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Objective: The aim is to establish the extent to which the high false-alarm rate of
air traffic contrel midair conflict alerts is responsible for a “cry wolf” effect—where
true alerts are not responded to and all alerts are delayed in their response. Background:
Some aircrafi collisions have been partly attributed fo the cry wolf effect, and in other
domains (health care and systems monitoring), there is a causal connection between
false-alarm rate and cry wolf behavior. We hypothesized that a corresponding relation-
ship exists in air iraffic control (ATC). Method: Aircraft track and alert system behavior
data surrounding 495 conflict alerts were analyzed to identify true and faise alerts, tra-
jectory type, and controller behavior, Forty-five percent of the alerts were false, rang-
ing from 0.28 to 0.58. Results: Although centers with more false alerts contributed to
more nonresponses, there was no evidence that these were nonresponses to true alerts or
that response times were delayed in those centers. Instead, controllers showed desirable
anticipatory behavior by issuing trajectory changes prior to the alert. Those trajectory
pairs whose conflicts were more difficult to visualize induced more reliance on, and
less compliance with, the alerting system. Conclusion: The high false-alarm rate does
not appear to induce cry wolf behavior in the context of en route ATC conflict alerts.
Application: There is no need to substantially modify conflict alert algorithms, but the

conflict alert system may be medified to address difficuli-to-visualize conflicts,

INTRODUCTION

In June 2006, it was recommended by the
Federal Aviation Administration (FAA} that the
FAA research community “consider how and
when an alert is present, and offer solutions
to improving this process” (FAA, 2006). Also
in 2006, the National Transportation Safety
Board (NTSB) advised the FAA to “redesign
the Conflict Alerting system . . . to reliably
direct controller attention to potentially hazard-
ous situations detected by the system” (NTSB,
2006). Both documents made reference {o a
series of accidents in which the minimum safe
alittude warning (MSAW) and conflict alerts
(CAs) announced pending coatrolled (flight-
into-terrain [collisions]) and midair collisions,

respectively. However, controilers failed to
respond or intervene fo prevent the accidents.
Furthermore, anecdotal evidence from a spe-
cific accident (midair collision of two aircraft
near San Diego), and from other interviews
with controllers {Ahistrom & Panjwani, 2003),
suggested the prevalence of controller experi-
ence of the “cry wolf” effect (Breznitz, 1983;
Sorkin, 1989). The NTSB (2006) report stated
that “controllers repeatedly cited the number
of unwarranted ‘nuisance alarms’ that they are
exposed to on a roufine basis” (p. 7). In addi-
tion, the report also siated that “alarms that
go off too frequently, especially false alarms”
(FAs; NTSB, 2006, p. 7) is among the five most
commonly expressed issues with alarms. The
“cry woll” effect is a general syndrome whereby
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excessive alarms, many of them seemingly
unnecessary to the operator (e.g., FAs or false
alerts), lead to a distrust, or disuse, in the alarm
systerm. In turn, this operator distrust, or disuse,
leads to a disregard of (or late response to) some
true alarms (Lee & See, 2004; Parasuraman &
Riley, 1997). Linking this well-observed phe-
nomenon {o the findings of inissed alerts in the
NTSB (2006) study suggests that there may be a
causal connection between the cry wolf behav-
ior and FAs.

The supporting research on imperfect (e.g.,
FA-prone)} conflict alerting can be approached
from two different perspectives in the context
of signal detection theory (SDT), correspond-
ing to the two SDT parameters of sensitivity (d")
and response bias (beta) as applied to alerting
system performance (Getty, Swets, Pickett, &
Gonthier, 1995; Swets & Picketf, 1982). The
approach based on 4" asks how low the reliabil-
ity of an alerting or diagnostic system can get
while preserving performance that is superior to
that of the unaided human (Wickens & Dixon,
2007; Xu Rantanen & Wickens, 2007). The
approach based on beta, or the “threshold” of
the alerting system (the direct intent of the cur-
rent research), addresses the trade-offs between
a high threshold of the alerting system, which
creates system misses, and a low threshold,
which creates a higher rate of cry wolf~induc-
ing FAs.

A general conclysion from research in this
area appears to be that although misses may
be catastrophic in a multitask system in which

. there is no human backup to monitor the raw
data in parallel, in systems that allow such par-
allel human-machine monitoring (Getty et al,,
1995; Parasuraman, 1987), FA-prone systems
may often be worse (Dixon & Wickens, 2006;
Dixon, Wickens, & McCarley, 2007; Maltz &
Shinar, 2003; see Wickens, Levinthal, & Rice,
in press, for a summary). This conclusion may
be particularly true in high-workload nmititask
circumstances, given that this response can be
guite disruptive to concurrent tasks either as
a result of carrying out the unnecessary alert-
triggered action (Stanton & Babar, 1995) or as
a result of the need to cross-check the raw data
to establish that the alert was indeed false. In
a further argument for a higher threshold, in

many predictive alerting systems, such as the
CAs studied here, a higher threshold translates
not necessarily to more missed events but only
to a later alerting of true events {(a much less
catastrophic outcome than a miss) (Kuchar &
Young, 2000}, Indeed, if this alerting look-ahead
time still provides adequate time for humans to
respond, then the benefit of reducing FAs would
more than offset the cost of the shorter period
between the alert and the occurrence of the fore-
cast event {e.g., the pending collision).

