to an evaluator, nor is the evaluator likely to have direct control 

over its production. In this case, the evaluator should receive additional training with a 

calibration session.  

In summary, there are several types of statistics that can be computed from aircrew 

performance data that reflect, at least to some extent, how well an individual evaluator is 

grading. An obvious advantage of this type of feedback is that it is based on actual grading of 

pilot performance. A limitation is the requirement of a sufficiently large and representative 

sample of data to insure that statistical indices are reliable and meaningful. This condition may 

not be met in small carriers. However, whenever possible, carriers should monitor the 

performance database and provide routine feedback to evaluators regarding their grading 

practices. Over time this will improve and maintain the quality of aircrew evaluations.  

Evaluator Training and Calibration Sessions 

Calibration sessions provide the second source of data from which we can assess 

evaluators. Calibration sessions occur when multiple evaluators view and grade the identical 

aircrew performance. Grading exactly the same performance is necessary to assess the reliability 

of evaluator judgments.  
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At a most basic level, reliability reflects the consistency of a measurement  (Anastasi, 

1988). A single evaluator giving the same grade to the very same level of performance across 

multiple observations shows intra-rater reliability, and multiple evaluators giving the same grade 

to the same level of performance shows inter-rater reliability. Both are essential elements of 

quality evaluations. 

Consistency by itself does not ensure that evaluations are sensitive or accurate. 

Sensitivity refers specifically to the degree to which observations covary with true changes in the 

attribute being measured. Accuracy reflects how well observations match established standards 

of assigning attributes to grade scale values. Both sensitivity and accuracy are components of 

reliability. We illustrate them with the following example.  

Assume that three evaluators rated the same pilot’s performance on several different 

performance items using a 5-point grading scale. Assume further that we knew the true level of 

performance for each of these items, which we refer to as the referent grade. Figure 1 shows that 

Evaluator A’s grades generally covary with the true performance values (high sensitivity), 

whereas Evaluator B’s grades deviate seemingly randomly from the true values (low sensitivity). 

Hence, Evaluator A is more sensitive than Evaluator B to variations in performance across the 

items, and so Evaluator A is more reliable in this sense. 
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 Figure 1. Examples of evaluator grading profiles showing different levels of sensitivity and 

accuracy. 

 

However, sensitivity itself gives an incomplete picture of reliability as is illustrated in 

Figure 1 by Evaluator C. Evaluator C’s grades covary almost perfectly with the true performance 

levels, but they lack accuracy in the sense that they consistently overestimate the pilot’s true 

performance level. Evaluators must not only be sensitive, but their grades should systematically 

reflect established grading scale criteria by neither overestimating nor underestimating the true 

performance values. In sum, reliable observations must be both sensitive and accurate.  

Quantifying Sensitivity: Correlational Measures. Because sensitivity depends on 

covariation of observed performance, it is measured with a correlational statistic such as the 

Pearson product-moment correlation. Evaluator reliability can be measured by correlating each 

evaluator’s observations with every other evaluator’s observations over some set of performance 

items and then averaging the resulting correlations to obtain a single evaluator reliability 

coefficient. This type of measure is referred to as inter-rater reliability (IRR). A single 

correlation can be obtained by averaging across the group of evaluators' correlations to reflect an 
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overall reliability coefficient (however, see Footnote 1). Thus, IRR reflects the degree to which a 

group of evaluators agrees with one another. 

A second type of sensitivity measure can be obtained if the true performance grades are 

known for each performance item to be graded. Here each evaluator’s grades are correlated with 

the true or referent grades to obtain a referent-rater reliability (RRR) coefficient. In practice, 

referent grades are based on the qualification standards associated with a particular task (e.g., ± 

10 degrees heading deviation) to the observed performance. Later we describe how referent 

grades can be obtained. A group RRR coefficient can be computed by averaging the individual 

RRR scores. RRR reflects how closely each evaluator’s ratings agree with some standard of 

grading. We believe that both IRR and RRR coefficients are useful indices of evaluators’ ability 

to grade.  

First, IRR gives evaluators feedback regarding how their grades compare with their peers. 

Such feedback can have immediate beneficial effects on an evaluator’s grading performance by 

causing a deviant evaluator to conform to the group. However, knowing that evaluators agree 

with one another does not, by itself, guarantee that they are grading according to established 

standards of performance. In contrast, a high RRR score unequivocally implies that an 

evaluator's ratings are reflecting real changes in performance. It is in this regard that RRR may 

be considered a type of validity measure. The evaluator’s ratings are valid in the sense that the 

variation in ratings reflects changes in performance that an airline considers relevant as defined 

by its qualification standards. 

 RRR measures sensitivity because it reflects the degree to which evaluators’ ratings 

covary with true performance levels. This is not necessarily true of IRR. A high RRR coefficient 

implies a high IRR (i.e., if evaluators agree with the referent, they necessarily will agree with one 

another), but a high IRR does not imply a high RRR (i.e., evaluators may agree with one another 

but disagree with the referent grades). In practice, however, we have found RRR and IRR to be 

highly correlated, implying that the evaluators’ grades generally agree with the referent grades. 

We have also found that the mean RRR value for a group of well-trained evaluators is typically 

in the vicinity of r = 0.80 and is consistently higher than the mean IRR value. We have observed 

this pattern of findings for both technical and CRM performance items. 

