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Abstract

The purpose of this rescarch was to explore the performance limits for helicopter pilots
who inadvertently fly into IMC conditions. The problem of inadvertent VFR flight into IMC has
been well documented as a major cause of general aviation accidents. The performance limits of
fixed wing pilots under these circumstarices have also been investigated with alarming results.
However this problem has not vet been studied sufficiently in civilian helicopter pilots. In
general helicopter operations are more complex than those of fixed wing aircraft for several
reasons including increased control difficulty and the ability to operate in a variety of flight
regimes.such as slow flight, hover, low level, and high speeds. Each of the different helicopter
flight regimes has different operational and control demands. The present study is aimed at
quantifying helicopter pilot performance after inadvertent VFR into IMC at different speeds and
altitudes of operation. A secondary goal was to develop an objective method to quantify pilot
effort and performance. We report here on data collected from instrument rated commercial
helicopter pilots in simulated flight from VFR conditions to IMC. Data were collected on
ajrcraft attitude and performanice as well as pilot control inputs. An “error” analysis was
conducted on the aircraft attitude data which enumerated the number of times and the percentage
of time that the aircraft was judged to be in a attitude that would reduce safety as predetermined
by helicopter pilot experts. In addition a novel “power” analysis was performed on the pilot
input data that provided information regarding the amount of corrections that the pilots were
using during flight. This analysis treated pilot inputs as time series and quantified variability in
the inputs by calculating power in the Fourier spectrum of the digitized control position data
stream. This analysis is unique in that it provides an objective measure of pilot effort. The
analysi§ was also applied to aircraft performance metrics. Both the error and power analyses
revealed important information regarding the relationships between visibility, altitude, airspeed,
aircraft performance, and pilot effort. In particular, while pilots quickly improved performance
such that safe attitudes were maintained, the amount of effort required to maintain proper attitude
remained high for longer periods of time. Pilot effort eventually decreases with repeated
practice.



Introduction

Backeround

Helicopter pilot performance during inadvertent VFR flight into IMC.

The problem of inadvertent VFR flight into IMC is well known. From 1990-1997,
inadvertent VFR flight into IMC account for approximately 11 % of fatal general aviation
aceidents. In addition the fatality rate for accidents involving VFR flight into IMC was about
75% while that for accidents attributed to other causes is about 18% (Wiegmann and Goh, 2000,
Goh and Wiegmann, 2002). The situation has not improved sighificantly sinice that time. It is
generally accepted from previous studies that most fixed-wing pilots that are not trained
specifically in IFR operations have great difficulty maintaining control over the aircraft when
visual cues are lost. The most quoted data set suggests that an alarmingly short 178 seconds is
the average time that 2 VFR rated, fixed-wing pilot has after entering IMC before a catastrophic
loss of control occurs. The high frequency with which inadvertent VFR flight into IMC oceurs,
greatly amplifies the cause for concern over these data. However there is little data on the ability
of commercial helicopter pilots to maintain control of the aircraft after inadvertent instrument
conditions ate encountered.

VFR into IMC accidents are 2 major eoncern in commercial helicopter operations and are
recognized as a major safety problém. A white paper released by Helicopter Association
International (HAI)in Fall of 2005 addressed the issue of continued VFR flight into IMC in
emergency medical service (EMS) operations and states “Fiffy-nine (46.8 percent) of these
piloi-induced accidents were avresult of either controlled flight into terrain, water, or obstacles;
striking an object with either the main or tail roter; or aloss-of-control resulting in impact with
terrain due to spatial disorientation. Of these, 40) occurred at night, and of these, 23, or over
half, involved intentional or inadvertent continued VIR flight into IMC conditions”. In addition,
the industry’s major operators. and manufacturers often address the issue of VFR flight into IMC
in safety circulars and publications (e.g. Bell Hehicopter, 2004). However, a perusal of recent
NTSB annual safety reports reveals that weather and continued VFR flight into IMC remains
responsible for many aviation fatalities.

