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Foreword 

This research was prompted by the FAA Advisory Circular (AC) No. 61-126 (1997), which 
authorized the use of a Personal Computer Aviation Training Device (PCATD) to be used for 10 
of the 15 hours authorized for an approved ground training device, but not for Instrument 
Proficiency Checks (IPCs). The research was supported under Federal Aviation Administration 
(FAA) cooperative agreement DFTA2001-G-037 with the Institute of Aviation, University of 
Illinois at Urbana-Champaign, during September 2001-November 2004. The study was 
sponsored by FAA Headquarters Flight Standards Service, General Aviation and Commercial 
Division. Dennis B. Beringer, Civil Aerospace Medical Institute (CAMI), served as the 
contracting officer’s technical representative.  

This report is Volume 2 of a two-volume final report. It is in the process of review and 
approval and is not at present an official FAA document. Consequently, the views expressed 
herein do not necessarily represent official FAA positions. Volume 1 covered results obtained 
from subjective pilot performance measures by certified flight instructors, instrument (CFII), 
who conducted the IPC flights for the study participants. This volume (Vol. 2) will describe 
objective pilot performance measures developed for the project and the results that they yielded. 
Published reports and presentations of the work on development of objective pilot performance 
measures are listed in Appendix A. 

Many people apart from the authors have contributed to the success of this project. We 
express our appreciation to Mary Wilson, who scheduled participants, and to Karen Ayers, who 
assisted with report formatting. We also thank Bill Jones, David Boyd, Sybil Phillips and Donald 
Talleur, who served as the check pilots. We also thank the Institute of Aviation flight instructors 
who provided familiarization training in the Flight Training Device, the PCATD, and the 
airplane, as well as the instrument pilots for their participation in the study. 
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Executive Summary 

To maintain instrument currency, instrument pilots must meet the recent instrument 
experience requirements of FAR 61.57(c) or (d) every six months. The requirements may be 
conducted in an airplane or an approved flight training device (FTD). If an instrument pilot fails 
to meet recent experience requirements within the previous 12-month period, an instrument 
proficiency check (IPC) must be successfully accomplished to regain instrument currency. The 
present study compared the performance of pilots receiving an IPC in a (PCATD), a FTD or an 
airplane (IPC #1) with their performance in an airplane (IPC #2). The comparison of 
performance in a PCATD to that in an airplane investigates the effectiveness of the PCATD as a 
device in which to administer an IPC. Currently, the PCATD is not approved to administer IPCs. 
The comparison of performance in a FTD with performance in an airplane will help determine 
whether the current rule to permit IPCs in a FTD is warranted. The comparison of the 
performance in a PCATD and a FTD permits a comparison of the relative effectiveness of the 
respective devices. Finally, the comparison of performance of pilots receiving IPC #1 in an 
airplane and IPC #2 in an airplane with a second CFII will permit the determination of the 
reliability of IPCs conducted in an airplane. 

This study involved 75 participants (25 participants in each group: FTD, PCATD and 
airplane). Each participant agreed to refrain from instrument flight (either in flight or in a 
ground-based device) between IPCs #1 and #2. They also flew a familiarization flight in the 
FTD, the PCATD and the airplane prior to being randomly assigned to one of the three groups 
(FTD, PCATD and airplane). The participating instrument pilots in the study were in one of four 
categories of instrument currency: (1) instrument current, (2) within one year of currency, (3) 
between one and two years of currency, and (4) between 2 and 5 years of currency and they were 
balanced among the three groups. Pilots in the 2 to 5 year category received up to five hours of 
instrument proficiency training in either a FTD or a PCATD prior to the experiment  

Automated objective pilot performance measures potentially enhance and expand traditional 
proficiency evaluation methods by an instructor pilot. In this report, we describe the 
development of nine specific metrics of pilot performance derived from time series of different 
flight parameters and examine their descriptive power and sensitivity against data from pilots 
with known differences in performance, as judged by an expert instructor pilot. Two 
autocorrelation based metrics and seven Fourier analysis based metrics are evaluated. Our results 
show many of these metrics to be both sensitive and diagnostic in differentiating between good 
and poor pilot’s performances as determined by the instructor pilot. The findings are consistent 
with the hypothesis that a skillful pilot will control the aircraft with a greater range of 
frequencies of input than a less skillful pilot, making adjustments appropriate to the 
circumstances whereas a poor pilot appears to make the same adjustment regardless of the actual 
magnitude or frequency of the adjustment needed. The results show the potential usability of 
performance metrics derived from time series data and that it is possible to discriminate between 
good and poor pilot performance using this approach. Furthermore, analysis of objective metrics 
between device groups confirmed the conclusion presented in Volume 1 of this report that there 
were no differences between the three different devices in which IPC flights were administered 
(airplane, Frasca FTD, and PCATD). 
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Introduction 

Objective pilot performance measures are very desirable for a multitude of purposes and for 
many reasons. Automatic data collection has the potential to enhance and expand traditional 
proficiency evaluation methods by an instructor pilot by alleviating the time constraints and 
information overload often associated with direct observation. Furthermore, quantitative 
performance data can be utilized in research and subjected to various statistical analyses to reveal 
underlying, covert patterns in pilots’ performance. Not surprisingly, objective pilot performance 
measures derived from flight data recorders (FDRs) or data output from simulators have a 
relatively long history of research (e.g., Gerlach, 1972; Vreuls et al. 1975; Stave, 1977; De Maio, 
Bell, & Brunderman, 1985; Benton, Corriveau, & Koonce, 1993). In spite of this, however, it 
appears that a relatively small number of distinct objective metrics have been utilized in 
research, and routine use of objective measures is still rare. There are a several notable obstacles 
to application of these measures. For example, Vreuls and Obermayer (1985) noted that the 
internal processes that drive operator actions are not observable and that few theories of human 
performance exist to predict what should be measured and the relative importance of each 
measure. Furthermore, task segmentation is necessary for automated performance measurement, 
making the process difficult. For maximum utility in training, performance measures need to be 
available and discernible in real time or as close as possible to the completion of the training 
session as well (Vreuls & Obermayer, 1985). However, while these problems are undeniable and 
difficult to overcome (cf Rantanen & Talleur, 2001), they are arguably outweighed by the 
potential benefits of objective measures, making continued research on the latter important. 

The following review of related literature is organized in two ways: we first review the past 
research involving objective pilot performance measurement in a chronological order, thus 
providing an overview of these efforts from a historical perspective and highlighting the uneven 
distribution of research on this topic throughout time. The second part of the review consists of a 
catalog of objective performance metrics used in the past. We will review the pros and cons of 
each metric and evaluate their utility in measuring various aspects of pilot performance, both 
alone as well as in conjunction with other measures. Although our review was aimed to be 
exhaustive, much of past research may not have been published and hence not been available for 
review. Other reviews of objective pilot performance measures include Mixon and Moroney 
(1982), who listed 189 articles on objective pilot performance measurement, broken down into 
fixed/rotary wing aircraft and simulator/field studies. No attempt was made to review or critique 
the articles, but the number of subjects, equipment, scenarios and measures were listed. Also 
Benton, Corriveau, and Koonce (1993) summarized some of the practical implications for 
designing and implementing an automated performance measurement system to be used for basic 
flight maneuvers training. The authors identify the flight parameters to be measured directly 
(IAS, ALT, VS, pitch, bank, yaw, throttle, flaps) but did not give any details about what should 
be done with these direct measures in order to evaluate performance. Finally, Gawron’s (2000) 
handbook of performance measures includes objective measures of performance and objective 
and subjective measures of workload, presenting various ‘standard’ measures (e.g., AE, RMSE) 
with references and a novel landing measure based on an intergral equation. The major focus of 
the review is on workload measures, however. 
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Objective Pilot Performance Measures in Aviation Research 
The first published accounts on objective pilot performance measurement appear in the early 

1970s from the U.S. Air Force laboratories. Consequently, many of the flight maneuvers 
evaluated were common to military flying. For example, Knoop (1973) studied Lazy-8 and 
barrel roll maneuvers in a T-37 simulator, recording IAS, ALT, HDG, vertical acceleration (±g), 
pitch, roll, pitch-, roll-, and yaw rates, control inputs (elevator, ailerons, rudder, and throttle), 
flaps, landing gear, speed brakes, and trim. Boolean measures (i.e., 1 or 0, within certain 
tolerance bands) for the flight parameters and deviations from reference values, (as in Knoop & 
Welde, 1973) were calculated. Linear combinations of Boolean measures and deviations from 
reference values at certain points of the flight maneuver were then compared to subjective IP 
evaluations (4 levels) for the flight maneuver. Using the IP generated data, Knoop showed that 
there was good agreement between the IP subjective ratings and the linear combinations 
measures. While there was still overlap in metric value between adjacent IP evaluation levels, the 
metric value trended with performance level (no quantitative results were given). However, when 
student-generated data were used, the linear combinations measures did not correspond with IP 
evaluations, suggesting that issues of intra-rater and inter-rater reliability had not been addressed 
properly. In addition, some of the standards the IP's used for evaluation were called into 
question. The author presented limited data to show that the measures were sensitive to training 
time. In a parallel study, Knoop and Welde (1973) evaluated deviations from reference/criterion 
values for the same flight parameters as above (Knoop, 1973) and a sum of 12 ‘absolute value of 
deviations from criterion values’ at four points in the maneuver was used as an index of pilot 
performance. This index was compared to a single instructor pilot’s subjective evaluations on a 
four-point scale for 47 lazy-8 maneuvers. The performance index measure accounted for 67% of 
the variance of the IP's own subjective evaluations. Evaluation by IPs as criteria for objective 
metrics was also used by Carter (1977), who reported high correlations between derived 
objective measures and subjective IP ratings. 

Connelly et al. (1974) performed a study which was concerned with developing candidate 
measures for pilot performance evaluation in the T-37. They studied lazy-8, approach and 
landing, barrel roll, split-S, and cloverleaf maneuvers in an airplane (T-37), recording ALT, IAS, 
VS, Roll, Pitch, HDG, acceleration, control inputs (elevator, ailerons, rudder, and throttle) and 
input forces (elevator, ailerons), roll, pitch, and yaw rates. These measures were discussed and 
formulated in terms of continuous differences from a reference trajectory (e.g., RMSE, MAE), 
where this trajectory could be empirically derived, and tolerance deviation measures were 
computed from either external criterion or SDs from empirical data. Linear combinations of 
weighted errors (cf Knoop & Welde, 1973); vector combination of error terms (allowing 
simultaneous comparison of all error terms) were discussed. 

It is evident that complex tasks—such as flying—involving multiple dimensions 
(exemplified by flight parameters in our discussion) yield a vast number of measures. Much 
effort has therefore been expended to data reduction and development of performance indices 
that combine many of the objective metrics in some meaningful and informative way. For 
example, a study by Hills and Eddowes (1974) yielded a total of 2436 measures per subject, 
which were broken down over the 10 flying tasks/segments. The effect of pilot experience on 
performance in one-, two, and three-dimensional tracking (roll, pitch and roll, and pitch, roll and 
yaw, respectively) while straight and level, climbing and descending turns, and in ILS approach 
was examined in a simulator. The parameters measured included ALT, IAS, VS, Roll, Pitch, 
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HDG, GS, LOC, TR, as well as control inputs (elevator, aileron, rudder, and throttle). In addition 
to means, standard deviations, and correlations, tracking measures (roll and pitch gain, phase, 
and cross-over, based on frequency analysis) The authors attempted to distinguish the three pilot 
experience groups based on the objective measures derived from the flight tasks. Because the 
authors used a tracking task with an applied sum of sinusoids error generator, traditional tracking 
measures could be employed (i.e., Bode plot measures/describing functions). Two experiments 
were performed with the first being a simpler version of the second. One-way ANOVAs were 
used to determine the ability of each measure to independently predict group membership. Only 
a little over 17 % (420) of the variables were found to be statistically significant (p < 0.05l) in 
separating groups. Standard deviations of variables produced the highest proportion of 
significant variables (32%), followed by tracking (20%), means (18%) and correlations (11%).  