To furiher complicate the picture, Lees and
Lee (2007) have introduced the distinction
between truly “bad” false alerts and “acceptable”
false alerts. In the context of their car-driving
headway monitoring study, bad false alerts occur
at random times, unrelated to the state of the raw
data (in their study, visual view of headway). In
contrast, acceptable false alerts occur when the
headway trend is shortening but appear to be pre-
mature, as if the alerting system has merely set
too low a threshold (e.g., the designer’s choice to
exr on the side of decreasing late alerts), Thus, to
the extent that false alerts are “acceptable,” they
can be viewed as actually helpful in confinn-
ing fo humans that the alert system is generally
working well. Lees and Lee confirmed the ben-
efit of these acceptable false alerts, just as they
confirmed the harm (mediated by cry wolf) of
the random-appearing FAs.

A related concept that we invoke in the cur-
rent study is the nature of anticipatory behavior,
whereby a human acts in response to a danger-
ous event prior to an alert event (Levinthal &
Wickens, 2005; Meyer & Bitan, 2002; Wickens
et al., in press; Woods, 1995). In this case, it is
possible to think of either the alert as delayed
{the result of a high threshold) or the human as
particularly vigilant, or proactive, in monitoring
the raw data, demonstrating desirable anticipa-
tory behavior {Burns, 2006},

We: can consider this anticipatory behav-
ior, observed by Levinthal and Wickens
(2006), and the nonresponsive behavior, evi-
dent in the cry wolf phenomenon, as different
manifestations of the two aspects of automa-
tion dependence—reliance and compliance—
introduced by Meyer (2001, 2004; also sce
Dixon et al., 2007; Dixon & Wickens, 2006;
Maltz & Shinar, 2003; Rice, in press). Reliance
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describes circumstances in which the human
does not respond when the alert system is
“silent.” Hence, anticipatory behavior indicates
a lack of reliance. Compliance describes cii-
cumstances in which the human does respond
when the alert occurs, Hence, the nonresponse
or delayed response to the aleri that charac-
terizes the cry wolf effect describes a lack of
compliance,

The purpose of the current study was 1o seek
evidence for the FA-caused cry wolf phenome-
non from live, or *“naturalistic,” data across five
air traffic control (ATC) facilities. Within these
five facilities, controllers responded to varied
midair CAs. Such live ATC data have never

before been examined in this fashion, although

it parallels the analysis of professional weather
forecasters (Barnes et al., 2006), pilots (Bliss,
2003), and health care practitioners (Lawless,
1994; Vashitz et al., 2008; Xiao, Seagull, Nieves-
Khouw, Barczak, & Perkins, 2004) responding
to imperfect alerting systems. In this process,
we must first examine performance of the CA
system itself, assess an FA rate, and then exam-
ine the influence of differences in this rate on
behavior of the controller and on performance
of the controller~-CA (human-aufomation} sys-
tem as a whole.

In this study, we also distinguish between
two aspects of FA-induced behavior With
regard to the first aspect, there is behavior trig-
gered by the event that produced a false alert
itself—Dbehavior that may be related to the
nature of the event that made the alert false. For
example, it may be a particularly challenging
event that caused the alerting system {0 make
an error (Madhavan, Wiegmann, & Lacson,
2006) or the controller fo respond inappropri-
ately, With regard to the second aspect, there
is the “proneness” of the system to make false
alerts or missed alerts across a series of conflict
evenis (lowering its reliability). This can induce
a cognitive set of distrust or “low compliance”
{Meyer, 2001, 2004) that can express itself as a
cry wolf syndrome on alerts that are either true
or false. Naturally, of greatest concern is the
cry wolf delayed response or nonresponse for
events when the alert is true.

In the current research, we address three pri-
mary hypotheses. First, we predict there will be

a number of false alerts in the data and some
variance across this FA rate. In ¢ssence, because
this is not a controlled experiment, this hypoth-
esis is that we will find an “active” independent
variable-—FA rate—that can be used to test our
second hypothesis, Our second hypothesis can
be assessed in two forms: (a) The existence of
a substantial number of false alerts will produce
nonresponses o true alerts, (b) ATC centers that
have a higher false-alert rate will show greater
evidence for cry wolf behavior (i.e., later
responses and/or more nonresponses). Third,
we predict that (a) reliance on automation may
be reduced when conflicts are easier to visual-
ize in the raw data, because they may be antici-
pated prior to the alert, and (b) compliance with
automation may also be increased by ease of
visualization, because it is easy to sce that the
alert will be true.

Because the current study was based on
data provided to us by the FAA, and we were
requested to perform the analysis after the data
had been collected, we had neither the opportu-
nity to collect specific data (e.g., trust ratings) or
access the demographics of controllers involved
(e.g., level of experience); controller informa-
tion was kept confidential, Therefore, we were
unable to infer causation with high confidence.

METHOD

The CA System

The CAsystem (FAA, 2003) (Paglione, Ryan,
& Liu, 2007) is designed to predict when two
aircraft are within 5 miles laterally and 1,000
ft vertically of one another (see Figure 1}. Such
closure is known as a loss of separation (LOS).
Hence, the CA predicts any LOS that is forecast
to oceur within 75 to 135 s. The system samples
enough radar data to make a stable extrapola-
tion of the trajectories—an amount that will
show variation from pair to pair. Because of the
range of radar data quality, there will be a range
of times required to obtain a stable estimate, the
source of the 60-s range of lock-ahead values.
When the CA system predicts such an LOS, the
data tags flash on the controller’s display. In the
en route centers where performance was evalu-
ated, there is no auditory sound associated with
the CA.
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Air Traffic Control Conflict Alerts (CA}. A flashing (visual only) box
around the data tags for 2 conflicting alrcraft

3D view

CA

Look ahead thine

LAT 2-3 min.
2D map view -_—
Predicted LOS
' CA
T1

Loss of Separation ®
Traffic predicled to
penstrate BOTH lateral
and vertical minima at
the same time.

T2 Total transmission tima
Would LOS have resulted if controller had not issued frajectory change? [f no: FA.