 The fact that, on average, each evaluator agrees better with the referent grades than with 

other evaluators' grades corroborates the validity of the referent grades. Obtaining higher RRR 
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than IRR values likely occurs because, in any sample of evaluators, there are typically a few 

outliers whose ratings correlate poorly with the majority of evaluators. These outliers lower the 

mean correlation between all pairs of evaluators. Conversely, if IRR were found to be higher 

than RRR, this would bring into question the validity of the referent grades. In this case, one 

would want to analyze the performance items to determine if there were a subset of the items 

over which most of the disagreement occurred. 

Finally, an additional advantage of RRR over IRR is that, because it is based on 

qualification standards, it provides an explicit training objective for evaluators. With appropriate 

training on the qualification standards and the grading scale criteria, evaluator’s judgments 

should begin to show higher RRR values as their grades begin to conform to the referent grades. 

Quantifying Accuracy: Mean Absolute Difference. As noted above, a high RRR does not 

necessarily imply accurate use of the grade scale. To supplement RRR, we devised a simple and 

direct way of measuring grade scale accuracy. We use a mean absolute deviation (MAD) 

coefficient to compute the average absolute deviations between grades given over a common set 

of performance items. MAD values range from a minimum of 0 (no deviations in the ratings) to a 

maximum value that equals the difference between the highest and lowest scale values (e.g., a 3 

on a 1 to 4 grade scale). A standardized MAD (SMAD) score can be computed by dividing MAD 

by the maximum possible deviation and then subtracting this value from 1. SMAD ranges from 0 

to 1, with better agreement corresponding to higher scores. Thus, SMAD allows meaningful 

comparisons to be made across different grade scales, and further it is scaled in the same 

direction as a correlation coefficient (i.e., higher scores mean better agreement). Although in 

practice we use SMAD, in this paper we refer to MAD.  

To assess grade scale accuracy, MAD is computed between an evaluator's grades across 

some set of performance items and the corresponding referent grades. In studies we have 

conducted at several major airlines, we find that mean MAD values for experienced evaluators is 

typically quite small, generally deviating from referent scores by less than one quarter of a grade 

scale point. We also find that accuracy and sensitivity tend to covary; evaluators who are more 

accurate are also more sensitive. However, on occasion we do find some evaluators with good 

RRR and IRR values, but poor MAD values and to a lesser extent vice versa. The advantage of 

having multiple indices of grading performance is that evaluators can receive feedback specific 

to the nature of their problem. 
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In one sense MAD is a more fundamental measure than RRR or IRR because very good 

MAD scores imply not only good grade scale use, but good sensitivity too. In the extreme case, 

if MAD were perfect, both RRR and IRR would necessarily be perfect too. Further, as MAD 

scores become worse we might expect RRR and IRR to also approach a minimum level, but this 

is not necessarily so. As was illustrated in Figure 1, it is possible for a correlational measure such 

as RRR to be perfect while MAD is arbitrarily poor. For this reason it is necessary to compute 

both MAD and RRR to obtain a complete grading profile.  

Another advantage of MAD over correlational measures is that it can be used to assess 

performance on individual items. As discussed so far, MAD is computed across items as RRR 

and IRR are, however it is also possible to compute deviations for an individual item across 

evaluators. Computing a MAD value for each performance item and then rank ordering items by 

this value shows clearly which performance items are difficult to grade. In group calibration 

sessions, we have found that this type of feedback generates much discussion about grading 

strategies and reasons for grading particular performance item. 

The statistical reliability of a MAD value computed on items depends on the number of 

evaluators used in the computation. In contrast, correlations are computed across items for either 

a pair of evaluators or an evaluator and the referent grades, and so the statistical reliability of 

RRR and IRR is dependent on the number of items rather than on the number of evaluators. 

Consequently, MAD can be used in situations where a correlational analysis might not work, 

such as item analysis.  

To summarize, we recommend several statistical indices be used to assess the quality of 

evaluator judgments, some based on distributional characteristics of pilot grades, and others used 

in the context of calibration sessions. We introduced two statistics, RRR and MAD, that assess 

important, yet independent, aspects of rater reliability, sensitivity and accuracy, respectively. 

These statistics along with the more traditional inter-rater reliability should provide a relatively 

complete grading profile. Next we discuss the design and implementation of training and 

calibration sessions. 

Evaluator Training and Calibration Sessions 

Here we draw upon our experience in doing training and calibration sessions over the last 

few years at several major carriers in the United States. Most of our findings and 
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recommendations come from informal and naturalistic observations and so should be viewed 

tentatively. Nevertheless, others engaged in evaluator training may find them useful. 

Training and calibration sessions routinely occur when groups of instructors and 

evaluators (usually from a common fleet) assemble for standards meetings where issues pertinent 

to evaluation are discussed. By training and calibration session, we mean specifically the 

observing and grading of aircrew performance and the subsequent feedback phase that is 

associated with this task. 

The Role of the Evaluator 

We distinguish between the evaluative versus diagnostic role of assessment. Evaluators 

naturally focus more on the evaluative aspect of assessment. This tendency is understandable 

given that their first priority is to ensure pilot proficiency. But quality training hinges upon 

accurate diagnosis of pilots strengths and weaknesses. It is through careful evaluation of pilot 

performance that carriers know which training components are working and which are not. 