Unfortunately, Hills and Eddowes (1974) did not summarize the numeric values of metrics 
between groups. In general it appears that SDs decrease with pilot group skill and the high-
frequency crossover point from the describing function analysis increases with pilot group skill 
for those parameters that show a difference between groups. The discriminant function from the 
first experiment was used to classify performance in the second experiment and the classification 
was significant at predicting group membership (p<0.005). However, the misclassification 
proportion using this discriminant function was still 33%. Because of the results of the cross-
validation, the authors concluded that the idea of using a combination of measures from a large 
number of aircraft state variables to predict pilot performance was not viable.  

Also Vreuls et al. (1975) sought to limit the amount of measures to those that were sensitive 
to training progress and utilize them in an automated IFR training simulator. Presuming that 
performance would improve with training, early training and late training were used as 
independent variables and the flight tasks included straight and level, standard rate climbs and 
descents, level turns, climbing and descending turns, plus control inputs (elevator, aileron, 
rudder, and throttle). The flight parameters measured were AOA, Pitch, VS, ALT, IAS, Roll, TR, 
HDG, sideslip (ball); from these, minima, maxima, MAE, SD, RMSE, TOT, RNG, zero 
crossings, autocovariance, and frequency analysis measures were derived as secondary measures. 
These were further used to form a discriminant function that best predicted late training 
performance from early training performance with a minimum number of measures. Across the 
various flight maneuvers, the discriminant function on average contained 9 secondary measures. 
In addition, the authors found that control inputs were important in distinguishing training stages. 
Using these discriminant functions in automated feedback training scenarios reduced training 
time to set criteria by 34–40% compared to the original scoring algorithm that included 
analytically derived measures only. 

McDowell (1978) used a number of objective measures to study the effect of pilot experience 
(beginner, intermediate, advanced) on flight performance in a simulator. Here, experience served 
as a handy variable to evaluate objective performance metrics, as it was presumed that more 
experienced pilots would perform better. The flying tasks were straight and level, turn to 
heading, vertical S and formation flight. Control inputs (elevator, aileron, throttle) were recorded 
and from these minima, maxima, moments (1-4), and relative power spectra were derived. 
Subjects from each experience group flew four maneuvers from an UPT syllabus from which the 
objective measures were generated to discriminate between the groups. Discriminability 
increased with maneuver difficulty and there were changes in pilots' control input power spectra 
with skill level. Aileron measures proved to be better than elevator and throttle measures in 
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generating significant differences between group performances. For the maneuvers that produced 
significant group differences, skilled pilots’ power spectra were shifted to higher frequencies 
relative to less experiences pilots. Also Childs (1979) found that mean (n = 4) scores for 
maneuver performance increased with training day, indicating that the measure was sensitive to 
performance improvement 

Swink et al. (1978) identified tasks and performance variables essential to effective operation 
and developed functional specifications of an airborne performance measurement system to 
quantify transfer of training from a C-5 simulator to aircraft. Sorties involving T/O, emergency 
procedures, and VOR and ILS approaches were simulated and IAS, ALT, VS, HDG, Position, 
Pitch, Roll, Yaw, control inputs (elevator, aileron, rudder, and throttle), CDI, and GS were 
measured. From these, RMSE were calculated. Tolerances of continuous flight variables were 
mentioned but the authors did not explicitly develop any secondary measures beyond RMSE.  

Hennessy, Hockenberger, Barnebey, and Vreuls (1979) developed automated performance 
evaluation system for UH-1 helicopter simulator for climbing and descending turns, NDB, VOR 
and ILS approaches (including ILS backcourse), and holding maneuvers. The flight parameters 
recorded included ALT, IAS, Bank, TR, VS, HDG, Trim, NDB tracking, VOR tracking, and ILS 
(LOC & GS) tracking. Performance was measured on a scale from 1-6 for primary measures 
within three specified tolerance bands (analytically derived) within a segment. Kelly, 
Wooldridge, Hennessy, and Reed (1979) used pilot experience and an independent variable to 
evaluate measures specific to air combat maneuvering (i.e., time in gun range, gun kill success, 
offensive time etc.) and up to 67 flight variables (including ALT, IAS, HDG, and control inputs). 
From these, RMS, MAE, Mean, SD and RNG were calculated. Multiple regression and 
discriminant analysis reduced the set of 31 candidate measures to a set of 13. The linear 
discriminant function, made up of 13 secondary measures, accounted for 52% of the variance in 
the performance data. The discriminant function predicted skill group membership (high or low) 
with 92% accuracy. However, of the three levels of pilot experience only two skill levels were 
used as classification variables, making it difficult to judge the success or significance of the 
study. Wooldridge et al. (1982) reanalyzed these data (Kelly et al., 1979) using a different 
segmentation process and discriminant models. Control inputs were found to be an important 
component of these new discriminant models. Results varied but were not ‘significantly’ 
(according to the authors) different from the previous study. 

Interest in practical applications for automated performance measures is exemplified by 
Semple, Cotton, and Sullivan (1981), who sought to develop automated pilot performance 
measures for simulators. The proposed measures included means, SD, RNG, maxima, minima, 
RMSE, MAE, TOT, time on target, zero or average-value crossings of time histories of data, 
autocorrelation, power spectral density function (bandwidth, peak power, low/high frequency 
power), Bode plots and describing functions of several parameters. However, no data on any 
particular flight parameters are reported. The general requirements of an automated performance 
measurement system are summarized within a broad discussion of aircrew training devices. 
Their general conclusion was that sophisticated tools needed to be developed that could weight 
various combinations of measures to generate performance scores that could be easily interpreted 
by instructor pilots. They noted the progress that had been made in this area (as above) but that 
there were still open questions regarding how best to select and combine measures. 

Automated performance measures have also been used in research on various topics. Martin 
and Rinalducci (1983) studied simulator acuity (cue density and shade) in a simulator and the 
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effect of these on pilots’ altitude maintenance performance. Also airspeed was manipulated in 
the simulated low-level military sortie. Altitude RMSEs were calculated. Performance was better 
in higher density simulated surroundings, higher contrast surroundings and at slower airspeeds. 
De Maio, Bell, and Brunderman (1985) examined the impact of visual cue quality (5 levels, low 
to high) and task difficulty (straight flight, turning flight) on pilot performance using objective 
measures of ALT, VS, and control inputs (elevator, aileron). Median ALT, median ALT RNG, 
and Critical Control Inputs (defined as control input that changes the sign of vertical 
acceleration) were calculated, and from these, Smoothness (ratio of critical control inputs to total 
number of control inputs) and Critical Error Rate (distance traveled from Critical Control Input 
to Vertical Acceleration sign change) were derived. These measures were indeed sensitive to 
changes in pilot performance across the experimental conditions. Median ALT and Smoothness 
were influenced by visual acuity of the simulated world, but not in a simple linear manner. ALT 
RNG and Critical Error Rate both increased with increasing flight task difficulty. The authors 
suggested that these measures could be used to distinguish between the perceptual and task 
difficulty components of flight control performance.  

The above studies appear within a twelve-year period that can be considered as a first wave 
of research on automated and objective performance measure development. It is interesting that a 
lengthy gap preceded the next wave, or ‘cluster’ of research in the mid-1990s. The following 
studies also show evidence of usage of the measures merely as research tools rather than interest 
in further development and evaluation of objective pilot performance measures. Furthermore, the 
measures used tended to be relatively simple. 

Sirevaag et al. (1993) used objective pilot performance measures to study communication 
modality (verbal–digital) and communication load (high–low) in a helicopter simulator, 
recording IAS, ALT, Position, Roll, Pitch, Sideslip, and control inputs, and calculating means, 
SD, and TOT for each. In addition to aircraft control, performance on secondary tasks was 
measured and subjective (NASA TLX) and physiological measures were taken. Control 
performance measures showed that pilot performance was best in the low load, verbal 
communication condition. However, performance on secondary tasks was better in the digital 
mode condition. The TLX ratings of workload were constant across conditions. Two of the 
physiological measures discriminated between levels of communication load, but no correlation 
of these measures with other measures were made. 

Examples of simple metrics used to evaluate new aviation technologies and their impact on 
pilot performance include Reising, Ligget, Solz, and Hartsock’s (1995) study of HUD format in 
simulated ILS approaches; RMSE measurements of ALT, IAS and CDI showed pilot 
performance was better (more accurate) using the pathway HUD than the standard HUD format. 
Fox, Merwin, Marsh, McConkie and Kramer (1996) studied instrument panel peripheral 
information during simulated basic flight maneuvers. RMSE were calculated for ALT, HDG, 
IAS, VS, and TR. They found that pilot performance was degraded when peripheral information 
on the instrument panel was removed. In another study done at the University of Illinois, Ververs 
and Wickens (1996) used MAE on ALT, IAS, and HDG, and determined that pilot performance 
was better (smaller MAE values) in a clear sky condition than a cloudy condition, indicating 
better extraction of aircraft pitch and roll information from outside the aircraft; either from the 
real horizon or the HUD. Response time to detect a target showed that reducing clutter and 
lowlighting non-essential flight information resulted in faster detection. 
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Svensson, Angelborg-Thanderz, Sjoberg, and Olsson (1997) examined the effect of 
information complexity (low to high, 16 levels) in a low level military sortie in a simulator, 
recording ALT, IAS, HDG, Pitch, and Roll data. From this data, a flight performance index was 
formed by combining subjective IP ratings of four aspects of a subject’s flight: altitude precision, 
IAS precision, timing of a turn and bank performance in this turn. The study examined the effect 
of information complexity on pilot performance, as measured by the flight performance index, 
and pilot mental workload. There was a significant correlation between pilot performance and 
information handling (r = 0.59, p < 0.001). Objective performance measurements (altitude 
deviations) were also used to show how flight performance began to decline once a certain level 
of information complexity had been reached. The flight performance index (based on the 
subjective ratings of IPs ) was correlated with the three measures of pilot mental workload used 
(NASA TLX, Bedford Rating Scale [BFRS], Subjective Workload Assessment Technique) with 
the NASA-TLX and BFRS producing significant negative correlations of –0.37 and –0.43 
respectively. There were no correlations performed between completely objective performance 
measures and workload assessments or physiological measures. 

Hughes and Takallu (2002) recorded 68 unspecified flight parameters, including flight 
control inputs to study SVS Terrain Display Models during simulated basic flight maneuvers and 
ILS approaches. In addition to subjective SA measures, the minima, maxima, range, RMSE, and 
SD of the flight parameters were calculated. Only subjective SA data were reported with further 
analysis using objective pilot performance data still to be carried out. In a parallel study, Takallu, 
Wong, and Uenking (2002) examined three different types of synthetic vision displays’ impact 
on pilot performance in a simulator. The flying tasks involved straight and level, 180 ° turn, 
descent and climb. The main flight parameters recorded included ALT, IAS, HDG, Pitch, Roll, 
and CI (Elevator, Aileron, Rudder, Throttle); additional parameters brought the total to 62. 
Deviations from reference/criterion values, RMSE, SD, and TOT ratios were calculated and a 
normal of vector containing tolerance-normalized errors of IAS and HDG, total scanning area 
(area under normal vs. time graph) was derived from these. The RMSE and TOT measures 
showed that pilot performance was better when using the SVS display. The total scanning error 
measure showed 8 of the 16 pilots had improved performance (lower scores) when using the 
SVS display. The other pilots showed similar errors across all three displays. 