Figure 1.Schematic representation of the conflict alert system. A 3-D version at the top, two examples of a 2-D
top-down version at the bottom: On the feft, there is a predicted loss of separation (LOS; conflict). On the right, the
controller has initiated a trajectory change before the loss of separation occurs. FA = false alarm,

The algorithm underlying the CA generates
a linear extrapolation on both the horizontal
(map) plane and the vertical plane of the cur-
rent heading and vertical speed of both air-
craft, respectively (FAA, 2003). The algorithm
contains no knowledge of intent (e.g., no rep-
resentation of a flight plan that may later trig-
ger a leveling off of one aircraft or the other).
Because the air traffic controller has unique
knowledge of traffic, the pilot must comply
with the air traffic controller’s instructions
following a CA. The only instance in which
the pilot should not comply is when the pilot
senses a direct danger to the aircraft as the
result of such compliance,

Data

We were provided data from the FAA for 495
conflict alerts, extracted from the busiest 2-hr
periods from a sample of 2 or 3 days in each of
five en route ATC centers. Such data included,

for each CA, properties of the pair of trajecto-
ries predicted by the CA (e.g., predicted point
of closest passage, time of alert), the actual
radar tracks and altitude of the aircraft (sampled
every 10 8), and a short analysis of the actual
conflict as it was played out (see Wickens et al,,
2008, for details). The most important element
of this third set was a metric {min-max ratio, or
MMR) describing the severity of the conflict.
Because an LOS is a simultaneous reduction of
separation below the criteria of 1,000 vertical
feet and 5 miles, the MMR scales each of these
two values relative to [ (so 1.0 = the criterion
value, and 0 means no separation on the axis
in question). For each CA, the MMR algorithm
reports the maximum of these two minimum
ratios. A value of O corresponded to an actual
collision. A value of 1 was the threshold for an
LOS. Progressively higher values above 1.0
indicated passage with greater lateral and verti-
cal separation than the minima.
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TABLE 1: Basic Data From Conflict Alert (CA) Systems

Variable 2LC ZHU ZLA ZTL ZID

Encounters per hour? 1,126 1,589 5,529 5,67% 8,813

No. of CAs? 22 36 72 235 124 _

CA rate® 22/4,525 = 36/4,767 = 72/16,589 = 235/38,815 = 124/26,440 =
0.005 0.007 0.004 0.006 0.004

a. Number of entounters per hour as an estimate of busyness of the center.
b. Total number of conflicts from the center that were provided to the authors (for a differing number of days,

depending on the center).

¢. An estimate of CA rate, reached by dividing the number of conflicts by the number of encounters, measured during

the hours for which data were provided.

State of the World
Signal (#S} Noise (#N}
LOS will occur LOS will not occur

True Alert False Alarm (FA}
CA Alert Trajeciory ,
aclivates change ,*
System
{automation)
response

Miss ] Correct Rejeciion
No CA
“Silent” ‘
{(#Silent)

FA rate: = #FA/(#N)Y? Or = FA{#CA) = 1 — posilive predgictive value

Figure 2. Signal detection matrix for conflict alerting. Within each cell is depicted the predicted trajectory (in the
horizontal plane enly) relative to the protected zone of another aircraft. In the top two cells are represented the two
cases in which the trajectory either does (dashed line) or does not (solid line) change prior to the point of closest

approach,

Two key variables we derived from the
data for each center were the “busyness” of
the center (the number of encounters per hour,
in which “encounter” is an instance in at which
the CA algorithm begins to examine track pairs;
40 miles, 5,000 vertical feet) and the total
number of CAs provided to us for analysis,
Table 1 shows these two parameters across
the five centers (rows 1 and 2) along with,
in row 3, the ratio of the fotal CAs to the

total encounters within the center during the
equivalent period—an estimate of the CA rate.
Tmportantly, Table 1 reveals that what can be
defined as the “CA rate” in the bottom row did
not vary substantially across centers, a mean
value of 0.0057.

CA System Analysis

The typical signal detection matrix for a
diagnostic system is represented as shown in
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Place ZTL =
Date o807 XY Coordinates |aun oo v Altitude  {aun o e
Sector Pair 19/24 = =
Numenc 11205
Time 73053.2 70000
ICH FIv423.2 63E
D2 VALORS8_736 275
CA# 48 g 120004
TCHS 167 _E 8
TCVS 72 3
Tehff 95 3 £ 18000
PHSCPA 4,062 - %5 <
BVSCPA 0
Severly 0214020619 17000
AMHS 13.3728483
Time Stamp 73150
AMVS a4 265 T 1 16000
Time Stamp 73080 480 500 510 520 530 72800
ATMMrat 73150 X Coordinate Time
AMMrat 2.6745765
Vart Geo 1
Her Geo c FIV423_63E VALORSG6_736
MNVR c 10000 50
Tman 73140 2000 45
AT 82 000 i
ACTal -80 7000 LY 35
FA 5000 i 30 :
2000 ™ o | B Altitude
Commenis: S R N —— XY
Poor vertical fracking of higher 4000 2
altitude plane 3096
2000 -
1000 4= b
0 T T T T T T T 4]
72850 73000 73050 73100 73150 73200 73950 73300 73350 73400
Time

Figure 3. Example of the raw trajectory data, which were rendered visually. In the bottom panel, the altitude sepa-
ration {gray squares) is flat, remaining below 1,000 ft until a correction is implemented at time 73120, whereas
the XY separation (black diamonds) converges gradually and then diverges. Further explanation of the elements is

contained within the text,

Figure 2, with a false-alert rate defined as the
mimber of false alerts divided by the number of
times that an LOS was not predicted to occur
between aircraft pairs. However, as shown in
the figure, this computation was challenged in
two respects. First, as represented in the top two
cells of the matrix, on some occasions, the con-
trollers responded to the CA by altering trajec-
tory {(heading and/or vertical speed) of one of
the aircrafl in a pair (the dashed lines), and on
other occasions, no trajectory change was initi-
ated. In the latter case (the solid line), it was
easy to determine whether 2 CA was true or
false. A true alert would be one that produced
an LOS. In the former case, when a trajectory
was altered by an instruction from the control-
ler (the dashed line), it was necessary to create
a graph of the track data prior to the alteration.
Such a graph is shown in Figure 3.