Evaluators who acknowledge their role in the training mission are likely to support the 

implementation of assessment tools and methods.  

Artificial Nature of the Grading Sessions 

A potential limitation of calibration sessions is their artificial nature. Judgments of 

aircrew performance are solicited out of their normal context and without the full complement of 

information normally available to the evaluator in the simulator. On the other hand, these 

contextual factors may bias evaluator judgments and from this perspective calibration 

performance provides a better estimate of an evaluator's true grading skills.  

Line Operational Evaluations 

In an LOE, an evaluator is asked to judge performance at both the event set level and at a 

more detailed performance level called observable behaviors. An event set is defined as a 

meaningful segment of flight, and may correspond to a particular phase of flight or to a special 

occurrence within the flight, such as an anomaly. Evaluators usually grade both technical and 

CRM skills at the event set level.   

In addition, there are usually multiple observable behaviors graded within an event set.     

The observable behaviors reflect both technical and CRM tasks. These items vary greatly across 

carriers from relatively general categories of performance (e.g., effectively communicates) to 
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highly specific behaviors (e.g., de-icing procedures). LOE grade sheets may include 30 or more 

observable behaviors in addition to the event set items to be graded. Not surprisingly, evaluators 

are challenged to perform this extensive assessment while at the same time operating the 

simulator. One of the most direct ways to assist evaluators in grading LOEs is to design a good 

LOE grade sheet. 

Designing Grade Sheets 

The design of a grade sheet plays a critical role in evaluators’ ability to grade aircrew 

performance, particularly for the LOE. Unfortunately, good grade sheets are difficult to design. 

Part of this difficulty stems from the fact that there are many ways to fail.  

A central question about LOE grade sheets is what types of performance items 

(observable behaviors) to include. LOEs are intended to assess both CRM and technical skills, 

and so separate performance items for each category are included. If observable behaviors are 

intended to diagnose specific deficiencies in the training program, then they must be sufficiently 

detailed. Further, they need to be linked to the tasks and subtasks defined in the training 

curriculum. Unfortunately, we know of no empirical data to guide carriers in writing these items. 

At what level of detail can evaluators reliably grade performance?  How many items are needed 

to reliably assess performance on a particular skill category?   What particular subskills (e.g., 

decision making, situational awareness, workload management, etc.) underlie CRM and what 

types of performance items allow these subskills to be reliably measured? 

Further, how important is the wording of observable behaviors?  In one study at a major 

carrier, we found that relatively simple changes in the phrasing of performance items led to 

substantial improvement in interrater reliability. As an example, we found high disagreement 

among evaluators grading the same aircrew on "Engine-out missed approach procedures."  After 

rewording the item to "Performs engine-out precision approach procedures and maneuvers IAW 

POM," evaluator agreement increased 63% on a subsequent session. 

Instead of using specific observable behaviors to diagnose deficiencies, some carriers rely 

more on reason codes. A list of reasons justifying the assignment of a grade (e.g., poor workload 

management, inadequate knowledge of some subsystem of the aircraft, etc.) is provided on the 

gradesheet. The evaluator is asked to indicate a reason for grades that are exceptionally high or 

low. Do reason codes allow as fine of a diagnosis of proficiency as observable behaviors?  Is 
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evaluator reliability as good with reason codes as with ratings on performance items?   These and 

related questions need to be answered in future work. 

Grade scales range from two-points (e.g., pass/fail) to five points. Is there an optimal 

number of grade scale levels?  There is little value in using a 10-point scale if evaluators are 

capable of reliably discriminating only five levels of performance. Conversely, if evaluators are 

capable of discriminating five levels of performance, valuable discriminative information is lost 

with a 2-point scale.  

We suggest using the same grade scale for all performance items. Some airlines use a 3-

point scale used for grading critical maneuvers and then use a 4- or 5-point scale used for 

grading items in an LOE. Even within an LOE, different scales are sometimes used to grade 

different types of items. Employing a consistent grade scale across types of items facilitates the 

evaluator's task and further allows easier interpretation of performance data. 

How important are grade-scale labels?  The distribution of grades assigned by evaluators 

is affected by the choice of labels. For example, with a 5-point scale (where a 5 indicates a high 

level of performance) a grade of 3 could either be labeled as “standard level of performance” or 

it could be labeled as “below standard level of performance.”   When a grade of 3 is below 

standard, the vast majority of grades are 4’s. Consequently, there is little discrimination in levels 

of passing (i.e., grades of 4 or 5, with very few 5’s). Carriers must decide if it is more important 

to discriminate levels of below-standard performance or levels of above-standard performance.  

In reality, the number of scale points and scale labels are often determined by corporate 

history and may be resistant to change even in the face of empirical data. At the very least, 

carriers should monitor their grade distributions to determine how well their grading practices 

are actually reflecting the desired levels of discrimination in performance.  