Since helicopter operations by nature are largely conducted in VFR environments many
helicopter pilots, even those¢ with instrument training, have relatively little instrument flight time
in actual IMC. In additien, helicopters are inherently less stable than fixed-wing aircraft and can
operate in a wide variety of flight regimes each of which has its own degree of stability and
difficulty-of control. Such regimes include vertical takeoff and landing, hever, low speed flight
in virtually any direction, and high speed forward flight. The performance of pilots during
inadvertent VFR flight into IMC must depend on many interacting factors including aircraft
altitude, direction, and speed as well as pilot variables such as experience, fatigue, external
distractions, and stress. It would be useful in promoting safety to understand the nature of the
pilot performance envelope for VFR into IMC situations, in the multidimensional variable space
within which helicopters are flown. This portion of the present application proposes to
investigate pilot performance for inadvertent VFR into IMC operations for helicopter pilots
operating in several different flight regimes experienced during normal flight. It is the hope that
this information can be used to guide helicopter instruction and to make recommendations
regarding pilot response during inadvertent VFR into IMC.



Goals

The main goal of the present investigation is to contribute to the knowledge of pilet
performance limits in order to improve flight safety for civilian helicopter operations,
Specifically, we have evaluated how well civilian, instrument-rated helicopter pilots maintain
control of their aircraft after inadvertent VFR flight into IMC across a variety of flight altitudes
and speeds. A second goal is to develop an objective method to quantify both aircraft control
and pilot’s control inputs.

Methods

General design-

We have investigated pilot perﬁ)rmance after VFR flight in to IMC using an FAA
approved helicopter simulator (Flyit) running a Microsoft flight simulation package for the Bell
206 (see Figure 1). The simulators were owned by and located at Silver State Helicopters Flight
Academy in Sacramento, California. We developed scenarios for the simulator that introduced a
relatively rapid decrease in flight visibility to IMC conditions over a period of abeut 3 minutes of
flying time. However since many VFR into IMC scenarios inivolve slow and sometimes
insidious weather deterioration, it is hoped that future research may be aimed at determining how
rate of weather decline affects helicopter pilot performance and decision making. The scenery
environments were chosen to mimic common commercial helicopter operations and included
departure from an offshore (island) site with a short flight to the “mainland” and a scenario
flying along moderately mountainous and forested terrain,

_to from the Flyit w-ebste.

Figure 1. Two views of the Flyit Simu



We have investigated & range of flight conditions including four different altitudes and
five different airspeeds (see table 1) as independent variables, Shaded regions in Table 1 indicate
those conditions that were tested. Data were collected from the simulator program regarding the
flight instruments, aircraft performance, scenario information, and control inputs. These data
were collected using a program which we developed to run simultaneously with the simulator
and download and record data and flight parameters in real time. We performed two different
post-hoc data analyses which are described in detail below. In addition the flight information was
recorded and can be played back for later viewing and subjective analyses using a program
developed by Joseph Sullivan and his colleagues at the Naval Postgraduate School in Monterey,
CA.
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Table 1. Flight altitudes and airspeeds/maneuvers at IMC encounter. Shaded
regions indicate those conditions that were tested in the simulator.

Subjects-

We tested 20 commercial, instrument rated pilots. The pilots were recruited through
Silver State Flight School in Sacramento, CA and by an announcement posted by HAIL in their
news letter and on their website.

All of the pilots were qualified to fly the Bell 206 prior 1o thie testing and had current
medical certificates. Because of the great interest in this study by the helicopter operator
industry our subject pool was probably biased towards high-time pilots. The range of helicopter
experience was from 1,400 to 25,000 hours of pilot-in-command (through self-report). The
mean and median times were 7,185 and 4,850 hours respectively.