Figure 3 provides an example of the raw
trajectory data, which we rendered visuaily.

On the top left we show the map (XY) track of
the two aircraft that triggered the CA. On the
top right we have graphed the vertical profile.
Importantly, from the map plot, there was no
turn evident, and in the vertical profile, there
was a clearly defined descend maneuver for the
lower aircraft, 2 maneuver whose time follow-
ing the CA could be specified. At the bottom,
we present the separation graph along the two
axes. The increase in vertical separation (alti-
tude difference), foHowing the descend maneu-
ver of the lower aircraft, is clearly evident. To
assess that an LOS would have occurred had the
aircraft not been maneuvered, it is necessary to
extrapolate this vertical separation curve for-
ward to establish that vertical separation would
have remained below minimum at the time that
lateral separation was also lost, as shown by the
negative parabola curve of XY. Because, how-
ever, the corrective trajectory change was made,
there was not an LOS on both axes at the same
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time. Hence, an LOS was not observed, but the
trial was categorized as a true alert.

The extrapolation of the separation functions
in the figure to determine whether the trajectory

pair would have simultaneousty compromised.

lateral and vertical minima, had the alteration
not taken place, was carried out by two indepen-
dent observers for two of the centers and by one
of these observers for the remaining three. We
analyzed the data in two baiches, 1 year apart,
The first batch (two ceaters) included both
observers. The second observer was not avail-
able for the second batch. Because there was
high agreement between observers for the first
batch, and the skilled observer was available for
both, we chose not to train another observer.

It also became meaningful to examine sepa-
rately properties of CAs when controllers did
and did not respond (as signaled from the pres-
ence or absence of a trajectory change). This is
discussed later.

The second challenge resulted because we
did not have track data for any of the pairs that
did not trigger a CA (e.g., the data in the bottom
two cells of Figure 2). Hence, it was impossible
to assess the number of noise trials or the other
properties of these “encounter but no CA” tri-
als. As a consequence of the second challenge,
we redefined FA rate to be that proportion of
CAs that were false. This ratio is equivalent to
the inverse of what is called the predicted posi-
tive response (1 — proportion of CAs that are
true), In the following; we refer to this measure
as the FA rate.

RESULTS

CA System Analysis

There was no relationship between CA rate
and FA rate. As discussed in more detail below,
FA rate did vary considerably between 0.28
and 0.58. On the average approximately half
of the CA’s are false, a value that is substan-
tial, although a good deal lower than in some
systems, where the base rate is very low (Geity
et al, 1995; Krois, 1999). There was no rela-
tion between CA rate and FA rate, and only a
weak correlation was created almost entirely
by a single outlier point from the lowest den-
sity center. These results satisfied our first

hypothesis—there was substantial variance in
FA rates between centers,

We also analyzed and categorized the geom-
etry of the trajectories of the pairs of aircraft
entering into each CA. Horizontal geometry
was classified in terms of whether the pair was
converging (C), diverging (D), or parallel (and
heading in the same direction [P]; parallel tracks
in opposite directions were categorized as con-
verging). Vertical geometry was broken into five
major categories: both level (L), one level and
one nonlevel (N), both nonlevel and converging
(C, e.g., climbing and descending toward each
other), parallel climb or parallel descent (P), and
both nonlevel and diverging {I). Note that a CA
can be triggered even as the pair is diverging on
one axis, as long is there is more rapid conver-
gence on the other axis so that the planes are pre-
dicted to go below minimum separation on one
axis before they go above minimum on the other.

Controller Performance Analysis

Categorical analyses. Before examining
the relation between the change in FA rate and
manifestations of the cry wolf phenomenon
(Hypothesis 2b), it was necessary to identify
the overall prevalence of those manifestations
in our sample of data (Hypothesis 2a) Thus, in
addition to the dichotomization of tiue versus
false alerts discussed earlier, we examined two
other important dichotomies that are charac-
teristic of the human (controlter): (a) the pres-
ence or absence of a response (as inferred from
visual analysis of the track data discussed ear-
lier) and (b) the presence or absence of an LOS,
as revealed by MMR < 1.0.

Overall, it was usually relatively easy to
identify whether a distinct change in trajectory
was implemented in the time period following a
CA, allowing inference of a controller response
{see Figure 3). However, for a small sample, this
classification became quite difficult because of
jitter in the radar track data (particularly, verti-
cal). Therefore, those trials were not included
in the data base for analysis. We note also in
Tables 2 through 5 that the total N for differ-
ent classifications was not always equivalent.
This is because a classification for CA for
one dichotomous variable may be uncertain
(and hence discarded) but retained for another.
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TABLE 2: Frequency of True frA) and False Alerts
(FA} for Responses and Nonresponses

Alert Type  No Response  Response  Total
TA 3 231 234
FA 37 166 203
Total 40 397 437

Table 2 shows the frequency of true versus false
alerts that produced either a controller response
or no coenfroller response.