Finally, as a general rule, grade sheets need to be designed with the user in mind. Ideally, 

evaluators themselves would help design the grade sheet. Unfortunately, evaluators may not have 

the same purpose in mind when making decisions about properties of a grade sheet as say a 

training coordinator. As mentioned above, evaluators are generally more concerned with the 

evaluative function than the diagnostic function of a grade sheet. One strategy that we have 

found to be effective is to solicit evaluator input, but do so by offering choices between 

alternative methods of implementing aspects of the grade sheet. 
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Establishing Referent Grades 

Earlier we discussed the use of referent grades in assessing evaluator performance. An 

important part of designing a calibration session is the assignment of referent grades to each 

performance item to be graded. This should be done by a group (i.e., at least 4 or 5) of 

supervisory level evaluators. Ideally, supervisors would first assign grades independently and 

then later resolve any disagreements as a group. Differences that are not easily resolved may 

suggest that (a) the relevant behavior is not clearly represented in the video, (b) the performance 

item is not clearly stated on the grade sheet, or (c) the link between the item and the appropriate 

qualification standard is not clearly defined. If disagreements persist, the item should be removed 

from the grade sheet.  

Airlines have developed explicit qualification standards for most technical tasks and 

subtasks. These qualification standards serve as the basis for pilot training and also guide the 

evaluation of aircrew performance. In addition, there are usually clearly stated grade scale 

criteria that describe how degrees of deviation from the qualification standards are to be mapped 

onto particular grades (e.g., a heading deviation that goes beyond a ± 10 degrees limit but is 

quickly corrected results in a 3 on a 4-point scale). If evaluators are to be trained and assessed on 

grading aircrew performance, including CRM skills, well-specified qualification standards and 

grade scale criteria are needed. Unfortunately, these are rare or nonexistent for CRM tasks. 

Nonetheless, we find that experienced evaluators are able to agree upon referent grades for CRM 

performance items.  

Creating a Performance Video 

Two important criteria for creating videos of aircrew performance for use in calibration 

sessions are that the videos must be realistic and they must contain different levels of 

performance. One means of achieving realism is to use videos of actual crews performing an 

LOE or flying a critical maneuver. The use of these videos would likely require approval from 

the crew and the pilot union. Selected sections of the video would be used for the calibration 

session. Consequently, they may not reflect performance of the crew on the LOE. Finally, the 

video quality of these tapes is often poor.  

Alternatively, we have found that it is possible for pilots to enact a scripted performance 

scenario. An experienced crew is instructed to achieve a certain level of performance during part 
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of an LOE or a maneuver. High quality videotapes can be produced this way with careful 

planning, filming, and editing of the video. In either case, the flights must appear realistic to the 

evaluators. If deemed critical, evaluator judgments of video realism could be collected as part of 

a calibration session to validate the video’s realism. 

In a calibration session, evaluators normally grade several video clips. Scenarios with 

different levels of aircrew performance are needed to assess evaluators’ sensitivity to changes in 

the quality of aircrew performance. For example, if performance were graded on a 4-point scale, 

then scenarios representing at least three levels of the grade scale should be used. It is 

particularly difficult to create scenarios depicting weak or failing performance such that the 

deficiencies are not too obvious. 

Finally, it is important that the actual aircrew performances to be evaluated are clearly 

represented on the video. Conversely, if the video has been scripted to omit certain behaviors, it 

should be clear from the context of the video where the behavior would have occurred. Once the 

video and grade sheet are developed, a group of expert evaluators should observe and grade the 

scenarios to determine that the performances did occur in the flight scenario. This step can occur 

during the collection of referent grades.  

Evaluator Feedback 

Most of the evaluator training occurs during the feedback phase of a calibration session.  

In the case of a group session, each evaluator receives a report showing the evaluator’s 

individual ratings along with a summarization of the group’s ratings. Summary measures of 

grading performance are provided as feedback including RRR, IRR, and MAD. An evaluator 

supervisor then discusses and interprets the statistics for the group. 

An important type of feedback is to simply show the list of the performance items that 

resulted in the average highest and lowest overall agreement with the referent grades. The high 

agreement items illustrate concretely that it is possible for the evaluators to uniformly agree with 

the referent and with each another. In discussing the lowest agreement items it is useful to 

provide the qualification standards that were the basis for generating the referent grades and to 

review the grading scale criteria.  

It is also possible to carry out calibration sessions for individual evaluators. Here a single 

evaluator views and grades digitized videos on a personal computer and then receives feedback 
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similar to a group session2. In addition to the flexibility of when and where calibration occurs, 

individual calibration allows a supervisor to select particular types of performance evaluations 

(e.g., critical maneuvers vs. LOEs) for an evaluator to grade. Further, training feedback can be 

more specific by allowing the evaluator to examine qualification standards for only those 

performance items he graded incorrectly, or to replay critical parts of the flight that he graded 

incorrectly. 

An even more elaborate type of evaluator feedback that can be given during a calibration 

session is based on frame-of-reference training (Baker & Mulqueen, 1999; Baker, Mulqueen, & 

Dismukes, 1999; Baker, Mulqueen, & Dismukes, in press; Bernardin & Buckley, 1981). In this 

case a gold standard, which explains in detail the rational for the assignment of the referent 

grade, is developed for each performance item. Gold standards are not simply more detailed 

qualification standards, but they go much further by discussing the role of the specific flight 

context in the assignment of a grade to a performance item. A current study at a major airline is 

examining the effectiveness of gold standards in improving evaluator performance. 