In sum, since the early 1980’s, the literature shows little evidence of interest in developing 
objective pilot performance measures. The more recent reports merely use relatively simple 
measures as tools among many other measures to examine various research questions, usually to 
evaluate new aviation technologies or their impact on pilot performance. One explanation for the 
waning interest in objective pilot performance measures that may be offered is based on their 
complexity: the more complex the metrics become, the farther they are removed from the actual 
processes they are representing (i.e., pilot performance) and the harder they will be to interpret 
(cf Vreuls & Obermayer, 1985). Also, the effort to produce metrics based on power spectra and 
discriminant functions is often substantial and must be weighed against the validity and 
diagnosticity of such measures. 

An Inventory of Objective Pilot Performance Measures 

Measures of central tendency: Mean, median, and mode 
Measures of central tendency are used frequently in data analysis in all application areas. The 

purpose of these measures is simply to reduce—sometimes very large—data sets to a single 
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number, for example, mean. While such measures are absolutely necessary to make data 
manageable and understandable, it is also critical to consider all the aspects of data they obscure. 
In the literature, measures of central tendency have never been used alone; rather, they appear to 
be used as initial, exploratory measures of pilot performance data. It is also noteworthy that these 
measures by themselves do not afford any conclusions to be made about pilot performance. 

Minima, maxima, and range 
Minima and maxima of given data, and range they yield, complement the measures of central 

tendency. What is said about the measures above also applies to these measures, and indeed, in 
the literature minima, maxima, and range appear to have been used only in an exploratory 
manner. 

Standard deviation (SD). 
One of the most common objective metrics is the standard deviation (SD) of selected flight 

parameters. This metric describes the amount of variability around the mean of any series of 
values. In contrast to measures of central tendency, small SD in the case of piloting an aircraft is 
usually indicative of good performance. For example, Svensson, Angelborg-Thanderz, Sjoberg, 
and Olsson (1997) examined the effects on information complexity on pilot mental workload and 
pilot performance in a simulator and found that altitude deviations increased and correction of 
errors were delayed as a result of increased workload. Also Hills and Eddowes (1974) found that 
SD variables produced the highest proportion of statistically significant differences between 
experience groups (32%). It is important to note, however, that SD does not provide any 
information about possible error relative to given criteria. 

Root mean square error (RMSE) and Mean Absolute Error (MAE) 
RMSE is a widely used measure of tracking performance (e.g., Scallen, Hancock, & Duley, 

1995). It can be used to reduce the tracking performance along a specified parameter value, or 
criterion (e.g., a given altitude, or VOR radial) during an entire segment of a flight into a single 
number. A low number typically indicates good performance. The RMSE is calculated by 
squaring individual errors (sampled at certain rate), adding them together, dividing this sum by 
their total number, and then taking a square root of this quantity. The RMSE hence summarizes 
the overall error. In a study by Reising, Ligget, Solz, and Hartsock (1995) the RMSE 
measurements were successfully used to reveal pilot performance differences when using two 
different types of head-up displays (HUDs). Subjective feedback from the pilots corroborated the 
results. Ververs and Wickens (1996) measured mean absolute errors (MAE) of altitude, heading 
and airspeed, along with reaction time to a stimulus event to investigate the effect of clutter and 
low lighting on HUD assisted flight in a high fidelity flight simulation environment. Tracking 
error was used to determine that pilot performance was better in a clear sky condition than a 
cloudy condition, indicating better extraction of aircraft pitch and roll information from outside 
the aircraft; either from real horizon or the HUD display. Also Stave (1977) measured 
performance in a simulated helicopter flight task by RMSE from navigational course and an 
angular deviation from the Instrument Landing System (ILS) approach. 

The RMSE has a number of shortcomings, however. It does not contain information about 
the direction of deviations or the frequency of deviations from the criterion. The latter is 
particularly important dimension of tracking performance, as it would allow for detection of high 
velocity error in tracking while the position error (measured by the RMSE) might be minimized 
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(Wickens & Holland, 2000). To overcome these limitations, additional measures of tracking 
performance are available. 

Number of deviations (ND) 
The number of deviations outside tolerance (ND) is a measure that tallies the occurrences of 

the aircraft straying outside predetermined tolerances (Reynolds, Purvis, & Marshak, 1990). This 
is essentially a measure of velocity error in tracking and it complements the RMSE, which 
contains the error magnitude information. A low number typically indicates good performance. 
A low value, however, can also be obtained if the pilot makes few aberrations outside the 
tolerances but stays there for a substantial proportion of the flight segment of flight. The ND 
measure must hence be considered together with the total time spent outside tolerance in a given 
segment. 

Time outside tolerance (TD) 
The cumulative time the aircraft spends outside a given tolerance provides an indication of 

tracking performance beyond the RMSE and number of deviations. This measure is computed 
simply by summing the time the pilot spends outside of a given tolerance and divided by the total 
time in the segment (i.e., percent time outside tolerance). A small number indicates good 
performance. Sirevaag et al. (1993) took aircraft control measures from a helicopter simulator in 
a study investigating the effects of verbal and digital communication loads on pilot performance. 
The measurement of time above an altitude criterion produced significant differences between 
experimental task conditions. 

Mean time to exceed tolerance (MTE) 
Rantanen and Talleur (2001) developed a metric labeled mean time to exceed tolerance 

(MTE). The MTE is computed from the rate of change between successive data points and the 
aircraft's position relative to a given tolerance. Based on this information, the measure 
extrapolates the time the aircraft will remain within the tolerance region, as opposed to the 
number of deviations and time outside tolerance measures described above. Because this 
measure could potentially yield very large values, it was truncated at 60 s. Thus, if the pilot was 
60 s or more from exceeding tolerance throughout the flight segment, his or her performance was 
considered good. In subsequent analysis, the MTE on ILS localizer tracking showed a significant 
difference between pilots who passed an IPC flight and those who failed, by flight instructor 
evaluation (Rantanen & Talleur, 2001). 

Critical control input 
Other objective metrics include Critical Control Input, which is defined as a pilot input that 

changed or led to a change from positive vertical acceleration to negative vertical acceleration 
(or other flight parameter) or vice versa (De Maio, Bell, & Brunderman. 1985). A non-critical 
control input did not cause the vertical acceleration to change from positive to negative or vice 
versa. De Maio, Bell, and Brunderman (1985) hypothesized that “efficient” control would be 
characterized by a relatively large proportion of critical control inputs indicating that pilots were 
canceling small errors in altitude frequently.  

Smoothness 
Another metric, “Smoothness,” was defined as the proportion of critical control inputs from 

the total number of inputs (critical + non-critical). The critical error rate is the horizontal distance 
traveled from critical control input to vertical acceleration sign change divided by the time from 
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critical control input to vertical acceleration. This metric was designed to measure the 
effectiveness of a critical control input; low values for critical error rate would indicate a slow 
accumulation of error following the pilot control input. De Maio, Bell, & Brunderman (1985) 
found that that smoothness and critical error rate were affected by flight task difficulty (straight 
vs. turning, both while level).  

Moments 
The nth moment of a series of data is the summation of individual series values raised to the 

nth power and then divided by the number of sample points. Thus, the first moment is simply the 
average of a series of data. Average values have been commonly used as measures of pilot 
performance; for example, Hills and Eddowes (1974), McDowell (1978) and Sirevaag et al. 
(1993). However their use may be limited in certain circumstances given the way averages can 
mask important patterns and deviations in performance. The use of higher order moments 
appears to have been limited to De Maio and Eddowes (1978), where the aileron second moment 
showed differences between pilot experience groups in the study. 

Power spectra  
While frequency analysis has been identified as a useful tool to aid in performance 

measurement (Semple, et al., 1981), actual implementations of such frequency-based measures 
have been limited. Hills and Eddowes (1974) and Vreuls et al. (1975) used measures based on a 
manual tracking approach. Given a known disturbance function that was applied to the simulator 
aircraft, the researchers were able to use control inputs and derive describing functions and Bode 
plots of pilot performance. From this, measures such as cross-over power and high and low 
frequency gains were generated. Hills and Eddowes used these measures as part of a battery of 
over 2000 measures to derive discriminant functions that attempted to classify pilot experience 
groups (beginning, intermediate and advanced). Vreuls et al. (1975) performed a similar analysis 
using discriminant functions, however the exact nature of the frequency-based measures that 
were included is not clear. De Maio and Eddowes’ (1978) did not use a manual tracking 
approach by contrast and instead used several measures to quantify pilots’ control input power 
spectra. Several “digital filter” type measures were developed that estimated the relative power 
spectra below various frequency cut-off points. The 1/8Hz cut-off filter measure from the aileron 
control inputs produced the greatest separation between pilot experience groups of these filter 
metrics. In this case the more skilled pilots had their power spectra shifted towards higher 
frequencies. 

Summary 
Development of objective pilot performance metrics is inextricably linked to methods of their 

validation. The only alternative method of pilot performance evaluation is expert judgment, that 
is, evaluation by an instructor pilot, and hence subjective IP evaluations are the only method for 
validation of objective metrics. Unfortunately, poor inter-rater (and in some cases, also intra-
rater) reliability (cf Knoop, 1973; Knoop & Welde, 1973) severely encumber efforts to develop 
and use objective pilot performance measures. Another aspect of objective metric development is 
the typically large number of measures and the need to somehow reduce these data to a 
manageable set that can be interpreted in an effective and meaningful way. These efforts have 
seldom been thoroughly successful (cf Hills & Eddowes, 1974). Such difficulties associated with 
data reduction and performance indexing might in part explain the apparent lack of interest in 
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objective performance metrics after the 1970s and the initial push for objective pilot performance 
evaluation by the Air Force. 

The present research offered an opportunity to revisit the topic of objective pilot performance 
measurement. We had a several advantages on our side compared to many of the previous 
efforts, including established inter-rater reliability (please see Vol. 1 of this report), a revised IP 
scoring sheet to facilitate effective segmentation of the IPC flights and direct comparison of IP 
evaluations and objective measures, and availability of flight data from all three devices, that is, 
from an airplane, a Frasca FTD, and a PCATD. Unfortunately, however, control inputs could not 
be recorded by the FDR employed in this study and hence not included in the analyses. Despite 
the lack of control input data, this research represents—to the best of our knowledge—the first 
systematic evaluation of objective pilot performance measurement in the general aviation 
domain. 

Method 

Data Collection 
The experimental design and data collection methods have been detailed in Volume 1 of this 

report and will not be repeated here. Data from which objective pilot performance measures were 
derived were collected by a flight data recorder (FDR) on-board the Beechcraft BE-C23 
Sundowner aircraft used in this project. The FDR recorded 11 flight parameters, including 
aircraft position using Wide Area Augmentation System (WAAS) corrected Global Positioning 
System (GPS) receivers, altitude, pitch, roll, yaw, magnetic heading, vertical speed, and airspeed, 
as well as VHF Omnidirectional Range receiver and Localizer (VOR/LOC) and glideslope (GS) 
indications. For a detailed technical description of the FDR, see Rantanen and Talleur (2001) and 
Lendrum et al. (2000). Note that no control input data were available. Data streams form the 
Frasca FTDs and Elite PCATDs were also recorded. Both devices recorded the same flight 
parameters as the BE-C23 aircraft. The aircraft and FTD recorded data at a 1Hz rate, while the 
PCATD data, recorded at approximately 50Hz rate, was decimated to 1Hz prior to data analysis. 
All data from the three devices were brought to a standard format for preprocessing by two 
custom-written computer programs. These data processing steps are described in detail by 
Rantanen and Talleur (2001). A separate Matlab program was created to compute the time series 
metrics, as described below. 