Praocedure-

A helicopter flight instructor from Silver State Helicopters supervised the opération of the
simulator and acted as ATC for the pilot and as experimenter to collect the data. Pilots were
given between 5 and 10 minutes to familiarize themselves with the flight characteristics of the
simulator. Practice was considered sufficient if the pilot could confidently maintain control of
the simulator during takeof¥, level flight, hover, and landing under normal visual guidance. Each
pilot flew six assigned “missions” at given altitudes and airspeeds. The specific
altitudes/airspeed conditions and order of the conditions was randomly chosen to control for
practice effects. Each scenario was flown for approximately 5 minutes after which flight
visibility was gradually reduced over a 3 minute period to low IMC with ceilings of 100 ft or less
and near zero visibility. Flight visibilities dropped from > 10 nm, to 3 nm, to 1 nm , to 0.5 nm,
and essentially zero visibility when clouds levels were below the flight aititude. The pilot was
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allowed to take any action required to cope with the changing conditions including declaring an
emergency, requesting an IFR clearance, descending, continuing the flight, or making a
précautionary landing. The flight was allowed to continue for a total flight time of 15 minutes or
until loss of control, precautionary landing, or crash occurred. Flight data was automatically
downloaded to a laptop computer for offline analysis. A sample of the raw-data obtained over a
30 second period of time for one run is shown in Appendix 1. Complete raw data files are
available from Dr. Crognale upon request.

Raw Data Analysis

As mentioned above we performed two types of analyses on the data. The first analysis
was a novel procedure which we termed a “power” analysis and is based upon the power in a
Fourier transform of the data. The logic was that a decrease in aircraft control would produce
more fluctuations or variability in aircraft performance parameters such as pitch, and bank.
These greater fluctuations would result in greater power in the Fourier spectrum of the time
series that describes the parameters. Thus Fourier power is inversely propottional to stability or
aircraft control performance. This analysis has an additional advantage since it also can be
applied to control input data. So even if the aircraft stability is being maintained it might be true
that the pilot is working harder to achieve flight stability and may have increased control input
fluctuations. Therefore the power in the Fourier spectrum of the time seties for control inputs
may be a convenient and objective metric for quantifying pilot effort or task difficulty. Such an
objective measure would be valuable in studies of pilot performance, training efficacy, workload
manipulations, and fatigue.

The second analysis {error analysis) looked at pilot performance by comparing the
“error” rate that occurred during the VFR and IFR portions of the flight. Errors-were
operationially defined after consultation with experienced helicopter Safety personnel at the FAA.
An error occurred anytime a pilot crashed or exceeded the following parameters for aircraft -
attitude: pitch-excéeding + or — 5 degrees; bank- exceeding + or — 18 degrees; vertical speed-
exceeding + or — 1000 fi/min. The error rate (the amount of time spent exceeding the limits per
unit time) provides an index of flight control with high numbers indicating poor control.

The processed data (power and error rate analyses) used in the statistical analyses for all
runs are tabled in Appendix 2. These data are in a format compatible with SAS and other
statistical analysis packages.

Data Sampling

In ordet to fairly compare pilot performance during different visibility phases of flight we
sampled the simulator and pilot data during the times of reduced visibility and for an
approximately equivalent time in non-reduced visibility just prior to the change in visibility. In
an example of the procedure, the pilot flies for about five minutes; .the weather starts to
deteriorate and falls to solid IMC over a few minutes; the pilot continues flight for an additional
five minutes. The data for this flight would be sampled for a maximum of 5 minutes prior to a
change in visibility, during the change in visibility, and for a maximum of 5 minutes after IMC
conditions are attained. The first data analysis phase began after the pilot reached cruise altitude
and was objectively quantified as the time of the first zero or negative vertical speed indication
when within 50 ft of cruise altitude or after reaching cruise altitude. Both the error rates and the
power analysis: were performed on the data for the different visibility phases of flight.

Statistical Analyses



Data from the power analysis was tested using a General Linear Model from SAS. Each
of the eight measures {pitch power, pitch error rate, fore/aft cyclie power, bank power, bank error
rate, lateral cyclic movement power, pedal movement power, and vertical airspeed error rate)
were analyzed mdepcndcntly using subject, time in type, order of test, visibility, altitude, and
speed as parameters in the model. There were 20 subject levels 19 time levels, 2 visibility levels,
5 order levels, 4 altitude levels, and 5 speed levels. We also tested for non-monotonic effects of
time in type by using the 2" order interaction (time X time). We also hypothesized that the IMC
visibility condition may shew effects of the different variables but under VMC conditions the
variables would have little effect. Therefore we also ran the statistical analyses for the IMC
condition by itself.