Summary and Future Directions 

The evaluation of human performance in highly skilled jobs, such as commercial flying, 

is still largely a human activity, and as such, retains an inherently subjective component. These 

evaluations play critical roles in deciding the careers of pilots, ensuring the safety of commercial 

flying, and in designing and modifying training programs. Hence, it is critical that these 

performance judgments be of the highest quality. Fortunately, much can be done to ensure that 

these human judgments are accurate and reliable. 

Psychometrics 

We have suggested that there are two basic components of quality evaluations: sensitivity 

to changes in performance levels and accuracy in the use of the grade scale. We defined two 

statistical measures, RRR and MAD, that quantify these components. Both of these measures 

compare an evaluator’s performance ratings to a set of referent ratings that reflect the 

qualification standards under which pilots are trained and against which evaluators judge. 

Deviations from these referent grades have clear implications for training and calibrating 

evaluators. 

A topic for future research is to consider statistical measures of evaluator performance 

based on ordinal methods. There are several characteristics of rating data that suggest ordinal 
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measures should be used. First, the evaluator ratings themselves may not contain more than 

ordinal-level information. In other words, the difference in actual performance between grades of 

2 and 3 is likely to be different from the difference in performance between grades of 3 and 4. 

Yet, standard statistics of the sort commonly used to analyze grade data assume interval-level 

information. Second, grade distributions are never normally distributed and instead are often 

highly skewed and/or contain little variance. Third, we sometimes wish to compute a statistic on 

a small number of items, where variances and covariances are not very stable. Ordinal measures 

have several advantages over variance-covariance based measures under these conditions (Cliff, 

1996). 

Training and Calibration Sessions 

There are several questions that should be addressed in future studies aimed at an 

empirical validation of evaluator calibration sessions. First, assuming that evaluators do improve 

their judgments during calibration sessions, how long does this improvement last?   Once 

calibrated, does judgment accuracy decay over time?  Second, how well do calibration sessions 

based on specific flight segments and maneuvers generalize to other flight situations?   When 

evaluators are calibrated under specific events and phases of flight, will this learning transfer to 

different phases of an LOE?  Third, what effect do evaluator demographics (e.g., months as an 

evaluator, hours of flying, years with carrier, age, etc.) have on evaluator performance, and what 

effect do these characteristics have on the effectiveness of evaluator calibration sessions?   

Fourth, what types of grading feedback are most effective in training evaluators?  Is the more 

extensive effort required to develop gold standards justified?  Finally, and most importantly, do 

the positive effects of calibration sessions result in improvements to actual aircrew evaluations?  

Can we see a pre-post calibration improvement in grading as reflected in actual aircrew 

performance data? 

Finally, we suspect that for calibration training to remain effective it will need to be 

extended beyond occasional (e.g., annual) group calibration sessions. An obvious means of 

accomplishing this would be to allow evaluators to perform individual calibration sessions. With 

the implementation of a software calibration tool at a couple of major carriers, we plan to study 

how this type of additional training affects both group calibration performance and actual 

evaluation of aircrew performance. 
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Footnotes 
1 It is recommended that correlation coefficients first be transformed to Fisher Z scores 

before combined or tested for statistical significance (Fisher, 1990). 
2A software tool is available to carry out individual calibration sessions. In addition, the 

tool allows data from group sessions to be entered, performs the requisite statistical analyses, and 

prints feedback reports. Contact the first author for further information regarding the software.  
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Inferential Statistics and Sample Size: Applications to Air-carrier Training and Assessment 
Introduction 

Airlines along with other industries are increasingly relying on statistical information to 

guide important corporate decisions.   In the area of training and assessment, airlines need to 

answer such questions as whether the current training curriculum is adequate, and whether pilots 

are maintaining a proper level of proficiency between periods of retraining.  Wrong answers to 

these types of questions can have serious and adverse consequences.   Fortunately, by collecting 

quality training and assessment data and by applying modern statistical methods to guide 

decisions, we can minimize these errors.   

In answering questions about the quality of training and pilot performance we generally 

wish to infer something about a population of individuals based only on a sample from the 

population.  For example, we might want to know how well the pilots from the B757 fleet 

perform on engine failure after V1.  Sampling the entire population of pilots from this fleet, say 

for example 300, is simply not practical. Instead, we select and test only a sample of these pilots.  

We then infer the performance of the entire fleet based on the performance of the observed 

sample.   The branch of statistics that allows us to infer characteristics of a population from 

sample observations is called inferential statistics.   

A central issue within inferential statistics is deciding how large of a sample is needed in 

order to reliably estimate values in a population from the sample.  This issue is the main concern 

of this section of the chapter. 

Hypothesis Testing Framework 

 Before we examine specific methods for choosing appropriate sample sizes we first need 

to review the general idea of hypothesis testing.  Hypothesis testing is the logical framework for 

making statistical decisions.  The basic question we wish to answer in inferential statistics is 

whether some observed sample value is different from some known population value.  For the 

sake of argument, we assume that it is not different and call this assumption the null (i.e., no 

difference) hypothesis, which we designate by the symbol Ho.  The alternative hypothesis, Ha, 

states that the sample value truly is different from the population value.   Under the hypothesis-

testing framework, these are the only two possibilities: either the null hypothesis is correct or the 

alternative hypothesis is correct.   We never know with certainty which hypothesis is the true 
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state of the world.   But based on sample data we choose one of these two hypotheses.  