Development of Time Series Based Pilot Performance Metrics 
The metrics described in this section were developed to supplement existing performance metrics 
(Rantanen & Talleur, 2001) with analyses that examine underlying patterns in the pilot-generated 
time series of data (see Figure 1 for an example). The new metrics utilize spectral (Fourier) and 
autocorrelation analyses and will be described in detail below. Two guiding hypotheses were 
used to develop these metrics: First, there may be a difference in the frequency of observed flight 
characteristics (based on pilot’s control inputs). Better pilots are expected to exhibit a larger 
range of frequencies of aircraft control than less able pilots, who may only control the aircraft 
with low frequency control inputs. Using Fourier analysis, a time series of data can be 
decomposed into spectral or frequency components. This decomposition allows an explicit 
representation of the underlying frequencies occurring in the time series. The second hypothesis 
is that more skillful pilots will exhibit a better awareness of the airplane’s constantly changing 
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state and be able to predict what control inputs will be required to maneuver the airplane to the 
future desired state. This may be manifested in the degree of correlation between flight 
parameter values in a time series. That is, better pilots may exhibit a greater correlation between 
a previous time point and the present time point than less skilled pilots who may exhibit a greater 
randomness of control on flight parameter values. By taking the autocorrelation of a time series 
for a particular observed flight variable, the degree of randomness between successive 
measurements can be investigated. Derivation of specific metrics from time series data is 
described next. 

Fourier Analysis Metrics 
To examine the periodic components of a time series, Fourier analysis was used. Taking the 

Fourier transform of time series data, Yk, gives the spectral decomposition: 

Yk =
1
N

˜ Y j
j=1

N

∑ e
2πi
N

(k−1)( j−1)
 

where the Fourier coefficients  are given by  ˜ Y j  

˜ Y j = Yke
−2πi

N
(k−1)( j−1)

k=1

N

∑  

and where N is the number of time series data points and i = −1. 

The original time series is then expressed as a weighted sum over all frequencies contained in 

the Fourier transform. The weights, 
˜ Y j

2

N
, represent the contribution a particular frequency 

makes to the original time series and are termed power spectral densities (PSD). The 
˜ Y j

2

N
 can be 

plotted against frequency, f = j
N

 (for a 1Hz sampling rate), in a periodogram.  

We hypothesized that a good pilot’s time series may contain a greater range of frequencies 
that contribute significantly to the time series, that is, a greater proportion of components that 
have a large PSD, compared to a poor pilot’s time series (see Figure 2). The metrics that were 
developed with Fourier methods are used to quantify both the range and magnitude of these 
significant frequency components.  
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Figure 1. Time series of four flight parameters from a VOR approach segment in an IPC flight. 
The data are from two pilots, one who passed the IPC (good pilot) and one who failed (poor 
pilot). The poor pilot exhibits much larger variability in the depicted parameters, and since 
Fourier analysis provides a sensitive method to quantify and examine such variability, Fourier-
based metrics were pursued for the purposes of this project. 
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Figure 2. Comparison of a good pilot’s and a poor pilot’s power spectral density plots, known as 
periodograms, lend support to the initial hypothesis that a good pilot’s time series may contain a 
greater range of frequencies that contribute significantly to the time series, that is, a greater 
proportion of components that have a large PSD, compared to a poor pilot’s time series. Note, 
too, that scales of the y-axes in the above plot are different by an order of magnitude, the good 
pilot exhibiting much smaller PSDs than the poor pilot. 

 

In determining what spectral components of the Fourier decomposition were significant, a 
critical value vc was set. Components with PSD greater than vc were counted and used in the 
subsequent metrics described below. Setting vc involves some difficulties, however. Because the 
data ranges of the time series vary greatly between flight parameters (altitude and airspeed for 
example) and individual pilots, PSD magnitudes in the Fourier decomposition will also vary 
greatly between parameters and pilots. Thus setting a single critical value to be used across all 
pilots’ flight parameters will not achieve the desired level of sensitivity. Therefore, a relative vc 
was set to a fraction of the mean or maximum value of the spectral components. This approach 
will also allow for manipulation of vc in order to find the value that produces maximum 
sensitivity in distinguishing good and poor pilots.  
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Seven Fourier-analysis based metrics were developed; (1) mean and (2) standard deviation of 

the spectral components
˜ Y j

2

N
, (3) the number of spectral components that are greater in 

magnitude than a critical value vc , (4) the mean and (5) standard deviation of spectral 
components greater than vc , and (6) the mean frequency and (7) standard deviation of the 
frequencies of spectral components with magnitude greater than vc (see also Table 1). 

Autocorrelation Metrics 
The autocorrelation coefficient (rh) gives a measure of the correlation between data points Yk 

and Yk+h of the time series Y = {Y1, Y2,…, YN} and is given by: 

rh =
Yk −Y( )Yk+h −Y( )

k=1

N−h

∑

Yk −Y( )2
k=1

N

∑
 

where  

 Y =
1
N

Yk
k=1

N

∑  

is the mean of time series data and -1≤ rh ≤1 

A plot of rh versus lag, h, is termed a correlogram; r0 = 1 by definition. The autocorrelation 
coefficient gives a measure of how well a subsequent measurement can be predicted from a 
previous value in the time series. Values of rh close to zero indicate little correlation between 
data points and values close to –1 or 1 indicate a strong negative or positive correlation 
respectively between data points. The time series of flight parameter values from a pilot who is 
aware of the state of the aircraft and can predict its future state may generate autocorrelations 
that are greater than those from a pilot who is not as aware. Since autocorrelations at large lag h 
tend towards zero, a useful measure that may be indicative of pilot performance is how quickly 
the series autocorrelations tend to zero.  

We hypothesized that time series of less skillful pilots would produce autocorrelations that 
decay more quickly to zero than those of more skillful pilots (see Figure 3). Consequently, two 
specific metrics were developed: (1) To quantify the decay of autocorrelation coefficients, the 
slope of the first 10 autocorrelation coefficients (from lag = 0 to lag = 9) was determined by 
regression analysis, and (2) the sum of squares error of the fitted regression line was also 
included as a second autocorrelation based metric. 
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Figure 3. Correlograms of good and poor pilots’ vertical speed from the same segment (cf the 
second time series plot in Figure 1). Note that the good pilot’s correlation coefficient decays 
from 1 much slower than the poor pilots (i.e., it has a shallower negative slope). 

 

The objective pilot performance measures used in this project are summarized in Table 1. 
Development of the time series based metrics has been described above. Some of the static 
metrics (RMSE and SD) are well known and have been used extensively in the past.  
Development of the other static metrics (i.e., ND, TD, and MTE) has been described in Rantanen 
and Talleur (2001). 
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Table 1 
The objective pilot performance metrics used in the project. 
 

 Metric  Description 

1. RMSE Root mean square error 

2. SD Standard deviation 

3. ND Number of deviations outside tolerances 

4. TD Time outside tolerance range 

5. MTE Mean time to exceed tolerance values 

6. ACS Slope of the autocorrelation function regression (first 10 data points, lags 0 to 9); 
quantifies how quickly autocorrelations tend to zero. 

7. MSC Mean of the 
˜ Y j

2

N
, the normalized squared magnitude of the spectral components 

incorporates the magnitude of deviations in the time series. 

8.  DSC SD of the 
˜ Y j

2

N
; quantifies the magnitude spread of the spectral components. 

9 NCGC Number of 
˜ Y j

2

N
> vc.; number of spectral components greater than a criterion value 

10. MCGC Mean of the 
˜ Y j

2

N
> vc ; mean magnitude of the spectral components greater than a 

criterion value. 

11. DCGC SD of the 
˜ Y j

2

N
> vc ; magnitude spread of spectral components greater than a criterion 

value 

12. FMCG Mean frequency of the 
˜ Y j

2

N
> vc ; mean frequency of spectral components greater than 

a criterion value 

13. FDCG SD of frequencies of the 
˜ Y j

2

N
> vc ; the frequency spread of the spectral components  

14. MEDF Median frequency of the power spectrum 

15. LPF1 Low pass filter, 0.005 Hz cutoff frequency 

16. LPF2 Low pass filter, 0.01 Hz cutoff frequency 

17. LPF3 Low pass filter, 0.05 Hz cutoff frequency 

18. LPF4 Low pass filter, 0.10 Hz cutoff frequency 
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Results 

Data Reduction and Analyses 
There were a total of 18 objective pilot performance metrics used in this project (see Table 

1), 5 of which may be called static (RMSE, SD, ND, TD, and MTE), and 13 metrics derived 
from time series of the data and that will be referred to as dynamic. One of the latter metrics was 
based on autocorrelation and the remaining 12 on Fourier transforms of the time series. All these 
performance metrics were derived from 9 different flight parameters: (1) altitude (ALT), (2) 
heading (HDG), (3) airspeed (IAS), (4) ball (BAL), (5) roll (ROL), (6) pitch (PIT), (7) vertical 
speed (VS), (8) course deviation indicator (CDI), and (9) glide slope indicator (GSI). 
Furthermore, each IPC flight was divided into 14 separate segments (see Table 2 for segment 
descriptions). Hence, there was initially a total of 9 (flight parameters) x 18 (metrics) x 14 
(segments) = 2268 objective performance measures for each subject and each IPC flight. Such 
large number of dependent variables was clearly too much for meaningful analyses; 
consequently, several steps were taken to reduce the number of variables to a manageable level. 

Table 2. 
IPC flight segmentation 

 
1. VOR 36 Course Intercept 
2. VOR 36 Outbound Tracking 
3. VOR 36 Procedure Turn 
4. VOR 36 Inbound Tracking to FAF 
5. VOR 36 Final Approach Segment to MAP 
6. Holding Pattern Entry 
7. Left 360˚ Steep Turn 
8. Right 360˚ Steep Turn 
9. ILS 6 Intercept (RV to FAF) 
10. ILS 6 Inbound Tracking to FAF 
11. ILS 6 Glideslope Tracking to DH  
12. Partial panel VOR Approach Intercept 
13. Partial panel VOR Approach Inbound Tracking to FAF 
14. Partial panel VOR Final Approach Segment to MAP 

 
 

Elimination of meaningless variables. 
Many of the measures were simply nonsensical; for example, metrics related to altitude from 
segments where altitude was not constant, or GSI-related metrics from segments not involving 
glide slope tracking are meaningless. Hence, the first step in the data reduction process was to 
select variables that would provide for meaningful information about pilots’ performance in the 
given segments. This was done by the expert judgment and consensus of the research team. The 
results are depicted in Table 3 below.  
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Table 3 

Metrics relevant to each segment; the grayed-out measures were eliminated from analyses.  
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Univariate ANOVAs 
Data were analyzed by both the IP evaluation outcome (pass and fail groups) and by the 

device (airplane, Frasca FTD, PCATD) groups. Univariate ANOVAs were performed for all 
objective pilot performance metrics that had an IP evaluation on the corresponding element as 
well as for all metrics by device group. The significance level (or, rather, the F-value) was used 
as a criterion for selecting metrics for further analysis; the cutoff p –value was set at .05. 

Correlation between variables. 
The next step in the data reduction process was to calculate correlations between variables. 

All variable pairs with a correlation of .7—an arbitrarily selected threshold value—or above (at p 
< .001) were examined separately. Selection between highly correlated variables by the above 
threshold was done according to the following criteria: 

1. In general, a variable that is simpler is given preference over a more complex variable. For 
example, while the dynamic Fourier transform-based metrics may well describe the general 
variability of a time series quite well, it would seem prudent to use a metric that explicitly 
measures variability (e.g., SD, RMSE) and is simpler to interpret. 

2. When given the choice between MSC and MCGC metrics, choose MSC. The MCGC metrics 
are based on the criterion value that was arbitrarily set. By using the MSC metrics, we do not 
have to invoke a criterion value to derive the metrics. In essence, using the MSC metrics is 
simpler. 