The data from the error analysis contained a large number of zeros since there were times
that the pilots made no errors. This was particularly true of the VMC data. In order to analyze
these data, we employed a Poisson regression wherein we added a small constant (0.01) to all of
the values. This constant had no effect on the tests of significance. The model we chose for the
error analysis was the generalized linear mixed model as provided by SAS. The reported
probabilities, P are from the chi square of the differences of the least-squares mean. The
complete outputs from the different statistical analyses run in SAS are attached as Appendlx 3-5.
These outputs contain all relevant significance tables including interactions and pairwise
comparisons, too numerous to include in the body of the report.

Results and Discussion

General Findings

The experiments generated an enormous-amount of data which has the potential to be
analyzed in the context of numerous hypotheses. We report here only those data pertinent to our
proposed tests of the variables of altitude, airspeed, pilot time, and order effects. The data can be
made available to others interested in analyzing them in greater detail or for other effects by
contacting Dr. Crognale. '

The general results revealed that both the error analysis and the power analysis were
useful in objectively quantifying pilot performance. The power analysis had the great advantage
of being a continuous measure providing information even when the pilot’s performance did not
fall below a threshold acceptable level. In addition the power analysis could be applied to
control inputs, providing an objective measure of control effort. The ability to replay the flight
using the software developed by Dr. Sullivan also allowed for subjective analysis of the flight
which in many cases was found to be informative.

In general, the pilots’ ability to transition from VMC to IMC conditions was not
unacceptable. Comparison with previous fixed-wing studies should be done with caution since
the study methods and pilot populations differed greatly. None of the helicopter pilots lost
control of the aircraft and only one crash occurred. In this case the ¢rash was not actually the
fault of the pilot as he was essentially vectored in the direction of a mountain and experienced
controlled flight into terrain (CFIT) as a result of the vector. The relatively good performance of
the pilots was no doubt in part due to the fact that they were commercial rated and IFR rated.
High pilot experience times probably alse contributed to the quality of the performance.

Main Effects
Not too surprisingly, one of the most statistically significant findings of the study
was a strong stbject effect, indicating that the pilots differed greatly in their ability to transition
from VMC to IMC. Interestingly, the statistical analysis of the effect of total pilot time however,
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was not found to be significant for most measures, even when testing for a non-monotonic effect
using the second order interaction. The few statistically significant effects of pilot time in fact
showed increasing errors. with pilot time, not decreasing as one might expect. However, as
mentioned above, the study population was skewed towards high time and even the most
inexperienced pilot had over 1,400 hours.

Not surprisingly the most significant main effect was for visibility with all pilots’
performance declining significantly after transitioning to IMC. Figure 2 shows raw bank and
cyclic movement data collected from one subject with 7600 hrs. These raw data are informative
on a qualitative level and one can easily see performance changes due to visibility. The data in
the left panel are bank vs. time while those in the right panel are for lateral cyclic movements vs.
time. This pilot had more difficulty during the transition periods than did most pilots. The data
for bank are plotted to reveal the threshold of + and — 18 degrees, the criterion for a bank error
used for the error analysis. Although the drop to 1 mile visibility had little effect on the
production of bank errors in excess of 18 degrees, the pilot makes several errors after
transitioning to zero visibility.

The power analysis also provides an objective method to quantify the cyclic movement
data shown in the right panel of Figure 2. As can be seen there are large changes in cyclic
control inputs when visibility changes. Changes are readily quantified for each transition using
this analysis. These changes are described in greater detail below. Iti many cases pilots failed to
exceed the error criteria yet-showed large increases in cyclic movement or bank movements after
transition to lower visibility. In these cases only the power analysis revealed the decrease in
pilot performance caused by the initial reduction in visibility. In some cases little changes in
bank movements were observed yet the eyclic movement data revealed greatly increased
workload.
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Figure 2. Examples of raw data from bank angle and lateral cyclic inputs, Changes
in visibility are indicated with arrows.