Table 2 reveals that for roughly 10% of the
CAs, there was no evidence for a confroller
response, at least as indicated by a trajectory
change by either of the two aircraft involved in
the CA. These nonresponses were statistically
more prevalent when the CA was false (18%)
than when it was true, 1.5%, *(1, N = 437) =
37.5, p < .01. Such a result is quite plausible,
given that the trajectories triggering a false alert
are, by definition, more likely to yield a more
distant “closest passage” or miss distance and,
in turn, more likely to be considered by the con-
trollers not to require a irajectory change,

Table 3 shows the frequency of an LOS as a
function of whether the alert was true or false.
Note that the total LOS is much smaller than in
Table 2, This is because, for several conflicts,
the measure MMR, which allowed classifica-
tion of LOS (<1.0), was not provided in the data
base given to us. Table 3 reveals that the LOS
rate is, like the nonresponse rate, approximately
10% of the data base. Also, it appears that the
two types of outcomes are unevenly distrib-
uted across the two types of alerts. Specifically,
Table 3 demonstrates that true alerts are more
likely to precede an LOS (21%) than are false
alerts, 3%; (1, N = 373) = 20.3, p < .0001,
This is a plausible oufcome, given that the true
alert will occur on a trajectory pair that is more
dangerous and, therefore, slightly more likely to
yield the ultimate LOS even following a con-
troller infervention,
~ In Table 4, we cross controller response and

LOS to establish the extent to which controlier
nonresponses might be associated with an LOS.
These observations are collapsed across true
versus false alerts. The data in Table 4 indicate
that when the controller did not respond, this

TABLE 3: Frequency of True (TA) and False Alerts
{(FA} for Loss-of-Separation (LOS) and Non-LOS
Trials

Alert Type No LOS 10S Total
TA 164 34 198
FA 170 5 175
Total 334 39 373

TABLE 4: Frequency of Controller Response for
Loss-of-Separation (LOS} and Non-LOS Trials

Trial Type  No Response  Response  Total
LOS 2 37 39
No LOS 32 309 341
Total 34 346 380

was very unlikely to produce an LOS (5%; and
those two events were restricted to a single cen-
ter), whereas when the controller did respond,
such LOS events were somewhat more preva-
lent (9%) although the difference in proportion
was not significant, ¥*(1, N=380)=778,p >
.10. We note here that this finding does not nec-
essarily imply that controiler responses were
counterproductive, because as Table 4 suggests,
the vast majority of LOS cases occur on true
alerts. In these, had the controller not intervened
with a trajectory change, there definitely would
have been an LOS.

Collectively, the previous three analyses pro-
vide no evidence for the most dangerous mani-
festation of the cry wolf effect (nonresponse
leading to a LOS as a opposed to a nontesponse
leading to no LOS). The number (2) of such
joint events is even fewer than what the inde-
pendent product of the two classes of events
might predict {10% nonresponse rate X 10%
LOS rate = 1% of the CA ¢vents=4). Therefore,
Hypothesis 2a was not confirmed.

To explicitly test Hypothesis 2b, we next
sought to determine whether there was any rela-
tionship between FA rate (as it varied across
centers) and either nonresponses or LOS events
{(although we note that in the absence of con-
trolled manipulation, true causality is hard to
establish with certainty). Figure 4 shows the
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Figure 4. Nonresponse rate (NR) as a function of false-alarm (FA) rate across centers.

scaiter plot of FAs versus nonresponses and
reveals a striking and pronounced trend: The
greater the false alert rate in the center, the less
controllers tended to respond, » = 944, p < 05.
However, when the LOS rate was examined as
a fanction of FA rate across center, there was no
trend. This null effect suggests that the increase
in nonresponses in the more FA-prone center,
shown in Figure 4, were not associated with less
safe separation.

Response time (RT). We then sought evidence
for the second manifestation of the cry wolf
phenomenon—the possible delay in RT asso-
ciated with more FAs. Interpreting the delay
between the CA and the trajectory change
response required consideration of the total
transmission lag (TTL), which is the time for
the following processes to occur: First, con-
troller notices a dangerous convergence; sec-
ond, coniroller chooses a trajectory change
and communicates this to the pilot; third, pilot
confirms and implements the change with the
flight controls; and fourth, the aircraft initiates
a sufficient trajectory change to be evident in
the radar track. This TTL is estimated fo be
approximately 20 s to 25 s on the basis of voice
transcript analysis {Allendoerfer & Friedman-
Berg, 2007; Friedman-Berg, Allendoerfer, &

Pai, 2008), analyses that were not available for
the CA trials examined in the current study.

Our analysis revealed that for about 45%
of the CAs, controllers must have initiated the
perceptual and cognitive trajectory processing
(noticing convergence and choosing a maneu-
ver) before the alert occurred, because in these
trials, the measwed RT was less than 25 s.
Indeed, when we examined the distribution of
RTs, relative to the CA, we observed a bimodal-
ity, shown in Figure 5, with a local minimum
at approximately 25 s. This bimodality, coupled
with the estimate of a 25-s TTL, supported the
notion that there were two categorically differ-
ent fypes of responses: anticipatory responses
and reactive responses.

The RT data were positively skewed, so a
log transformation was carried out to reduce
the skew, An ANOVA carried out on the log-
transformed RT data indicated that for anticipa-
tory responses, there was no difference in RT
between true and false alerts (p > .10); how-
gver, for reactive responses, true alerts were
responded to approximately 14 s (73 — 59 = 14)
more rapidly than were false alerts, #(193)=2.4,
p < .02, reflecting the increased urgency of the
former. There was no significant difference in
RT between LOS and non-LOS encounters, so
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Figure 5. Distribution of response times (RT; in seconds) relative to the time of appearance of the conflict

alert,

an inference that the LOS resulied because of a
delay in responding was rejected.