3. When given a choice between mean and standard deviation of spectral components, choose 
standard deviation. The key difference in our hypothesis on pilot control between poor and 
good pilots is that the more skilled pilots will exhibit a greater range of aircraft control 
frequencies. While the mean measure will contain this information, it seems that using the 
SD measure will be a more explicit way of testing our hypothesis. 

4. Of the metrics of the percentage of the total Power Spectral Density of the time series below 
a certain frequency cutoff (LPF), choose one with lower cutoff. 

5. Given a choice between the above and median of the power spectrum (MEDF), choose 
MEDF because it is more intuitive (the median frequency of the total Power Spectral 
Density, as opposed to the percentage of the PSD below a certain frequency). 

6. When given the choice between the above (3 and 4) metrics and mean and SD of frequencies, 
choose the percentage of power spectrum measures The two groups of metrics are basically 
trying to quantify the same thing (spread of frequencies in the spectral distribution) but the 
latter metrics are slightly more robust in the sense that there is a long history of using those 
type of measures in frequency analysis in other fields. 

7. Mean and SD of frequencies should be chosen over MCGC and over NCGC. FMCG and 
FDCG should be more sensitive to performance differences because they also contain 
frequency information of the spectral components greater than the criterion value. 

8. Choose ACS over LPF, as LPF is highly correlated with a number of other metrics in 
general. 

In the following sections, the results are presented by the analysis, first by IP evaluation 
outcome to establish the reliability of the objective metrics in comparison to IP judgment, and 
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then by device group, to examine the potential impact the differences between the devices might 
have had on pilot performance. 

Evaluation of Objective Performance Metrics by Pass/Fail Groups 
We shall first evaluate the objective pilot performance metrics as far as they correspond to IP 

evaluations as well as examine the participating pilots’ performance in light of the metrics.  Note 
that in the following analyses IPs provided scores on each element in the segment, for example, 
altitude was scored separately from airspeed, etc. In the following, including Figures 4-18, only 
those results that were statistically significant, (p < .05) for the pass/fail comparison are reported. 

RMSE and SD 
A good pilot, one who passes a segment element (variable), should have smaller RMSE and 

SD values than the pilot who fails on the segment element. This is necessarily so since the 
magnitude of error for a variable will be less for the good pilot. Although SD and RMSE may 
provide redundant information in most cases, in other cases, such as ALT in segment 13 (S13) 
for example, which is significant for SD but not RMSE, the RMSE variable did not adequately 
capture differences between good and poor pilot performance (Figures 4 and 5). The reason for 
this may be that a good pilot may produce the same RMSE with more small deviations around 
the criterion ALT as the poor pilot does with just a few large deviations outside the ALT 
criterion. RMSE is not as sensitive to the magnitude of the error as is SD. In this example, the 
SD differed for the two pilots to the point where a significant difference was found. 

 

RMSE

0
10
20
30
40
50
60
70
80
90

100
110

S7; IAS S7; ALT S14; CDI S8; ALT S11; GSI S5; CDI S8; IAS S8; ROL S5; IAS S11; IAS S11; CDI S4; CDI S13; HDG S14; IAS S7; ROL
Segment; Parameter

Pass Fail

 
Figure 4. RMSE measures showed significant (p < .05) differences between pass and fail groups 
for many flight parameters in many segments, making it one of the best metrics to evaluate pilot 
performance by. In all cases, pilots who failed the element in the IPC flight exhibit substantially 
larger RMSE values. 
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Figure 5. SD measures are also consistent across segments and flight parameters. All of the 
above differences between pass and fail groups (for the element in the segment) were significant, 
p <.05. 

 

ND and TD 
These metrics, while less sensitive than SD and RMSE, nevertheless differentiated between 

pass and fail groups by a number of flight parameters and segments. In particular, TD and ND 
appear well suited for use in segments 7 and 8 (steep turns) due to the nature of the maneuver. 
However, the time period of the maneuver may be too small for SD or RMSE to adequately 
capture differences at only 1 sample per sec. The TD and ND data show exactly what we would 
expect for the variables found to be different between pass/fail performance; failed pilots 
exhibiting both higher number and duration of tolerance exceedances (Figures 6 and 7). 
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Figure 6. Failed pilots had consistently and significantly (p <.05) higher number of tolerance 
exceedances than pilot who got a passing score for the element. 
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Figure 7. The durations of exceedances of tolerances (TD) are consistent with their number (ND; 
Figure 6). Also here, failed pilots show consistently higher durations than passed pilots. All 
differences between the groups depicted above were significant (p <.05). 
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Figure 8. The ACS results were predominantly opposite to our hypothesis. These results could 
be partially explained by the nature of the segments, however. It is also noteworthy that such a 
small number of ACS metrics reached significance between pass/fail groups, raising questions 
about the relevance and validity of this metric. 
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ACS 
We had hypothesized that good pilots would have shallower slopes of the autocorrelation 

function, but in the data, the opposite seems to be true. In Figure 8, segment 7 is a steep turn in 
which the good pilot is likely to make quick changes to maintain altitude, whereas the poor pilot 
will slowly drift off altitude as the maneuver progresses. In segment 8 (another steep turn but to 
the opposite direction) the poor pilots probably failed to reach the appropriate bank angle while 
good pilots makes aggressive changes in roll to maintain the proper angle of bank, again 
producing a steeper negative slope. However, due to the nature of the maneuver, steep turns may 
not be well suited for this kind of analysis. In segments 4 and 5, CDI, the good pilot is more 
likely than the poor pilot to make more aggressive changes to correct for off course indications 
as they approach the VOR, as well as immediately after passing the VOR, resulting in the higher 
negative slope. In segment 14, IAS does correspond to our hypothesis, and might be explained 
by poor pilots having difficulty flying the partial panel approach and sacrificing airspeed control 
as they attempt to hold altitude without a direct attitude reference.  

MSC and MCGC: 
These spectral components metrics seem particularly suited to differentiate good from poor 

CDI and GSI tracking skills. MSC and MCGC appear highly correlated on the significant 
segment/parameter pairings. An important result however is that MSC captures two segments 
where IAS has significant differences in spectral components; the MCGC metric does not 
capture this difference. One possible explanation is that the criterion value masked those two 
significant results.  

These results are not surprising; the greater mean values of poor pilots’ MSC and MCGC 
result from the fact that poor pilots have greater RMSE values for a particular flight parameter 
than good pilots’ (Figure 4). A greater range of values in a time series will result in greater 
coefficient values in the Fourier decomposition and hence greater values in the power spectra 
(values proportional to the square of the Fourier coefficients). There are two anomalies to this 
generalization shown in Figures 9 and 10. Firstly, the good pilot-poor pilot pattern described 
above is reversed in segment 8 altitude. It is likely this is due to a failure to subtract the mean 
value of the altitude time series in this (and other) segment. Because raw altitude values are 
significantly different from zero (i.e., in thousands of feet), there will be an extremely large zero-
frequency component in the power spectrum. The larger mean values of metrics MSC and 
MCGC for the good pilot may be an artifact of this large zero-frequency term that resulted from 
good pilots maintaining a higher mean altitude over the course of the flight segment. The second 
anomaly is the two steep turn segments (7 and 8) where Figures 9 and 10 show good pilots’ MSC 
and MCGC values greater than poor pilots’. Similarly to the discussion above for the ACS 
metric, this could indicate that good pilots do not act in accordance to our original hypothesis. It 
could also be the case that the same problems are occurring here as in the altitude measures. Both 
steep turn roll angles are supposed to be held at 45 degrees by the pilot and the failure to subtract 
the mean value of the time series may result in artifacts in the power spectrum calculations. 
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Figure 9. Means of spectral components (MSC). The results are consistent across parameters and 

bove a criterion (MCGC); however, it is noteworthy that IAS measures did not reach 
gnificance with this measure. The results are also entirely consistent in that poor pilots 
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segments, with good pilots exhibiting significantly (p < .05) smaller means. The only exceptions 
are steep turns (segments 7 and 8), but these maneuvers are clearly a special case. 
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Figure 10. It was not surprising to find similar results for the means of spectral components 
a
si
exhibited significantly higher MCGC values than good pilots, with the exception of steep tur
(segments 7 and 8). 
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DSC and DCGC 
The same 11 segment/parameter pairings are represented in both the DSC and DCGC charts 

(Figures 11 and 12). In addition, the relationship between pass and fail groups on each pair is 
virtually identical between DSC and DCGC. As a result of the almost perfect correlation, the 
standard deviation measures should be preferred over measures of central tendency. The general 
conclusion is that the SD of the Spectral Components is particularly suited to differentiate good 
from poor pilot performance on navigation course tracking accuracy. Seven out of 11 significant 
segment/parameter pairings deal with course tracking. Segments 7 and 8 (altitude DSC and 
DCGC values are reversed for good and poor pilots when compared to the remainder of the 
metrics) should probably be ignored as suggested earlier, due to the unique characteristics of the 
steep turn maneuvers. In addition the IAS (segment 7 and 14) metric values could be affected in 
the same way. The airspeed time series did not have the mean value subtracted before frequency 
analysis and this could lead to zero-frequency components of the power spectrum that obscure 
predicted performance trends under out original hypothesis. 

FMCG and FDCG:  
As would be expected, the FMCG and FDCG measures show similar significant 

segment/parameter pairings for pass and fail pilots, with the exception of HDG in segment 4 for 
FMCG. The results for the CDI measures shown in Figures 13 and 14 support the hypothesis that 
good pilots’ power spectra will be shifted towards higher frequencies compared to poor pilots. 
For the non-CDI measures (segment 7 and 14 IAS and segment 8 Roll), the same issues that are 
addressed above for MSC, MCGC, DSC and DCGC are relevant here: the failure to pre-process 
the raw time series data may lead to unanticipated results or a reduction of metric sensitivities.  
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Figure 11. The results on standard deviation of spectral components (DSC) were consistent with 
our hypothesis across many parameters and segments; poor pilots exhibited significantly (p < 
.05) larger variability than good pilots. Segments 7 and 8 should again be considered separately 
as special cases. 
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igure 12. The results for standard deviations of spectral components over criterion are similar 
s 

Figure 13. Th
onsistent with our hypotheses and across segments and parameters. Good pilots had 
gnificantly (p < .05) larger number of frequencies than poor pilots, with the exception of steep 

s 

Figure 13. The results concerning the frequency distribution of spectral components were also 
onsistent with our hypotheses and across segments and parameters. Good pilots had 
gnificantly (p < .05) larger number of frequencies than poor pilots, with the exception of steep 
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Figure 14. The standard deviation of spectral frequencies also supported our hypotheses, good 
pilots exhibiting significantly (p < .05) larger variability than poor pilots. 

 

 

 

 

 

Figure 15. While the number of significant spectral components can be viewed as an auxiliary 
measure primarily used to determine criterion values for other metrics (MCGC, DCGC, FMCG, 
FDCG) it nevertheless allows for an additional look at pilots’ performance. Good pilots should 
have higher number of significant components, which seems to be supported by the majority of 
the data. Steep turns are again an exception, as well as HDG in segment 2.
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NCGC: 
The NCGC m . Its 

effectiveness is lim
ma  a guide in setting the 

 hypothesized 
ponents; that is, a 

m ent 
measures in the 

Fourier-based easure of pilot 
performa

MEDF: 
 ent/parameter 

airings and these were generally less significant than other metrics for the same 

rge mean value. The segment 14 IAS MEDF values for both good and poor pilots is basically 
ero. This would indicate the need to subtract the mean value from such time series that do not 

cillate around the vale zero.  