Inferential statistics helps us make the optimal decision. 

Our decision will always be either to reject or to accept the null hypothesis, and once we 

have decided what to do, we will be either right or wrong.   There are two ways of being right 

and two ways of being wrong.  Table 1 illustrates these four possibilities.  If we reject Ho when 

we should have accepted it, we make what is called a Type I error (upper left cell).  The 

probability of a Type I error is equal to α.   If we retain Ho when we should have rejected it, we 

make a Type II error (lower right cell), and it has a probability of β.   

In a standard research setting, special privilege is given to the null hypothesis because it 

represents the status quo.  Science is conservative by nature, and so tries to avoid claiming that 

there is something new when in fact there is not.  For this reason Type I errors are especially 

avoided.  To guard against these false positives, we set α to some acceptably low limit, usually 

around .05. This means that there is only a one in 20 chance of incorrectly rejecting Ho.  

Committing a Type II error is not viewed as grievous as a Type I error.  The consequences of 

failing to believe that some new thing is significantly different from the old when it is not (false 

negative) is assumed to be less serious than believing that something is significantly different 

when in fact it is not (false positive).  As we will see shortly, this type of bias may not hold in the 

applied world of training and assessment. 

There are also two ways of being correct.  From a research perspective, the most favored 

of these two outcomes is to correctly reject Ho (upper right cell).   Here we claim that we have 

discovered something new, and indeed we have.   Associated with this outcome is the power of 

the test and its probability is 1-β.  We can also be correct by retaining Ho (lower left cell).  

Although correct, this outcome is less desirable because nothing new has been found. 

Table 1. Possible outcomes of hypothesis testing framework. 

  True State of World 

  Ho is true Ho is false 

Reject Ho Type I error (α) 

(false positive) 

Power (1-β) Decision 

Retain Ho Correct decision (1-α) Type II error (β) 

(false negative) 



 61

 

In applied settings such as training and assessment, the relative advantages and 

disadvantages of these four possibilities may be different from traditional scientific research.  To 

consider a concrete example, assume that we know that the population performance level for a 

particular fleet and for a particular maneuver was a mean grade of 3.0 on a 1 to 4 grading scale, 

where a “1” is poor and a “4” is good.   Assume further that we obtain a sample of pilots from 

this fleet and observe that their mean performance on the maneuver is 2.7.   Do we now conclude 

that the performance of the whole fleet has degraded from 3.0?  Or could this lower mean have 

occurred simply by chance because we examined only a portion of the pilots?   

In this example the null hypothesis corresponds to the belief that the performance of the 

fleet has not changed (i.e., status quo); the alternative hypothesis says that it has.  Unlike 

scientific research, in this case there does not seem to be a compelling reason to favor Ho over 

Ha.   It seems just as important to recognize that there has been a change in fleet performance 

(perhaps even more so) than to recognize that performance has not changed.   

Consider again the two types of errors we can make.  If based on the performance of the 

sample we conclude that the performance of the fleet has changed when it has not, then we have 

made a Type I error.  Here we would probably require additional training when it was not 

needed.  This would certainly be an error and cost the company unnecessary resources.   On the 

other hand, if we retain Ho when Ha is true, then we have made a Type II error.  In this case, the 

fleet needed additional training on the maneuver being examined but we failed to recognize it.  

The consequences of this error could be more serious than the first type.   Clearly, it is just as 

important to guard against false negatives (maybe more so) as false positives in this setting.   

Thus, when using the hypothesis-testing framework with training and assessment data we will 

examine both false positive and false negative error rates.  As it turns out, the particular error 

rates that we accept have a direct bearing on the size of the sample we need to obtain in order to 

assess the population. 

Sample Size and Sampling Error 

 So far we have described the logic of the hypothesis-testing framework and saw how it 

could be applied to making decisions about training and assessment data.   We turn next to the 

issue of sample size and a closely related concept, sampling error.   First, sampling error is 

simply the inaccuracies that arise when we measure individuals from a sample rather than 
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measuring the whole population.  To continue with our previous example, if we sample 50 of the 

300 B757 pilots and test them on an engine failure after V1 we might obtain a mean score of 2.7.  

If we could have tested all 300 pilots we would have found that their mean performance was 3.0.   

Sampling error is the difference between the scores we observe in a sample and the scores that 

truly exist in the population.   

 There are two major factors that influence sampling error.  The first is how representative 

our sample is of the population.   If the sample’s characteristics match well those of the 

population, then we have a representative sample, and sampling error is minimized.  The best 

way to ensure that we obtain a representative sample is by random sampling.   Random sampling 

occurs when every individual in the population has an equal change of being selected for the 

sample.  Unfortunately, in real-world applications such as pilot evaluation it is virtually 

impossible to  sample randomly because of the constraints on scheduling, time since previous 

evaluation, etc.  The second major influence on sampling error is sample size; the larger the 

sample the smaller the sampling error.  Notice that if our sample size were actually the whole 

population, then by definition, there would be no sampling error at all.  Our “sample” would 

perfectly mirror the population.  As sample size decreases, there is an increasing chance for the 

pilots in the sample to differ from the population, and so for sampling error to increase.  The 

question then becomes, How big of a sample do we need in order to be confident that our 

findings accurately reflect the population?  