An analysis of three centers’ data did reveal a
main effect of center, F{2, 154) =6.78, p <.01,
with the highest-density center (ZID) show-
ing faster responses (30 s) than either the low-
density (ZHU, 33 s} or mid-density (ZLA, 36 5)
centers, This effect was observed for both antic-
ipatory and reactive responses. This effect is
noteworthy because whereas increasing density
might have been anticipated to slow RT because
. of greater workload, the faster RT for ZID was
observed despite its greater traffic density {see
Table 1}.

Finally, within the non-LOS encounters
(MMR > 1.0), we correlated RT with the value
of MMR to test if later-responses trials produced
closer (but still above minima) passages. This
correlation, examined with the pooled data for
the three midlevel centers, was not significant

TABLE 5: Anticipatory Versus Reactive Responses
for True {TA) and False Alerts (FA}

Alert Type  Anticipatory Reactive  Total
TA 109 114 223
FA 56 95 151

Total 165 209 374

(p > .10). This finding suggests that confrollers
did not compromise safety when their responses
were delayed.

Categorical analysis of anticipatory res-
ponse frequency. Table 5 depicts the frequency
of anticipatory versus reactive responses for
true versus false alerts, Analyses of these data
reveals that controllers were significantly more
likely to anticipate on a true (0.58) than on a
false (0.37) alert, ¥%(1, N =374)=5.08, p <.05.
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Table 6: Categorical events as a function of lateral geometry. Measures in proportion [P) of events

Variable Parallel Converging Diverging
Lateral geometry, false alert {FA) rate
P(FA) 0.45 0.47 0.36
n 80 321 25
Lateral geometry, anticipation .
P(anticipation} 0.30 0.51 0.1
n 71 299 18
Lateral geometry, response
P{response) 0.88 0.93 0.60
n 82 330 30

This is a plausible finding because the true-alert
trajectories should signal the impending con-
flict with greater salience in the raw data of the
radar displays.

Trajectory analyses. Final analyses were
undertaken to assess whether particular tra-
jectory combinations of the two planes were
associated with morg FAs, reactive responses,
or nonresponses—all  characteristics that
would suggest that certain trajectories were
harder to process than others. The frequency
of events as a joint function of the three hori-
zontal geometry categories and alert type (true
vs. false) is shown in Table 6 for each of the
three categorical variables expressed as the
following proportions: P(FA), P(anticipation)
and P(controller response). The number of
observations (denominator of the proportion)
is shown underneath each proportion. We note
here, as in Tables 2 through 5, that the iotal
number of observations is not always the same
across the analyses. A chi-square analysis on
the FA rate in Table 6 revealed that the false-
alert rate was independent of lateral geometry,
¥(2, N=426)=1.26,p > .10.

Table 6 also presents the frequency of antici-
patory responses as a function of lateral geom-
etry. The significant chi-squared test, ¥%(2, N =
388) = 19.3, p < .01, revealed that anticipatory
responses were much more likely when tracks
were converging on the radar display (51%)
_ than when they were either parallel (30%) or
diverging {11%).

Table 6 also presents the nonresponse rate as
a function of lateral geometry. The signiticant

chi-square test, ¥2(2, N =442) = 33.3, p < .01,
revealed that confroller responses were very
likely when tracks were laterally converging
(93%) but decreased in frequency when tracks
were paratlel (88%) and when they were diverg-
ing (60%; a 40% nonresponse rate).

Three corresponding anaiyses were then
carried out with four categories of vertical
geometry (Table 7): nonlevel (N), both paral-
lel (climbing or descending; P), one climbing
and one descending so that they were converg-
ing (C), or both level (L). There were too few
trials with diverging tracks on the vertical axis
to inchude in the analyses. As Table 7 shows,
the FA rate was unaffected by vertical geom-
etry, ¥*(3, N = 452) = 348, p >.10. Table 7
also shows that the percentage of anticipatory
responses was greatly influenced by vertical
geomeiry, ¥*(3, N =342) = 39.8, p <.0001, with
this desirable behavior increasing when geom-
etry was converging (88%) or when both air-
craft were level (80%]), compared with parailel
climbs or descents or nonlevel (mean = 39%).
Finally, Table 7 indicates that the response
rate did not significantly differ across vertical
geometry categories, ¥2(3, N = 452) = 4.71,
p >.10, However, it is noteworthy that the same
vertically converging category that generated
the highest anticipation rate also generated the
highest response rate (97% vs. 90% average
across the other three categories).

Thus to summarize briefly, antomation per-
formance (FA rate) was not influenced by con-
flict geometry, but controller performance was
so influenced.
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Table 7: Categorical events as a function of vertical geometry. Measures in proportion {P) of avents

Variable Nonlevel Parallel Converging Level
Vertical geometry, false alert (FA) rate
P{FA) 0.45 0.52 0.39 0.47
n 194 102 86 70
Vertical geometry, anticipation
P(anticipation) 0.41 0.37 0.88 0.80
n 178 99 25 . 40
Vertical geometry, controller response
Pl{response) 0.89 0.92 0.97 0.88
n 194 102 86 70
DiSCUSSION allowed us to test Hypothesis 2, whether cen-

The primary purpose of this research was
1o seek evidence that the relatively high FA
rate in the conflict alerting system of ATC en
route centers might be responsible for creat-
ing a cry wolf syndrome of ignoring or delay-
ing responses to true alerts. We proceeded in
four steps: (a) assessing whether in fact there
were false alerts in our data base, {b) assessing
whether there were many cases of nonresponses
associated with an LOS, (c) assessing whether
variance in these was associated with variance
in cry wolf symptoms, and (d) examining what
other aspects of conflicts might be associated
with both desirable (anticipatory) and undesir-
able (LOS) controller behavior and system out-
comes.