 

Figure 16 ponents.  

easure is used as a simple attempt to quantify a pilot’s power spectrum
ited, however, because it does not take into account the frequency and 

gnitude values of the spectral components. It is nevertheless useful as
criterion value that is used in the MCGC, DCGC, FMCG and FDCG metrics. We
that good pilots would have a greater number of “significant” spectral com
larger value for NCGC. This is supported by CDI measures in Figure 15, but as in previous 

easures, IAS and roll measures show that good pilots have smaller NCGC values. The segm
2 HDG result is also surprising, but given the lack of significant results for HDG 

measures, it suggests that HDG measures are not a sensitive m
nce using these techniques.  

There were few significant Median Frequency of Power Spectrum segm
p
segment/parameter pair. It is doubtful that MEDF inclusion in any explanatory model adds any 
real value. It appears that the median frequency is simply not sensitive to differences in power 
spectra. Note that in Figure 16 we see the effect of small airspeed variations around a relatively 
la
z
naturally os

. Very sparse results were obtained for the median frequency of spectral com
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g 
 and 

nd 
ture 

t 
 LPF effect for IAS is not stable across maneuvers. It 

favors the pass performance for S7 and S8, but the fail performance for S11 and S14, which 
mig

Figure 17. Low Pass Filter (0.005 Hz cutoff frequency). With the exception of steep turns and 
S14 IAS, this measure consistently shows significantly higher values for failed pilots than for 
passed pilots 

 

LPF: 
Low Pass Filters 1 and 2 seem particularly good at differentiating performance on trackin

(CDI, GSI) and IAS segments with descents while tracking; (e.g., S11, S14, see Figures 17
18). LPF 3 and 4 rarely make the .05 level, however, indicating that we might have looked for 
differences at too high a frequency cut off. That is, the vast majority of all pilots’ power 
spectrum is at frequencies less than 0.05Hz. Segments 7 and 8 (steep turns) show up on IAS a
ROL in LPF 1 and 2 metrics but it is difficult to draw any conclusions on these due to the na
of the maneuver. The relationship of the dynamics of the maneuver to these patterns of these 
metrics needs more study. The LPF results are stable in that for CDI and GSI variables, the good 
pilots’ values are always less than for the poor (fail) pilots’. The same holds true for ROL, bu
the effect is reversed. The direction of

h erve to underscore the unique characteristics of steep turn maneuvers. This could be 
either the fact that we’re looking at time series values around 45 degrees (+ or -) or that good 
pilots do actually control the airplane in a more aggressive manner. The IAS problems may also 
be due to the lack of pre-analysis data formatting (i.e., subtracting the mean IAS value before 
taking the Fourier transform) 
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Figure 18. The results are similar for LPF2 (0.01 Hz cutoff frequency). Interestingly, this metric 
shows differences between pilot groups also for S11 IAS, which was missing from LPF1 results. 
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Segments 2, 4, and 13: VOR tracking 
Another way to evaluate objective pilot performance metrics is to examine them in the 

context of the actual flying tasks, that is, by IPC segment. In the following tables, we exam
the differences between pilots who passed and those who failed particular task elements within a 

ent, as judged by IPs, but in the light of objective performance metrics. 

ent 2 involved outbound tracking and segment 4 inbound tracking during a VOR 
approach. In both segments, CDI and HDG parameters showed significant differences between 
the two pilot groups (pass and fail), but there were large discrepancies between the actual m

ing significance. The fact that inbound tracking (segment 4, Table 5) yielded differences 
between the pilot groups (pass/fail) by many more measures than outbound tracking (segm

ay be explained by the relatively short period of time spent tracking outbound in 
which pilots had less opportunity to deviate from course. As with any short time-period 

neuvers, many time series metrics are rendered ineffective as tools for discriminating 
ance.  
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Table 4. 
ces 

.001)
  

%Diff

Six measures from segment 2, VOR outbound tracking, showed significant (p < .05) differen
between pass and fail groups of pilots. After rejecting highly correlated (Pearson r > .8, p < 

 measures, four metrics remain. All of these metrics also exhibit substantial effect size. 

Parameter Metric F P Pass Fail 

CDI MCGC 44.40 0.000 12393.00 182930.00 93.23

CDI DSC 18.53 0.000 22199.00 92892.00 

HDG NCGC 6.01 0.016 42.93 76.75 

HDG ND 4.70 0.032 6.314 11.763 

76.10

44.07

46.32
 

Table 5. 

measure)
 

arameter Metric F P Pass Fail %Diff

VOR tracking inbound. Only CDI showed significant differences (except for a single HDG 
 between pilot groups, but by multiple measures. 

P
CDI DSC 49.93 0.000 20752 84456 75.43
CDI FDCG 20.45 0.000 0.11163 0.0594 46.79
CDI FMCG 19.89 0.000 0.18005 0.0891 50.51
CDI RMSE 15.22 0.000 29.44 48.16 38.87
CDI SD 15.15 0.000 29.54 48.29 38.83
CDI LPF1 0.001 59.76 84.54 29.31
CDI 0.006 92.89 43.2 53.49
CDI

12.00
 NCGC 7.83
 ACS 6.98 0.009 -0.05 -0.02 

CDI LPF3 6.25 0.014 89.88 97.72 8.02
CDI MEDF 6.24 0.014 0.00928 0.0028 69.83
CDI LPF4 4.57 0.034 94.3

47.57

98.88 4.63
HD 20.79G FDCG 4.97 0.027 0.117 0.093 
 

Table 6. 
Segment 13: VOR tracking inbound. Also altitude and heading yielded significant differences 
between pilots in this segment. 

Parameter Metric F P Pass Fail %Diff
ALT SD 4.87 0.029 48.55 70.68 31.31
ALT TD 3.35 0.070 0.26 0.38 31.91
CDI DCGC 11.65 0.001 19945 87728 77.26
CDI DSC 10.31 0.002 9307 36142 74.25
CDI MCGC 4.93 0.028 6015 18944 68.25
CDI MSC 4.18 0.043 1264.8 3319.6 61.90
HDG RMSE 11.17 0.001 19.541 42.162 53.65
HDG SD 11.14 0.001 19.597 42.242 53.61
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Segment 5 and 14: VOR final approach to FAF 
The trend in VOR approach evaluation seems to be that the closer the pilots are to the 

runway, the clearer the differences between those who pass and those who fail. In segment 5, 
final approach to FAF, the number of significant (p < .05) metrics increased substantially over 

and als include IAS in a ition to CD Tables 7 8). 

VOR appro A large number etrics o showed icant d es betw
the pilot groups. Also IAS differentiated between those pilots who passed and those who failed 

ent. 

Pass Fail %Diff

segment 4 o now dd I (  and 

 

 

Table 7. 
Final ach.  of m n CDI  signif ifferenc een 

this element in this segm
 

Parameter Metric F P
CDI DCGC 47.37 0.000 32271 192296 83.22
CDI DSC 46. 0.00 2 96

 
1

3
C 

0. 0.1
0 0.0

 0.1 0
5 8 3

21 0 0055 747 79.27
CDI MCGC 40.69 0.000 8774 48748 82.00
CDI MSC 36.38 0.000 3444.7 2241.4 71.86
CDI RMSE 34.53 0.000 30.789 61.932 50.29
CDI SD 34.52 0.000 0.867 62.09 50.29
CDI NCG 10.31 0.002 86.78 43.17 50.25
CDI TD 9.16 0.003 05678 5267 62.81
CDI FMCG 8.84 0.003 .1681 895 46.76
CDI FDCG 6.47 0.012 0217 .063 38.34
CDI LPF1 6.12 0.015 7.142 2.728 0.93
CDI LPF2 5.48 0.021 65.065 88.53 26.51
CDI ACS 4.56 0.034 -0.0 -0.0 5

S SD 18.85 0.000 4.63 8.04 42.38
TD 16.85 0.000 0.06 0.23 73.86

.10
4.21 0.042 28.15 31.80 11.49

4794 1983 8.64
IAS RMSE 18.87 0.000 4.622 8.023 42.39
IA
IAS 
IAS ND 12.63 0.001 0.73 1.9259 62
IAS NCGC 
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Table 8. 
Fin e from segment 5 but with substantially 
larg

iff

al VOR approach. The results were similar to ths
er number of metrics differentiating between pilot groups. 

 

Parameter Metric F P Pass Fail %D
CDI MSC 62.80 0.000 1785.5 6491.5 72.49
CDI DSC 54.46 0.000 14465 53379 72.90
CDI MCGC 53.73 0.000 9536 53138 82.05
CDI DCGC 52.74 0.000 32512 146178 77.76

SD 48.18 0.000 21.004 39.668 47.05

4
7.85 0.006 0.059716 0.039167 34.41

DI FMCG 6.60 0.011 0.08684 0.05837 32.78
6.2 0.01 0.00 0.012

0.0 0.0

1
1

 

46 58

CDI 
CDI RMSE 48.15 0.000 20.961 39.587 47.05
CDI ND 12.42 0.001 0.01567 0.09758 83.9
CDI FDCG 
C
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TD 
LPF1 

0
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05224
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3.02 0.084 98.75 99.42 
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0.67
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1.208 
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29.09
1.693 
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1.41

IAS DCGC 6.20 0.014 4803 9333 21.13
IAS ACS

FDC
 -0.0 -0.0
G 0.03 0.0

0.0 0.0
3.85 0.052 0.055724 0.064385 13.45

IAS LPF4 3.24 0.074 99.606 99.516 0.09
IAS LPF3 3.05 0.083 99.198 99.029 0.17
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Segm
These segments, as has been pointed out before, warrant examination separately from the

of the IPC flight (see Tables 9 and 10). When considering contr
c

ent 7 and 8: Steep turns  
 rest 

ol input requirements, steep turns 
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Param p Pass il Fa %Diff
ALT RMSE 62.86 0 8 5 0.00 52.6 104.4 49.56
ALT TD 55.14 0 8 3 70.00 0.0972 0.3934 5.27
ALT SD 51.49 0 9 5 0.00 33.07 61.57 46.28
ALT ND 35.58 0 5 1 0.00 1.098 2.884 61.91
ALT MTE 10.03 2 14 0 2 0 0.00 0921.0 58032.0 45.39
ALT ACS 9.89 2 20.00 -0.1205 -0.10108 16.13
ALT LPF2 00 7 2 4 

84 0 4
89 0 8 1 
41 0 6 6 
16 0 1 0 
59 0 9 5 
41 0 9 2 
68 1 3 6 
80 1 4 8 
02 1 9 2 
78 6 7
31 3 9 3 
30 0 9 7 1

36.72
ROL LPF1 17.02 0.000 93.715 91.453 2.41
ROL LPF2 15.33 0.000 93.715 91.566 2.29
ROL TD 12.21 0.001 0.39553 0.66463 40.49
ROL RMSE 6.15 0.014 5.379 10.297 47.76
ROL MCGC 6.02 0.015 10606 8738 17.61
ROL NCGC 4.57 0.034 9.024 10.375 13.02

5. 0.02 89.75 90.39 0.71
IAS TD 80. 0.00 0.0055 0.139111 96.02
IAS ND 

E 
71. 0.00 0.224 2.761 91.86

IAS RMS 70. 0.00 3.170 6.360 50.15
5IAS SD 70. 0.00 36.0 76.8 3.11

IAS LPF2 
 

15. 0.00 89.73 91.36 1.78
IAS FDCG 15. 0.00 0.1342 0.1177 12.34
IAS FMCG 12. 0.00 0.1804 0.1600 11.29
IAS LPF3 11. 0.00 96.60 97.07 0.49
IAS LPF1 11. 0.00 89.73 91.10 1.50
IAS DCGC 7. 0.00 9778 117021 16.44
IAS LPF4 6. 0.01 98.02 98.25 0.23
IAS 
ROL SD 

DSC 4.
19.23

0.04
0.000

7429
2.6964

8337
4.2608 

0.89
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Tab
Seg

le 10. 
ment 8, steep turns. The results are similar but not identical to segment 7. 

