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EXECUTIVE SUMMARY

The aircraft engine industry is currently working with the FAA to develop an enhanced life
management process, based on probabilistic damage tolerance principles, to address the threat of
material or manufacturing anomalies in high-energy rotating components. This process for hard
alpha (HA) anomalies in titanium rotors is documented in FAA Advisory Circular (AC) 33.14-1,
and future revisions to AC 33.14 will address other materials and anomaly types. A multi-year
research program titled “Turbine Rotor Material Design—Phase II” (TRMD-II) addressed
shortfalls in the data and technology required to support and enhance the AC and its
implementation. The integrated TRMD-II team, comprising Southwest Research Institute®,
GE Aircraft Engines, Pratt & Whitney, Honeywell, and Rolls-Royce Corporation, developed
enhanced predictive tool capability and supplementary material/anomaly behavior
characterization and modeling. Major TRMD-II accomplishments include the following:

Sensitivity studies were performed to guide a planned update by RISC of the AC 33.14-1 HA
anomaly distributions. These studies incorporated TRMD-generated technology as well as new
data and insights from OEM experience to identify variables with the most significant impact.

To better understand the evolution of HA anomalies and predict the maximum expected sizes of
undetected anomalies, a computer code was developed and calibrated to describe the diffusion of
nitrogen or oxygen in titanium from an inclusion during metal forming and heat treatment.

Detailed NDE and metallography were performed on forgings with seeded or natural
HA anomalies to validate the DEFORM™ forging microcode. Measurements of core and
diffusion zone (DZ) sizes in the forgings compared favorably with microcode predictions.
The microcode was also used to characterize the conditions associated with cracking of HA
anomalies during forging. Studies of representative forging shapes indicated that ingot-to-billet
conversion and component forging would, under common processing conditions, crack all
HA anomalies with nitrogen content greater than 4% (the lowest HA N content evaluated).

Ultrasonic inspections performed on natural and seeded HA anomalies in final forged shapes
indicated that multizone methods detected anomalies more effectively than conventional
methods, and synthetic and natural HA inclusions were easier to detect in billets than in forgings.

Tensile and fatigue tests were performed on high oxygen seeded Ti-17. Results indicated only a
small impact of elevated oxygen on tensile and dwell fatigue properties, a slightly higher impact
than for Ti-6-4, but a much smaller impact than for Ti-6-2-4-2.

Experiments were conducted to understand the fatigue behavior of embedded HA. Fatigue tests
were performed on coupons machined from seeded forgings. The total fatigue life observed was
always nearly at least twice as long the calculated FCG life, based on the assumptions that crack
nucleation life was zero and the initial crack size was equal to the core plus DZ size. Spin pit
tests were performed with material from TRMD-I forgings containing natural and synthetic
HA anomalies. Flight Life analyses indicated that initial crack sizes more nearly corresponded
to core sizes than DZ sizes. The thermal expansion coefficient of bulk HA with different
nitrogen contents was measured, and the results employed to evaluate the potential effects of
thermally-induced residual stresses on fatigue crack behavior at synthetic HA inclusions.
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Some damage tolerance issues for nickel-based superalloys were briefly explored.
Thermo-mechanical FCG data for IN 718 were generated to evaluate simple stress rainflow
analysis methods. Several Waspaloy mults with sonic indications were obtained, inspected,
forged, re-inspected, and selected for machining into coupon specimens for future fatigue testing.
Vacuum FCG data were generated for two nickel alloys (IN 718 and Waspaloy) and a powder
metallurgy nickel alloy (Udimet 720), plus one titanium alloy (coarse-grained Ti-6-2-4-2).

A survey was conducted of the scientific literature on the stability and significance of surface
residual stresses in fatigue, based on a comprehensive bibliography of over 300 citations.

New DARWIN® versions were developed to address anomalies associated with surface damage
(4x and 5.x), as well as different types of inherent anomalies in other materials (6.0).
DARWIN 5.x introduced a sophisticated 3D GUI that enables the user to visualize and then slice
a fully 3D finite element model at a chosen surface crack location to create a 2D model for
fracture mechanics analysis. New Version 6.0 capabilities address other types of inherent
material anomalies including risk assessment equations for large numbers of anomalies,
user-supplied crack formation modules, and 3D modeling of anomalies and associated
production inspections.