Our first step, addressed as Hypothesis 1,
revealed that indeed there were a large num-
ber of alerts that could be categorized as false
even when the impact of a subsequent trajectory
change was subtracted, a change that we infer
was triggered by a controller instruction. We
note that this 47% false-alert rate (proportion of
alerts that are false) is modest compared with
that in some other areas, for example, health
care. However, rates are comparable with those
involved in weather forecasting (Barnes et al,,
2006) or other aspects of ATC alerting (Krois,
1999). There also was substantial variance in
this false-alert rate across the five facilities.
Although the cause of this variance is not appar-
ent (it does not appear to be related to traffic
density or CA frequency), its presence clearly

ters with a higher FA rate produce more nonre-
sponses to true alerts or delayed responses to all
alerts, that is, the predictions of Hypothesis 2b.

With regard to Hypothesis 2b, the evidence
was mostly negative. Concerning the most
potentially dangerous expression of cry wolf—
nonresponse to true alerts—although Figure 4
reveals that controllers at higher-FA centers
showed a lower response rate, that lower rate
did not produce more LOSes or more nonre-
sponses to true alerts. With regard to response
delays, there was no evidence that centers with
a higher FA rate showed either later responses or
fewer anticipatory responses. Thus, the data in
Figure 4 may be interpreted by assuming that in
centers where the FA rate is higher, confrollers
are increasingly ignoring trajectory pairs that
are clearly not a danger (even though they did
trigger the CA). Ignoring these trajectory pairs
seems to reflect an optimal controller strategy.

With regard to Hypothesis 2a, the substantial
proportion of alerts that were false (47%) did
not appear to be associated with a syndrome in
which the controller did not respond to a true
alert and produce an L.OS. Nonresponses with
an LOS constituted only 2/497, or 0.4% of
the data, less than the independent product of
nonresponse rate and LOS rate would predict.
Hence these results provide further evidence
that controlters in the current sample were not
ignoring the alerts as they might in a cry wolf
scenario.

Hypothesis 3 concerns the effects of conflict
properties on automation dependence broken
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down by conipliance and reliance (Meyer, 2001,
2004). Compliance is responding to an alert, and
so noncompliance is represented by the small
population of nonresponses. Reliance describes
the tendency to withhold action when the alert
is “silent,” and hence nonreliance is represented
by the large frequency of anticipatory responses
(Levinthal & Wickens, 2005}.

Given this categorization, we hypothesized
(Hypothesis 3a) that factors making conflicts
easier to visualize would reduce rehiance,
because of course, such better visualization
would mean that it is easier to process the raw
data on the display in parallel with the automa-
tion monitoring. This hypothesis was confirmed
in two respects. First, trajectory pairs that pro-
jected a smaller miss distance (true alerts;
more visually evident as a problem) triggered a
greater number of anticipatory responses (Table
5). Second, trajectory pairs that were more “vis-
ible,” or prototypical of conflicts, also triggered
more anticipatory behavior, In both the vertical
and lateral axes, these prototypical conflict pairs
were defined as ‘“‘converging” conflicts, mani-
festing negative relative velocity. In the lateral
map plane, it is quite evident why this should
be the case, given the visibility of the closing
tracks on the radar display. In the vertical axis,
such convergence is displayed not graphically
but instead by the altitude data tags changing in
opposing directions.

In terms of reduced compliance (Hypothesis
3b), a false alert—prone system does not appear
to have an effect, as described earlier, However,
on a frial-by-trial basis, it is evident that a large
predicted miss distance {(characteristic of a false
alert) reduces compliance (fewer responses;
Table 2), again strong evidence that controllers
are processing the raw data; if it visually appears
that a conflict will not take place (large projected
miss distance), the CA can be ignored, reflect-
ing noncompliance. However, less readily inter-
pretable is the finding that difficult-to-visualize
frials also reduced compliance, In particular, in
the lateral axis, diverging conflicts yielded a
40% nonresponse or noncompliance rate (com-
pared to 8% for other conflicts), and in the verti-
cal axis, although there were no CAs triggered
by vertically diverging trajectories, those that
were converging (most easy to visualize) were

associated with only 3% of nonresponses (97%
compliance), compared with 10% (90% com-

. pliance) for all other categories. Thus, we might

assume from those trials that when the conflict
does not appear to be visnally evident in the raw
data, controllers show an increasing tendency
to ignore the alerts, although this ignoring does
not appear to compromise safety, We consider
the practical implications of this interpretation
later.

Thus, although the data do suggest ample
evidence for false alerts, and that such alerts
are less likely to {rigger a response (as if they
are ignored), it does not appear that these
false alerts engender the sort of negative “set”
toward the alerting system associated with the

“ery wolf effect. Four possible explanations for

this null conclusion can be offered. First, analy-
ses reported in Wickens et al. (2008) revealed
that a majority (80%)-of the FAs in the current
data were “forgivable” or “acceptable” in that
they could be seen as resulting from a slightly
conservative threshold of the detection algo-
rithm, that is, erring on the side of more FAs
at the expense of minimizing misses or delayed
CAs. As such, each occurrence of these accept-
able FAs can serve fo reinforce the controller’s
classification of the raw data (for anticipatory
responses), resulting in what we might infer to
be reinforcing trust in the system (Lees & Lee,
2007).

Second, it is noteworthy that many of the
circumstances in which cry wolf behavior
is observed have been in distinct dual-task
settings—the FA-prone alerting sysiem is super-
vising a lower-priority background task while the
user’s attention is heavily focused on a higher-
priority task (¢.g., Bliss, 2003; Bliss & Dunn,
2000; Dixon et al., 2007; Dixon & Wickens,
2006). In contrast, in the CA system examined
here, both the controller and the automation sys-
tem are addressing the same high-priority task of
safe traffic separation management, Therefore,
task switching is not required between the high-
priority CA detection and something eise. As a
consequence, any loss of compliance that may
result does not {(and cannot) lead to the sort of
task-switching delay, observed by Dixon and
Wickens (2006; see also Wickens, Dixon, Goh,
& Hammer, 2003), involved when the pilot is
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flying the aircraft {primary task) while monitor-
ing for traffic (secondary task). This is beeause
such task switching in the current ATC context
simply does not take place when the primary
task is also the alerting task, nor does it lead o
the sori of concurrent task interference that will
increase controller frustration with the alerting
system. '

Third, we note that the CA system here was
associated not with sound—sound alerts being
more infrusive and hence more potentially
annoying when false—but rather with the flash-
ing displayed data blocks.