To assess the effects of learning or practice during the course of the experiment, we also
tested for order effects. For the power analysis, the overall main effect for order was generally
not found to be significant since performance under VMC was usually quite good and significant
improvement would be difficult to achieve. However, order-by-visibility interactions were
found fo be significant for some pilots indicating some improvement in learning to transition
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from VMC to IMC over the course of the experiment. The order effect was not equivalent for all
pilots and conditions. These effects will be discussed in more detail below.

Figure 3 shows a sample of the raw data output for bank vs. time (left panels) and for
lateral cyclic movements vs. time (right panels) for a pilot whose data were shown in Figure 2.
The upper panels show those data from the first test flight and the bottom panels show the data
from the last (5™) test flight. The transitions from VMC to visibilities below 1 mile are
indicated, as are those transitions to zero visibility upon simulated cloud entry. These raw data
are informative on a qualitative level and one can easily see performance changes due to
visibility. Comparison of the upper and lower panels reveals that this pilot improved
significantly between the first and last runs.
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Figure 3. Examples of raw bank (left panels) and lateral cyclic movement data (right
panels) from the first run (top) and from the last run (bottom) of the same subject.

One of the mére extreme examples of the practice/training effect is shown in Figure 4
which plots the pitch fluctuatiens for a pilot with 3500 hrs. Rapid and extreme pitch fluctuations
can be seen for this pilots first run (left panel) upon reduction of visibility to 1 mile. Further
reduction in visibility to zero produce incteased pitch fluctuations that continue for a prolonged
period of time. Though the fluctuations during the 5™ run (right panel) also increase with
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changes in visibility, the magnitude of these fluctuations is greatly reduced and is not likely to
present a hazard to flight.
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Figure 4, Examples of a learning effect. Piteh fluctuations frem the first run (left panel)
and the last run (right panel) for a pilot with 3500 hrs.

Power Analysis

Effects of change in visibility-

Figures 5-10 present all of the data for both aircraft attitude measures-and for pilot
coritrol inputs for both visibility conditions. All of the data are presented rather than just the
means in order to better reveal the character of variability in the data. In all of these figures the
data are labeled as either IMC or VMC. The left half of each of these figures is all of the flight
data collected under VMC while the right half of the figures show those data for IMC conditions.
These figures are meant to provide a quick overview of the results in a manner that allows us to
see the extent of the visibility effect as well as the range of the scores. Data for all altitudes and
airspeeds and tests have been included. The data will be broken down into the specific
parameters of airspeed, altitude, and order of testing below.

Figure 5 plots the power (fluctuations) in aircraft pitch in the left panel and for fore/aft
cyclic movements in the right panel. Low numbers indicate steady control. In this figure, no
change in pitch attitude or cyclic movemerit would be zere. The relative sealing for the two
different measures is arbitrary and based only on the digital outputs of pitch and cyclic position
from the simulator. It ¢an readily be seen that both pitch fluctuations and fore/aft cyclic
movements were dramatically higher in IMC than in VMC, The visibility effect for pitch was
statistically significant (P<.0001) as was that for cyclic input (P<.002).
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Figure 5. Power analysis results for aircraft pitch (left panel) and for fore/aft cyelic
movements (right panel) for VMC and IMC conditions.

Pitch Error Rate-
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Figure 6. Error rates for pitch vs. visibility condition.

Figure6 shows the error analysis for pitch and plots the percentage of the amount of time
during which the pitch exceeded the pre-determined limits vs. the total time in that visibility
condition. It should be noted that for some measures, the error data, particularly for the VMC
conditions, contained a large number of zeros indicating no errors during that time period. The
limits chosen for pitch errors in general produced larger rates than those chosen for bank and for
vertical speed. The effect of visibility on Pitch Error Rate shown in Figure 6 is subjectively not
as impressive as the effects on pitch and pilot input fluctuations shown in Figure 5. Nonetheless
the effect of visibility shown in Figure 5 was found to be highly significant (P<.001) with the
statistical error analysis.
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Figure 7. Power analysis for the effects of visibility on bank (left panel) and for
lateral cyclic input (right panel).