Choosing a Sample Size 

Choosing an appropriate sample size depends on (a) which statistical test we use; (b) the 

population variance of the statistic being measured; (c) the effect size in the population we wish 

to be able to detect; (d) an acceptable level of α; and (e) an acceptable level of β.   We will 

examine each of these in turn.  The appropriate statistical test will be determined by which 

statistic we are measuring (e.g., mean performance) and what hypothesis we are testing.   With 

assessment data, our statistic is often either a mean grade (which we will designate by X̄) or a 

proportion of pilots passing some evaluation.  We will say more about statistics later, but for now 

assume that we are interested in mean performance.   Also, our statistical test will either be a 

one-tailed test or a two-tailed test.  In a one-tailed test, we assume that we know that the 

hypothesized population mean under the alternative hypothesis (µa) is greater or smaller than the 

hypothesized mean under the null hypothesis (µo).  In a two-tailed test we recognize that it could 
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be either greater or smaller.  Generally, we will want to perform a two-tailed test because we 

rarely know for certain what direction the outcome will be.  However, two-tailed tests are more 

conservative than one-tailed tests.   Conservative, in this case, means that we would need a larger 

sample for a two-tailed than a one-tailed test to maintain the same error rates. 

The population variance, which we designate by σ, is a measure of how much variability 

exits in the scores of the pilots.  Do the scores vary widely across the values of 1 to 4 (high 

variance) or are they generally centered on say “2”s and “3”s (low variance)?  We usually 

estimate σ from sample data, although there may be times when we know this value for the fleet 

in question.  As population variance increases, our sample size needs to increase.  Notice that in 

the extreme (and unrealistic) case where there is no variance in the population scores, we would 

only need to sample one case in order to determine if the population had changed.  

The population effect size is the difference in performance between the parameters 

assumed under Ho and Ha.   When testing sample means, the effect size is simply the difference 

between µo and µa.  The hypothesized value under Ho will likely come from prior knowledge of 

fleet performance.   The hypothesized value under Ha will be based on how much of a difference 

from µo that we deem as unacceptable.   For example, we might believe that one-quarter of a 

grade point is truly significant.  If we believe that fleet performance has decreased one-quarter of 

a grade point then we will take some type of action (e.g., decrease the interval between 

retraining).   Finally, we need to be willing to state acceptable levels of error, both for false 

positives and false negatives.   Choosing acceptable population effect sizes and error rates will 

ultimately be a corporate decision, although there are guidelines available from the statistical and 

research community. 

Again to make these ideas more concrete, assume that we are going to test a sample of 

B757 pilots on engine failure after V1.  We know from previous testing that the fleet as a whole 

scored 3.0 on this maneuver (i.e., µo = 3.0) .   We wish to be able to detect a change in 

performance of one-quarter of a grade (i.e., µa = 2.75 or µa  = 3.25).  We also know from 

previous data that σ = 0.60.   Further, assume that we are willing to accept a false positive rate of 

α = 0.20 and a false negative rate of β = 0.10.  Our null and alternative hypotheses would be 

formally stated as follows: Ho: µo = µa  (fleet performance on the maneuver has not changed) 

and Ha: µo ≠ µa  (fleet performance on the maneuver is different from the assumed value).   
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What is the minimum number of pilots we would need to sample from the fleet in order to 

determine, within the stated error rates, that fleet performance had changed?   

Questions about required sample size are answered from either specialized computer 

programs that generate minimum sample sizes or from published tables.   For example, Table 2 

gives actual minimum sample sizes needed to detect a quarter point change in grades for 

different levels of error rates.  To answer our question above, we see from Table 2 that we would 

need to sample 38 pilots.  One problem with using tabled values to obtain minimum sample sizes 

is that published tables may not give the needed values for the specific set of parameters at hand.  

A computer program that dynamically generates minimum sample sizes for given sets of 

parameters is a better solution. 

To continue with the example, assume that we have now sampled and tested 38 pilots 

from the B757 fleet on engine out after V1 and we find that the mean grade is significantly lower 

than 3.0.  Based on the appropriate statistical test (e.g., a two-tailed z test) we decide to reject Ho 

and conclude that the fleet’s population mean grade on engine out after V1 has truly deteriorated.   

Are we absolutely certain of this?  No, in fact there is a one in five chance (α = 0.20) that we 

have made a false positive decision.  On the other hand, assume that the mean grade from the 

sample was not sufficiently extreme to reject Ho.  There is now a one in ten (β = 0.10) chance 

that we have made a false negative decision and concluded that fleet performance has not 

degraded when in fact it has.   

The point of the example is to illustrate that there is always uncertainty associated with 

statistical decisions.   The primary means that we have to reduce uncertainty is to increase 

sample size.   We see from Table 2 that if we had sampled 62 pilots instead of 38, then our false 

positive rate would have been α = 0.10 and our false negative rate would have been β = 0.05.   

Obviously there are costs involved in obtaining larger samples.  The decision about what are 

acceptable sample sizes and error rates must ultimately be made by a data analyst who is 

cognizant of all of the relevant considerations.  