 

Parameter Metric F p Pass Fail %Diff
ALT SD 45.77 0.000 29.825 54.898 45.67
ALT TD 45.63 0.000 0.076 0.347 78.15
ALT RMSE 40.45 0.000 50.044 94.215 46.88
ALT ND 18.75 0.000 1.015 2.587 60.75
ALT MSC 9.28 0.003 25797372 21611825 16.22
ALT DSC 7.81 0.006 1.08E+08 89283252 17.33
ALT DCGC 5.84 0.017 1.44E+08 1.19E+08 17.36
ALT MCGC 5.41 0.021 46274290 39247460 15.19
ALT LPF4 3.39 0.068 98.111 98 
IAS SD 24.15 0.000 3.1872 5.3177 40
IAS RMSE 24.12 0.000 3.15 5.2536 40

0.11
.06
.04

IAS ND 15.71 0.000 0.3431 1.5085 77.26
13.60 0.000 0.0112 0.0650 82.72
23.58 0.000 4.6 7
20.20 0.00

C 16.45 0.00
 14.13 0.00 9

13.51 0.00
 11.95 0.00

11.05 0.00
9.16 0.00 0

  7.87 0.00 3
 7.02 0.00 9
 6.82 0.01 2
  6.48 0.01 0.06 0.0
 

IAS TD 
ROL 

42
204

67 
68 RMSE .92 41.71

ROL 
ROL 

NCG
MCG

C 0
0

8.736
11944

11.167 
8528 

21.77
28.60

ROL LPF1 0 3.899 92.334 1.67
ROL 
ROL 

LPF2 
DCGC

0
1

93.899
22168

92.371 
18916 

1.63
14.67

ROL 
ROL 

LPF3 
TD 

1
3

98.768
.3635

98.175 
.58311 

0.60
7.660 3

ROL MSC 6 071.3 2640.1 14.04
ROL
ROL

LPF4 
SD 

9
0

9.579
.7411

99.354 
3.6656 

0.23
25.22

ROL
ROL

FMCG 2 6864 77889 14.15
ACS 6.41 0.01 -0. -0

 5.37 0.02
 3.99 0.04 0. 0.

2 10987 .10178 7.36
ROL DSC 

 
2 11998

0
10897 

0
9.18

1ROL FDCG 8 4976 56167 1.41
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Segmen
This is one of the most critical segments in an IPC flight an the results show

d

t 11: ILS approach, GS tracking to DH 
ed clear 

ifferences between good and poor pilots by many metrics across two primary parameters, CD 
s wel peed (Table 11). 

 11. 
ent 11, ILS ch. Note th ‘best’ res should ged als effec
dition to th tistical significance of the results. 

eter Metric F

and GSI, a l as airs

 

Table
Segm  approa at the measu  be jud o by the t size 
in ad e sta
 

Param p Pass Fail %Diff
IAS SD 15.87 0.000 84.150 5.9397 30.12
IAS RMSE .000 3 5.918 3

.000 5

.000 0.5793
 .002 5
C 6.51 .012 4

4.04 .046 5
.000 8
.000 3

 .000 0 7
.000 9 6
.000 8

 .000 8 4
.000 7

8.51 .004 2 0
.000 0 8

 .000 6
.000 2

 .000 9 8
.000 6 3
.000 6

GSI ND 13.73 0.000 0.20936 0.59734 64.95
GSI LPF1 13.07 0.000 58.327 73.285 20.41
GSI LPF2 10.64 0.001 66.923 79.092 15.39
GSI MEDF 9.62 0.002 0.009305 0.005026 45.99
GSI TD 9.06 0.003 0.012238 0.035132 65.17

15.84 0 4.138 0.07
IAS TD 15.69 0 0.037 0.11357 66.98
IAS ND 15.23 0 1.4386 59.73
IAS MSC 10.35 0 1792 20370 12.00
IAS NCG 0 29.71 25 15.86
IAS LPF2 0 96.02 95.414 0.64
CDI ND 26.18 0 0.0561 0.45157 87.56
CDI DCGC 19.02 0 1010 36916 72.63
CDI MCGC 18.81 0 401 14885 3.06
CDI DSC 18.24 0 527 17409 9.68
CDI MSC 17.33 0 969. 2975.7 67.41
CDI RMSE 15.33 0 15.45 28.442 5.65
CDI SD 15.32 0 15.50 28.534 45.65
CDI TD 0 0.00620 .027714 77.62
GSI MSC 73.71 0 153 8295.4 1.56
GSI DSC 62.56 0 859 49342 82.58
GSI MCGC 53.66 0 412 23117 82.17
GSI DCGC 50.05 0 1402 80486 2.57
GSI SD 35.01 0 20.01 32.972 9.29
GSI RMSE 34.98 0 19.95 32.858 39.27
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Summary 
It appears that CDI and GS tracking measures were in general the most reliable in 

discriminating between pilot performance groups in a manner that was consistent with our initial 
ypotheses. The lack of sensitivity that other flight parameter measures showed could be due to 

 of the following reasons: our failure to take the mean value away from the time 

e airplane. The success of the CDI 
easures in differentiating the pass and fail pilots is also consistent the measures that De Maio 

es (1 und were most important in differentiating skill levels of pi Eddo
d that a low s filter type aileron l meas as mor tant in ishi
s’ skill leve levator, rudder o le inp lthough  not loo ntro
ts as such, t teral control of the aircraft in tracking a VOR or Localizer is obviously 
ly coupled leron control. De Maio and Eddowes did not  a land  and 

parison with the GS measures that w d to b ul is no  made.

parison of Device Groups 
omparison of the device groups (airplane, Frasc  PCA  done riate
VAs.  The showed significa  .05) nces be the dev ups f
of 40 metrics, from 5 segments and param The pas riteria  
idered in th lysis but is examined later.). T lts are s rized in 11.  

orthy, how  that among the top ost significant (as m d by th o) re
 measures f ep turn maneuve ments  8), an these f ngle

eter, roll.  As we had pointed out throughout th ort, ste s are cl cept
uvers with e IPC flight and the v ty of t ectiv deve this 
ct in evalua f pilot performance in them m  research ther. e, at 

, we are rec egm e igno til their ty and ty fo
 maneuvers can be unequivocally established. 

e rem  30 metrics are from s t 11 
 approach), from the CDI and G ameters.  All of the rics are more
s based. Th g supports the n hat th trics are particularly e an
suited for e ination of tracking performance

h
one or both
series of data so that large zero-frequency components of the power spectra would not introduce 
artifacts or obscure other patterns in the data, or the particular nature of the flight segment (e.g., 
step turns) affecting the way good and poor pilots fly th
m
and Eddow 978) fo lots. wes 
foun -pas contro ure w e impor  distingu ng 
pilot l than e r thrott uts. A  we did k at co l 
inpu he la
close  to ai look at ing task so a 
com e foun e usef t easily   

Com
C a, and TD) was  by univa  

ANO  results nt (p < differe tween ice gro or a 
total  for 6 eters ( s/fail c was not
cons is ana he resu umma  Table It is 
notew ever,  11 m easure e F rati sults 
are 9 rom ste rs (seg  7 and d all of rom a si  
param is rep ep turn early ex ional 
mane in th alidi he obj e metrics loped for 

 Tproje tion o ust be ed fur herefor this 
time ommend that these s ents b red un validi reliabili r 
these

A second finding of interest is that 15 of th aining egmen (ILS 
final  and SI par se met  further  time 
serie is findin otion t ese me  sensitiv d 
well xam .  
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Table 12. 
Statistically significant (p < .05) differences between the device groups (airplane, Frasca, and 
PCATD). Note, however, that that among the top 11 most significant (as measured by the F 
ratio) results are 9 measures from steep turn maneuvers (segments 7 and 8), and all of these 
from a single parameter, roll. At this time, the validity of these measures cannot be 
unequivocally established and hence they should be ignored. The majority of the remaining 
results are from a single segment (11, ILS final approach) and for the CDI or GSI parameters. 

 

     Means  
Seg. Para. Metric F p Airplane Frasca PCATD Max. Diff. (%)

7 ROL DSC 91.95 0.000 10068 13313 11902 24.37
8 ROL MSC 83.77 0.000 2853 3971.2 3225.3 28
7 ROL MSC 80.76 0.000 2580.5 3517.4 2947.5 26
8 ROL DSC 77.20 0.000 11299 14742 12671 23.36
7 ROL DCGC 72.19 0.000 18614 24602 20630 24.34
5 HDG LPF3 68.48 0.000 66.8 94.46 89.98 

.16

.64

29.28
5 HDG LPF4 54.39 0.000 85.11 98.37 95.36 13.48

 0.000 20811 27515 21953 24.36
 0.000 10015 13790 9796 28.96

8 .41

7.67

.94
.198 85.104 95.513 10.90

11 CDI 
11 

.39

5 7244 721 97.34
5 CDI MSC 5.41 0.024 5337.1 2511.5 4139.6 52.94
4 HDG LPF4 5.24 0.007 89.12 94.05 93.48 5.24
11 CDI DSC 5.04 0.030 12540 3981 370 97.05
11 CDI MSC 5.03 0.030 2159.1 755 70 96.76
11 CDI ACS 4.68 0.036 -0.03713 -0.04975 -0.04229 25.37
5 CDI DSC 4.64 0.036 37838 15074 19330 60.16
11 GSI LPF1 4.62 0.037 66.302 55.56 62.208 16.20
8 ROL LPF4 4.51 0.039 99.543 99.694 99.212 0.48
5 CDI DCGC 4.11 0.048 70356 23388 29800 66.76
5 CDI MCGC 4.03 0.051 18018 5993 9078 66.74
4 BAL LPF4 3.10 0.049 54.367 65.869 58.323 17.46
4 CDI NCGC 3.09 0.049 90.83 100.6 76.49 23.97

8 ROL DCGC 53.77
7 ROL MCGC 37.65

ROL MCGC 32.15 0.000 10868 16290 10847 33
8 ROL ACS 24.75 0.000 -0.10429 -0.11696 -0.10421 10.90
11 GSI ACS 15.50 0.000 -0.04879 -0.07917 -0.04992 38.37
11 CDI LPF3 14.03 0.001 98.6 96.06 96.13 2.58
4 BAL FMCG 12.48 0.000 0.24877 0.23917 0.24779 3.86
11 CDI NCGC 12.48 0.001 32.042 56.333 57.375 44.15
11 CDI FMCG 11.51 0.001 0.07012 0.11921 0.134 4
11 CDI FDCG 10.93 0.002 0.05008 0.08204 0.09938 49.61
4 HDG FMCG 10.69 0.000 0.19653 0.15994 0.16853 18.62
11 CDI LPF4 10.69 0.002 99.37 98.37 98 1.38
4 BAL ACS 10.67 0.000 -0.04896 -0.0655 -0.05525 25.25
4 HDG FDCG 9.43 0.000 0.1267 0.1078 0.1133 14
11 GSI LPF3 9.02 0.004 92

MCGC 7.59 0.008 11387 2878 321 97.18
GSI LPF2 7.13 0.011 75.597 63.605 70.452 15.86

11 CDI LPF2 7.07 0.011 74.69 57.812 68.28 22.60
4 BAL ACR 6.59 0.002 0.64017 0.40083 0.49158 37
4 HDG LPF3 6.49 0.002 75.29 85.228 84.736 11.66
11 CDI DCGC 6.06 0.018 2713
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The ob
in control fidelity of the three devices. Although not empirically proven to date, anecdotal 
information about the handling differences of FTDs and PCATDs is well established. In fact,
authorizations for the use of these devices are specifically tied to various levels of control and
visual fidelity (See FAA Advisory Circulars AC 61-126; AC 120-40; AC 120-45). In
the GSI parameter, pitch stability and responsiveness in both the FTD and PCATD, which di
from the aircraft, and specifically the period and amplitude of control inputs required to 

served significant differences between device groups may be explained by differences 

 the 
 

 the case of 
ffer 

accomplish the glide slope task, are likely to have an impact on the time series analysis,. Also, 
without the sensation of yaw (only a instrument indication of yaw is available in the FTD or 

CAT ) a pil t may have increased difficulty noticing heading changes that subsequently 
e e tions to m tain CD align is wi ecially noticea

urse ct or LOC tracking, since the sen  of the is app tely four 
ate fo r VOR  tra   The c  data s this on in that

ght etric differences for LOC CDI . Howev
 als d ore si nt m  for se 5 VOR e trac  is notew
t se t 5 g is t  se  of reasonable length (approx. 6 f trackin
t is i miles o OR e the co ensitiv ilar t  sensitivi
h. 

ure o standard atio mean ude of l co ts (DSC a
SC, ct ow sig nt 5) diff s betw  devi ps. 