Figure 7 shows the visibility effect for the measures of bank and for lateral cyclic
movement. The visibility effect is clearly seen for both aircraft attitude and for pilot input
measures. The magnitude of the effect for most subjects is partially obscured by the presence of
very large effects for a few subjects. The difference between VMC and IMC conditions was
highly significant for bank (P<.0016) and for cyclic inputs (P<.0023).

Bank Error Rate ‘

54—

Error Rata index

Figure 8. Error rate for bank vs. visibility condition.

Figure 8 shows the error ratc analysis for bank. Again the effect of visibility on bank
error rate is both subjectively compelling and statistically significant (P<.0001). These data
indicate that both lateral cyclic movements and bank deviations are particularly sensitive to
reductions in visibility.

Changes in the vertical speed error rate with changes in visibility are shown in Figure 9.
These data also reveal a significant effect (P<,0001) of visibility on aircraft control. Strikingly,
vertical airspeeds exceeding 1000ft. /min were much more common under IMC conditions than
in good visibility.
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Figure 9. Error rate for vertical speed vs. visibility conditions.

The effects of visibility on the final measure of pilot performance, anti-torque rudder
inputs are shown in Figure 10. Despite the small but apparent différences in error rate between
the two visibility conditions, the effect was not statistically significant, indicating that rudder
input may not be a sensitive indicator of pilot workload. It is possible that with increased sample
sizes that the effect would become significant. Nonethéless, this medsure appears far less
sensitive to changes in visibility than do measures of cyclic input.
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Figure 10, The effects of visibility on pilet inputs to anti-torque pedal input.

Effects of Altitude

We originally hypothesized that aircraft control when changing from VMC to IMC would
be most degraded under those conditions that are believed to be more difficult or dangerous, ie.
low. airspeeds and low altitudes, However, we did not find an effect of altitude that was
consistent with our original ideas. Indeed the main effects of altitude did not appear systematic
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and were not statistically significant. We originally believed that the transition from IMC to
VMC would be more difficult at lower altitudes. This relationship would be measured by the
altitude/visibility interaction in the full model. This interaction was also not found to be
statistically significant indication that pilots did no worse at lower altitudes than at higher
altitudes. The data from this efféct is plotted in Figures 11 for Pitch/fore-aft cyclic, Figure 12 for
Bank/lateral cyclic, Figure 13 for vertical airspeed and for pedal inputs. These data show clearly
the effects of visibility but no obvious efféct of altitude. The statistical analysis of error rate for
pitch showed that in fact the pilots made significantly more errors at the two highest altitudes.
For fore/aft cyclic movements, there was also a trend for decreased control during high altitudes
not low aititudes, although the trend did not reach significance. Lateral cyclic input also showed
this trend, without statistical significance. Error analysis showed a number of significant
differences in aititude performance on a pairwise basis but without any logical pattern consistent
with conclusion regarding our hypotheses.
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Figure 11. Effects of altitude on pitch fluctuations (top left), pitch error rate (top right),
and fore/aft cyclic movements (bottom left) for both IMC and VMC eonditions.
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Figure 12. Effects of altitude on bank ﬂuct.ﬁations (top left), bank errer rate (top right),
and lateral cyclic movements (bottom left) for both IMC and VMC conditions.
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Figure 13. Effects of altitude on vertical speed (left), and pedal inputs (right) for both IMC

dnd VMC conditions.

Effects of Airspeed

As with altitude, in general, we did not find significant effects of airspeed on aircraft
control when transitioning from VMC to IMC using the power analysis. However, there was
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significantly more pedal input at the lowest airspeed (20 knots) under IMC condition. The data
for the relationship between pitch/fore-aft cyclic movements, airspeed and visibility are plotted
in Figure 14. The error rate analysis of pitch revealed a significant (P<.0001) trend in the
opposite direction to that predicted, indicating higher error rates at higher airspeeds. Although
the subjective appearance of the fore/aft cyclic data suggests an increase in effort with airspeed,
due to large variability, neither this main effect of speed nor the interaction of speed and
visibility were statjstically significant for this measure:
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Figure 14. Effects of airspeed on pitch fluctuations (top left), pitch error rate (top right),
and fore/aft cyclic movements (bottom left) for both IMC and VMC conditions,

Figure 15 shows the data for the measures of bank fluctuations, bank error rate and for
lateral cyclic movements a function of airspeed and visibility. Again these data subjectively
suggest an effect of airspeed in the opposite diréction of that predicted. However, effects for
bank power and lateral cyclic inputs were not found to be statistically significant due to large
variability. ‘The error rate analysis showed a significant increase in errors at the higher airspeeds
consistent with the pitch data.