 

Table 2 Minimum sample sizes for detecting a difference of .25 grade points with a one-
sample z-test and assuming  σ = 0.60. 

  β 
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  0.05 0.10 0.20 0.30 

0.05 75 61 45 36 

0.10 62 49 36 27 

0.20 49 38 26 19 

 

α 

0.30 41 31 20 14 

 

 

Some Related Sampling Concerns 

 We now briefly discuss a few other issues that are important in sampling and inferential 

statistics and seem particularly relevant for airline applications.  Our intent here is to simply alert 

the reader to these issues rather than providing any type of comprehensive coverage. 

Aggregating Samples Across Time 

 Samples of pilots are necessarily obtained within some unit of time.  We might test 30 

B757 pilots on engine failure after V1 during a single month.   Performance of this sample would 

be an estimate of how well the fleet performs during this month.   We might test another 30 B757 

pilots on the same maneuver on the following.   Can we now combine these two samples and 

perform a single statistical test on the performance of the combined sample of 60 pilots?   As 

discussed above, by increasing our sample size our estimate of fleet performance will be more 

accurate and our false positive and false negative error rates would be lower.   However, the 

answer to question is the proverbial “it depends.”   If the performance of the population has 

remained stable, then we can reasonably combine the samples from the two months.   But if fleet 

performance has changed over time (and detecting such changes is the very purpose of assessing 

in the first place), then we need to be cautious about combining samples.   Ideally, we would 

sample within as small of a unit of time as possible.  In reality, we must sample and test pilots 

within the constraints of the operational world.  Combining samples of pilots across two or even 

more consecutive months may be necessary.   But what about combining samples taken 12 

months apart?   It is obviously unreasonable to combine samples over a time period as long as 

the period within which we are attempting to test for changes.  Once again, these types of 

questions will have to be answered by a data analyst who is knowledgeable about the whole set 

of relevant considerations.  
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Sample Size and Different Statistical Tests 

In our examples we have used average grades as the statistic for assessing performance.  

The sample mean is undoubtedly the most commonly used statistic and is arguably the single 

best single summary index of group performance.  However, there are times when we may want 

to know other characteristics of group performance.   Another common statistic is the proportion 

of a group that passes an assessment.  For example, we might know that in the past 95% of the 

B757 fleet passed a first-look evaluation of engine failure after V1.  We now want to know if this 

pass rate has changed.   To find out we would obtain a sample of pilots from the fleet, administer 

the engine failure after V1, and measure pass rate.  We could then perform a statistical test on 

this proportion in much the same way as for a sample mean.  The same basic ideas of hypothesis 

testing apply here as before including false positive and false negative error rates.  However, the 

actual sample sizes needed to achieve the same levels of error rates for a test on sample 

proportions will likely be different from a test on sample means.   In fact, minimum sample sizes 

need to perform a statistical test on sample proportions may be much larger than those for 

corresponding sample means.   

Sampling from Relatively Small Populations 

Most applications of inferential statistics involve sampling from very large, and for all 

practical purposes infinite, populations.   Drawing samples without replacement from such 

populations has a negligible effect on the sampling distribution.   However, occasionally we 

sample from relatively fixed and small populations, as is the case in airline training and 

assessment.  In such cases, there exists a correction to the calculation of the sampling variance of 

the mean.  The relevance of this correction to the present discussion is that by using the 

correction the sampling variance of the mean is reduced and hence the required sample size is 

also reduced accordingly.  The formula for calculating the corrected sampling variance is: 

 

where N is the size of the population, n is the size of the sample, and σ2 is the variance of the 

population.   To illustrate the effect of this correction, we show in Table 3 the minimum sample 

sizes needed to detect a difference of .25 grade points and for fixed values of σ = 0.60, α = 0.05, 

β = 0.05 and assuming different population sizes.  As the size of the population decreases, the 
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minimum sample size also decreases.   Looking back at Table 2 we see that the minimum sample 

size for the same set of values without the correction is 75. 

Table 3 Minimum sample sizes to detect a difference of .25 grade points, assuming 

 σ = 0.60, α = 0.05, β = 0.05, and using correction given in Equation 1. 

 Population size 

 100 200 300 500 

Sample size 43 55 60 65 

 

Summary 

 In a training program that is truly proficiency based, such as AQP, the collection and 

analysis of quality data is of paramount importance.  Decisions about the adequacy of training 

will ultimately be answered by empirically derived assessment data.   Many of the questions that 

arise about our training program can be answered by simple descriptive statistics: How many 

pilots were trained this month?  What was the average grade on engine failure after V1? and so 

forth.  However, at some point questions will arise that require drawing inferences about some 

larger group of individuals (e.g., a single fleet) from observations made on only a sample of 

those individuals.  Has fleet performance on a particular maneuver degraded?  Can we reduce the 

retraining interval for the B757 fleet?  These and related types of questions will necessarily 

involve inferential statistics. 

In this section of the chapter we provide a brief discussion of inferential statistics and the 

types of issues that arise when we perform statistical tests.  We especially focused on the 

question of selecting an appropriate sample size.  Our discussion has been elementary; there are 

many more technical issues that could be addressed but are beyond the scope of this chapter.  

Fortunately, there are many good introductory and advanced statistics books that address these 

issues, some of which we have listed below in the bibliography. 
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