Fourth, it is certainly possible that such an
effect may have been present but was offset by
other factors that varied in a confounding fash-
ion between the centers, Although it does not
appear that workload (traffic load) was such a
factor (sec earlier discussion), other pessibili-
ties will be discussed later. Finally, it should be
noted that one influence that can sometimes be
invoked to account for finding null effects, low
statistical power, can probably be ruled out here
because of the high-¥ study, including almost
500 observations.

Although the data do reveal a 10% LOS rate,
it is important fo note that these are notf automat-
ically considered to be “operational errors™ that
frigger some form of sanctions on the respon-
sible controller (although we do not have access
to data on the linkage between these LOSs and
operational errors). A formal LOS as defined
by MMR < 1.0 may trigger further scrutiny by
an FAA supervisor, but such scrutiny can often
reveal no sense of imminent danger, particu-
larly if the MMR value is close to 1.0 (which it
was for most of the LOS events in our sample;
Wickens et al., 2008).

Practical implications and limitations. The
main practical implications of this study are
twofold, First, it appears that this particular
system (conflict prediction in the en route air-
space) does not warrant any substantial modi-
fications to address its false-alert rate. The rate,
although modestly high, appears not to contrib-
ute to any deficit in controller or system per-
formance. Second, there is some evidence that
certain geometries are more difficult for the
controller to visuatly process than others (those
with less convergence and more divergence on

either axis) and that such difficulty may reduce
compliance. In developing fature systems, it
might be worthwhile to consider reducing the
CA threshold and perhaps amplify its salicnce
when such geometries appear, thereby render-
ing it more likely that the alert information is
complied with.

There were several limitations and con-
straints in this study. First, we caution generaliz-
ing the current results and conclusions—drawn
from en route ATC centers—to CAs in terminal
girspace, where FA rate may be considerably
higher (FAA, 2006) and the boundaries between
LOS and non-LOS are far less clear-cut. Simiiar
caution should be exercised in generalizing to
ferrain alerts, also the target of the original
NTSB (2006) report.

Second, we note the obvious fact that because
this was not a true experimental study and we
did not have direct access to participants {e.g.,
to assess controller trust or to examine their
direct responses, or voice communications),
many aspects of our interpretation involve
weaker inferences than could have been made
with a frue experimental study. Hence we must
acknowledge the lack of certainty of our con-
clusions. Despite this fact, at least one potential
and serious confound in the study can be par-
tialty addressed: Centers with a higher false-
alert rate might be those with a higher workload
{e.p., greater traffic density), and this, rather
than the FA rate, could be the source of effects.
We address this by noting first that we did
not observe the expected cry wolf effect, (Had
we done so, it would have been more neces-
sary to demonstrate that increasing workload
was not responsible.) Furthermore, we actu-
ally found evidence that the busiest center
produced less cry wolf behavior, as inferred by
a shorter RT.

A third limitation is that the data provided
to us were from only the heaviest workload
period within each center, Therefore, it is pos-
sible that automation dependence might have
been amplified in the data sampled, relative
to what it would have been during other peri-
ods. This is because other analyses (Wickens
& Dixon, 2007) indicate that high workload
appears to increase dependence on automation.
In this light, it is all the more interesting that a
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high level of dependence, reflected in cry wolf
behavior, was not observed,

Fourth, we consider two other confounds
that might have offset and therefore masked an
existing cry wolf influence: cultural differences
between centers and between levels of experi-
ence. With regard to culture, there is no doubt
that centers, like people, are not homogenous.
Some may foster greater belief in, and depen-
dence on, the advice of automation (Wickens,
Mavor, & McGee, 1997). Therefore, the pattern
of data could be accounted for by assuming
that centers with a higher FA rate were more
aceepting (trusting) of the CA system to offset
the possible inhibiting effect of the higher FA
rate. We have no good way of assessing this
possibility.

With regard to training and experience, many
researchers of the cry wolf effect regard it as a
state of losing trust that develops over time, with
repeated exposure to FAs. Although we could
not assess differences in controller experience
level between centers, we simply assume that it
is fairly homogeneous and that the development
of mistrust would take place across many fewer
trials than the amount of experience of the aver-
age controller. If anything, more experienced
controllers would tend to occupy the busier cen-
ters, creating an effect that would amplify a cry
wolf effect rather than offset it.

Notwithstanding the potential shortcom-
ings and limitations of this naturalistic study
acknowledged previcusly, we believe that the
benefits produced by its large & and basis on
fully “live data” from controllers with real-
world motivations and expectancies offset those
shortcomings. Ultimately, the results make a
compelling case that more controlled simula-
tion experiments be carried out in the future to
confirm these findings,

And what of the cry wolf effect? In spite of
the generally negative evidence here, we fully
believe that it is present elsewhere, both within
and beyond the laboratory (Barnes et al.,, 2006;
Bliss, 2003; Seagull & Sanderson, 2001; Xiao
etal., 2004). The challenge of researchers now is
to explore the circumstances (such as single- vs,
dual-task situations deseribed earlier or “good”
vs. “bad” false alerts examined by Lees & Lee,
2007) that can modulate its influence.
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