Figure 16 shows data for vertical speed etrors as well as pedal inputs as a function of
airspeed and visibility. The visibility effect is clearly significant for the measure of vertical
speed error rate but not for pedal inputs. The error rate for vertical speed showed a significant
trend towards increased error rates (P<.001) at higher airspeeds. However, pedal inputs at the
lowest airspeeds were significantly greater from those at higher airspeeds under IMC consistent

with the original hypothesis.
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Bank vs. speed
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Figure 15. Effects of airspeed on bank fluctuations (top left), bank error rate (top right),

and Iateral cyelic movements (bottom left) for both IMC and VMC conditions.
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Figure 16. Effects of airspeed on vertical speed (leff),and pedal inputs (right) for both IMC
and VMC conditions.

Order Effects
The effects of test order on pitch fluctuations, pitch error rates, and fore/aft cyclic inputs
are shown in Fipgure 17. The error rate analysis showed a significant effect of test order
(P<.0001) with the first test session showing fewer errors than subsequent tests. Neither the
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miain effects for order using the power analysis, nor the interactions with visibility were
sxgmﬁcant for the group of pilots. Numerous pairwise comparisons between different test
sessions were significant for most measures. In agreement with the error analysis, the first test
sessions contained significantly more fluctuations in fore/aft cyclic movements than later test
sessions. Post hoc pairwise comparisons should however be interpreted with caution so that
probability assumptions are not invalidated. Nonetheless, the significance of many of these
comparisons suggests that a short training session could significantly improve subsequent
performance. Future research should address the question of how long these improvements last
and how often pllots should retrain for inadvertent IMC encounters. For some individual
subjects, the main order effects were significant. Large inter-subject variability has in this case
obscured the point that with some pilots repeat training leads to significant improvement while in
others it does not.appear to do so. Further analysis of these data are planned to try and determine
whetherr or not overall performance was related to the magnitude of individual order effects.
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Figure 17, Effects of test order on pitch fluctuations (top left), pitch error rate (top right),
and fore/aft cyclic movements (bottom left) for both IMC and VMC conditions.

The effects of test order on bank fluctuations, bank error rates, and lateral cyclic
movements are shown in Figure 18. The main effects and interaction of order were not
significant for the population, despite strong visibility effects. Pairwise and individual effects
however weré sometimes significant suggesting that future research need to more closely
examine the effects of repeat testing/training on pilot bank and lateral cyclic performance.

Figure 19 shows the effect of test order on the measures of vertical speed error rate and

for pedal inputs. The effects on vertical airspeed mimic those shown in Figures 18 with strong
20



visibility effects but little evidence for a systematic effect of test order or interactions between
test order and visibility. Note that some of the error rate pairwise comparisons wete statistically
significant for different order number but the trend was non-monotonic and not-interpretable in
terms of the hypotheses. The pedal input measure of the effects of test order also shows no main
effects or interactions for these variables.
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Figure 18. Effects of test order on bank fluctuations (top left), bank error rate (top right),
and lateral cyclic movements (bottom left) for both IMC and VMC conditions.
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Sunimary

The tést subjects in the present study performed relatively well overall. However the data
also clearly show a degradation of pilot performance during encounter with inadverterit IMC
conditions. Combined with real-world variables such as turbulence and stressors not
reproducible in a simulator, these degradations could result in hazardous flight performance with
disastrous consequences. Fortunately, many of the pilots improved dramatically with increased
testing suggesting that short training periods would greatly impreve performance during
inadvertent IMC encounters. Future research should address this issue directly and quantify the
duration of the improved performance. Interestirgly, the data did not provide strong evidence
for decreased performance at lower altitudes and lower airspeeds. Further research is needed to
address performance during the most demanding phases of flight including hover, takeoff, and
landing.