Enhancements in probabilistic methods were developed to improve the overall efficiency and
accuracy of the risk assessment computations, including enhanced importance sampling, optimal
allocation of Monte Carlo samples, probabilistic confidence bounds, probabilistic sensitivities,
conditional failure analysis methods, and an adaptive optimal sampling methodology.

Many other new DARWIN capabilities were developed and implemented, including zone
discretization methods; enhanced inspection capabilities; mission mixing; an enhanced
ANS2NEU module; a searchable electronic help system; and computational efficiency
improvements such as enhanced stress processing, restart capability, a new XML database
system, PC and Linux versions, and parallel and batch processing. The graphical user interface
was enhanced significantly to support all new features as well as expanded visualization and
report generation. Twelve new or enhanced stress intensity factor (SIF) solutions were
developed for the Flight Life fracture mechanics module, including a new bivariant weight
function SIF formulation and novel strategies to improve computational speed.

The partner engine companies participated in substantial review efforts to verify the accuracy
and usability of DARWIN, including quantitative comparisons with experimental data, field
experience, and internal company software; Alpha/Beta version evaluation to identify bugs and
needed enhancements; and assessment of practical DARWIN use for design and certification.

A three-day DARWIN training workshop was conducted near the end of the program. Over
forty technical papers were presented and/or published at conferences and in archival journals.
Royalty-free DARWIN licenses were provided to several other U. S. Government agencies.

At the request of the industry and FAA, an infrastructure was developed for software
configuration management, code licensing and distribution, and support for users employing
DARWIN for official FAA and company purposes. License fees collected by SwRI are
exclusively used to enhance DARWIN for the benefit of engine manufacturers and the FAA.
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1. INTRODUCTION.

1.1_BACKGROUND.

The traditional design practice for high-energy aircraft gas turbine rotors, the so-called
“safe-life” method, implicitly assumes that all material or manufacturing conditions that may
influence the fatigue life of a rotor have been captured in laboratory coupon and full-scale
component fatigue testing. In addition, the final design is usually based conservatively on
minimum properties. This methodology provides a structured approach for design and life
management that ensures high levels of safety. However, industry experience has shown that
certain material and manufacturing anomalies can potentially degrade the structural integrity of
high-energy rotors. These anomalies generally occur very rarely and, therefore, are not typically
present in laboratory test articles. However, on those rare occasions when anomalies are present
in manufactured products in service, they represent a significant departure from the assumed
nominal conditions, and they can result in incidents such the Sioux City accident in 1989 [1].

As a result of Sioux City, the Federal Aviation Administration (FAA) requested that industry,
through the Aerospace Industries Association (AIA) Rotor Integrity Sub-Committee (RISC),
review available techniques to determine whether a damage tolerance approach could be
introduced to produce a reduction in the rate of uncontained rotor events. The industry working
group concluded that additional enhancements to the conventional rotor life management
methodology could be developed that explicitly addressed anomalous conditions. During the
development of this probabilistic damage tolerance approach, it became apparent to RISC that
the capabilities and effectiveness of the emerging technology could be significantly enhanced by
further research and development. In early 1995, Southwest Research Institute (SwRI), in
partnership with four major U.S. engine manufacturers (GE Aircraft Engines, Honeywell, Pratt
& Whitney, and Rolls-Royce Corporation) and with guidance from RISC, proposed a
multiple-year R&D program and was awarded an FAA grant to address identified shortfalls in
technology and data. This program, titled “Turbine Rotor Material Design” (TRMD), developed
enhanced predictive tool capability and supplementary material/anomaly behavior
characterization and modeling with a particular focus on hard alpha anomalies in titanium rotors.

One of the key outcomes of that work was a probabilistic damage tolerance computer code called
DARWIN® (Design Assessment of Reliability With INspection). DARWIN integrates finite
element models and stress analysis results, a new fracture mechanics module for low-cycle
fatigue (LCF) called Flight Life, material anomaly data, probability of anomaly detection, and
uncertain inspection schedules with a user-friendly graphical user interface (GUI) to determine
the probability-of-fracture of a rotor disk as a function of operating cycles with and without
inspections. Other major accomplishments under the TRMD grant included the generation of
fatigue crack growth (FCG) data in vacuum for three titanium rotor alloys [2], experimental and
analytical characterization of the constitutive and damage prop