P D o
requir  cours  correc ain I ment. Th ll be esp ble during 
co  corre ions f sitivity

u
 LOC roxima times 

gre r than r othe  course cking. rrent upport conclusi  for 
fli segment 11 we found 10 significant m  tracking er, 
we o foun  four m gnifica etrics gment  cours king. It orthy 
tha gmen  trackin he only gment  miles o g) 
tha  also w thin 6 f the V  wher urse s ity (sim o LOC ty) is 
hig

 

Fig  19. B th the  devi n and  magnit  spectra mponen nd 
M respe ively) sh nifica (p < .0 erence een the ce grou
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Figure 20. Significant (p < .05) differences between device groups can also be found by 
measures of spectral component frequencies (mean and SD). 

 

Segment 4, VOR course tracking within 10 miles of the VOR, is predominantly made up of 
heading changes to establish a solid track of the inbound FAC for the VOR approach. The 
current data shows 8 significant metrics related to either HDG or BAL (yaw). Although segment 
5, the continued tracking of the VOR course after crossing the VOR from segment 4, produced 
only 2 significant metrics related to HDG (e.g., LPF 3 & 4), headings were already well 
established for course tracking. As a result it is expected that fewer differences would be found 
on that parameters related to heading control for segment 5. 

Given the many and highly significant differences between performance groups (pass/fail) 
discussed in the previous section, one can raise a question whether the differences in 
performance influenced the between device groups analyses. Rerunning the analyses by 
including also performance (pass/fail) as a factor in the ANOVA models—which would have 
addressed this point—was not possible due to the very small number of observations in the 
resulting groups (see Table 13 below). At the same time, however, it can be argued that the very 
sm
e

all proportion of failed pilots could not have had undue influence on the results reported 
arlier. 
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Table 13. 
The number of observations (n)

 

 in pass/fail groups by device. The small number of failed pilots 
rendered further analyses of between device group differences unfeasible. 

  Airplane Frasca PCATD 
S4, HDG_Eval Pass 43 47 43 
 Fail 4 1 4 

 Pass 22 21 19 
 Fail 2 3 2 

 Pass 22 23 21 
 Fail 2 1 0 

Pass 20 22 20 
 Fail 2 2 4 

al Pass 20 23 19 
 Fail 4 1 5 

Pass 17 14 19 
 Fail 7 10 5 

S5, IAS_Eval

S5, CDI_Eval

S11, IAS_Eval 

S11, CDI_Ev

S11, GSI_Eval 

 

e indeed intriguing and warrant 
rther research, the very small proportion of measures reaching significance in this comparison 

allows us to conclude that th
 

 

 

Finally, although some between-device groups findings ar
fu

e device on which the IPC flights were performed did not have an 
impact on the performance of the participating pilots. This conclusion, based on the analysis of a
multitude of different objective pilot performance metrics derived from data from different flight 
segments and parameters, offers substantially weighty support to our conclusions in Volume 1 of 
this report, that there were no differences in performance by instrument pilots on an IPC given in
either a PCATD, and FTD or an airplane. 
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Discussion 

ance measures 
remains hard to pin down conclusively. Upon closer reflection, our experiences seem to parallel 
those of the Air Force researchers in the 1  there  a very good reason for this line 
of research to be all but abandoned in the mid 1980s. Nevertheless, this research revealed the 
utility of objective pilot performance metrics in discriminating between good and poor pilots and 
provided support to the conclusions offered in Volume 1 of t report, which were based solely 
on subjective performance assessment. 

Our  also e in its systema  approach to the topic. W cluded many of 
the pre etrics in our analyses (in particular the s ic metrics, such as RMSE) but 
also de e series b d measures. Unfortunately, it is difficult to 
compar  our work to prev y reported efforts rese eviewed literature are 
either t y a nized in a manner (e.g., all 2  metrics worth of raw data by 
Hills and Ed ake meta-anal s a very tim onsuming process, if not 
altogeth Ou rch neverthele ffers a com hensive an stematic 
evaluation of all types of objective pilot perform etrics in existence and is first such effort 
in the general aviation domain. Furthermore, our proven inter-rater reliability (see Volume 1 of 
this report) ensures highest possible validity of these results (cf Knoop, 1973; Knoop & Welde, 
197

s’ skill level than elevator, rudder or throttle inputs. 
Although we did not look at control inputs as such, the lateral control of the aircraft in tracking a 
VOR or Localizer is obviously closely coupled to aileron control. The difference between the 
tasks used by De Maio and Eddowes (1978) and us makes direct comparison of the measures 
difficult, however. 

Despite the successes of this research, there remain several obstacles for widespread use of 
objective pilot performance measures. First is the necessity to carefully segment the flight to be 
evaluated, which is a tedious and time-consuming task. Some ambiguities in our data may also 
have been due to the inability of even the most meticulous segmentation to sufficiently constrain 
the variability between individual pilots in the same maneuvers. Second, the metrics are 
inextricably linked to both this flight segment from which they were obtained and to the 
particular flight parameter measured. It is hence difficult to make general recommendations for 
particular metrics for general use. Rather, it should be accepted that evaluation of pilot 
performance by objective metrics necessitates the analysis of multiple different metrics which 
cannot be meaningfully combined or indexed. 

Despite the extent of past research examined in the literature review and the amounts of data 
generated and analyzed within this project, the subject of objective pilot perform

970s, and  may be

his 

 research was  uniqu tic e in
viously tried m
veloped a number of novel tim

tat
ase

e iousl , as data p nted in the r
oo sparse or the re orga 436

dowes, 1974) that m
er impossible. 

y
ss o

se e c
r resea pre d sy

ance m

3). 

Many objective metrics proved to be both sensitive and valid (by IP evaluations) in 
differentiating between good and poor performance. It appears that time series based CDI and 
GS tracking measures were in general the most reliable in discriminating between pilot 
performance groups in a manner that was consistent with our initial hypotheses as well as the 
measures that De Maio and Eddowes (1978) found were most important in differentiating skill 
levels of pilots. De Maio and Eddowes found that a low-pass filter type aileron control measure 
was more important in distinguishing pilot
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Conclusions 

In conclusion, we offer the following poi interpretation of our results as well as to 
sug

 

s proved to be both sensitive and valid in differentiating 

rtant 

ility to discriminate between good and poor pilots is related to the method of 
rns were 

 

6. h 

 in the 

nts to aid in 
gest areas for further research: 

1. Evaluation of a multitude of objective pilot performance measures confirmed the conclusion
presented in Volume 1 of this report, which was based on subjective performance 
evaluations, that there were no differences between the three different devices the IPC flight 
were administered (airplane, Frasca FTD, and PCATD). We therefore repeat the 
recommendation that the FAA permit the use of approved PCATD to give Instrument 
Proficiency Checks. 

2. Objective pilot performance measure
between good and poor pilot performance. The validity of our results is highlighted by the 
demonstrated inter-rater reliability of the IPs providing subjective performance evaluations 
against which the objective results were examined. 

3. Some metrics provide little additional utility over conventional measures such as SD or 
RMSE. Given the number of measures evaluated in this project, this was to be expected. 
However, time series based measures clearly provide enhanced resolution to find impo
differences between pilots in areas where conventional measures fail. The CDI and GSI 
tracking measures are the foremost examples of the utility of these metrics. 

4. Some maneuvers measured warrant further investigation to determine if the reason for the 
inab
segmentation, the sampling rate, or some other peculiarity of the maneuver. Steep tu
clearly problematic to the metrics employed here. Furthermore, as no other turning 
maneuvers were evaluated, it is difficult to establish the stability of our metrics for such 
maneuvers.  

5. The success of time series based metrics in providing more information than static measures
(SD, RMSE, etc) especially in tracking maneuvers warrant further research to determine the 
effect of course width narrowing on the stability of the various metrics (e.g., when 
approaching a VOR, when nearing the LOC antenna, etc.). Clearly, the method of tracking as 
the pilot approaches the station must change to accomodate the more sensitive signal. A 
controlled study of tracking could easily determine how these metrics behave under such 
circumstances.  

Finally, we feel confident to recommend the following subset of measures for future researc
on pilot performance as well as for further development and validation. These 
recommendations are based on the measures’ ability to differentiate between pass and fail 
pilot groups (as determined by subjective IP ratings) by the F ratio and statistical significance 
(p < .05). In Table 14 below, the metrics are arranged by the frequency they appeared
analysis at statistically significant level. 
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Table 14. 
Frequencies of metrics exceeding statistical significance (p < .05) in the analyses. Recommended 
measures are marked with bold. 
 

Metric Freq. % Associated Parameters 
SD  10 9.01 CDI, IAS 
MS
RM  
DCG
DSC 8 7.21 CDI, GSI, IAS 

LPF
MC
ND 6.31 CDI, GSI, IAS, HDG 

NCG
FDC
LPF
ACS  

ME
LPF
MTE

C 9 8.11 CDI, GSI, IAS 
SE  9 8.11 CDI, GSI, IAS, HDG

C 8 7.21 CDI, GSI, IAS 
  

TD 8 7.21 CDI, GSI, IAS, ALT 
2 7 6.31 CDI, GSI, IAS, HDG 
GC 7 6.31 CDI, GSI 

7
LPF1 6 5.41 CDI, GSI, IAS 

C 6 5.41 CDI, IAS, HDG 
G 5 4.5 CDI, IAS, HDG 
3 5 4.5 CDI, IAS, HDG 
 4 3.6 CDI, IAS

FMCG 4 3.6 CDI, IAS 
DF 4 3.6 CDI, GSI, IAS 
4 3 2.7 CDI, IAS 
 1 0.9 CDI 

 

Based on the data in the above table, we make the following recommendations for metrics to 

 and it proved to be very robust in our analyses. 

r hypothesis 
s 

pectral components greater than criterion (FDCG) 
appears relatively low in Table 14; its inclusion in this short list is justified by the 
unique information it provides in addition to other metrics. 

 

be used in objective pilot performance measurement: 

i. Standard deviation (SD) is simple and robust measure; however, it must be kept in 
mind that it does not provide any information about error relative to any criteria, and 
hence its use should be considered against the alternative of RMSE. 

ii. Root mean square error (RMSE) is widely used measure, it is simple and easy to 
compute,

iii. Standard deviation of spectral components (DSC) is a robust metric that showed 
consistent differences between performance groups in accordance to ou
and proved to be superior to static measures in evaluating tracking performance. It i
also more sensitive than MSC and does not depend on criteria; hence, we recommend 
it over MSC, MCGC, and DCGC metrics. 

iv. Frequency standard deviation of s
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