The results presented here suggest that the both the power analysis and error analysis
provide important information regarding pilot performance. The power analysis was particularly
helpful as an objective and continuous measure of pilot control inputs. It is hoped that methods
developed here will be applied to future research in the area of helicapter pilot performance and
training. Some important topics for future study are listed below.

Future Work

Whiteout During Hover

We would like to expand these test procedures to include simulated sudden whiteout
conditions in hover ascents and descents. Sudden onset of whiteout conditions during low level
hover operations has been reported to be a frequent cause of helicopter accidents, particularly
during snow and water operations.

VMC/IMC Transition with NVGs

We would also like to expand the study to include night operations particularly those
utilizing night-vision systems. The use of NVGs during transition from VMC to IMC presents
unique challenges to the pilot. A more thorough understanding of pilot performance in these
conditions would greatly contribute to the safety of NVG fraining and would facilitate the
increase in NVG applicatiori for helicopter opetations. .
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Fatigue/stressor Effects

The application of the power analysis to control inputs would be a particularly powerful
miethod to quantify the effects of fatigue and other stressors on pilot performance. Often the only
data available on these topics results from errors made. These data are either post hoc accident
analyses or data collectéd using some criterion for error as in the present study. Results from this
type of analysis can change dramatically depending upon the criterion chosen for the oceurrence
of an error. However, the methods developed here can supply meaningful data at all levels of
performance in a continuous manner such that the time course and magnitude of the effects of
fatigue and other stressors can be more accurately assessed.

Training Effects

As mentioned above, we would like to investigate the durability and efficacy of short
training sessions in reducing the degradation in performance seen with inadvertent IMC
encounters.
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Appendix 1,. Sample of raw data output from simulator program.
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Appendix 2. Data used in Statistical Analyses.
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. Nicole Saiauskig{ACT!FAAl To "Michael A Crognale” <mcrognale@unr.edu>
: gdggr?g.%:gsmon. Materiel cc  Deanna:Supe/ACT/FAA@FAA, jbest@unr.edu,
mikro@unr.edu, Tom McCloy/AWA/FAA@FAA
03/31/2008 02:54 PM boe
Subject RE: FAA expired grant (05-G-018)

Michael,

No | did not receive any of this.information. Maybe it was onty sent to Tom.
Anyway - thanks! Can you look into the financial status report form (269)?77
Thank you,

Nieole Saiauskie

FAA Grants Program Specialist

Federal Aviation Administration

William J. Hughes Technical Center
Acquisition, Materiel, & Grants Team, AJP-7950
Atlantic City International Airport, NJ 08405
phone (609) 485-4781

fax (609) 485-6766

"Michael A Crognale” <mcrognale@unr.edu>

"Michael A Crognale”

<mcrognale@unr.edu> To Nicole Saiauskie/ACT/FAA@FAA, <mikro@unr.edu>,
03/31/2008 02:12 PM <jpest@unr.edu>
e Tom McCloy/AWA/FAA@FAA, Deanna
Super/ACTIFAA@FAA

Subject RE: FAA expired grant (05-G-018)

Nicole,
| submitted thé final réport back in February. Perhaps you did not receive the submission. | have
attached another copy of the report and a PDF cf the signed cover page.

Michael Crognale

From: nicole.saiauskie@faa.gov [mailto:nicole.saiauskie@faa.gov]
Sent: Monday, March 31, 2008 11:55 AM

To: Michael A Crognale; mikro@unr.edu; jbest@unr.edu

Cc: tom.mecloy@faa.gov; deanna.super@faa.gov-

Subject: FAA expired grant (05-G-018)

Importance: High

Good Afternoon Michael & Jerald,

The above referenced grant expired back on 12/29/07 and the required 80 days have just past. Could you



please let me know the status of the closeout documents and when | should be recelving everything?
Thank you,

Nicole Salauskie

FAA Grants Program Specialist
Federal Aviation Administration
William J. Hughes Technical Center
Acquisition, Materiel, & Grarits Team, AJP-7950
Atlantic City International Airport, NJ 08405
phone (609) 485-4781
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